Economic Feasibility of Shipping Containers Through the Arctic

by

Russell Pollock

M	ASSACHUSETTS INSTITUT OF TECHNOLOGY	E		
	JUL 1 0 2009			
LIBRARIES				

B.S. Naval Architecture and Marine Engineering Webb Institute, 2008

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN TRANSPORTATION AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

ARCHIVES

© 2009 Massachusetts Institute of Technology All rights reserved

Signature of Author		· · · · · · · · · · · · · · · · · · ·	
	Departi	ment of Civil and Envir	onmental Engineering
	•		May 8 2009
			iviay 8, 2003
Cartified by			
certified by	11		Honmy C. Morous
	V		Henry S. Marcus
		Profes:	sor of Marine Systems
		1/ 1	Thesis Supervisor
Accepted by			*****
	- AND - CONTRACTOR		שמוווכוב עבווב נומו0
	-		

Chairman, Departmental Committee for Graduate Students

Economic Feasibility of Shipping Containers Through the Arctic

by

Russell Pollock

B.S. Naval Architecture and Marine Engineering Webb Institute, 2008

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ON MAY 8, 2009 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN TRANSPORTATION

Abstract

As the Arctic ice cover continues to retreat, the possibility of regular transit through the Arctic becomes an increasing reality. Liner companies could take advantage of distance savings (up to 4000 nautical miles less than existing routes) available from transit through the Arctic by offering faster port-to-port voyage times while simultaneously reducing voyage expenses.

The purpose of the study is to investigate the economic feasibility of a liner service with shipping routes through the Arctic. To accomplish this, information pertaining to Arctic conditions, containerships and icebreakers, and container ports was collected and used to build a model that estimates the expense and time of port-to-port voyages through the Arctic. Different combinations of vessels, routes, and speeds through the Arctic were evaluated with the model. The expense and time of the Arctic voyages were then compared to the equivalent existing liner routes.

The likelihood of year-round reliable containership service through the Arctic in the future depends on one's perspective. One the one hand, it won't happen for decades due to the presence of ice. Current predictions of a largely ice-free Arctic range from 2030 to later than 2100. On the other hand, if some favorable assumptions are made, it deserves serious consideration once minimally ice-strengthened containerships are able to be reliably escorted through the Arctic at a speed of 10kts.

Thesis Supervisor: Henry S. Marcus Title: Professor of Marine Systems

Acknowledgements

The author would like to thank the American Bureau of Shipping for the funding and support that made this report possible. Specifically, Peter Tang-Jensen and his colleagues provided valuable assistance during this project.

This study was accomplished with the support and assistance of many individuals who merit recognition for their contributions. First, the author would like to thank Professor Hank Marcus for his invaluable guidance and supervision as advisor of this study. Dr. Lawson Brigham provided several Arctic studies and presentations and answered countless questions regarding icebreaker operations. Rob Dvorak completed his graduate thesis, *Engineering and Economic Implications of Ice-Classed Containerships*, at the same time as this study and provided advice many technical details pertaining to ice-strengthening. Finally, the sources used in the liner and LNG shipping industries deserve thanks for providing technical and operational data for this study.

Executive Summary

As the Arctic ice cover continues to retreat, the possibility of regular transit through the Arctic becomes an increasing reality. Liner companies could take advantage of distance savings (up to 4000 nautical miles less than existing routes) available from transit through the Arctic by offering faster port-to-port voyage times while simultaneously reducing voyage expenses.

The purpose of the study is to investigate the economic feasibility of a liner service with shipping routes through the Arctic. To accomplish this, information pertaining to Arctic conditions, containerships and icebreakers, and container ports was collected and used to build a model that estimates the expense and time of port-to-port voyages through the Arctic. Different combinations of vessels, routes, and speeds through the Arctic were evaluated with the model. The expense and time of the Arctic voyages were then compared to the equivalent existing liner routes. The primary conclusions from the study are:

- Routes that achieve significant distance savings through Arctic transit, such as Northern Asia to Northern Europe, have the potential to offer a lower voyage cost and substantially lower voyage time than corresponding existing routes.
- Present day Arctic conditions allow for these advantages during summer months only. Ice conditions during at least the four most severe winter months greatly increase voyage expenses and transit times, eliminating the possibility of current year-round consistent liner schedules.
- Arctic conditions need to allow an average speed through the Arctic of at least 10 knots during all times of the year before regular service through the Arctic begins to look attractive.

Arctic Routes

There are three routes that can be used to cross the Arctic Ocean: the Northern Sea

Route (NSR), the Northwest Passage (NWP), and the polar route—directly over the North Pole.

The Northern Sea Route follows the northern coast of Russia. It currently has the most favorable ice conditions for transit and is nearly ice-free four months of the year. Resultantly, the model created in this study uses the NSR. Portions of the NSR have been in use since the 1930's when the former U.S.S.R. used it to supply towns along the Siberian coast. Nearly all commercial use ended with the collapse of the U.S.S.R. Portions of the NSR are currently used for mineral transport from Russian mines. Russia is currently trying to persuade the United Nations that the Arctic seabed is on the Eurasian continental shelf which would provide weight to Russia's desire to claim territorial waters extending to and including the North Pole.

A northwestern passage from Europe to the Far East was sought as early as the 15th Century. Existence of what is known today as the Northwest Passage was proven in the 1800s but not transited non-stop until 1944. The NWP, which leads through the Canadian Arctic Archipelago and above the northern coast of Alaska, has not been used for commercial transport due to severe, unpredictable ice conditions and has historically been less navigable than the NSR. Canada has declared control over most of the NWP, a claim not recognized by the United States or the European Union who view the NWP as an international strait. The designation of international strait implies a "right of passage" through any territorial waters.

If the Arctic ice cap continues to decrease in size, it may be possible in the future to sail directly over the North Pole. Such a route would be outside the control of Russia and Canada and would avoid the relatively shallow waters in portions of the NSR and NWP.

Vessels

Several different types of containerships, as well as a dedicated icebreaker, were used in this study. Icebreaking, minimally ice-strengthened, and standard containerships were used in

-5-

different alternatives for Arctic transit. Two sizes of containership (750 TEU and 5000 TEU) were investigated.

There are currently five nominally 750 TEU icebreaking containerships in continuous use today in the Arctic. The designer of the vessels, Aker Arctic, also has a conceptual design for a 5000 TEU icebreaking containership that is based on the 750 TEU vessels. The icebreaking containership is capable of independent operation in ice but is at least twice as expensive to build as a standard containership.

The minimally ice-strengthened containership used in the study is ice-strengthened according to ABS Ice Class A1. When travelling through ice-covered waters, it is escorted by an icebreaker. The ice-strengthened containership has the same principal characteristics as the standard containership with the exception of additional steel and equipment added to the hull according to the ice class.

The standard containership was primarily used in the study to calculate the voyage expense and time for existing liner routes. Principal characteristics and operational expenses for the 750 TEU and 5000 TEU standard containerships were provided by industry sources.

The 5000 TEU vessel's predicted ice capabilities were used to model an icebreaker escort for alternatives using a minimally ice-strengthened containership. If the icestrengthened containership will encounter ice during its voyage, it is escorted by an icebreaker.

While two different sizes of containerships were analyzed with the model, this study focuses on the larger 5000 TEU containership. The 750 TEU containership was found to be too small to be viable for trans-ocean voyages. The 5000 TEU containership is significantly less expensive to own/operate on a per container basis because of the economies of scale.

-6-

Cases

Theoretical alternatives were created using favorable Arctic conditions in order to show what conditions will be necessary to make Arctic routes attractive to container services. Of all the alternatives evaluated, the most relevant are listed below.

Case 6: Standard Containership, Suez Canal, 22.2kts

This base case uses an existing route and is used to evaluate the Arctic cases.

- Case 5: Standard Containership, NSR, Unescorted, 22.2kts While certainly not possible in present-day conditions, this is the best possible case as it is allows a standard containership to operate at service speed through the shorter Arctic route.
- Case 4: Ice-strengthened Containership, NSR, Unescorted, 22.2kts This case is the same as the previous with the exception of slightly higher capital and operating costs due to the ice-strengthening.
- Case 3: 8 months Ice-strengthened Containership, NSR, Unescorted, 22.2kts

4 months Transshipment to Icebreaking Containership, 6.5kts During the 4 winter months, the ice-strengthened containership delivers containers to a port close to the Arctic, where they are transshipped to an icebreaking containership for delivery to a port on the other side of the Arctic. The containers are then loaded on another ice-strengthened containership for delivery to the destination port.

Case 1a: 8 months Ice-strengthened Containership, NSR, Unescorted, 22.2kts 4 months Ice-strengthened Containership, NSR, Icebreaker Escort, 17.5kts The last three cases are the least capital intensive alternatives while ice is present in the NSR. An ice-strengthened containership is escorted through the Arctic at the service speed of the icebreaker. While this is not realistic today, it is used to demonstrate sensitivity to speed.

Case 1b: 8 months Ice-strengthened Containership, NSR, Unescorted, 22.2kts 4 months Ice-strengthened Containership, NSR, Icebreaker Escort, 10kts When an ice-strengthened containership can be escorted at 10kts or more during every part of the year, Arctic liner routes become potentially attractive alternatives to existing routes. Even if the containership lies at anchor, slow steams, or makes an extra port call to account for the 6.5 day time difference between the 8mo speed and 4mo speed, it is faster to use the NSR than the corresponding existing route. If the icebreaker escort is fully subsidized, significantly lower expenses are incurred over the base.

Case 1c: 8 months Ice-strengthened Containership, NSR, Unescorted, 22.2kts 4 months Ice-strengthened Containership, NSR, Icebreaker Escort, 5.5kts A containership averaging 5.5kts through the Arctic during the winter months cannot provide regular container service year round because the winter voyage time is twice that of the voyage time if the vessel makes 22.2kts. 5kts is the current average speed of the 5000 TEU containership through the Arctic during the 4 worst winter months. All cases start with the same origin and destination ports, the same fuel oil price, and the same number of containers. The last three cases, Cases 1a-1c, were analyzed with and without the cost of an icebreaker escort to take into account the possibility of a government subsidized escort. To investigate the effect of fuel price on the relative expense of Arctic transit, alternatives were evaluated at \$250, \$500, and \$1000 per ton. Many assumptions were made in the analysis and it is acknowledged that different conclusions may be reached if different assumptions are used. The model was specifically created to allow users the ability to evaluate the effect of their own assumptions. The Arctic cases oversimplify real-world operations and are not intended to be interpreted as presently realistic alternatives.

Concluding Comments

Containership owners and operators should be particularly interested in watching the presence of oil tankers and LNG carriers in the Arctic. As the ice cover melts, a strong desire has emerged to search for and recover natural resources in the Arctic. Containerships will be able to take advantage of the support infrastructure developed to service the petroleum industry and learn from their operational experience in the Arctic.

The likelihood of year-round reliable containership service through the Arctic in the future depends on one's perspective. One the one hand, it won't happen for decades due to the presence of ice. Current predictions of a largely ice-free Arctic range from 2030 to later than 2100. On the other hand, if some favorable assumptions are made, it deserves serious consideration once minimally ice-strengthened containerships are able to be reliably escorted through the Arctic at a speed of 10kts.

-8-

Table of Contents

Table of Contents	9
List of Tables and Figures	. 11
Definitions and Nomenclature	. 12
1.0 Chapter 1: Introduction	. 13
1.1 Objectives	. 13
1.2 Tasks	. 13
1.3 History	. 15
1.4 Background	. 16
2.0 Chapter 2: Description of Scenarios	. 17
2.1 Scenario 1: Ice-strengthened Containership, Icebreaker Escort	. 17
2.2 Scenario 2: Icebreaking Containership	. 17
2.3 Scenario 3: Standard Containership, Transshipment to Icebreaking Containership	. 18
2.4 Scenario 4: Standard Containership, Unescorted	. 18
2.5 Scenario 5: Standard Containership, Canal Route	. 18
3.0 Chapter 3: Ports and Shipping Routes	. 19
	10
3.1 Origin-Destination Ports	. 19
3.2 Selected Routes	. 20
3.3 Transsnipment Ports	. 21
3.3.1 Port of Adak, Alaska	. 21
3.3.2 Port of Murmansk, Russia	. 21
3.3.3 Additional Considerations	. 22
4.0 Vessels	. 23
4.1 Standard Containership	. 23
4.2 Icebreaking Containership	. 23
4.3 Ice-strengthened Containership	. 24
4.4 Aker DAPPB Concept	. 25
4.5 Icebreaker Escort	. 26
5.0 Analysis	. 27
5.1 Model	. 27
5.2 Present Day	. 27
5.3 Hypothetical Cases	. 29
5.2.1. Case 6: Standard Containershin, Suez Canal, 22.2kts	30
5.2.2 Case 5: Standard Containership, Suce Canal, 22.2.KS	30
5.2.3 Case 4: Ice-strengthened Containership NSR Unescorted 22 2kts	32
5.2.4 Case 3: 8mo Ice-strengthened Containership, 4mo Transshipment	33
5.2.5 Case 1a: Ice-strengthened, 8mo Unescorted 22.2kts. 4mo Escorted 17.5kts	.35
5.2.6 Case 1b: Ice-strengthened, 8mo Unescorted 22.2kts. 4mo Escorted 10kts	. 37
5.2.7 Case 1c: Ice-strengthened, 8mo Unescorted 22.2kts, 4mo Escorted 5.5kts	. 39
5.2.8 Case to Case Comparison	.41

5.3 Requirements for Commercially Viable Liner Service Through NSR	42
6.0 Conclusions	45
6.1 Considerations in Real World	45
6.1.1 Vessel Limitations	45
6.1.2 Navigational and Operational Issues 6.1.3 Governmental Policy	45 47
6.2 Future of Arctic Shipping	48
Bibliography	50
Sources Consulted	51
Appendix A: Model User Manual	52
A.1 Opening the Model	52
A.2 Entering General Inputs	53
A.3 Viewing Model Results	54
A.4 Viewing Vessel Information	54
A.5 Viewing Port Information	54
A.6 Viewing Route Information	54
Appendix B: Selected Model Sheets	
Appendix C: Favorable Assumptions	69
Appendix D: Vessel Characteristics	70

List of Tables and Figures

Table 1.1: List of Scenarios14
Table 3.1: Route Distance Comparison 20
Table 4.1: Standard Containership Characteristics 23
Table 4.2: 5000 TEU Icebreaking Containership Characteristics 24
Figure 1.1: Norilsk Nickel16
Figure 4.1: Representative Containership23
Figure 5.1: Present Day Expenses28
Figure 5.2: Present Day Voyage Times28
Figure 5.3: Present Day Average Expenses29
Figure 5.4: Case 5 Voyage Expenses31
Figure 5.5: Case 5 Voyage Time31
Figure 5.6: Case 4 Voyage Expenses32
Figure 5.7: Case 4 Voyage Time33
Figure 5.8: Case 3 Expenses34
Figure 5.9: Case 3 Voyage Time35
Figure 5.10: Case 1a Expenses (Paid Escort)36
Figure 5.11: Case 1a Expenses (Free Escort)37
Figure 5.12: Case 1a Voyage Time37
Figure 5.13: Case 1b Expenses (Paid Escort)38
Figure 5.14: Case 1b Expenses (Free Escort)39
Figure 5.15: Case 1b Voyage Time39
Figure 5.16: Case 1c Expenses (Paid Escort)40
Figure 5.17: Case 1c Expenses (Free Escort)41
Figure 5.18: Case 1c Voyage Time41
Figure 5.19: Case Average Expense42
Figure 5.20: Case 1b, Constant Voyage Times43
Figure 5.21: Case 1b Expense, Constant Voyage Times44
Figure 6.1: Deck Ice Removal46
Figure 6.2: Nighttime Visibility47
Figure 6.3: Sevmorput48

Definitions and Nomenclature

hr	Hour
km	Kilometer
kt	nm/hr
nm	Nautical mile, 1.852km
kW	Kilowatt
m	Meter
t	Metric ton
dwt	Deadweight
TEU	Twenty foot Equivalent Unit
LOA	Length Over All
LBP	Length Between Perpendiculars
В	Beam
D	Depth
т	Draft
Standard Containership	Non ice-classed containership
NSR	Northern Sea Route
NWP	Northwest Passage

1.0 Chapter 1: Introduction

1.1 Objectives

The objectives of this research project are: (1) to identify alternative scenarios for moving containers through the Arctic, (2) to study the ship designs and economics involved in each scenario, and (3) to point to the key issues that should be monitored for future development. The purpose of these objectives is to investigate the economic feasibility of using Arctic shipping routes to transport containers from origin to destination port. The process by which these objectives will be realized is detailed below.

1.2 Tasks

The first portion of this project involves collecting research related to Arctic shipping and identifying relative information. Particular attention was given to any work involving container shipping through the Arctic, as there is little published information in this area. Projections of less-severe ice conditions in the future shed light on the increasing attractiveness of transporting containers through the Arctic. Sea trials of new Arctic vessel designs, such as Aker Arctic's Double Acting Ship (DAS), have validated preliminary performance predictions. Studying past works related to Arctic shipping provided data inputs for the analysis and aided in the creation of realistic operating scenarios. Section 1.3 highlights a few recent developments in Arctic shipping.

After reviewing the collected literature, alternative operating scenarios were identified and investigated. Four Arctic scenarios were created and will be compared to a base scenario using traditional shipping routes. Table 1.1 gives brief descriptions of the five scenarios created for the analysis. A detailed description of each scenario may be found in Chapter 2.

-13-

Scenario	Description
Scenario 1	Use of an ice-strengthened containership with an icebreaker escort through ice-covered areas.
Scenario 2	Use of an icebreaking containership in open and ice-covered waters.
Scenario 3	Use of a standard containership from origin port to transshipment port. Use of an icebreaking containership through the Arctic to second transshipment port. Use of standard containership from transshipment port to destination.
Scenario 4	Use of standard containership for the entire voyage under the assumption that, in the future, there will be open water year-round in Arctic shipping routes.
Scenario 5	Base scenario. Use of standard containership on traditional canal route appropriate for the origin-destination port pair.

Table 1.1: List of Scenarios

To best illustrate the potential advantage of shipping containers through the Arctic, origin-destination ports were chosen that have Arctic routes significantly shorter than the regularly used existing canal routes. Chapter 3 discusses the chosen origin-destination ports, transshipment ports, and shipping routes.

The final step in the data gathering process was to identify vessel designs needed for each scenario and obtain their associated capital and operating expenses. Vessel data was acquired from industry sources and previous research. A description of the vessels used in the study may be found in Chapter 4.

After information on ports, routes, and containerships was collected, a computer model was created to analyze the alternative scenarios. The data was then entered in the model to compare the characteristics of each scenario. The model allows for a comparison of scenarios for a selected shipping route and time of year, which dictates the speed of an icebreaking vessel. An overview of the computer model and instructions for use may be found in Appendix A.

The analysis, found in Chapter 5, was performed using the computer model to evaluate the scenarios at each route and month combination. Criteria for evaluation will include items such as capital expense, fuel costs, operating expenses, length of voyage, and total cost per Twenty foot Equivalent Unit (TEU) shipped. Conclusions in Chapter 6 regarding the feasibility of each scenario were drawn from the results of the analysis.

1.3 History

Sea trade between Europe and the Far East led to the desire to find a shorter trade route in the 15th century. After North America succeeded in blocking Columbus's western voyage to India, England sent John Cabot in search of a Northwest sea passage to Asia in 1497. Similarly, the English began looking for northeast sea route to China and India in the 1550s. Henry Hudson, for whom Hudson Bay is named, explored parts of what are today the Northwest Passage (NWP) and the Northern Sea Route (NSR). The Russian Great Northern Expeditions mapped much of the coast and waters along the NSR from 1733-1742. Swede Nils A. E. Nordenskiöld became the first person to transit the NSR by sea in 1879. The NWP was first transited by sea in 1906 after Roald Amundsen's arduous three-year voyage. It was not until 1944 that a Royal Canadian Mounted Police schooner sailed through the NWP for the first time without becoming stuck in ice during the winter season. The Administration of the Northern Sea Route was officially established by the U.S.S.R. in 1932 and supported commercial transit until the breakup of the Soviet Union, after which NSR traffic rapidly declined. The NWP has yet to be used for commercial transport, as it has historically been less navigable than the NSR.

-15-

1.4 Background

In September of 2008, the NWP and NSR were simultaneously open for the first time since satellite observation began in the 1970s [1]. As the extent of Arctic sea ice continues to shrink, the feasibility of commercial shipping through the Arctic Ocean becomes an increasing reality. Norilsk Nickel, a Russian mining company, recently built an icebreaking containership (Figure 1.1) to transport metallurgical products from Dudinka to Murmansk, Russia. By early 2009, the company had five of these vessels capable of independent year-round operation on their routes [2]. Since 2002, Fortum, a Nordic energy company, has been operating two 106,000 dwt icebreaking tankers year-round in the Baltic Sea [3]. Container services will be able to take advantage of shorter Arctic routes between ports and the absence of canal fees as Arctic ice cover continues to shrink.

Figure 1.1: Norilsk Nickel

Source: Aker Arctic Technology, Inc.

2.0 Chapter 2: Description of Scenarios

In the decades ahead, a container service through the Arctic may take on any number of forms. This study captures a broad range of possibilities by looking at five operating scenarios. Scenarios vary by vessel type, use of transshipment ports or non-stop service, and assisted or unassisted transit through ice-covered waters. All scenarios use current ice conditions as simulated by the Aker *Arctic Shuttle Container Link* study. Scenarios may be infeasible in current Arctic ice conditions, but become viable and attractive as conditions become less severe. A base scenario using a standard containership sailing on the appropriate canal route is included for comparison.

2.1 Scenario 1: Ice-strengthened Containership, Icebreaker Escort

A containership with ice strengthening travelling through the Arctic will need an icebreaker escort when it reaches heavily ice-covered waters. The capital costs associated with this scenario are only slightly greater than those of the base scenario due to added weight involved with added hull steel and adaption of machineries to the Arctic environment. However, total transit costs associated with the use of one, possibly two, icebreaker escorts will be high.

2.2 Scenario 2: Icebreaking Containership

Currently, an icebreaking containership is the only vessel capable of solitary year-round Arctic container transport. Despite this distinction, Aker Arctic estimates speeds below 3kts in portions of the NSR during the coldest month of the year [4]. An icebreaking containership has high capital and operating costs, but avoids the expense of an escort and should be the fastest vessel for transporting containers through ice-covered waters.

-17-

2.3 Scenario 3: Standard Containership, Transshipment to Icebreaking Containership

Transshipment allows ice-classed vessels to remain in the Arctic, where they operate most cost-efficiently. A particularly appealing aspect of the use of transshipment ports is that any containership can be used to deliver cargo to the port for Arctic transport. A non iceclassed containership will sail to a (future) transshipment port close to the Arctic, such as Murmansk, Russia, or Adak, Alaska, where its cargo will be unloaded and transferred to an icebreaking containership of the same capacity. The icebreaking containership will carry containers to a transshipment port on the other side of the Arctic, where the process is reversed. This scenario assumes the existence of transshipment ports along the chosen route.

2.4 Scenario 4: Standard Containership, Unescorted

Scenario 4 represents the extreme case of ice-free Arctic transit. Such a case may be realized in the future if the extent of Arctic ice continues to decrease. This scenario will show the significant transit time savings of Arctic routes when compared to corresponding traditional routes, as the standard containership will operate at speeds in excess of 22kts in ice-free waters instead of breaking heavy ice at 3kts.

2.5 Scenario 5: Standard Containership, Canal Route

The Arctic scenarios will be compared to Scenario 5, which can be thought of as a base scenario. It will model the shortest shipping route, i.e. Panama or Suez canals, for a given origin/destination port pair. For instance, from Hamburg to Yokohama, the route will lead through the Suez Canal. A route from Seattle to Rotterdam will use the Panama Canal. The scenario will incur canal fees and wait times, factors irrelevant to the Arctic scenarios.

-18-

3.0 Chapter 3: Ports and Shipping Routes

Overseas container liner services are characterized by fast, consistent, year-round transport of goods. Notwithstanding storms or machinery breakdowns, containership companies are expected to be unwavering in their schedule. Many current routes are dependent on either the Panama or Suez canals. A closing of one of these would seriously impact international shipping. Arctic routes offer shorter distances between existing origindestination ports and eliminate the dependency on canals.

"In the 21st century, Arctic seaways have the potential to serve as a major avenue for shipping between these continents (Asia, Europe, and North America), as explorers envisioned as early as 500 years ago." [5]

In the future, container liners could use the NSR and NWP to shorten transit times, reduce fuel costs, increase frequency of service, and avoid canal congestion.

3.1 Origin-Destination Ports

Container liner operators could see large benefits in using Arctic routes between the following regions: Northern Asia to Northern Europe, US West Coast to Northern Europe, and Northern Asia to the US East Coast. Arctic routes offer significant reductions in distance when compared to the current canal routes (Table 3.1). A direct container service between Yokohama and Rotterdam could reduce the route distance by 3600 nm by sailing through the NSR rather than following the normal Suez Canal route. For a given origin-destination pair, the shortest Arctic and canal route were chosen. For instance, the base scenario for the Yokohama – Rotterdam port pair will use the Suez Canal route instead of the longer Panama Canal route.

TRADE ROUTE AND REPRESENTATIVE PORT PAIR	PANAMA CANAL	SUEZ CANAL	NORTHERN SEA ROUTE	NORTHWEST PASSAGE	MINIMUM DISTANCE SAVINGS
N ASIA – N EUROPE Yokohama – Rotterdam	12,500	11,070	7,090	N/A	3,980
SE ASIA – N EUROPE Singapore – Rotterdam	N/A	9,070	10,370	N/A	1,300
PNW – N EUROPE Seattle – Rotterdam	8,840	N/A	7,100	N/A	1,740
PSW – N EUROPE Los Angeles-Rotterdam	8,030	N/A	7,750	N/A	280
N ASIA – EAST COAST Yokohama – New York	9,800	N/A	N/A	7,560	2,240
SE ASIA – EAST COAST Singapore – New York	12,690	10,150	N/A	10,450	N/A

Table 3.1: Route Distance Comparison

Source: Adapted from Alaska Regional Ports Study

3.2 Selected Routes

Routes were chosen for the analysis based on the port pairs that had the biggest difference in distances between the canal routes and Arctic routes. Yokohama – Rotterdam and Seattle – Rotterdam were chosen because their shipping routes through the Arctic have significantly shorter distances than the canal route alternatives and trade between the ports is large enough to justify regular container service. The Seattle – Rotterdam base route uses the Panama Canal. Transit and wait times and canal fees are based on the existing canal infrastructure, as opposed to the canal after the expansion project is completed. Routes using the NWP were not included because unpredictable ice conditions in the passage make speed estimations unreliable. However, as the Arctic ice cover continues to shrink, the NWP may be a viable route in the future.

3.3 Transshipment Ports

The use of transshipment ports allows for dedicated vessels serving Arctic routes. Iceclassed vessels operating in open water typically have higher operating costs than non iceclassed vessels because of the compromise between performance in ice and open water. A transshipment port is ideally located on an Arctic shipping route near the Arctic yet in a region with open water year-round. Standard containerships can sail in ice-free waters and load/unload containers at transshipment ports. Ice-classed containerships can transport containers between transshipment ports, limiting the operational area of these vessels to the region in which they were designed to operate. Representative potential transshipment ports are discussed below.

3.3.1 Port of Adak, Alaska

Adak, a former Cold War naval air station in the Aleutian Islands, is well-situated as a North Pacific transshipment port. The Navy closed the station in 1997 leaving an enormous airbase and port facility largely unused. Currently owned by the Aleut Corporation, the existing port facilities built by the Navy would easily allow for the construction of a large container terminal. As a naval air station, Adak was home to over 6,000 people; according to the 2000 census, 316 people were living on Adak. A transshipment port would revitalize Adak and take advantage of many pre-existing facilities on the island.

3.3.2 Port of Murmansk, Russia

One of the few Arctic ports that are continually ice-free, Murmansk lies at the western edge of the NSR. According to Alexander Dmitriev, Captain of the Port in Murmansk, a new

-21-

container terminal has been proposed as part of a recent port development plan in anticipation of transshipment operations [6]. Construction is expected to begin this year [7].

3.3.3 Additional Considerations

In addition to those listed above, other ports deserve further research. Iceland is situated halfway between the eastern edge of the NWP and western edge of the NSR. A port in Iceland could serve as a transshipment facility for NSR traffic bound for the US or Europe and NWP traffic bound for Europe. Ports of northern Europe are close enough to the NSR to consider the elimination of a transshipment port for NSR traffic headed to ports such as Rotterdam, Hamburg, and Antwerp.

4.0 Vessels

4.1 Standard Containership

Information on the non ice-classed containership used in the scenarios was provided by an industry source. The nominally 5000 TEU vessel's principal characteristics are shown in Table 4.1. Figure 4.1 shows a containership representative of the vessel described in the table.

able 4.1: Standard Containership Characteristic		
LOA (m)	294	
LBP (m)	283	
B (m)	32.2	
D (m)	21.8	
T (m)	13.5	
TEU	4,800	
MCR (kW)	51,390	
Max Speed (kts)	25	

ristics

Source: Industry

Figure	4.1:	Representative	Containership
---------------	------	----------------	---------------

Source: http://containerinfo.co.ohost.de

4.2 Icebreaking Containership

The icebreaking containership used in the analysis is the Aker Arctic 5,000 TEU Arctic Container Vessel concept used in the "Arctic Shuttle Container Link from Alaska US to Europe"

study. The design is based on Aker's Double Acting Ship (DAS) design (Figure 1.1). A general arrangement and lines plan of the 5,000 TEU DAS concept are contained in Appendix D. In open water and light ice conditions, the vessel sails bow-first. When greater icebreaking capability is needed, the vessel operates with the icebreaking stern leading the way. The rationale behind the unconventional design is that it allows better open water performance than traditional icebreakers. The DAS concept uses azimuthing thrusters, rather than conventional shafted propellers as a means of propulsion. When operating stern-first, additional icebreaking performance is gained from the "flushing" action of the thrusters. The propeller wash of the thrusters moves broken ice away from the hull, clearing a path for the ship. Principal characteristics of the 5000 TEU icebreaking containership may be found in Table 4.2.

LOA (m)	281
LBP (m)	269
B (m)	34.6
D (m)	21.3
T (m)	13.5
DWT (t) at 9m draft	68,000
TEU	5,000
Shaft Power (kW)	35,000
Max Speed (kts)	19

Table 4.2: 5000 TEU Icebreaking Containership Characteristics

Source: Arctic Shuttle Container Link Study

4.3 Ice-strengthened Containership

The range of capabilities defined by "ice-strengthened" classifications ranges from vessels with practically non-existent ice capabilities to dedicated icebreakers capable of unassisted operation anywhere in the world. Rob Dvorak's 2009 Graduate thesis, *Engineering*

and Economic Implications of Ice-Classed Containerships, contains a detailed analysis of regulatory ice classes. This study will use ABS ice class A1 because it gives a good balance between ice performance and operating cost. A heavily ice-strengthened containership was deemed undesirable for the purposes of this study because it would closely match the icebreaking containership. The characteristics of the ice-strengthened containership will be very similar to those of the standard containership with the exception of increased weight for the hull and adaption of machineries to the Arctic environment. Compared to a standard containership, the ice-strengthened containership will have an approximately 2-3% increase in weight, a 1-2% increase in construction cost, and a 1-2% increase in fuel and operating costs [8]. There is no increase in power requirements. Thus, the capital cost and operating characteristics of an ice-strengthened containership will be slightly higher than that of a standard containership.

4.4 Aker DAPPB Concept

The Double Acting Pusher Puller Barge concept developed by Aker Arctic and Wartsila aims to reduce the compromise between open water and icebreaking performance and operating cost of an icebreaking cargo ship [9]. Similar to Aker Arctic's Double Acting Ship (DAS) design, the DAPPB is an integrated tug barge (ITB) that will be pushed through open water by a pusher tug and pulled through the ice by an icebreaking tug. The bow of the barge is designed for open water performance, while the icebreaking puller tug is optimized for ice conditions. The DAPPB is advertized as an oil tanker, but could also be designed as a container barge. The DAPPB may be a future possibility for Arctic container shipping, but the concept needs further development before sufficient operational characteristics may be gathered.

-25-

4.5 Icebreaker Escort

Scenario 1 uses icebreakers as escorts through the Arctic region. The capabilities and expenses of the 5000 TEU Icebreaking Containership are used to approximate a dedicated icebreaker.

5.0 Analysis

5.1 Model

The model used to perform the analysis was created using Microsoft Excel. It is composed of spreadsheets that contain data concerning routes, ports, vessels, and cargo. Appendix A contains instructions for using the model as well as selected spreadsheets from the model. Containerships of 5000 TEU and 750 TEU are used in each scenario to show the effect of scale on the shipping expenses. In addition to the sheets displaying the scenarios for the two containership sizes, the 'Comparison' sheet contains graphical comparisons of the 5000 TEU scenarios, the 'Cases' sheet contains the hypothetical cases constructed for Section 5.3, and the 'Data Justification' sheet lists the source or rationale for data used in the model. An electronic copy of the model is submitted with the report.

5.2 Present Day

The two most important factors in the feasibility of an Arctic route are the total voyage expense and seasonal time variability. If the voyage time fluctuates by more than a day or two, a regular container service would be difficult to establish because additional ships would have to be used during periods of long voyage times in order to keep the same route capacity. As can be seen in Figure 5.1, Scenarios 1 and 2 incur similar expenses to the base scenario for 6 months of the year. Their voyage times are relatively constant and much shorter than the base case for the same 6 months (Figure 5.2). For the remaining half of the year, however, both voyage expenses and time increase substantially.

July through December, NSR conditions are favorable enough for Scenarios 1 and 2 to allow 5 day shorter voyages for nominally the same expense as the base route, but the poor conditions from January to June would currently prohibit a competitive year-round container

-27-

service. Even if the time variability were overlooked, Figure 5.3 shows that the existing Suez Canal route is less expensive over the course of a year. There is currently too much ice cover in the NSR to allow its establishment as a viable alternative to existing routes.

Figure 5.3: Present Day Average Expenses

5.3 Hypothetical Cases

As shown in Section 5.2, current conditions make regular Arctic liner service commercially infeasible. The following hypothetical cases purposely use favorable assumptions to show what conditions are needed for Arctic container routes to become attractive alternatives to existing routes. Appendix C contains a list of major assumptions. All cases were constructed by modifying data in the present-day scenarios. The numbers used to describe the cases match the most similar present-day scenarios. All cases use Yokohama and Rotterdam as origin and destination ports, vessels with a nominal capacity of 5000 TEU at an 85% load factor, and a fuel oil cost of \$500/t.

If Arctic ice cover decreases year after year, eventually the NSR will be ice-free 12 months out of the year. Cases 5 and 4 exemplify the time and expense of transit through an

ice-free NSR. Before Arctic conditions could develop that permit operations as described in Cases 5 and 4, the NSR would be largely ice-free for most of the year but be obstructed by ice during the coldest portion of the year. Cases 3 and 1 simplify this by assuming ice-free transit 8 months out of the year and the need for icebreaking capability 4 months out of the year. In other words, the NSR is ice-free for 8 months and obstructed by ice for 4 months.

5.2.1 Case 6: Standard Containership, Suez Canal, 22.2kts

Case 6 represents the voyage time and expenses for a 5000 TEU standard containership sailing from Yokohama to Rotterdam via the Suez Canal. This base case represents a current route that the following cases may be compared to. Most liner routes have intermediate stops that serve many smaller ports between the main origin and destination. Case 6 uses a two-port voyage to simplify the model and make the case directly comparable to the Arctic cases. Costs and time associated with passage through the Suez Canal are included in this case. With the exception of canal transit, the containership runs at 22.2kts from port to port. The one-way voyage expense of \$1,082/TEU and time of 24.9 days is constant throughout the year and shown for comparison in the figured describing the cases below.

5.2.2 Case 5: Standard Containership, NSR, Unescorted, 22.2kts

Case 5 is the "best case" voyage that illustrates the time and cost savings possible if the NSR was ice-free. As in Case 6, the values are constant due to the hypothetical absence of ice. Figure 5.4 shows a difference of \$310/TEU between Case 5 and Case 6. This substantial savings is due to two factors: a shorter route and no Suez Canal tolls. The Arctic route reduces the voyage distance by 4,000nm (Table 3.1), resulting in a decrease in voyage time of 9 days (Figure 5.5). If there were regular liner services operating under the conditions of Cases 5 and 6, the

5,000 TEU standard containership would be capable of 4 more round-trip voyages, or 40,000 more TEU moved, per year using the NSR than the same vessel using the existing Suez Canal route. If the NSR were to become continually ice-free, many container routes could be significantly shortened through its use.

Figure 5.5: Case 5 Voyage Time

5.2.3 Case 4: Ice-strengthened Containership, NSR, Unescorted, 22.2kts

Use of an ice-strengthened containership is the single difference between Case 5 and Case 4. The accepted definition of "ice-free waters" is waters that are less than 10% covered by ice; therefore, the term can be very misleading. Operations of an ice-strengthened containership would be much less affected by a small presence of ice because of a reinforced hull. Figure 5.6 and Figure 5.7 show the voyage expenses and time associated with Case 4. The slightly higher capital and operating expenses lead to a \$10/TEU increase in voyage expenses over Case 5. As the speeds of both ships are equal, voyage times are the same for Cases 4 and 5.

Figure 5.6: Case 4 Voyage Expenses

5.2.4 Case 3: 8mo Ice-strengthened Containership, 4mo Transshipment

Cases 4 and 5 show the potential time and cost savings possible if there was effectively no ice in the NSR. From an Arctic shipping perspective, they represent the best possible situation that is far from realistic today.

Case 3 simulates ice conditions 4 months out of the year and ice-free conditions for the remaining 8 months. An ice-strengthened containership is used to transport containers from origin to destination, as in Case 4, during the ice-free months. The remaining 4 months, an ice-strengthened containership delivers containers to a hypothetical port in Adak, Alaska where they are transshipped to an icebreaking containership for transit through the NSR to Murmansk, Russia. An ice-strengthened containership then delivers the containers from Murmansk to Rotterdam.

As can be seen in Figure 5.8 and Figure 5.9, operation in ice significantly increases voyage expenses and time. Three components lead to the increase in expenses. First, the 23 day increase in voyage time due to reduced speeds through ice and two transshipment port calls more than doubles the total voyage time. Assuming year-round use of the icebreaking containership, the total daily expense of ownership and operation is more than \$33,000 above that of the standard containership (Appendix A, 'Vessels' sheet). If the icebreaking containership is idle for a portion of the year, expenses would drastically increase above what is assumed in the calculation. The final component of increased expenses comes from calling at the two transshipment ports. Interestingly, the average voyage time of Case 3 is slightly lower than the base case. However, the average cost of shipping containers as described in Case 3 is \$123/TEU more than the existing (Base) route, which alone makes Case 3 an unattractive alternative.

Figure 5.8: Case 3 Expenses

Figure 5.9: Case 3 Voyage Time

5.2.5 Case 1a: Ice-strengthened, 8mo Unescorted 22.2kts, 4mo Escorted 17.5kts

Using an icebreaker to escort an ice-strengthened containership through ice-covered waters is an alternative to an icebreaking containership. Cases 1a through 1c are identical except for the NSR transit speed during the 4 months of ice. The variations of speed in Case 1 show the overall voyage cost and time sensitivity to NSR transit speed. To show the effect of the escort cost, the expense of each "sub-case" is shown with and without the escort fee. The daily cost of owning and operating an icebreaking containership is used to approximate the escort fee (Appendix A, 'Vessels' sheet).

Case 1a uses an ice-strengthened containership year-round with a 17.5kts escort through the NSR during the 4 months of ice. While 17.5kts is unrealistic with the given ice conditions, Figure 5.10 shows that at such a speed, Case 1a has lower voyage expenses than the base case. If there was no escort fee, perhaps to promote use of the NSR, Figure 5.11 shows

that the only cost difference between Case 1a and Case 4 is due to the slower transit speed through the NSR.

The variability in one-way voyage time between ice and ice-free months is about 1.5 days which is small enough to allow a regular year-round service without adding additional vessels during the ice-covered portion of the year. If Arctic conditions develop in the future that allow an average speed through the NSR similar to that of Case 1a, year-round regular service could be established that allows for one-way voyages 8 days shorter than the existing Suez Canal route offers.

Figure 5.10: Case 1a Expenses (Paid Escort)

Figure 5.12: Case 1a Voyage Time

5.2.6 Case 1b: Ice-strengthened, 8mo Unescorted 22.2kts, 4mo Escorted 10kts

The speed of an icebreaker escort is not always dictated by its maximum capabilities. According to Dr. Lawson Brigham, former Deputy Director of the U.S. Arctic Research

Commission, a typical escort convoy will not exceed 10kts to avoid damage to the escorted ships from high-speed collisions with broken ice left in the trail of the icebreaker. Case 1b simulates NSR ice conditions that allow for an average of 10kts transit speed.

Despite a 7.5kts decrease in NSR transit speed from Case 1a, even the voyage time in the winter is still 2.5 days shorter than the Suez Canal route. However, 6.5 day variability between ice and ice-free voyage times would present difficulties in establishing a regular service (Figure 5.15). Over the course of a year, Figure 5.13 shows that Case 1b yields a \$100/TEU lower expense per TEU than the base case even with an escort fee. If the escort fee is removed the Case 1b voyage expense decreases to \$238/TEU less than the base case (Figure 5.14). While the average voyage expense is lower than that of the base case, the high variability in voyage time, nearly one week, makes this case an unattractive alternative.

Figure 5.13: Case 1b Expenses (Paid Escort)

5.2.7 Case 1c: Ice-strengthened, 8mo Unescorted 22.2kts, 4mo Escorted 5.5kts

Case 1c uses an escort speed of 5.5kts from March to June and, like Cases 1a and 1b, assumes an open water speed of 22.2kts for the remaining months. The present-day average

speed through the Arctic from March to June is 5.0kts. The Aker Arctic speed data, which uses present-day ice conditions to predict transit speeds, drops as low as 4kts for portions of the NSR, resulting in the long voyage times seen in Figure 5.18. Again, the seasonal variability in voyage times would make it difficult to establish a regular container service in conditions like this. The long NSR transit times greatly raise the voyage expense March through June (Figure 5.16), as this study assigns the icebreaker escort fee on a daily basis. If there were no escort fee, Figure 5.17 shows that even with the long ice transit times, the average voyage expense per container is \$140 cheaper in Case 1c than for the Suez Canal route.

Figure 5.16: Case 1c Expenses (Paid Escort)

5.2.8 Case to Case Comparison

While it is useful to examine the cases on an individual basis, it is difficult to see their merits and disadvantages compared to one another using that method. From Figure 5.19, one

can see that, based solely on expense, transshipment (Case 3) is not an attractive alternative to the existing Suez Canal Route (Case 6). The variations of Case 1 show the effect of speed through the NSR on the voyage expense. Even if it were possible to travel through the NSR at the containership's service speed (22.2kts) for 8 months of the year, it would be necessary to average at least 10kts through the NSR for the remaining 4 months (Case 1b) in order to realize a significant advantage over the existing route. However, if Arctic conditions were to allow an ice-free NSR in the future, Cases 5 and 4 show that voyage expenses could be reduced by as much as 25% compared to the existing route (Case 6).

Figure 5.19: Case Average Expense

5.3 Requirements for Commercially Viable Liner Service Through NSR

Current conditions make regular liner service through the Arctic infeasible. As the NSR has the least severe conditions of the Arctic routes, it is likely to be the first to see regular use in

the future. In order for that to happen, the total voyage expense of an NSR route must be lower than a corresponding existing route, and the total voyage time must be consistent and shorter than that of an existing route.

Case 1b uses an ice-strengthened containership travelling at 22.2kts for 8 months and at 10kts with an icebreaker escort for 4 months. When Arctic conditions allow for transit similar to that described in Case 1b, the voyage expense and time are both less than those of the existing Suez Canal route. However, there is a 6.4 day difference between the ice and ice-free voyage times. To achieve consistent times, the ice-free voyage times were increased to the icebreaker escort voyage times, as shown in Figure 5.20. While the average time savings is reduced from 6.7 days to 2.4 days, the average expense is \$180/TEU less than the Suez Canal route (Figure 5.21).

Figure 5.21: Case 1b Expense, Constant Voyage Times

To investigate the effect of fuel price on the voyage expense savings, fuel prices of \$250/t and \$1000/t were analyzed. As the price of fuel increases, the potential savings from Arctic transit increases due to burning less fuel due to a shorter voyage than the existing route. These numbers reflect the ship at anchor for 6.4 days during the 8 month ice-free period. Other alternatives include travelling at slower speeds or including an extra port stop during the 8 months.

Until it is possible to average at least 10kts through the NSR at any given time of the year, liner service through the Arctic will not be an attractive possibility. In fact, containership operators would want to be able to reliably travel at 10kts every trip, not just on average. Presently, it is not possible to average 10kts or more from February to June [4]. For those 5 months, the average speed through the NSR is 5.8kts, signifying that favorable conditions for year-round Arctic transit will not come in the near future.

6.0 Conclusions

6.1 Considerations in Real World

6.1.1 Vessel Limitations

While Norilsk Nickel currently operates a fleet of five 750 TEU icebreaking containerships between Dudinka and Murmansk, Russia, approximately a 1300nm voyage through Arctic waters, the Aker Arctic 5000 TEU Icebreaking Containership is a concept that has yet to be built. While Norilsk Nickel's nickel-carrying containerships give real-world credibility to the 5000 TEU concept and its icebreaking capabilities have been estimated in Aker Arctic's ice model basin, its true capabilities remain to be seen.

Use of an ice-strengthened containership, escorted as necessary appears to be the most commercially viable option for Arctic transit. However, the beam of a 5000 TEU containership (32m minimum) is wider than the 28m beam of the *50 Let Pobedy*, the world's largest icebreaker. Innovative alternatives to conventional icebreaking will be needed to avoid the use of two escorts for containerships. Aker Arctic has developed a concept known as the oblique icebreaker that makes a wider channel through the ice by moving sideways rather than straight. If larger icebreakers are not built in the future and no alternatives come into being, two escorts will be required or very small containerships, like the *Norilsk Nickel* would have to be used. Both of these options would incur significantly higher voyage expenses.

6.1.2 Navigational and Operational Issues

The Arctic environment presents many challenges that must be met for successful commercial operations. Training facilities and standards will need to be created in order to educate the merchant mariners that will crew Arctic commercial vessels. Crews will also have

-45-

to deal with the threat of icing, as shown in Figure 6.1. A sailor with an ice hammer has yet to be replaced with a more effective method. Containerships travelling through the Arctic will be especially vulnerable to icing due to the large surface area of container stacks. Thorough underwater surveys need to be undertaken to produce accurate navigational charts to prevent groundings. Emergency plans need to be made for Arctic towing, salvage, spills, and rescue, to name a few. Nighttime ice navigation, essential for commercial vessels, presents many challenges due to reduced visibility. Figure 6.2 shows how even light snow can severely restrict visibility, which is essential to navigating through heavy ice.

Figure 6.1: Deck Ice Removal

Source: U.S. Naval Postgraduate School

Figure 6.2: Nighttime Visibility

Source: Unknown Source

6.1.3 Governmental Policy

In addition to technical and logistical challenges, governmental policies currently under development will heavily influence the role of shipping in the Arctic. Russia and Canada are developing new rules governing use of the NWP and NSR. The structure and amount of passage transit fees is currently unknown and an important topic to continue watching. Also of importance to future Arctic container services are environmental and safety regulations unique to the Arctic. Regulations and usage fees are necessary to avoid environmental damage in the region and fund support infrastructure but an excess of either will inhibit growth of Arctic activity. It is possible that governments may provide subsidies to make Arctic passages attractive to commercial shipping by offsetting the cost of establishing capital-intensive infrastructure, such as transshipment terminals and support facilities.

6.2 Future of Arctic Shipping

Shorter liner routes are only one possible advantage from the maritime industry's use of the Arctic. Oil exploration and production in the Arctic will continue to be the main driver of commercial activity. The *Sevmorput*, a Russian nuclear-powered LASH ship, (Figure 6.3) is currently undergoing a refit to become the world's first nuclear drillship [10]. As more drilling and production rigs go into service in the Arctic, ice capable supply vessels, tugs, and other support vessels will be increasingly needed. More ice-classed LNG carriers and shuttle tankers will likely be built. Liner companies will watch these vessels' ice performance when considering Arctic container routes.

Figure 6.3: Sevmorput

Source: Unknown Source

Oil industry activity will lead to the development of specific crew training programs for Arctic waters and address the challenges discussed in Section 6.1.2. Russia and Canada have indicated they will have completed policies regarding use of the NSR and NWP, respectively, in the near future. Ice cover in the Arctic routes will need to continually decrease to a level that allows the establishment of regular liner service in order for the routes to be attractive to shipping containers. Current studies give predictions of Arctic conditions allowing for transit similar to what is described in Case 1b ranging from 2013 to later than 2100 [11]. Given the wide range of predictions and non-committal phrases such as "largely ice-free," it would currently be nothing more than a gamble to specify when conditions will allow constant transit times through the Arctic. However, containership owners and operators can be certain that shipping containers through the Arctic becomes increasingly viable with each year of decreasing ice cover. When an icebreaker can escort a minimally ice-strengthened containership through the Arctic reliably at a speed of at least 10kts, serious consideration should be given to Arctic routes for liner services.

Bibliography

- [1] National Ice Center. "The Northern Sea Route (Northeast Passage) Appears 'Open'." 11 September 2008. National Ice Center Press Release. 02 November 2008 http://www.natice.noaa.gov/press_release/nsr-1-05sep08.htm>
- [2] "Norilsk Nickel Completed Creation of Its Own Arctic Fleet." 26 February 2009. Norilsk Nickel Press Release. 07 March 2009 http://www.nornik.ru/en/press/news/2372/
- [3] "Fortum's New Tanker Calls at Finland for the First Time." 11 July 2002. Fortum Press Release. 07 March 2009 http://www.fortum.com/news_section_item.asp?path=14022%3B14024%3B14026%3B25730%3B551%3B13478
- [4] Aker Arctic Technology Ltd. "Arctic Shuttle Container Link from Alaska US to Europe." March 2006
- [5] Gillis, C. "Transshipment's Last Frontier." American Shipper. October 2008
- [6] Loskutova, Olga. "Murmansk Port Junction Grows Capacities." April 2005. Maritime Market. Issue 14. 17 November 2008 http://www.maritimemarket.ru/article.phtml?id=751&lang=en
- [7] Vinarova, Sophia. "New Port for Murmansk." *Port News*. September 2008. Port News, LLC. 02 November 2008 http://en.portnews.ru/comments/162/
- [8] Dvorak, R. Engineering and Economic Implications of Ice-Classed Containerships. 2009 Graduate Thesis, Massachusetts Institute of Technology.
- [9] Levander, O and Sipilä, T. "DAPPB A New Concept in Arctic Sea Transportation." Wärtsilä Technical Journal. February 2007
- [10] "Murmansk Gets the World's First Nuclear-Powered Oil Drilling Vessel." 7 August 2007. BarentsObserver.com. 15 March 2009 < http://www.barentsobserver.com/index.php?id=5 26765>
- [11] Amos, Jonathan. "Arctic Summers Ice-Free 'by 2013'." 12 December, 2007. BBC News. 07 March 2009 < http://news.bbc.co.uk/2/hi/science/nature/7139797.stm>

Sources Consulted

Aker Arctic Technology Ltd. "Study on Frequent Lines: Differences in Running and Investment Costs Between an Icebreaking Cargo Vessel and a Vessel that Needs Icebreaker Assistance." A study for Baltic Icebreaking Management.

The Arctic Council. "Arctic Marine Strategic Plan." 24 November 2004

Brigham, L and Ellis, B. "Arctic Marine Transport Workshop." Institute of the North, US Arctic Research Commission, International Arctic Science Committee. September 2004

Brigham, L. "Globalization and Challenges for Arctic Marine Transport." A presentation for MIT's Management of Marine Systems course. September 2007

Bukharin, O. "Russia's Nuclear Icebreaker Fleet." *Science and Global Security.* Vol. 14, 1: 25-31. 2006

European Space Agency (ESA). "Arctic Sea Ice Annual Freeze-up Underway." *Science Daily.* 04 October 2008 <http://www.sciencedaily.com/releases/2008/10/081003123248.htm>

Gardiner, Nigel. "The Drewry Annual LNG Shipping Market Review and Forecast 2007/08." Drewry Shipping Consultants Ltd. July 2007

Kamesaki, K et al. "Simulation of NSR Shipping Based on Year-round and Seasonal Operating Scenarios." The International Northern Sea Route Program (INSROP). March 1999

Krishfield, R. and Proshutinsky, A. "Russian Northern Expeditions." Beaufort Gyre Exploration Project. Woods Hole Oceanographic Institute. 07 Feb. 2009 http://www.whoi.edu/beaufortgyre/history/history_russian1819.html

Lindsey, Rebecca. "Both Routes Around Arctic Open at Summer's End." NASA Earth Observatory. 26 October 2008 http://earthobservatory.nasa.gov/Newsroom/NewImages/ images.php3?img_id= 18145>

"Northeast Passage." <u>The Columbia Encyclopedia, Sixth Edition</u>. 2008. *Encyclopedia.com.* 7 Feb. 2009 http://www.encyclopedia.com/doc/1E1-NEPass.html.

"Northwest Passage." <u>Encyclopædia Britannica</u>. 2009. Encyclopædia Britannica Online. 07 Feb. 2009 http://www.britannica.com/EBchecked/topic/420084/Northwest-Passage.

"Port of Murmansk Preparing for Arctic Shipping Boom." Barents Observer. January, 2008

Ragner, C L. "Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential." The Fridtjof Nansen Institute. 2000

Ship and Ocean Foundation (Japan). "The Northern Sea Route – The Shortest Sea Route Linking East Asia and Europe." 2000

US Army Corps of Engineers. "Alaska Regional Ports Study." March 2008

Appendix A: Model User Manual

The following provides instructions for use of the model as well as a detailed description of each spreadsheet tab.

A.1 Opening the Model

The model was created using Microsoft Excel. To preserve the original model file, open the model and save a copy named "Original Model" or another name that identifies the original copy. An electronic copy of the model is provided with the final report to ensure an original copy is preserved. Each time the model is run, opt to "Save As" under a different name, such as "Model (Jan 31)," to identify changes made to the model.

Macros in the sheet may cause the user's Excel to display a warning message. To ensure proper functionality of the model, macros must be enabled. Figure A-1 displays a screenshot of the warning message in Excel 2007. Select the "Options" button in the warning message. After the "Security Alert – Macro" window appears, select "Enable Macros" and "OK." Enabling macros will allow the model to function correctly.

Figure A-1: Macro Warning Message

A.2 Entering General Inputs

The tab labeled General is used to change the month of operation, trade route, and fuel price. The price of Fuel Oil (FO) may be changed by entering a new price, in dollars per metric ton, in the cell labeled "FO." A cargo profile may be entered by changing the %20' and the load factor cells. The 20'/40' split sets the percentages of 20' and 40' containers. It is only necessary to enter the percentage of 20' containers, as the percentage of 40' containers is automatically calculated. After setting the blue inputs to the desired values, select the "Month and Route Selection" button to pick the origin-destination ports and month of operation. The month of operation determines the icebreaking speed through the NSR. Colder months will correspond to slower speeds due to thicker ice. After the trade route and month are selected, select the "Calculate" button. The 5000 TEU Summary tab will be displayed. Select the '750 TEU Summary' tab for the corresponding results. To generate Yokohama-Rotterdam expense and time results for the entire year, do not click the "Month and Route Selection" button. Press

Ctrl+G after entering the desired input values in blue. The 'Comparison' tab will be displayed and the first two matrices will contain expense and time data of each scenario for every month. Results for the Seattle-Rotterdam route may not be viewed in this manner.

A.3 Viewing Model Results

The 5000 TEU and 750 TEU Summary tabs show the results of the analysis calculations. A summary of the voyage is given for each scenario, including ports visited, number of containers loaded, and route distances. Please note that some shipping costs, such as passage transit fees charged by countries, icebreaker escort fees, and ice pilot fees, are not currently included in the model. The total voyage costs, time, and cost per TEU are given at the bottom of each scenario.

A.4 Viewing Vessel Information

The Vessels tab contains general characteristics of each vessel and daily expenses, such as fuel, operating, and capital expenses, incurred over the voyage. Data in the Vessels tab are not intended to be modified by the user. User changes to the Vessels tab may cause the model to display invalid results.

A.5 Viewing Port Information

The "Ports" tab contains container handling information, including the handling rate (hourly capacity) of the cranes. Port fees and container handling fees are also given. Total time spent in port is calculated from the maneuvering times and loading/unloading time. As with the "Vessels" tab, changing values in the "Ports" tab may introduce errors into the model.

A.6 Viewing Route Information

The "Routes" tab calculates the sea time for a given route and time of year. Distances and vessel speeds through the NSR were taken from the Aker study to calculate the transit time

-54-

of the icebreaking vessels. Transit times for the canal routes were also calculated, including wait times at the canals. Estimates of canal fees are listed by the canal transit times.

Appendix B: Selected Model Sheets

Unless otherwise indicated, all values shown reflect inputs shown in Figure B-1.

	Figure D-1. General input
In	structions
1.	Set % 20' Containers,
	Load Factor, and FO
	Cost.
2.	Set Month and Route
	by clicking button.
	Inputs
% 20'	20%
% 40'	80%
Load Factor	85%
FO (\$/t)	500

Figure B-1: General Inputs

			Figure D-2. 5000	o reo Sammary			
Month		FO (\$/ton)	Vessel Capacity (TEU)	Service			
December	Start Port	\$500 Scenario 1 Ice-strengthened Containership, Escorted Yokohama	5000 Scenario 2 Icebreaking Containership Yokohama	Yokohama-Rotterdam Scenario 3 Standard>Icebreaking Containership Yokohama	Scenario 4 Ice-strengthened Containership, Arctic Route, Unescorted Yokohama	Scenario 5 Standard Containership, Arctic Route, Unescorted Yokohama	Scenario 6 Standard Containership, Canal Route Yokohama
Containers, TEU Loaded		4250 \$763,750	4250 \$763,750	4250 \$763,750	4250 \$763,750	4250 \$763,750	4250 \$763,750
Vessel Distance, nm Transit Cost	Leg 1	Yokohama - Bering St Ice-strengthened 2452 \$565,611	Yokohama - Rotterdam NSR Icebreaking 7090 \$2,940,613	Yokohama - Adak Standard 2237 \$503,563	Yokohama - Adak Ice-strengthened 7090 \$1,635,475	Yokohama - Rotterdam NSR Standard 7090 \$1,596,004	Yokohama - Rotterdam SCR Standard 11070 \$2,651,842
Transs	ninment Point			Adak			
Containers, TEU Unloaded Loaded Port Expenses	ipment Foint			4250 4250 \$870,000			
Vessels Distance, nm Transit Cost	Leg 2	Bering St - North Sea Ice-strengthened, Icebreaker Escort 2788 \$2,464,949		Adak - Murmansk Icebreaking 3755 \$1,722,070			
Transe	hinment Point			Murmansk			
Containers, TEU Unloaded Loaded Port Expenses	mpment Fount			4250 4250 \$870,000			
Vessel Distance, nm	Leg 3	North Sea - Rotterdam Ice-strengthened 1850		Murmansk - Rotterdam Standard 1627 \$366.248			
Transit Cost Canal Fees	End Port	s426,740 ∎	Rotterdam	Rotterdam	Rotterdam	Rotterdam	\$262,004 Rotterdam
Containers, TEU Unloaded Port Expenses		4250 \$763,750	4250 \$763,750	4250 \$763,750	4250 \$763,750	4250 \$763,750	4250 \$763,750
Scenario Summary Vessels Used Icebreaking Containe Ice-Strengthened Co Standard Containers	ership ntainership hip	Ice-Strengthened Containership	Icebreaking Containership	Icebreaking Containership Standard Containership	Ice-Strengthened Containership	Standard Containership	Standard Containership
Total Cargo/Operating Total Time (days) Cost per TEU Moved	Cost	\$5,145,243 19.8 \$1,211	\$4,709,340 22.0 \$1,108	\$6,714,2 26 \$1,5	50 \$3,323,41 5.2 16 80 \$71	12 \$3,279,2 .1 16 32 \$7	41 \$4,597,08 3.1 24. 72 \$1,08

Figure B-2: 5000 TEU Summary Layout

			Figure B-3. 7	30 TEO Summary E	.yout		
Month		FO (\$/ton)	Vessel Capacity (TEU)	Service			
December	Start Port	\$500 Scenario 1 Ice-strengthened Containership, Escorted Yokohama	750 Scenario 2 Icebreaking Containership Yokohama	Yokohama-Rotterdam Scenario 3 Standard>Icebreaking Containership Yokohama	Scenario 4 Ice-strengthened Containership, Arctic Route, Unescorted Yokohama	Scenario 5 Standard Containership, Arctic Route, Unescorted Yokohama	Scenario 6 Standard Containership, Canal Route Yokohama
Containers, TEU Loaded Port Expenses		638 \$131,425	638 \$131,425	638 \$131,425	638 \$131,425	638 \$131,425	638 \$131,425
Vessel Distance, nm Transit Cost	Leg 1	Yokohama - Bering St Ice-strengthened 2452 \$314,329	Yokohama - Rotterdam NSR Icebreaking 7090 \$1,782,259	Yokohama - Adak Standard 2237 \$279,580	Yokohama - Rotterdam NSR Ice-strengthened 7090 \$908,887	Yokohama - Rotterdam NSR Standard 7090 \$886,108	Yokohama - Rotterdam SCR Standard 11070 \$954,097
Transship	nent Point			Adak			
Containers, TEU Unloaded Loaded Port Expenses				638 638 \$140,975			
Vessels Distance, nm Transit Cost	Leg 2	Bering St - North Sea Ice-strengthened, Icebreaker Escort 2788 \$1,835,248		Adak - Murmansk icebreaking 3755 \$1,195,181			
				Murmansk			
Containers, TEU Unloaded Loaded Port Expenses	ment Point			638 638 \$140,975			
Vessel Distance, nm	Leg 3	North Sea - Rotterdam Ice-strengthened 1850		Murmansk - Rotterdam Standard 1627 \$203.342			
Transit Cost Canal Fees		\$237,157	Potterdam	Rotterdam	Rotterdam	Rotterdam	\$83,770 Rotterdam
Containers, TEU Unloaded Port Expenses	End Port	638 \$131,425	638 \$131,425	638 \$131,425	638 \$131,425	638 \$131,425	638 \$131,425
Scenario Summary Vessels Used Icebreaking Containersh Ice-Strengthened Conta Standard Containership	ip inership	Ice-Strengthened Containership	Icebreaking Containership	Icebreaking Containership Standard Containership	Ice-Strengthened Containership		Standard Containership
Icebreaker Escort Total Cargo/Operating Co Total Time (days)	st	ICEDREAKER ESCORT \$2,687,167 20.7 \$4,215	\$2,103, 2 \$3,	196 \$2,417,50 (7.0 29. 299 \$3,79	3 \$1,209,3 7 18 12 \$1,8	21 \$1,185,4 8.6 11 97 \$1,8	64 \$1,337,2 3.6 19 60 \$2,0

Figure B-3: 750 TEU Summary Layout

	Figure B-4:	Vessel Data	
	5000 TEU Icebreaking Containership	750 TEU Icebreaking Containership	5000 TEU Standard Containership
Capacity, TEU	5000	750	5000
LOA, m	281	169	294
LBP, m	269	160	283
Breadth, m	34.6	23.1	32.2
Depth, m	21.3	14.2	21.8
Design Draft, m	13.5	9.0	13.5
Holds	8	3	
OW Speed, kts			
Maximum	19	17	25.1
Service	17.5	15.5	22.2
Shaft Power, kW	36000	13000	51390
Service Speed Fuel Consumption, t/day	134.1	41	128.3
Generator Power, kW	5747	3000	5747
Aux. Generator Fuel Consumption, t/day	24.8	13.0	24.8
Daily Expenses			
Fuel			
Propulsion	\$ 67,050	\$ 20,500	\$ 64,150
Auxilliary	\$ 12,414	\$ 6,480	\$ 12,414
OPEX	\$ 17,250	\$ 12,938	\$ 15,000
Building Cost	\$ 195,000,000	\$ 100,000,000	\$ 97,500,000
Owner Equity	\$-	\$ -	\$ -
Amount Financed	\$ 195,000,000	\$ 100,000,000	\$ 97,500,000
Interest Rate	8%	8%	8%
Number of Years	20	20	20
Yearly Payment	\$ 19,861,181	\$ 10,185,221	\$ 9,930,590
Daily Capital Cost	\$ 56,746	\$ 29,101	\$ 28,373
Sum of Daily Exp. and Daily Cap. Cost	\$ 153,460	\$ 69,018	\$ 119,937

	750 TEU Standard Containership		5000 TEU Ice-strengthened containership	750 TEU Ice-strengthened containership
Capacity, TEU		750	5000	750
LOA, m		145	294	145
LBP, m		134	283	134
Breadth, m		22.7	32.2	23
Depth, m		11	21.8	11
Design Draft, m		8.2	13.5	8
Holds				
OW Speed, kts				
Maximum		19	25.1	19
Service		17	22.2	17
Shaft Power, kW	t	10860	51390	10860
Service Speed Fuel Consumption, t/day		41	128.3	41
Generator Power, kW		2172	5747	2172
Aux. Generator Fuel Consumption, t/day		9.38	24.8	9
Daily Expenses				
Fuel				
Propulsion	\$ 20),500	\$ 65,433	\$ 20,910
Auxilliary	\$ 4	1,692	\$ 12,662	\$ 4,785
OPEX	\$ 11	1,250	\$ 15,300	\$ 11,475
Building Cost	\$ 50.000	000	\$ 101,400,000	\$ 52.000.000
Owner Equity	\$	-	\$ -	\$ -
Amount Financed	\$ 50.000	0.000	\$ 101.400.000	s 52,000,000
Interest Rate	Ý,	8%	8%	8%
Number of Years		20	20	20
Yearly Payment	\$ 5.092	2.610	\$ 10.327,814	\$ 5,296,315
Daily Capital Cost	\$ 14	4.550	\$ 29.508	\$ 15,132
	÷ –	.,	•	
Sum of Daily Exp. and Daily Cap. Cost	\$ 50	J,992	\$ 122,903	\$ 52,303

Figure B-4: Vessel Data, Continued

Yokohama - Rotterdam NSR	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Distance (nm)							7090					
5000 TEU Icebreaking Containership												
Avg Speed (kt)	13.9	11.4	9.3	8.9	9.1	9.6	15.8	17.2	17.5	17.5	16.9	15.4
Time (hr)	510	621	764	794	780	739	448	412	405	405	420	460
Time (day)	21.2	25.9	31.8	33.1	32.5	30.8	18.7	17.2	16.9	16.9	17.5	19.2
750 TEU Icebreaking Containership												
Avg Speed (kt)	9.3	8.4	8.0	8.0	8.0	8.0	11.1	15.0	15.5	15.5	14.5	11.4
Time (hr)	763	846	885	891	889	883	639	471	457	457	488	620
Time (day)	31.8	35.3	36.9	37.1	37.1	36.8	26.6	19.6	19.1	19.1	20.3	25.8
Escorted Time (day)	7.4	14.7	23.1	23.1	23.1	20.1	7.4	0	0	0	0	0
5000 TEU Ice-strengthened												
Leg						Yokoha	ama - Bering	St				
Distance							2452					
Avg Speed (kt)							22					
Time (day)							4.6					
Leg					E	Bering St - N	North Sea, Es	scorted				
Distance							2788					
Avg Speed (kt)	10.6	7.4	5.4	5.1	5.2	5.7	13.8	16.8	17.5	17.5	16.0	13.0
Time (day)	11.0	15.6	21.6	22.8	22.3	20.5	8.4	6.9	6.6	6.6	7.3	8.9
Leg						North S	ea - Rotterd	am				
Distance							1850					
Avg Speed (kt)							22					
Time (day)							3.5					
750 TEU ice-strengthened												
Leg						Yokoha	ama - Bering	St				
Distance							2452					
Avg Speed (kt)							17					
Time (day)							6.0					
Leg						Bering	St - North S	ea				
Distance							2788					
Avg Speed (kt)	10.6	7.4	5.4	5.1	5.2	5.7	13.8	16.8	17.0	17.0	16.0	13.0
Time (day)	11.0	15.6	21.6	22.8	22.3	20.5	8.4	6.9	6.8	6.8	7.3	8.9
Leg						North S	sea - Rotterd	am				
Distance							1850					
Avg Speed (kt)							17					
Time (day)							4.5					

Figure B-5: Yokohama-Rotterdam Route Data

					Figu	ire B-6: (Case Val	ues						
						Y	Yokohama - F	Rotterdam (F	O=\$500/t)					
Case 6	Standard Con	tainership, S	uez Canal Ro	ute										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	Difference
Cost (\$/TEU)	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$1,082	\$0
O-D Time (day)	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	0.0
Case 5	Standard Con	tainership, N	Northern Sea	Route, Uneso	orted									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$772	\$772	\$772	\$772	\$772	\$772	\$772	\$772	\$772	\$772	\$772	\$772	\$772	\$310
O-D Time (day)	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	8.8
Case 4	Ice-strengthe	ned Contain	ership, North	ern Sea Rout	e, Unescorte	d								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$782	\$782	\$782	\$782	\$782	\$782	\$782	\$782	\$782	\$782	\$782	\$782	\$782	\$300
O-D Time (day)	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	. 8.8
Case 3	Ice-strengthe	ned Contain	ership, North	ern Sea Rout	e, 8mo Unes	corted, 22.2k	ts 🛛	4mo Transsi	nipment thro	ough Arctic	at Aker data	speeds		
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$782	\$782	\$2,050	\$2,050	\$2,050	\$2,050	\$782	\$782	\$782	\$782	\$782	\$782	\$1,205	\$123
O-D Time (day)	16.1	16.1	39.1	39.1	39.1	39.1	16.1	16.1	16.1	16.1	16.1	16.1	23.8	1.1
Case 1a	Ice-strengthe	ned Contain	ership, North	ern Sea Rout	e, 8mo Unes	corted, 22.2k	ts	4mo Escorte	ed through A	rctic at 17.5	kts			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$782	\$782	\$1,062	\$1,062	\$1,062	\$1,062	\$782	\$782	\$782	\$782	\$782	\$782	\$875	\$206
O-D Time (day)	16.1	16.1	17.5	17.5	17.5	17.5	16.1	16.1	16.1	16.1	16.1	16.1	16.6	8.3
Case 1a (Free)	Ice-strengthe	ned Contain	ership, North	ern Sea Rout	e, 8mo Unes	corted, 22.2k	cts	4mo Escorte	ed through A	Arctic at 17.5	kts, Free Eso	ort		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$782	\$782	\$823	\$823	\$823	\$823	\$782	\$782	\$782	\$782	\$782	\$782	\$796	\$286
O-D Time (day)	16.1	16.1	17.5	17.5	17.5	17.5	16.1	16.1	16.1	16.1	16.1	16.1	16.6	i 8.3
Case 1b	Ice-strengthe	ned Contain	ership, North	iern Sea Rout	e, 8mo Unes	corted, 22.2	cts	4mo Escorte	ed through A	Arctic at 10k	ts			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$782	\$782	\$1,386	\$1,386	\$1,386	\$1,386	\$782	\$782	\$782	\$782	\$782	\$782	\$983	\$98
O-D Time (day)	16.1	16.1	22.5	22.5	22.5	22.5	16.1	16.1	16.1	16.1	16.1	16.1	18.3	6.7
Case 1b (Free)	Ice-strengthe	ned Contain	ership, North	nern Sea Rout	te, 8mo Unes	corted, 22.2	cts	4mo Escorte	ed through A	Arctic at 10k	tS, Free Esco	rt		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$782	\$782	\$967	\$967	\$967	\$967	\$782	\$782	\$782	\$782	\$782	\$782	\$844	\$238
O-D Time (day)	16.1	16.1	22.5	22.5	22.5	22.5	16.1	16.1	16.1	16.1	16.1	16.1	18.3	6.7 ک

Case 1c	Ice-strengther	ned Containe	rship, Northern	Sea Route, 8n	no Unescorted	, 22.2kts	4	4mo Escorte	d through Ai	rctic at 5.5kt				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	Difference
Cost (\$/TEU)	\$782	\$782	\$2,004	\$2,004	\$2,004	\$2,004	\$782	\$782	\$782	\$782	\$782	\$782	\$1,189	\$108
O-D Time (day)	16.1	16.1	32.0	32.0	32.0	32.0	16.1	16.1	16.1	16.1	16.1	16.1	21.4	3.5
Case 1c (Free)	Ice-strengthe	ned Containe	rship, Northern	sea Route, 8r	no Unescorted	, 22.2kts	4	4mo Escorte	d through A	rctic at 5.5kt	s, Free Escol	t		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$782	\$782	\$1,241	\$1,241	\$1,241	\$1,241	\$782	\$782	\$782	\$782	\$782	\$782	\$935	\$147
O-D Time (day)	16.1	16.1	32.0	32.0	32.0	32.0	16.1	16.1	16.1	16.1	16.1	16.1	21.4	3.5
Case 1b (Modified)	Ice-strengthe	ned Containe	rship, Northerr	n Sea Route, 8r	no Unescorted	l, 22.2kts, 6.5 d	ays idle		imo Escorte	d through A	rctic at 10kt	S, Free Escor	t	
	Jan	Feb	Mar	Apr	May	di di Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Original Cost (\$/TEU)	\$869	\$869	\$967	\$967	\$967	\$967	\$869	\$869	\$869	\$869	\$869	\$869	\$901	\$180
Original Time (day)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	2.4
						(F0)=\$1000/1	t)						
Case 6 (Base)	Standard Con	tainership, Su	uez Canal Route	e										
Company of the other of the other	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	Difference
Cost (\$/TEU)	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$1,488	\$0
Case 1b (Free)	Ice-strengthe	ned Containe	rship, Northerr	n Sea Route, 81	no Unescortec	l, 22.2kts		4mo Escorte	d through A	rctic at 10kt	S, Free Escor	t		Sector Contractor
Construction of the second second	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$1,019	\$1,019	\$1,337	\$1,337	\$1,337	\$1,337	\$1,019	\$1,019	\$1,019	\$1,019	\$1,019	\$1,019	\$1,125	\$363
						(F	O=\$250/t)						
Case 6 (Base)	Standard Con	tainership, S	uez Canal Route	e		Sel Selection								
CONTRACTOR OF STREET	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	Difference
Cost (\$/TEU)	\$878	\$878	\$878	\$878	\$878	\$878	\$878	\$878	\$878	\$878	\$878	\$878	\$878	\$0
Case 1b (Free)	Ice-strengthe	ned Containe	ership, Northern	n Sea Route, 8	no Unescortec	d, 22.2kts		4mo Escorte	d through A	rctic at 10kt	S, Free Escol	đ		
C. T. S. D. B. S. S. S. S. S. S.	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG	
Cost (\$/TEU)	\$656	\$656	\$782	\$782	\$782	\$782	\$656	\$656	\$656	\$656	\$656	\$656	\$698	\$181
	Note: Differe	nces from bas	se show that vo	yage expense s	avings increas	e with cost of f	uel for escor	ted ice-stren	gthened cor	itainership.				

Figure B-6: Case Values, Continued

Yokohama-Rotterdam	Length [nm]	Length [km]	Ja	an	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
								•	Avg. Spe	eed [kn]	······		•	•••••••••••••••••••••••••••••••••••••••	L
Yokohama-Aleutians	1900	3519		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Bering Sea	552	1023		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Bering St	356	659		16.2	15.4	14.6	13.9	13.7	14.5	17.5	17.5	17.5	17.5	17.5	17.3
Chukchi	370	685		9.7	7.3	3.2	3.4	3.5	3.8	16.4	17.5	17.5	17.5	15.9	12.9
E Siberia	622	1152		7.3	4.1	3.4	3	2.9	3.1	9.6	15	17.5	17.5	15.3	11.8
Laptev	577	1069		13.5	11.6	9.9	7.6	7.8	9.2	14	17.2	17.5	17.5	15	11.3
Kara E	238	442		9.6	5.5	3.2	3.5	4.5	4.5	14.3	17.5	17.5	17.5	15.9	13.1
Kara N	283	523		10.6	8.9	7.7	7.8	8	9.4	16.2	17.5	17.5	17.5	16.6	13.8
Pechora N	342	633		14.1	13.9	13.3	13	13.1	13.8	17.5	17.5	17.5	17.5	17.3	15.3
NS-Rotterdam	1850	3426		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Total	7090	131 31		13.9	11.4	9.28	8.93	9.09	9.60	15.8	17.2	17.5	17.5	16.9	15.4
					l	-			Time	e [h]					
Yokohama-Aleutians				109	109	109	109	109	109	109	109	109	109	109	109
Bering Sea				32	32	32	32	32	32	32	32	32	32	32	32
Bering St				22	23	24	26	26	25	20	20	20	20	20	21
Chukchi				38	51	116	109	106	97	23	21	21	21	23	29
E Siberia				85	152	183	207	214	201	65	41	36	36	41	53
Laptev				43	50	58	76	74	63	41	34	33	33	38	51
Kara E				25	43	74	68	53	53	17	14	14	14	15	18
Kara N				27	32	37	36	35	30	17	16	16	16	17	21
Pechora N				24	25	26	26	26	25	20	20	20	20	20	22
NS-Rotterdam				106	106	106	106	106	106	106	106	106	106	106	106
		T	otal	510	621	764	794	780	739	448	412	405	405	420	460

Figure B-7: 5000 TEU Icebreaking Containership Speeds by Region (Aker)

ARCTIC LEGS (Escort)	Length [nm]	Length [km]	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
							•	Avg. Spe	eed [kn]					
Bering St	356	659	16.2	15.4	14.6	13.9	13.7	14.5	17.5	17.5	17.5	17.5	17.5	17.3
Chukchi	370	685	9.7	7.3	3.2	3.4	3.5	3.8	16.4	17.5	17.5	17.5	15.9	12.9
E Siberia	622	1152	7.3	4.1	3.4	3	2.9	3.1	9.6	15	17.5	17.5	15.3	11.8
Laptev	577	1069	13.5	11.6	9.9	7.6	7.8	9.2	14	17.2	17.5	17.5	15	11.3
Kara E	238	442	9.6	5.5	3.2	3.5	4.5	4.5	14.3	17.5	17.5	17.5	15.9	13.1
Kara N	283	523	10.6	8.9	7.7	7.8	8	9.4	16.2	17.5	17.5	17.5	16.6	13.8
Pechora N	342	633	14.1	13.9	13.3	13	13.1	13.8	17.5	17.5	17.5	17.5	17.3	15.3
Total	2788	5163	10.6	7.4	5.4	5.1	5.2	5.7	13.8	16.8	17.5	17.5	16.0	13.0
					£		haan	Time	e [h]	L.,	1	k	k	
Bering St			22	23	24	26	26	25	20	20	20	20	20	21
Chukchi			38	51	116	109	106	97	23	21	21	21	23	29
E Siberia			85	152	183	207	214	201	65	41	36	36	41	53
Laptev			43	50	58	76	74	63	41	34	33	33	38	51
Kara E			25	43	74	68	53	53	17	14	14	14	15	18
Kara N			27	32	37	36	35	30	17	16	16	16	17	21
Pechora N			24	25	26	26	26	25	20	20	20	20	20	22
		Te	otal 264	375	518	548	535	493	203	166	159	159	175	214

Figure B-8: 5000 TEU Containership Escorted Speeds by Region (Aker)

ARCTIC TRANSSHIPMENT	Length [nm]	Length [km]		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
									Avg. Spe	eed [kn]					
Adak-Bering St	547	1013		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Bering St	356	659		16.2	15.4	14.6	13.9	13.7	14.5	17.5	17.5	17.5	17.5	17.5	17.3
Chukchi	370	685		9.7	7.3	3.2	3.4	3.5	3.8	16.4	17.5	17.5	17.5	15.9	12.9
E Siberia	622	1152		7.3	4.1	3.4	3	2.9	3.1	9.6	15	17.5	17.5	15.3	11.8
Laptev	577	1069		13.5	11.6	9.9	7.6	7.8	9.2	14	17.2	17.5	17.5	15	11.3
Kara E	238	442		9.6	5.5	3.2	3.5	4.5	4.5	14.3	17.5	17.5	17.5	15.9	13.1
Kara N	283	523		10.6	8.9	7.7	7.8	8	9.4	16.2	17.5	17.5	17.5	16.6	13.8
Pechora N	342	633		14.1	13.9	13.3	13	13.1	13.8	17.5	17.5	17.5	17.5	17.3	15.3
Pechora N - Murmansk	420	778		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Total	3755	6954		11.8	8.7	6.5	6.2	6.4	6.8	14.6	17.0	17.5	17.5	16.3	13.9
							hannan an a	h	Time	e [h]			*****	k	
Adak-Bering St		1		31	31	31	31	31	31	31	31	31	31	31	31
Bering St				22	23	24	26	26	25	20	20	20	20	20	21
Chukchi				38	51	116	109	106	97	23	21	21	21	23	29
E Siberia				85	152	183	207	214	201	65	41	36	36	41	53
Laptev				43	50	58	76	74	63	41	34	33	33	38	51
Kara E				25	43	74	68	53	53	17	14	14	14	15	18
Kara N				27	32	37	36	35	30	17	16	16	16	17	21
Pechora N				24	25	26	26	26	25	20	20	20	20	20	22
Pechora N - Murmansk				24	24	24	24	24	24	24	24	24	24	24	24
		•	Total	319	430	573	604	590	548	258	221	215	215	230	269

Figure B-9: 5000 TEU Transshipment Speeds by Region (Aker)

Yokohama-Rotterdam	Length [nm]	Length [km]	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
							•	Avg. Spe	ed [kn]					
Yokohama-Aleutians	1900	3519	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Bering Sea	552	1023	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Bering St	356	659	13.8	12.2	11.3	10.1	9.9	10.8	15.5	15.5	15.5	15.5	15.5	15.4
Chukchi	370	685	4.3	4	4	4	4	4	13.5	15.5	15.5	15.5	13.6	8.6
E Siberia	711	1152	4	4	4	4	4	4	4	12	15.5	15.5	12.4	6.6
Sannikova St	91	169	4.6	4	4	4	4	4 .	10	15.6	15.5	15.5	13.3	8.7
Laptev	523	1069	9.1	4.8	4	4	4	4	9.7	15.1	15.5	15.5	11.9	6
Kara E	238	442	4.5	4	4	4	4	4	6	15.5	15.5	15.5	12.6	9
Kara N	283	523	6.1	4.7	4	4	4	4.1	13.4	15.5	15.5	15.5	14.5	10.3
Pechora N	342	633	10.3	10.4	9.1	8.6	9.1	9.6	16	15.5	15.5	15.5	15.4	12.3
NS-Rotterdam	1850	3426	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Total	7216	13300	9.3	8.4	8.0	8.0	8.0	8.0	11.1	15.0	15.5	15.5	14.5	11.4
			Note: Yel	low cells in	ndicate esc	ort assista	nce.							
				•				Time	e [h]				_	
Yokohama-Aleutians			123	123	123	123	123	123	123	123	123	123	123	123
Bering Sea			36	36	36	36	36	36	36	36	36	36	36	36
Bering St			26	29	32	35	36	33	23	23	23	23	23	23
Chukchi			86	93	93	93	93	93	27	24	24	24	27	43
E Siberia			178	178	178	178	178	178	178	59	46	46	57	108
Sannikova St			20	23	23	23	23	23	9	6	6	6	7	10
Laptev			57	109	131	131	131	131	54	35	34	34	44	87
Kara E			53	60	60	60	60	60	40	15	15	15	19	26
Kara N			46	60	71	71	71	69	21	18	18	18	20	27
Pechora N			33	33	38	40	38	36	21	22	22	22	22	28
NS-Rotterdam			119	119	119	119	119	119	119	119	119	119	119	119
		Total	777	861	901	907	905	898	651	480	466	466	496	631
		Escorteo	178	353	554	554	554	483	178	0	0	0	0	0

Figure B-10: 750 TEU Icebreaking Containership Speeds by Region (Aker)

ARCTIC TRANSSHIPMENT	Length [nm]	Length [km]		Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
				Avg. Speed [kn]											
Adak-Bering St	547	1013		15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Bering St	356	659		13.8	12.2	11.3	10.1	9.9	10.8	15.5	15.5	15.5	15.5	15.5	15.4
Chukchi	370	685		4.3	4	4	4	4	4	13.5	15.5	15.5	15.5	13.6	8.6
E Siberia	711	1152		4	4	4	4	4	4	4	12	15.5	15.5	12.4	6.6
Sannikova St	91	169		4.6	4	4	4	4	4	10	15.6	15.5	15.5	13.3	8.7
Laptev	523	1069		9.1	4.8	4	4	4	4	9.7	15.1	15.5	15.5	11.9	6
Kara E	238	442		4.5	4	4	4	4	4	6	15.5	15.5	15.5	12.6	9
Kara N	283	523		6.1	4.7	4	4	4	4.1	13.4	15.5	15.5	15.5	14.5	10.3
Pechora N	342	633		10.3	10.4	9.1	8.6	9.1	9.6	16	15.5	15.5	15.5	15.4	12.3
Pechora N - Murmansk	420	778		15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Total	3881	7123		6.9	6.0	5.7	5.6	5.6	5.7	8.9	14.7	15.5	15.5	13.8	9.3
				Time [h]											
Adak-Bering St				35	35	35	35	35	35	35	35	35	35	35	35
Bering St				26	29	32	35	36	33	23	23	23	23	23	23
Chukchi				86	93	93	93	93	93	27	24	24	24	27	43
E Siberia				178	178	178	178	178	178	178	59	46	46	57	108
Sannikova St				20	23	23	23	23	23	9	6	6	6	7	10
Laptev				57	109	131	131	131	131	54	35	34	34	44	87
Kara E				53	60	60	60	60	60	40	15	15	15	19	26
Kara N		1		46	60	71	71	71	69	21	18	18	18	20	27
Pechora N				33	33	38	40	38	36	21	22	22	22	22	28
Pechora N - Murmansk				27	27	27	27	27	27	27	27	27	27	27	27
			Total	562	646	685	691	690	683	436	265	250	250	281	416
			Escorted	178	353	554	554	554	483	178	0	0	0	0	0

Figure B-11: 750 TEU Transshipment Speeds by Region (Aker)

Appendix C: Favorable Assumptions

- Fully allocated costs are calculated as if all vessels and infrastructure (terminals) utilized in the study are used year-round.
- NSR fees, including ice pilot and escort fees, are approximated by using the daily expense of owning and operating a 5000 TEU icebreaking containership.
- Cases in the analysis used an origin/destination port pair that gave the largest distance savings possible between the Arctic and existing routes.
- Cases used constant speeds through the Arctic for 4 and 8 month periods.
- Ports used for transshipment in study currently have no transshipment terminals. While Murmansk is currently building a new container terminal, facilities at Adak were abandoned when the Adak Naval Air Station was closed in 1997.
- The 5000 TEU ice-strengthened containership is escorted by a single icebreaker. Currently there are no icebreakers that are always capable of single-handedly breaking a wide enough channel to escort a containership of this size.
- The financial impact of likely environmental regulations and requirements was not estimated.
- The issue of spray ice building up on container stacks was not evaluated. Deicing procedures could increase the cost of Arctic transit.

Appendix D: Vessel Characteristics

Figure D-1: 5000 TEU Icebreaking Containership General Arrangement

Figure D-3: 750 TEU Icebreaking Containership General Arrangement

Figure D-4: 750 TEU Icebreaking Containership Lines Plan