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1. Introduction

The Reissner-Nordstrom charged black-hole is a solution of the Maxwell-Einstein system.

This solution may have two horizons, one horizon or no horizon whenever M2 R Q2, where

M is the mass and Q the charge of the black-hole.

In a supergravity context, such configuration can be either viewed as a particular

solution of N = 2 pure supergravity [1] or of N = 1 supergravity coupled to one vector

multiplet [2]. Indeed, these theories have the same number of on-shell bosonic and fermionic

degrees of freedom, but with a spin 3/2 gravitino exchanged with a photino. In the context

of N = 2 supergravity, the solutions with M2 ≥ Q2 can be viewed as BPS or non-BPS [3],

while solutions with M2 < Q2 are forbidden (cosmic censorship) [4, 5].

In the N = 1 theory, the bosonic solutions are the same, so M2 < Q2 is still forbidden

in spite of the fact that no supersymmetric black-holes exist in this case. For M2 = Q2

the horizon geometry is Bertotti-Robinson, with a AdS2 × S2 metric [6].

Recent investigation (for recent reviews, see for instance [7 – 11]) have in fact shown

that extremal black-holes with attractor behavior also exist without saturating the BPS

bound [12 – 17]. Many examples in N = 8 supergravity [18] as well as in generic N = 2

theories have been given [19], so that such configurations may be studied also in theories

which do not have BPS black-hole configurations [20, 21].

The aim of this investigation is to consider particular theories of N = 1 supergravity

coupled to matter multiplets, which may have extremal black-hole solutions with attractor
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behavior [22 – 24]. We will extend the analysis to N = 1 theories with scalar fields, where

extremal black-holes are connected to attractor points for the scalars.

Now we have an unspecified number nV of vector multiplets (Λ = 1, · · · nV ) and nS ≥ 1

of chiral multiplets. The electric-magnetic duality properties of these lagrangians have been

studied in [25], following the general analysis given in [26]. In the general case of a theory

coupled to chiral and vector multiplets, to have a consistent solution exhibiting attractor

behavior, the crucial element is encoded in a complex symmetric matrix, fΛΣ, with Imf < 0,

which is related to the kinetic term of the gauge fields [27]

√
gImfΛΣFΛ

µνFΣ|µν +
1

2
RefΛΣFΛ

µνFΣ
ρσǫµνρσ . (1.1)

The matrix fΛΣ must satisfy some particular properties, in particular it has to be a holo-

morphic function of the scalar fields ∂ıfΛΣ = 0.

In terms of f the black-hole potential reads [13]

V = −1

2
(qΛ − fΛΣpΣ)(Imf−1)ΛΓ(qΓ − fΓ∆p∆) = −1

2
QTM(f)Q (1.2)

with Q = (pΛ, qΛ) the (constant) charge vector and M the symmetric, symplectic, negative

defined matrix (MT = M, M · Ω · M = Ω, where Ω is the Sp(2nV , R) invariant metric(
0 −11

11 0

)
) given by

M =

(
Imf + Ref Imf−1Ref −Ref Imf−1

−Imf−1Ref Imf−1

)
. (1.3)

To have large extremal black-hole solutions we require that the black-hole potential has

an extremum ∂iV = 0 at V |extr 6= 0, with Hessian matrix ∂∂V positive definite. The

black-hole entropy is then given by [13]:

SBH(p, q) = πV |∂iV =0. (1.4)

In N = 1 theories the vector kinetic matrix fΛΣ is not fixed by supersymmetry and

it can in principle be a rather arbitrary holomorphic function of the chiral multiplets.

However, in theories which originate from higher dimensions, such as the ones coming

from superstring compactifications, the matrix fΛΣ may have a restricted form due to the

symmetries of the theory.

For instance, in section 2 we will consider particular N = 2 models whose bosonic

sector coincides (without truncations) with N = 1 models and which exhibit non-trivial

attractor behavior. Examples of N = 1 models which have no higher N analogue can be

obtained for Grassmannian manifolds U(n, n)/[U(n) × U(n)], following the results of [28].

As another example, in heterotic string compactifications on Calabi-Yau threefolds the

tree-level form of fΛΣ is just fΛΣ = SδΛΣ where S is the chiral dilaton-axion multiplet [29].

This is the first example we will encounter in section 3. For Calabi-Yau orientifolds (in type

IIA) this matrix is linear in the chiral fields, and a class of examples which share similar

properties are the models coming from (orientifolded) homogeneous special geometries.
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Their general features will also be discussed in section 3. The N = 1 theories obtained from

truncation of homogeneous special geometries exhibit the particular feature that the chiral

multiplets sector is described by a non linear σ-model of the type SO(2, n)/[SO(2)×SO(n)]

and the vector multiplets are in several copies of the spinor representation of spin(1, n−1)

which, combining electric and magnetic field-strengths extends to the electric-magnetic

duality group spin(2, n). These theories generally show attractor behavior and their critical

points have the nice geometrical interpretation that a certain moduli-dependent spinor,

constructed out of the electric and magnetic charges, becomes a pure spinor.1 At the

end of the section, the Hessian matrix of some N = 1 models at the critical points is

determined, showing the attractor nature of the solution. The paper ends in section 4 with

some concluding remarks.

2. Embedding Maxwell-Einstein theory in N = 1 supergravity and at-

tractors

We are going to discuss in this section the conditions to have extremal black-hole attractor

solutions (for large black-holes) in theories with N = 1 supergravity.

The crucial condition on the scalar sector is the request of an holomorphic matrix fΛΣ.

The attractor equation ∂iV = 0, for arbitrary matrix fΛΣ (with ImfΛΣ < 0) satisfying

∂ıfΛΣ = 0 may be written as

∂iV = 0 = VΛ
∂ifΛΣVΣ

(2.1)

where:

VΛ ≡ (qΛ − fΛΣpΣ) , ∂ıVΛ = 0 ; VΛ = (Imf−1)ΛΣVΣ, (2.2)

and the inverse formula holds:

pΛ = −ImVΛ , qΛ = ReVΛ − RefΛΣImVΣ (2.3)

Indeed,

V = −1

2
VΛ(Imf−1)ΛΣVΣ = −1

2
VΛ

ImfΛΣVΣ = −1

2
VΛVΛ (2.4)

and

∂iVΛ = − 1

2i
(Imf−1)ΛΣ∂ifΣΓVΓ

(2.5)

so that

∂iV = −1

2
VΛ∂iVΛ =

1

4i
VΛ

∂ifΛΣVΣ
(2.6)

We consider large black-holes solutions, then we require that at the attractor point eq.

(2.1) be satisfied with VΛ 6= 0. The interpretation of the black-hole potential in eq. (2.4)

is that VΛ is the shift which appears in the photino supersymmetry variation δǫλ
Λ in the

presence of the charged black-hole background. A bilinear photino-gravitino term [27] in

the geodesic action [13] with field strengths VΛ shows that supersymmetry is spontaneously

broken [24, 31].

1We call here, with an abuse of language, a pure spinor a spinor ψ for which ψγµψ = 0 [30].
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Examples of non-linear σ-models for chiral multiplets which are compatible with a non-

trivial electric-magnetic duality of the Maxwell fields [26] (that is with a scalar-dependent

holomorphic matrix fΛΣ) are

1. Sp(2n, R)/U(n) coupled to n vector multiplets, with duality group Sp(2n, R)

2. U(1, n)/U(n) coupled to n+1 vector multiplets, with duality group U(1, n) ⊂ Sp(2n+

2, R)

3. SU(1, 1)/U(1) coupled to n vector multiplets, with duality group SL(2, R))×SO(n) ⊂
Sp(2n, R)

4. SO(2, n)/SO(2) × SO(n) coupled to r vector multiplets in the spinor representation

of SO(1, n − 1) ⊂ SO(2, n), with duality group spin(2, n) ⊂ Sp(2r, R), where r is the

dimension of the spinor representation of SO(1, n − 1)

5. U(n, n)/U(n) × U(n) coupled to 2n vector multiplets

As we will see in the next sections, examples 2,3,4,5 exhibit in general attractor behavior,

while example 1 does not. This can be easily understood because in the Sp(2n, R)/U(n)

case the scalar fields xΛΣ = xΣΛ belong to the symmetric representation of U(n), and we

have, for the kinetic matrix of the vector

fΛΣ = xΛΣ. (2.7)

Then, from (2.1) we find that the attractor equation for this model is

∂ΛΣV = 0 ⇒ VΛVΣ = 0 (2.8)

whose only solution is VΛ = 0, which implies V |extr = 0. This solution may correspond to

a small black-hole, while attractor solutions for large black-holes cannot be found for this

model.

2.1 N = 1 theories with special geometry

An attractor behavior is guaranteed in theories where the kinetic matrix fΛΣ is defined in

a special-Kähler geometry. First of all, to have an N = 1 theory with special geometry

for the scalar sector, it is necessary that the number of Wess-Zumino multiplets and of

vector multiplets be related. In particular, if the number of chiral multiplets is nS = n,

the number of vector multiplets has to be nV = n + 1. Then, the following identity has to

hold [32, 24]:

V = −1

2
QTMQ = |DiZ|2 + |Z|2, (2.9)

in terms of a covariantly holomorphic superpotential (N = 2 central charge)

Z(z) = e
K

2 (XΛqΛ − FΛpΛ) , XΛ = (1, zi) , i = 1, · · · n. (2.10)

Using the relations of special geometry the attractor condition is in this case

∂iV = 0 = 2ZDiZ + iCijkZ
j
Z

k
, (Z

j ≡ gjıDıZ). (2.11)
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However, for the theory to be N = 1 supersymmetric the matrix fΛΣ must be holo-

morphic (for a given choice of coordinates). But for general special-Kähler geometries,

the kinetic matrix for the vectors, NΛΣ, which is related to the covariantly holomor-

phic symplectic section UM
0 = (LΛ,MΛ) = e

K

2 (XΛ, FΛ) and to its covariant derivative

U
M

i = DiU
M

0 ≡ (fΛ
i , hΛi) via

{
MΛ = NΛΣLΣ

hΛi = NΛΣfΣ
i

, (2.12)

is in general neither holomorphic nor antiholomorphic. We find indeed, from (2.12)

{
(∂iNΛΣ)LΣ = −(N −N )ΛΣfΣ

i

(∂iNΛΣ)f
Σ
 = 0

(2.13)

and
{

(∂ıNΛΣ)LΣ = 0

(∂ıNΛΣ)f
Σ
 = iCıkg

kℓ(N −N )ΛΣfΣ
ℓ

(2.14)

From (2.14) we find that, for the case nV = nS + 1, the only way to have a holomorphic

kinetic matrix is to make the identification NΛΣ = fΛΣ and ask Cijk = 0, in which case

we have ∂ıf = 0. The bosonic sector of the theory found in this way is then an N = 1

model which is identical to the one of an N = 2 model.2 The only way to satisfy the

above properties is to consider as non-linear σ-model spanned by the scalar sector the

series U(1,n)
U(1)×U(n) . For this series of special-Kähler models indeed Cijk = 0, and the kinetic

matrix NΛΣ is holomorphic. In the basis with prepotential F (X) = − i
2ηΛΣXΛXΣ (ηΛΣ =

(1,−1, · · · ,−1)) we have

NΛΣ = i

(
ηΛΣ − 2

XΛXΣ

X2

)
(XΛ ≡ ηΛΣXΣ) (2.15)

We then find, for the attractor condition

∂iV = 0 ⇒ 2ZDiZ = 0 (2.16)

which has two solutions. Either

Z 6= 0 DiZ = 0 (2.17)

in which case the black-hole potential at the extremum is

Vextr = |Z|2 = I2 (2.18)

or

Z = 0 DiZ 6= 0 (2.19)

giving

Vextr = |DiZ|2 = −I2. (2.20)

2This is the so-called minimal coupling of n vector multiplets to N = 2 supergravity [33].
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Here I2 is the quadratic U(1, n) invariant written in terms of the black-hole charge (p0, q0, pi, qi),

(i = 1, · · · n) as

I2 = q2
0 + p2

0 −
∑

i

(p2
i + q2

i ). (2.21)

From the analysis of [34], the solution with Z 6= 0 exists for I2 > 0 and is a N = 2,

BPS critical point which is a genuine attractor, since the Hessian matrix of the black-hole

potential is positive definite [24, 13]. For the solution with Z = 0, which implies I2 < 0,

the critical point is N = 2 non-BPS and has 2(n − 1) flat directions since the Hessian

matrix is semidefinite positive with only two non vanishing eigenvalues. Note that for

n = 3 the model can also be interpreted as the bosonic sector of N = 3 supergravity

coupled to one vector multiplet [35]. In the latter case, the BPS and non-BPS solutions

are exchanged [10] and the four flat directions of the BPS solution in the N = 3 model

correspond to the hypermultiplet in the N = 3 → N = 2 decomposition.

For more general N = 2 σ-models (with Cijk 6= 0), to have a (anti-) holomorphic

kinetic matrix a truncation in the matter sector is needed to satisfy eq. (2.13) such that

∂iNΛΣ = 0 [36].

2.2 Genuine N = 1 examples

Among the class of N = 1 supersymmetric theories with a non-trivial electric-magnetic

duality group, one can consider a model with n2 complex scalars coupled to 2n vector

multiplets. In this case the non-linear σ-model is the Kähler manifold U(n, n)/U(n) ×
U(n) and the electric-magnetic duality group is U(n, n) ⊂ Sp(4n, R), with the electric and

magnetic field-strengths embedded in the 2n + 2n of U(n, n) [28]. Denoting by si the

holomorphic coordinates on the σ-model, with F i
αβ = F i

βα the self-dual part (in spinor

notation) of the field strength of the complex vector Ai and with F ı
αβ the self-dual part of

the field-strngth of the complex conjugate vector Aı = (Ai)∗, then the vector kinetic term

is just

L = Im
(
siF

i
αβF αβ

)
. (2.22)

For n = 1 this model coincides with the N = 2 model previously considered and for n = 3

it is the bosonic sector of N = 3 supergravity coupled to three vector multiplets, while for

other n it does not have a higher N origin. As it was explicitly shown for n = 1 and n = 3,

these models admit in general attractor black-hole solutions [34, 10].

3. N = 1 examples as N = 2 truncations

The supersymmetry reduction of N = 2 → N = 1 supergravity is obtained by truncating

the N = 1 spin 3/2 multiplet containing the second gravitino and the graviphoton.

All orientifold models in which the N = 1 truncation leaves some vectors and scalars

with a non trivial holomorphic matrix fΛΣ = −NΛΣ (in the subspace which excludes the

graviphoton) may be studied to see whether they have attractors or not.

A general analysis of the consistent truncation of N = 2 theories to N = 1 has been

given in [36], to which we refer for all the details. We just quote here the main results

– 6 –
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for the reduction of the vector multiplet sector. Let us first decompose the coordinates of

the N = 2 special manifold as zI → (zi, zα), with i = 1, · · · nS N = 1 chiral multiplets

while α labels the rest of the coordinates, and the N = 2 vectors as AΛ → (AΛ, AX), with

Λ = 1, · · · nV enumerating the N = 1 vectors and X the rest of the N = 2 vectors. A

consistent truncation requires, on the N = 1 theory:

AX = 0 , zα = const. (3.1)

LΛ = 0 , fΛ
i = 0 , fX

α = 0 (3.2)

NΛX = 0 , Cαβγ = 0 , Cijα = 0 (3.3)

which in particular imply the truncation of the graviphoton projector:

TΛ = (N −N )ΛΣLΣ = 0. (3.4)

This immediately shows that, whenever an N = 2 holomorphic prepotential F (X) exists

such that FΛ = ∂F/∂XΛ (and FΛΣ ≡ ∂2F/∂XΛ∂XΣ), the N = 1 vector kinetic matrix is

indeed anti-holomorphic, since in that case

NΛΣ = FΛΣ − 2iTΛTΣ(LΓImFΓ∆L∆) → FΛΣ , ∂iFΛΣ = 0 (3.5)

so that we can identify fΛΣ with −FΛΣ. However, from the analysis of the previous section,

eq. (2.13), it turns out that the matrix N is always anti-holomorphic in the reduced theory

(even in the cases where no prepotentail F exists) since ImNΛΣfΣ

i → 0.

An interesting possibility, considered in [36], is the case of the N = 2 theory based on

the σ-model
SU(1, 1)

U(1)
× SO(2, n)

SO(2) × SO(n)
. (3.6)

Let us study in detail the attractor equations for the N = 1 truncation of this model

where only the dilaton chiral multiplet is kept together with n vector multiplets. In this

case the kinetic matrix simply becomes

fΛΣ = SδΛΣ (3.7)

and the duality group reduces to SL(2, R)) × SO(n) ⊂ Sp(2n, R), where SL(2, R)) acts as

electric-magnetic duality.

Referring to the discussion in section 2, we have in this case

VΛ = qΛ − SpΛ (3.8)

and, from (2.1)

∂SV = 0 ⇒
∑

Λ

VΛVΛ = 0. (3.9)

An attractor solution is then found for

S = a + ib : a = −p · q/p2 ; b = −
√

p2q2 − (p · q)2/p2. (3.10)

– 7 –
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and, substituting in the extremized black-hole potential gives

V |extr =
√

p2q2 − (p · q)2, (3.11)

with a positive Hessian matrix, since:

∂2V

∂a2
|extr =

∂2V

∂b2
|extr =

(p2)2√
p2q2 − (p · q)2

;
∂2V

∂a∂b
|extr = 0. (3.12)

Note that the entropy for this model has formally the same expression (with SO(6, n)

replacing SO(n)) as in the general N = 4 theory [37 – 39, 24] since the non trivial electric-

magnetic duality SL(2, R)) is the same.

For n = 6, the bosonic sector of this model coincides with the bosonic sector of pure

N = 4 supergravity.

For n = 2, its bosonic sector coincides instead with the one of the N = 2 theory of the

quadratic series, with one (N = 2) vector multiplet. Note in fact that the quartic invariant

I4 = q2p2 − (q · p)2 reduces in this case (where we only have q0, p
0, q1, p

1) to the square of

the quadratic invariant I2 = p0q1 − p1q0, I4 = (I2)
2.

For n = 1, the quartic invariant is zero, since in this case (q · p)2 = q2p2. This case

concides with the first example of section 2 ( the Sp(2n, R)/U(n) series) for n = 1.

3.1 CY orientifold compactifications and N = 1 reduction of homogeneous N = 2

models

The model discussed above may be generalized by considering the compactification to four

dimensions of Type IIA theory on orientifolds (or of M-theory on a special class of G2-

manifolds), as discussed in [40]. According to [40], by considering a Type IIA orientifold

which keeps only the complex Kähler moduli zA and vectors Aα
µ, with A = 1, . . . , h−

1,1 and

α = 1, . . . , h+
1,1, the N = 1 kinetic matrix for the bulk vectors has the simple form (which

generalizes the expression for the 1-modulus S case)

fαβ = −Nαβ = zA dAαβ . (3.13)

Similar expressions exist also for the gauge kinetic matrix of the brane vectors (as a function

of the bulk moduli) [40, 41] So one could consider the example of a truncation of the

homogeneous (but non symmetric) space L(0, P, Ṗ ) in which zA = (S, z2, z3) and zα =

(zm, zṁ) (m = 1, . . . , P and ṁ = 1, . . . , Ṗ ). In this theory the only non vanishing entries

for the d tensor are

dS22 = −dS33 =
1

2
; d2mn = d3mn = δmn ; d2ṁṅ = −d3ṁṅ = δṁṅ .

(3.14)

In the orientifolded theory we would have zA = (S, z2, z3) and Aα
µ = (Am

µ , Aṁ
µ ).

Let us now analyze the attractor behavior of the N = 1 reduction for more general

homogeneous L(q, P, Ṗ ) Special Kähler models [42]. These models have r + q + 3 complex

scalars, with r = (P + Ṗ )Dq+1, Dq+1 being the irreducible reprsentation of spin(1, q + 1).

– 8 –
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The truncation to N = 1 leaves q+2 chiral multiplets together with r vector multiplets. In

particular, the scalar S corresponding to the dilaton decouples from the rest and after the

orientifold projection we are left with the coordinates zA = xA + i yA, A = 0, 1, . . . , q + 1

spanning the σ-model SO(2, q + 2)/[SO(2)× SO(q + 2)]. Let us denote the vector fields by

Aα, α = 1, . . . , r.

The holomorphic kinetic matrix is now a particular case of (3.13); written in terms of

the γ-matrices of SO(1, q + 1), it is:

fαβ = zA ΓAαβ , (3.15)

where

Γ0αβ = −δαβ ; Γiαβ = (γi)αβ , i = 1, . . . q + 1

Γ
αβ
0 = δαβ ; Γ

αβ
i = (γi)αβ ,

Γ(A ΓB) = ηAB ; η = diag(−1,+1, . . . ,+1) . (3.16)

are two copies of SO(1, q + 1) γ-matrices. They together compose the 2r × 2r repre-

sentation of the SO(1, q + 1) gamma matrices, corresponding to the embedding in the

electric-magnetic duality group SO(2, q + 2), which reads

ΓA =

(
0 ΓA

ΓA 0

)
, (3.17)

The above equations are in fact written for the case P = 1, Ṗ = 0. An obvious extension

is understood for P , Ṗ generic (when this is the case, in (3.16) P → Ṗ requires Γi → −Γi)

and will be used in section 3.1.2.

So so(1, q + 1) is an electric subalgebra of the electric-magnetic algebra so(2, q + 2),

and the system of electric and magnetic field-strengths S = (Fα, Gα) compose the spinor

representation of SO(2, q+2). To be more precise, the (real) spinor of electric and magnetic

charges is irreducible under SO(2, q + 2) but decomposes as S = S+
e + S−

m for SO(2, q +

2) → SO(1, q + 1) × SO(1, 1), where S± have opposite grading under SO(1, 1) and, for

q even, also opposite chirality. The 2r-dimensional SO(2, q + 2) spinorial representation

can be described in terms of the following 2r × 2r matrices ΓM = {Γ−1, ΓA, Γq+2} and

ΓM = {−Γ−1, ΓA, Γq+2} (M, N = −1, . . . , q + 2), where

Γ−1 = 11r × 112 ; Γq+2 = 11r × σ3 , (3.18)

which satisfy the relations

Γ(MΓN) = η̂MN ; η̂ = diag(−1,−1,+1, . . . ,+1) . (3.19)

The action of the so(2, q + 2) generators on the 2r electric-magnetic charges is defined by

the matrices JMN = 1
4 Γ[MΓN ].

The Kähler potential in a special-coordinate inspired basis is

K = − log Y (3.20)

– 9 –



J
H
E
P
0
7
(
2
0
0
7
)
0
1
9

with

Y = −1

4

[
(z0 − z0)

2 − (zi − zi)
2
]

, i = 1, · · · q + 1

= −1

4
ηAB(zA − zA)(zB − zB) ≡ ||y||2 (3.21)

and, in terms of zA = xA + iyA, the vector kinetic matrix is

fαβ = (ΓA)αβzA , Imfαβ < 0. (3.22)

We find also:

Imfαβ = yA ΓAαβ ; Imf−1αβ =
yA

||y||2 Γ
αβ
A ; ||y||2 = yAηAByB < 0 ,

(3.23)

The black-hole potential reads:3

V = −1

2
(qα − zAΓAαγpγ)Imf−1αβ(qβ − zAΓAβδp

δ) =

= − 1

2||y||2
(
y · N − 2xT W y + (y · M)(||y||2 − ||x||2) + 2 (x · M)(x · y)

)
,

(3.24)

where we have introduced the following shorthand notation

NA = qαΓ
αβ
A qβ ; MA = pαΓAαβpβ ; WAB = pα(ΓAΓB)α

βqβ ,

y · M ≡ yAMA ; x · y = xA ηAB yB ; xT W y = xA WAB yB . (3.25)

The extremization condition may be written in the elegant form

Vα
ΓAαβVβ

= 0, (3.26)

in terms of the spinor

Vα
=

1

||y||2
(
yA qβ(ΓA)βα − xA yB pβ (ΓAΓB)β

α
)

+ i pα. (3.27)

Equation (3.26) can be written as the following real conditions in the real and imaginary

parts of the zA moduli:

0 = NA + MA (||y||2 − |x||2) − 2 yA (y · M) + 2W[AD] x
D ,

xA =
(p · q)
||M ||2 MA − 1

(y · M)
PA

B W[BC] y
C , (3.28)

where PA
B is the projector in the directions orthogonal to MA:

PA
B = δB

A − MA MB

||M ||2 . (3.29)

3For the L(q, P, Ṗ ) models with PṖ 6= 0 (q = 4m), since Imfαβ is block-diagonal in the P, Ṗ space, two

terms in two separate spinor spaces are understood in eq. (3.24).
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Eq.s (2.3), (3.27) and (3.26) allow to write down a general expression for the entropy, given

by eq. (1.4):
1

π
SBH(p, q) = V |∂iV =0 = −MA yA|extr . (3.30)

Geometrically, the attractor points are the points where Vα
becomes a pure spinor.4

As a remark we observe that eq. (3.26) is identical in form to eq. (4.43) of [45] for the N = 2

attractors of homogeneous Kähler spaces with vanishing central charge (and vanishing of

the q + 2 matter charges ZI). On a general ground this is a consequence of the fact that

the N = 1 attractor equations given in eq. (2.1) are similar to the ones for the N = 2

attractors (eq. (2.11)) with vanishing central change:

Cijk Z
j
Z

k
= 0 , (3.31)

if one replaces Cijk by ∂ifαβ and Z
i
= giD Z by V α

= Imf−1αβ Vβ.

As the above discussion shows, L(q, P, Ṗ ) theories may admit in general attractor

extrema, apart from particular cases. We are going to discuss, in the rest of this section,

some specific examples.

3.1.1 The L(q, 1) cases

This series, for particular values of q: q = 1, 2, 4, 8, describes N = 2 symmetric spaces [46].

Let us consider in particular the case q = 8, which corresponds to the σ-model E7(−25)/E6×
U(1), when decomposed with respect to SL(2, R)) × SO(2, 10) in a truncation where one

only keeps the SL(2, R)) singlets. Since the representation of the electric and magnetic

field-strengths decomposes under SL(2, R)) × SO(2, 10) as

56 → (2, 12) + (1, 32), (3.32)

only the 32 electric and magnetic field-strengths belonging to the spinorial representation

of SO(2, 10) are kept. In the σ-model counterpart

E7(−25)/[E6 × U(1)] → SO(2, 10)/[SO(2) × SO(10)]. (3.33)

So, also in this case the final N = 1 model is based on the SO(2, 10)/[SO(2) × SO(10)]

σ-model coupled to F,G in the spinorial representation of SO(2, n + 2), with electric sub-

algebra SO(1, n + 1).

For the L(2, 1) model, the gamma matrices read

Γ1 = −





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



 ; Γ2 =





0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



 ,

Γ3 =





0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0



 ; Γ4 =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



 . (3.34)

4Here we adopt a definition [43 – 45] which is milder than the mathematical definition when q > 8 (and

P, Ṗ > 1)
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The potential at the extremum has the following expression:

Vextr = (p1 q2 − p2 q1 + p4 q3 − p3 q4) . (3.35)

This agrees with the fact that the charge-spinor in this case belongs to the 4 ∈ SU(2, 2) =

spin(4, 2), which is complex, while the entropy is given in terms of a real bilinear invari-

ant [47].

The L(1, 1) case has no attractors, as we will see in the following, as a particular case

of the series L(1, P ).

Let us now move to analyze various cases of homogeneous spaces L(q, P ) and L(q, P, Ṗ ).

3.1.2 The L(0, P, Ṗ ) cases

For this series (q = 0), the spinor of charges degenerates, and we have P + Ṗ spinorial

electric and magnetic charges (pα, qα) and (ṗα, q̇α). The gamma matrices read

Γ0 =

(−δαβ 0

0 −δ
α̇β̇

)
= −Γ0 ; Γ1 =

(
δαβ 0

0 −δ
α̇β̇

)
= Γ1 , (3.36)

so that the scalar potential is

V = −1

2
VαImfαβVβ − 1

2
V α̇Imf

α̇β̇
V β̇

(3.37)

with

Imfαβ = −δαβ(y0 − y1) ; Vα = − 1

y0 − y1
[qα + (z0 − z1)p

α] ; (3.38)

Imf
α̇β̇

= −δ
α̇β̇

(y0 + y1) ; V α̇ = − 1

y0 + y1

[
qα̇ + (z0 + z1)p

α̇
]
. (3.39)

To have Imf < 0 requires y0 > y1 > 0.

For this series, the potential (3.37) decomposes into the sum of two independent,

functionally identical, contributions, each one depending on a different variable:

V = V (u) + V̇ (u̇) ; u ≡ z0 − z1 , u̇ = z0 + z1 (3.40)

where:

V (u) = −1

2
VαImfαβVβ

(u) =
1

2 Imu

(
q2 + 2 (q · p)Reu + p2 |u|2

)

V̇ (u̇) = −1

2
V α̇Imf

α̇β̇
V β̇

(u̇) =
1

2 Imu̇

(
q̇2 + 2 (q̇ · ṗ)Re u̇ + ṗ2 |u̇|2

)
(3.41)

The attractor equations become the equations for two cones, which can be regarded as the

pure spinor equations for SO(1, 1):

∑

α=1,···P
VαVα = 0 (3.42)

∑

α̇=1,···Ṗ

V α̇V α̇ = 0. (3.43)
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Therefore the attractor points are the ones for which the complex vectors Vα and V α̇ have

vanishing euclidean norm. The minima of (3.40) are found for

u = − 1

p2

(
q · p − i

√
I4

)
(3.44)

u̇ = − 1

ṗ2

(
q̇ · ṗ − i

√
İ4

)
(3.45)

where I4 ≡ q2p2 − (q · p)2, İ4 ≡ q̇2ṗ2 − (q̇ · ṗ)2. The extremum of the black-hole potential

is then

V |extr =
√

I4 +

√
İ4. (3.46)

The Hessian matrix at the extremum, evaluated with respect to the real and imaginary

parts of u, u̇, is

H(u, u̇)|extr =





p4

√
I4

(
1 0

0 1

)
0

0 ṗ4√
İ4

(
1 0

0 1

)



 , detH|extr > 0. (3.47)

showing that for all this class of models the extrema of the potential have indeed an

attractor nature.

Note that for all L(0, P, Ṗ ) the duality group is SO(2, 2) × SO(P ) × SO(Ṗ ), and the

potential at the extremum may be written in terms of the manifest invariant of the duality

group

I4 = TαβTαβ = p2q2 − (p · q)2, (3.48)

(and similarly for İ4), with Tαβ = −Tβα ≡ ST
α · Ω · Sβ, ST

α = (pα, qα) an SO(P )-valued

chiral spinor of SO(2, 2) and Ω the invariant metric of SU(1, 1) ⊂ SO(2, 2). This class of

models is particularly interesting because it may correspond to a system of P D3 and Ṗ

D7 branes on Calabi-Yau orientifold compactifications [48].

If PṖ 6= 0, both P and Ṗ must be bigger than one, otherwise the attractor point does

not exist (since then I4 or İ4 vanish, and Imu or Im u̇ would vanish either.).

For PṖ = 0, we have the L(0, P ) (P > 1) models, in which case one complex mod-

ulus (u or u̇) is undetermined on the black-hole solution, the Hessian has two vanishing

eigenvalues and the attractor equations have two flat directions.

Let us finally observe that, since the irreducible representation of the spinor of charges

in SO(2, 2) is in fact chiral, only a subgroup SL(2, R)) × SO(P ) × SO(Ṗ ) ⊂ SO(2, 2) ×
SO(P )× SO(Ṗ ) of the duality group acts non trivially. The vector-multiplet sector of this

theory (in the case Ṗ = 0) is then identical to the N = 1 truncation of the L(−1, P ) series.

In this last case, however, the scalar sector reduces to the coset SU(1, 1)/U(1), so that the

attractor condition is one complex equation for one modulus. Then the critical point is a

genuine attractor. Note that this truncation gives back the same SU(1, 1)/U(1) × SO(P )

model already discussed in section 3, whose entropy has been given in (3.11).
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3.1.3 The L(1, 2) case.

We have four electric and four magnetic charges. The gamma matrices read:

Γ1 = −





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



 ; Γ2 =





1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



 ; Γ3 =





0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



 .

(3.49)

The potential at the extremum has the following form:

Vextr = (p2 q4 − q2 p4 + p1 q3 − q1 p3) . (3.50)

From this we see that in the symmetric L(1, 1) case, in which p3 = q3 = p4 = q4 = 0, the

potential at the extremum is zero. This is in agreement with the fact that the in this case

we have a single spinor of charges, belonging to the 4 ∈ Sp(4, R) = spin(3, 2), which has

no antisymmetric bilinear invariant.

4. Concluding remarks

In this investigation we have considered the black-hole potential of charged extremal black-

holes in N = 1 supergravity coupled to chiral and Maxwell vector multiplets. The attractor

equations take the particular simple form (2.1). In a particular class of models, obtained by

an orientifold projection of homogeneous special geometries, the attractor equation (3.26)

has the geometrical meaning, at least for q ≤ 8, that the spinor Vα defined in (3.27) is a

pure spinor. Pure spinors have already occurred in the literature in connection to attractor

equations for type II compactifications on generalized Calabi-Yau manifolds in [49].

The entropy can be computed and it is given in terms of invariants of the electric-

magnetic duality group that, for an N = 1 reduction of L(q, P, Ṗ ) homogeneous spaces, is

in general spin(2, q+2)×Sq(P, Ṗ ), where Sq(P, Ṗ ) is the centralizer of the relevant Clifford

algebra and it was classified in [42]. For models of the type L(0, P, Ṗ ), the underlying

special geometry may correspond to D-branes on a CY-orientifold compactification and

the attractor points would correspond to extremal black-holes on the branes. From the

analysis of section 3, we find that such attractors exist if at least two branes of the same

kind are kept. We also find evidence that extremal black-holes with attractor behavior

may exist in heterotic string compactifications on Calabi-Yau manifolds, with the dilaton

and axion fields fixed in terms of the electric and magnetic charges of the vector bundle.

This is the N = 1 analogue of the N = 4 dilaton-axion black-hole [50 – 52]. On a more

general ground, it seems that, whenever the gauge-kinetic matrix is moduli-dependent in

N = 1 supergravity models coupled to vector multiplets, then charged extremal black-hole

solutions with attractor behavior appear as a generic rather than an exceptional feature.

It would be interesting to extend the present analysis by including deviations from the

Maxwell-Einstein system, by considering either Born-Infeld contributions to the Maxwell

action [53, 54, 28, 55] (as it would be relevant in the case of brane vector fields) and higher

curvature terms [56, 7, 14, 8, 9] in the gravitational field.
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