LHCb note 2007-037

The Tsa Reconstruction Framework

M. Needham
CERN

March 30, 2007

Abstract

The classes comprising the Tsa reconstruction framework at the
time of Brunel v31rl are described together with their use.

https://core.ac.uk/display/44176455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The development of pattern recognition algorithms is a difficult task. A
priori, it is not clear that the chosen approach will work. There is a clear
danger that during the development that frustration and pessimism sets in as
unforeseen features are discovered. It is the task of the framework to provide
tools and components that allow the user to prototype new ideas quickly and
hence shorten the design process. In addition, pattern recognition problems
are combinatoric in nature. For example in the development of the track
seeding [1, 2] it has been observed that seemingly small changes in the way
loops are implemented can have an order of magnitude effect on code speed.
Ideas should not be rejected early in the development phase because the
combinatorics looked intractable when with minor modifications the speed
of the code can easily be improved. On the other hand the user may try to
solve the combinatoric problems by techniques such as early breaking out of
loops. In problems where loops are heavily nested this leads to code that is
both difficult to understand and to maintain. It is the role of the framework
to ensure the user can develop fast but maintainable code.

The Tsa framework [3] was developed with these ideas in mind. The perfor-
mance of algorithms developed within this framework can be found elsewhere
[1, 2, 3]. In this note the framework at the time of Brunel v31r1 is described.
The purpose of the note is two-fold. First, to document the use of the code
at the time of this version of Brunel. Second, to present the ideas that have
driven the framework development. Many of these ideas have their origins
elsewhere [4, 5, 6, 7]. The success of the Tsa framework in developing fast
and efficient code shows that these idioms are applicable to the development
of tracking software.

The note is organized as follows. First, the packaging, and structure of the
released code is discussed. This is sub-divided into two parts. The first is a
discussion of the core Tsa classes. The second is a discussion of the so called
Seed extension. Finally, the results of metric tests on the code are described.

The framework should not be considered either finished or perfect. Therefore,
features which can be improved or where more development is needed will
be pointed out.

2 Core Tsa

In the following sections the packaging and use of the core Tsa data classes
and tools will be described. Further details can found on the LHCb doxygen
webpages [8].

2.1 Packaging

The framework consists of two packages under the Tr "hat”. The first TsaK-
ernel is a shared library consisting of data classes, free functions and in-
terfaces. Many of the classes in this library can be re-used outside the Tsa
framework. Currently, it is located in the LHCb project. The second package
is TsaAlgorithms. This consists of component classes: tools and algorithms.
It is located in the REC project. The packages are included in a cmt require-
ments file as follows:

use TsaKernel v* Tr
use TsaAlgorithms v* Tr

All the classes in the TsaKernel package are located in the Tsa namespace.
This leads to more natural names for the data classes. In the future it is
envisaged that algorithms and tools will also be moved to this namespace.

2.2 Data classes

The main data classes provided by the framework are cluster classes. Fig. 1
shows the class structure for the cluster classes. A base class Cluster ex-
presses the common functionality between the detectors. Concrete imple-
mentations for the Silicon and Outer Tracker inherit from this class. The
base class derives from ContainedObject [9] and it expected that objects
of this type are created with new and stored in ObjectVectors. To remove
any time penalty from new these objects are allocated using a Boost memory
pool [10].

The Tsa::Cluster class contains the following information:
e A trajectory that describes the geometric shape of the cluster [11]. This

is obtained directly from the detector element and is thus corrected for
any misalignments

ContainedObject

T

Cluster

AN

STCluster OTCluster

Figure 1: Class diagram for the cluster classes.

e The uncertainty on the cluster measurement.
e A flag indicating whether the cluster is in a hot region.

e Flags indicating the reconstruction status of the cluster. For example,
whether it has been used on a track.

In the case of the Tsa::STCluster the derived class provides access to the
LHCb::STLiteCluster from which the cluster was created. The Tsa::OT Cluster
is slightly more complicated. In this case the derived class provides access
to the LHCb::OTTime from which the cluster was created, a first calcu-
lation of the the drift-radius and a pointer to the top-level detector element
DeOTDetector. To calculate the drift-radius a correction must be made
for the propagation time of the signal along the wire. If no 3-D estimate of
the cluster position is available the drift radius is estimated using the average
distance of the hit along the wire. The pointer to the detector element pro-
vides access to the drift-time parameters allowing a more accurate estimation
of the drift-radius once y is known.

The following code fragments show some examples of how to create and use
an Tsa::OTCluster:

#include ‘‘TsaKernel/OTCluster.h’’
#include ¢‘DeOTDetector/DeOTModule.h’’
#include ‘‘Event/OTTime.h’’

/]

// create an OTCluster
DeOTModulex module; DeOTDetectorx det ;

W N TR W N =

4

9 double error;

10 LHCb::OTTimex* time;

11 // The average distance along the wire is 77.3 cm

12 // Need this to calculate the drift radius

13 double distAlongWire = 773.xGaudi:: Units : :mm;

14 bool isHot;

15

16 // make a cluster

17 Tsa:: OTClusterx aCluster = new Tsa:: OTCluster (module, error,

18 det, time,

19 distAlongWire, isHot);
20

21 // do some things

22

23 if (aCluster—>isHot ()
24 double driftRadius
25}

26

27 // test if a y value is covered by the trajectory
28 double yTest;

29 bool isInside = aCluster—>isInside (yTest, 10.0);

30

31 // get the midPoint of the wire

32 Gaudi:: XYZPoint point = aCluster—>midPoint ();

33

34 const double z = aCluster—>zMid ();

35

36 // you have to delete it !

37 delete aCluster

= false){
aCluster—>driftRadius ();

Data classes are also provided that represent a Spacepoint and a Track.
These are currently not used and should be looked upon as legacy code from
the implementation described in [3].

2.3 Data services

A key feature of the Tsa framework from its inception [3] is that of data ser-
vices. Typically, during the pattern recognition phase fast access is needed to
the data from part of a detector — for example a layer or module. The role of
the data service is to facilitate this task and to shield the user from the details
of how the data access is actually done. In the design it is also foreseen that
user may want to access the data at more than one level. This is very similar
to the view pattern discussed in [12]. To minimize copying and to allow for
multiple views internally the data service caches iterators. The LoKi pack-
age [13] provides a templated wrapper class (“LoKi::Range. <TYPE>")
which converts a pair of iterators to lightweight container. This allows the
data service to return an object with the look and feel of a standard STL
container.

Three tools are provided, one for the Trigger Tracker (ITTDataSvc), one for

the Inner Tracker (IITDataSvc) and one for the Outer Tracker (IOTDataSvc).
The example below shows how to get and use the II'TDataSvc class:

#include ‘‘TsaKernel/IITDataSvc.h’’

/]

1

2

3

4

5 // get the tool

6 IITDataSvcx svc = tool<IITDataSve>(‘‘ITDataSvc’’);
7

8

// initialize it once each event
9 StatusCode sc = svc—>initializeEvent ();

11 // get data of station 1, layer 2, box 2 (=C side)
12 Tsa::STRange aRange = svc—>partition (1,2,2);

13 Tsa::STRange:: iterator iterC = aRange.begin ();

14 for (; iterC != aRange.end(); ++iterC){

15 // just like an STL vector !
16 Tsa:: STClusterx clus = xiterC;
17}

19 // get the data of the entire layer
20 Tsa::STRange aRange2 = svc—>layer (1,2);
21 Tsa::STRange::iterator iterC2 = aRange2.begin ();

22 for (; iterC2 != aRange2.end(); ++iterC2){
23 // just like an STL vector !

24 Tsa:: STCluster* clus2 = xiterC2;

25}

The usage of the other data services is similar. In the future by using the
Gaudi incident service it should be possible to remove the need for the user
to initialize the tool once per event. The possibility of replacing the integers
in the interface with channellDs will also be investigated.

For the user the above discussion is sufficient. The more interested reader
may ask how internally the partitioning of the data is performed. As dis-
cussed in [3] this is done by using the fact that the data is sorted by channel
and using the STL lower_bound algorithm [7].

2.4 Utility classes

The framework also provides classes that represent lines and parabolas in 2-
D. This is done for several reasons. First, this means algorithmic code is not
duplicated. Second, for the parabolic case by encapsulating the concept of a
parabola within a class it can be ensured that Horner’s form [14], which is
computationally optimal, is used for evaluation. Finally, it allows to provide
constructors and factories for conversion between these and other objects in
the framework.

2.4.1 Line class

This class represents a line in 2-D. The class provides the three possible
constructors that can be envisaged:

#include ‘‘TsaKernel/Line.h’’

/).

1
2
3
4
5 // constructor from slope and constant
6 double m, c;

7 Tsa::Line aLine = Tsa:: Line(m,c);

8

9

// constructor from slope and point
10 double x1, zl;
11 Tsa::Line aLine2 = Tsa:: Line(m,x1,2z1);
13 // constructor from two points

14 double x2, z2;
15 Tsa::Line aLine2 = Tsa::Line(x1,x2, z1,22);

To find a point on the line is then trivial:

Tsa: Line alLine;
2 double z;
3 const double x = aLine.value(z);

Finally, a free function is provided to convert a pair of 2-D lines to the
standard 3-D line class provided in LHCbMath package:

1 Tsa::Line xLine, yLine;
2 // Tsa::Line3D is a typedef to the standard line class
3 Tsa::Line3D line = Tsa::createLine3D (xLine, yLine);

2.4.2 Parabola class

The parabola class provides one constructor:

#include ‘‘TsaKernel/Parabola.h’’

/...

// x = az"2 + bz + ¢
double a, b ,c ;
Tsa:: Parabola parabola = Tsa:: Parabola(a,b,c);

N O Ot R W N =

Constructors from other objects are provided via free functions in the header
files “ParabolaFactory.h”. The interface of the class is similar to that of the
Line class. The examples below illustrate its use:

#include ‘‘TsaKernel/Parabola.h’’
// x = az"2 + bz + ¢

double a, b ,c ;

Tsa:: Parabola parabola;

=W N e

// value at z
double z;
const double x = parabola.value(z);

© 0w N O w»m

10 // derivative at z

11 const double tx = parabola.derivative(z);

12

13 // get the line that is tangential at a given z
14 Tsa::Line aLine = parabola.tangent(z);

2.4.3 Glue functions

Many pattern recognition tasks can be seen as an interaction between clus-
ters, the geometric classes just described and the geometry functions located
in LHCbMath. To facilitate this some wrapper functions are provided that
glue the various components together and hide technical details from the
user. For example:

#include ‘‘TsaKernel/ClusFun.h”’
#include ¢‘TsaKernel/Cluster.h’’

/]

// get two x clusters
Tsa:: Cluster clusl, clus2;

© 0 N O U W N =

// these clusters define a plane
Gaudi:: Plane3D aPlane = Tsa::ClusFun::plane(clusl,clus2);

= e
N o= O

// get the intersection of a stereo cluster with the plane
Tsa:: Cluster clus3;

Gaudi:: XYZPoint iPoint;

15 bool isOK = Tsa:: ClusFunr::intersection (clus3,aPlane, iPoint);
16

17

18 // we just built a spacepoint, iPoint !

= e
=W

2.5 Expectation tools

A powerful variable to discriminate between ghost and real tracks is the num-
ber of hits expected on a track compared to the number actually found. The
framework provides two tools, one for the Inner Tracker (II'TExpectedHits)
and one for the Outer Tracker (IOTExpectedHits), that allow to test
whether a hit is expected in a given layer. This information can then be
used either to simply count the number of faults or to build a discriminating

variable such as a likelihood. The use of the tool for the Outer Tracker case
is illustrated by the following code fragments:

1 #include ¢‘TsaKernel/IOTExpectedHits.h’’
2

/]

// get the tool
IOTExpectedHits* hits = tool<IOTExpectedHits > (‘‘IOTExpectedHits ") ;

// variables needed

typedef std:: vector<IOTExpectedHits:: OTPair> OTPairs;
10 OTPairs output; // output container

11

12 int sect; // sectoring

13 LHCb:: OTChannellD chan = OTChannellD (1,1,0,0,0); // station 1, layer 1
14 Tsa::Line aLine; // track in y

15 Tsa::Parabola aParab; // track in z

16

17 hits—>collect (aParab,aLine,testChan,output, sect);

18

9}

© W N U e W

The following comments should be made on the arguments passed to the

The line and parabola parameterize the track in the region of interest.

The test channel identifies which detector element is to be searched.
For the Outer Tracker at least the station and layer should be given.
If more information is given it will be used to reduce the number of
modules that have to be searched.

The output is a list of hit channels and drift distances.

The sectoring gives some additional hint of where to look. Sector 3
corresponds to the lower half of the Outer Tracker and sector 4 to the
upper half [1].

The use of the Inner Tracker tool is very similar:

1 #include ¢‘TsaKernel/IITExpectedHits.h’’

2

3 /) ...

4

5 // get the tool

6 IITExpectedHits* hits = tool<IITDataSvc>(‘‘IITExpectedHits’’);
7

8 // variables needed

9 typedef std::vector<IITExpectedHits:: ITPair> ITPairs;

10 ITPairs output; // output container

11

12 int sect; // sectoring

13 LHCb:: STChannellD chan = STChannellD (1,1,1,0,0); // station , layer |,
14 Tsa::Line aLine; // track in y

15 Tsa:: Parabola aParab; // track in z

16

17 m_expectedHits—>collect (aParab,aLine,testChan,output, sect);

18

19 }

In this case:

e The test channel identifies which detector element is to be searched.
For the Inner Tracker this is the station layer and box.

e The output is a list of all possible hit strips. The cluster to which each
strip belongs is flagged by the second argument.

e The sectoring gives some hint of where to look. Sector 0 corresponds
to the left /right boxes in the Inner Tracker, sector 1 to the bottom box
and sector 2 to the top box [1].

Clearly, these tools have a large potential to be used outside the Tsa frame-
work. To encourage this, the code should be refactored so that the internal
sectoring convention used in the seeding is removed from the interface !.

3 Seed Extension

The Tsa framework was originally developed to build spacepoints in the Inner
Tracker [3]. For DC’ 06 it was used to port the FORTRAN implementation
of the seeding described in [15] to C++. During this process several classes
were developed in collaboration with Roger Forty which will described here.
Subsequently, this code was adopted as the baseline tracking for the L0 con-
firmation strategy in the T-stations that is being developed for the HLT.
This has led to the re-structuring of the TsaSeed algorithm as a "tool-box’
with the consequence that these classes are more visible to the user. In the
following sections the data classes, algorithms and tools used in the seeding
are described.

4 Algorithms

A full description of the seeding algorithm can be found in [1]. The algorithm
flow is shown in Fig. 3. The steps are:

Data Preparation Clusters are made for the Outer and Inner Tracker.

'In fact since the test channel also gives some hint of which detector element to search
the sector number duplicates information that can easily be obtained from elsewhere.

10

Initialization The data services are initialized.
Main Algorithm Seed tracks are created.

Output The seed tracks are translated to objects of LHCDb::Track type.

The main algorithm consists of a projection based search in both the Inner
and Outer Tracker. After this step any unused hits in the Inner Tracker are
used to build spacepoints (refered to as stubs). These are then linked to make
track candidates. Finally, any remaining unused spacepoints are extended

into the Outer Tracker.

Data Preparation

Initialization
Main Algorithm
Conversion

Figure 2: Algorithms Sequence for the Tsa seeding.

4.1 Data Classes

In an early state of the algorithm the input Tsa::Clusters are converted
to objects of type SeedHit. These objects to a large extent mimic the
use and the functionality of the Tsa::Clusters. Their existence is due to
convenience. In FORTRAN based frameworks it is normal to copy input
information from banks or common blocks into local working objects. It
seems feasible, with some refactoring of the code, to merge these classes into
one.

The SeedHits are used to build SeedTracks. These consist of a list SeedP-
nts, track parameters and other information such as the likelihood. A
SeedPnt is a SeedHit with some additional information due to the fact
it is on a track. For example due to the tilt the z coordinate of the measure-
ment in the global coordinate system is only known when it is added to a

11

track. Additionally, for the Outer Tracker it holds the result of the resolution
of the drift-time ambiguity.

Finally, a SeedStub class represents a stub or spacepoint. This is a list of
the four hits that make a stub, plus the determined parameters (x,y,tx,ty) of
the stub.

All the classes have a common look and feel. All accept the SeedPnt class
derive from KeyObject and use Boost pool allocators for memory alloca-
tion. Functors are provided for sorting and also for searching using the STL
lower_bound algorithm. In addition, some wrapper functions are provided
that hide the functors from the user. The example below shows how to col-
lect the SeedHits from a stereo-layer that are consistant with a given track
found in the x search:

1 #include ¢‘TsaKernel/SeedTrack.h’’

2 #include ‘‘TsaKernel/SeedHit.h”’

3 #include ‘‘TsaKernel/SeedFun.h”’

4

5 //

6 SeedTrack* seed; std::vector<SeedHit*> hits;

7

8 // make a plane tangent to the track ——> this should be a function !
9 const double zFirst;

10 const double slope = seed—>xSlope(zFirst, TsaConstants::z0);
11 Gaudi:: XYZVector vec (1., TsaConstants:: tilt*slope, —slope);
12 Gaudi:: XYZPoint point(seed—>x(zFirst, TsaConstants::z0),

13 hits.front()—>yMid (), zFirst);

14 Gaudi:: Plane3D plane = Gaudi:: Plane3D (vec, point);

15

16 // point and some tolerance
17 Gaudi:: XYZPoint iPoint;
18 const double tol = 0.1xhits.front()—>clus()—>length ();

19

20 // find the first stereo hit that is compatible

21 // ie has some some overlap in x

22 std :: vector<SeedHitx*>::iterator it = SeedFun::startStereo (hits,point.x(),tol);
23 std :: vector<SeedHit*>::iterator stop = SeedFun::endStereo(hits,point.x(),tol);
24

25 for (; it != stop; ++it){

26 SeedHit * hit = *it;

27 if (!Tsa::ClusFun::intersection (hit—>clus (), plane,iPoint)) continue;
28

29 // check for some overlap

30 if (hit—>clus()—>isInside (iPoint.y(),20.0)){

31 // do something !

32

33

34 } /)it

All these classes and functions are located in the TsaKernel package.

12

4.2 Tool Interfaces

The projection-based track search proceeds by first looking for hits in the
x-measuring layers, confirming them in the stereo-layers, calculating a likeli-
hood and then making a final selection of tracks (Fig. 3).

oo)) Camt

Figure 3: Internal flow of the projection based search in the TsaSeed algo-
rithm.

All of these steps either produce or update a set of tracks given a set of
hits and (optionally) a track state that gives some hint of what tracks are
being searched for. This suggests that the seeding can be written as set of
tools that are executed in sequence. The majority of the tools can naturally
inherit from a common interface (ITsaSeedStep). The interface for this
tool is given below:

1 class ITsaSeedStep: virtual public IAlgTool {

2 public:

3

4 /// Retrieve interface ID

5 static const InterfacelD& interfacelID () { return IID_ITsaSeedStep ; }
6

7 virtual StatusCode execute(std::vector<SeedTrack*>& seeds,

8 std :: vector<SeedHitx>

9 hits [6] = 0) = 0;

10

11 virtual StatusCode execute (LHCb:: State& hint,

12 std :: vector<SeedTrackx>& seeds,

13 std :: vector<SeedHit*> hits[6] = 0) = 0;
14

15 };

Fig. 4 shows the class diagram for all the tools that inherit from this class.
All of the steps mentioned above translate to a to an instance of a tool. In
addition, base classes are used to express common functionality between the
Inner and Outer Tracker. It should be noted that the presence of the vector
of SeedHit in the interface is not ideal. By further refactoring the seeding
code it should be possible to remove this from the interface.

The exceptions to this rule are the tools related to the stub finding. In this
case it was not possible to design a common interface. Therefore, separate
interfaces exists for the steps involved: stub finding (ITsaStubFind), link-
ing (ITsaStubLinker) and extending (ITsaStubExtender). By further

13

ITsaSeedStep

TsaXSearchBase TsaLikelihood TsaXProjSelector

el N L

TsalTXSearch

TsaStereoBase TsaSelectorBase

TsaOTXSearch TsalTStereoSearch TsaOTStereoSearch TsaSelector TsaSimpleSelector

Figure 4: Class diagram for the tools inheriting from ITsaSeedStep.

refactoring the code it should be possible to converge on a common interface
for all the tools. The interfaces for all the tools discussed can be found in
TsaKernel whilst the implementations are located in TsaAlgorithms.

5 Metric Testing

Metric testing of the code has been done using the ccce package [16]. The
results are summarized in Table 1. From these numbers it can be seen that:

Package LOC | LOC/COM | MCC/module
TsaKernel 2482 3.8 3.8
TsaAlgorithms | 3575 4.8 11.4

Table 1: Summary of metric tests. The abbreviations used are: LOC (Lines
Of Code), COM (Lines of Comment) and MCC (McCabe Cyclomatic Com-
plexity).

e The framework including the Seed extension and legacy code amounts
to 6137 lines of code.

e The code is well commented.

e The McCabe Cyclomatic Complexity, which is a measure of the decision
complexity of the functions making up the class or module, is also
reasonable 2.

2Ideally this number should be between three and seven.

14

The numbers in the Table clearly give the ’average’ picture. Looking in more
detail it can be seen that a few classes have significantly less comments than
the average. For example, the Parabola and Line classes have a comment
for every 50 lines of code. This information can be fed back and used to
improve the documentation of the code.

Examination of the MCC per module also reveals some interesting informa-
tion. The most complicated modules are the x searches in the Outer and
Inner Tracker which have MCCs of 62 and 48 respectively. For comparison
the likelihood calculation has an MCC of 35.

References

[1] M. Needham and R. Forty. Standalone Track Reconstruction in the
T-Stations. LHCb-note 2007-022.

[2] R. Forty and M. Needham. Updated Performance of the T seeding.
LHCb-note 2007-023.

[3] M. Needham. Tsa: Fast and Efficient reconstruction for the Inner
Tracker. LHCb-Note 2004-075.

[4] S. Meyers. More Effective C++. Addision-Wesley, 1996.
[5] S. Meyers. Efficient STL. Addision-Wesley, 2001.

[6] D. Vandevoorde and N. Josuttis. C++ Templates. Addision-Wesley,
2003.

[7] N. Josuttis. The C++ Standard Library. Addision-Wesley, 1999.
[8] http://lhcb-release-area.web.cern.ch/LHCb-release-area/DOC /brunel.

[9] M. Cattaneo et al. GAUDI LHCb Data Processing Applications Frame-
work User Guide. LHCb-Note, 1999.

[10] http://www.boost.org.

[11] E. Bos et al. The Trajectory Model for Track Fitting and Alignment.
LHCb-note 2007-008.

[12] D. Abrahams and A. Gurtovsky. C++ Template Metaprogramming.
Addision-Wesley, 2004.

15

[13] 1. Belyaev. LoKi: Smart and Friendly C++ Physics Analysis Toolkit.
LHCb-Note 2004-023.

[14] W. Horner. A new method of solving numerical equations of all orders
by continous approximation. Philisophical Transactions of the Royal
Society of London, pages 308-335, 1819.

[15] R. Forty. Track Seeding. LHCb-Note 2001-109.

[16] http://ccce.sourceforge.net/.

16

