
Runtime Verification of Object Lifetime

Specifications

by

Zev Benjamin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2009

@ Zev Benjamin, MMIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis docur

in whole or in part.
MIASACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 2 0 2009

[LIBRARIES

A uthor .................
Department of Electrical Engineering and Computer Science

May 22, 2009

Certified by....

7 -

Daniel Jackson
Professor

,,T iesisSupervisor

Accepted by. .............
Arthur C. Smith

Chairman, Department Committee on Graduate Students

ARCHIVES

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4417676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Runtime Verification of Object Lifetime Specifications

by

Zev Benjamin

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

This thesis reports on the implementation of a runtime verification system for object
lifetime specifications. This system is used to explore and evaluate the expressiveness
object lifetime specifications.

Object lifetime specifications are program annotations that indicate, in terms of
program execution, when objects should be reclaimed. Object lifetime specifications
are designed to be used within the context of an object-oriented programming lan-
guage with automatic storage reclamation (i.e., garbage collection). Our runtime
verification system observes program execution and reports objects that are not re-
claimed before the end of their specified lifetime.

We implement our system with the Java Path Finder model-checking framework.
JPF supports modeling non-determinism in programs. We leverage this support to
verify all possible thread interleavings when checking user programs.

Thesis Supervisor: Daniel Jackson
Title: Professor



Acknowledgments

I dedicate this work to my parents. They have taught me so much and have been so

supportive.

I thank my advisor Daniel Jackson for his invaluable insight and suggestions.

Finally, this thesis would not have been possible without Derek Rayside, a Ph.D.

candidate in the Software Design Group, who invented Object Lifetime Specifications,

collaborated with me on the implementation of JunkAware, and who guided me in

the writing of this thesis.



Contents

1 Introduction 6

1.1 Related Work ................... ........... 7

1.2 JunkAware ................................ 9

2 Motivating Examples (Anti-Patterns) 10

2.1 Lapsed Listeners ................... ......... 10

2.2 Crufty Caches ................... ......... .. 11

2.3 Sneaky Strings ................... . . ...... .. 11

2.4 Accumulating Arrays ................... ...... . 12

2.5 Inheritance Irritation ................... ........ 14

2.6 Tangled Ownership Contexts ................... .... 14

2.7 Bloated Facade ................... ......... .. 14

2.8 Construction of Zombie References . .................. 15

3 Object Lifetime Specifications 16

3.1 Groups ................... .......... ...... 17

3.2 Annotations ................... .......... .. 18

3.2.1 Group Creation ................... ..... . 18

3.2.2 Bounding Group End-time ................... . 19

3.2.3 Pinning ................... .. ...... .. 20

3.3 Group and Object Lifetimes ................... .... 21



3.4 Usage Methodology ............................

3.5 Notes ....................................

4 Implementation of a Runtime Verifier for Object Lifetime Specifica-

tions using Java Path Finder

4.1 Java Path Finder ......

4.2 Overview . ..........

4.3 Verifier State ........

4.4 IDMap ............

4.5 Reading the Specifications

4.6 Classloader Activity .

4.7 Implicit Groups .......

4.8 Backtracking ........

4.9

4.10

Managing Specification

Limitations ......

Veri:fier State

5 Implementation Alternatives

5.1 JDI....... ... ................... .. ....

5.2 Jikes ...................................

5.3 Production VM .............................

6 Evaluation

7 Conclusion

37

37

38

38

40



Chapter 1

Introduction

Memory leaks are a common class of errors in computer software and often lead

to bugs or other undesirable program behavior. Traditionally, memory leaks are

considered in the context of languages with explicit memory management, such as

C. In such contexts, a memory leak is usually defined as a case where an object

is allocated, but can never be deallocated because all references to the object have

been destroyed. This situation leaves the object persistent in memory until program

termination. Such objects are called garbage, and there are well-known tools for

detecting when this sort of problem arises [3, 7, 10].

However, memory leaks also occur in garbage collected languages such as Java.

Like in non-garbage collected languages, the memory leaks we focus on in Java are

semantic errors on the part of the programmer (rather than bugs in the JVM). In a

garbage collected language, memory leaks occur not because references to unneeded

objects are lost but rather because references to unneeded objects are retained. We

call these objects junk.

The goal of this project was to build a tool that allows programmers to use Object

Lifetime Specifications included in their Java code via annotations to dynamically

detect the presence of junk objects created during runtime.



1.1 Related Work

There are two existing classes of solutions to the problems of junk. The first attempts

to prevent the retention of junk, and the second attempts to detect the presence of

junk after the program has been written.

Most of the solutions in the preventative category take the form of stack disci-

plines. For example, one can disallow dynamic memory allocation entirely, which

guarantees that junk objects are not created because all objects in a stack frame are

destroyed upon that frame's exit. The Real-Time Specification for Java (RTSJ) [1]

is slightly less restrictive: it allows dynamic memory allocation, but disallows objects

from referencing objects at a deeper stack frame. This scheme also guarantees that

objects from a stack frame can be deallocated upon that frame's exit.

The problem with these methods is that they are too restrictive. Disallowing

dynamic memory and the solution used by RTSJ both greatly limit expressibility.

Worse, these disciplines are almost always incompatible with libraries, forcing the

programmer to use non-standard utility code. While possibly acceptable for mission-

critical code, these are not good general-purpose solutions.

In the detection category, there are several strategies used by different tools.

R6jemo and Runciman [8] used staleness (the time between when a object is last

used and when it becomes garbage) as an approximation for junk; Leakbot [6] uses

heap snapshots to infer relationships between objects; and Cork [5] examines the heap

to infer ownership between types.

Other research, inspired by linear types [14], seeks to restrict the users of an

object/group so that releasing it is no longer potentially global. The trade-off of

such approaches is that they restrict sharing. Our approach does not restrict sharing,

but requires the programmer to characterize the sharing when its lifetime does not

conform to a relaxed stack discipline.

For the programmer, object lifetime specifications are intuitively similar to re-



gions, but with a few important differences that increase their expressiveness. Object

lifetime specifications are written in terms of groups of objects, which are defined

by the programmer. Groups differ from the conventional notion of regions in the

following ways:

* Groups may be shared across threads.

* The expected lifetime of a group can be specified in flexible ways. Most memory-

safe approaches to regions follow a stack discipline, where the region expires

with the method frame that created it (although there are exceptions to this

rule, e.g., [4]). This limits most implementations of regions (including [4]) to

single-threaded programs.

* An object may be a part of multiple groups. With all approaches to regions

that we are aware of, an object may be a part of exactly one region.

* Groups are an analysis time concept: they are not used to actually release

objects at runtime. The regular garbage collector still manages memory at

runtime. By contrast, regions are usually used to physically manage memory.

These existing tools either provide strong guarantees, but limit expressiveness

and carry a large annotation burden, or provide weak guarantees by using heuristics,

and hence require no annotations. For example, the staleness heuristic, while a good

indicator of junk, can both over-estimate and under-estimate the junk in the program.

Objects that are not used in a particular run of a program (perhaps because they are

needed for functionality that the user did not ask for) might erroneously be identified

as junk. Alternatively, junk objects in a hash table serving as a cache might not

be identified because the hash table will rehash its elements when its size gets too

large. If an array was used for the cache, the elements would have been identified as

junk when they became stale. However, when the hash table rehashes, it will call the

hashCode() method on all of its elements, freshening them.



1.2 JunkAware

JunkAware is a runtime verifier for Object Lifetime Specifications. JunkAware and

Object Lifetime Specifications together attempt to target a middle ground. As dis-

cussed above, most preventative solutions are overly restrictive, and most heuristic

solutions don't give any guarantees. We trade very mild restrictions on expressiveness

for guarantees on single executions (as opposed to a static guarantee on all possible

executions).

Further, our tool is completely noninvasive to normal program execution. User

programs are marked up with Java annotations, special program text that can be

used to add extra information to classes, methods, and fields. These annotations will

be ignored except when the program is run under JunkAware.

Our tool can also be applied incrementally to programs. Users don't need to add

any annotations before running it under the tool. Then, annotations can be added

at a very coarse granularity first. If required, users can search for leaks at finer and

finer granularities by adding more annotations.



Chapter 2

Motivating Examples

(Anti-Patterns)

In this chapter, we exhibit several anti-patterns that are common causes of memory

leaks.

2.1 Lapsed Listeners

The Observer pattern [2] is often used in Java and is especially prevalent in AWT

and JavaBeans. It is also central in the MVC [2] paradigm. However, it can also be

a subtle source of memory leaks [12, §6] [9, §2.2]. Observers are called Listeners in

Bitter Java.

The point of the pattern is to separate the object that updates a value from the

object that uses the value. One or more observer objects register with the subject to

receive updates. The problem comes when the observers fail to unregister themselves.

Even if all other references to the observer are explicitly destroyed, the subject still

holds on to a reference. Worse, the user of the observer might not even know which

subjects it is observing to unregister it.

The author of Bitter Java also notes that often times the unregister step is omited



in code snippets for brevity. Thus, programmers who copy and paste the code forget

to unregister their observers.

2.2 Crufty Caches

In a crufty cache, a memoized call becomes the cause of a memory leak. For example,

an interning factory could be a crufty cache. The problem is that the cache has no

way of knowing when to remove the items from its cache.

While the diagnosis for crufty caches is similar to lapsed listeners and other anti-

patterns, the fixes are different. For crufty caches, one solution is for the cache to use

weak or soft references. Thus, if no other object references the cached item, it will

become a candidate for garbage collection. However, this solution does not work for

lapsed listeners and others, as the references are often required because they cannot

be recomputed as can the objects stored in a cache.

2.3 Sneaky Strings

In many string-processing applications, the goal is to extract certain strings or to

rearrange text. It is common to read in the entire input and pull out the pieces desired

using the substring() method. The way substring() is implemented, the returned String

object is actually just a pointer to the original string with an offset into it. This

method of creating substrings is efficient, but the memory for the original string is

preserved.

In an application that pulls out the first word of each line of the file, the entire

file will persist in memory even though the text of the other portions are inaccessible.

An example of such a program is shown in Figure 2-1. The leak occurs on line 14.

The solution to this problem is to use the String constructor with another string as

its argument. Adding the following after line 14 would eliminate the leak:



substring = new String(substring);

Figure 2-1: An example of sneaky strings.

1 public class SneakyStrings {
2 public static void main(String [] args) throws IOException {
3 String fileName = "analysands/antipatterns/foo.txt";
4 List<String> firstWords = firstWords(fileName);
5 System. out . println (firstWords);
6 }
7
8 static List<String> firstWords(String fileName) throws IOException {
9 List<String> results = new LinkedList<String >();

10 BufferedReader r = new BufferedReader(new FileReader(fileName));
11 String line;
12 while ( (line=readLine(r)) != null) {
13 int index = line .indexOf( '');
14 String substring = line .substring(0, index);
15 results .add(substring );
16 }
17 return results;
18 }
19
20 static String readLine(final BufferedReader r) throws IOException {
21 return r.readLine();
22 }
23 }

2.4 Accumulating Arrays

Consider an ArrayList implementation that does not set appropriate array indices to

null when an element is removed from the list. This might be done for efficiency

reasons.

The leak actually takes place on line 22. After pop() is invoked, the bounds

checking code in get() ensures that the popped item is inaccessible. However, the

appropriate entry in the underlying array is not set to null, which prevents the object

from being a candidate for garbage collection.



Figure 2-2: An example of a leaky ArrayList implementation.

public class MyArrayList<E> {
E[] array =new E[O];
int size = 0;

public void add(E elem) {
E[] tmp = new E[size + 1];
System. arraycopy (array , 0, tmp,
tmp[size] = elem;
array = tmp;
size++;

0, size );

public E get (int index) {
if (index >= size I index < 0) {

throw new ArrayIndexOutOfBoundsException (index);

return array [index];

}

public void pop() {
if (size > 0) {

size -- ;



2.5 Inheritance Irritation

Inheritance irritation [9, §2.1] arises from improper use of inheritance. Suppose there

is some superclass A that has a private field. B inherits from A but doesn't use the

functionality of the private field. It should set the field to null in order to free the

memory associated with it. However, because it is private, B cannot access the field.

The solution is to extend an appropriate interface, instead.

2.6 Tangled Ownership Contexts

The idea of tangled ownership contexts mostly makes sense in the context of object

ownership graphs and was described by Rayside and Mendel [9], §2.4. However, they

are still causes of memory leaks.

The problem arises when objects are not owned by any one object, but are shared.

For example, suppose the program creates two parse tree objects. If, due to some

bug, node objects are actually shared between these parse trees (i.e., the same node

or subtree appears in both trees), then keeping a reference to one parse tree may keep

part or all of the other from being released.

2.7 Bloated Facade

In the bloated facade [9, §2.5], an object keeps a pointer to an object A because it

needs to access data from it. The problem is that A also holds pointers to other pieces

of memory. In the bloated facade, the data that is required is not encapsulated into

its own object, so the user cannot just keep a pointer to that. The solution to this

problem is to factor out the required data into its own object.



2.8 Construction of Zombie References

Rayside and Mendel [9] note that once junk objects have been created, it is possible to

exacerbate the problem. For example, if object A points to the junk object B, object

C might also create references to B solely based on the fact that A has a reference to

it. This will ultimately just make B harder to get rid of.



Chapter 3

Object Lifetime Specifications

The idea of Object Lifetime Specifications is not a contribution of this thesis, but this

exposition of them is. The material in this chapter is based on personal communication

with Derek Rayside.

We think of a Java program as made up of threads, stack frames, and objects. We

will refer to each of these elements as a shard, and to the program, thread, and stack

frame shards collectively as computational shards. The end-time of a shard is easily

observable:

* An object's end-time is the point at which there are no more references to it.

* A stack frame's end-time is either when its associated return statement is

reached or an exception is thrown an not caught by the frame.

* A thread's end-time is when its initial stack frame ends.

* A program's end-time is when its final thread ends.

We call a shard whose end-time is exactly when the programmer desires timely.

Unfortunately, a shard's end-time may occur later than the programmer desires.

We call these shards tardy (thus, "junk" is another name for a tardy object). To



resolve such discrepancies, the programmer must first observe at a macro level that

some shard is tardy. Then he must observe at a micro level which instance of the

shard is tardy. Finally, he must reason about the tardy shards in order to find a

strategy for making them timely.

These observations are relatively easy for computational shards because they usu-

ally impact external events. Once these observations have been made, the strict

hierarchy among computational shards serve as a powerful reasoning framework.

However, the observations for objects are more difficult. When a computational

shard is tardy, it is the currently active computational shard. In contrast, a tardy

object is one that is not involved in the current computation. Hence, the observations

are hard.

Further, objects can be shared, and thus do not naturally form a hierarchy. There-

fore, even if the programmer identifies an object as tardy, he lacks a reasoning frame-

work to strategize about making it timely.

Object Lifetime Specifications tie expected object end-times to stack frames,

thereby extending the powers of observation and reasoning enjoyed by computational

shards to objects.

3.1 Groups

We tie expected object end-times to stack frames by associating every object with a

group. A group is simply a collection of objects in the running program. An object

is associated with a group at the time it is allocated.

Every group has a name that consists of a namestem and an index. The namestem

is a programmer-provided string, and the index is an integer assigned by the system.

The programmer associates a namestem with a method in their Java program. Each

time that method is invoked, a new group is created with the associated namestem



and the next index. Thus, for each thread there is a stack of groups that parallels its

call stack. When a object is allocated by a thread, it is placed in the group at the

top of its stack.

Object Lifetime Specifications operate on the level of groups. Operating at this

coarse granularity reduces the annotation burden on the programmer.

3.2 Annotations

We specify Object Lifetime Specifications for Java programs using Java annotations.

The annotations we use are listed in Figure 3-5.

3.2.1 Group Creation

There are two kinds of creation annotations, each of which declare that a new group

shall be created when the annotated method is called. They are called @Creates and

@CreatesTemp. @Creates takes a namestem as an argument, while @CreatesTemp takes

no arguments.

Imagine a compiler that takes some program text as input, possibly optimizes it,

and produces native code as output. A snippet of such a compiler which demonstrates

the @Creates annotation is shown in Figure 3-1. Here, the buildAST() method has

an annotation with the "astVars" namestem as its argument. This means that when

buildAST() is called, a new group named "astVarsi" will be created and pushed on to

the group stack, where i is the number of times a group with the "astVars" namestem

has been created before. Thus, the ast variable will belong to the "astVarsi" group.

The variable text will not be assigned to the new group because the object it points

to was created outside of the method call.

The @CreatesTemp annotation is equivalent to declaring both a @Creates and @Re-

leasesAll (see below) annotation with the same namestem.



Figure 3-1: Example usage of the @Creates annotation.

1 @Creates (" astVars")
2 public void buildAST(String text) {
3 ast = new Tree();
4

5}

3.2.2 Bounding Group End-time

There are two kinds of annotations for bounding the end-time of groups: @Releases

and @Retains. Each of these annotations has several variations that identify exactly

which groups are affected. All variations take a namestem as an argument.

The variations for @Releases are Oldest, Newest, Some, and All (i.e., the anno-

tations are @ReleasesNewest, @ReleasesOldest, etc.). The variations for @Retains are

Oldest, Newest, and All. The Oldest variation indicates that the annotation refers to

the group with given namestem and the lowest index; the Newest variation to the one

with the given namestem and the highest index; the Some variation to any group with

the given namestem; and the All variation to all groups with the given namestem.

If the programmer knows exactly when the program is done with some group,

they can specify that with a @Releases annotation. However, if the programmer is

not sure exactly what other parts of the program may be using some group at a given

time (e.g., due to concurrency), then they can simply mark the parts of the program

that are expected to extend the lifetime of the group with @Retains, and our dynamic

analysis will observe which of these @Retains methods ends last.

Continuing our compiler example, the code generation method, which demon-

strates a @Releases annotation, is shown in Figure 3-2. The emitCode() method has a

@ReleasesAll annotation with the "astVars" namestem. This indicates that all objects

in all groups with the "astVars" namestem should be deallocated after emitCode() has

finished. This is done in the example by setting the ast variable to null.

Finally, the optimization step of our compiler, which makes use of a @Retains



Figure 3-2: Example usage of a @Releases annotation.

1 @ReleasesAll (" astVars")
2 public void emitCode()
3 walkTree ( ast);
4 ast = null;
5 ..
6}

annotation, is shown in Figure 3-3. The optimizeAST() method has a @RetainsAll

annotation with the "astVars" namestem. This indicates that if optimizeAST is called,

all objects in groups with the "astVars" may persist at least until the end of the

method.

Figure 3-3: Example usage of a @Retains annotation.

1 @RetainsAll (" astVars" )
2 public void optimizeAST()
3 constantProp ();
4 elimDeadCode () ;
5 ...
6}

3.2.3 Pinning

Finally, there is a @Pins annotation for specifying a simple form of object ownership.

@Pins is placed on a field instead of a method. It indicates that in any instance of an

object, that field should be a member of all groups that that object is a member of.

For example, in Figure 3-4, the data field is pinned to instances of the Cell class.

This is because the data is created elsewhere, and thus can belong to a different group

than the Cell. The @Pins annotation ensures that the data's expected lifetime is at

least as long as its corresponding Cell.



Figure 3-4: Example usage of the @Pins annotation.

1 public class Cell {
2 @Pins
3 private Object data;
4
5 public Object getData() {
6 return data;

7 }
8 public void setData(Object obj) {
9 data = obj;

10 }
11 }

3.3 Group and Object Lifetimes

The end-time of a group is either specified by an @Releases annotation that names the

group, or the maximum expected end-time of the set of @Retains annotations that

name the group.

The expected end-time of an object is the maximum expected end-time of all of

the groups it is a member of. Objects may be members of multiple groups only due

to pinning.

Recall our example compiler from Section 3.2. While we don't have enough of

the compiler to determine exactly how it behaves, we can reason about how it should

behave based on its annotations. If the user requests a full compilation of a program,

then the ast should be released after the emitCode() method. This is because the

@ReleasesAll annotation on emitCode() requires all objects in an "astVars" group to

be released after that method call.

However, suppose the user only requests a parse and optimization, without code

generation. In this case, the ast should be released after the optimizeAST() method

because optimizeAST() is the last method called that @Retains an "astVars" group.

Finally, if the user only requests a program parse (perhaps to just check syntax),

the ast should be released after the buildAST() method because no other method is

called that @Retains or @Releases an "astVars" group.



Figure 3-5: Annotations to specify object lifetimes

Annotation Entity Description

@Creates(" group" ) method Objects allocated by this method's call
tree are members of the named group.

Objects allocated by this method's call
@CreatesTemp method tree are temporary, and should be

released by the time this method finishes.

(OldestNewest Objects in the identified group should be
@Releases Newest ("group") method released by the time this method finishes.

Some
All

Oldest The permissible lifetime of objects in the
@Retains Newest group") method identified group extends at least as long

All as the end of this method's execution.

Superobject pins subobject: subobject
@Pins field becomes a member of all groups that the

superobject is a member of.

For any of these three possible inputs, if the program fails to behave as annotated,

JunkAware will report that the ast object has become junk.

3.4 Usage Methodology

We imagine an incremental usage methodology for object lifetime specifications, in

the following sense: the programmer may start with a program with no annotations,

and quickly develop a set of annotations that characterize the program accurately

but coarsely. Then, if desired, the programmer can add more annotations to increase

precision. These annotations will generally be added in a top-down manner, by

starting at the program entry point(s).

The object lifetime specification for a program with no annotations is that all ob-

jects should be releasable by the time the thread that allocated them has completed.



For single threaded programs this extremely coarse specification holds trivially. How-

ever, this specification will not hold for many concurrent programs. In particular,

for GUI programs, the main thread usually constructs the GUI and then terminates,

leaving the GUI framework's event processing thread holding the objects. For such

programs, a single annotation - a @Retains or @Releases of the system thread group

on the GUI's dispose() method will suffice to indicate that the objects constructed

by the main thread are shared with the GUI event processing thread.

The practical utility of these extremely coarse default specification is, of course,

limited. However, they have methodological value: the programmer starts from a

position where they have an accurate specification, and simply work on making it more

precise, as their needs, available time, and level of interest dictate. This approach

correlates results with programmer effort: the more work the programmer invests, the

more precise a result they get but they always have a specification that's consistent

with their program.

3.5 Notes

An object lifetime specification is not an object access specification. It

is important to note that an object lifetime specification is not an object access

specification: a lifetime specification indicates a bound on the object's lifetime; an

access specification indicate a bound on what can access the object. Consider the

case of the observer design pattern: the subject needs to have access to all of the

observers, in order to notify them of updates; however, the lifetime of the observers

is, in most cases, shorter than the lifetime of the subject.

Non-termination. JunkAware deals with partial correctness: i.e., if the program

terminates, then the judgments are accurate. Non-termination, whether due to dead-

lock, looping, continuation-passing style, or something else, may prevent JunkAware



from making a judgment about the presence of leaks in the program.



Chapter 4

Implementation of a Runtime

Verifier for Object Lifetime

Specifications using Java Path

Finder

The runtime verifier JunkAware is implemented on top of the Java Path Finder (JPF)

virtual machine. This allows us to monitor analysand program events such as object

creation and destruction. In turn, this allows us to check the specifications as the

program is running.

4.1 Java Path Finder

Java Path Finder [13] is a special Java virtual machine that is primarily designed for

model checking, but can also be used for a variety of other similar kinds of analyses.

In JPF, in contrast with other JVM's that are written primarily for performance

rather than analysis, it is possible to force the garbage collector to run. We exploit



this to observe object deallocation by forcing a garbage collection after each method

call. Thus, any objects that can be deallocated at that point, will be.

JPF can handle non-determinism in programs by exploring all the possible alterna-

tives. It does this efficiently by exploring the program state space using backtracking.

We discuss how we use this feature in Section 4.8.

For our purposes, JPF has two important concepts: listeners and properties. Lis-

teners inform a piece of analysis software, such as JunkAware, when important events

have occurred in the analysand program. JPF has two kinds of listeners: VMLis-

teners and Search Listeners. VMListeners are informed of virtual machine activity, such

as object creation or instruction execution. SearchListeners are informed of activ-

ity concerning the exploration of the program execution state space. For example,

SearchListeners are informed when JPF backtracks or when the program is finished

executing.

Properties are objects that represent invariants that the analysis program would

like to check. For example, JPF comes with a property for checking the invariant

that no uncaught exceptions are thrown. JunkAware checks the invariant that the

program has no junk objects. JPF periodically invokes the property's check method

and, if it returns false, reports the property failure to the user.

4.2 Overview

Although backtracking is an important feature of the JPF implementation, it sig-

nificantly complicates the design of JunkAware. Therefore, we will first describe a

simplified design in the absence of backtracking. An design rationale of the simpli-

fied architecture is shown in Figure 4-1, and the major components of the tool are

summarized in Table 4.1.

JunkAware interfaces with JPF at two points: it registers the singleton JunkLis-



registered properties
are checked and reported

VM events are translated
to OLS events and recorded

Figure 4-1: Design rationale [? ] diagram without backtracking. Boxes represent system components and ellipses represent
properties. Arrows show which components or properties are required to satisfy others.



Component Description Section
JunkListener an instance of VMListener and SearchListener that re-

ceives events about the current program execution
from JPF

JunkProperty an instance of JPF's GenericProperty that we use so
that we can report memory leak events with JPF's
generic reporting facility.

VerifierState encapsulates the current state of the verifier. 4.3
IDMap a utility class that we use to ensure objects have 4.4

unique IDs.
JunkChecker enables JunkAware to deal with JPF's backtracking. 4.8

Table 4.1: The major components of JunkAware. Each is discussed more fully in the
indicated section.

tener with JPF as a VMListener and it registers JunkProperty with JPF as a property

to check. When JunkAware is run, it registers these objects and then instructs JPF

to begin running the target program. As JPF executes the program, it will notify

JunkListener of VM events. The JunkListener will then use these events to manage

the verifier state via the VerifierState. JPF will also periodically query the JunkProp-

erty to determine whether it has been violated (i.e., whether there are junk objects).

JunkProperty can answer this query by forwarding it to the VerifierState.

The IDMap is used by the VerifierState to ensure that all objects referenced by the

verifier state are identified by a unique ID (see Section 4.4).

4.3 Verifier State

The main datastructure in our system is the VerifierState object. It encapsulates

the current state of all objects in the running program. It has the following eight

operations:

* objectCreated(threadlD, objectlD)

* objectReleased (objectlD)

* pushGroup(threadlD, namestem)



* popGroup(threadlD, namestem)

* pin(threadlD, superObjectlD, subObjectlD)

* associateObjectWithGroup(objectld, namestem)

* pushAuthority(threadlD, authority)

* popAuthority(threadlD, authority)

The first two operations record object creation and release. The pushGroup and

popGroup operations create and close a group, respectively; the verbs in the names

reflect the fact that groups follow the call stack. The VerifierState is responsible

for incrementing the index associated with the given namestem and concatenating

the two to name the new group. The pin operation indicates that some superobject

pins some subobject. The associateObjectWithGroup operation allows the tool to

arbitrarily assign objects to a group. This is mainly used for system objects. The

last two operations are used for the @Releases and @Retains annotations, which are

abstracted to the notion of an authority (i.e., an authority to extend the lifetime of

some group of objects).

4.4 IDMap

For our analysis, we require two properties of the way JPF identifies objects. The

ID of an object must not change over its lifetime. Additionally, no two objects

may simultaneously have the same ID. JPF, as with most virtual machines, provides

these properties. However, also as with most other virtual machines, JPF does not

guarantee that object IDs will not be reused for future objects. Our analysis requires

unique IDs across the entire program execution.

Thus, we must transform the object IDs that JPF provides into IDs that are

unique across the program execution. The IDMap module provides this service. The

IDMap has the following operations:



get

Program start na initiate

retire

Figure 4-2: State machine representation of the life of an ID in the IDMap. Nodes
are ID states and edges are operations with that ID as an argument. Transitions not
present are illegal.

* initiate(jpf-oid)

* retire(jpf-oid)

* get(jpf-oid)

The new identifier that the IDMap creates is the concatenation of the JPF object

ID with a generation number.

Each JPF ID is associated with an instance of the state machine shown in Figure

4-2. When a new JPF object ID is encountered (usually during object creation),

initiate is called with that ID. This increments the generation number for that ID and

makes subsequent calls to get with that ID valid. After an ID has been initiated, the

get operation will map that ID to a unique identifier. When an object is destroyed,

retire is called with the destroyed object's ID. This makes subsequent calls to get

invalid.

4.5 Reading the Specifications

We read the specifications from the annotations in the source files by registering the

VM listener AnnotationExtractor. This listener only listens for the classLoaded event.



When it receives such an event, it walks over the newly loaded class' methods and

reads the annotations. The annotations found are recorded for later verification.

In the case of JDK library code, we cannot actually alter the code to add our an-

notations. Therefore, we include a separate text file that indicates @Pins annotations

that would have been declared in several JDK classes.

4.6 Classloader Activity

Like many other virtual machines, JPF loads classes on demand. When it encoun-

ters an instantiation or static method invocation of a class it has not yet seen, it

automatically invokes the classloader to load the class. JPF does this by forcefully

pushing the frame for the classloader onto the stack and executing it in the current

user thread. This would cause (potentially long-lived) objects created during the

classloading process to belong to whatever group was at the top of the group stack

at the time the classloader was invoked. Because the programmer can't anticipate

when the classloader will be invoked, he cannot prevent these objects from becoming

members of arbitrary groups and later reported as junk without the assistance of

JunkAware.

To solve this problem, we provide JPF with a custom StaticArea (the class JPF

uses to represent part of the heap). The StaticArea is informed when new classes are

loaded via its addClass method. Our special StaticArea brackets calls to this method

with calls to temporarily disable Object Lifetime Specifications checking in the thread

that is loading the new class.

4.7 Implicit Groups

In addition to user-named groups, there are two kinds of groups that are implicitly

defined: groups for threads and the distinguished system group. A group is always



pushed onto a thread's group stack just before the thread starts running. The thread

object itself is a member of this group to prevent it from being reported as junk. These

groups for threads behave like user-named groups in all other respects. The system

group is a special catch-all group. Objects allocated in native code or otherwise

outside normal creation methods belong to the system group. The end-time of the

system group is the end-time of the program.

There is also a special group for the main thread. It is pushed on to the main

thread's group stack before the program starts.

4.8 Backtracking

JPF supports backtracking to explore all possible program states for a given program

input. Every time JPF encounters a non-deterministic choice in program execution, it

stores the program state so it can return to that point of execution. It then proceeds

to explore all possible choices at that point.

One source of non-determinism that we are particularly interested in is that of

thread-scheduling. We conjecture that one of the reasons that some memory leaks

seem to only manifest once the program has been deployed is because they only

occur on some uncommon thread schedules. We similarly expect that there will be

cases where a programmer writes an object lifetime specification that the program

conforms to when the program executes its most common thread interleaving, but

that the program will have some less common interleavings where it does not conform

to the programmer's expected object lifetime specification. JPF helps us explore these

empirical concerns.

In order to make this exploration not prohibitively expensive, JPF collapses the

state space. That is, if two branches lead to the same state, JPF will only explore

the possibilities at that new state once.



To support JPF's backtracking, we add a layer of indirection between the Jun-

kListener and the VerifierState called the JunkChecker. The design rationale for the

version of JunkAware that supports backtracking is shown in Figure 4-3.

The JunkChecker stores a stack of (VerifierState, IDMap ) pairs (we instruct JPF

to explore the state space depth-first). Because the JunkListener receives notifications

of when the search has branched or backtracked, it can instruct the JunkChecker to

push or pop these pairs.

4.9 Managing Specification Verifier State

One complication with supporting JPF's backtracking is that it is based on the run-

ning program's memory state. However, relying solely on the running program's state

is not sufficient for our purposes. We need to include the state of the verifier. To

illustrate this, consider the following example program.

After some call either to A() or B(), the heap state is the same. In both cases,

there is an object of type Nugget in the heap with a value of 1. However, if A() was

called, this object belongs to the "foo" group. If B() was called, the object instead

belongs to some other group (possibly a thread's group). It would be undesirable for

JPF to treat these situations as the same for the purposes of backtracking.

We considered two alternative ways to overcome this. We could have stored the

verifier state inside the heap of the running program. This would have required no

modification of the JPF state space code, but would have required instrumenting user

programs.

Instead, we decided to provide JPF with our own heap serializer that was aware

of the verifier state. Thus, at any given point in the program, when JPF wishes to

serialize the heap, we also append a serialized version of the current MemspecState

object.



Figure 4-3: Design rationale diagram with backtracking. Boxes represent system components and ellipses represent properties.
Arrows show which components or properties are required to satisfy others.



One problem with this approach is that we make no attempt to canonicalize the

verifier state. Thus, it's possible for two identical program states to appear as different

states to JPF. While this makes the state space exploration less efficient, it is still

correct.

4.10 Limitations

Our tool has some limitations imposed on it because it uses JPF, and one minor

engineering limitation. While JPF does support a large portion of the JDK libraries,

there is also a significant portion missing. We believe this is at least partially because

implementing versions of these libraries that do backtracking correctly is difficult.

Thus, the number of real-world programs we can run under our tool is currently

somewhat limited.

Our tool also does not currently handle exceptions correctly. We do not believe

that this is a major issue, however, as exceptions should be rare in correctly executing

programs.



Figure 4-4: Two functions that leave the heap in an identical state.

public class Foo {
public class Nugget {

final int value;
Nugget(final int value)

}
{ this. value = value; }

public Nugget heapData;

@CreatesGroup{" foo" }
public void A() {

heapData = new Nugget(1);
}

public void B() {
heapData = new Nugget (1);



Chapter 5

Implementation Alternatives

We ultimately chose Java Path Finder as our monitoring VM, but there are several

other technologies which we could have used. We explain some of those alternatives

below.

5.1 JDI

The Java Debugger Interface is an API for interacting with the Java debuger from

another Java process. Here, we would have used the regular Java VM, except we

would have controlled execution using the debugger.

Using JDI would have had many advantages. First, since most Java programs

target the Sun JDK, our tool would have had no problem running third-party code.

JDI allows the full expressive power of Java.

However, the JDI does have some drawbacks. Because it is primarily used to

debug Java programs and not to study program execution, it does not expose all of

the primitives we would like. For example, it does not allow observation of array

reads and writes. Using the JDI would probably have also required us to instrument

the running program. This is not necessary in JPF.

A tool based on the Java Debugging API would have the following additional



shortcomings:

* Most standard Java VM's do not have a facility for forcing the garbage collector

to run: System.gc() merely requests that the collector be run, but does not force

it. Consequently, our prototype may observe some drag time between when an

object becomes collectable and when it is actually collected. This is especially

problematic for small example programs, where the collector will never be run.

* The Java debugging API on most standard virtual machines does not filter

out class loading activity, and so this kind of system activity appears to the

prototype as part of the application program.

5.2 Jikes

Jikes is a Java virtual machine written in Java. It is a research VM created by IBM.

Implementing our tool using the Jikes VM would have meant modifying the VM

to report events relating to object creation and program flow. This would be easier

than modifying a production VM, as the programming could be done in Java and

because the VM is is built to be modified for experiments such as JunkAware.

Jikes also has limitations. For example, it does not support AWT. It also currently

uses the GNU Classpath or Harmony class libraries and only has experimental support

for the OpenJDK class libraries, limiting the programs that can be run under it.

5.3 Production VM

Most production Java virtual machines (such as Sun's) are at least partially written

in C. These VMs are also highly optimized, and thus their implementations are likely

not to be straightforward. These factors combined would have made modifying a

production VM difficult.



Sun's VM, which is the most widely used JVM, was also not open source at the

time this project was started, so obtaining the source to modify would have been

difficult.



Chapter 6

Evaluation

We believe Object Lifetime Specifications allows us to express programs that would

be difficult in other models. For example, we can express a multi-threaded produc-

er/consumer pattern where we specify the object produced will be deallocated after

the consumer has finished processing it. We have written such a program, annotated

it with Object Lifetime Specifications, and checked it with JunkAware.

The program has three threads: main, producer, and consumer. The main thread

constructs the other two threads, as well as the queue object that they share; once

the two other threads are started, the main thread terminates. The producer thread

creates data objects and puts them on the queue; the consumer thread dequeues the

data objects and prints them out. Source code for this example is listed in Figures

6-1, 6-2, and 6-3.

The main property that we want to check is that the data objects are released

after they are printed out that they don't accumulate in an unbounded fashion.

We can check this property with two annotations: @Creates("data") on the method

in the producer that creates and enqueues the data, and @Releases( "data") on the

method in the consumer that dequeues and prints the data.

The interpretation of these annotations is as follows: Every time the the annotated



producer method executes, it creates a new group named datai, where i is an index

number that gets incremented for every execution of the method. The @Releases

annotation needs to be combined with a quantifier, as can be seen in Figure 3-5.

This quantifier may be quite general, i.e., All or Some; or may describe if the shared

queue is FIFO (Oldest) or LIFO (Newest). It's a FIFO queue, and so we choose the

@ReleasesOldest( "data") annotation.

We can enrich this example by thinking a little more deeply about the queue.

There are a variety of ways that it may be implemented, including an array, a linked

list, or some kind of re-balancing structure (like a red-black tree or a hashtable).

Some of these possible implementation strategies involve creating bucket objects to

hold the data, and in the case of a re-balancing structure, potentially reorganizing

these buckets and creating new buckets at times that are obvious neither to the

producer nor to the consumer. We would like to maintain the modularity property

that the producer and consumer only need to know about how they use the queue

(e.g., FIFO, LIFO, etc.), and do not need to know about how the queue is internally

implemented.

The @Pins annotation gives us this modularity. The queue can pin its buckets,

and they can even pin each other. What this means is that the group memberships

of the queue are passed on to its buckets: i. e., the buckets do not need to expire until

the queue does. The alternative is that the expected lifetime of the buckets gets tied

to the expected lifetime of some data object put in the queue, which would likely

cause spurious specification violations especially in the case of a re-balancing data

structure.

Our approach with the @Pins annotation would allow the bucket objects to ac-

cumulate inside the queue in an unbounded manner. We argue that if the author of

the queue data structure wishes to maintain a modularity boundary, then it is their

responsibility to ensure that these kinds of leaks do not occur. There are a number



of techniques that can be employed to this end, including: using our annotations in a

manner informed by the internal structure and workings of the queue; ordinary class

invariants; and other special techniques developed specifically for finding memory

leaks within data structures [11]. When one chooses to erect a modularity boundary,

then one needs to take responsibility for what happens on the inside of that boundary.

Lines 17 20 of Figure 6-1 check to see if the "leak" flag as been passed on the

command line. If it has, then the consumer will store the data it receives from the

queue in a field in the consumer thread object. This will cause the data object to

become junk because the the consume() has a @Releases annotation, meaning that

the data object should have been released by the end of the method call.

When run under JunkAware without the "leak" flag, JunkAware correctly re-

ports that the program conforms to its specification. When run with the "leak" flag,

JunkAware correctly reports that the data object becomes junk.

For a single thread interleaving, running the program under JunkAware versus the

Sun JVM seems to incur a factor of 2 slowdown. Requesting all thread interleavings

seems to incur a factor of 100 slowdown versus a regular execution on the Sun JVM.



Figure 6-1: Main method of Producer/Consumer example

10 public class Main {
11
12 private static boolean LEAK = false;
13
14 public static void main(String []1 args) {
15 System. out. println ("starting-prodcons....");
16
17 // should we have a leak?
18 if (args.length > 0 && args [0]. equals ("--leak")) {
19 LEAK = true;
20 }
21
22 // actual work
23 final int capacity = 1;
24 final BlockingQueue<Nugget> q = new LinkedBlockingQueue<Nugget >(capacity);
25 final Producer p = new Producer(q);
26 final Consumer c = new Consumer(q);
27 c. start ();
28 p.start ();
29
30
31
32 static final class Nugget {
33 final int value;
34 Nugget(final int value) { this.value = value; }
35 @Override public String toString() { return Integer.toString(value); }
36 @Override public int hashCode() { return value; }
37 @Override public boolean equals(final Object other) {
38 if (other instanceof Nugget) {
39 return value = ((Nugget)other).value;
40 }
41 return false;
42 }

43



Figure 6-2: Producer from the Producer/Consumer example

45 static class Producer extends Thread {
46 final BlockingQueue<Nugget> q;
47
48 Producer(final BlockingQueue<Nugget> q) {
49 super(" Producer");
50 this.q = q;
51 }
52
53 @CreatesRegion (" Producer")
54 public void run() {
55 // real data
56 for (int i = 0; i < 1; i++) {
57 produce(i);
58 }
59 // poison pill to end the program
60 produce(-1);
61 System. out. println (" Producer -done. ");
62
63
64 ACreatesRegion (" nugget")
65 private void produce(int i) {
66 try {
67 q.put(new Nugget(i));
68 } catch (InterruptedException e) {
69 e. printStackTrace ();
70 }
71 }
72



Figure 6-3: Producer from the Producer/Consumer example

74 static class Consumer extends Thread {
75 final BlockingQueue<Nugget> q;
76 Object leak = null;
77
78 Consumer(final BlockingQueue<Nugget> q) {
79 super (" Consumer" );
80 this.q = q;
81 }
82
83 @ReleasesSome (" Producer")
84 public void run() {
85 while (consume()) {}
86 System. out. println("Consumer-done.");
87 }
88
89 @ReleasesOldest ("nugget")
90 private boolean consume() {
91 try {
92 final Nugget s q.take();
93 System.out.println("Consumer:~-" + s + "...." + leak);
94 if (LEAK true && s != null && leak null) {
95 leak = s;
96 }
97 if (s = null) return false;
98 if (s.value = -1) return false;
99 return true;

100 } catch (InterruptedException e) {
101 e. printStackTrace ();
102 }
103 return false;
104 }
105 }
106 }



Chapter 7

Conclusion

Memory leaks in Java programs and other languages with garbage collection arise

because the programmer has retained references to objects that are no longer needed.

Such objects, called junk, are both difficult to detect and to reason about. They are

difficult to detect because they are the objects that are not active in the computation.

They are difficult to reason about because objects can be shared and thus there is no

obvious natural hierarchical structure among them.

Object Lifetime Specifications help the programmer detect and reason about junk

objects by tying the end-time of objects to the naturally occurring hierarchical struc-

ture of programs, threads, and stack frames.

We have implemented a runtime verifier for Object Lifetime Specifications called

JunkAware using the Java Path Finder virtual machine. Given a user program an-

notated with Object Lifetime Specificationss for analysis, JunkAware will read the

specifications and execute the program. If the execution terminates, then JunkAware

will report a definitive judgment as to whether there were junk objects in that exe-

cution. Running the user program under JunkAware versus the Sun JVM seems to

incur about a factor of 2 slowdown.

Even if one execution does not contain junk objects, there may be others that



do. Therefore, to increase the effectiveness of the verification, JunkAware uses JPF's

backtracking facility to explore multiple executions that are related by some non-

deterministic choice (such as thread interleavings). For our simple producer-consumer

example program, the slowdown for searching all thread interleavings seems to be

about a factor of 100.

Although more evaluation and analysis of Object Lifetime Specifications is re-

quired to determine their effectiveness in real-world programs, JunkAware provides

the opportunity to do this future work.



Bibliography

[1] BENJAMIN BROSGOL, JAMES GOSLING, PETER DIBBLE, STEVE FURR, AND

MARK TURNBULL. The Real-Time Specification for Java. Addison-Wesley,

Reading, Mass., 2000. ISBN 978-0201703238. URL http://www.rtsj.org/

specjavadoc/book_index.html.

[2] ERICH GAMMA, RICHARD HELM, RALPH JOHNSON, AND JOHN VLISSIDES.

Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, Reading, Mass., 1995.

[3] R. HASTINGS AND B. JOYCE. Purify: A Tool for Detecting Memory Leaks

and Access Errors in C and C++ Programs. In Proceedings of the Winter 1992

USENIX Conference, pages 125 138, Berkley, CA, January 1992.

[4] FRITZ HENGLEIN, HENNING MAKHOLM, AND HENNING NISS. A direct ap-

proach to control-flow sensitive region-based memory management. In Proc.3rd

International ACM SIGPLAN Conference on Principles and Practice of Declar-

ative Programming (PPDP), pages 175 186, Montreal, Canada, 2001. ACM.

[5] MARIA JUMP AND KATHRYN S. MCKINLEY. Cork: Dynamic memory leak

detection for garbage-collected languages. In MATTHIAS FELLEISEN, editor,

34th POPL, pages 31 38, Nice, France, January 2007.

[6] NICK MITCHELL AND GARY SEVITSKY. LeakBot: An automated and

lightweight tool for diagnosing memory leaks in large Java applications. In LUCA

48



CARDELLI, editor, Proc.17th ECOOP, volume 2743 of LNCS, Darmstadt, Ger-

many, July 2003. Springer-Verlag. ISBN 3-540-40531-3.

[7] NICHOLAS NETHERCOTE AND JULIAN SEWARD. Valgrind: A Framework for

Heavyweight Dynamic Binary Instrumentation. In JEANNE FERRANTE AND

KATHRYN S MCKINLEY, editors, Proc.PLDI, San Diego, CA, June 2007.

[8] NIKLAS ROJEMO AND COLIN RUNCIMAN. Lag, drag, void and use heap

profiling and space-efficient compilation revisited. In RICHARD L. WEXELBLAT,

editor, Proc.1st ICFP, pages 34 41, Philadelphia, PA, May 1996. ACM Press,

NYC, NY. ISBN 0-89791-770-7.

[9] DEREK RAYSIDE AND LUCY MENDEL. Object ownership profiling: A tech-

nique for finding and fixing memory leaks. In ALEXANDER EGYED AND BERND

FISCHER, editors, Proc.22nd ASE, Atlanta, GA, November 2007.

[10] JULIAN SEWARD AND NICHOLAS NETHERCOTE. Using Valgrind to detect un-

defined value errors with bit-precision. In Proc. USENIX, April 2005.

[11] RAN SHAHAM, ELLIOT K. KOLODNER, AND MOOLY SAGIV. Automatic re-

moval of array memory leaks in Java. In DAVID A. WATT, editor, Proc.9th CC,

volume 1781 of LNCS, Berlin, March 2000. Springer-Verlag. ISBN 3-540-67263-

X.

[12] BRUCE A. TATE. Bitter Java. Manning, 2002. ISBN 193011043X.

[13] WILLEM VISSER, KLAUS HAVELUND, G. BRAT, S. PARK, AND F. LERDA.

Model checking programs. Automated Software Engineering Journal, 10(2), 2003.

[14] PHILIP WADLER. Linear types can change the world! In M. BROY AND

C. JONES, editors, IFIP TC 2 Working Conference on Programming Concepts

and Methods, Sea of Galilee, Israel, pages 347 359. North Holland, 1990.


