
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN ⎯ AB DEPARTMENT

Geneva, Switzerland
December, 2006

CERN-THESIS-2007-AB/BI

Wire Scanner Motion Control Card

S.E. Forde

Bergen University College - Norway
CERN – Geneva - Switzerland

CERN Supervisor – B. Dehning AB-BI

Abstract

Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery
potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is
maximized by minimizing the beam size. Therefore an accurate beam size measurement is required
for optimizing the luminosity.
The wire scanner performs very accurate profile measurements, but as it can not be used at full
intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire
scanner system, which is used in the present CERN accelerators, has not been made for the required
specification of the LHC, a new design of a wire scanner motion control card is part of the LHC
wire scanner project. The main functions of this card are to control the wire scanner motion and to
acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an
easy update of the firmware, hence the programmable features of FPGAs will be used for this
purpose. The FPGAs will act as the control unit of the system.
As the LHC has two separate vacuum chambers for the two counter rotating proton-beams, a wire
scanner is needed for both the horizontal and vertical beam profile measurement. One motion
control card is expected to control two wire scanners. The position of the wires must be acquired
within a certain accuracy to meet the specification set for the LHC. In order to obtain the correct
beam profile, the position acquisition must be well synchronized with the acquisition of the beam
density. The values have to be stored in a memory, which is readable through the VME64x-bus.

Presented at Bergen Univ. College on 20th December 2006 – Bergen/NO

C
E

R
N

-T
H

E
SI

S-
20

07
-0

32
20

/
12

/
20

06

Bachelor of Science thesis

WIRE SCANNER MOTION
CONTROL CARD

Stian E. S. Førde
Electronics engineering

Bergen University College
stiford@gmail.com

December 13, 2006

stiford@gmail.com

 HØGSKOLEN I BERGEN
 Avdeling for Ingeniørutdanning

 TITTELBLAD FOR HOVEDPROSJEKT

Rapportens tittel:
 Wire scanner motion control card

Dato:
2006-12-12

Forfattere:
 Stian E. S. Førde

Antall sider u/vedlegg:
100

Studieretning:
 Elektronikk

Antall sider vedlegg:
61

Vegleder ved studieretning:
 Ketil Røed

Antall CDer:
 1

Merknader:

Gradering:
Bestått/ikkje bestått

Oppdragsgiver:
 CERN

Oppdragsgivers referanse:

Oppdragsgivers kontaktperson:
 Bernd Dehning

Telefon:
+41 22 76 75 541

Sammendrag:
LHC, den nye ring akseleratoren ved CERN, krev oppgradering av mykje utstyr for å oppnå optimale
målinger. Som en del av dette må òg kontrollkortet for wire scanners oppgraderast for å forbedre
nøyaktigheten på målinger av strålens kryss-størrelse. Dette kan bli oppnådd ved å introdusere større
oppløysing på motor kontroll- og posisjons-data, samt utlesing av strålens tetthets-data. Det nye wire scanner
kontrollkortet bruker FPGAer som kontrollenhet og fjernstyring via en VME-bus. Dette prosjektet legg vekt
på det digitale designet av kontrollkortet, men berører òg dei analoge kretsane.

Stikkord:

Wire scanner Transverse beam size Luminosity
FPGA VHDL VME-bus

Høgskolen i Bergen, Avdeling for ingeniørutdanning
Postadresse: Postboks 7030, 5020 BERGEN Besøksadresse: Nygårdsgaten 112, Bergen
Tlf. 55 58 75 00 Fax 55 58 77 90 E-post: post@hib.no Hjemmeside: http://www.hib.no

Acknowledgements

I have had a very rewarding time during my studies in Bergen and my time spent

at CERN, and for that I would like to thank a few key people who have played

a part over the past few years.

First I would like to thank my supervisor at CERN, Bernd Dehning, for

providing me with the opportunity to write my thesis here by making the

necessary arrangements for my Technical Studentship. Despite having a very

busy schedule, he always gives priority to his staff and I am grateful for that.

Also I thank my supervisor at HiB, Ketil Røed, and Solfrid Sjȧstad Hasund for

their cooperation and understanding during my prolonged thesis work at CERN.

During my time at CERN I have mainly worked with Jan Koopman, and I

have learned a great deal from his broad experience. I especially appreciate the

practical demonstrations he provided when I was in doubt and asking challenging

questions to keep me on my toes.

A big thank you to the BLM-section, it has been a pleasure to spend my time

with you all. Especially thanks to: Jonathan Emery for useful VHDL hints and

many Labview-explanations; Ewald Effinger and Christos Zamantzas for helping

me with design issues; Daniel Kramer for arranging several rendez-vous in French

details; Claudine Chery for putting up with all the modifications I have asked

her to make on the prototypes; and also many thanks to Markus for all the moral

support.

A special thanks to all the footballers at CERN! It has been great to play

with you all. Many thanks to Pit8 for accepting me on first sight, and for

the after match barbeques and beers. Special thanks to Claudio Carneiro and

Guy Edwards, who let me participate with the CERN team in the Association

Genevoise de Football Corporatif Division ’A’ Championship. It has been a

pleasure to play in such a multinational team and I will never forget our victorious

moment in the cup! Thanks to the guys who joined me in the futsal team, The

Mongrels, it has been good fun!

Many thanks to Theo, I appreciate the many useful discussions and traveling

company. Rache and Lis, thanks for many good laughs, great food and teaching

me some British slang. A big thank you to Rasmus for good advice and helping

me out in many situations. Thank you Tülây, for your patient introduction in

french. . .même si ma tête était dans les étoiles! Huge thank you to Hȧvard Hoff

Langlie, Knut Ove Nygȧrd and Bjørnar Fuglseth for the collaboration during my

studies at HiB.

At last but not least, many thanks to my two wonderful sisters and my parents!

I would never have taken this path without your guidance and support. Thank

you for your patience and for coming by to visit when I failed to go north often

enough!

Abstract

Scientists require a certain beam quality produced by the accelerator rings at

CERN1. The discovery potential of LHC2 is given by the reachable luminosity

at its interaction points. The luminosity is maximized by minimizing the beam

size. Therefore an accurate beam size measurement is required for optimizing the

luminosity.

The wire scanner performs very accurate profile measurements, but as it can

not be used at full intensity in the LHC ring, it is used for calibrating other profile

monitors. As the current wire scanner system, which is used in the present CERN

accelerators, has not been made for the required specification of the LHC, a new

design of a wire scanner motion control card is part of the LHC wire scanner

project. The main functions of this card is to control the wire scanner motion

and to acquire the position of the wire. In case of further upgrades at a later stage,

it is required to allow an easy update of the firmware, hence the programmable

features of FPGAs3 will be used for this purpose. The FPGAs will act as the

control unit of the system.

As the LHC has two separate vacuum chambers for the two counter rotating

proton-beams, a wire scanner is needed for both the horizontal and vertical beam

profile measurement. One motion control card is expected to control two wire

scanners. The position of the wires must be acquired within a certain accuracy

to meet the specification set for the LHC. In order to obtain the correct beam

profile, the position acquisition must be well synchronized with the acquisition of

the beam density. The values have to be stored in a memory, which is readable

through the VME64x-bus4.

Keywords: Wire scanner, luminosity, transverse beam size, FPGA, VHDL, VME

1Conseil Européen pour la Recherche Nucléaire
2Large Hadron Collider
3Field Programmable Gate Array
4VERSA-Module Eurocard extended bus

Contents

1. Introduction 1
1.1. CERN . 1
1.2. Particle studies at CERN . 2
1.3. Why LHC . 2
1.4. Luminosity . 4
1.5. Wire scanners . 5

1.5.1. How to control the wire scanners 8

2. Overview of the system 9
2.1. PowerPC . 10
2.2. Wire scanner motion control card 10
2.3. Driver and power supply . 10
2.4. High Voltage power supply and gain control 11
2.5. Digital acquisition board . 11
2.6. BST - Beam Synchronization Timing 12

3. Project planning 13
3.1. Wire scanner position control . 14
3.2. Acquisition . 16

3.2.1. Wire scanner position acquisition 16
3.2.2. PMT and SEM acquisition 20
3.2.3. Diagnostics acquisitions 21
3.2.4. SRAM, Storing acquisition data 24

3.3. Surveillance . 25
3.4. VME interface . 27

4. FPGA design 29
4.1. General about FPGAs and VHDL 29
4.2. FPGA selection . 30
4.3. FPGA configuration . 30

4.3.1. Supported programming schemes 31
4.3.2. Which configuration scheme to use 34

4.4. FPGA master . 37

i

4.4.1. VME interface . 38
4.4.2. ADC and DAC signal flow control 41
4.4.3. SRAM signal flow control 42

4.5. FPGA slave 1 . 43
4.5.1. FPGA interface control unit 44
4.5.2. Function generator . 47
4.5.3. Function check . 50
4.5.4. Calibration . 53

4.6. FPGA slave 2 . 57
4.6.1. FPGA interface control unit 57
4.6.2. Error display . 58

5. Measurements on the prototypes 62
5.1. FPGA prototype . 62

5.1.1. Configuration setup . 63
5.1.2. VME circuitry . 64
5.1.3. Power supplies . 67
5.1.4. Optical ruler circuitry . 68
5.1.5. SRAM circuitry . 69
5.1.6. Overall test program . 71

5.2. Prototype including analog circuits 73
5.2.1. VMPS input (ADC0 CH0) 73
5.2.2. Amplifier voltage check (ADC0 CH1) 73
5.2.3. Amplifier current check (ADC0 CH2) 74
5.2.4. Function generator loop (ADC0 CH3) 75
5.2.5. Wire temperature circuit (ADC0 CH4 and CH5) 76
5.2.6. Logarithmic amplifier acquisition (ADC1) 77
5.2.7. Potentiometer input with sinusoidal signal (ADC2) 80
5.2.8. Potentiometer accuracy (ADC2) 81
5.2.9. Wire relay circuit . 84
5.2.10. Scope output signals . 84
5.2.11. LabVIEW testbench for WSMCC 84
5.2.12. Controlling a wire scanner 85

6. Conclusion 89

7. Abbreviations, list of figures and list of tables 91

Bibliography 99

8. Appendix 101

A. WSMCC functional diagram 102

ii

B. VHDL top level block diagrams 104
B.1. Master FPGA top level . 105
B.2. Slave1 FPGA top level . 106
B.3. Slave2 FPGA top level . 107

C. FPGA Registers 109

D. VME memory mapping 116

E. Matlab function generation script 118

F. LabVIEW VME access program 121
F.1. Front panel, user interface . 121
F.2. Block diagram . 122

G. LabVIEW testbench for WSMCC 123
G.1. FPGA registers check . 123
G.2. ROM functions check . 125
G.3. ADC0 conversion check . 127
G.4. ADC1 conversion check . 129
G.5. ADC2 conversion check . 131
G.6. SRAM check . 133

H. FPGA Prototype card 135
H.1. Schematics . 135
H.2. PCB . 140
H.3. FPGA pin locations . 145

I. Prototype card 147
I.1. Schematics . 147
I.2. PCB . 159

iii

1. Introduction

1.1. CERN

CERN is the European Organization for Nuclear Research, the world’s largest

particle physics centre.

CERN was founded by 12 European states in 1954. It now includes 20 member

states and in total over 80 nationalities are involved. About 3000 people are

employed at CERN, and another 6500 scientists do research in collaboration with

CERN.

Though the main studies at CERN concern Particle Physics, it is perhaps more

well known for being where the WWW1 was invented. The WWW was born as

the infrastructure of data exchange was set up in 1990. The principle of this

protocol was to link related information throughout a distributed information

system.

Important highlights for particle physics discoveries have also taken place at

CERN. In 1957 the first accelerator was made at CERN, the Synchro-Cyclotron.

Here, it was possible to observe the decay of a pion into an electron and a neutrino

for the first time. One of CERN’s biggest achievements was in 1973, as it was

discovered, by using the PS2 accelerator, that the neutrinos can interact with

another particle and yet still remain as neutrinos. The SPS3 accelerator provided

the first proton-antiproton collisions in 1981 and proved the existence of the W-

and Z-boson in 1983. Antimatter was created at CERN in 1995, which means

that a new matter is made of the antiparticles of the original matter.

1World Wide Web
2Proton Synchrotron
3Super Proton Synchrotron

1

1.2. PARTICLE STUDIES AT CERN

1.2. Particle studies at CERN

Ever since CERN was established, beam accelerators have been built in order to

study the effect of particle collisions. For every new accelerator, the beam energy

has been increased drastically. This because the higher the energy, the higher are

the mass of the extracted particles and the smaller the studied distances.

Scientists have made many discoveries which have led to technological growth,

yet there are many riddles left to solve. All the fundamental particles of the

standard models and beyond models have still not been verified, and this will

hopefully be approached by using the new accelerator, which is currently being

constructed at CERN.

1.3. Why LHC

The LHC is the new cyclic accelerator currently being built at CERN, and is

expected to be ready for the first injections in year 2007. It will be installed

in an existing tunnel of 27 kilometers circumference, where the LEP4 originally

was. This tunnel is located 100 meters below ground by the French-Swiss border

just west of Geneva, Switzerland. Even though the tunnel is already there, all

equipment must be upgraded in order to deal with the high energy stored in

the LHC, there are as many as 1232 superconducting dipole magnets with their

cryostats to be installed in order to bend the beam through the ring.

The LHC has two vacuum chambers where the proton- or ion-beams will be

injected, one in each direction. Proton beams will be injected at 450 GeV5 and

will be accelerated to 7 TeV6. This results in a total collision energy of 14 TeV,

as each of the counter-rotating beams has an energy of 7 TeV.

Collisions will take place in the 4 experiment locations ALICE7, ATLAS8,

CMS9 and LHC-B in the LHC, each experiment having its own function.

The Higgs boson is the only particle of the Standard Model which is left to

be verified. It was introduced in order to be able to define the mass of other

4Large Electron-Positron collider
5Giga electron Volt
6Tera electron Volt
7A Large Ion Collider Experiment
8A Torodial LHC ApparatuS
9Compact Muon Solenoid

2

1.3. WHY LHC

Figure 1.1.: An illustration of the path of the beams injected into LHC (red and
green arrows).

Figure 1.2.: An overview of the experiments in the LHC.

particles. If the Higgs boson is discovered in the LHC, it is discussed that a

linear accelerator will be built for further studies.

3

1.4. LUMINOSITY

1.4. Luminosity

While it could be argued that CERN has no real product, all the accelerators

and equipment used to create the particle collisions and read-out measurement

data are products of CERN. These products are offered to scientists worldwide

to enable them to make their particle studies. There are however high demands

as a certain beam quality is necessary to achieve optimum conditions for running

experiments.

As a measure of the beam quality, the luminosity determines the event rate.

The higher this rate, the lower the statistical error of a measured particle

parameter. The luminosity L can be calculated by (see reference [13]):

L = frevn
N1N2

4πσHσV

(1.1)

Where frev is the revolution frequency, n is the number of bunches in one

beam, N is the number of particles in each bunch and σH,V are the horizontal and

vertical transverse beam dimensions. This shows that the luminosity is inversely

proportional to the beam size at the collision points. Since the beam size can not

be measured at this location, it is measured elsewhere and then the emittance of

the beam is calculated. The emittance is constant around the ring and allows to

relate a beam size measurement done at any location of the ring to the beam size

at the interaction point.

Therefore the transverse beam size σ is measured by use of a wire scanner,

which will be explained in section 1.5, in both the horizontal and vertical

dimension at LHC point 4. This allows the emittance ε to be calculated as

follows (see reference [12] page 225):

ε =
σ2

β
(1.2)

Where β is a function given by the beam optics of the accelerator. By using

the relation between the the transverse beam size and the emittance, which is

illustrated in figure 1.5, the beam size at the interaction point can be found and

the resulting luminosity can be predicted.

4

1.5. WIRE SCANNERS

Figure 1.3.: Example of a: Top; Phase space diagram of the beam intensity
distribution. The axis are defined as particle position µ and particle
angle with respect to the nominal trajectory. Bottom; Projection of
the intensity distribution onto the position coordinate.

1.5. Wire scanners

The wire scanner is a measurement instrument used to scatter particles, which

creates secondary particle showers and hereby allows accurate measurements

of the transverse beam size σ. Due to the great precision, it is used for the

calibration of the BGI10 and BSR11. Hence the wire scanner is more accurate, but

the disadvantage is that it only does single scans. The BGI and BSR monitor

however the beam continuously, but their accuracy is not that high.

The reason for not using the wire scanner at full intensity in the LHC is firstly

because it has been shown (see reference [6]) that the wire-temperature limit will

exceed the sublimation point and break the wire. The wire scanner can therefore

10Beam Gas Ionization
11Beam Synchrotron Radiation

5

1.5. WIRE SCANNERS

only operate in the LHC when it is partially filled. Secondly, many secondary

particles initiated by the proton-wire interaction will be lost downstream, and

thus endanger machine components.

Physically, a wire scanner consists of a thin (φ5− 30µm) carbon wire attached

to a fork arm, which is driven by a servomotor (see the principle of a flying wire

scanner in figure 1.4).

Figure 1.4.: Photo and schematic of operation of a flying wire scanner.

There are two methods of measuring the number of particles impacting the wire.

The first principle of the measurements is that an energetic particle beam passes

through the thin carbon wire and induces a secondary emission current. Secondly,

the beam particles interacting with the wire material and cause a secondary

particle shower proportional to the local beam intensity.

In the first method the SEM12-signal is measured and amplified. This current

can be measured by placing an ampere-meter between the wire and the wall of the

12Secondary EMission current

6

1.5. WIRE SCANNERS

vacuum chamber. By using an proton-to-electron emission coefficient ξ (≈ 5%

for flat surfaces), we can calculate the number of protons interacting with the

wire using the measured current in formation.

Figure 1.5.: The profile measurement setup using a wire scanner. The scintillator
and the photo multiplier tube detects the charged particles of the
shower, and the ampere-meter measures the SEM signal.

The other method is to measure the number of scattered particles, which is

proportional to the actual number of particles hitting the very thin carbon wire

scanning through the beam at a high speed. The scattered particles can be

captured with a scintillator, which then transforms the signal and emits it as

light to a PMT13. The scintillator must be placed at a certain distance and angle

from the interaction point, according to where the secondary particle shower

will end up. Secondary particles within a certain angle will be absorbed by the

scintillator and the ionization produced by the charged particles generates the

optical photons, which are re-emitted through a Plexiglas light guide to the PMT.

13Photo Multiplier Tube

7

1.5. WIRE SCANNERS

The PMT is a 6/8/10-stage photocathode tube, which converts the photons to

electrons and amplifies the signal. It has a good linearity and high peak current

output. The PMT-gains range from 104 to 106 at the maximum with an overall

voltage of 2, 5kV.

By acquiring the amplitude of either signal and the position of the wire, the

transverse beam intensity profile can be drawn.

1.5.1. How to control the wire scanners

In order to set the various control modes and to trigger wire scanner scans, a

control unit is needed to interface it with a remote server. This control unit

should be accessible through the VME-bus, which is widely used at CERN. By

interfacing it over the VME-bus, control mode registers and scan triggers can

be transferred from a remote location, and acquired data can be read out after

performed scans.

A FPGA system has been chosen to be the control unit in this project. In

the FPGA, there are dedicated memory blocks where various motion control

functions can be stored and many processes can interact simultaneously. When

using processes synchronized by a system clock, full timing control of the system

can be achieved.

To control the wire scanner movement, a scan trigger initiates a function

generation clock. This clocks an address counter which steps through a memory

containing the motion control data functions. The function data will be converted

by a DAC14 to obtain an analogue control signal. This signal is sent to a motor

driver with position feedback, which controls the wire scanner motor and hence

the motion of the wire scanner. Meanwhile the feedback position data can be

acquired and stored in a memory by a different process.

14Digital-to-Analog Converter

8

2. Overview of the system

Figure 2.1.: Entire wire scanner system.

As shown in figure 2.1, the LHC BWS system consists of three connected

subsystems. The VME64X rack, containing the control cards, is located in an

underground area close to the LHC point 4. The WS interaction point for beam

2 (counter-clockwise direction) is located in the 5th cell to the left of LHC point

4, and the WS interaction point for beam 1 (clockwise direction) is located in

the 5th cell to the right of LHC point 4. This will be the one single wire scanner

system installed in the LHC. However wire scanners are also used in the existing

accelerators (PS Booster, PS, SPS). They are of different types and the electronics

should also control these.

9

2.1. POWERPC

2.1. PowerPC

The PowerPC is a PC and a protocol bridge, which makes it possible to access

the VME-bus (see figure 2.1, green line) through the Ethernet or using a RS-232

terminal. When transferring to or from the PowerPC via Ethernet, the data will

be translated from one protocol to the other, IPX / TCP-IP to 2eVME or vice

versa.

By using the Ethernet, communication can be established by using a remote

computer. When using a terminal, a terminal program accesses the VMEbus

through a RS-232 interface and results can be printed out on a screen on site.

This is very helpful for testing and debugging the system while on site.

In addition the bus arbitration is included, and the accelerator’s cycle timing

information is fed to the PowerPC.

2.2. Wire scanner motion control card

The WSMCC1 chooses which wire scanner to use, controls the motion of the

wire scanner, acquires the exact position of the wire and measures the wire

temperature. The acquired values must be stored and accessible through the

VMEbus interface, this is needed to read out the data and store it on a computer

by using appropriate software. There are also additional features like calibrating

the potentiometer by using an optical ruler, surveying various signal levels of

other cards and acquiring the SEM-signal on the wire. The WSMCC is the main

subject of this paper.

2.3. Driver and power supply

The DC motor driver receives the PID2 regulated control voltage from the

WSMCC and drives the wire scanner.

The card for the motor driver and power supply is mounted on the backplane

of the VME64x crate, and it uses only one VME-slot, but it occupies four slots

due to its size. This unit mainly contains six 63V capacitors totalizing 126 mF

1Wire Scanner Motion Control Card
2Proportional-Integration-Differentiation

10

2.4. HIGH VOLTAGE POWER SUPPLY AND GAIN CONTROL

and power amplifiers, which are all mounted in an EMI 3 protected aluminum

chassis. The large capacitors are used to feed the wire scanner quickly when it

is active. When switching the motor driver off, the time constant of discharge

is τd = R · C = 82
3
· 126 · 10−3 = 3.44s, then the voltage has dropped to a safe

voltage of 24V.

There are three connectors on the back of the driver and power supply chassis.

The NG28 cable (see figure 2.1, middle) includes the DC motor voltage and the

control signals for the Power MUX. In total, up to four wire scanners can be

controlled through this connector. The two NE18 cables (see figure 2.1, middle),

which are isolated from the high power signals, contain the signals from the four

potentiometers and the low-signaled wire-patch. The signals in the NE18 will be

connected to the J2 connector of the VMEbus and each can control two channels.

This means that if four wire scanners are installed at one point, both NE18 cables

will be used.

2.4. High Voltage power supply and gain control

The HV PS has to supply the PMTs with the high voltages needed to amplify

the captured secondary particle signal. These high voltages will be fed through

a CBH50 transport cable (see figure 2.1, middle). The NG4 transport cable (see

figure 2.1, middle) contains power lines for a remote amplifier and PMT gain

control signals. The PMT gain control signals come from the gain control card

and are fed through the HV PS card. The CK50 transport cable (see figure 2.1,

middle) returns the real intensity amplitude, feeds it to the DAB card through

both the HV PS card and the gain control card.

2.5. Digital acquisition board

Synchronized by the bunch timing, the DAB card stores the intensity data it

receives from an acquisition ADC in memories. This has to be configured to

synchronize to the same bunch number as in the WSMCC. These memories can

then be read out through the VME interface.

3Electromagnetic Magnetic Interference

11

2.6. BST - BEAM SYNCHRONIZATION TIMING

2.6. BST - Beam Synchronization Timing

The beam synchronization timing card has two receivers, which receive informa-

tion of the timing for the two opposite directed beams. The timing for each bunch

can be obtained and the BST card creates two 8-bit signals, which resemble the

active bunch number of each beam. The card is inserted in the middle VME-slot.

It sends timing data for one beam to one side of the bus, and the timing data for

the opposite directed beam to the other side of the bus.

12

3. Project planning

Figure 3.1.: An overview of the wire scanner motion control card. A complete
functional diagram can be found in appendix A.

13

3.1. WIRE SCANNER POSITION CONTROL

3.1. Wire scanner position control

In order to use various wire scanners in different types of accelerators with

different types of beams, the speed of the scan and acquisition rate must be

adjustable. The idea for solving this issue is to use an adjustable clock divider,

which clocks an address counter pointing to a memory. The memory is expected

to contain 212 = 4096 words with a width of 12 bits (motor voltage resolution of

4096 levels), which represents the function of the wire scanner movement.

At first, the plan was to use a SRAM1 for storing the digital position values of

the motor current function, since various test patterns will be loaded. A second

opinion led however to an internal ROM2 of the FPGA, as the size of the required

memory is quite small, so having an extra external SRAM or flash memory is not

necessary and causes more timing and reliability issues. The internal ROM can

be loaded with a memory initialization file through the JTAG3-interface.

Figure 3.2.: Wirescanner position control.

The motion controller will wait for a trigger to start the scan, and the motion

will be controlled by clocking through the memory values at a predefined speed.

By stepping through the addresses and converting the data by a DAC, the

amplitude of the analogue DAC-output signal will be compared to a motion

feedback signal by means of a PID regulator and output a control voltage for the

1Static Random Accessable Memory
2Read Only Memory
3Joint Test Action Group

14

3.1. WIRE SCANNER POSITION CONTROL

wire scanner motion. This control voltage is amplified by the motor driver, which

is a high power H-bridge motor driver.

Figure 3.3.: Wire scanner movement functions: a) Linear offset mode; b)
Accelerated and decelerated fast scan mode; c) Linear slow scan
mode. The exact profiles will be calculated in section 4.5.2

As shown in figure 3.2, there are three ROMs. These will be fed with different

functions (see figure 3.3), and a register selects which function should be used

during a scan. When using the fast scan mode, the linear offset profile must first

be used to bring the wire scanner away from the hard-end. When the wire is in

the offset position, the address can be cleared and the fast scan mode activated.

The same procedure must be performed when bringing the wire to the hard-end

home position, only then the address must be set before the linear offset mode

brings the wire home. More details follow.

The linear offset mode (see figure 3.3a) is used to prevent the wire scanner to

hit to the hard-end position for each scan in fast scan mode. With its overshoot,

this would damage the wire-scanner severely. The offset position is currently set

to be at around 15% of the stroke.

The fast scan mode (see figure 3.3b) has an acceleration part starting at the

given offset, a constant speed in the middle part (where the beam is located) and

deceleration in the end part (stopping the wire scanner by the upper offset). This

mode should be used during hi-speed scans.

The linear slow scan mode (see figure 3.3c) is simply a profile with constant

speed. This works however only when the speed is low enough for the motor to

follow, and can thus be taken all the way to the hard-end position. The slow

scans are performed during beam tail-detections.

15

3.2. ACQUISITION

3.2. Acquisition

Figure 3.4.: Wire scanner position acquisition diagram.

3.2.1. Wire scanner position acquisition

During the wire scanner movement, a voltage difference will be detected by

comparing the DAC output voltage with a measured position voltage. This means

that there is a slight delay from comparison to difference compensation, which

results in a movement which is not exactly the same as the DAC voltage output.

16

3.2. ACQUISITION

In order to maintain the precision of the profile measurements, the actual position

data must be acquired.

For measuring the wire position, a potentiometer has been attached to the fork-

arm of the wire scanner. The position will be acquired by measuring the voltage

at the potentiometer. This voltage will be digitized with a 16 bit differential ADC

and stored in a SRAM (see figure 3.4). The ADC is using a SAR4 for the data

conversion, which is testing if the voltage is lower (gives 0 at current bit) or higher

(gives 1 at current bit) than the current bit voltage representation, starting on

the MSB5 and ending on the LSB6. As this is a 16bit ADC, the conversion then

takes at least 16 clock cycles for the conversion. The conversion start will be

triggered by the acquisition clock, and the SRAM write signal must be delayed

by the conversion time of the ADC.

However, as the potentiometer is not fully linear, it must be calibrated before it

is implemented in the final application. For the calibration, a stable linear optical

ruler will be used to create a calibration-LUT7 with a resolution of 1µm. This

LUT will be stored in the PowerPC software of the crate, which will compare and

correct the potentiometer values in accordance to the LUT in the final application.

Optical ruler operation

The optical ruler has three differential outputs, which will feed a Quad Differential

Line Receiver through digitizing electronics. The three logical outputs from the

differential line receiver then consist of two incremental position signals (see figure

3.6) with a phase difference of 90 degrees and a mid-position reference signal.

The optical ruler has two mechanical parts, a movable scanning head and a

fixed ruler. A light is emitted by a LED8 mounted in the movable scanning

head. The light emits through four grated scanning windows and is reflected by

the ruler. An incremental track graved in the ruler causes periodic variations in

the light reflection, which is registered by four solar cells corresponding to the

scanning windows. The solar cells are respectively phase-shifted by 90 degrees,

and by means of the scanned light variations two electrical sine waves are derived.

4Successive-Approximation Register
5Most Significant Bit
6Least Significant Bit
7Look-Up-Table
8Light Emitting Diode

17

3.2. ACQUISITION

The second sine-wave is 90 degrees phase shifted with respect to the first sine-

wave in order to double the counts and indicate the movement direction. Also two

additional scanning windows are available to scan a reference track and create a

peak signal at the reference point.

Figure 3.5.: Optical Ruler sine-wave signals fed to and digitized by the EXE 610C.

As shown in figure 3.5, the sine waves and the reference signal induced by the

optical ruler are fed onto a digitizing circuit. The drawn digital output signals

have a 1-fold interpolation. This means that the only interpolation point is at

ground, and the digital output gives a high signal for the positive half-period and

a low signal for the negative half-period. With a grating pitch Gp of 40µm, every

change of phase state indicates a move of 10µm, as there are four different phase-

states in the two pulse trains. The currently used EXE 610C digitizing circuit

supports however 5- and 10-folded interpolation, which results in a resolution of

2µm and 1µm respectively.

In order to achieve the 1µm resolution r, a 10-folded interpolation is therefore

needed. As the EXE 610C digitization circuit has a clock frequency of ft =

2MHz, the maximum input frequency is fi = ft·r
Gp

= 2MHz·1µm
40µm

= 50kHz. A

18

3.2. ACQUISITION

maximum input frequency of 50 kHz results in a maximum detectable movement

speed of vmax = Gp

Ti
= 40µm

1/50kHz
= 2m/s.

Figure 3.6.: Digitization circuit phase train signals.

The EXE 610C has a clock frequency ft of 2 MHz, which causes the minimum

edge separation and pulse width (see figure 3.6) to equal one clock cycle of 0.5µs.

The differential outputs from the digitization device will be transformed to

single-ended signals and fed to the FPGA. In the FPGA, a counter will count

either up or down, depending on the phase-shift between the two incremental

signals. A count will occur every time when the state of phase changes. For

every count, the wire scanner has moved 1 µm (by a 10-fold interpolation setting),

hence a 130 mm motion (one scan length) results in 130000 counts.

One might wonder why the optical ruler cannot be used in the final LHC

application. The reason it cannot be used is due to the high radiation in the

LHC, which will damage the optics of the optical ruler and reduce its lifetime

drastically. This could then cause phase errors, resulting in incorrect position

data. The optical ruler can however be used in the SPS ring. In the SPS ring,

the required accuracy is 4µm, so the two lower bits can be left out while the

upper 16 bits are stored into a SRAM (see figure 3.4).

19

3.2. ACQUISITION

ADC, digitization of the potentiometer voltage

The potentiometer has a differential voltage read out, which cancels interference

due to environment better than a single ended voltage and thus the accuracy is

well improved. To digitize the differential voltage, a differential ADC is needed.

The chosen differential ADC in this application is the AD7677, which is

asynchronous and has a 16-bit resolution. The AD7677 uses a SAR, which uses a

track/hold circuit for holding and sampling the signal triggered by the conversion

signal. With a maximum throughput of 1 MBPS, this ADC is ideal for precise

data acquisition systems, due to both fast sample rate and the accuracy.

Figure 3.7.: Basic timing diagram for the AD7677.

As seen in figure 3.7, the data digitization is triggered by the falling edge of the

conversion start signal. The busy signal goes high to indicate that the ADC is

busy sampling the signal held by the hold-and-track circuit. When the sampling

finishes, the busy signal is released and the data acquisition can commence.

3.2.2. PMT and SEM acquisition

The signal is normally acquired by a DAB card. A logarithmic amplifier was

selected for PMT tail studies, but in the PSB, the SEM signal (see section 1.5

for detailed information) is normally connected to the logarithmic amplifier. The

output signal from the logarithmic amplifier will be digitized by a 14-bit ADC

and can be stored in a SRAM (see figure 3.4). This ADC also uses a SAR for the

data conversion, and the SRAM write signal must be delayed by the conversion

time.

20

3.2. ACQUISITION

As the logarithmic amplifier flattens the beam profile, it is useful for tail studies

of the beam. During beam tail studies, it is preferable to use the PMT signal

which is then connected to the logarithmic amplifier. The PMT signal has a

longer amplitude than the SEM signal. In the PS and SPS rings, the PMT

might be connected to the logarithmic amplifier by default due to lower speed

requirements, and the high speed DAB card may be left out of the system.

ADC, digitization of the logarithmic amplified voltage

The logarithmic amplified output signal is a single ended voltage, and the

resolution requirements are not as high as for the potentiometer.

The selected ADC is the AD7484, a 14-bit ADC using SAR to avoid pipeline

delays. The AD7484 offers a 15th bit, which can be used to indicate an over-range

up to 8% of the nominal range. Also there is an offset register, to which a 12-bit

value can be written in a twos complement format. This offset value ranges from

-1310 to +1310 which represents an offset of -200 mV to +200 mV. This value

can be written to the ADC by writing a value to a VME address which is linked

to the offset register of the ADC.

There are two different parallel modes, and the chosen mode is the parallel

mode 1. By using parallel mode 1, the current data is valid at the rising edge

of the busy signal (as shown in figure 3.8) and not as the previous data by the

next conversion start. When using this mode, the same VHDL-component can be

used for both the AD7677 and AD7484, only one busy signal must be inverted.

3.2.3. Diagnostics acquisitions

There are many circuits involved during a scan which are influenced by their

environment as they are not ideal. To check these signals during a scan, the

respective voltages have been connected to a multiple input ADC. This ADC can

be programmed for which channel it should use, or set sequencers to sequence

through all channels or a set of selected channels.

By measuring the Power Supply- or Power Amplifier-voltage during a scan,

diagnostics for a unloaded- and a loaded-circuit can be compared for troubleshoot-

ing and statistics. The diagnosis for the wire resistance and the thermo ionic

current makes it possible to find out how much heat is induced on the wire

21

3.2. ACQUISITION

Figure 3.8.: Basic timing diagram for the AD7484: Top; Read cycle timing.
Bottom; Write cycle timing.

at whichever stage of the scan. This will have to be calculated by the wire’s

temperature coefficient, and thus solved in the PowerPC crate software. The

input signal fed from the function generator output voltage is used to check

that the output function for the motion control does not contain any glitches.

In addition, there are two supplementary auxiliary inputs, where the user may

connect signals he finds worth acquiring, like a laser calibration signal.

22

3.2. ACQUISITION

ADC, digitization of the diagnostic voltages

For the diagnostic signals, there are many channels which are not used every

time. Thus a programmable multiplexed ADC is needed, where all the sequenced

output data will be stored in the same SRAM. The organization of the SRAM

would then depend on the sequence chosen in the ADC-multiplexer, but this can

easily be solved in the PowerPC crate software.

For this purpose, the AD7938 has been chosen. This is an 8-channel, 12-bit

ADC with a programmable sequencer. It has a maximum throughput of 625 kSps

and uses a SAR with track/hold.

Figure 3.9.: Basic timing diagram for the AD7938 in parallel word read mode.

As shown in figure 3.9, the conversion principle is similar to the AD7677 and

AD7484, but the conversion start should be held low during the entire conversion

and an external conversion clock is needed.

To select which channels to convert and conversion operation, there are two

write-only registers. A 12-bit control register defines the operation mode and

if therein selected, an 8-bit shadow register defines which channels should be

selected.

The ADD[2..0] bits are address bits and defines either which channel to convert

or which is the last channel that should be converted in a sequence starting on

the least significant channel. The operation is chosen depending on the sequence

23

3.2. ACQUISITION

DB11 DB10 DB9 DB8 DB7 DB6
PM1 PM0 CODING REF ADD2 ADD1
DB5 DB4 DB3 DB2 DB1 DB0
ADD0 MODE1 MODE0 SHDW SEQ RANGE

Table 3.1.: Control register bits in the AD7938 ADC.

bits set in the SEQ- and SHDW-bits.

The SEQ and SHDW bits work in conjunction and therefore have four possible

modes. If both bits are set low, the channel to be converted is selected by the

ADD[2..0] bit contents. If the SEQ bit is set to logic low and the SHDW bit is

set logic high, the shadow register will be used. The shadow register will then

be filled on the next write operation, and the set high bits will be converted

consecutively (see table 3.2). If the SEQ bit is set to logic high and the SHDW

bit set to logic low, then an un-interruptible sequence is selected, which allows

other bits to be changed between conversions. If both the SEQ and SHDW bits

are set to logic high, then a consecutive sequence starting from channel 0 through

the channel number set in ADD[2..0] is selected.

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
VIN7 VIN6 VIN5 VIN4 VIN3 VIN2 VIN1 VIN0

Table 3.2.: Shadow register bits in the AD7938 ADC. The bits which are set logic
high are active in a sequence operation if the SHDW bit is set high
and the SEQ bit is set low in the control register.

For further details on the remaining bits shown in table 3.1, refer to the AD7938

datasheet.

3.2.4. SRAM, Storing acquisition data

There are four SRAMs on board, storing the acquired data. The chosen SRAMs

are all the IS61LV25616AL, which is an asynchronous CMOS static RAM and

has 256K words of 16 bits. This is enough to acquire a 1 µm resolution stroke, as

that will result in 130 000 words (for a 130 mm stroke of the linear wire scanner).

As the memory is asynchronous, no clock or refresh signal is needed and the

access time is 10-12 ns. There are mainly two ways to control the SRAM, it can

either be address controlled or chip enable controlled. The latter is however a

24

3.3. SURVEILLANCE

more secure way to be sure the correct data is loaded to/from the correct address,

power consumption is lower and full control of the memory data flow is gained.

Figure 3.10.: Block diagram of the SRAM.

Both the lower and the upper byte control inputs will be connected to ground,

so there will always be transfers of 16 bits. For a read cycle, the active low

write signal stays high, the active low output enable will be pulled low and the

new address set at the input before the falling edge of the active low chip enable

occurs.

For a write cycle, the active low write signal is pulled low, the active low output

enable is a don’t care and the new address must be set at the input before the

falling edge of the active low chip enable occurs.

3.3. Surveillance

To make sure that the wire scanner motion control card is not exposed to errors,

which may cause hazardous disfunctions, it is necessary to survey certain values

25

3.3. SURVEILLANCE

Figure 3.11.: Read cycle, controlled by chip enable.

Figure 3.12.: Write cycle, controlled by chip enable.

for error handling. If a surveyed value fails or exceeds a set risk-level, the normal

run should halt and the wire brought back home in order to prevent fatal errors

from occurring.

Many signals (see appendix C) will be treated to be indicated as either a high

or low value, where a high value means no error and a low value means error. The

signals will be sampled at a lower speed, say 1000 Hz. These will be registered,

and if an error occurs, its corresponding code will be displayed on a 7-segment

display. A registered low value will be held until it has been read out and reset

through the VMEbus.

26

3.4. VME INTERFACE

3.4. VME interface

To be able to remotely control the hardware on the board, some communication

interface must be used, and at CERN the VMEbus is widely used for this purpose.

It supports multiple bus masters and high data transfer rates. The topology

which will be used in this project, is the extended VME64 Standard, VME64x.

This topology normally uses a 2eVME bus cycle, which doubles VME64x’s

backplane performance by a two edge handshake for each data transfer. Original

VME and VME64 transfers use a four edge handshake for each data transfer.

A VME64x-bus chassis consists of a card cage with 2 - 21 slots and a backplane

with three connectors. Slot 1 is the System Controller slot, but this can be

overruled. Cards with different functions are inserted in the slots to form a

customized VMEbus chassis, which makes the VME controlled system (see the

wire scanner system in figure 2.1). Most VMEbus cards are configured via

a combination of hardware jumpers, card-specific software configuration, and

setting parameters in a non-volatile memory.

Figure 3.13.: VME-bus timing diagram. The edges of DSx depend on the AS
edges.

This project does not demand high transfer speed and a simple VME interface

is to be made, where the data acknowledgement is set to a certain delay-count

long enough to process the data. Due to pin restrictions on the flat pack FPGAs,

a minimum of the VMEbus-signals have been selected for basic VME operation.

27

3.4. VME INTERFACE

This means the needed signals are basically the 24-bit address lines, 6-bit address

modifier lines, the address strobe, 16-bit data lines, 2-bit data strobes, the write

signal and the system reset signal.

A falling edge of the address strobe indicates that the addressing related lines

are ready. Hence by this falling edge, the address lines, the address modifier lines

and the write signal can be registered. By the falling edge of the data strobes,

the data is ready to be sent or received. The actual transfer will occur when

the slave pulls the data acknowledge signal low, and after the transfer has been

fulfilled, the address and data strobes are released (set to inactive high state).

28

4. FPGA design

4.1. General about FPGAs and VHDL

An FPGA is an IC1, which consists of thousands of logic cells or modules.

These are structured so they can be interconnected by a matrix of wires and

programmable switches, determining which gates are connected where.

VHDL2 was developed as the standard language for describing the structure

and function of ICs, and to unite the various VHSIC3 contractors.

VHDL is well suited for designing processes, because it has an architectural

structure, where a system is composed of subsystems and these are intercon-

nected. All the system functions are described by standardized codes, which

are similar to other program languages. The abstract code environment is then

synthesized into detailed structures, and the functionality can be verified in a

simulator.

The synthesis is the compiler of the VHDL code, hence by synthesizing, the

VHDL code is translated into a net list forming a schematic of gates and flip-flops.

There are tree different synthesis classes: logic, RTL4 and behavioural synthesis.

The logic synthesis minimizes Boolean expressions into gates. The RTL synthesis

does the same as the logic synthesis, but in addition it also translates sequential

statements into gates and flip-flops. The behavioural synthesis reuses hardware

components in several parallel language constructions.

1Integrated Circuit
2Very-High-Speed-Integrated-Circuits Hardware Description Language
3Very High Speed Integrated Citrcuits
4Register Transfer Level

29

4.2. FPGA SELECTION

4.2. FPGA selection

It is desired to use Altera chips, due to broad support both online and by other

users at CERN. Besides the radiation requirements are not that high, as the

WSMCC will be installed in an isolated area aside the tunnel.

It has been decided that the final board shall contain three FP5 (PQFP6 or

TQFP7) FPGAs. The main reason for selecting three FP FPGAs instead of one

BGA8 FPGA, is due to the routing difficulties when using the BGA package,

where many layers are needed. Also the routing becomes less centered to one

component, the various functions may easier be divided into own groups on

the card layout and it is easier to access the pins with a scope. This means

that each separate FPGA will deal with different functions. The master FPGA

will decode the VME interface, control the dataflow on the card and activate

processes of the slave FPGAs. One slave FPGA will contain the optical ruler

calibration/aqcuisition and the function generator, while the second slave FPGA

will survey and display occurred error warnings.

This project demands neither DSP processing, nor advanced PLL functions,

nor the Nios II soft-core processor (which demands quite some memory blocks).

This is why the three chosen FPGAs are from the Cyclone II family (see table 4.1

for specific package-data), which is a 2nd generation low-cost FPGA produced

by Altera. By choosing FPGAs within the same family, the configuration is

simplified (see section 4.3). More detailed information concerning the selection

of the package sizes is included in the appropriate sections (Master FPGA 4.4,

Slave 1 FPGA 4.5 and Slave 2 FPGA 4.6).

4.3. FPGA configuration

An FPGA normally uses SRAM cells to store configuration data. However, data

is lost at power-down as the SRAM is volatile. Therefore the configuration data

must be stored in a non-volatile memory and reconfigure the FPGAs at power-up.

The Altera Cyclone II family is supported by a EPCS, which is a serial

5Flat Pack
6Plastic Quad Flat Pack
7Thin Quad Flat Pack
8Ball Grid Array

30

4.3. FPGA CONFIGURATION

Device
EP2C5Q208C8

Device
EP2C5T144C8

Device
EP2C8T144C8

FPGA Family Altera Cyclone
II

Altera Cyclone
II

Altera Cyclone
II

Package type PQFP TQFP TQFP
Speed grade (ns) -8 -8 -8
Logic Elements
(LEs)

4 608 4 608 8 256

RAM bits 119 808 119 808 165 888
M4K RAM blocks 26 26 36
User pins 142 89 85
PLLs 2 2 2
Embedded
multipliers

13 13 18

Size (mm x mm) 22 x 22 22 x 22 30.6 x 30.6

Table 4.1.: Data for the chosen Altera Cyclone II FPGAs (see reference [14]) to
be used on the control card.

configuration device from Altera. The EPCS is based on Flash memory, and

there are four sizes, 1-, 4-, 16-, and 64-Mbit. As the uncompressed Raw Binary

File Size (Bits) for an EP2C5x device is 1’265’792 and for a EP2C8x device is

1’983’536 (see table 4-3 in reference [15]), the total RAM bits required for the

configuration data is:

TotalRAMbits = (2 · 1265792) + (1 · 1983536) = 4515120RAMbits (4.1)

As this exceeds 4 Mbits, either the 16 Mbits or the 64 Mbits configuration

device must be used. They both have the same package size, but as 16 Mbits is

already more than sufficient and costs half of the 64 Mbits package, the 16 Mbits

package has been chosen for this project.

4.3.1. Supported programming schemes

The EPCS device can be filled through two different configuration schemes,

directly by using a download cable in AS9 mode or indirectly through a serial

flash loader bridged to the JTAG interface by the master FPGA.

9Active Serial

31

4.3. FPGA CONFIGURATION

Figure 4.1.: FPGA and Serial configuration device programming in AS mode.
Figure origins from figure 4-2 in reference [15]

By using the direct configuration scheme (see figure 4.1), a download cable

accesses the ASMI10 and can configure both the FPGAs and the serial config-

uration device in AS mode. AS mode basically means that the FPGA is set

as the master, which controls the data flow, and the configuration device is the

slave. The alternative configuration mode is the PS11 mode, which latches data

from the configuration device to the FPGA, but this mode is not supported

10Active Serial Memory Interface
11Passive Serial

32

4.3. FPGA CONFIGURATION

for the serial configuration device. When using the ASMI interface, only the

programming modes can be used, as there is no support for test modes. Also a

separate download connector is required, which takes up space on the PCB12 and

the front panel.

Figure 4.2.: JTAG Configuration of the FPGA and indirect Serial Configuration
device programming through the Serial Flash Loader. Figure origins
from figure 4-25 in reference [15]

The indirect configuration scheme (see figure 4.2) for the Serial Configuration

device is through a JTAG interface. The JTAG interface loads a Serial Flash

Loader to the master FPGA, which is a bridge between the JTAG interface and

the ASMI interface (see figure 4.3). The master FPGA is set as the master in

the AS mode configuration, and controls the dataflow of the ASMI interface.

After configuration of the Serial Configuration device, nCONFIG can be pulled

low in order to initiate a reconfiguration. The Serial Flash Loader is then

removed from the FPGA, and the configuration data will be loaded from the

Serial Configuration device. The JTAG interface can also configure each FPGA

in the JTAG chain separately, and it supports advanced test functionalities

12Printed Circuit Board

33

4.3. FPGA CONFIGURATION

like Boundary Scan, In-System Memory Content Editor and Signaltap II Logic

Analyzer.

Figure 4.3.: Principle of the Serial Flash Loader interface bridge compared to the
conventional configuration scheme. Figure origins from figure 1 in
reference [16]

4.3.2. Which configuration scheme to use

The final motion control card is quite dense, so space limitations make the

solution using only one connector a better option. This means that one download

connector will be connected to the JTAG interface, and there is a combined JTAG

and AS programming scheme. As there are multiple FPGAs, a mixed scheme (see

34

4.3. FPGA CONFIGURATION

Figure 4.4.: Configuration setup for multiple devices using the JTAG connector
and a serial configuration device.

figure 4.4) has been drawn by combining figure 13 − 4 and 13 − 24 in reference

[14].

There were some uncertainties while combining these two schematics, as the

AS mode has common pull up resistors for each of the status pins (nSTATUS,

CONF DONE and nCONFIG), while the JTAG mode pulled them up separately.

The JTAG works however with common pulled up status pins, if ALL the FPGAs

are in user mode. This can be achieved if the serial flash loader contains program

35

4.3. FPGA CONFIGURATION

data for every FPGA or every FPGA in the JTAG programmer chain list are set

to be programmed. In AS mode, the entire programming process is interrupted

if one fails to retrieve the correct data. The nSTATUS and CONF DONE pins,

which are bi−directional open−drain IOs, will then perform handshakes during

programming.

The AS mode requires that the master’s MSEL pins are set in AS mode and

the slaves in PS mode (see table 4.2 for the MSEL settings). Due to the MSEL

settings, the JTAG takes precedence over other MSEL configuration settings, and

therefore the settings for the master FPGA can be set as Fast AS mode and the

slave FPGAs to PS mode.

Configuration scheme MSEL1 MSEL0
AS (20 MHz) 0 0
PS 0 1
Fast AS (40 MHz) 1 0
JTAG 1 1

Table 4.2.: The various MSEL settings for the different configuration modes.

The Serial Configuration device must be programmed by help of the Serial

Flash Loader. The only disadvantage of using the Serial Flash Loader is that it

takes longer to program the device, and there are some file conversions to be done.

However, the Serial Configuration device will not be reconfigured that often, so

the extra time spent is relatively short in total.

36

4.4. FPGA MASTER

4.4. FPGA master

Figure 4.5.: Block overview of the master FPGA system.

37

4.4. FPGA MASTER

4.4.1. VME interface

The VME interface FPGA is the master of the board FPGAs, but in VME-

mode it works as a slave for the unit mastering the VME-bus. The VME-bus

broadcasts all signals to all connected units, and depending on the address and

address modifiers, one responds. If there is no response after a set VME-bus

time-out, a bus error will be submitted and the bus released.

VME signal Description Bits
A[23..1] Address bus 24 (23)
AM[5..0] Address modifier 6
ASn Address strobe 1
D[15..0] Data bus 16 (8)
DSn[1..0] Data strobes 2
DTACKn Data acknowledge 1
WRITEn Write 1
SYSRESETn System reset 1

Table 4.3.: The listed signals are the connected signals, which are needed for
basic VME operation. Signals denoted by n are active low. Though
the address bus is defined as a 24-bit bus, it is in reality only a 23-bit
bus (as A0 does not exist). The data bus has a width of 16 bit, but is
restricted to only 8 bit on the master FPGA due to pin limitations.

There is no A0 address line on the VMEbus. This means that in the software,

the VME address has to increment by two for each address, as odd numbers

will be approximated down by one. When using the logic analyzer, the read-out

address must be multiplied by two, since the A1 address line is considered as the

LSB. The A0 address line is however added as ground in the VHDL code to make

the software and hardware addresses coincide.

The address modifier defines the addressing mode, which is basically how many

address lines should be used, but also which type of access should be made. For

the A16 mode, the supervisory access (HEX:2D) and the non-privileged access

(HEX:29) have been added. And for the A24 mode, the supervisory access

(HEX:3D) and the non-privileged data access (HEX:39). As shown in table

4.4, the A16 mode is used for control mode of the FPGAs and the A24 mode

is used for memory read-out. For the A24 mode, an additional BLT13(HEX:3B

13BLock Transfer

38

4.4. FPGA MASTER

Address range (HEX) Address modifier Operation
00-1F A16 FPGA2 chip enable
20-3F A16 FPGA3 chip enable
40-7F A16 FPGA1 control
80-8F A16 DAC control
90-9F A16 ADC control
00-7FFFF A24 SRAM read-out

Table 4.4.: Rough VME mapping (see appendix D for the detailed VME memory
mapping). A control unit in each of the slave FPGAs will decode their
addresses when enabled by the master. Selected memory, of the four,
to read out is set in a register.

or 3F) mode has been added. The BLT allows multiple word transfers without

re-initiating the VME for each word when reading out from the SRAMs.

A falling edge of the address strobe indicates that the addressing related lines

are ready. Hence by this falling edge, the address lines, the address modifier

lines and the write signal can be registered. By the falling edge of the data

strobes, the data is ready to be sent or received. The actual data transfer to

or from the memory map-allocated location will occur when the slave pulls the

data acknowledge signal low (the FPGA output pin is active high, as it biases

a transistor pulling the data acknowledgement signal low). After the transfer

has been fulfilled, the address and data strobes are released (set to inactive high

state).

The VME interface has been divided in two entities. The first entity checks

the geographical address and address modifier, while the second entity decodes

the lower bits according the memory mapping.

The entity that is to verify the addressing, vme slotsel and dtack, is shown

in figure 4.6. It consists of four dependent processes. At the falling edge

of the address strobe, the REGISTER ADDR-process registers the address,

geographical address (which is set by a hexadecimal switch on the card), address

modifier, write signal and the active low control signal. The control signal is

the registered value of AM4, as that is the only bit separating the A16 modes

from the A24 modes. When a new address modifier has been registered, it is

checked by a second process called AMCHECK. If the correct values for any

of the above mentioned A24 or A16 modes occurs, a verification signal is set

high. The third process called GACHECK compares the four most significant

39

4.4. FPGA MASTER

Figure 4.6.: Block symbol for the VME address verifier. Source code can be found
in appendix B

address bits A[23..20] with the geographical address set for the card, which

should be the same as the VME slot-number to avoid confusion and hence easily

address collisions. As we only have a 4-bit physical address, only 16 cards can

be uniquely addressed in the VME-crate with this addressing scheme. If one

has the invert value of the other (since the binary switch is complementary),

the slot address is correct and a signal is set to indicate this. When the correct

address modifier and geographical address have been verified, a chip select will

be active as long as the address and datastrobes are active (low). The fourth

process DATA ACKNOWLEDGEMENT is synchronized by the system clock,

and has a state machine which is idle as long as the chip select signal is inactive.

When the chip select becomes active, the data acknowledge signal will become

active after a delay of four or indefinite (if an ADC is accessed, the delay depends

on the conversion time) clock cycles. When the data acknowledgement becomes

active, the unit mastering the VMEbus will release the bus and hence also the

address and datastrobes. The state machine also has a counter which lights a

LED for about a tenth of a second (222bits ∗ 25ns = 0, 1049s) initiated by the

data acknowledgement.

The second entity, vme func reg, contains the memory mapping (see table 4.4

for a rough plan of the memory mapping, the detailed memory mapping can

be found in appendix D) and selects the appropriate function depending on the

address. The entity is enabled by the chip select and control signals from the

40

4.4. FPGA MASTER

vme slotsel and dtack entity and is only active during the period both the chip

select and control signals are active.

4.4.2. ADC and DAC signal flow control

The ADC entities made are to interface the read operation of the ADCs to either

the SRAM or VME-bus. By looking at the AD7938 timing diagram for reading,

one can see that the conversion trigger signal should be held low during the entire

conversion. The conversion end is indicated by the falling edge of the busy signal.

To recreate the original timing diagram, the idea is to make a one-shot busy signal

which sets a conversion start signal that is pulled low by the acquisition clock

(see figure 4.7).

Figure 4.7.: ADC signal flow solution based on the AD7938 timing in read mode.

In the VHDL source code, the read signal flow control has been solved by three

processes, one for each flip-flop as they have various clock and set signals. By the

conversion-end, a chip select signal delayed by the conversion time is outputted

to enable the ADC data output and the SRAM write operation to store the read

value.

The AD7484 and AD7677 have the same basic conversion principle as the

AD7938, but the conversion trigger should not be held active during the entire

conversion. Due to this feature, there is a separate entity to control these two,

where the conversion trigger is reset by the rising edge of the busy signal. If

41

4.4. FPGA MASTER

opposite active level for either the busy or conversion signal, this is inverted in

the block diagram outside the entity-block.

4.4.3. SRAM signal flow control

When storing the acquisition data, there is a certain delay due to the conversion

time of the ADCs. Hence the acquisition clock for the SRAMs storing digitized

values have to be delayed until the conversion is over. To solve this, the falling

edge of the ADC chip select signal functions as the acquisition trigger for the

SRAMs. The ADC chip selects have been set to stay active for four clock cycles,

to make sure that the data is available during the SRAM write operation. To

make sure the current data is written to the current address, a chip enable delay

of one clock cycle has been implemented. A chip enable signal is active for one

clock cycle, which is more than the double of the SRAM access time.

Figure 4.8.: SRAM write signal flow control.

The planned SRAM signal flow for the write mode can be seen in figure 4.8.

However, when the acquisition clock is actually the ADC chip select signal, then

the address has been incremented earlier by the actual acquisition clock’s rising

edge.

When reading values from the SRAM, the active SRAM must first be set in the

SRAM selection register D1-D0 (see appendix C). The data output enable and

write signal therefore depends on whether the read enable is active. The read

enable is only active during read-out, which is during VME access in VME24

read mode (see section 4.4.1).

42

4.5. FPGA SLAVE 1

4.5. FPGA slave 1

Figure 4.9.: Block overview of the signals connected to the first slave FPGA.

43

4.5. FPGA SLAVE 1

4.5.1. FPGA interface control unit

Figure 4.10.: Block symbol for the control unit of the first slave. Most output
signals are VME-transferred values stored in the registers.

As the second FPGA is a slave controlled by the master FPGA, a communi-

cation interface is essential. The enable signal is set by the master FPGA when

control mode VME addresses in the range HEX”00” to HEX”1F” occur. When

enabled, the control unit has a memory mapping identical to the VME addressing

and it registers the four LSB VME address bits (VME A[4..1]). The control unit

has several registers, from which most set control modes for the wire scanner

motion. However there are also registers in other components, which are enabled

by a data enable signal output from the control unit when written to or read from

the VME. The memory mapping can be seen in table 4.5.

The clock division counter register is an 18-bit register, which sets the division

factor of a 40 MHz system clock. The division value will be fed to a clock divider,

and the divided clock signal is the clock used to clock the function generator data

stored in the function ROMs. This division value is selected depending on the

number of values (address width) and the wire scanner velocity. This register is

44

4.5. FPGA SLAVE 1

Control unit memory mapping, write mode
Address Data width Function

00 16bits Clock division counter register Lo
02 2 bits Clock division counter register Hi
04 0 Clear quadrature decoder reference register
06 - -
08 0 Clear quadrature decoder error counter
0A - -
0C 0 Clear quadrature decoder U/D counter
0E 16 bits Acq. Clock division counter register
10 0 Clear Memory address counter
12 0 Set Fgen ROM address counter to FFF
14 0 Clear Fgen ROM address counter
16 12 bits FGEN end address value
18 8 bits Control register
1A 0 Start motion
1C 0 Motion reset
1E 0 FPGA II reset (also set by master reset)

Control unit memory mapping, read mode
Address Data width Function

00 16 bits Clock division counter register Lo
02 2 bits Clock division counter register Hi
04 16 bits Ruler Reference Register Lo
06 2 bits Ruler Reference Register Hi
08 16 bits Ruler error register Lo
0A 2 bits Ruler error register Hi
0C - -
0E 16 bits Acq. Clock division counter register
10 - -
12 16 bits Status buffer
14 12 bits FG ROM 4k x 12 bits (incremental per read)
16 12 bits FGEN end address value
18 8 bits Control register
1A - -
1C - -
1E - -

Table 4.5.: Memory mapping of the VME-controlled functions of the first slave
FPGA enabled by the master FPGA.

stored in the control unit component.

45

4.5. FPGA SLAVE 1

The ruler reference register is the count value of the optical ruler registered

by a reference signal when the wire is in mid-position. The ruler error register

contains the amount of errors that the EXE610 issues during a scan (see section

4.5.4 for details). Both registers can be read and cleared through the VME-bus.

The ruler quadrature decoder up-down counter is a registered counter value which

increments/decrements for every µm of the wire movement. This counter should

be reset before an in-scan starts. All these registers are stored in the ORQDMUX

component which is the optical ruler quadrature decoder and output multiplexer

(see section 4.5.4).

The acquisition clock register is a 16-bit register, which sets the division value

of the selected acquisition clock (set in control register). This value should be

set in accordance with the desired sampling frequency compared to the function

generator clock frequency. This register is stored in the acquisition clock divider

component, and the control unit enables data during write or read operations

through the VME-bus.

The read-memory address is an incremental counter, which increments for every

read out from the active ROM. This is to be cleared before the read-outs start,

and the amount of read-outs on the VME address for the FG ROM should comply

with the address width of the ROM. This is used to check the ROM contents (see

section 4.5.3 for details).

The set- and clear-signals for the Fgen address counter are used for transitions

between the offsetting function and the fast scan function. For details, see section

4.5.2.

The control register is a 8-bit register, which contains the various mode selection

values (see table 4.5.1) and is stored in the control unit. This register can be

written and read through the VME-bus.

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
FGAddMode Home AcqGate ScanMode CLKS1 CLKS0 FuncMode1 FuncMode0

Table 4.6.: Control register for selecting the various scan modes. Details on the
various bits can be found in appendix C.

The start motion is the trigger to start the function generation and the various

acquisitions. This trigger sets an active scan signal, which is reset by the gate rst

signal when the scan is over. When the active scan signal is logic high, the

46

4.5. FPGA SLAVE 1

divided clocks for the function generation and acquisitions are output enabled. If

the motion is reset, the wire is brought to it’s initial position through a capacitor

discharging circuit.

4.5.2. Function generator

Figure 4.11.: Block schematic of the VHDL top entity of the function generation.

When enabled by the active scan signal from the main control unit in the

FPGA, the clock divider counts down from the division value-1 to zero and gives

out a clock cycle before loading the division value again. The division register

is stored in the main control unit of the FPGA and has 18 bits, which allows

a minimum frequency of 40MHz
218 ≈ 153Hz, when dividing the system clock of

40 MHz. When the register holds the clock division value of zero or one, it is

disabled, hence the maximum output frequency is half of the input frequency.

The 12-bit output address from the address counter controls the output data

by pointing to the ROM readout location. There is a state machine which has

two states, each counting in opposite direction. As the state changes, a feedback

indicates that the scan is over and outputs a reset to a SR14-flipflop by it’s rising

edge. This way the active scan signal becomes inactive, and a new scan trigger

must occur to activate the movement in opposite direction. Also there are clear

14Set-Reset

47

4.5. FPGA SLAVE 1

and set signals which can be controlled through the VMEbus. This in order to

clear or set the address by the transition between the offset and fast scan profiles.

The memory entity contains three ROMs, where the three different functions

(see figure 3.3) are stored. Each memory has 212 = 4096 words of 12 bits. This

means that the FPGA needs at least 212 · 12 · 3 = 147456 memory bits, which is

exactly what the EP2C8T144C8 chip has in it’s 36 M4K memory modules (the

total RAM bits shown in table 4.1 includes also parity bits). For selecting which

profile function should be used, a register value transferred through the VME is

stored in the control unit and used as a selection switch input (see table 4.7).

FuncMode[1..0] Profile
00 Linear offset profile (figure 3.3a).
01 Accelerated and deaccelerated fast scan profile (figure 3.3b).
10 Linear slow scan profile (figure 3.3c).
11 No operation.

Table 4.7.: The register value transferred and stored in the control unit will be
set as an input for the profile memory entity. The function is selected
by these combinations at the FuncMode[1..0] inputs.

ROM initialization and file generation

The memory entity has three port mapped mega-function ROM memories, each

configured to have an address- and data-width of 12 bits. The mega-function

has been used in order to allocate data to the actual memory area of the FPGA.

The memories will be initialized by MIF15-files, which have been generated by a

matlab-script. Every function is calculated by the means of the address- and data-

width, meaning that it is a general solution, and the functions can be generated

with different resolutions.

The linear functions are simply generated by the equation Y (X) = YPEAK

XMAX
·vtX.

Where vtX is a vector with every integer value in the address-width range, YPEAK

is the top amplitude for the given function and XMAX is the top value of the

address-width.

For the fast scan profile however, there are three functions to combine. The

first part is a square function for the acceleration, then a middle part with a

15Memory Initialization File

48

4.5. FPGA SLAVE 1

linear function for constant speed while crossing the beam and the end part is an

inverted square function for the deceleration. The linear part has been defined to

make 25% of the stroke. In addition, an offset of 5% has been added to prevent the

fork arm to hit the hard end, as the actual movement may have some overshoot

due to the high speed.

Figure 4.12.: Fast scan set value function.

The three part functions are in principle:

YACCELERATION(X) = a ·X2 (4.2)

YCONSTANTSPEED(X) = b ·X + c (4.3)

YDEACCELERATION(X) = −a · (X −XMAX)2 + YMAX (4.4)

The variables indicated on figure 4.12 are YMAX = 2DATAWIDTH , YMID =
YMAX

2
, Y1 = YMID − 0.25·YMAX

2
, Y2 = YMAX − Y1, X0 = 0, XMID = XMAX

2
,

49

4.5. FPGA SLAVE 1

X1 = 2·XMID·Y1

YMID+Y1
, X2 = XMAX − X1 and XMAX = 2ADDRESSWIDTH . Where X1

has been found by the two following equations:

∂Y

∂X
=

YMID − Y1

XMID −X1

(4.5)

∂Y

∂X
= 2 · a ·X1 (4.6)

By integrating equation 4.6 above, we can find the first parameter a to be

a = Y1

X2
1
. The second parameter can be found by specifying that the constant

speed equals the speed in the point (X1, Y1), which makes b = 2 · a · X1. This

constant speed function has a constant in order to insure a smooth transition to

the acceleration part, we already know the Y-coordinate and the constant speed,

so the offset becomes c = Y1 − b ·X1.

As we now have all the variables and functions needed, it can be filled in the

matlab-script (see appendix E) for generating the three final functions. These

can easily be plotted directly, and the vectors printed to files by using program

loops.

Figure 4.13.: Linear offset set value function as derived in matlab. Y-scale
adjusted in accordance with a linear wire scanner (130mm stroke).

4.5.3. Function check

Serious faults can occur if the motion control contains glitches or wrong functions.

Therefore the function check has been implemented, to make absolutely sure that

the correct functions are stored in the ROMs. The idea is to read out the function

ROMs through the VME and display and/or store the data on a computer.

To read out the data, a single address will be used and the address increments

for each read-out. There are two entities, one to buffer the function bus data

50

4.5. FPGA SLAVE 1

Figure 4.14.: Fast scan set value function, speed and acceleration plotted in
matlab. Y-scale adjusted in accordance with a linear wire scanner
(130mm stroke).

Figure 4.15.: Linear slow scan set value function plotted in matlab. Y-scale
adjusted in accordance with a linear wire scanner (130mm stroke).

51

4.5. FPGA SLAVE 1

Figure 4.16.: An extract from the generated .mif-file for the fast scan profile,
which has been printed while looping through the matlab generated
vectors. The .mif-file is a standard used by Altera, where data-
width and address-depth must be defined. The contents are listed
with the address first, followed by the corresponding data.

Figure 4.17.: Block schematic of the function check entities.

and one to increment the address. Before the first read-out is done, a clear signal

should be sent through the VME. To perform the clear, a write signal is sent

to VME address HEX:14. When reading from the ROM, the number of read-

outs should be set to the same depth as the memory addresses. The read-out

is performed by a read signal on the same VME address as the clear signal,

HEX:14. During the active read-out, an output enable signal is set for both the

52

4.5. FPGA SLAVE 1

buffer entity and the address counter. The buffer will output the function data

to the VME data bus, and the address counter will increment at the falling edge

of the output enable (otherwise address 0 is not accessible). Also the output

enable signal switches the address switch (see figure 4.11) for the function ROM,

to access the address given by the read-out counter.

4.5.4. Calibration

Figure 4.18.: Block symbol for the optical ruler quad decoder

As mentioned in section 3.2.1, for the LHC it is necessary to calibrate the

potentiometer with an optical ruler to improve the linearity. By creating a look-

up-table using the optical ruler as the address source and the potentiometer

as the data source, it can later be checked in software which actual value the

potentiometer has with an accuracy of 1µm.

As explained in 3.2.1, the 10-fold interpolation is needed to achieve an accuracy

of 1µm, where one period indicates a movement of 4µm as there are four different

states between the two phases, each indicating a movement of 1µm. The four

different states are defined in table 4.8.

One state alone does not indicate whether the direction is forward or reverse.

Both the previous state and the current state are needed to detect if the counter

should increment or decrement. The simplest way to solve this is by using a

state machine. The state machine has been defined by 5 states, one initialization

53

4.5. FPGA SLAVE 1

State Phase A Phase B
1 0 0
2 0 1
3 1 0
4 1 1

Table 4.8.: The four different phase states of the optical ruler.

state and the four phase states found in table 4.8. The state machine block

schematic can be seen in figure 4.19 and the conditions are shown in figure 4.20.

In the initialization state, only the current state is detected to find out the start

position. No increments or decrements occur during this initialization step. When

the phase states are active however, the phase conditions will be checked by every

rising edge of the system clock. If the phase state changes, a counter will either

increment or decrement depending on the phase change. A forward motion will

result in the incremental route (counter clock wise in figure 4.19), while a reverse

motion results in the decrementing route (clock wise in figure 4.19). However, if

both phases toggle, an error counter will increment and the initialization state

checks the current active phase state.

54

4.5. FPGA SLAVE 1

Figure 4.19.: Optical ruler quad decoder state machine.

55

4.5. FPGA SLAVE 1

Figure 4.20.: Conditions to change state in the optical ruler quad decoder state
machine.

56

4.6. FPGA SLAVE 2

4.6. FPGA slave 2

Figure 4.21.: Block overview of the signals connected to the second slave FPGA.

4.6.1. FPGA interface control unit

The control unit works in the same way as in the first slave FPGA, and is enabled

by the master FPGA when the assigned VME-address range from HEX:20 to

HEX:3F occurs. As seen in Figure 4.22, this is however a much smaller unit

with much fewer outputs. The memory mapping currently only consists of three

addresses. There is one to read the low word of the error register (HEX:20), one

to read the high word of the error register (HEX:22) and one to write a reset

signal (HEX:3F) to reset the error register and hence error messages. The error

lines that are read out are fed by a status-register, which samples comparator

57

4.6. FPGA SLAVE 2

Figure 4.22.: Block symbol for the control unit in slave two.

values giving logic high if no errors and logic low if errors occur. The reset signal

also releases a scan-inhibit signal which prevents a scan to start when active due

to detected errors.

4.6.2. Error display

This is a register used to indicate if errors have occurred on the card. A bunch

of comparators have been used to indicate whether signals have unusual voltage

levels. If the comparator gives a logic low, then this indicates an error and

this must be registered and displayed. To hold the error bits where an error has

occurred, a feedback of the register output feeds an AND-gate on the input signal

(see figure 4.23). Thus an logic low will be held until all bits are set high by the

asynchronous reset signal.

Figure 4.23.: Holding registered errors until the asynchronous reset is activated.

The error sampling of the status lines has been set to have a sampling rate of

1000 Hz. When any error occurs, a scan inhibit signal must be set to prevent a

new scan to start while there are errors. With a 1000 Hz sampling frequency, the

maximum time spent from an error occurs until it is registered is close to 1 ms.

This should be sufficient to avoid new scans to be started before the scan inhibit

58

4.6. FPGA SLAVE 2

is set in case of errors.

Figure 4.24.: State machine controlling the seven segment LED display.

The occurred errors are also displayed on a seven segment display. To display

the errors, a state machine (see figure 4.24) checks every error bit and displays

those that are logic low as an error character on the seven segment LED display.

The hexadecimal codes for the displayed error characters have been stored in a

data array, where the array cells coincide with the error bit-numbers.

59

4.6. FPGA SLAVE 2

Error messages
Error description Display
No error. -
Wire broken. 0
Wire hot. 1
Heat sink over temperature. 2
Fan current low. 3
-2V VME supply missing. 4
-2V internal supply missing. 5
-5V internal supply missing. 6
MPS voltage error. 7
Wire1 not near home position. 8
Wire2 not near home position. 9
Wire3 not near home position. A
Wire4 not near home position. b
Potentiometer1 voltage too low. C
Potentiometer2 voltage too low. d
Potentiometer3 voltage too low. E
Potentiometer4 voltage too low. F
Ruler status bad. I
Internal FPGA1 voltage (PG1) bad. J
PLL1 voltage FPGA1 (PG11) bad. L
PLL2 voltage FPGA1 (PG12) bad. M
Internal FPGA2 voltage voltage PG2 bad. n
PLL1 voltage FPGA2 (PG21) bad. o
PLL2 voltage FPGA2 (PG22) bad. P
PLL1 voltage FPGA3 (PG31) bad. r
PLL2 voltage FPGA3 (PG32) bad. t

Table 4.9.: A list of error messages.

60

4.6. FPGA SLAVE 2

7 segment LED decoder, common anode
Character Segment Code

a b c d e f g dp (HEX)
A 0 0 0 1 0 0 0 1 11
b 1 1 0 0 0 0 0 1 C1
C 0 1 1 0 0 0 1 1 63
d 1 0 0 0 0 1 0 1 85
E 0 1 1 0 0 0 0 1 61
F 0 1 1 1 0 0 0 1 71

g (9) 0 0 0 0 1 0 0 1 09
H (K,X) 1 0 0 1 0 0 0 1 91

I 1 1 1 1 0 0 1 1 F3
J 1 0 0 0 0 1 1 1 87

K (H,X) 1 0 0 1 0 0 0 1 91
L 1 1 1 0 0 0 1 1 E3
M 0 1 0 1 0 1 1 1 57
n 1 1 0 1 0 1 0 1 D5
o 1 1 0 0 0 1 0 1 C5
P 0 0 1 1 0 0 0 1 31
Q 0 0 0 1 1 0 0 1 19
r 1 1 1 1 0 1 0 1 F5

S (5) 0 1 0 0 1 0 0 1 49
t 1 1 1 0 0 0 0 1 E1
U 1 0 0 0 0 0 1 1 83
v 1 1 0 0 0 1 1 1 C7
W 1 0 1 0 1 0 1 1 AB

X (H,K) 1 0 0 1 0 0 0 1 91
Y 1 0 0 0 1 0 0 1 89

Z (2) 0 0 1 0 0 1 0 1 25
0 0 0 0 0 0 0 1 1 03
1 1 0 0 1 1 1 1 1 9F

2 (Z) 0 0 1 0 0 1 0 1 25
3 0 0 0 0 1 1 0 1 0D
4 1 0 0 1 1 0 0 1 99

5 (S) 0 1 0 0 1 0 0 1 49
6 0 1 0 0 0 0 0 1 41
7 0 0 0 1 1 1 1 1 1F
8 0 0 0 0 0 0 0 1 01

9 (g) 0 0 0 0 1 0 0 1 09

Table 4.10.: The common anode seven segment LED display driver codes in
hexadecimal numbers.

61

5. Measurements on the prototypes

5.1. FPGA prototype

Figure 5.1.: Measurement setup for the FPGA prototype. As the wire scanner
is currently dissembled and some of the collaborating cards are not
available, simulation values were fed to the memories. The FPGA
prototype aims to check the programming hardware, memory storage
and VME transfers.

While waiting for the complete analogue design, it was decided that a FPGA

prototype card should be made to advance with the digital design. Only one

JTAG connector is foreseen on the front-panel due to space limitations, and

therefore the serial flash loader would be an useful tool to program the serial

configuration device through the master FPGA. There will however be another

download connector directly on the ASMI for the serial configuration device on

this FPGA prototype card, this to be able to compare the configuration-reliability

and -time with the serial flash loader setup through the JTAG connector.

62

5.1. FPGA PROTOTYPE

The main purpose of this card is to test the above mentioned configuration

scheme and some main features of the system functionality. Most of the analogue

circuits were excluded in this prototype, which is why it has been named the

FPGA prototype. The complete schematics and the PCB-routing can be found

in the appendix H.

5.1.1. Configuration setup

A configuration scheme is needed to program the FPGAs. As the program is

stored in a volatile memory in a FPGA, an additional non-volatile flash memory

which fills the FPGAs is needed.

It is desired to test the configuration and debug tools for several FPGAs without

multiple connectors. The idea is to use the JTAG interface to program and debug

the FPGAs directly, and to download the program to the serial configuration

device through the master FPGA using a serial flash loader.

Figure 5.2.: Configuration scheme for the two FPGAs.

The configuration schematic (see figure 5.2) is a result of three assembled

configuration setups (see reference [14] figure 13-4 and 13-24, and reference [15]

figure 9-5). As every FPGA in a multiple FPGA JTAG chain has nCE pulled to

ground and the status pins CONF DONE and nSTATUS are pulled up separately

for each FPGA, some jumpers have been added to set the slave nCE of the slave

FPGA to ground and change between common pull-ups and separate pull-ups.

63

5.1. FPGA PROTOTYPE

Measurements

The JTAG programming mode works for single FPGAs either when the status

pins are pulled up separately or when all FPGAs are in user mode (as nSTATUS

and CONF DONE have a high state in user mode). Before the FPGAs have

been programmed, the CONF DONE has a low state and tries to get configured

through the ASMI-interface with the serial configuration device.

For the FPGAs to enter user mode, they must all be configured by the serial

configuration device at power up or by pulling down nCONFIG, or the JTAG

mode must be set to program every FPGA in the chain list. So to fill the serial

configuration device when only a JTAG connector is available, the first FPGA

configuration must include a .sof1-file for each FPGA in the chain list. After

configuration, the master FPGA can be programmed individually, hence the flash

loader can be downloaded to fill the serial flash memory. The .jic2-file loaded to

the flash memory in the serial configuration device should then include program

data for all the FPGAs in the chain. After the flash memory is filled, every

FPGA will be filled at power-up or by pulling nCONFIG low, and then enters

user mode. Thus the JTAG mode works for each FPGA even when the status

pins are commonly pulled up and the nCE is not grounded.

This concludes that the jumpers can be left out and the nCE and status pins

are set according the settings for an active serial configuration (otherwise the

serial configuration device does not work).

5.1.2. VME circuitry

The VME-bus is used to interface between cards within the same VME crate

and communicate with remote systems. The VME-bus is one of the standard

protocols used at CERN for communicating with the electronics equipment.

The VME rack uses the extended 64 bit VMEbus called VME64x. In this

project however, only 16 bit data transfers and 24(23) bit addresses will occur.

Hence the address- and data signals on the J2/P2 connector will not be used, and

as the VME interface is simplified as well, the VME part includes a total amount

of 71 signals (see table 5.1) on the FPGA prototype card. For setting the card’s

1SRAM object file
2JTAG indirect configuration

64

5.1. FPGA PROTOTYPE

Signal Connector Signal Connector Signal Connector
A01 J1-A30 AM1 J1-B17 DTACK* J1-A16
A02 J1-A29 AM2 J1-B18 SYSRESET* J1-C12
A03 J1-A28 AM3 J1-B19 WRITE* J1-A14
A04 J1-A27 AM4 J1-A23 BUNCHSEL0 J0-D12
A05 J1-A26 AM5 J1-C14 BUNCHSEL1 J0-D13
A06 J1-A25 AS* J1-A18 BUNCHSEL2 J0-D14
A07 J1-A24 D00 J1-A01 BUNCHSEL3 J0-D15
A08 J1-C30 D01 J1-A02 BUNCHSEL4 J0-D16
A09 J1-C29 D02 J1-A03 BUNCHSEL5 J0-D17
A10 J1-C28 D03 J1-A04 BUNCHSEL6 J0-D18
A11 J1-C27 D04 J1-A05 BUNCHSEL7 J0-D19
A12 J1-C26 D05 J1-A06 BUSLINE0 J0-A12
A13 J1-C25 D06 J1-A07 BUSLINE1 J0-A13
A14 J1-C24 D07 J1-A08 BUSLINE2 J0-A14
A15 J1-C23 D08 J1-C01 BUSLINE3 J0-A15
A16 J1-C22 D09 J1-C02 BUSLINE4 J0-A16
A17 J1-C21 D10 J1-C03 BUSLINE5 J0-A17
A18 J1-C20 D11 J1-C04 BUSLINE6 J0-A18
A19 J1-C19 D12 J1-C05 BUSLINE7 J0-A19
A20 J1-C18 D13 J1-C06 CLK+ J0-E16
A21 J1-C17 D14 J1-C07 CLK- J0-E17
A22 J1-C16 D15 J1-C08 TCD+ J0-E12
A23 J1-C15 DS0* J1-A13 TCD- J0-E13

AM0 J1-B16 DS1* J1-A12

Table 5.1.: VME-bus and user signals used on the prototype card. * annotates
an active low signal.

base address in the rack, a binary coded hexadecimal 16 position rotary switch

has been added, leaving four address signals for address comparison.

The VME signals have to be buffered close to where they enter the PCB, in or-

der to minimize capacitance of signal lines. This is why the SN74LVC541APW 8-

bit buffers have been added to every VME output signal and the SN74LVC4245ADW

8-bit transceivers have been added to every bidirectional signal. The buffers are

always enabled, but the direction and output enable inputs of the transceivers

will be controlled by the master FPGA, depending on the addressed function.

The data acknowledge signal sinks through a transistor since it requires a current

that exceeds the FPGA current limit and it is therefore switched by an output

pin from the FPGA.

65

5.1. FPGA PROTOTYPE

Measurements

The VME-bus can be accessed either through the USB-port connected to a

CAEN VX1718 USB-VME bridge or through RS-232 or Ethernet protocol to

the PowerPC. As the software provided with the CAEN VX1718 has a simpler

user interface and is faster than the RS-232, the USB-VME bridge has been

privileged during these tests.

It has been measured that one single VME transfer cycle with bus request takes

about 740 ns. The data acknowledge transistor spends 140 ns, and the set data

acknowledge delay from the falling edge of the data strobe is 100 ns. Hence about

one third is due to the actual transfer handshake, while two thirds are used to

request and release access to the bus.

If the idle time between the VME accesses was as little as say 60 ns, then a

maximum achieved transfer data rate would be:

2Bytes · 1

800 · 10−9s
= 2.5MBps (5.1)

However, with a read-out loop with no delay set in the software, the bus request

has been measured to have a frequency of 2.8 kHz. Thus the actual achieved

transfer data rate was:

2Bytes · 2.8kHz = 5.6kBps (5.2)

Which is approximately 450 times slower than the theoretic transfer rate. The

reason is due to re-initialization of the USB interface for each word readout, which

demands extra commands and hereby time. To solve this, the block transfer mode

has been introduced. When using the block transfer, a memory is reserved on

the USB-VME bridge. The USB-VME bridge accesses the VME-bus continuously

while incrementing the address and pulling the data strobes low for each transfer,

then the data is sent over the USB as a bigger package. By doing this, the readout

time of one SRAM (512 kB) was reduced from 91.4 seconds to 0.3 seconds. Thus

the transfer data rate had been improved to:

512kBytes

0.3s
= 1.7MBps (5.3)

Which is very close to the theoretical transfer rate found in equation 5.1.

66

5.1. FPGA PROTOTYPE

5.1.3. Power supplies

Signal Connector
+5V J1-A32
+5V J1-B32
+5V J1-C32

+3.3V J1-D12
+3.3V J1-D14
+3.3V J1-D16
+3.3V J1-D18
+3.3V J1-D20
+3.3V J1-D22
+3.3V J1-D24
+3.3V J1-D26
+3.3V J1-D28
+3.3V J1-D30

Table 5.2.: VME power supply connector pins.

The circuits on the FPGA prototype card only need +3.3V, +5V and 1.2V. The

+3.3V and +5V power supplies will be provided through the VME connectors

(see table 5.2), while the 1.2V is regulated by a low voltage drop regulator,

LMS5258MF-1.2, as shown in Figure 5.3. A regulator will be placed close to every

FPGA, as the +1.2V is for the internal voltages of the FPGAs. The input voltage

of the low voltage drop regulator will be +3.3V, and a 1µF ceramic capacitor will

be placed on the output voltage of 1.2V for stability. The regulator also have

a Power Good indicator, but this is not needed as the Cyclone II FPGA has

an internal POR3 circuit surveying the voltage levels. A 100kΩ pull-up resistor

has still been drawn up from the Power Good output in case other circuit needs

a POR safety at some later stage. Both +3.3V and +5V are available directly

and will be decoupled to ground through some 100µF capacitors in order to

filter low-frequency noise and supply extra current when many outputs switch

simultaneously.

Measurements

The voltages have been measured to be quite accurate and having insignificant

ripple. The measured currents were less than 0.2 A, which is no problem for the

3Power-On-Reset

67

5.1. FPGA PROTOTYPE

Figure 5.3.: Low voltage drop-out regulator creating a 1.2V power supply from a
3.3V voltage source.

VME crate to feed.

5.1.4. Optical ruler circuitry

The optical ruler is needed to create the calibration-LUT, which is used to improve

the potentiometer’s accuracy to 1µm.

The optical ruler inputs will be connected to a SubD15 male connector (see

figure 5.4). There are 15 pins, whereas 14 of them are used (see table 5.3) on the

prototype card.

Figure 5.4.: SubD15 male connector.

The ruler phases (here called A and B) represent the two phases which indicates

the movement of the wire-scanner’s fork arm (see section3.2.1 for details). The

phases are differential signals, but by using the Quad Differential Line Receiver

DS26C32ATM, the FPGA inputs are fed with single ended signals.

68

5.1. FPGA PROTOTYPE

Pin Signal
1 Ruler phase A+
2 Ruler phase B+
3 Ruler zero-reference+
4 Ruler status+
5 Vcc +5V
6 Ruler MUX0
7 Ruler MUX1
8 GND
9 Ruler phase A-

10 Ruler phase B-
11 Ruler zero-reference-
12 Ruler status-
13 GND
14 Vcc +5V
15 not connected

Table 5.3.: Pinning specification of the SubD15 male connector for the optical
ruler.

Measurements

By the time the FPGA prototype was produced, the SOP4 package of the

DS26C32ATM component was still not available and the linear wire scanner used

for testing had been dissembled due to some modifications. The wire scanner is

still not reassembled at this time, but some tests were done at an earlier stage

using a Microtronix Stratix Development Kit using an Altera Stratix EP1S25

FPGA and an external dual in-line Quad Differential Line Receiver.

The tests were done by manual scans, which does not achieve the actual speed.

The optical ruler counter worked fine and without any error counts during the

motion, but error counts occurred when the wire scanner was stalled. This

problem can however be solved by resetting the error counter by the scan trigger

or by use of an acquisition gate.

5.1.5. SRAM circuitry

The SRAMs are needed to store all the acquired data. As it is important to

check that the SRAM interface works properly, one of the SRAM modules has

4Small Outline Package

69

5.1. FPGA PROTOTYPE

Figure 5.5.: Differential signals from the optical ruler transform to single ended
signals.

been added to the prototype card. This is the SRAM which has to store the

optical ruler counter data when used in the SPS ring.

The chosen SRAM module is an asynchronous SRAM memory from ISSI5,

IS61LV25616AL. This memory is organized as 256K words by 16 bits, and it is

classified as a CMOS low powered high speed SRAM. The 256K words make an

amount of 18 address lines, and 16 parallel data lines. Some buffers are drawn

between the data-bus from the slave FPGA to the address lines, these will be

enabled if the optical ruler has to be used for addressing the memories (f.ex. by

calibration). The transceivers control the flow of data between the data-busses.

The flow of data to and from the memory is controlled by the direction and enable

inputs of the memory.

5Integrated Silicon Solution Inc.

70

5.1. FPGA PROTOTYPE

Measurements

As mentioned, the wire scanner has been dissembled, so the optical ruler count

data can not be stored. Instead, the active scan signal has been set as an enable

signal for the buffer between the function bus and the data bus. Hence the

acquired data is actually the motion function data.

Figure 5.6.: SignalTap verification of the data acquisition at an acquisition
frequency of 10 MHz.

In the current test, the function generation clock has been set to 1 MHz, and

the acquisition clock is set to 10 MHz. This means that every output value is

sampled 10 times. As seen in figure 5.6, the write and chip select signal work

as desired. And with the data and new address registered by the rising edge of

the acquisition clock, the two-cycles delay is a secure data storage for a 10 MHz

acquisition. As the highest acquisition rate of the potentiometer values will be

the AD7677’s 1 MSps, the SRAM interface is more than fast enough.

5.1.6. Overall test program

To automate the system control and data transfers, a small LabVIEW program

has been written. This fills the control register, acquisition clock division register,

switch register, FGEN clock division register and scan timeout register. The latter

is however not in use, as it has been left out for the time being. When the registers

are filled, they are read out afterwards to verify that the correct value has been

stored.

By using the LabVIEW program, one does not have to check the correct

addresses to manually fill the registers, start a scan and etc. The data read out

from the function ROMs or acquisition SRAMs can be displayed in diagrams,

71

5.1. FPGA PROTOTYPE

which makes it easier to roughly verify the data than just watching the stored

data values.

Measurements

Figure 5.7.: Screen-shot from the LabVIEW program. Function read out after a
fast scan profile has been applied. The function data has here been
sent for storage in the SRAM3, for simulation purposes as the optical
ruler was not available.

By using this program, downloading settings of various registers for testing

purposes has become much more efficient and less errors occured. As shown in

figure 5.7, the active function is read out for verification. After a performed scan

(out-scan in this case), the acquired data can be read out from the SRAM. Some

read values are sometimes different from the written value, but this is due to

the fact that the data bus has not been masked when transferring shorter words.

Some are already masked in the FPGA, and do not cause problems. However,

the data bus connected to the master FPGA has only 8 bits. Hence the upper

72

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

eight bits can not be masked by the FPGA when reading from the master FPGA.

This data-masking has later been introduced in the Labview program to make

sure the read values resemble the correct register values. It has been discussed to

add an external buffer to pull the high byte to ground during transfers from the

master FPGA, but this will not be implemented due to pin limitations and easy

solutions through data-masking in the software.

5.2. Prototype including analog circuits

Due to further progress in the project since the FPGA prototype was done, it

was decided to make a new prototype including the analog circuits. Thus further

tests could be made, which could now include the entire wire scanner system.

While not all the cards were ready, and the measurement setup was restricted, it

was still possible to test the control of a rotating wire scanner through the motor

driver. Before this, the card had to be debugged to check that the functionality

was correct. For the detailed schematics, see appendix I.

5.2.1. VMPS input (ADC0 CH0)

This is a power supply voltage sensor, and should have a level at about 0.6V from

the VME J2 connector. This is amplified by 3.3 times and the ADC input should

therefore be 1.98 V when the power supply voltage is active. This results in an

input voltage of 1.98 V, which is fed to both a comparator and an ADC. The

comparator compares this voltage with a divided voltage of 5V · 100
430

= 1.16V .

During measurement, the comparator is set high if voltages higher than 0.35V

and low if lower voltages.

5.2.2. Amplifier voltage check (ADC0 CH1)

To check the motor amplifier voltage input, various DC values were applied. The

read out values were then compared to the theoretical values. Some values were

out of range and this caused maximum or minimum conversion values, since

the range-bit restricted the conversion to voltages from 0 to 2.5V. Otherwise

the biggest difference from the expected values was HEX”19”, which corresponds

to 15mV. This could be explained by the resistor tolerance of 1% in the pre-

73

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

Vin (J2-10C&11C) VampV out Vadcin

-1 V -2 V 3.25!!
-0.6 V -1.2 V 2.45
0 V 0 V 1.25

0.6 V 1.2 V 0.05
1 V 2 V -0.750!!

1.5 V 3 V -1.750!!

Table 5.4.: These are the input voltage levels used during the amplifier voltage
check.

ADC expected value ADC acquired value Difference (HEX)
FFF FFF 000
FAD FA1 00C
7FF 7F6 009
050 06A 019
000 000 000
000 000 000

Table 5.5.: Expected ADC0 conversion values compared to read out values during
amplifier voltage check.

amplifying stage. However, at a later stage it was discovered that the ADC0

conversions were influenced by the input impedance, because a resistor had been

introduced for the safety of the ADC. Bigger offsets were removed after these

resistors were short circuited. To maintain the input safety of the ADC, new

operational amplifiers (AD8608) were chosen for the input stage. The operational

amplifiers will be fed by a Vcc of 5V and a Vee of -300 mV, which keeps the input

voltage at the ADC within the safe input range limits.

5.2.3. Amplifier current check (ADC0 CH2)

As for the motor amplifier voltage test-stage, various DC values were applied

to the input of the motor amplifier current test-stage. The read out values

were compared to the expected values, where the biggest difference showed to

be HEX”34” which equals 31 mV. The solution for this is the same as mentioned

for the motor amplifier test-stage.

74

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

Vin (J2-12C&13C) Vampiout Vadcin
-2 V -1 V 2.25 V

-1.5 V -0.75 V 2.0 V
-1 V -0.5 V 1.75 V
0 V 0 V 1.25 V
1 V 0.5 V 0.75 V

1.25 V 0.625 V 0.625 V
1.5 V 0.75 V 0.5 V
2 V 1 V 0.25 V

Table 5.6.: These are the input voltage levels used during the amplifier current
check.

ADC expected value ADC acquired value Difference (HEX)
E65 E5C 009
CCB CF1 025
B32 B5A 027
7FF 828 029
4CB 4DC 010
3FF 416 017
332 367 034
198 1CB 032

Table 5.7.: Expected ADC0 conversion values compared to read out values during
amplifier current check.

5.2.4. Function generator loop (ADC0 CH3)

The motion function is transformed to an analog signal. To check that this signal

is correct, it is fed back to an analog-to-digital converter. Before the ADC, an

attenuator inverts the signal and changes the offset to only have positive values

from 0 to Vref (2.5V).

A fast scan profile was selected, and the ADC was set to the corresponding

channel for the fed back motion function signal. The original function stored in

the ROM starts at value 205 and ends on value 3890. By using a loop in Labview

to acquire the stored values during a scan, the function shown in figure 5.8 was

drawn.

This function looks correct, but the end values have positive offset values and

a smaller overall range compared to the original function. The cause of the offset

values was found and solved by removing the safety resistors on the input, as for

75

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

Figure 5.8.: Acquired data at ADC0 CH3 for a fed back fast scan profile. Values
were read and displayed graphically in LabVIEW.

the motor amplifier voltage test-stage. Also here, the resistor tolerance introduces

an error in the pre-amplifying stage.

5.2.5. Wire temperature circuit (ADC0 CH4 and CH5)

To measure the temperature by means of acquiring the wire-resistance and

current, a reference current must first be set. This is solved by using a DAC

output voltage with a current generator. The reference current can therefore be

set by setting the DAC output voltage. The DAC used has an output range of

5V, from -2.5V to 2.5V. With 12 bits, one LSB then results in V1LSBDAC0 = 5V
212 ≈

1.22mV/LSB.

Iout = − R98·Vin

R79·R106
= − 2MΩ·Vin

1MΩ·2kΩ
= − Vin

1kΩ

VADC04 = A · (Iout ·RL) = −1 · (Iout · 2.2kΩ)

The ADC0, which is used to acquire the wire resistance- and current signals,

has a 12 bit resolution and as the range bit is set to 0, the range is from 0V to

2.5V. V1LSBADC0 = 2.5V
212 = V1LSBDAC0 = 610µV/LSB

CH4-wire resistance:

The biggest offset value on the three first measurements is 18 LSBs (see table

5.9), which is an error of 0.44% (18LSBs)
212 · 100%). This is however smaller than

the 1% tolerance of a resistor and can be neglected. The saturated value of 4.0 V

is above the upper range limit and is therefore converted to the maximum value

76

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

RL DAC01 value VDAC01 Iout VADC04

2.2 kΩ A7F 0.78 V -0.78 mA 1.72 V
2.2 kΩ A00 0.625 V -0.625 mA 1.375 V
2.2 kΩ 981 0.47 V -0.47 mA 1.034 V

Open ciruit 981 0.47 V -0.47 mA 4.0 V (saturation)

Table 5.8.: Parameters used during the test of the wire temperature circuit. The
RL represents the wire attached to the wire scanner.

Expected ADC04 value Acquired ADC04 values
B03 AF3 - B02
8CE 8C9 - 8CC
69F 68D - 693
FFF FFF

Table 5.9.: Expected values compared to read out values at ADC0 CH4, which
represents the wire resistance.

as expected.

CH5-wire current:

DAC01 was loaded with value C00, which corresponds to 1.25 V. The Iout is

then -1.25 mA, and the VADC05 = A·Iout ·R119 = (−1)·(−1.25mA)·100 = 0.125V .

This results in an expected ADC value of VADC05

V1LSBADC0
= 0.125V

610µV
= 204(HEX ′0CC ′).

The read ADC values range from 0C5 to 0CA, which results in a maximum error

of 7 LSBs (0.17 %).

To simulate the loss due to the wire thermionic emission, a leakage current was

introduced by pulling a 10kΩ resistance to GND. This reduces the current through

the reference resistor to Iwithleakage = 10kΩ2.3kΩ
2.3kΩ

= 0.102mA, which results in a

input voltage of VADC05 = A ·Iout ·R119 = (−1) · (−0.102mA) ·100 = 0.102V . The

expected ADC conversion value is then VADC05

V1LSBADC0
= 0.102V

610µV
= 167(HEX ′0A7′).

The read out value was HEX’0AE’, which is an error of 7 LSBs (0.17 %).

5.2.6. Logarithmic amplifier acquisition (ADC1)

A sine wave was applied on the input of the logarithmic amplifier. As the amplifier

saturated for very small signals, a R262 was removed to reduce the amplification

from 2 to 1. For full scale, the signal was adjusted to 492 mVp-p and 238.7

mVoffset while measuring on the output of the logarithmic amplifier. A frequency

of 781.25 Hz was selected to acquire exactly two periods during 1024 samples at

77

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

a sampling frequency of 400 kHz, as the FFT function in MS Excel only works

with a number of samples which has a power of two.

Figure 5.9.: The acquired logarithmic input signal has been linearized and
compared to an ideal sine wave of the same amplitude and phase.
The green graph shows the difference between the ideal sine wave
and the acquired sine wave times ten as the distortion of the captured
logarithmic amplified signal.

By linearizing the sampled logarithmic values, the original sine wave can be

plotted. To compare the acquired sine wave to an ideal sine wave, a second sine

wave with the same amplitude, frequency and phase has been generated using

the sine function in Microsoft Excel. This has been done to have a look at the

distortion created by the logarithmic transform, which is shown in figure 5.9,

where the distortion (times 10) is being displayed in green. As a further study of

the distortion, a FFT transform was applied to plot the signal spectrum of the

acquired signal (see figure 5.10).

When performing a FFT transform in Microsoft Excel, the absolute values of

the FFT transformed values form the amplitude of each indexed frequency. The

index ranges from 0 to the sampling frequency, with steps of sampling frequency

divided by number of samples. The signal spectrum of the acquired sine signal

can then be plotted for the amplitude as a function of the frequency. Figure 5.10

shows that the fundamental harmonic at 781.25 Hz has an amplitude of a factor

128 times (42 dB) the second harmonics at 1562.5 Hz. Thus the higher harmonics

are relatively well attenuated, but there is some loss compared to the input signal

which attenuates the harmonics by 60 dB (see figure 5.11).

78

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

Figure 5.10.: Signal spectrum of the values acquired from the logarithmic
amplifier, found by using the linearized values from the logarithmic
function in Microsoft Excel.

Figure 5.11.: Signal spectrum of the applied 781.25 Hz sine wave input on
the logarithmic amplifier, captured by Wavestar software for the
oscilloscope.

79

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

5.2.7. Potentiometer input with sinusoidal signal (ADC2)

A 100 Hz sine wave of 600 mVpp was applied to the potentiometer channel 1.

This was acquired by a 100 kHz sampling frequency, which results in 1000 samples

per period.

Figure 5.12.: Acquired sine wave at ADC2. Noise occurred due to noise on the
reference input.

As seen in figure 5.12, there were however some distortions. The first suspicion

was that not all bits were acquired, but the distortion would then probably look

different and it was seen on the acquired values that all the bits were toggling.

When measuring the reference voltage of 2.5 V, it was observed that there was

severe noise at approximately 600 Hz on the reference input. By adding a 47 uF

electrolytic capacitor and a 1 uF ceramic capacitor from the reference input to

ground, the noise was taken away.

Figure 5.13.: Acquired sine wave at ADC2 after filtering capacitors were added
to the reference input.

80

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

A signal with the same frequency as before was used, but a bigger amplitude

and a much higher sampling frequency of 400 kHz was applied. Thus one period

contains 4000 samples, and as seen on figure 5.13, the sine wave is now much

smoother. As seen in figure 5.14, the first harmonic of the acquired sine wave is

attenuated by about 76 dB. The harmonics are thus very well attenuated.

Figure 5.14.: Signal spectrum of the values acquired from the potentiometer
input, found by using the values stored in an excel sheet.

5.2.8. Potentiometer accuracy (ADC2)

In order to check the position accuracy of the potentiometer circuit, a potentiome-

ter was connected to channel 1 and acquired for distances of 5 mm. However,

due to line capacitance, the power lines with sense feedback were oscillating at

roughly 1 MHz, which led to large differences from one acquisition to the next.

To solve this, a 3.3 nF capacitor was applied between the output and sense input,

thus the bandwidth was decreased to about 2.4 kHz. The power supplies for the

81

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

potentiometer were then improved drastically, as the ripple was insignificantly

small.

Potentiometer
cm V ADC RMS ADC mean
-7.5 2.500 5.120 16442.62
-7.0 2.333 2.771 17537.3
-6.5 2.167 1.981 18631.64
-6.0 2.000 1.616 19712.91
-5.5 1.833 1.339 20760.32
-5.0 1.667 1.159 21879.5
-4.5 1.500 1.069 22961.91
-4.0 1.333 1.001 24059.64
-3.5 1.167 1.045 25128.48
-3.0 1.000 1.013 26220.91
-2.5 0.833 0.989 27316.75
-2.0 0.667 0.962 28419.85
-1.5 0.500 0.943 29489.02
-1.0 0.333 0.960 30532.5
-0.5 0.167 0.870 31670.25
0.0 0.000 0.876 32760.18
0.5 -0.167 0.910 33839.67
1.0 -0.333 0.842 34922.67
1.5 -0.500 0.843 36019.79
2.0 -0.667 0.800 37093.61
2.5 -0.833 0.849 38192.04
3.0 -1.000 0.871 39240
3.5 -1.167 0.838 40358.05
4.0 -1.333 0.881 41441.88
4.5 -1.500 0.924 42530.78
5.0 -1.667 0.976 43600.35
5.5 -1.833 1.101 44721.03
6.0 -2.000 1.292 45812.91
6.5 -2.167 1.712 46877.57
7.0 -2.333 2.567 47947.8
7.5 -2.500 5.424 49063.11

Table 5.10.: The potentiometer was set to the correct position by measuring the
corresponding voltage. By sampling 1024 values, the RMS and mean
values of the ADC2 conversion could be found.

The positions were set using the corresponding voltage levels, as shown in table

82

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

5.10. As it is crucial to keep invariance in mid-position (0 cm), it is desired to

study the standard deviation. The standard deviation is a measure of how widely

values disperse from the mean value. To be capable of estimating the standard

deviation, several samples are needed. Thus every position was sampled 1024

(210) times. The dispersed values are presented in LSBs as the ADC RMS in

table 5.10.

Figure 5.15.: Accuracy measures of the potentiometer. The displayed data
represents the RMS dispersion level from the mean value over 1024
samples. It is important that this is at a minimum in the mid-
position, where the beam profile measurements will be made.

As shown in figure 5.15, the dispersion is less than 1 LSB in the mid-positions.

This means that there is less than 1 LSB position error (1 LSB =̂ 4.58 µm).

83

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

5.2.9. Wire relay circuit

The wire relay circuits consist of switching transistors that remotely control 4

relays. The expected output levels were checked and found to be correct.

5.2.10. Scope output signals

The ”scope” output is a multiplexed output, with a hexadecimal switch to select

which channel to direct to the output on the front panel. This output is applied

to a Lemo connector in order to easily connect it to an external oscilloscope

input. This output allows checking vital analogue signals without dismounting

the VME-crate. The multiplexing of all signals has been checked and found to

be ok.

5.2.11. LabVIEW testbench for WSMCC

In total, 15 wire scanner motion control cards will be produced. In order to test

these efficiently, it is desired to have an automatic testbench. A small testbench

has been made in LabVIEW for this purpose, yet it is more an functional test

rather than complex circuit tester. Not all circuits have been implemented, but

the most essential FPGA and ADC functions are. To use this LabVIEW program,

the CAEN USB-VME bridge must be used, the WSMCC has to be set to physical

address HEX”0”and DC values have to be applied to certain channel inputs. Since

some of the inputs on the J2-VME connector are grounded, there should not be

anything connected to the backplane side of the J2-VME connector.

The test flow has been set as shown in figure 5.16. The FPGA functions

are checked first, then the ADC conversions. To apply the DC values used to

verify the ADC conversions, a tiny card containing a resistor voltage dividing

network and voltage followers has been attached to an VME extension card. The

schematics for this card can be seen in figure 5.17.

When these DC values are applied to the correct inputs, the LabVIEW program

can be initiated. The LabVIEW front panel will display percentage results of the

difference between the expected value and measured value.

The details of the flowcharts and LabVIEW block diagrams can be found in

appendix G.

84

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

Figure 5.16.: Test flow from start to end for the LabVIEW testbench.

GND -2V -1V -0.5V
J2-2A J2-1A J2-1C J2-10C
J2-2C J2-13C J2-18A J2-14A
J2-11C J2-18C - -
J2-12C - - -
J2-14A - - -
J2-17A - - -
J2-17C - - -

Table 5.11.: In order to use the LabVIEW testbench, the DC values must be
connected to the pins shown in this table.

5.2.12. Controlling a wire scanner

A rotating wire scanner was mounted and connected to the system. The aim

of this test was to control a wire scanner by the motion control card through

the power amplifier on the VME-J2 connector. The system then consisted of a

wire scanner motion control card, a power amplifier and a wire scanner with its

motor and potentiometer. An USB-VME bridge introduced the communication

interface for the remote control.

85

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

Figure 5.17.: Schematics for the small card providing the DC values for the ADC
inputs. This card is attached to the VME extension card, where
the signals can easily access the J2-VME connector by pulling short
wires.

The motor position was manually set to the initial position, and the control

voltage was checked to be correct. The power amplifier for the motor driver was

activated. The motor was expected to stand still initially, but it was oscillating

and kept rotating at a very high speed. Closer study showed that it was moving

in the wrong sense, and thus kept oscillating around the zero-point in the dead-

zone of the rotational potentiometer. This meant that the motor polarization

was inverted.

The polarization was changed and the amplification of the motor driver was

reduced to decrease the risk of oscillation. At the second test the motor control

worked correctly, but the lag between the function generator voltage and motion

feedback voltage was big due to the low amplification in the closed control loop.

By increasing this amplification close to the point of oscillation, the lag time was

reduced drastically, yet it still remains to find the fully optimized PID regulation

values.

By using the measurements shown in figure 5.18, we can estimate the maximum

wire speed achieved. A wire supporting arm for the rotational wire scanner has

86

5.2. PROTOTYPE INCLUDING ANALOG CIRCUITS

Figure 5.18.: When stepping through the motion function with a high speed, the
actual motion of the wire scanner lags behind. The feedback loop
tries to compensate the lag, and it therefore overshoots by the end
of the stroke.

a length of r = 20cm. If a motion of 345 degrees resembles the full stroke, the

distance of the stroke is:

d = 345
360

· 2π · r = 345
360

· 2π · 0.2m = 1.2m

From figure 5.18 we find the derivative of the linear part to be dY = 1.8V =
1.8V
5V

· 1.2m = 0.432m and dX = 19ms. From this we can find the speed in the

linear part, which is:

v = dY
dX

= 0.432m
19mS

= 22.7m/s

Which is more than twice the required speed of 10 m/s for the rotational

wire scanner. The specifications are met, however the measurements were done

without the wire arm, which eventually will contribute to the inertia of the system

and reduce the maximum achievable speed.

87

6. Conclusion

The aim of this project was to develop the wire scanner motion control card in

order to increase the acquisition accuracy of the wire position and add advanced

programmable functionality.

The measurements on the most recent prototype including the analogue circuits

have shown high accuracy of the acquired position data and precise motor motion-

control with programmable features.

ADC-, DAC- and SRAM-control has been successfully implemented in the

FPGA. The acquisition control is triggered by the handshake of the ADCs and

the acquired data are stored reliably in the SRAM with a very high maximum

rate of 20 MBPS, which is much higher than the ADC conversion rate.

The VME-bus communication interface works very well and the newly imple-

mented block transfer mode has improved the memory read-out by two orders of

magnitude. By optimizing the data acknowledgement delay, the transfer rate has

been even further improved than at earlier measurements. One SRAM of 512 kB

can now be read-out in 0.1 s, which results in a transfer rate of over 5 MBPS and

this is well within the requirements.

This shows that the design of the wire scanner motion control card with its

firmware has fulfilled the foreseen specifications successfully.

Improvements

The use of three FPGAs has introduced multiple register flags and debugging

restrictions which could be avoided by using one BGA package instead. Also the

debugging would be simplified if the full databus width of 16 bits was added to

the master FGPA, where the most critical control signals can trigger the logic

analyzer.

The accuracy of the position acquisitions could be further improved if the

preamplifier was adjusted to use the entire input range of the differential

ADC.

89

7. Abbreviations, list of figures and
list of tables

91

Abbreviations

ALICE : A Large Ion Collider Experiment

AS : Active Serial

ASMI : Active Serial Memory Interface

ATLAS : A Torodial LHC ApparatuS

CERN : Conseil Europèen pour la Recherche Nuclèaire

CMS : Compact Muon Solenoid

BGA : Ball Grid Array

BGI : Beam Gas Ionization

BLT : BLock Transfer

BSR : Beam Synchrotron Radiation

DAC : Digital-to-Analog Converter

EMI : Electromagnetic Magnetic Interference

FP : Flat Pack

FPGA : Field Programmable Gate Array

GeV : Giga electron Volt

IC : Integrated Circuit

ISSI : Integrated Silicon Solution Inc.

JIC : JTAG Indirect Configuration

JTAG : Joint Test Action Group

LED : Light Emitting Diode

92

LSB : Least Significant Bit

LUT : Look-Up-Table

MIF : Memory Initialization File

MSB : Most Significant Bit

LEP : Large Electron-Positron collider

LHC : Large Hadron Collider

PCB : Printed Circuit Board

PID : Proportional-Integration-Differentiation

PMT : Photo Multiplier Tube

POR : Power-On-Reset

PQFP : Plastic Quad Flat Pack

PS(1) : Passive Serial

PS(2) : Proton Synchrotron

ROM : Read Only Memory

RTL : Register Transfer Level

SAR : Successive-Approximation Register

SEM : Secondary EMission current

SOF : SRAM Object File

SOP : Small Outline Package

SPS : Super Proton Synchrotron

SR : Set-Reset

SRAM : Static Random Accessable Memory

TeV : Tera electron Volt

TQFP : Thin Quad Flat Pack

VHDL : Very-High-Speed-Integrated-Circuits Hardware Description Language

VHSIC : Very High Speed Integrated Citrcuits

93

VMEx : VERSA-Module Eurocard eXtended bus

WSMCC : Wire Scanner Motion Control Card

WWW : World Wide Web

94

List of Figures

1.1. An illustration of the path of the beams injected into LHC (red
and green arrows). 3

1.2. An overview of the experiments in the LHC. 3
1.3. Example of a: Top; Phase space diagram of the beam intensity

distribution. The axis are defined as particle position µ and
particle angle with respect to the nominal trajectory. Bottom;
Projection of the intensity distribution onto the position coordinate. 5

1.4. Photo and schematic of operation of a flying wire scanner. 6
1.5. The profile measurement setup using a wire scanner. The

scintillator and the photo multiplier tube detects the charged
particles of the shower, and the ampere-meter measures the SEM
signal. 7

2.1. Entire wire scanner system. 9

3.1. An overview of the wire scanner motion control card. A complete
functional diagram can be found in appendix A. 13

3.2. Wirescanner position control. 14
3.3. Wire scanner movement functions: a) Linear offset mode; b)

Accelerated and decelerated fast scan mode; c) Linear slow scan
mode. The exact profiles will be calculated in section 4.5.2 15

3.4. Wire scanner position acquisition diagram. 16
3.5. Optical Ruler sine-wave signals fed to and digitized by the EXE

610C. 18
3.6. Digitization circuit phase train signals. 19
3.7. Basic timing diagram for the AD7677. 20
3.8. Basic timing diagram for the AD7484: Top; Read cycle timing.

Bottom; Write cycle timing. 22
3.9. Basic timing diagram for the AD7938 in parallel word read mode. 23
3.10. Block diagram of the SRAM. 25
3.11. Read cycle, controlled by chip enable. 26
3.12. Write cycle, controlled by chip enable. 26
3.13. VME-bus timing diagram. The edges of DSx depend on the AS

edges. 27

95

List of Figures

4.1. FPGA and Serial configuration device programming in AS mode.
Figure origins from figure 4-2 in reference [15] 32

4.2. JTAG Configuration of the FPGA and indirect Serial Configura-
tion device programming through the Serial Flash Loader. Figure
origins from figure 4-25 in reference [15] 33

4.3. Principle of the Serial Flash Loader interface bridge compared to
the conventional configuration scheme. Figure origins from figure
1 in reference [16] . 34

4.4. Configuration setup for multiple devices using the JTAG connector
and a serial configuration device. 35

4.5. Block overview of the master FPGA system. 37
4.6. Block symbol for the VME address verifier. Source code can be

found in appendix B . 40
4.7. ADC signal flow solution based on the AD7938 timing in read mode. 41
4.8. SRAM write signal flow control. 42
4.9. Block overview of the signals connected to the first slave FPGA. . 43
4.10. Block symbol for the control unit of the first slave. Most output

signals are VME-transferred values stored in the registers. 44
4.11. Block schematic of the VHDL top entity of the function generation. 47
4.12. Fast scan set value function. 49
4.13. Linear offset set value function as derived in matlab. Y-scale

adjusted in accordance with a linear wire scanner (130mm stroke). 50
4.14. Fast scan set value function, speed and acceleration plotted in

matlab. Y-scale adjusted in accordance with a linear wire scanner
(130mm stroke). 51

4.15. Linear slow scan set value function plotted in matlab. Y-scale
adjusted in accordance with a linear wire scanner (130mm stroke). 51

4.16. An extract from the generated .mif-file for the fast scan profile,
which has been printed while looping through the matlab generated
vectors. The .mif-file is a standard used by Altera, where data-
width and address-depth must be defined. The contents are listed
with the address first, followed by the corresponding data. 52

4.17. Block schematic of the function check entities. 52
4.18. Block symbol for the optical ruler quad decoder 53
4.19. Optical ruler quad decoder state machine. 55
4.20. Conditions to change state in the optical ruler quad decoder state

machine. 56
4.21. Block overview of the signals connected to the second slave FPGA. 57
4.22. Block symbol for the control unit in slave two. 58
4.23. Holding registered errors until the asynchronous reset is activated. 58
4.24. State machine controlling the seven segment LED display. 59

96

List of Figures

5.1. Measurement setup for the FPGA prototype. As the wire scanner
is currently dissembled and some of the collaborating cards are not
available, simulation values were fed to the memories. The FPGA
prototype aims to check the programming hardware, memory
storage and VME transfers. 62

5.2. Configuration scheme for the two FPGAs. 63
5.3. Low voltage drop-out regulator creating a 1.2V power supply from

a 3.3V voltage source. 68
5.4. SubD15 male connector. 68
5.5. Differential signals from the optical ruler transform to single ended

signals. 70
5.6. SignalTap verification of the data acquisition at an acquisition

frequency of 10 MHz. 71
5.7. Screen-shot from the LabVIEW program. Function read out after

a fast scan profile has been applied. The function data has here
been sent for storage in the SRAM3, for simulation purposes as
the optical ruler was not available. 72

5.8. Acquired data at ADC0 CH3 for a fed back fast scan profile. Values
were read and displayed graphically in LabVIEW. 76

5.9. The acquired logarithmic input signal has been linearized and
compared to an ideal sine wave of the same amplitude and phase.
The green graph shows the difference between the ideal sine wave
and the acquired sine wave times ten as the distortion of the
captured logarithmic amplified signal. 78

5.10. Signal spectrum of the values acquired from the logarithmic
amplifier, found by using the linearized values from the logarithmic
function in Microsoft Excel. 79

5.11. Signal spectrum of the applied 781.25 Hz sine wave input on
the logarithmic amplifier, captured by Wavestar software for the
oscilloscope. 79

5.12. Acquired sine wave at ADC2. Noise occurred due to noise on the
reference input. 80

5.13. Acquired sine wave at ADC2 after filtering capacitors were added
to the reference input. 80

5.14. Signal spectrum of the values acquired from the potentiometer
input, found by using the values stored in an excel sheet. 81

5.15. Accuracy measures of the potentiometer. The displayed data
represents the RMS dispersion level from the mean value over
1024 samples. It is important that this is at a minimum in the
mid-position, where the beam profile measurements will be made. 83

5.16. Test flow from start to end for the LabVIEW testbench. 85

97

List of Figures

5.17. Schematics for the small card providing the DC values for the ADC
inputs. This card is attached to the VME extension card, where
the signals can easily access the J2-VME connector by pulling short
wires. 86

5.18. When stepping through the motion function with a high speed, the
actual motion of the wire scanner lags behind. The feedback loop
tries to compensate the lag, and it therefore overshoots by the end
of the stroke. 87

G.1. A flowchart which shows the idea of how to check the FPGA
registers using a loop and an address array. 123

G.2. From flowchart to LabVIEW block diagram. 124
G.3. A flowchart which shows the idea of how to use loops and initial

datasheet values to confirm that the functions stored in the FPGA
ROM is correct. 125

G.4. From flowchart to LabVIEW block diagram. 126
G.5. Flowchart shows the idea for how to check the ADC0 conversions,

using a loop to check several channels sequentially. 127
G.6. From flowchart to LabVIEW block diagram.. 128
G.7. Flowchart shows the idea for how to check the ADC1 conversion. . 129
G.8. From flowchart to LabVIEW block diagram.. 130
G.9. Flowchart shows the idea for how to check the ADC2 conversion. . 131
G.10.From flowchart to LabVIEW block diagram.. 132
G.11.This flowchart shows the idea for how perform a scan and read out

the acquired values for diagnosis and graphical display. 133
G.12.From flowchart to LabVIEW block diagram.. 134

98

List of Tables

3.1. ADC control register . 24
3.2. ADC shadow register . 24

4.1. Altera Cyclone II FPGA data . 31
4.2. Configuration modes MSEL settings 36
4.3. VME signals for basic operation 38
4.4. Rough VME mapping . 39
4.5. Memory mapping of slave one . 45
4.6. Mode control reg . 46
4.7. Profile selection . 48
4.8. Optical ruler phase states . 54
4.9. Error messages . 60
4.10. Seven segment display codes . 61

5.1. Prototype VME signals . 65
5.2. Prototype VME power supply signals 67
5.3. Pinning specification . 69
5.4. Input test voltages for the amplifier voltage check. 74
5.5. Expected ADC0 conversion values compared to read out values

during amplifier voltage check. 74
5.6. Input test voltages for the amplifier current check. 75
5.7. Expected ADC0 conversion values compared to read out values

during amplifier current check. 75
5.8. Parameters set to test the wire temperature circuit. 77
5.9. Expected values compared to read out values at ADC0 CH4, which

represents the wire resistance. 77
5.10. Potentiometer accuracy measures. 82
5.11. Input values on J2-connector for testbench. 85

99

Bibliography

[1] general information about CERN, 2005

[2] internal Document Server of the BLM-section, 2005

[3] A. Di Girolamo, ”Studies on the performances of the monitored drift tubes
of the Atlas detector”, 2004

[4] J. Bosser, J. Camas, L. Evans, G. Ferioli, R. Hopkins, J. Mann and O. Olsen,
”Transverse emittance measurement with a rapid wire scanner”, 1984

[5] P. Elmfors, A. Fasso, M. Huhtinen, M. Lindroos, J. Olsfors and U. Raich,
”Wire scanners in low energy accelerators”, 1997

[6] J. Bosser and C. Bovet, ”Wire scanners for LHC”, 1997

[7] S. Burger, C. Carli, K.Priestnall and U. Raich, ”The PS booster fast wire
scanner”, 2003

[8] B. Dehning and F. Roncarolo, ”Transverse emittance blow-up due to the
operation of wire scanners, analytical predictions and measurements”, 2005

[9] VITA VMEbus: ”VMEbus technology”,

http://www.vita.com, 2005

[10] Stefan Sjoholm and Lennart Lindh ”VHDL for designers”,

1997

[11] L. Ponce, R. Jung and F. Méot, ”LHC proton beam diagnostics using
synchrotron radiation”, 2004

[12] S. Turner, ”CERN Accelerator School - Fifth general accelerator physics
course. Vol I”, 1994

[13] W. Herr and B. Muratori, ”Concept of luminosity”, 2005

[14] Altera, ”Cyclone II Device Handbook, Volume 1”, 2005

[15] Altera, ”Configuration Handbook, Volume 1”, 2005

[16] Altera, ”Using the Serial FlashLoader With the Quartus II Software”, 2004

100

http://www.vita.com

8. Appendix

101

A. WSMCC functional diagram

102

��������	
��	

�
�	��
	������	

����	�����	������	

�����

�

���

����
�

������ �

!��"#$��!!

�

�

�

�

�

�

�

�%�������

&

���
���

��	�
��

�%�������

������'�	�

(�)�

����

"$*+

,�-

./�012�3�

�������������	

��������	��4

��-��5��	

��,�

������
����

"$��
��6�.7

����
��0

 �8�.-�8���

������

���

�
���	

��������	��4���-��5��	

*8�4�����-

9,�

��������-

����

,���,�-

!��"#$��!!!

*		�	��������

�����%�����	��
�:��*�����)����

*		�	

������%

!��"#$��!

����

��,//

���

�����;���/<

= �	�.

= �	�

= �	��

= �	��

#��5������

)���4���	�
��
#��5������

�����	

��,//

���

#��5������

)���4���	�
��

��,/�

���

#���
		���

)���4���	�
��

��,/�

���

��,/

���

��,/�

���

#��5������

�����	

#���
		���

�����	

�>3�

>��5�	���

����	����

��	�
���

��,�

�.����?

���
���0��

�7�-8��

����������

�	������5�	

�7���

�

�

�

�

�

�

����

�7��

�����;���/<

.

�'/@�@

.@�

�'�@ @

7@6

��77�

��6.�.

��6A �

��8���$.7�

�86.��,�.7

!������7�����

�:�	��@����5��@���@

	@�'	@��
�%

��B��

�:���-@����5��@���@�	@�'	@��
�%

����;�����<

����

��8���$.7�

#	���?����4

�)������	

�8

��,/6

���
�>3�

>��5�	���

����	����

��	�
���

�7��

����
���0�/

�7�-8��

����������

�	������5�	

�����

�

�

�

�

�

�

����

�86.��,�.7

!������7�����

.8

����

���"#$��!!!

.

�=/

�=�

= �	�

	���������

)���4���	�
��

��,/.

���

��,/7

���

�'

!�(

��,/�

���

��77�

����,1�

,1�

,1

,1.

#�������)���	�

#�������)���	

#�������)���	.

#�������)���	�

��,�

����������4

����

���0��

�7�-8��

����������

�	������5�	

����
�

�

�

�

�

�

,

����

����

�'����

��6�66

�86.��,�.7

!������7�����

.:����5��@���@�	@��
�%

?

�

?

�

?

�

?

�

�8���$.7�

?

�

.

���,0#�CD

"#$��!!!

?

�

?

�

��,/

���

��,/�

���

��77�

,0#./�

$���1�

$�����

��	5���	���)�

�0,9��

�����,/

"$*+��������

�����	5��	�5�

= �	�

��������

�	��-���	�
��

)��

��$.7

���

����
���0�

�7�-8��

����������

�	������5�	

����

����

���

��������4

�
���	
���� ����

�86.��,�.7

�86.��,�..

�E�86.��,�..

!������7�����

�������4

�
���	

����

�

0

*

�

�

����

�.������4

�
���	
;�� ���<

����������

�	������5�	
����

� ��

 86.��,�..

�86.��,�.7

�������
���	
���

6.��,�..

���

� ���;�0*B�� ��0*B�/�<

����;�)7��)/<

��F
'	F

�%�	��F

���-F���-

#���)���	

��'�	���	�
��

#�������)���	

#�'�	�

������

#���)���	

��'�	���	�
��

#���)���	

��'�	���	�
��

#���)���	

��'�	���	�
��

1������-

��)�4�)���

��	�
��

1�������-

��)�4������	

"����
		���

)���4���	�
��
"����
		���

�����	

#�������)���	

#�'�	�

������

#�������)���	

#�'�	

�����

#�������)���	

#�'�	.

�����.

.���;�0*B�.��0*B�/�<

.���;�0*B�.��0*B�/�<

,�	��0*���

�4��������
.���;��7����<

���0

����	��
���0�����������	������	

�'���(�����	���	������	

!E��	������	

��	������	������	

�0*�������

��,�����	��

����%�����	���	������	

,�))
��������

!���	����

,�))
��������

!���	����

,�G��5�����

	������	

�����>E�

�4���
���	

,���-��'���(

�������>E����
���	

*		�	���
���	������	

�����;��6��//<

����
���
���	

�/��

"$*+�����-

�5������	������	

,���	���	������	

"$*+���

�	����	������	

����

*		�	�	������	

"�B*+ " B*+

" B*+

�7��

�=�

�=

�=7

�=.

�=6

�=�

����

���,0#�CD

"#$��!!!

���,0#�CD

"#$��!!!

���,0#�CD

"#$��!!!

)��

��B'	

�'���(�����	��

���� ����

�

	

�

�

�

�

�

"

#

$

�

�

	

�

�

�

�

�

$

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

	

�

�

�

�

�

� ��

����

��������-

�=�

�=A

�=�/

�=��

����

�

�

�

�

�

�

�

����

����

4

�

�

�

�

�

�

�0,9��

���������	
������
��

���
������
�����	
���

104

B.1. MASTER FPGA TOP LEVEL

B. VHDL top level block diagrams

B.1. Master FPGA top level

GND

PS_EN

IO_SW[8..0]

MOTORRELAYEN

POWERMUX[3..1]

ADCZERO_RD_N

ADCONE_RD_N

ADCTWO_RD_N

ADCTWO_CS_N

ADCTWO_CONVST_N

ADCONE_CONVST_N

ADC1_WRITE

ADC20MHz

ADCZERO_CS_N

ADC0_WRITE_N

ADCZERO_CONVST_N

ADC0_WRITE_N

ADCONE_CS_N

ADC1_WRITE_N

FPGA2_EN

SR3_OE_N

SR0_WR_N

SR0_OE_N

SR0_CE_N

SR1_WR_N

SR1_OE_N

SR1_CE_N

SR2_WR_N

SR2_OE_N

SR2_CE_N

SR0_WR_N

SR1_WR_N

SR2_WR_N

CLK40MHz

ADC0_WRITE_N

SR0_OE_N

AG[18..1]VMER_ADDRESS[18..1]

ACQ_ADDR[17..0]

DAC_CS_N

DTACK

RELAYCTRL[1..0]

RELAYCTRL[3..2]

RULERMUX[1..0]

VCC

GND

sr_rdenable

DAC_CS_N

ACQ_ADDR_CLEAR

ACQ_CLK

CLK40MHz

calibration_mode

CLK40MHz

CLK40MHz

VME_SYSRST_n

CONTROL_MODE_N

VMEC_CS_n

VMER_WRITE

VMER_ADDRESS[15..1], GND

SCANINHIBIT

IO_SW[3..0]

CLK40MHz

CONTROL_MODE_N

CONTROL_MODE_N

sr1_rdenable

ADC1_READENABLE

sr0_rdenable

ADC0_READENABLE

ADC1_WRITE_N

SR1_OE_N

ADC0_READENABLE

ADC1_READENABLE

CLK40MHz

ACQ_CLK

CONTROL_MODE_N

sr3_rdenable

CLK40MHz

CONTROL_MODE_N

ADC2_READENABLE

sr2_rdenable

ADCTWO_CS_N

ADC2_READENABLE

ADCZERO_CS_N

ADC0_READENABLE

ADCONE_CS_N

ADC1_READENABLE

SR3_WR_N

VMER_WRITE

FPGA2_EN

SR3_WR_N

SR3_OE_N

SR3_CE_N

SR2_OE_N

ADC2_READENABLE

CLK40MHz

VME_SYSRST_n

VME_AS_n

VME_DS0_n

VME_DS1_n

VME_WR_n

VME_AM[5..0]

VME_ADDR[23..1]

CSADDR_n[3..0]

DTACK

ADC1_READENABLE

ADC0_READENABLE

ADC2_READENABLE

ADCZERO_RD_N

ADCTWO_RD_N

ADCONE_RD_N

CLK40MHz

ARESET_N

ARESET_N

CLK40MHz

ADCZERO_BUSY

ARESET_N

CLK40MHz

ADCTWO_BUSY

ADCONE_BUSY_N

ADC0_READENABLE

ACQ_CLK

ADC1_READENABLE

ACQ_CLK

ADC2_READENABLE

ACQ_CLK

FPGA2_EN

ADC20MHz

ADCZERO_CS_N

ADCZERO_RD_N

ADCZERO_CONVST_N

ADC0_WRITE_N

ADC1_WRITE_N

SR3_WR_N

SR3_OE_N

SR3_CE_N

SR1_WR_N

SR1_OE_N

SR1_CE_N

SR2_WR_N

SR2_OE_N

SR2_CE_N

SR0_WR_N

SR0_OE_N

SR0_CE_N

VMEC_CS_n

VMER_WRITE

VMER_ADDRESS[23..1]

DTACK

DTACK_LED_N

CONTROL_MODE_N

ADCONE_CS_N

ADCONE_RD_N

ADCTWO_CS_N

ADCTWO_RD_N

ADCONE_CONVST_N

ADCTWO_CONVST_N

ACQ_ADDR[17..0]

sr_rdenable

UWORD

FPGA3_EN

ADC0_WRITE

ADC1_WRITE

ADC0_READENABLE

ADC1_READENABLE

ADC2_READENABLE

DV_TOE_n

DV_DIR

ACQ_ADDR_CLEAR

RELAYCTRL[3..0]

IO_SW[8..0]

POWERMUX[3..1]

PS_EN

MOTORRELAYEN

RULERMUX[1..0]

sr0_rdenable

sr1_rdenable

sr2_rdenable

sr3_rdenable

DAC_CS_N

calibration_mode

ARESET_N

VME_DATA[7..0]

ADCZERO_BUSY

ADCONE_BUSY_N

ADCTWO_BUSY

VME interfaceI/O pins

SRAM controlADC control

ADC0 (AD7938) control

ADC1 (AD7484) control

ADC2 (AD7677) control

ADC I/O

SRAM I/O

VCC
CLK40MHz INPUT

VCC
VME_AS_n INPUT

VCC
VME_DS0_n INPUT

VCC
VME_DS1_n INPUT

VCC
VME_WR_n INPUT

VCC
VME_SYSRST_n INPUT

VCC
VME_AM[5..0] INPUT

VCC
CSADDR_n[3..0] INPUT

VCC
ACQ_CLK INPUT

VCC
VME_ADDR[23..1] INPUT

VCC
BUSY_AD0 INPUT

VCC
BUSY_AD1_n INPUT

VCC
BUSY_AD2 INPUT

VCC
SCANINHIBIT INPUT

VME_DTACKOUTPUT

DTACK_LED_NOUTPUT

DV_TOE_nOUTPUT

DV_DIROUTPUT

FPGA2_ENOUTPUT

FPGA3_ENOUTPUT

AG[18..1]OUTPUT

WE_SR0_nOUTPUT

OE_SR0_nOUTPUT

CS_SR0_nOUTPUT

WE_SR1_nOUTPUT

OE_SR1_nOUTPUT

CS_SR1_nOUTPUT

WE_SR2_nOUTPUT

OE_SR2_nOUTPUT

G_SR2_nOUTPUT

CS_SR2_nOUTPUT

WE_SR3_nOUTPUT

OE_SR3_nOUTPUT

CS_SR3_nOUTPUT

DIR_SR3OUTPUT

G_SR3_nOUTPUT

G_SR0_nOUTPUT

DIR_SR0OUTPUT

DIR_SR1OUTPUT

G_SR1_nOUTPUT

DIR_SR2OUTPUT

CLK_AD0OUTPUT

CS_AD0_nOUTPUT

CONVST_AD0_nOUTPUT

CS_AD1_nOUTPUT

CONVST_AD1_nOUTPUT

CS_AD2_nOUTPUT

CONVST_AD2_nOUTPUT

RD_AD_nOUTPUT

WRITE_AD0_nOUTPUT

WRITE_AD1OUTPUT

FPGA_READY_NOUTPUT

SW[8..0]OUTPUT

PMUX[3..1]OUTPUT

PS_ENOUTPUT

CHSel[4..1]OUTPUT

MOTORENOUTPUT

WIRERELAY34D[1..0]OUTPUT

WIRERELAY12D[1..0]OUTPUT

CS_DA0_NOUTPUT

RULERMUXER[1..0]OUTPUT

VCC
VME_DATA[7..0]BIDIR

GND

VCC

AND2

inst6

NOT

inst8

CLRN

D
PRN

Q

DFF

inst2

CLK_40MHz

ARESET_N

ACQ_CLK

BUSY

ADC_CLK

CS_N

RD_N

CONVST_n

acq_adczero

inst18

NOT

inst11

AND3

inst30

NOT

inst28
NOT

inst29

AND2

inst42

AND2

inst43

NOT

inst31

AND2

inst46

0

1datab[]

sel

dataa[]
result[]

BUSMUX

inst47

SRAM_CLK

ACQ_CLK

CONTROL_N

VMEACC_N

SRAM_WR_N

SRAM_OE_N

SRAM_CE_N

sram_ctrl

inst16

SRAM_CLK

ACQ_CLK

CONTROL_N

VMEACC_N

SRAM_WR_N

SRAM_OE_N

SRAM_CE_N

sram_ctrl

inst17

SRAM_CLK

ACQ_CLK

CONTROL_N

VMEACC_N

SRAM_WR_N

SRAM_OE_N

SRAM_CE_N

sram_ctrl

inst25

SRAM_CLK

ACQ_CLK

CONTROL_N

VMEACC_N

SRAM_WR_N

SRAM_OE_N

SRAM_CE_N

sram_ctrl

inst15

NOT

inst10

NOT

inst33

AND2

inst49

OR2

inst3

sys_clk

aresetN

vme_asN

vme_ds0N

vme_ds1N

vme_wrN

vme_am[5..0]

vme_addr[23..1]

physical_gaN[3..0]

long_dtack

long_dt_trig

vmec_csN

vmer_write

vmer_address[23..1]

vme_dtack

vme_dtackled_n

control_n

vme_slotsel_and_dtack

inst1

OR2

inst4

AND3

inst35
NOT

inst36

BAND2

9

CLK_40MHz

ARESET_N

ACQ_CLK

BUSY

CS_N

RD_N

CONVST

acq_adconeandtwo

inst20

CLK_40MHz

ARESET_N

ACQ_CLK

BUSY

CS_N

RD_N

CONVST

acq_adconeandtwo

inst21

NOT

inst23

NOT

inst34

OR2

inst5

NOT

inst37

CLEAR

ACQ_CLK

SYS_CLK

CAL_MODE

ACQ_ADDR[17..0]

acq_address

inst14

OR2

inst32

BAND2

10

NOR2

inst19

NOR2

inst22

AND3

inst39
NOT

inst40

OR4

inst48

sys_clk

vmereset_n

control_n

vmec_csN

vmer_write

vmer_addr[15..0]

scaninhibit

uword

fpga2_en

fpga3_en

adc0_control_reg_de

adc1_control_reg_de

adczero_readen

adcone_readen

adctwo_readen

dv_toe_n

dv_toe_dir

acq_addr_clr

RELAYCTRL[3..0]

IO_SW[8..0]

POWERMUX[3..1]

PS_EN

MOTORRELAY

RULERMUX[1..0]

sr0_rdenable

sr1_rdenable

sr2_rdenable

sr3_rdenable

dac_cs_n

calibrationflag

areset_n

databus[7..0]

vme_function_reg

inst

OR2

inst44

BAND2

11

NOR2

inst24

AND2

inst50

NOT

inst45

NAND3

inst7

XOR

3

XOR

1

WIDTH 18
Parameter Value

105

B.2. SLAVE1 FPGA TOP LEVEL

B.2. Slave1 FPGA top level

FUNCBUS[11..0]

DATABUS[17..0]

FGPAI_WR

GND[15..0]VCC

CS_DIV_CLK

DATABUS[15..0]CLK40MHz

ACQ_SCD_DE

WRITE

ACTIVE_SCAN

ACQCLKSEL0

BST40MHz

DATABUS[17..0]

CS_ORCLK

CLK40MHz

ARESET_n

OptR_REFERENCE

OptR_PHASE_A

OptR_PHASE_B

ACQ_OR_MUX_EN

ACQ_OR_MUX_SEL[1..0]

ACQ_OR_CLR_UDC

ACQ_OR_CLR_REF

ACQ_OR_CLR_ERR

UWORD

FGENCLKCLK40MHz

ARESET_n

ACTIVE_SCAN

CD_CLKDIVDATA[17..0]

ARESET_n

CLK40MHz

ACTIVE_SCAN

POSCNT_MIN

POSCNT_MAX

ENDSWITCH_IN

ENDSWITCH_HOME

RESETHOME

BSTFREV

BST40MHz

STATUSBFLINES1 FGBUSY_n

EXTCLK

STATUSBFLINES[9..0]

ACTIVEGATE

CALIBRATION_MODE

ACTIVE_SCAN
DT_OE_N

ACQ_CLK

CALIBRATION_MODE

ACQCLKSEL[1..0]

CS_ORCLK

EXTCLK

BSTFREV

CS_DIV_CLK

ACQCLK_EN

USEACQGATE
ACTIVEGATE

GATEHI

GATELO

ACTIVE_SCAN

ACTIVEGATE
ACQCLK_EN

CALIBRATION_MODE

ACTIVE_SCAN
ACTIVECAL

ACTIVECAL

CLK40MHz

FPGAI_EN

FGPAI_WR

FPGAI_ADDR[3..0], GND0

FG_AS_RDADDR[11..0]FC_RRAC_CLR

FC_RRAC_INC

STATUSBFLINES[9..0]

DATABUS[11..0]

GND0

WR_DAC_N

FUNCBUS[11..0]

FC_TC_OE

CLK40MHz

DATABUS[15..0]

ACQ_OR_MUX_EN

ACQ_OR_MUX_SEL[1..0]

ACQ_OR_CLR_UDC

ACQ_OR_CLR_REF

ACQ_OR_CLR_ERR

ACQ_SCD_DE

FC_TC_OE

FC_RRAC_CLR

FC_RRAC_INC

FG_FROM_OE

FG_FAC_CLR

FG_FAC_SET

CD_CLKDIVDATA[17..0]

FROM_MODE[1..0]

ACQCLKSEL[1..0]

CALIBRATION_MODE

USEACQGATE

UWORD

WRITE

ARESET_n

TRACKn_OR_RSTHOME

SCANTRIGGER

FGENENDADDRESS[11..0]

FROM_ADDR[11..0]

FUNCBUS[11..0]

FC_RRAC_INC

AS_FUNCADDR[11..0]

FG_AS_RDADDR[11..0]

CLK40MHz

FG_FROM_OE

FROM_MODE[1..0]

FROM_ADDR[11..0]

CLK40MHz

FGENCLK

FG_FAC_CLR

FG_FAC_SET

ARESET_n

SCANTRIGGER

POSCNT_MIN

POSCNT_MAX

AS_FUNCADDR[11..0]

ACTIVE_SCAN

FGENENDADDRESS[11..0]

Optical ruler quad decoder and multiplexer

18-bit clock divider

Function address counter

DEFAULTS

Acquisition - ACQ Function Check - FC

Function Generator - FG

Aquisition/calibration and function generator
FPGA EP2C8Q208C8 - Slave1

PIN

ICU

OR

TC

RRAC

CD

AS

FROM

FAC

VME read address counter

Function ROMs (3) with output selection

Address switch/mux, function address (0) or read address (1)

Acquisition clock switch

CS

Interface Control Unit - decoding FPGAInterface addresses and controling the dataflow
Control - CO

16 bit sys_clk divider

Buffer, DATABUS-FUNCTIONBUS

SCD

Status buffer - SB

VCC
CLK40MHz INPUT

VCC
OptR_REFERENCE INPUT

VCC
OptR_PHASE_A INPUT

VCC
OptR_PHASE_B INPUT

VCC
FPGAI_ADDR[3..0] INPUT

VCC
FPGAI_EN INPUT

VCC
VME_WR_N INPUT

VCC
EXTCLK INPUT

VCC
BST40MHz INPUT

VCC
BSTFREV INPUT

VCC
GATEHI INPUT

VCC
GATELO INPUT

VCC
ENDSWITCH_HOME INPUT

VCC
ENDSWITCH_IN INPUT

VCC
RESETHOME INPUT

FUNCTIONDATA[11..0]OUTPUT

ACQ_CLKOUTPUT

WR_DAC_NOUTPUT

DT_OE_NOUTPUT

TRACKn_OR_RSTHOMEOUTPUT

FGBUSY_nOUTPUT

ACTIVEGATEOUTPUT

VCC
DATA[17..0]BIDIR

GND

VCC

RRAC_CLRCNT

RRAC_CNTCLK

Q[11..0]

rdromaddr

inst12

SYS_CLK

ARESET_n

CD_OE

CD_DIVISION_VALUE[17..0]

DIVIDED_CLK

CLKDIV

inst3

AS_MUXSEL

AS_FUNCADDR[11..0]

AS_RDROMADDR[11..0]

ROMADDR[11..0]

addrmux

inst14

SYS_CLK

FROM_OE

FROM_FUNC_SEL[1..0]

FROM_ADDRESS[11..0]

FUNC_DATA[11..0]

FUNCMEMS

inst

NOT

inst5

SYS_CLK

BST_CLK

CLKSEL

SCD_DE

SCD_WR

SCD_OE

DIV_CLK

DATABUS[15..0]

CLOCKDIVIDER

inst2

CS_DIVSYSCLK

CS_FREV

CS_EXTCLK

CS_ORCLK

CS_OE

CLKSEL[1..0]

CALIBRATION

ACQ_CLK

CLKSW

inst13

AND2

inst18

NOT

inst20

NOT

inst21
NOT

inst22
NOT

inst23

NAND2

inst19

ARESET_n

SYSCLK

SCAN

FG_MIN

FG_MAX

ESW_IN

ESW_OUT

RST_HOME

BST40MHZ

FREV

EXTCLK

SACQGATE

STATUS[9..0]

statusbuff

inst17

NAND2

inst25

XNOR

inst26

SYS_CLK

ARESET_n

OR_REF

OR_PHASE_A

OR_PHASE_B

OR_MUX_EN

OR_MUX_SEL[1..0]

OR_CLR_UDC

OR_CLR_REF

OR_CLR_ERR

UWORD

ACTIVECAL

DATA_OUT[17..0]

QD_CLK

ORQDMUX

inst1

AND2

inst24

NOT

inst10

CLK

TC_OE

FUNCBUS[11..0]

DBUS[11..0]

FUNCTRANS

inst6

CLK

ICU_RST

ICU_EN

ICU_WR

ICU_ADDR[4..0]

STATUSBFLINES[9..0]

ACQ_OR_MUX_EN

ACQ_OR_MUX_SEL[1..0]

ACQ_OR_CLR_UDC

ACQ_OR_CLR_REF

ACQ_OR_CLR_ERR

ACQ_SCD_DE

FC_TC_OE

FC_RRAC_CLR

FC_RRAC_INC

FG_FROM_OE

FG_FAC_CLR

FG_FAC_SET

CD_FGENCLKDIV[17..0]

FGENENDADDRESS[11..0]

FROM_MODE[1..0]

ACQ_CS_CLKSEL[1..0]

CALIBRATION_MODE

ACQGATE_USE

TRACKn_OR_RSTHOME

UWORD

SCAN_TRIGGER

WRITE_LATCH

aRESET_N

DATABUS[15..0]

CONTROLUNIT

inst9

SYS_CLK

ARESET_n

FAC_DIVIDED_CLK

FAC_CLEAR_CNT

FAC_SET_CNT

SCANTRIGGER

FGENENDADDRESS[11..0]

ACTIVE_SCAN

POSCNT_MIN

POSCNT_MAX

MPM_ADDR[11..0]

ADDRCNT

inst4

PIN_89

PIN_137
PIN_136
PIN_135
PIN_134
PIN_133
PIN_132
PIN_129
PIN_126
PIN_114
PIN_115
PIN_118
PIN_119
PIN_120
PIN_121
PIN_122
PIN_125
PIN_112
PIN_113

PIN_70
PIN_71
PIN_69
PIN_28

PIN_72

PIN_48
PIN_47
PIN_65
PIN_64
PIN_63
PIN_60
PIN_59
PIN_58
PIN_57
PIN_55
PIN_53
PIN_52

PIN_42

PIN_30

PIN_31

PIN_142

PIN_92

PIN_51

PIN_45

PIN_43

PIN_8

PIN_7

PIN_139

PIN_88

PIN_21

PIN_17

PIN_143

PIN_4

PIN_67

PIN_3

106

B.3. SLAVE2 FPGA TOP LEVEL

B.3. Slave2 FPGA top level

PG32, PG31, PG22, PG21, PG2, PG12, PG11, PG1

GENERAL PINS DISPLAY PINS

STATUS PINS

COMMUNICATION INTERFACE

ERROR HANDLING

DISPLAY_N7

DISPLAY_N6

DISPLAY_N5

DISPLAY_N4

DISPLAY_N3

DISPLAY_N2

DISPLAY_N1

DISPLAY_N0

GND

CLK_40MHz

F3_EN

VME_ADDR[4..1],GND

DATABUS[15..0]

ARESET_n

CLK_40MHz

WIREBROKEN

RWIRE

HSTEMP

IFAN

NEG2V_VME

NEG2V_INT

NEG5V_INT

VMPS

ARESET_n

CLK_40MHz

ARESET_n

DISPLAY_N[7..0]

G
N

D

VME_WRITE_N

POTSIG[4..1]

POTSENSE[4..1]

PG[7..0]

RULERSTATUS

STATUS[24..0]

STATUS[24..0]

STATUS[24..0]

VCC
NEG2V_INT INPUT

VCC
NEG2V_VME INPUT

VCC
NEG5V_INT INPUT

VCC
F3_EN INPUT

VCC
HSTEMP INPUT

VCC
IFAN INPUT

VCC
RWIRE INPUT

VCC
VMPS INPUT

VCC
WIREBROKEN INPUT

VCC
CLK_40MHz INPUT

VCC
POTSENSE[4..1] INPUT

VCC
POTSIG[4..1] INPUT

VCC
PG[7..0] INPUT

VCC
VME_ADDR[4..1] INPUT

VCC
VME_WRITE_N INPUT

VCC
RULERSTATUS INPUT

DSF3_N_AOUTPUT

DSF3_N_BOUTPUT

DSF3_N_COUTPUT

DSF3_N_DOUTPUT

DSF3_N_EOUTPUT

DSF3_N_FOUTPUT

DSF3_N_GOUTPUT

DSF3_N_DPOUTPUT

SCANINHIBITOUTPUT

VCC
DATABUS[15..0]BIDIR GND

SYS_CLK

ARESET_n

ST_WIREBROKEN

ST_WIREHOT

ST_HEATSINKTEMP

ST_FANCURRENT

ST_NEG2VVME

ST_NEG2VINT

ST_NEG5VINT

ST_VMPS

ST_RULERSTATUS

ST_POTSIG[3..0]

ST_POTSENSE[3..0]

ST_PG[7..0]

STATUSLINES[24..0]

SAMPLER

inst12

SYS_CLK

ARESET_n

ERRORIN[24..0]

SEV_SEG[7..0]

ERRORDISPLAY

inst

SYS_CLK

ICU_RST

ICU_EN

ICU_WR_N

ICU_ADDR[4..0]

ERRORLINES[24..0]

ARESET_N

DATABUS[15..0]

F3CONTROLUNIT

inst1

107

B.3. SLAVE2 FPGA TOP LEVEL

108

C. FPGA Registers

109

Register description:

General abbreviations:
R: Read, W: Write, LB: Low Byte, HB: High Byte, LW: Low Word, HW: High Word, HEX: Hexadecimal,
DEC: Decimal, X: Don’t care (bit not used), D#: Data bit #, NU: Not used.

Registers inside FPGA 1 (VME Data width = 8):

Versions register R only (Address: HEX”4C”/DEC”76”):
D7 D6 D5 D4 D3 D2 D1 D0
BV3 BV2 BV1 BV0 FV3 FV2 FV1 FV0

D3-D0: FPGA version number (hex).
D7-D4: Board version number (hex).

FPGA I/O register R/W (Address: HEX”44”/DEC”68” (LB), HEX”46”/DEC”70” (HB)):
D7 D6 D5 D4 D3 D2 D1 D0
d7 d6 d5 d4 d3 d2 d1 d0
d15 d14 d13 d12 d11 d10 d9 d8

FPGA Switch control register R/W (Address: HEX”48”/DEC”72”):
D7 D6 D5 D4 D3 D2 D1 D0
d7 d6 d5 d4 X d2 d1 d0

D2-D0: Channel select:

000: SEM1: Sw1 on, Sw2 off, Sw9 on, PowerMux1 off, PowerMux2 off, PowerMux3 X.
001: SEM2: Sw3 on, Sw0 off, Sw10 on, PowerMux1 off, PowerMux2 on, PowerMux3 X.
010: SEM3: Sw5 on, Sw6 off, Sw11 on, PowerMux1 on, PowerMux2 X, PowerMux3 off.
011: SEM4: Sw7 on, Sw4 off, Sw12 on, PowerMux1 on, PowerMux2 X, PowerMux3 on.
100: Temperature1: Sw0 on, Sw3 on, Sw9 on, PowerMux1 off, PowerMux2 off, PowerMux3 X.
101: Temperature2: Sw1 on, Sw2 on, Sw10 on, PowerMux1 off, PowerMux2 on, PowerMux3 X.
110: Temperature3: Sw4 on, Sw7 on, Sw11 on, PowerMux1 on, PowerMux2 X, PowerMux3 off.
111: Temperature4: Sw5 on, Sw6 on, Sw12 on, PowerMux1 on, PowerMux2 X, PowerMux3 on.

D3: n.u. was track or reset home mode select

D4:

0: PS disabled.
1: PS enabled.

D5:
0: MotorRelay off.
1: MotorRelay on.

D7, D6: Ruler multiplexer select
 00: Channel 1
 01: Channel 2
 10: Channel 3
 11: Channel 4

SRAM selection register R/W (Address: HEX”4A”/DEC”74”):
D7 D6 D5 D4 D3 D2 D1 D0
X X X X X X d1 d0

D1, D0: SRAM Select
 00: SRAM 0, diagnostics
 01: SRAM 1, logarithmic amplifier
 10: SRAM 2, potentiometer position
 11: SRAM 3, optical ruler position
D7-D2: NU.

110

FPGA Relay control register R/W (Address: HEX”42”/DEC”66”):
D7 D6 D5 D4 D3 D2 D1 D0
X X X X d3 d2 d1 d0
D1, D0:

00: Relay12+/- both off: CH1=SEM1, CH2=SEM2.
01: Relay12+ on: CH1=PMT1, CH2=WireTemp2.
10: Relay12- on: CH1=WireTemp1, CH2= PMT1.
11: Relay12+ on: CH1=PMT, CH2=WireTemp2.

D3, D2:
00: Relay34+/- both off: CH3=SEM3, CH4=SEM4.
01: Relay34+ on: CH3=PMT2, CH4=WireTemp4.
10: Relay34- on: CH3=WireTemp3, CH4= PMT2.
11: Relay34+ on: CH3=PMT, CH4=WireTemp4.

D4-D7: NU.

Registers inside FPGA 2(VME Data width = 16):

FPGA FGen Clock division counter register R/W (Address: HEX”00”/DEC”0” (LW), HEX”02”/DEC”2”
(HW)):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
X X X X X X X X X X X X X X d17 d16

D17-D0: number to divide 40 MHz clock with to obtain FGen clock.
D31-D18: NU.

FPGA Acq. Clock division counter register R/W (Address: HEX”0E”/DEC”14”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

D15-D0: number to divide 40 MHz clock with to obtain Acq. Clock (normally 500 kHz).

FPGA Ruler Reference Register R only (Address: HEX”04”/DEC”4” (LW), HEX”06”/DEC”6” (HW))+
reset W (Address: HEX”04”/DEC”4”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
X X X X X X X X X X X X X X d17 d16

D17-D0: number of ruler pulses before occurrence of reference pulse.
D31-D18: NU.

FPGA Ruler Error Register R only (Address: HEX”08”/DEC”8” (LW), HEX”0A”/DEC”10” (HW))+
reset W (Address: HEX”08”/DEC”8”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
d15 d14 d13 d12 d11 d10 D9 d8 d7 d6 d5 d4 d3 d2 d1 d0
X X X X X X X X X X X X X X d17 d16

D17-D0: number of ruler error pulses.
D31-D18: NU.

FPGA status buffer R only (Address: HEX”12”/DEC”18”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X X X d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

If d#=1:
D0: Scan

111

D1: FGen busy.
D2: FGen min.
D3: FGen max.
D4: End-of-stroke switch hit.
D5: Wire reset home.
D6: 40 MHz from BOBR signal present.
D7: Frev from BOBR signal present.
D8: Ext. clock signal present.
D9: Synchronous Acquisition gate.
D15-D10: NU.

FPGA control register R/W (Address: HEX”18”/DEC”24”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X X X X X d7 d6 d5 d4 d3 d2 d1 d0

D1, D0: FGen ROM mode select:

00: Mode 0: linear profile for scanning slowly from switch to fast scan start position.
01: Mode 1: profile for fast scan with acc, dec. and const. speed zones.
10: Mode 2: linear profile for slow scan.
11: Not used.

D3, D2 clock signal source selection:
 00: use 40Mhz X-tal and acq. clock division counter.
 01: use 40 MHz from BOBR and acq. clock division counter.
 10: use Frev from BOBR.
 11: use Ext. clock.
D4: Scan mode:

0: Normal scan mode. ADC3 triggered with Frev/500kHz (<1 MHz!).
1: Calibration mode. ADC3 triggered with ruler pulses.

D5: Acq Gate:
0: Acquisitions not using AcqGate.
1: Acquisitions using AcqGate.

D6: Track or reset home mode:
 0: Wire position track mode.
 1: Reset wire home mode.
D7: FGEN address mode
 0: Use actual FGEN end address during a scan (HEX’FFF’)

1: Restrict FGEN end address to the value in the FGEN end address register ONLY IF FGEN ROM
MODE 2 IS SET

D15-D8: NU.

FGEN end address register R/W (Address: HEX”16”/DEC”22”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

D11-D0: End address for the FGEN (function generator) if bit 7 in the control register is set.
D15-D12: NU.

Registers inside FPGA 3 (VME Data width = 16):

Error register R only (Address: HEX”20”/DEC”32” (LW), HEX”22”/DEC”34” (HW)):
All HW statuses are fed into a FPGA 3 register

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
X X X X X X X d24 d23 d22 d21 d20 d19 d18 d17 d16

If all Bits 1 then OK, else:

Active
error bit #

LED
Display Error message

112

 - No error

D0 0 Wire broken.

D1 1 Wire hot.

D2 2 Heat sink over temperature.

D3 3 Fan current low.

D4 4 -2V VME supply missing.

D5 5 -2V internal supply missing.

D6 6 -5V internal supply missing.

D7 7 MPS voltage error NU.

D8 8 Wire1 not near home position.

D9 9 Wire2 not near home position.

D10 A Wire3 not near home position.

D11 b Wire4 not near home position.

D12 C Potentiometer1 voltage too low.

D13 d Potentiometer2 voltage too low.

D14 E Potentiometer3 voltage too low.

D15 F Potentiometer4 voltage too low.

D16 I Ruler status bad.

D17 J PG1 - Internal power for FPGA1 bad

D18 L PG11 - PLL1 power for FPGA1 bad

D19 M PG12 - PLL2 power for FPGA1 bad

D20 n PG2 - Internal power for FPGA2 bad

D21 o PG21 - PLL1 power for FPGA2 bad

D22 P PG22 - PLL2 power for FPGA2 bad

D23 r PG31 - PLL2 power for FPGA3 bad

D24 t PG32 - PLL2 power for FPGA3 bad

Conditions indicated by individual LED’s controlled by FPGA:
1: Wire1 not near home position while not scanning.
2: Wire2 not near home position while not scanning.
3: Wire3 not near home position while not scanning.
4: Wire4 not near home position while not scanning
If there are no errors, then ‘–‘ is displayed. If 1 error, then a single fixed error number is displayed. If several
errors occur, then the error characters are stepped through with a 0.5 sec interval. One 7-segment LED display is
enough to cope with the error reporting. The decoding is done inside the FPGA and the LED driver does not
contain any decoder.
As the number of the errors exceeds 15, letters are used as well, in conjunction with
http://www.twyman.org.uk/Fonts/ :

Some characters cannot be used because they are duplicated (g (9), I (1), k (h), o (0), s (5), x (h)). However,
some of them (g, h, o, s) may be modified keeping a reasonable readability.

113

Registers outside FPGA:

ADC0 (AD7938) control register W only (Address: HEX”90”/DEC”144”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X PM1 PM0 COD REF A2 A1 A0 MD1 MD0 SH SQ RG

D0: RANGE 0: Input range from 0 to Vref ; 1: Input range from 0 to 2xVref.
D1, D2: SEQ, SDWN

00: sequencing not used.
01: shadow register used.
10: sequence function not interrupted after write operation.
11: sequencing is used.

D4, D3: MODE1, MODE0
00: 8 single-ended channels.
01: 4 fully differential channels.
10: 4 pseudo differential channels.
11: 7 pseudo differential channels.

D7, D6, D5: ADD2, ADD1, ADD0 : channel addresses.
D8: REF 0: external reference used; 1: internal reference used.
D9: CODING 0: output is straight binary; 1: output is twos complement.
D10, D11: PM0, PM1

00: Normal power mode – all circuitry is powered.
01: auto shutdown – enters in full shutdown after each conversion.
10: Auto standby – all circuitry is powered down except for the reference and buffer.
11: Full shutdown – all circuitry is powered down.

D15-D12: NU.

ADC0 (AD7938) shadow register W only (Address: HEX”90”/DEC”144”):
Beware that this register can only be filled on the following write operation after the SH-bit in the ADC0 control
register has been set.
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X X X X X Vin7 Vin6 Vin5 Vin4 Vin3 Vin2 Vin1 Vin0

D7-D0: Enable the channels to be converted during a sequence.
D15-D8: NU.

ADC1 (AD7484) offset register W only (Address: HEX”92”/DEC”146”)::
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X 0 0 0 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

D11-D0: Value added to conversion result. To be filled as twos complement.
D14-D12: Set to 0.
D15: NU.

The default contents of the offset register are 0. If the offset register contains any value other than 0, the
contents of the register are added to the SAR result at the end of conversion. To write to the offset register, a 15-
bit word is written to the AD7484 with the 12 LSBs containing the offset value in twos complement format. The
3 MSBs must be set to 0. The offset value must be within the range −1310 to +1310, corresponding to an offset
from −200 mV to +200 mV.

DAC00 (AD5582) Logarithmic amplifier test current R/W (Address: HEX”80”/DEC”128”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

D11-D0: Binary value representing an output voltage ranging from -2.5 V to +2.5 V.
D15-D12: NU.

114

A test current for the logarithmic amplifier is set by the output voltage of this DAC output. This has to be a
negative voltage, due to the polarization of a diode in series. When the logarithmic amplifier is to be used in
normal operation, this output value should be set to 0 V (HEX”800”).

DAC01 (AD5582) Wire current R/W (Address: HEX”82”/DEC”130”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

D11-D0: Binary value representing an output voltage ranging from -2.5 V to +2.5 V.
D15-D12: NU.

A test current for the wire temperature measurements is set by the output voltage of this DAC output. This
current is necessary during the temperature measurements, and the wire current can be deducted from the
following formulae:

Ω
−=

Ω⋅Ω
⋅Ω−=

⋅
⋅−=

k
V

kM
VM

RR
VR

I DACDACDAC
out 121

2 0101

10679

0198

DAC02/03 (AD5582) Scan Gate Lower/Upper limit R/W (Address: HEX”84”/DEC”132”):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X X X d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

D11-D0: Binary value representing an output voltage ranging from -2.5 V to +2.5 V.
D15-D12: NU.

DAC02/03 values represent the voltages for the respectively lower/upper voltage limits of the scan gate. When
the scan gate bit of the FPGA2 Control Register is set, acquisitions are only performed when the potentiometer
voltage is within the lower and upper limit of the scan gate.

115

D. VME memory mapping

116

Write Write Read Read
Hex Dec Data width Function Data width Function

FPGA2 00 0 16bits FGEN Clock division counter register Lo 16 bits FGEN Clock division counter register Lo
FPGA2 02 2 2 bits FGEN Clock division counter register Hi 2 bits FGEN Clock division counter register Hi
FPGA2 04 4 0 Clear quadrature decoder reference register 16 bits Ruler Reference Register Lo
FPGA2 06 6 - N.U. 2 bits Ruler Reference Register Hi
FPGA2 08 8 0 Clear quadrature decoder error counter 16 bits Ruler error register Lo
FPGA2 0A 10 - N.U. 2 bits Ruler error register Hi
FPGA2 0C 12 0 Clear quadrature decoder U/D counter - N.U.
FPGA2 0E 14 16 bits Acq. Clock division counter register 16 bits Acq. Clock division counter register
FPGA2 10 16 0 Clear Memory address counter - N.U.
FPGA2 12 18 0 Set Fgen ROM address counter to FFF 10 bits Status buffer R only
FPGA2 14 20 0 Clear Fgen ROM address counter 12 bits FG ROM 4k x 12 bits (*)
FPGA2 16 22 12 bits FGEN end address value 12 bits FGEN end address value
FPGA2 18 24 8 bits Control register 8 bits Control register
FPGA2 1A 26 0 Start motion - N.U.
FPGA2 1C 28 0 Motion reset - N.U.
FPGA2 1E 30 0 FPGA II reset (also set by master reset) - N.U.
FPGA3 20 32 - N.U. 16 bits Read error register Lo
FPGA3 22 34 - N.U. 8 bits Read error register Hi
FPGA3 3E 62 0 FPGA III reset (also set by master reset) - N.U.
FPGA1 40 64 0 Clear Acquisition Address Counter - N.U.
FPGA1 42 66 4 bits Relay control register 4 bits Relay control register
FPGA1 44 68 8 bits I/O register Lo 8 bits I/O register Lo
FPGA1 46 70 8 bits I/O register Hi 8 bits I/O register Hi
FPGA1 48 72 8 bits Switch control register 8 bits Switch control register
FPGA1 4A 74 2 bits SRAM selection register 2 bits SRAM selection register
FPGA1 4C 76 - N.U. 8 bits Versions register
DAC00 80 128 12 bits DAC00: Log amp test current 12 bits DAC00: Log amp test current
DAC01 82 130 12 bits DAC01: Wire current 12 bits DAC01: Wire current
DAC02 84 132 12 bits DAC02: Scan Gate Lower limit 12 bits DAC02: Scan Gate Lower limit
DAC03 86 134 12 bits DAC03: Scan Gate Upper limit 12 bits DAC03: Scan Gate Upper limit
ADC0 90 144 12/8 bits ADC0 control/shadow register(ENABLE)** 12 bits ADC0 Misc data
ADC1 92 146 14+1(***) bits ADC1 Log.amp offset register (ENABLE) 14+1(***) bits ADC1: Log. Amp acq.
ADC2 94 148 - N.U. 16 bits ADC2: Potentiometer acq.

All FPGAs FE 254 0 Master reset

Reserve addresses 64-127 (HEX"40-7F") for FPGA I functions (*): address counter increments at every read ("FIFO mode")
(**): If the shadow bit is set in control register, then the next write
operation is the shadow data.

SRAM SRAM Start SRAM
Register Address Data width

00 0 256k x 16 bits
01 0 256k x 16 bits
10 0 256k x 16 bits
11 0 256k x 16 bits

SRAM2: Misc. acq. data
SRAM3: Potentiometer data
SRAM4: Quadrature decoder data

Reserve addresses 0-31 (HEX"00-1F") for FPGA II functions
Reserve addresses 32-63 (HEX"20-3F) for FPGA III functions

Function
AM : x39 or x3D, AM (BLT): x3B or x3F

(***): MSB is an overrange bit, indicates if in signal is out of range

VME-16 Address Mapping (AM: x29 or x2D)

VME-24 Address Mapping

SRAM1: Log. Amp data
(R only, values written during a scan)

Address

} VME_ADDRESS1 = UWORD
Low words addressed where VME_ADDRESS1 = 0,
high words addressed where VME_ADDRESS1 = 1

If data pack is bigger than datawidth of the VMEbus:

117

E. Matlab function generation
script

%***
%**** ****
%**** Creates wire scanner motion control function vectors and ****
%**** generates the appropriate memory initialization files. ****
%**** ****
%**** USAGE: ****
%**** Set the Data Width (DW) and the Address Width (AW) only, then ****
%**** run the script in matlab to generate the .mif files. ****
%**** ****
%***

clf;
clc;
clear;

DW = 12;
AW = 12;

Ymax = 2^DW - 1;
Xmax = 2^AW - 1;
Yoffset = round(0.05 * Ymax);
Yrange = Ymax - 2*Yoffset;
Ymid = Yrange / 2;
Xmid = Xmax / 2;
Yone = Ymid - ((0.25*Ymax)/2);
Xone = (2*Xmid*Yone)/(Ymid+Yone);
Xtwo = Xmax - Xone;

vtX = [0:1:Xmax];

%***
%**** ****
%**** Offsetting function ****
%**** ****
%***

funcOffset = (Yoffset/(Xmax+1))*vtX;
plot(vtX,(130/(Ymax+1))*funcOffset);
xlabel(’Time (clock cycles)’);
ylabel(’Position [mm]’);

118

fid = fopen(’startfunction.mif’,’w’);
fprintf(fid,’WIDTH=%d;\nDEPTH=%d;\n\nADDRESS_RADIX=UNS;\nDATA_RADIX=UNS;\n\n

CONTENT BEGIN\n’, AW, Xmax+1);
for m = 0:Xmax

fprintf(fid,’%d : %d; \n’, m, round(funcOffset(m+1)));
end fprintf(fid,’END;\n’); fclose(fid);

%***
%**** ****
%**** Main function with offset ****
%**** ****
%***

a = Yone / Xone^2; b = 2*a*Xone; c = Yone - (b*Xone);

startQuad = a*(vtX.^2) + Yoffset;
midLinear = (b*vtX) + c + Yoffset;
endQuad = -a*((vtX-Xmax).^2) + Yrange + Yoffset;

Y(1:round(Xone)) = startQuad(1:round(Xone));
Y(round(Xone)+1:round(Xtwo)) = midLinear(round(Xone)+1:round(Xtwo));
Y(round(Xtwo)+1:Xmax+1) = endQuad(round(Xtwo)+1:Xmax+1);

Y_speed = diff(Y); Y_acceleration = diff(Y_speed);

%DIGITAL
quantized = round(Y);

figure subplot(2,2,[1 3]);
plot(vtX, (130/(Ymax+1))*Y, vtX, (130/(Ymax+1))*quantized, ’.’);

xlabel(’Time [clock cycles]’); ylabel(’Position [mm]’)
% title(’Position’)

subplot(2,2,2); plot(vtX(1:Xmax), (130/(Ymax+1))*Y_speed);
xlabel(’Time (clock cycles)’); ylabel(’Speed [mm/cc]’)

% title(’Speed’)

subplot(2,2,4); plot(vtX(1:Xmax-1), (130/(Ymax+1))*Y_acceleration);
xlabel(’Time (clock cycles)’); ylabel(’Acceleration [mm/cc^2]’)

% title(’Acceleration’)

fid = fopen(’function.mif’,’w’);
fprintf(fid,’WIDTH=%d;\nDEPTH=%d;\n\nADDRESS_RADIX=UNS;\nDATA_RADIX=UNS;\n\n

CONTENT BEGIN\n’, AW, Xmax+1);
for m = 1:Xmax+1

fprintf(fid,’%d : %d; \n’, m-1, quantized(m));
end fprintf(fid,’END;\n’); fclose(fid);

%***

119

%**** ****
%**** Linear function ****
%**** ****
%***

funcOffset = ((Ymax+1)/(Xmax+1))*vtX;
figure plot(vtX,(130/(Ymax+1))*funcOffset); xlabel(’Time (clock cycles)’);
ylabel(’Position [mm]’);

fid = fopen(’linearfunction.mif’,’w’);
fprintf(fid,’WIDTH=%d;\nDEPTH=%d;\n\nADDRESS_RADIX=UNS;\nDATA_RADIX=UNS;\n\n

CONTENT BEGIN\n’, AW, Xmax+1);
for m = 0:Xmax

fprintf(fid,’%d : %d; \n’, m, round(funcOffset(m+1)));
end fprintf(fid,’END;\n’); fclose(fid);

120

F. LabVIEW VME access program

F.1. Front panel, user interface

121

F.2. BLOCK DIAGRAM

F.2. Block diagram

122

G. LabVIEW testbench for
WSMCC

G.1. FPGA registers check

Figure G.1.: A flowchart which shows the idea of how to check the FPGA registers
using a loop and an address array.

123

G.1. FPGA REGISTERS CHECK

Figure G.2.: From flowchart to LabVIEW block diagram.

124

G.2. ROM FUNCTIONS CHECK

G.2. ROM functions check

Figure G.3.: A flowchart which shows the idea of how to use loops and initial
datasheet values to confirm that the functions stored in the FPGA
ROM is correct.

125

G.2. ROM FUNCTIONS CHECK

Figure G.4.: From flowchart to LabVIEW block diagram.

126

G.3. ADC0 CONVERSION CHECK

G.3. ADC0 conversion check

Figure G.5.: Flowchart shows the idea for how to check the ADC0 conversions,
using a loop to check several channels sequentially.

127

G.3. ADC0 CONVERSION CHECK

Figure G.6.: From flowchart to LabVIEW block diagram..

128

G.4. ADC1 CONVERSION CHECK

G.4. ADC1 conversion check

Figure G.7.: Flowchart shows the idea for how to check the ADC1 conversion.

129

G.4. ADC1 CONVERSION CHECK

Figure G.8.: From flowchart to LabVIEW block diagram..

130

G.5. ADC2 CONVERSION CHECK

G.5. ADC2 conversion check

Figure G.9.: Flowchart shows the idea for how to check the ADC2 conversion.

131

G.5. ADC2 CONVERSION CHECK

Figure G.10.: From flowchart to LabVIEW block diagram..

132

G.6. SRAM CHECK

G.6. SRAM check

Figure G.11.: This flowchart shows the idea for how perform a scan and read out
the acquired values for diagnosis and graphical display.

133

G.6. SRAM CHECK

Figure G.12.: From flowchart to LabVIEW block diagram..

134

H. FPGA Prototype card

H.1. Schematics

135

H.2. PCB

H.2. PCB

140

H.2. PCB

144

H.3. FPGA PIN LOCATIONS

H.3. FPGA pin locations

Master FPGA

USER PIN LOCATION TABLE
Pin name Pin nr Pin name Pin nr

CLK 40MHz 23 BL0 94
BL1 92

VME SYSRST N 163 BL2 90
VME WRITE N 161 BL3 89

VME AS N 165 BL4 88
VME DS0 N 162 BL5 87
VME DS1 N 164 BL6 86
VME A01 105 BL7 84
VME A02 106 BS0 104
VME A03 107 BS1 103
VME A04 110 BS2 102
VME A05 112 BS3 101
VME A06 113 BS4 99
VME A07 114 BS5 97
VME A08 115 BS6 96
VME A09 116 BS7 95
VME A10 117
VME A11 118 F2 A0 205
VME A12 119 F2 A1 203
VME A13 120 F2 A2 201
VME A14 134 F2 A3 200
VME A15 135 F2 EN 206
VME A16 144 F2 WR 207
VME A17 145 F2 RST 208
VME A18 146
VME A19 147 FP IO1 30
VME A20 149 FP IO2 31
VME A21 150 FP IO3 32
VME A22 151 FP IO4 33
VME A23 152 FP IO5 34
VME AM0 142
VME AM1 141 BL DIR 81
VME AM2 139 BL TOE N 82
VME AM3 138 DV DIR 168
VME AM4 137 DV TOE N 169
VME AM5 143 SR3 OE N 80
VME CSA0 181 SR3 TOE N 170
VME CSA1 180 SR3 DIR 171
VME CSA2 179 SR3 CE N 185
VME CSA3 175 SR3 WR N 176

DTACK 160 DT OE N 173
DTACK LED N 133

VME TCD- (LVDSn) 127 RULERMUX0 43
VME TCD+ (LVDSp) 128 RULERMUX1 44
VME CLK- (LVDSn) 129
VME CLK+ (LVDSp) 130

145

H.3. FPGA PIN LOCATIONS

Slave1 FPGA

USER PIN LOCATION TABLE
Pin name Pin nr Pin name Pin nr

CLK 40MHz 17 RULERSTATUS 57
F2 RST 63 RULERREF 58
F2 WR 64 RULERPHASE A 48
F2 EN 65 RULERPHASE B 47
F2 A0 67 FUNC NLED00 144
F2 A1 69 FUNC NLED01 1
F2 A2 70 FUNC NLED02 2
F2 A3 71 FUNC NLED03 3
DT00 115 FUNC NLED04 4
DT01 114 FUNC NLED05 7
DT02 113 FUNC NLED06 8
DT03 112 FUNC NLED07 9
DT04 99 FUNC NLED08 41
DT05 97 FUNC NLED09 42
DT06 96 FUNC NLED10 43
DT07 94 FUNC NLED11 44
DT08 76 DSF2 N A 134
DT09 79 DSF2 N B 136
DT10 92 DSF2 N C 139
DT11 93 DSF2 N D 143
DT12 86 DSF2 N E 141
DT13 87 DSF2 N F 135
DT14 100 DSF2 N G 137
DT15 101 DSF2 N DP 142
DT16 74
DT17 75

146

I. Prototype card

I.1. Schematics

147

I.2. PCB

I.2. PCB

159

