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ABSTRACT

This work investigates whether large-scale coherent vortex structures driven by
wave-current interaction (Langmuir circulation) are responsible for maintaining
the oceanic mixed layer. Langmuir circulations dominate the near-surface vertical
transport of momentum and density when the characteristic scale for forcing
(defined as the Craik-Leibovich instability parameter YcLs) is stronger than the
characteristic scale for diffusive decay Ydiff. Since the wave-current forcing is
concentrated near the surface both terms depend on the cell geometry. Cells with
long wavelengths penetrate more deeply into the water column. These cells grow
more slowly than the fastest growing mode for most cases, but always dominate
the solution in the absence of Coriolis forces. In the presence of Coriolis forces,
the horizontal wavelength and thus the depth of penetration are limited. When a
cell geometry is found such that 'YcLs >>diff, the current profile produced by small-
scale diffusion is unstable to Langmuir cells and the cells replace small-scale
diffusion as the dominant vertical transport mechanism for momentum and
density. The perturbation crosscell shear is predicted to scale as YCLS. Such a
scaling is observed during two field experiments. The observed velocity profile
during these experiments is more sheared than predicted by a model which
implicitly assumes instantaneous mixing by large eddies, but less sheared than
predicted by a model which assumes small-scale mixing by near-isotropic
turbulence. The latter profile is unstable to Langmuir cells when waves are
present. The inclusion of cells driven by wave-current interaction explains the
failure of the mixed layer to restratify on two days with high waves and low wind.
Wave-current interaction introduces a small but efficient source of energy for
transporting density which goes as the surface stress times the Stokes drift.

Thesis Supervisor: Robert A. Weller

Title: Senior Scientist, Department of Physical Oceanography, Woods Hole
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Chapter 1: Langmuir Circulation in the Oceanic Surface Layer

1.1 Introduction: The Oceanic Surface Layer

Oceanographers have long been aware that the uppermost layer of oceans

and lakes is relatively well mixed in contrast with the strongly stratified main
thermocline lying directly below it. In the ocean this surface layer is home to the

majority of primary production and the site of almost all oceanic photochemistry.

It connects the atmosphere and the deep ocean and is involved in a vast number of

biological, physical, and chemical processes of interest to oceanographers.
At many times, the upper portion of the surface layer is well-mixed with

respect to conservative scalar quantities like temperature and salinity. This mixed

layer is not, however, well-mixed with respect to velocity. Figure 1.1a shows
typical one-hour average profiles of velocity and temperature within the surface
layer. The data shown were taken off the Research Platform FLIP in 1983. While
the temperature varies less than 0.01 degrees down to 40 meters, it is hard to
determine the mixed layer base from the velocity measurements. The mixed layer
also contains relatively large time-varying shears. Figure 1.lb shows a one-hour
time series of the velocity difference between 4.5m and 6.75m in an unstratified
mixed layer. The data were also taken off FLIP. The data were band-passed for
periods between 100 and 10000 seconds to eliminate the effect of surface gravity
waves and inertial oscillations and subsampled to one sample per minute. There
are velocity differences of several cm/s within the layer which display noticeable
variability over time.

There are at present two views of how the mixed layer is maintained. One
view (exemplified by the work of Mellor and Yamada, 1974; Klein and Coste,
1984) holds that the processes responsible have small spatial scales in comparison
with the layer depth. The trajectory of a particle within the mixed layer is a
random walk as it is passed from one small eddy to another. Models based on this
view parameterize mixing in terms of a small-scale eddy viscosity and produce
horizontally averaged velocity profiles with a great deal of shear within a

relatively isothermal mixed layer. The other view (exemplified by the work of
Davis et al., 1981; Price et al., 1986) holds that motions with vertical and

horizontal scales comparable to the mixed layer are responsible for its

maintainence. Available models which adhere to this view, however, postulate that
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Figure 1.1: Velocity Structure within oceanic mixed layers. (a) Hourly-averaged
profiles of velocity in the east (left panel), and north (central panel) direction and
temperature (right panel). Profiles are averaged from 1100-1200 local time on
November 9th, 1983 off of R/P FLIP. (b) Stick plot of the velocity difference
between 4.5 and 6.75m. Velocity data was collected at 0.5 Hz, band-passed for
frequencies in the 0.01-0.0001 Hz band and subsampled to once per minute. Start
time is 0000Z on March 5th, 1990.
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the mixed layer is a slab within which the horizontally-averaged velocity is

completely homogenized. In the real world, however, there are persistent velocity
differences within the mixed layer (as seen in Figure 1.1).

This thesis focuses on a mixing process involving eddies with spatial scales

comparable to the mixed layer depth, the two-dimensional roll vortices known as

Langmuir circulation or Langmuir cells. The following questions are asked:

*Under what conditions do Langmuir cells replace small-scale mixing as the

principal mechanism by which the mixed layer is stirred?

*When do Langmuir cells produce large spatially and temporally-varying velocity

shears within the mixed layer?

*How do the cells affect the energy balance of the mixed layer?

In order to answer these questions certain subsidiary issues must be addressed:
*When are Langmuir cells present in the mixed layer?

*What is the spatial structure of the cells?
*What is the equilibrium population of cells?

Before plunging into the strategies which are used to answer these

questions, some observational studies of Langmuir circulation are considered.

These studies demonstrate that the cells are of the appropriate scale to affect the

dynamics of the mixed layer.

1.2. Observations of Langmuir Cells

Langmuir (1938) was the first to make quantitative observations of the

circulations which bear his name. Motivated by personal observations from an

ocean liner of rows of seaweed and debris lined up with the wind, he established

many of the major features of the cells in an ingenious series of experiments on

Lake George. Figure 1.2 shows a schematic of Langmuir circulation, illustrating
some of the major features established by Langmuir and subsequent investigators.
The circulation involves roll vortices whose axes are horizontal and oriented at an
angle x relative to the wind. The vortices have width Lcen/2. The typical velocities

associated with these rolls are denoted by U in the crosscell (x) direction and Wup
and Wdown in the vertical (z).The vortices are in general asymmetric, with

downwelling velocities exceeding upwelling velocities. The downwelling zones

are associated with jets of water of width Ljet and characteristic perturbation

velocity Vjet moving in the alongcell (+y) direction. The depth of the cells is D.

Often, the cells are associated with a surface layer in which there is a large

velocity shear. The characteristic velocity in this layer is denoted in Figure 1.2 by



Vsuf and the depth of this layer by Dsuf. Although the figure shows Dsf as being

much smaller than the cell depth D, there are some published cases (e.g. Van

Straaten,1950) where the cells are embedded within the shear layer. Velocities

within the shear layer are often of order 10 cm/s.

Wind oo
surf jet s

D
surf

D

S up W jet

L /2 x
cell

Figure 1.2: A schematic of Langmuir circulation illustrating the concepts found in
the text

Properties of the cells have been described in the literature as follows:

* Geometry: The cells vary much more slowly in the alongcell than in the crosscell

direction. Estimates of the ratio of alongcell length to crosscell spacing Lcen range

from 3-4 (Thorpe, 1993) to of order 100 (Kenney, 1977). Cell spacing scales as

the depth of the fluid (Van Straaten,1950, for cells seen on a tidal flat) or as the
mixed layer depth (Smith et al., 1987). Oa ranges from 0-20 degrees (Faller, 1964).

* Vertical Velocities: Early observations of vertical velocities were made in lakes

or in relatively calm conditions fairly close to surface, and the velocities seen were

roughly 1-4 cm/s in the downwelling regions, and about 1-2 cm/s in the upwelling

regions (Langmuir, 1938; Gordon, 1970). Recent work in more strongly forced

layers (Weller et al.,1985, Weller and Price, 1988, Zedel and Farmer, 1991) has

demonstrated the existence of stronger vertical velocities of order 5-25 cm/s.

* Horizontal Velocities: Velocities associated with the downwind jets have been

estimated to be quite large, generally falling in the 5-10 cm/s range (Langmuir,



1938; Harris and Lott, 1973; Kenney, 1977; Ryanzhin, 1983; Smith et al., 1987).

Crosscell velocities have been less frequently measured, but estimates of their

magnitude fall into the same general range.

* Occurrence: Cells are often seen in stormy conditions where the waves and wind

stress are large and where the surface is being cooled (Weller and Price,1988) but

they have also been observed at wind speeds of 2-4 m/s (Owen, 1966; Scott, 1970;

Kenney, 1977) when the stratification was stable (Faller and Woodcock,1964) and

when the mixed layer was being heated (Kenney,1977).

* Associated Phenomena: A number of investigators (Langmuir, 1938; Woodcock,

1944; Sutcliffe et al., 1963) report that seaweed or other biological debris is swept

into surface convergence zones. Thorpe (1984), Smith et al (1987), and Zedel and

Farmer (1991) show that bubbles generated by breaking waves are swept into cell

convergence zones, producing curtains of bubbles which can be detected with

sonars.
The cells as presented above are of the right order of magnitude to cause

strong vertical transports of momentum and large horizontal variability in the

mixed layer transport. This can be demonstrated as follows. Consider the vertical

transport of momentum. The vertical and alongwind velocities associated with the

cells are correlated. Let the momentum flux carried by the cells be defined as
2

pua, The downward transport of momentum in the downwelling zone may be

estimated as -pWdownVjet. The transport of momentum in the upwelling zone

-pWupVup may be estimated by noting that Wdownu-et=Wup(Lceln-Ljet) and Vup=

VjetLjet/(Lcen - Ljet) since Vup, Vjet, Wdown, and Wjet are all perturbations from the

mean mixed layer velocity. Averaging over the width of the cell:
Lcen

(1-1) 2 1 vw
U*La=1 v'w'dx - 2 VjetWdownLjet/Lcell

If Vjet and Wdown are approximately 2 cm/s and Wup is of order 1 cm/s, then since
Lt 1  2

Ljet/Lcei=1/3, U2La is 1.3 cm 2/s2. This corresponds to a the stress caused by a wind

of about 7.5 m/s -a fairly stiff breeze. Larger estimates for cell velocities yield

larger estimates for momentum fluxes. Langmuir cells are of the right order of

magnitude to transport momentum within the mixed layer.

The variability in horizontal transport associated with Langmuir cells can

also be large compared to the mean Ekman transport. We can estimate the

amplitude of this variability by estimating the size of the transport relative to the

base of the mixed layer carried in the jets. This "jet transport" Mjet is defined as



(1-2)i(1-2) Mjet=Vjet*Djet'll

with these quantities are defined as in Figure 1.2. The Ekman transport (the total

volume transport when the surface stress is wholly balanced by Coriolis force). is

(1-3) Mekman =P

where t is the surface stress, p the density and f the Coriolis force. Table 1.1

shows a comparison of these two quantities for several published observations of

Langmuir cells. Mjet is often large compared with Mekman. This does not mean that

the cells alter the value of the Ekman transport, but that the structure of this

transport is strongly influenced by the presence of cells. Once again Langmuir
cells can determine the velocity structure within the mixed layer.

Source Jet Transport Ekman Transport Ratio

Miet (m 2s-1) Mekman (m2 s-1) Miet/Mekman

Langmuir (1938) 0.06-0.33 0.37-1.5 0.04-0.8

Gordon (1970) 0.16-0.42 0.4 0.4-1.0

Kenney (1977) 0.1-0.2 0.2-1.0 0.1-1.0

Ryanzhin (1983) 0.3 0.46 0.65

Weller and Price (1988) 1.0-4.0 1.8-3.5 0.3-2.0

Table 1.1: Relative size of the Ekman transport and the variability in that transport
due to Langmuir cells.

1.3 Equations for mixed layer evolution and Langmuir circulation

While Langmuir cells were long thought to play a critical role in upper

ocean mixing, the dynamics of the instability process giving rise to the cells

remained obscure for almost forty years. The situation was rectified in the 1970s

by a series of papers (Craik, 1970; Craik and Leibovich, 1976; Leibovich,1977a,b;
Huang,1979) which developed a set of equations for the evolution of a layer of

fluid in the presence of surface gravity waves, stratification, Coriolis forces, and

Langmuir cells. The equations are presented below as developed by Huang (1979).

DO DO D9 av av vs v ap
(1-4a) -- +(u+us)+w- = F( F-+ )+ + Ri-+LaV2Q2

(v .v Dv 1 u
(1-4b) '+(u+usx+w = - -F(u+us)+LaV2vZt. )5-x~w5-



ap ap ap
(1-4c) -+(u+us -+w-- = LaV2p

(1-4d) Q = V2N

(1-4e) ax = -w z =u

ve f N2

(1-4f) La - F - Ri =
kaa2o ka402

-1

(1-4g) k (x,y,z) = (x,y,z)

(1-4h) (kwa)20u,us,v,vs,w) = (u, us,, Vs, W)

(1-4i) 21 t=t
ka 2a

In the above equations, kw, a, and a are the wavenumber, amplitude and frequency

of the driving surface gravity waves. Ve is the eddy viscosity, f the Coriolis

parameter, N the buoyancy frequency, and us and vs the Stokes Drift in the

crosscell (+x) and alongcell (+y) directions respectively. u and w are the horizontal

and vertical velocities respectively in the crosscell (xz) plane. 2 and v are the

vorticity and velocity respectively in the alongcell direction. Equations 1-4(a-e) are

for dimensionless quantities, with equations 1-4(g-i) giving the conversion from

dimensionless distance, velocity and time to dimensional (italicized) form.

Equation (1-4f) defines three important dimensionless numbers. La is the

Langmuir number, which is a scaled eddy viscosity or inverse Reynolds number. F

is a scaled Coriolis parameter. Ri is the Richardson number, the square of the ratio

between a characteristic buoyancy frequency and a characteristic Stokes drift

shear.
These equations are derived from a perturbation expansion (presented in

full in Appendix A) in which the following scaling assumptions are made.

1. Cell velocities are small (of order E=kwa) in comparison with wave orbital

velocities.
2. The cells evolve on time scales which are slow (order E2) in comparison with

the wave frequency.

3. The cells are capable of carrying vertical fluxes of horizontal momentum of the

same order as the surface stress La Iz-o .



4. The Coriolis force is of the right order to balance the surface stress.

5. The cells are capable of carrying density fluxes of the same order as the surface

density flux Ll z=0'•

6. The turbulent eddy viscosity and eddy diffusivity are the same.
Bv

In combination, assumptions 3 and 4 mean that nonlinear terms wa must be of the

same order as the Coriolis force terms and the diffusive terms.

In addition to the scaling assumptions, Huang's equations contain one other

major assumption, that of a constant mixing coefficient. This is in many ways the

weakest part of the equations. In the presence of wave breaking, for example, the

mixing would be stronger near the surface, while in the presence of Kelvin-

Helmholtz instability at the mixed layer base it would be stronger there. When

interpreting results derived from these equations, the Langmuir number should be

thought of as setting the order of magnitude of the diffusive decay.

The approximation of constant mixing coefficient has a major effect on the

density profile. In the absence of cells, the only possible steady-state solutions are

those for which
a2p(1-5) V2p = aZ2 -

Thus the only possible solutions are those for which the density profile is constant

or linear. In the absence of cells, the equations cannot support a solution with a

thermocline and a mixed layer. Whether cells are present or not, at steady-state the

density flux must be constant with depth. This is an unrealistic representation of

mixed layer density evolution given that the time scales for mixing density through

the thermocline (which are of order weeks or months) are different from the time

scales for adding heat to the mixed layer (of order hours or days).

The appearance of the Stokes drift in equations (1-4a,b) demands some

extra explanation. The Stokes drift arises because irrotational surface gravity

waves have larger alongwave velocities at the crest of the wave than at the trough.

Averaging over a wave period, the mean velocity following a particle is nonzero,
even though the mean Eulerian velocity at depths below the wave zone is zero (see

Phillips, 1960 for a discussion). Given a monochromatic deep-water wave with

wavenumber kw, frequency a, and amplitude a, the Stokes drift is

(1-6) vs(z)= kwa 2a exp(2kwz)

This Lagrangian drift acts to tilt both planetary and relative vortex lines. In an

Eulerian framework, this vortex interaction arises through nonlinear interactions



between the Eulerian-mean vorticity and the wave orbital velocity. Figure 1.3

illustrates these interactions for a vortex tube oriented in the +z direction for

surface gravity waves propagating in the +y direction. In the presence of surface

gravity waves, this tube is stretched at the wave crests, compressed at the wave

trough and tilted in between. This means that vorticity perturbations in the y
direction K' are created which are in phase with the vertical wave velocity w', and

with the divergence of the horizontal wave velocity av'/ay. Likewise vorticity

perturbations in the vertical direction z' are created in phase with the vertical shear

associated the waves Dv'/Iz. As a result there are mean sources of vorticity FzQ'w',

l'Dv'/Dx , and CW'v'/)z where the overbar denotes averaging over a wave period.

These terms go as the square of the wave velocity shear, which goes as the Stokes

drift shear.
The research presented here differs from previous work in several ways.

*It focuses on cases where the bottom boundary is a no-stress boundary. This is

based on the observations (Weller ,1981; Price, Weller, and Schudlich, 1987)

showing that the momentum balance can generally be closed by integrating to the

top of the main thermocline. (This is not true near the Coriolis frequency, but the

propagation of inertial energy into the thermocline is beyond the scope of this

thesis). In the majority of previous results, either the bottom boundary is a no-slip

bottom (Lele, 1985), the stress on the bottom boundary is the same as at the top

boundary, (Lele, 1985; Leibovich et al., 1989; Cox and Leibovich, 1993) or the

water column is infinitely deep (Leibovich, 1977a).

*The mixing coefficients for density and velocity are the same. Previous authors

(Leibovich and Paolucci, 1981; Lele,1985; Leibovich et al., 1989; Cox and

Leibovich, 1993) considered cases where the turbulent Prandtl number (given by

the ratio between the eddy viscosity and diffusivity) is equal to its molecular value

of 7. This is not a good approximation for strongly turbulent mixed layers. Many

mixed layer models assume a turbulent Prandtl number of 1 (Denman, 1973; Price

et al. 1986) while others have it close to 1 (Mellor and Yamada, 1974). Setting the

Prandtl number to be greater than one can lead to time-dependent solutions which

are not necessarily realistic for oceanic cases.

*The effect of cells on the equilibrium profile when the surface forcing is balanced

by small-scale mixing rather at the transient problem of how cells and small-scale

mixing combine to establish a mixed layer is considered. The focus is on which

process maintains the mixed layer rather than on how that layer is created.
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*The Stokes drift shear decays with depth rather than being a constant. Although

some investigators (Leibovich, 1977a; Lele, 1985) have considered how the decay

of the Stokes drift shear affects the instability problem, the effect on the structure

of the cells at equilibrium has not been considered. When the Stokes drift and

Eulerian shears within the mixed layer are nonuniform the dominant mode at

equilibrium generally has a longer wavelength than the most unstable mode.

*The Coriolis force is nonzero. An implication of including Coriolis forces is that

the Eulerian and Stokes drift shears will not necessarily be parallel and that the

depth over which the cells penetrate is limited.

1.4 Langmuir Cells vs. Small Scale Mixing: The Plan of Attack

The equations introduced in the previous section are used over the course of

this thesis to study when mixed layer profiles produced by small-scale mixing are

unstable to cells, and to characterize the modification of these equilibrium profiles

produced by finite-amplitude cells.

The fact that the forcing is concentrated near the surface of the layer makes

for some difficulty. This may be seen more clearly by contrasting the problem at

hand with the well-studied Rayleigh-Benard problem. For buoyant convection

between two flat plates the strength of the the forcing is given by the buoyancy

frequency N

(1-7) N =

where g is gravity, p is density and z is the vertical coordinate. The characteristic

diffusive decay scale is given by
(1-8) Ydiff = NFvj(k242/D2)

where v is the viscosity, ic the diffusivity, k the horizontal wavenumber, and D the

depth. If N>Ydiff one expects instability to occur and that the finite-amplitude cells

will erase much of the initial stratification. For Langmuir cells, however, the

Stokes drift decreases exponentially with depth scale k/2 (of order 10-20 meters).

As a result it is unclear what the analogue of equation (1-7) should be. It is also

unclear that the Craik-Leibovich instability mechanism will be able to force cells

which can homogenize mixed layers with depths greater than k .

Chapters 2 and 3 attack the problem of defining analogues to the

stratification and Rayleigh number for Langmuir circulation. It is shown that for

infinitesimal cells one can define the Craik-Leibovich instability parameter YCLS,

which characterizes the strength of the forcing on the vortices (page 39).



S0 0 0

(1-8) CL(D) F(z zd (z dz - (z z

where F(z) and G(z) are weighting functions which are proportional to the

nonlinear momentum and density fluxes carried by the infinitesimal cells. V and vs

are the Eulerian velocity and Stokes drift, respectively, which are parallel to the
cell axis. If Ydiff is a characteristic diffusive decay scale for the infinitesimal cells,

the stratified Craik-Leibovich Rayleigh number RaCLS is defined as:

(1-9) RaCLS-CLS/_ff
When RaCLS>1 (and additionally YcLS is greater than the frequency with which the

cells are tilted by the crosscell shear), cells with a particular geometry are unstable.
An important implication of this result is that YCLS and RaCLS depend on the

vertical structure of the cells. Chapters 2 and 3 discuss how this vertical structure

depends on the cell spacing, Langmuir number, Stokes drift profile, and boundary

conditions. The cell spacing is particularly important,with long-wavelength cells

penetrating deeper into the water column.
Since RaCLS depends on the spatial structure of the cells the question of

which horizontal scales dominate the solution at equilibrium is important. Chapter

4 shows that in the absence of Coriolis forces, energy flows to the gravest modes.

This evolution is very slow once the cells reach some quasi-equilibrium mixed

layer depth. Mathematically, stratification does not limit the depth of penetration

of the cells, but the growth may be slow enough so that penetration is limited for

geophysically interesting time scales. The presence of Coriolis forces acts to limit

the horizontal length scale and thus the depth of penetration of the cells.
Suppose there is a cell geometry for which RaCLS ) 1 for infinitesimal cells.

In Chapter 5 it is shown that at finite-amplitude, these Langmuir cells replace

small scale eddy diffusion as the dominant means by which momentum and

density are transported within the mixed layer. In such cases, the characteristic
scale for shear within the mixed layer will go roughly as YCLS. The shear is a

natural index of cell strength which can be used to isolate the forcing mechanism.

Chapters 6 and 7 use the framework developed in Chapters 2-5 to look at

data from two experiments off the coast of southern California, the Mixed Layer

Dynamics Experiment (MILDEX, Chapter 6) and the Surface Waves Processes

Program (SWAPP, Chapter 7). The time-varying shear in a band from 1-36 cph is

used as an index of cell strength. The level of this shear correlates extremely well
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with an estimate of YCLS assuming cells of roughly 10m depth. These results

represent the first prediction of cell strength in the field and support the idea that

the cells are driven by wave-current interaction. RacLS is shown to be large for

extended periods of time, indicating that Langmuir cells rather than small-scale

mixing should be the dominant mechanism by which the mixed layer is stirred.

Comparisons between the observations and two one-dimensional mixing

models further support this picture. When the cells are strong, the observed low-

frequency (0.01-0.05 cph) shear profile has less shear within the mixed layer than

predicted by a model which assumes small scale mixing, but more shear than

predicted by a model which treats the mixed layer as a slab. The velocity profile

which results from small-scale mixing unstable to Langmuir cells when waves are

present. Additionally, both one-dimensional models predict restratification on two

days during SWAPP when estimates of the energy balance of Langmuir cells

indicate that such restratification should not occur. In Chapter 8, finite-difference

code runs demonstrate that the cells should indeed replace small-scale diffusion as

the dominant transport mechanism within the mixed layer, homogenizing the

velocity profile predicted by small-scale mixing. The result strongly supports the

theses that cells are important in stirring the mixed layer and that wave-current

interaction is important in driving the cells.

There are differences between theory and observations. Chapter 8 lists some

of these shortcomings with respect to the predicted equilibrium cell population,

mean shear and velocity structure, and total transport. Some possible remedies are

suggested. Chapter 9 concludes the thesis and suggests some avenues for future

work.

1.5 Conclusions

This thesis argues that Langmuir circulations driven by wave-current

interaction are the dominant mechanism for stirring strongly mixed oceanic

surface layers. When the surface forcing is strong, Langmuir cells are more

important than small-scale diffusion driven by buoyant overturning and shear

instability. In some cases, the cells are the reason why a mixed layer is seen at all.

Although small-scale turbulent processes are potentially still important in the

initiation of mixing (Chapter 9), as the mixed layer develops they become less

important than large-scale Langmuir circulations.



Chapter 2: The Instability of Langmuir Cells in Fluid Layers
with No Coriolis Forces

2.1 Introduction

This thesis argues that Langmuir circulation driven by wave-current

interaction, rather than small-scale diffusion driven by shear instability and local

buoyant overturning, is primarily responsible for maintaining the mixed layer. In

Chapter 1, a set of equations were introduced for the evolution of a layer of fluid in

the presence of waves, Coriolis force, and Langmuir circulation. This chapter uses

these equations to answer the following questions.

* Under what circumstances is the equilibrium solution set up by small-scale

turbulent diffusion unstable to Langmuir cells?

* How do diffusion, stratification, Stokes drift profile, layer depth, and cell spacing

affect the growth rate and vertical structure of the unstable modes?

* What is the effect of the boundary conditions for density on the growth rate and

structure of the unstable modes?

The cases examined assume that the Coriolis force is zero, the cell axis, waves,

and Eulerian shear are parallel (us=O), and that the wind stress is balanced by a

pressure gradient. The goal is to reduce the many different parameters to a few

important numbers. These turn out to be:
* The stratified Craik-Leibovich instability parameter YcLs (a measure of the

strength of the vortex forcing due to wave-current interaction and buoyancy).

* The stratified Craik-Leibovich Rayleigh number RaCLS (a measure of the

strength of the forcing relative to the diffusive decay).

* The aspect ratio of the cells Dmax/L where Dmax is the depth at which the

maximum vertical velocity occurs.
The results can be extended to provide a basis for understanding the dynamics of

infinitesimal and finite-amplitude cells in the presence of Coriolis forces.

Before embarking on this study we briefly note related work. Leibovich

(1977a) studied the instability of an undisturbed column of infinitely deep water.

He found that the growth rate of Langmuir cells was a strong function both of the

Langmuir number and the horizontal wavenumber. Leibovich (1977b) showed that

the maximum inviscid growth rate for cells in the presence of stratification was:

(2-1) y=max ( ~a ) v N2
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so that high stratification suppressed the instability. Lele (1985) showed that the
marginal instability for Langmuir cells occurred at infinite cell spacing (k--O) when
the bottom boundary was a no-stress bottom. Cox and Leibovich (1993)

considered the effect of changing this boundary condition on the instability.
This study uses a different initial condition from Leibovich (1977a), namely

the equilibrium flow set up by small-scale diffusion in the absence of Langmuir
cells. This initial condition was chosen since the goal of the thesis is to determine
whether Langmuir cells or small-scale diffusion is the dominant transport
mechanism in an equilibrium mixed layer. This initial condition is not wholly
unrealistic, since in real oceans and lakes there is almost always some pre-existing
shear as a result of pressure gradients, internal waves, or inertial oscillations. As
noted in Chapter 1, an additional difference between this work and that of previous
investigators is that the turbulent Prandtl number is set equal to 1 instead of its
molecular value of 7.

2.2 Equations of Motion and Methods of Solution

The equations of motion are (Leibovich,1977a)

DO Do an avsav Dp(2-2a) +u+w- = z Dx+RiD +L a V 2Q

av v v lp+LaV2v(2-2b) -+u+w = - pa y +LaV2

ap ap ap(2-2c) tVux+wz = LaV 2p

(2-2d) J2 = V24

(2-2e) - - w = u

ve N 2

(2-2f) La-e Ri 2
-a2

(2-2g) k (x,y,z)=(x,y,z)

(2-2h) (kwa)2 ((u,v,vs,w)=(u,v, vs,W)

(2-2i) t = t
k~a2



In these equations kw,a, and a are the wavenumber, amplitude, and frequency of

the driving surface gravity waves, Ve isthe eddy viscosity, N is the buoyancy

frequency, and vs is the Stokes Drift. The italicized quantities are dimensional,
with equations (2-2g-i) giving the conversion to nondimensional units. The key

nondimensional numbers are the Langmuir number La and the Richardson number

Ri. The boundary conditions on the velocity are

(2-3a) L- z=0=

(2-3b) LavI zz=.D= z_0= 'z=-D 0

In the absence of Langmuir cells after a diffusive equilibrium is set up the mean

Eulerian velocity in such a layer is given by

(2-4) ,,, (z+D)2  1
(2-4) V(z)-pLa 2D +(D pay t +C

Where C is an undetermined constant which can be set equal to zero without

altering the fundamental dynamics. In order to obtain a constant solution, the
pressure gradient which is required to balance the wind stress is p/ay = t/D.

This scenario is not strictly realistic for the majority of oceanic cases, in

which the primary balance is between wind stress and Coriolis force. However, it

may be applicable to the flow in the interior of lakes where the spacing between

convergence zones is small compared with the distance across the lake.

Additionally, as shown in Chapter 5, some results for mixed layers without

Coriolis force can be applied to mixed layers with Coriolis force when the Ekman

depth /- e (f the Coriolis frequency) is large compared with the layer depth.

The density equation deserves some special consideration. As noted in the

previous chapter, the mixing parameterization adopted for this study requires
either that p be constant throughout the layer, or that it vary linearly from top to

bottom. In both cases the density flux is constant throughout the layer. Since the

deep ocean may be thought of as a reservoir of cold, dense water, the density is

held fixed on the lower boundary.
(2-5) plz=-D = D

The upper boundary condition on density is less clear. The effect of two possible

conditions are considered, one for which the density is fixed on the upper

boundary, and another for which the density flux is fixed on the upper boundary.

(2-6a) plz=o -0
(2-6b) ap/zlIzo = - 1



If the density is fixed, the density flux carried by the cells is set by the internal

dynamics of the system, a somewhat more interesting case. However, it is unclear

that it is a physical case, since the atmosphere is more likely to set the flux than it

is to fix the density at the upper boundary.

In addition to the boundary conditions, there are a large number of

parameters which have a potential effect on the instability; namely the cell spacing

L, layer depth D, Langmuir number La, Richardson number Ri, surface shear

av~z, and Stokes drift shear profile -. In order to reduce the parameter space

which must be considered, it is useful to choose parameter ranges which are

reasonable for oceanic environments. For oceanic cases, the frequency of the

driving waves is of order 0.5-1 rad/s, corresponding to periods of order 6-12

seconds. The e-folding depth for wave velocity decay 1/kw for such waves is

roughly 8-32 meters. This thesis concentrates on layers with nondimensional

depths ranging from 2 to 6, corresponding to layer depths of about 15-200 meters.

Reasonable values for oceanic eddy viscosities range from 10-1000 cm 2/s

(Huang,1979; Weller,1981). Depending on how one calculates the quantity a2a

(either by integrating over a spectrum or simply choosing values from the spectral

peak) one may obtain a range of Langmuir numbers from O(10 -4) to 0(1).

Two reasonable approximations for the nondimensional Stokes drift are

used in this work, one for a monochromatic wave train and another for that given

by the Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964):

(2-7a) vs(z)=exp(2z) Monochromatic
00

(2-7b) vs(z)= exp(-1.25 f )exp(2f 2z)df P-M. Spectrum

wheref is a dummy variable representing the nondimensional frequency. The

Pierson-Moskowitz spectrum is chosen to have the same amplitude and peak

frequency as the monochromatic wave train. Relative to the monochromatic wave

train, the Pierson-Moskowitz spectrum yields a larger Stokes drift (by a factor of

4) and much larger Stokes drift shear (infinite at z-0) near the surface.*

The instability problem is cast as follows. The streamfunction, alongcell

velocity, and Stokes drift are represented as

* Note that an infinite surface Stokes drift shear means that the inviscid limit on the growth rate (2-1) is
always infinite and that a finite value of stratification will never act to limit the growth rate. This presents a
major obstacle to applying the theory to the real ocean, and serves to motivate the development of an
instability theory which does not depend solely on a local parameter.



(2-8a) y= Sy'(x,z,t)+(z)=eikx Nm(t)sin(--+ Tmsin(-
m=1 m= 1

M M

(2-8b) v=8v'(x,z,t)+V(z)=Seikx vm(t)cos(Z)+ Vmcos( )
m=O m=-O

M

(2-8c) vs= Vsmcos(Z )
m=O

where 8 is a small number. Let the density field be

(2-9) p=p' (x,z,t)+P(z)=eikx m(t)sin(z+ sin(iPn
m=1 m=1

for density fixed on top and bottom boundaries or

(2-10) p=8eikx pn(t)cos( 2D ) mcos( 2D
m=1 m=1

for density fixed on the bottom boundary and density flux fixed on the top
boundary. These expansions may be substituted into equations (2-2) and expanded
in terms of 8. To zeroth order in 8 this procedure yields a Fourier-series

representation of the steady state solution in the absence of cells. At first order in
8, the growth rate of the linearly most unstable mode and the structure of that
mode can be cast as a linear eigenvalue problem in terms of the the coefficients
Vm,vm,Pm. The value of the largest positive eigenvalue is a function of the

number of modes in the truncation, but it converges as M becomes large. The
results in this chapter are for M=40, a value for which all results presented here
converged.

The vertical velocity for such an unstable mode is given by
M

(2-11) w=ik IVmsin(mCzl/D)eikx= ik '

m= 1

The depth at which the maximum vertical velocity occurs (Dm) is the depth at
which IN'I is a maximum.

In section 2.3 a spectral instability code of the type outlined above is used
to characterize the dependence of the growth rate and Dmax on layer depth, Stokes



drift shear profile, stratification, and boundary conditions. The growth rate and

Dmax are closely linked.

In section 2.4 a simple understanding of these complicated dependencies is

sought. Linearized energy balance equations for the instability are derived which

give a sense of how quickly cells with a given shape grow. By making some

simplifying assumptions, such as using two simple truncations to approximate the

shape of the unstable modes, closed-form analytical solutions for the growth rate

are obtained. These solutions are used to infer the important physical parameters

which determine the growth rate and cell structure of the linearly unstable modes.

2.3 Craik-Leibovich Instability in Nonrotating Mixed Layers: Results from an

Instability Code

2.3.1 Results for Idealized Unstratified Surface Layers

This section focuses on two primary questions
1. How does the growth rate y of the linearly most unstable mode depend on the

horizontal spacing of the cells L, the layer depth D, the Stokes drift profile, and the

Langmuir number La?

2. How does the Dmax depend on these same parameters?

It is important to note the limitations of Dmax as an index of cell

penetration. Since the cell structure is not invariant it cannot be assumed that the
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Figure 2.1: Vertical structure of the most unstable mode assuming monochromatic
waves and a surface Eulerian shear of 1. (+) Langmuir number La--0.001, L=2. (o)
La-0.1, L=16. (a) Streamfunction perturbation. (b) Velocity perturbation.



cells have no effect at depths more than twice Dma. Figure 2.1a shows the
streamfunction perturbation for the most unstable mode for La=0.001,k=2Rd2 (+)
and La=0.1, k=27t/16 (o). Figure 2.1b shows the velocity perturbation. When La
and L are small, the streamfunction perturbation is concentrated near the surface
and resembles the velocity perturbation. When they are large, the streamfunction
perturbation penetrates over the depth of the mixed layer and is very different from
the velocity perturbation. Looking at Dma alone neglects these changes in
structure. Nonetheless Dm= is a useful diagnostic for cell penetration.

The linkage between growth rate and depth of penetration can be seen by
considering a simple case. Suppose a monochromatic wave train is propagating in
a direction parallel to the wind, so that the Stokes drift is given by (2-7a) and that

the surface Eulerian shearz ' -z0=1. The maximum inviscid growth rate for this

scenario is YCL =2. Figure 2.2a shows the growth rate of the most unstable mode

y-=(L,N--O,La) and 2.2b the depth of the maximum vertical velocity

Dmax=Dmax(L,N-0,La) for a layer depth of 2. The horizontal axis is loglo La (1/La
is analogous to Reynolds number), while the vertical axis is the horizontal
wavenumber k=27r/L. Dm, and y are linked as follows:
* Given a constant value of k, as La decreases y increases and Dmax decreases.
* As La becomes very small, both y and Dm= asymptote to a constant value.
* At very low values of La, large values of y occur when Dma is small.

This linkage is relatively insensitive to layer depth. Figure 2.2c and 2.2d
show y and Dmx for a layer depth of 4, and 2.2e and 2.2f show y and Dma for a

layer depth of 6. As La becomes small and k approaches 2n the growth rate of the
unstable mode approaches 0.8, slightly more than half of Yc'' and Dmax is about

0.3 for all three values of depth. For larger wavenumbers, larger values of y
coupled to smaller values of Dmax are seen. For La= 10-5 the largest growth rate of
1.19 occurs for cell spacing L=0.1 (k=20ft). Dmax for this unstable mode is 0.06.

However, there are some parts of parameter space where the layer depth
matters. In particular, at low wavenumbers and high La:
* Dmax is approximately half the layer depth.

* The stability boundary depends on the layer depth.

The importance of the layer depth for such cases is explained in Section 2.4.
The effect of changing the Stokes drift profile from a monochromatic wave

train to one corresponding to a Pierson-Moskowitz spectrum is shown in Figure
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2.3. Figure 2.3a shows the Stokes drift for a Pierson-Moskowitz spectrum and 2.3b

the Stokes drift shear. Using a wave spectrum rather than a monochromatic wave

train increases the Stokes drift and Stokes drift shear for z>-1, decreases them for

-1>z>-3 increases them for z<-3. Figure 2.3c shows y and 2.3d Dmax for a layer

depth of 4 and a surface shear of 1 (corresponding to Figure 2.2c and d). The effect

of changing the profile is to increase the growth rate for all values of horizontal

wavenumber and Langmuir number, with the largest changes being at high

wavenumber and low Langmuir number. Dmax decreases fairly uniformly, with the

mean decrease being close to 0.2. Increases in growth rate are correlated to

decreases in Dmax.

Lastly, the behavior of the instability at low wavenumbers is considered.

Figure 2.4a shows the behavior of the growth rate of the most unstable mode for

La=0.001 as k goes to zero for D=2,4, and 6 given a monochromatic wave train

and a surface Eulerian shear of 1.0. The growth rates decrease approximately

quadratically, with marginal instability occurring at k=0 (infinite wavenumber).

The growth rates are clearly strongly affected by the depth of the layer, with larger

depths corresponding to larger growth rates. Figure 2.4b shows the depth of

penetration, which asymptotes to somewhat less than half the layer depth in all

cases as the wavenumber k goes to zero.

In summary, the main results of the unstratified runs are:

* At high wavenumbers and low Langmuir numbers, the growth rate and depth of

penetration are largely independent of layer depth and Langmuir number but

strongly dependent on cell spacing.

* At low wavenumbers, the growth rate depends on the value of La, the cell

spacing and the layer depth.
* Changing the Stokes drift profile from one given by monochromatic waves to

one given by a Pierson-Moskowitz spectrum increases the growth rates sharply.

2.3.2 Instability in Idealized Stratified Mixed Layers

Turning now to stratified Craik-Leibovich instability, this section considers

cases where D=4, the waves are monochromatic, and the surface shear=-l. From

Leibovich (1977b) the maximum inviscid growth rate in the presence of

stratification is given by the maximum of - Ri. For the shear profiles in

this chapter given a monochromatic wave train, the first product has a maximum
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Figure 2.3: Effect on Craik-Leibovich instability of changing the waves from
monochromatic to a Pierson-Moskowitz spectrum. (a) Stokes drift for Pierson-
Moskowitz spectrum (solid)and monochromatic waves (dashed) with same peak
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rate from 40-mode instability code assuming Vo(z)=(z+D) 2/2D, D=4 and waves
given by a Pierson-Moskowitz spectrum. (d) Same as (c) but for depth of
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of 2. The investigation is divided into cases where Ri<<2.0 (weak stratification), Ri

somewhat smaller than 2.0 (moderate stratification) and Ri-2.0 (strong

stratification).
This section has two main purposes. The first is to investigate when the

boundary conditions for density are important for determining the growth rate and

structure of the instability. This will guide the choice of a boundary condition for

the finite-difference code runs in Chapters 4 and 5. The second purpose is to

extend results from 2.3.1 to stratified cases to determine how the stratification

affects the cell structure and growth rate.

Figure 2.5 shows growth rates and depth of cell penetration for cases of

weak to moderate stratification. Figure 2.5a shows the growth rate and 2.5b Dmax

for Ri=0.05 (weak stratification) with the density fixed on top and bottom

boundaries. Comparison with Figure 2.2c and d shows very little change in either

the growth rate or the depth of maximum vertical velocity. Weak stratification

does not affect the instability at high wavenumbers to any great degree.

Figure 2.5c and d repeat 2.5a and b for Ri-0.5 (moderate stratification).

The growth rates decrease in the presence of moderate stratification, and D.m

decreases as well. Given a fixed wavenumber, stratification can play a role in

limiting the depth of penetration of the cells. Similar results were found by Lele

(1985) and Li and Garrett (1993b).

Figure 2.5e and f repeat 2.5c and d, but for the density flux, rather than the

density, fixed on the upper boundary. Changing the boundary condition produces

very little difference in the growth rate or depth of maximum vertical velocity.

Even for moderate values of stratification, the physics of the instability are

relatively insensitive to the upper boundary condition.

This lack of sensitivity to boundary conditions does not hold when the
stratification is strong. Figure 2.6a shows y and 2.6b Dmax as a function of

wavenumber and La for Ri=2.0 and for density fixed on upper and lower

boundaries. In the absence of viscosity, there is no instability for Ri=2.0. This is

not the case in the presence of viscosity. The growth rates have a very interesting

pattern, showing a maximum in Langmuir number.

This pattern is strongly dependent on the upper boundary condition. Figure

2.6c and 2.6d show the growth rate and Dm for Ri=2.0 but with the density flux

fixed on the upper boundary instead of the density. The instability is damped

except at very low wavenumber and Langmuir number.
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Figure 2.5: Instability of Langmuir cells in the presence of low to moderate
stratification. All cases assume layer depth D=4, monochromatic waves, no
Coriolis forces and a surface Eulerian shear of 1. (a) Growth Rate, Ri-0.05 density
fixed on both boundaries. (b) Dmax, Ri-0.05, density fixed on both boundaries.
(c) Same as (a), but for Ri=0.5. (d) Same as (b) but for Ri-0.5. (e) Same as (c) but
for density flux fixed on upper boundary. (f) Same as (d) but for density flux fixed
on upper boundary.
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At low wavenumber and Langmuir number, there is some instability even
when the stratification is strong. Figure 2.6e shows y and Figure 2.6f Dax for

La=0.001, D=4, given a monochromatic wave train and a surface shear of 1.0. The

solid line is for Ri=0.0. The dashed line is for Ri=2.0 with density fixed on the top

and bottom boundaries. The chain-dotted line is for Ri=2.0 with the density fixed

on the lower boundary and the density flux fixed on the top boundary. The growth

rates are smaller for the two stratified cases and Dmax is smaller as well, indicating

that the cells are trapped closer to the surface. The upper boundary condition is

also important for the growth rates at low wavenumbers, with a flux boundary

condition on the upper boundary giving lower growth rates. As the wavenumber

becomes very small, both the growth rate and depth of maximum vertical velocity

asymptote to the unstratified value.

The four major results for stratified Langmuir cells are thus

*At weak to moderate values of stratification, the growth rates and depth of

maximum vertical velocity for the linearly unstable modes is not greatly affected

by the upper boundary condition and the overall pattern resembles that in the

absence of stratification.

*Stratification reduces both the growth rate and depth at which the maximum

vertical velocity occurs.

* For strong values of stratification, the value of La as well as the upper boundary

condition is critical in determining the growth rate and depth of maximum vertical

velocity for the linearly unstable modes.

* At low wavenumbers, however, the stratified results asymptote to the unstratified

results even for high values of stratification.

2.4 The Physics of Craik-Leibovich Instability
2.4.1 Energetics of the Instability

In order to understand the results of Section 2.3, we will now derive

equations for the energy balance which demonstrate how the cell structure

determines the growth rate, and how the Langmuir number, Stokes drift profile,

stratification, and boundary conditions determine the cell structure. Take the

linearized equations of motion. As in Section 2.2 let 5'V,8v',8p' represent the

perturbation streamfunction, velocity, and density fields, while 'o,V and Po

represent the equilibrium fields in the absence of cells. Substituting into (2-2), the

equations to zeroth order in 8 are:

(2-12a) Yo(z) = 0



(2-12b)

(2-12c)

while to first order in d:

(2-13a)

(2-13b)

(2-13c)

(z+D)2

Vo(z) - 2D

Po(z) =- z

a av~av'
t V 2 = Z ax+

ap'
Ri x + LaV4V

tav z 3x + LaV2v'

ap' aPoAV
-t = a- & LaV2p'

Multiplying equation (2-13a) by V', (2-13b) by v', (2-13c) by p', and designating

horizontal averaging by an overbar gives the perturbation variance equations:

0 0

(2-14a ) -u z = - -Vsdz
-~ ;V d

0

- Ri p'w'dz-
DLa au'2 aw2 aw'2

Laf- +- -- +-- dz
D

a dz
at-_ dz=-

(2-14b)

0
----,aVo'vw dz

_w -d -
0

t- p dz =(2-14c)

0
-i Po
p~ w' dzZ

0

-La +x -- dzax aZp Ot

+rz ozThen the energy balance is

(2-15a)

(2-15b)

(2-15c)

a
a- Ecc= Pstokes - Btrans - Ec

a
j Eac= Pac - Eac

SEp= Pp - ep

where Ecc,ac are the energies associated with flow in the crosscell and alongcell

directions respectively. Ep is the density variance. Pstokes is the Stokes production

(the work done by the waves on the cell vortices). Pac is the shear production. Pp
is the density variance production. Btrans is the buoyancy transport. Ecc,ac,p are the

dissipation terms associated with the crosscell velocities, alongcell velocity, and

density respectively.
Define

v'=vle tV(z)cos(kx)

p'=ple^fp(z)cos(kx)

(2-16a)
(2-16b)

av'2 av'2-- +- dz



so that the perturbation structure of each field is given by a shape function

multiplied by an amplitude.The structure functions V, V,p are normalized so that:
0

(2-17) ~ I(V,yp)12dz =1

Substituting into the crosscell energy balance and letting y be the growth rate then

yields the following relation between the three amplitudes

2(2-18) 0

(2 -1 8 ) --i P a r2
J7)

RiVpr1 ~i(z)p(z)dz

Defining

+k2 V2 dz = VIVf1 p(z)V(z) dz +

La
2

0

+ 2k2(--k4i 2 dz

Vsz Y(z)V(Zz dz

0

= Kz)p(z)dz

0

k 2 _( +k2v2 dz
_I T

(2-19d)

and dividing out c

(2-20)

Similarly, by defil

(2-21a)

(2-21b)

4= 2 I D-j + 2k az+k42 dz

:ommon terms, yields
4 2 2 2Ri

y+ La K/k) , = kVsz/k vl + Ri k pl

ning
0

A 2 1Vo
VzD ipg(z)V(z dz

^2POz 2

(2-19a)

(2-19b)

(2-19c)

y'=Vletly(z)sin(kx)(2-16c)

YZP aph
)t~~p(fa dz.s



0 0
2 2 2 2 2 La

(2-21c) k +k2V2 dz kP = D+k 2p 2 dz

the equations for alongcell velocity and density may also be obtained
(2 2) A

(2-22a) 7y+ La k)vl = k VzVj

(2-22b) (y+La k)pi = k P Vl

Substituting into (2-20) and letting

(2-23a) ACL=AZVz

(2-23b) N2= Ri P1A0

yields the following, cubic equation for y

(2-24) (,y+ La K, ) (y + La k) (y+ La k)=

k2L/k7 + La k +k2N2/k ( + La k
By considering some simple solutions of equation (2-24) it is possible to

understand the physics behind the results of section 2.3. This is done during the

remainder of this section.

2.4.2 Linking Cell Structure and Growth Rate at High Wavenumber

Suppose that the density and velocity perturbations have identical structure

functions, so that V(z)=p(z), and kp=lk. Then the solution to (2-24) is
2 2

La (k + k /k )
(2-25) 7=- 2

La2 ( k /4)2 k2 2 2 4
4 "1"'YCL-N 2 ' LakvK

The stratified Craik-Leibovich instability parameter YCLS and the characteristic

diffusive decay scale Ydiff may then be defined as follows:

(2-26a) YCLS = TCLN 2

(2-26b) Ydiff= La k rWk2 2

Then the necessary condition for instability is that

(2-27) RaCLS - LS >1
tdiff

As La becomes very small, the growth rate becomes



(2-28) = - cL- N = TYCLS

Equation (2-26a) may be squared and rewritten as follows
0 0

(2-29) LS(D) = z)V(z dzjiV(z)V(1zdz -

0 0Ri V!/z)p(Z zz dz (z)p(z) dz

Which may be rewritten in dimensional form as:
0 0 0

(2-30)4 a vV p
(2-30) LS(D) = F(z dz (z dz G(z dz

so that TCLS corresponds to the local instability parameter defined by Leibovich

(1977b) and shown in (2-1), but with the various components defined by depth-

averages rather than by local values. The weighting functions F(z) and G(z) used

to define the depth-average depend on the shape of the momentum and density

transport carried by the cells.
In order to get a better feel for the what the various terms mean, the

streamfunction, density, and alongcell velocity structure functions may be

approximated as follows

(2-31a) l/= sin(z/D') z > -D'

(2-31b) V,p = cos(icz/2D') z > -D'

(2-31c) V,V,p =0 z < -D'

so that D'=2Dmax. In this truncated representation of cell structure, the cells

penetrate over D', but have no effect below D'. This truncation will be denoted T1.

Because the cell penetration depth is limited, Truncation T1 models cells which

are not affected by the different bottom boundary conditions on velocity and

density.
Defining YCLS1 as YCLS when the structure functions are given by

Truncation T1, and noting that k=Ky- k24 2/D'2 then

(2-32a) Ydiff= La (k2+i 2/D'2) k2+nr2/4D'2/k

(2-32b) Tl=-La(k2+(5n/8D') 2)+ La2(k2+(5t/8D')2)+k2+2/D,2'LS1- 'iff



Growth Rate, Ri=0.0 Truncation T1

Log_10 La
(a)

Log_l 0 La
(b)

Growth Rate, Ri=0.5, Truncation T1

Log_I 0 La
(c)

Error in Growth Rate, Ri=O

D_max, Ri=0.5 Truncation T1

Log_l 0 La
(d)

Error in Growth Rate, Ri--=0

-1.0 -2.0 -3.0 -4.0
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Log_10 La
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Figure 2.7: Ability of truncated models to capture the physics of Langmuir cell
instability. All runs assume D=4, monochromatic waves parallel with the wind and
cell axis, no Coriolis force and a surface Eulerian shear of 1. (a) Growth rate,
Truncation T1. Ri-0.5. (b) Depth of maximum vertical velocity, Truncation T1
Dma, Ri-O.O. (c) Growth rate, Truncation T1. Ri=O.O. (d) Depth of maximum
vertical velocity, Truncation T1 Dmax, Ri-0.5. (e) Error in growth rate caused by
using Truncation T1 for Ri-O.0. (f) Error in Dmax caused by using Truncation T1
for Ri-O.O.
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(2-32c) RaCLS1 = CLS1/ f

For large values of RaCLSl

(2-33) k- k CLS
k24,2/1'2

How well does this approximate truncation predict growth rates and cell

structure? Suppose that the growth rate of the most unstable mode y(k,N--O,La) is

given by maximizing TF(D') with respect to D' and that the depth of maximum

vertical velocity is given by half the value of D' for which yTl is maximized.

Figures 2.7a and b show the resulting predictions for growth rate and Dm= as a

function of horizontal wavenumber and Langmuir number for D=4, surface

shear=l, Ri=0.O, and a monochromatic wave train (corresponding to Figures 2.2c

and d). Figure 2.7c and d show the growth rate and Dma for Ri-0.5,

corresponding to Figure 2.5e and f. Figures 2.7 e and f show the difference

between the growth rate and Dma predicted by Truncation T1 and that predicted

by the full instability code for D=4 and Ri=0.0.

The truncated model does very well at capturing the dependence of the

growth rate on horizontal wavenumber and Langmuir number, not only

qualitatively but quantitatively as well. Making the approximations that the density

and velocity structures are identical and that they are essentially zero below 2Dma
does not change the solutions substantially. The mean error introduced by using

the truncation is 0.05, a small error given growth rates ranging from -12 to 0.7.

The truncation does not predict the depth of maximum vertical velocity as

accurately, overestimating it for large La and low wavenumber. Nonetheless the

truncation does still capture the reduction in Dmax associated with decreasing La

and cell spacing. The agreement between the trucnation and the full instability

code means that the closed-form solution in equation (2-32b) can be used to isolate

the important physics governing the relationship between cell structure and growth

rate (except when the Langmuir number or the wavelength is very large).

Suppose that La=0. Then the growth rate is given by

(2-34) 7 - k TCLS1 = G(k,D') yCLSl(D')
k24,2/D'2

where G(k,D')=k/ k24+ 2/D'2 , is a geometric factor. The geometric factor is a

monotonically increasing function of D', going as D' as for D'<<2/k and asymptoting

to a value of 1 if D'>>2/k. The stratified Craik-Leibovich instability parameter is a

monotonically decreasing function of D', since the Eulerian and Stokes' Drift

shears are maximal at z=0 and decrease with depth. The growth rate then is



determined by a tradeoff between maximizing yCLs (favoring cells trapped near the

surface) and maximizing kD' (favoring cells penetrating to great depth).

The details of this tradeoff are strongly dependent on the vertical structure
of the yCLs(D'). If only the amplitude of the forcing is changed (say by doubling

the surface shear), yT1 will increase by a constant factor but the depth Dmx at

which the maximum in yT1 (D') occurs will not change. On the other hand, if the

structure of the forcing is changed, (say by changing from a monochromatic wave

train to a Pierson-Moskowitz spectrum) Dmax will change.

The physics behind the tradeoff between the aspect ratio and the forcing can

be understood for the unstratified case as follows (the stratified case is more

complicated mathematically but the basic idea is identical). Let, as before, Ec be

the crosscell perturbation energy and Eac be the alongcell perturbation energy, and

let u', v', and w' be characteristic perturbation velocities in the crosscell horizontal,
alongcell horizontal and vertical directions respectively. Then

(2-35a) - Ecc ~t(u'2+w' 2)- Stress*Stokes Drift Shear

(2-35b) a Eac- v'2 - Stress*Eulerian Shear

Solving for the change in stress in terms of the change in energies gives

a a w'2
(2-36) at Stress v~ v'w' - Stress * Eulerian Shear*Stokes Drift Shear* u'2

-C 
-- k

- 4Stokes Production*Shear Production * k
-k2+7r2/D'2

So maximizing TCL optimizes the energy release resulting from a given stress,

while maximizing kD' optimizes the efficiency of the released energy at increasing

the stress.
If La O an additional factor is introduced. As D' gets very small, the

diffusive decay scale, which for small D' goes as La/D' 2,gets very large and can

overwhelm the Craik-Leibovich instability parameter within equation (2-32b).

Minimizing the diffusive decay scale favors cells with a deeper penetration. This

means that the growth rate decreases as La increases for two reasons, greater

diffusive damping and a decreased ability to take advantage of the higher shears

near the surface.
In the absence of density stratification (Ri=0) 'CLS is always positive. In the

presence of such stratification, however, there is a depth below which TCL( 2Dmax)

= N. This serves as a lower limit for cell penetration so long as the cells do not feel

the lower boundary. For Ri=0.5, monochromatic waves, a layer depth of 4 and a



surface shear of 1, the depth Dmax for which yCL1 = N is 0.8. In Figure 2.5f the

unstable modes have Dmax < 0.8 except at very low wavenumber.

An implication of this result is that Langmuir cells do not require that the

water column be unstable over their entire depth of penetration. Mathematically

this would mean that 'z -- N2> 0 for all z> -2Dm. If this were the case,

given Ri=0.5, Dmax would be no more than 0.3, much smaller than is seen in most

of the cases presented in Figure 2.5. The upper limit on the depth of penetration is

determined by the requirement that the average wave-current forcing must be

stronger than the average stabilizing stratification, rather than the wave-current

forcing needing to be stronger over the entire cell depth of penetration.

This upper limit on cell penetration only holds when the velocity and

density perturbation have similar structures. The boundary conditions on density

and velocity are different in the present formulation of the problem. This means

that the velocity and density structures may be quite different. As shown in the

following section, when the cells "feel the boundaries" the stratification does not

necessarily limit the depth of penetration.

To summarize then, given cells which do not feel the effect of the bottom

boundary, so that density and velocity perturbations have similar structures:

*The growth rate and structure of nonrotating Langmuir cells are determined by a
complex tradeoff between maximizing the strength of the forcing (given by YCLS),

maximizing efficiency of the forcing (given by the aspect ratio kD), and

minimizing the strength of diffusion (given by Ydiff)

*The necessary condition for instability of cells of a given geometry is that

RaCLS = iCLS, iff> 1.
*Cell depth of penetration decreases for decreasing cell spacing and diffusion and

increasing stratification.

2.4.3 Cell Structure and Growth Rate at Low Wavenumber and High

Langmuir Number

In Section 2.3 it was demonstrated that at long wavelengths the growth rate

,y becomes very small. It can also be shown that the alongcell velocity structure

function becomes constant at long wavelengths

(2-37) V(z)-1/2
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so that the diffusive decay scale for the velocity perturbation Lak2 -+ La k2 which

is also very small. Qualitative evidence of this trend towards smoothing the

velocity perturbation at long wavelength can be seen in Figure 2.1. The structure

functions for the streamfunction and density perturbations, however, must have

some vertical structure so as to satisfy the boundary conditions, so that the

diffusive decay scales for these fields asymptote to a nonzero value. At long

wavelengths then
2 42 2

(2-38) yLak << LaK /k, Lak
so that equation (2-24) simplifies to

(2-39) La KN ky+ La k) La k = k2a

yielding the following solution for the growth rate

(2-40) y= k 2  - La /k&2)

LaKI
The density vanishes from the problem altogether, a result seen in the instability

code. The mathematical development above demonstrates that this lack of

dependence on stratification results from the boundary conditions. In order to

satisfy the boundary conditions, the density perturbation must have some vertical

structure. As a result, it is much more strongly damped than the velocity

perturbation, and so ceases to play an important role in the dynamics.

A truncation which captures these dynamics is one for which the cells

penetrate over the entire layer of fluid
(2-41a) V=VoeikXsin(rz/D)

(2-41b) v=vie ik x +Vo(z)

We will refer to this truncation as T2. The most salient feature of this truncation is

that the velocity perturbation is strongly affected by both the upper and the lower

boundaries, and thus has a uniform structure with depth, while the density

perturbation is ignored altogether. Defining
0

(2-42a) z2--- J -silnidz

0

(2-42b) VSz2-- 2az in()dz

(2-42c) CL2= z2 Sz2



2
(2-42d) Ydiff2=La(k 2+j 2)

the growth rate of the most unstable mode given fixed La, k and D is

(2-43) y2--L k24+ La k2 k22(2L2 ff)

As k goes to zero, (2-43) asymptotes to
2,kD, CL22

(2-44) y2 1 )

So that the necessary condition for instability is

(2-45) RaCL2= CL2 / Zff>1

This truncation gives good predictions of the growth rate at very low wavenumber.

If there is a wavenumber kc such that the cells penetrate over the entire

domain D, then for all k<kc the diffusive decay scale ydiff2(k,D) <y iff2(kc,D),

while YCL2 does not change. From (2-45) then, there is a similar unstable mode

filling the domain for all k<kc. It should be noted, however, that the growth rates at

small values of k are very small, going as k2.

One of the questions with which this thesis began was whether or not the

strongly surface-trapped forcing associated with wave-current interaction could

force cells which penetrate over a deep mixed layer. Insight into this question may

be gained by considering the dependence of YCL2 on D. Assuming monochromatic

waves, no Coriolis force, and a surface shear of 1,

(2-46) 2CL2  4 2
- 2D+7 2 -D2

for large D. By contrast -2ff goes as D-4 , so the forcing falls off less quickly with

depth than does the diffusion. The implication is that deep mixed layers in the

absence of Coriolis force are unstable to very long-wavelength cells. Given that

the boundary conditions chosen for this study are realistic, cells which are long

enough will penetrate over the entire depth of the mixed layer.

The main results of this section can be summarized as follows:

*At low wavenumbers, the fixing density on the lower boundary causes the density

perturbation to be damped preferentially. As a result density does not limit the

growth rate or depth of penetration of the cells at long enough wavenumber.

*Given density fixed on the lower boundary, the condition for instability to occur

at some wavenumber is that RaCL2>1, regardless of the size of the stratification.
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2.4.4 How are the cell depth and growth rate determined at high

wavenumbers for high stratification?

We now turn to the question of how Dmax and y are determined at high

values of stratification and high wavenumbers. A particular question is why the

upper boundary condition determines the presence of instability and why the

growth rate exhibits a maximum with respect to Langmuir number. In Section

2.4.3 it was shown that at low wavenumbers the effect of density was removed

when the density perturbation was preferentially damped. A similar effect occurs

at high wavenumbers and high stratification.

In order for instability to occur, equation (2-24) must have a positive root.

A sufficient condition for this is that the constant terms in the polynomial be

negative.

-- - La cLk + La k2 N2 k <0
(2-47) ( K

This is true if and only if

(2-48a) CL- La2 K4 2 >0

yLa2K L2 2
(2-48b) N2 K>2

The first of these conditions corresponds to the unstratified instability condition.

Given a situation which is stable in the absence of stratification, adding

stratification will not make it unstable. The second condition (2-48b) means that if

N2 is larger than cL then the density perturbation must be more heavily damped

than the velocity perturbation. When the density is fixed on the upper boundary,

given a depth of penetration D'
(2-49a) p - sin(nzlD') z> -D'

(2-49b) V - cos(ntz/2D') z> -D'

equation (2-48) becomes

CL- La2 Kk 2 k2+42/4D'2

(2-50) N2  >k2+2/D'2

When density is fixed on the upper boundary, instability is possible for N2 < 4 YCL.

This constrasts with the inviscid case (2-1) or that for which density flux is fixed

on the upper boundary, where instability is only possible when N2 < YCL. When the

boundary conditions are such so that the density (which is stabilizing) is more



strongly damped than the alongcell velocity (which is destabilizing), the effect is

to reduce the stabilizing effect of density.

2.5 Conclusions

This thesis has set out to determine whether small-scale diffusion or

Langmuir circulation is the dominant mixing mechanism within the surface layer.

This chapter moves towards that goal by determining when an equilibrium velocity

profile in a layer with no Coriolis forces becomes unstable to cells. The necessary

condition is that a cell geometry be found such that the forcing of the roll vortices

by wave current interaction and buoyancy (which goes as the Craik-Leibovich

instability parameter YCLS) is stronger than the characteristic diffusive decay

(which goes as Ydiff).

Given a fixed cell spacing, the growth rate and cell structure are determined

by a tradeoff between maximizing the forcing, minimizing the diffusion, and

maximizing the efficiency of the cells at reinforcing themselves (determined by the

aspect ratio kD). The upshot of this tradeoff is that cells with long wavelengths

penetrate deeper into the mixed layer while cells with small wavelengths are

trapped nearer to the surface. Langmuir cells differ in this sense from classical

Rayleigh-Benard convection, where all the unstable modes penetrate over the fluid

depth. In order to understand the effect of the cells on the vertical transport of

momentum and density, it is necessary to capture the horizontal structure of the

cells. This is shown to be important when the structure of an idealized surface

layer with equilibrium Langmuir cells predicted by a finite-difference code is

compared to that observed in two field experiments in Chapter 8.

Given a fixed cell spacing, stratification reduces the growth rate and depth

of penetration of cells. The degree to which the stratification limits the depth of

penetration in a global sense, however, is dependent on the boundary conditions.

When the boundary conditions on density result in perturbations in the density

being more heavily damped than perturbations in the velocity, the effect of density

is limited. Given the boundary conditions chosen for this study density does not

limit the depth of penetration of the cells in a mathematical sense. In a geophysical

sense however, density may limit the penetration depth, since the cells which do

penetrate over the depth of a stratified fluid layer have very long wavelengths and

correspondingly small growth rates.



Because the wave-current interaction mechanism is most intense near the

surface, YCLS and yiff are closely linked to the vertical structure of the cells.

Equation (2-29) may be rewritten when Ri=0 as:

v'w'z- dz

(2-51) iCL ~

I zvs
Waz dz

0 0
v'2 dz w'2 dz

This means that the "effective Stokes drift shear" felt by cells of a given depth

YCLS is not that right at the surface (where v'w' is zero) but rather that where v'w' is
av A

strong. Figure 2.8 shows the depth at which = Vszl(D') for monochromatic

waves and for waves given by a Pierson-Moskowitz spectrum. For monochromatic

waves, the depth at which the "effective" Stokes drift shear occurs varies from 30-

70% of the depth of penetration, while for the Pierson-Moskowitz spectrum, the

depth at which the effective shear occurs is approximately 30% of the depth of

penetration for a wide range of penetration depths. Thus the Stokes drift shears

Depth of Effective Shear as a Function of Depth of Penetration
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Figure 2.8: Depth of "effective" Stokes drift shear vs. depth of penetration of
cells, given cell shapes given by Truncation T1.



caused by short, high-frequency waves are only important for cells which do not

penetrate very deeply into the mixed layer. Such cells may be important for

transient problems of mixed layer creation, but are less important at equilibrium

This is important for observationalists, since it is difficult to measure such high-

frequency waves in the field.

The results outlined here have implications for numerical modelling of the

cells. Given a box of width L and depth D the depth over which the cells penetrate

will be very sensitive to L if L<D. If the results are to be applied to realistic

situations modelling must proceed in boxes which are wide enough for modes

which penetrate over the entire depth to be at least theoretically accessible. If this

is not computationally possible (say in cases where the stratification is strong) the

failure to include such modes should at least be noted.

A number of issues raised by this chapter are covered in the remainder of

the thesis. One such issue is the effect of the assumption that the cell axis, wave

and wind direction all parallel and the Coriolis force equal to zero. Chapter 3

considers what happens when these assumptions are relaxed. The angle of cell

orientation is then determined by a tradeoff between maximizing the strength of

the forcing and minimizing the crosscell shear, similar to the tradeoff which

determines the depth of penetration in the nonrotating case.

Another question of interest is how the horizontal scale of the cells is

selected at equilibrium. As noted already, the answer to this question has major

implications for the depth of penetration of cells and thus for the horizontally

averaged velocity and density structure. The fact that marginal instability occurs

for k=0 suggests that energy will cascade to large scales without limit (Foster,

1969; Chapman and Proctor, 1980; Cox and Leibovich, 1993). In Chapter 4 it is

shown that this is in fact the case in the absence of Coriolis forces. Since cells with

longer wavelengths penetrate deeper into the water column, this means that

stratification cannot limit the depth of penetration of the cells in a mathematical

sense. Geophysically, however, this may not be true, since the energy takes a long

time to cascade to the longest scales, and these scales have very small growth

rates.

A final question is whether having RaCLS >> 1 for infinitesimal cells with a

given geometry means that finite-amplitude cells with roughly the same geometry

replace small-scale diffusion as the primary mixing mechanism within the surface

layer. In Chapter 5 it will be shown that the answer is yes. In Chapters 6 and 7 it is

shown that RacLS is often large in oceanic mixed layers.



Chapter 3: Structure and Instability of an Ekman Spiral in the
Presence of Surface Gravity Waves

3.1: Introduction

A major objective of this thesis is to isolate the conditions for which

Langmuir cells replace small-scale diffusion as the principal process stirring the

mixed layer. A first step is to compute the instability of the equilibrium profile set

up by small-scale diffusion to Langmuir cells. The next step is to identify the

important processes affecting to the instability and the characteristic scales

associated with them.
Chapter 2 considered the physics behind the instability of Langmuir cells in

an idealized layer in which the wind stress is balanced by a pressure gradient, and

the waves are parallel with the cells and wind. The three important processes

which determine the strength of the instability are the production of vorticity

through wave-current interaction, the production of vorticity by horizontal

fluctuations in density, and diffusion. The strength of the two sources of vorticity
is given by the stratified Craik-Leibovich instability parameter YCLS (page 39):

'0 0 0

LS- G(z z

where vs and V are the Stokes drift and Eulerian velocity, z is the vertical axis and

p is the density. The functions F(z) and G(z) are weighting functions which

depend on the boundary conditions and are proportional to the shape of

momentum and buoyancy transport carried by the most unstable mode at a given

horizontal wavenumber. In Section 2.5 the Craik-Leibovich instability parameter

was shown to play a role analogous to the buoyancy frequency in Rayleigh-Benard

convection and the ratio

(3-2) RaCLS = ?CLS/ diff

where Ydiff is a characteristic diffusive scale was shown to be analogous to the

Rayleigh number for Rayleigh-Benard convection. When RaCLS is large for cells

with a particular geometry, those cells are unstable. An important difference

between Langmuir cells and classical Rayleigh-Benard convection is that the depth

of penetration of the cells is important in determining YCLS, and that the horizontal

spacing of the cells is important in determining this depth.

(3-1)



This chapter considers the growth rate and structure of Langmuir cells when

the wind stress is balanced by the Coriolis force. This is a physically more realistic

condition for oceanic mixed layers (Weller, 1981) but introduces a number of

complications. In particular, the waves, Eulerian shear, and cell axis are no longer

necessarily parallel. The equations of motion are introduced in Section 3.2. In

Section 3.3 the equilibrium state set up by small-scale diffusion alone in the

presence of waves (but absence of cells) is derived. The instability of this state to

Langmuir cells is computed in Section 3.4. In order to interpret the results, simple

truncated models of the instability (similar to those used in Chapter 2) are used in

Section 3.5 to obtain closed-form solutions from which the important physical

processes may be extracted. Additionally, modified instability codes are used to

evaluate the effects of crosscell shear, Coriolis forces, and wave-current

interaction on Langmuir cells within an Ekman layer.

The major results of the chapter are as follows:

* The presence of waves is predicted to produce an Eulerian flow whose transport

is equal and opposite to that associated with the Stokes drift and whose structure is

determined by the Ekman number La/F and the layer depth D.

* The Ekman spiral in the presence of waves is strongly unstable to roll vortices

with growth rates much larger than the Coriolis frequency for a wide range of La

and F which are reasonable for oceanographic cases.

*Wave-current interaction is the dominant forcing mechanism, except at very long

wavelengths, when Coriolis forces are also important.

* In order to maximize the strength of wave-current forcing, the cells are oriented

along an axis lying between the wave propagation axis and the Eulerian shear.

* The presence of shear in the crosscell direction which tilts the cells acts to limit

the growth, in some cases suppressing cells altogether at low wavelengths.

3.2 Equations of Motion and Methods of Solution

Consider a layer of fluid of depth D, as shown in Figure 3.1. The alongcell

(+y) axis is taken to lie at some angle a to the right of the wind. If a<O, the axis of

cell orientation is to the left of the wind. Letting the velocity in the alongcell

direction be denoted by v, the vorticity in the alongcell direction by Q, the

horizontal velocity in the crosscell direction by u, and the vertical velocity by w,

the equations of motion become:

(o an an )a (vv ap
(3-3a) -;+(u+us-+Z- = Fgv+vs)+z-Tx+Ri-x+LaV2Q



(v .v av
(3-3b) -+(U+Us +Wv  = -F(u+us) +LaV2v

ap ap ap
(3-3c) a-+(U+us)-+w = LaV2p

(3-3d) Q = V2N

(3-3e) x =-w = u

ve f N2

(3-3f) La W- F- - Ri 4
L a2a ka2a 4a4y2

In these equations, kw, a and a are the wavenumber, amplitude, and frequency of

the driving waves, Ve the eddy viscosity, f the Coriolis parameter, and N the

buoyancy frequency. A brief discussion of these equations is given in Chapter 1,

with a full derivation in Appendix A.

Z Alongcell Axis

Crosscell Axi

.: )C-

Figure 3.1: Schematic of the problem as solved in this chapter.

The cells are aligned at an angle a to the right of the wind, so that the boundary

conditions on velocity and density are:
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(3-4d) pIz=-D= D

The fluxes of density and velocity are set on the upper boundary and the velocity

flux and value of density are set on the bottom boundary. The effect of fixing

density on the bottom boundary was shown to be important at high values of

Langmuir number and/or stratification and for very large values of cell spacing in

Chapter 2. For such cases, the fact that perturbations in the density are damped
more strongly than perturbations in alongcell velocity can reduce or remove the

effect of stratification.
There are four important differences between these equations and those

studied in Chapter 2.
*The momentum equations contain a term proportional to the Coriolis frequency

times the total Lagrangian velocity.
*The pressure gradient term has been dropped.
*The cell axis is no longer necessarily parallel with the axis of wave propagation,

so that the Stokes drift may contribute to crosscell advection.
*The cell axis is no longer necessarily parallel with the wind stress, so that the

vorticity is no longer zero on the upper boundary.
The instability problem is cast as follows. Let the streamfunction, alongcell

velocity, density, and Stokes drift be approximated by the following expansions:
M M

(3-5a) N = AV'(x,z,t)+P(z) = Aeikx Vm(t)si nz ~Ymsi
m= 1 m= 1

M M

(3-5b) v = Av'(x,z,t)+V(z) = Aei vm(t)co Z) Vmco
m-=0 m=0

M M

(3-5c) Us = Usmco z vs = XVsmco
m=O m=O

i(2m-1)rz )+A 2m-1)Ttz\
(3-5d)p = Ap'(x,z,t)+Po(z) = Ae2 2m(t)co ( 2D PmcoS( 2 D

m=l m=

where A is a small number and the capital letters refer to the time-mean flow and

stratification in the absence of Langmuir cells. The wavelength of the unstable

mode k is 27/L where L is the cell spacing. Substituting into (3-3) yields to zeroth
order in A the following equations for the horizontally-averaged fields.



aPO 92Po
(3-6a) z = La az2

a au a a2U
(3-6b) at z z - F -azvs+V) = La az 2

av a2v
(3-6c) - + F (us+U) = La az

Given the boundary conditions in (3-4), the steady-state solution of equation (3-6a)

is just Po(z)= -z. The velocity structure is not so easily derived. Integrating (3-6b)

with respect to z and defining the complex velocity and Stokes drift profiles:

(3-7a) W(z) = U(z) + i V(z)

(3-7b) Ws(z) = us(z) + i vs(z)
yields the following equation for complex velocity:

aw a2w
(3-8) at + iF (Ws+W) = La az2

At present there is no solution of these equations given the boundary condition of

no stress at z=-D. Such a solution is derived in Section 3.3, thereby enabling the
calculation to be carried forward to higher order in A.

At first order in A the problem of finding the growth rate and structure of

the unstable modes becomes a linear eigenvalue problem in the coefficients fm,

vm and pm. For each set of k, La, Ri and a there are a number of eigenfunctions,

some of which may have positive eigenvalues and correspond to unstably growing

modes. Section 3.4 considers the growth rates of the most unstable mode given a

fixed set of k, La, Ri, and a. The depth Dm= at which the maximum downwelling

velocity occurs is used as a proxy for cell structure. As in Chapter 2, Dma is the

depth at which the maximum perturbation streamfunction amplitude IW'(z)l occurs.

Section 3.5 moves from models of Langmuir cell instability which are

formally correct to some models of instability which approximate the equations of

motion so as to extract important physical parameters and include or exclude

various physical processes. These models are used to interpret the results of

Section 3.4. The first of these simple models is a truncated model which will be

referred to as truncation T3. The equations of this truncation are

(3-9a) WN(x,z,t)=Noetsin(kx)sin(lrz/D')+Nleytcos(kx)sin(2rz/D')+Po(z) z> -D'

(3-9b) v(x,z,t)=voeeos(kx)sin(tz/D')+vetsin(kx)sin(27z/D')+Vo(z) z> -D'

(3-9c) =o(z) V=Vo(z) z< -D'

This truncation differs from those developed in Chapter 2 in that it does not

exactly satisfy the boundary conditions on velocity. The basic idea, however, is



still to approximate the shape of the most unstable mode as closely as possible

while keeping the problem simple enough to obtain a closed-form solution for the

growth rate. The truncation is accurate for small values of La. As noted in Chapter

2, truncated models of this type are inaccurate when they fail to reproduce critical

features of the unstably growing cells.

In addition to the truncated model, two modified spectral instability codes

are also used to look at the importance of various processes for causing instability.

The first code computes the instability of the equilibrium velocity and density

profile as though there were no Coriolis force. Since the Coriolis force is involved

in maintaining the equilibrium current profile upon which the instabilities grow

this is not, strictly speaking, a well-posed problem.1 The purpose of using the

modified code for such scenarios is to diagnose the importance of Ekman

instability (Gammelsr0d, 1975; Lele, 1985). If the growth rate of cells in the

absence of Coriolis force is smaller than the growth rate in the presence of Coriolis

force, Ekman instability probably contributes to cell growth. If the growth rate

does not change significantly, Ekman instability most likely does not contribute.

The growth rates calculated from this code are referred to as being computed "in

the absence of Ekman instability".

A second modified instability code examines the importance of shear

instability by expanding the streamfunction and crosscell Stokes drift alone
M M

(3-10a) Y=-Aeikx fmsin(--z+ msin(- -

m=1 m=l

(3-10b) us= usm cos( _D)

Linearizing the equations (3-3) with respect to A , the instability problem for shear

instability is cast as a linear eigenvalue problem in the coefficients Vm. The growth

rates from this code will be referred to as due to "shear instability alone".

The investigation is limited to cases where the layer depth D=4 and the

surface Eulerian shear is 1. The choice of D=4 is made so as to look at a mixed

layer where the Stokes drift falls off within the mixed layer, but slowly enough so

that the region where it falls off can still be resolved by a relatively small number

1 In the limit when the growth rate of the most unstable mode y is large in comparison with the scaled
Coriolis frequency one can rescale the equations in terms of Fly to obtain a formally valid expression for the
growth rate. However, in many of the cases for which this procedure is used, the growth rates are of the
same order as the Coriolis frequency, so that even this procedure is not formally valid.



of modes. Keeping the surface shear equal to one facilitates comparison with other

published work. It also means that the Craik-Leibovich instability parameter

changes only as the result of changes in the mean structure and not the amplitude

of shear, simplifying the interpretation of the results. It should be emphasized that

the fact that surface stress and Langmuir number vary together in this work is not

to be taken as an assertion that they are linearly related in the real world.

3.3 The Ekman Spiral in the Presence of Surface Gravity Waves

3.3.1 The Solution of the Equations

In order to compute the instability of a given equilibrium state to Langmuir

cells, one must first calculate the structure of that equilibrium state. This is done

by finding a general solution to equations (3-8) for time-varying monochromatic

waves and taking the steady-state solution as a special case. Assume a complex

Stokes drift vector Ws=WsoeiCoste 2z corresponding to a monochromatic wave train

whose direction of propagation rotates with frequency os. Defining

85(ws)- 2La/(F+wos1 the solution to equation (3-8) takes the form

(3-11) W={ Ae(l+i)z/a( Os)+Be-(l+i)z/i(ms)+Ce 2z }eio st

where
(s)(3-12a) 1 1-2e-2De-(1+i)D/8(cos)

(3-12a) A = - (0)21+)2-i/8(s)2 le-2(1+i)D/8(cos) s

8(as) 1 1 -2e-2De(l+i)D/8(as)
(3-12b) B = (0)2+i)2-i/() 2 1e2(l+i)D/((s) WSO

i(0) 2

(3-12c) C = 8()2Wso

Given that the equations are linear, the response to any monochromatic wave train

whose direction and amplitude vary with time can now be solved by Fourier

transforming the complex Stokes drift vector Ws(t)=us(t)+ivs(t) and superimposing

solutions for each frequency o from equations (3-11,12).

Integrating the solution given by equations (3-11,12) to obtain the Eulerian

mass transport yields
0 0

F F rNe7
(3-13) dz= - 2(us+F)Wso(1 - e -2D )= - so +Fe 2 dz

_r2(sF s o+



So that if s--0, the mean Eulerian transport exactly balances the Stokes drift. This

satisfies the condition, first stated by Ursell (1950), that the total Lagrangian mass
flux associated with a train of surface gravity waves on a rotating earth be zero.

The Ekman number Ek may be defined as follows:
La vekw2

(3-14) Ek- F - f
where Ve is the eddy viscosity, f the dimensional Coriolis frequency, and kw is the

wavenumber of the gravity waves at the peak of the spectrum. When Ek is large,
the wave velocities fall off on spatial scales smaller than the Ekman depth 6(0).

When Ek is small, the wave velocities fall off on spatial scales which are large
compared with an Ekman depth.

Figure 3.2 illustrates a number of time-mean (o)s=O) Eulerian current spirals

over a no-stress bottom for various values of Ek with D=4 assuming no shear (and
hence no stress) at the upper surface. The waves are propagating in the +y

direction. Five values of Ek are shown, ranging from 0.01 to 100 (corresponding to
a range of 8(0) from 7.07 to 0.07). For the largest value of Ek (largest value of 6),

the flow parallel to the wave axis is essentially uniform with depth, with an
integrated flow equal and opposite to that of the Stokes Drift. Some shear is seen
to the right of the wave axis. For Ek=l, there is a clear spiral current pattern with
more shear to the right of the waves. For Ek<l, the Eulerian current is equal and
opposite to the Stokes drift over most of the depth of the fluid.

Suppose now that instead of a monochromatic wave train we have an

arbitrary Stokes drift profile. Then equation (3-8) may be solved using the method
of Green's functions.

0
(3-15) W(z) =G(z,z0 )Ws(z0 )dz0

where G is given by

(3-16a) G(z,zo) = A+(zoXe(l+i)z/8()s)+e-(1+i)z/8 ((s)) z>zo

(3-16b) G(z,zo) = A.(zo)(Xe(+i)(z+D)/8(cs)+e -( +i)(z+D)/(s)) z<zO

1 6(0) e(l+i)(zo+D)/8(0s)+e-(l+i)(zo+D)/ 8(cs)
(3-16c) A+(zo) = 2 1+i e-(+i)D/8(ws)-e(1+i)D/8(s)

1 A(0) e(l+i)zo/8 (s)+e-(+i)zo/8(s)
(3-16d) A(zo)- 2 1+i e-(+i)D/8(s)-e(1+i)D/8(as)
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Figure 3.2: Ekman spiral in the presence of waves for different values of Ekman
number (solution given by (3-11) and (3-12))). In all cases wave train is
monochromatic so that the Stokes drift vs=e2z, the mixed layer depth D is 4 and
the surface stress is zero. Symbols are for different values of Ek: 100 (solid line),
10 (+), 1 (x), 0.1, (o), 0.01 (*). (a) Velocity hodograph, crosswave vs. downwave
current. (b) Downwave Eulerian current vs. depth. (c) Crosswave Eulerian current
vs. depth.
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Figure 3.3: Same as 3.2 but for waves
(Equations 3-15,16,17).
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Figure 3.3 repeats Figure 3.2 for a Stokes drift profile corresponding to a
Pierson-Moskowitz spectrum identical to that of Chapter 2.

oo

(3-17) s(z)= exp(- 1.25 )exp(2f 2 z)df

f =
The peak frequency and total energy in this spectrum is the same as the
monochromatic wave train for which the solution in (3-11,12) was derived. Note
that the scale of the axes in Figure 3.3 is much larger than that in Figure 3.2. The
total transport is 1.34 as large as that for a monochromatic wave train. For large
values of Ek, the profile again asymptotes to one in which the Coriolis-driven
return flow is distributed over the entire mixed layer. As for a monochromatic
wave train, the addition of a wave spectrum adds only a small crosswind shear to
the Eulerian current profile. For small values of Ek, on the other hand, there is
more shear for the Pierson-Moskowitz spectrum than for the monochromatic wave
train, and the surface Eulerian currents are significantly more upwind.

The main results of this section are summarized as follows:
*The presence of surface gravity waves in a rotating mixed layer changes the mean
Eulerian transport, introducing an Eulerian return flow which balances the
Lagrangian Stokes drift.
*If the Ekman number La/F is large, the return flow is distributed over scales of an
Ekman depth, and the shears involved are much smaller than the Stokes drift
shears.

*If the Ekman number is small, the return flow is essentially equal and opposite to
the Stokes drift at depths below an Ekman depth.

3.3.2 Discussion

The presence of a wave-Coriolis force interaction term is important in
setting the horizontally averaged initial condition and the total Eulerian transport
within the surface layer. An explanation of this term in terms of vorticity was
given in Chapter 1. While demonstrating how the force arises mathematically,
such a derivation does not lead to much insight into why there is an Eulerian-mean
transport balancing the Stokes drift. This shortcoming may be overcome by
considering the vertically integrated momentum balance in the presence of waves.

Suppose a train of surface gravity waves with surface amplitude a propagates in
the +y direction, so that the free surface and alongwave velocity are given by
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(3-18a) Tl = a cos(kwy - at)

(3-18b) v = a ekwz cos (kwy - at)
and further suppose that e = ka is a small parameter. Then to first order in ka, any
surface defined by
(3-19) = zo+ a e kwzo cos (ky - at)

is a material surface whose temporally averaged depth is zo. Integrating the
Coriolis force on the waves Fco(Z) = f*vw from z = - , to the material surface r

over a wave period and defining [ ] as temporal averaging over a wave period:

S f 1 Jfao
(3-20)[ JFcor(z) dz ] -2 f fvw dz dt -2n w e kwC cos (kwy - at) dt

which to first order in kwa gives

(3--21)[ JFco-(z) dz2] w e k- ekwa ekwzO cos (kwy - at)cos (kwy - at) dt

2x/o
-re kwzo f a2 c

- 2nw (1+kwa ekwzo cos (kwy - at))cos (kwy - ot) dt - 2 e 2kwzo

Then the time-averaged Coriolis force at an average depth zo is given by

(3-22) F(zo) =f kwa2 a e 2kwz0 = f* Vs

This force arises because a time-varying force at a time-varying depth leads to a

time-averaged force at a time-averaged depth. This Coriolis force drives a mean
Eulerian flow which balances the Lagrangian transport associated with the Stokes
drift, a result predicted by a number of authors (Ursell, 1950; Hasselmann, 1970;
Pollard, 1970; Weber, 1983). The first three of these authors considered cases
where La=0 so that the Eulerian flow was found to exactly cancel the Stokes drift
at each depth -a result reproduced here as Ek goes to zero. Weber (1983)
considered monochromatic waves in an infinitely deep fluid within a purely
Lagrangian framework. The Lagrangian transport predicted by adding the Stokes

drift to the solution in (3-11,12) asymptotes to his result as the layer depth goes to

infinity. In the absence of waves, the solution asymptotes to that for an Ekman

spiral over a finite-depth, no-stress bottom boundary.
The range of values of Ek (0.01 - 100) chosen in Section 3.3.1 are

reasonable for many oceanic conditions. In the field, eddy viscosities are quite



large, of order 0.001-0.1 m2/s ( compared with 10-5-10 4 m2/s in the thermocline).

This implies that the Ekman depth is approximately 3-30m, while the e-folding

depth l/k, for the velocities associated with surface gravity waves is of order 10-

25m for oceanic surface gravity waves with periods of 6-10 seconds. This gives a

rough range of Ek of 0.01-10. The extreme cases where Ek is very small or very

large are rare. Very large values of Ek might occur when the wind is strong but the

waves are duration or fetch-limited (so that the waves would be small, even though

the turbulence would be quite strong). Small values of Ek (corresponding to high

waves with little turbulence) might occur after a large storm or as the result of

strong swell propagation. In the cases considered for SWAPP and MILDEX in

Chapters 6-8, Ek is of order 1. This is exactly in the middle of the range chosen

for the current investigation.

3.4 Instability of the Mean Current Spiral over a No-stress Bottom

Having calculated the structure of the horizontally averaged Ekman

response in the absence of Langmuir circulation in section 3.3 we now proceed to

calculate the instability of the time-mean Ekman profile. As noted above, the

investigation is limited to cases where the nondimensional layer depth D=4 and the

surface shear=-1.

The case of a Stokes drift oriented at some angle to the Eulerian shear has

not been studied in the published literature. The fact that Stokes drift and Eulerian

shear are no longer aligned means that the cells cannot be assumed to be aligned

with the wind and waves.* In order to fully explore the instability of the current

profiles derived in the last section, the growth rate of the most unstable mode is

calculated as a function of angle of orientation as well as horizontal wavenumber.

Figure 3.4 shows hodographs of the Ekman spiral for F-0.001, 0.01, and

0.1 and La=0.001, 0.01, and 0. In all cases the waves are monochromatic and

propagate parallel to the wind. For these values of La and F, Ek varies from 0.01

(La=0.001, F-0.1) to 100 (La=0.1, F-0.001). Lines of constant Ek run from the

upper left to the lower right. As in the previous chapter, changing La implies that

the surface stress also changes. The dashed lines show spirals without waves while

the solid lines show spirals with waves. The open triangles mark the value of the

surface current. Since the surface shear is constant, the structure of the spirals is a

* Mourad (pers. comm.) has studied the effect of shear instability driven by inflection points in the crosscell
velocity in reinforcing the cells, but to my knowledge he does not consider the effect of such shears on cell
orientation.
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Figure 3.4: Hodographs of Ekman spirals with (solid) and without (dashed)
waves. The vertical axis is the alongwind velocity, the horizontal axis the
crosswind velocity.The surface velocity is shown by open triangles. All cases are

for mixed layer depth D=4 and z z=-1, waves parallel with wind. Top left:

F=0.001, La-0.001. Top center: F=0.001, La--0.01. Top right: F=0.001, La--O.1.
Middle left: F=0.01, La-0.001. Middle center: F=0.01, La-0.01. Middle right:
F=0.01, La-0.1. Bottom left: F=0.1, La-0.001. Bottom center: F=0.1, La-O.01.
Bottom right: F=0.1, La-0.1
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function of Ek alone. As Ek becomes very large (as in the upper right-hand corner)

the current profile is essentially the same as that for the flow treated in Chapter 2

with an offset due to the Ekman transport and Coriolis-driven wave return flow.

The Ekman transport for this case is much larger than the wave return flow. As Ek

becomes very small, as in the lower left-hand corner, the orientation of the current

is essentially upwind over much of the depth, with a spiral near the top of the

water column. The Ekman transport when Ek is small is much smaller than the

wave return flow (not often a realistic condition, but one which is possible if the

waves are large and the wind very weak).

Figure 3.5 shows contours of the growth rate of the most unstable mode for

the spirals without waves in Figure 3.4. For these current spirals the only possible

instability mechanisms are Ekman instability and shear instability. In general there

is only growth for Ek l1. Growth rates for these cases are still very small compared

with the Eulerian and Stokes drift shears. Given La--0.001, the maximum growth

rates are approximately 0.005 for F=0.001 (Ek=1), 0.01 for F=0.01 (Ek=0.1), and

0.005 for F=0.1 (Ek=0.01). The unstable rolls are generally oriented to the right of

the wind, as much as 70 degrees to the right of the wind for La=0.001, F=0.1.

The picture presented above changes drastically in the presence of surface

gravity waves. Figure 3.6 has the same layout as Figure 3.5, but with the

difference that the maximum growth rate is now calculated in the presence of

surface gravity waves. For Ek=1-100 growth rates are of order 0.1-0.5, while in

the absence of surface gravity waves the surface layer was predicted to be

essentially stable to two-dimensional disturbances. For Ek<1 the growth rates are

smaller than for large values of Ek, but they are generally still at least an order of

magnitude larger than the growth rates in the absence of waves. This supports one

of the principal hypotheses of the thesis, namely that wave-current interaction is

the main driving mechanism for Langmuir cells. The forcing required to drive

these cells is relatively weak by oceanic standards. Assuming an eddy viscosity of

0.01 m2/s, a scenario for which La=F=0.01 with a surface shear of 1 corresponds

to 2m high waves with a period of 8 seconds and a wind stress of 0.1 Pa. Neither

the wave height not the wind stress is particularly large.

A number of other conclusions about the cell structure can be drawn from

Figure 3.6. These are summarized below:

*For Ek>>O(1) the shear is essentially downwind and the axis of maximum

instability points essentially downwind too. As Ek decreases, the shear



La=.001

I I I

- I' -- 000 \

I ~ \

-' A

'

-90.

4 .c

-- Ill I

I I .
0. 9

------- 0.016..------------

-----0.01-4 ............

------ 0.012-------------
-------.moo-------------

-------0.00------ ----

-------. 006o-- .

--------- o.oo4 --

-90.
I I

0.

-3.2 -

-2.4 -

-1.6 -

-0.8 -

0. -9

-3.2-

2.4

1.6 -

-0.8-

90. -90.

-.

, 0 % %

----- '-, --op .. . .

.------ ., : --.. -

3.2-

2.4 -

1.6-

0.8-

0.0

0.

-3.2

-2.4

-1.6

-0.8

0.

-3.2

2.4

-1.6

-0.8

-90.

I I

90. -90.

'-- -- -- -- o o- - -- 
-----------.---,gl----. -oooo --

---

0.008 

--

: 

I

-00 

1

---.

0---

L
-3.2

-2.4

-1.6

-0.8

rlrl

S I I I
-90. 0. 90.

Angle of Cell Orientation

J.U

I I I
------- 0o.14 ------- ' --
-------- 0.12----- --
-------- 0.10 ---------
------- 0.08-----' --

---------- 0.06---' ,

%--------- . a

-3.2

-2.4

-1.6

-0.8

-r I I I r"
-90. 0. 90.

Angle of Cell Orientation

------ 1.40 ------------
-'------1.20-------------
--------- 100 ------"-'--- --""--1.00-----------

""--0.60---- -'"*

-------- 0.40 ---- ------

- --- 0.20---'

-90. 0. 90.
Angle of Cell Orientation

Growth Rates in the Absence of Surface Gravity Waves

Figure 3.5: Growth rate of the most unstable mode as a function of horizontal
wavenumber (vertical axis), and angle of orientation a of the cell axis relative to
the wind (horizontal axis 0 is parallel with the wind and waves, ±90 is
perpendicular to the wind). Calculations are for the dashed spirals in Figure 3.4
from a spectral instability code excluding the effects of waves on the current and
on the instability. Growth rates for a+180 are the same as for (a. Dashed lines are
negative contours. Top left: F=0.001, La=0.001. Top center: F=0.001, La--0.01.
Top right: F=0.001, La=0.1. Middle left: F=0.01, La=0.001. Middle center:
F=0.01, La--0.01. Middle right: F=0.01, La=0.1. Bottom left: F=0.1, La-0.001.
Bottom center: F=0.1, La=0.01. Bottom right: F=0.1, La=0.1.

65

'0. 0. 9

I I I -

S-0.1... ...--'-
-- -- -0.6..-'" ---- -

* I'- n-.--- --- '
.---- o.o- --

----- 0.02' "-

0

-.---....-- 1.40 ....----- --
----- ....... 20 ---...--....--
--- --- i.00 ---------- ---

------ 0.0 -- --- ---------

--

I I

L

3.2 -
3 -

C
2.4 -

-1
-1.6-

0
.t 0.8 -
0

0.0 -

90.

--- .1.40 - -----
------ 1.20- -.....

------ o.' '---'' ---

S-------0.60- ---...

------ 0.20 '.---... -

, -

0.
I I

I I I
0.

3.2
E

y 2.4

S1.6

0
N 0.8

0
I

iI • , e .

--- ~

-P-- . -- 1 • 1

Lo=.01 La=. 1

-

-

-



La=.001 La=.01

-90. 0. 90. -90.

S3.2E
c

2.4
o

S1.6
Cco
. 0.8
0

I
0.0

L

S3.2
E

S2.4
0

S1.6
C
0N
.N 0.8
0

I
0.0

- 3.2E
C
S2.4

0

S1.6
C
0
.N 0.8
0

I

90. -90.

-90. 0. 90.
Angle of Cell Orientation

.. .. t . . 4W_ . .....
• " 

mll I I 4 i

.......... ,;"7 ,;f
*r I l 4I I44

-.llaf %itl
J 0 %Itr:?il]]0 ,:,l

'0

1 I I I

La=.1

----- -- ----------------- -------
---- ---- ------

-F-9 \\ - --

-90. 0. 90.

-3.2-

-2.4-

-1.6 -

-n -

.U !"

0. -9

3.2

.4

-0.8

0.0

-90. 0. 90.
Angle of Cell Orientation

--- ,
I  

' I.... - - -- ----_l ----

I 
% %-- --------- ------- --

Q- \ '--

-~I --

0. 0. 90.
I I I

r .. .. - .o ,- -, -----

------- 0.40"

---- 0.20-'

0

I I I I
-90. 0. 90.

Angle of Cell Orientation

Growth Rates in the Presence of Monochromatic Surface Gravity Waves

Figure 3.6: Growth rate of the most unstable mode as a function of horizontal
wavenumber (vertical axis), and angle of orientation a of the cell axis relative to
the wind (horizontal axis 0 is parallel with the wind and waves, ±90 is
perpendicular to the wind). Calculations are for the solid spirals in Figure 3.4 from
a spectral instability code. Growth rates for a±o80 are the same as for a. Dashed
lines are negative contours. Top left: F=0.001, La=0.001. Top center: F=0.001,
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turns more and more to the right of the wind. As this happens the growth

rates decrease and the angle at which the unstable growth rates are largest

also shifts to be more to the right of the wind.

* For small values of Ek a subsidiary maximum in growth rate sometimes

occurs to the left of the axis of the main instability.

* For a given value of Ek (fixed current profile), the growth rates, range of

unstable angles and wavenumber of maximum instability are a function of

La. As La increases, the maximum growth rates, range of unstable angles,

and wavenumber of maximum instability all decrease.

In Chapter 2, it was shown that the cell structure, as revealed by the depth

of maximum vertical velocity Dma, was linked to the growth rate. Figure 3.7

shows Dna for the nine current spirals in 3.4. The patterns are again rather

complicated, but a number of points can be made.

* For unstable modes, Dma occurs near the surface. As the wavenumber

increases (smaller and smaller cell spacings) Dmax decreases. For a given

value of wavenumber, Dmax is a function of the angle of cell orientation.

Minima in Dmax with respect to angle of cell orientation reflect maxima in

the growth rate of the most unstable mode.

* For damped modes, Dmax is found near the bottom of the fluid layer. As the

horizontal wavenumber increases, so does Dmax, so that the least damped

modes are compressed more and more near the base of the layer.

*For a given value of Ek (fixed current profile), as La increases, Dma moves

closer to the middle of the layer.

It is also notable that for La--0.001, F=0.1, Dma behaves erratically,

jumping between large and small values. Examination of the modal structure

reveals that the modes involved have two maxima. Most of the jumpiness is the

result of Dmax jumping between the two maxima. Luckily, the modes for which

this is the case are stable and so are not of interest for the present analysis.

In the real ocean, wave energy is spread out over a spectrum rather than

being concentrated in a monochromatic wave train. In Chapter 2 spreading energy

over a spectrum was found to increase the growth rates. This is also the case in the

presence of the Coriolis force. Figure 3.8 shows the hodographs of Ekman spirals

corresponding to those in Figure 3.4, for waves given by a Pierson-Moskowitz

spectrum rather than as a monochromatic wave train. Figure 3.9 shows contours of

growth rate. The strength of the instability as a function of the angle of orientation

can be partially understood by looking at the shear. Consider the changes produced
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in the growth rate by looking at cases when Ek>1 (top right), Ek=1 (central

diagonal), or Ek<1 (lower left).

* When Ek >1 changing from a monochromatic wave train to a Pierson-

Moskowitz spectrum does not produce a significant change in the Eulerian

shear profile, whereas the Stokes drift shear increases sharply. Growth rates

essentially double.

*When Ek=l, changing to a Pierson-Moskowitz spectrum shifts the

Eulerian shear slightly more to the right of the wind, while increasing its

magnitude slightly as well, while the Stokes drift shear increases sharply.

The Stokes drift shear "wins", and the axis of maximum instability moves

from being at about 15 degrees to roughly 5 degrees to the right of the

wind. The growth rates increase by a factor of slightly more than 2.

*When Ek<1 changing from a monochromatic wave train to a Pierson-

Moskowitz spectrum results in giving much larger Stokes' drift and Eulerian

shears near the surface. Once again, the change in the Stokes' drift shifts the

angle of maximum instability upwind. For Ek--0.01, corresponding to

La=0.001, F-0.1, the axis of maximum instability shifts from approximately

75 degrees to the right of the wind to roughly 50 degrees to the right of the

wind. Interestingly, there are some unstably growing modes at more than 90

degrees to the right of the wind. Growth rates increase by a factor of 4 or

more.

The effect of stratification on the strength of the instability is shown in

Figure 3.10. Contours of growth rate vs. angle of orientation and horizontal

wavenumber are shown for La--0.01, F=0.001, 0.01, and 0.1 (corresponding to the

middle column of Figure 3.6), for Ri=0.05, 0.2, and 1.0. The growth rates are

a 0 15 30 45 60 75

La=F

0.01 171 242 252 217 >106 >106

0.025 68 96 100 86 >106 >106

0.05 33 46 49 42 >106 >106

0.075 21 29 31 26 >106 >106

0.1 Stable 21 22 19 >106 >106

Table 3.1: Maximum integer wavelength which was unstable given La=F,
monochromatic waves and a surface shear of 1 for differing values of La, angle of
cell orientation a.
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reduced as the stratification increases. For high enough values of Ri there is a low

wavenumber cutoff for wavelengths which are only a few times as large as the

mixed layer depth (see the lower right-hand corner of 3.10). In addition the axis of

maximum instability is a strong function of wavenumber. This is especially true

for the smallest value of Ek shown (Ek=0.1, the bottom row).
The presence of a cutoff in the instability at low wavenumber is particularly

interesting. It may occur when the corresponding wavelengths are not extremely

large compared with the depth of the fluid layer. The pattern of the cutoff,

however, is extremely complicated. Table 3.1 shows the wavelength of the

marginally stable cell to within 1.0 for spirals where Ek=1 (La=F), given different

values of La and angle of orientation. For cells oriented between 0 and 45 degrees

to the right of the wind, there is a low wavenumber cutoff which depends strongly

on the Langmuir number (varying approximately as 1/La). For La=60 and La=75

however, there does not appear to be a low wavenumber cutoff.

Figure 3.11 shows plots of the growth rate vs the angle of orientation for

La=F=O0.01 for three values of cell spacing L (32, 512, and 2048). Two different

physical regimes appear. For cells oriented between 20 degrees to the left of the

wind and about 50 degrees to the right of the wind, there is a cutoff at low

wavenumber. For cells oriented between about 50 degrees to the right of the wind

and 90 degrees to the right of the wind roll vortices are only unstable at low

wavenumber. This is an indication that the fundamental physics driving the cells

could be different in the two regimes. Section 3.5 explores this question further.

To summarize, the major results of this section are that:

* The presence of surface gravity waves can destabilize the mean current profile in

a fluid layer with a no-stress bottom boundary.

* The instability is a strong function of the angle at which the cells are oriented

relative to the wind and waves, with the axis of maximum instability lying in

between the axis along which the Eulerian shear is oriented and that along which

the waves are propagating.
*There is sometimes a low-wavenumber cutoff.

*The cell structure is a strong function of the angle of orientation of the cells.

The dependence of the growth rate and Dm on horizontal wavenumber

and Langmuir number is understandable given the results of Chapter 2. The Stokes

drift and Eulerian shears are largest near the surface, so that in order to maximize

the forcing Dma would be much less than L, the cell spacing. On the other hand, in

order to maximize the efficiency of this forcing in producing cells Dmax would be



much larger than L. Additionally, cells for which Dax is much smaller than L will

have larger diffusive decay associated with them. The resulting tradeoff leads to

the depth of penetration of the cells scaling with the cell spacing. Additionally, it

means that an increase in La causes an increase in depth of penetration.

The results of Chapter 2 do not, however, provide immediate answers to

three questions which arise from the results of this section:

1. How is the angle of orientation of the cells determined, and how is the angle of

orientation linked to the growth rate and depth of penetration?

2. How important are Craik-Leibovich instability, Ekman instability, and shear

instability in driving unstable roll vortices in an Ekman layer with waves?

3. What processes account for the cutoff of the instability at low wavenumbers?

These questions are addressed in Section 3.5.

3.5. Understanding the physics behind instability of an Ekman layer with

surface gravity waves

3.5.1 Models of the instability

This examines the physics of the instability of the Ekman spiral to

Langmuir cells using the approach developed in Chapter 2. Simple truncated

representations of the velocity and streamfunction fields are used to approximate

the instability code results and to provide a simple understanding of the processes

involved. Additionally, modified instability codes which omit certain physical

processes are also used to look at the importance of Ekman instability and shear

instability in causing Langmuir cells.

The truncation which will be used in this section (T3) was introduced in

equations (3-9). The linear instability problem which one derives by substituting

these equations into the equations of motion (3-3) is one in which the Coriolis

force does not play a role. The truncation can thus be used to estimate the

importance of the Coriolis force in directly causing instability. If it fails to

reproduce the observed characteristics of the instability, Coriolis forces are

important.

Consider the growth rate when the viscosity is zero. Following Chapter 2

the following definitions can be made
0

(3-24a) '2)(D') = V sin, z
-D'
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0

(3-24b) Vs3(D') = sin 1, )z z

0
2k O r(,\ . t"nzo

(3-24c) a= a- +u in in z

0

(3-24d) ar2+( (k2+(2/D')2) a3 y y

0

(3-24e) (oshar2+(2 1 ) (k2+(7D')2) 2 a30 zi n

where the superscripts refer to the vertical wavenumber of the perturbations.
V1 '2) and ,2) represent the depth-weighted averages of the alongcell Stokes drift

and Eulerian shears respectively, where the weighting function is proportional to

the momentum transport carried by Langmuir cell with either one or two maxima

in vertical velocity. These terms correspond closely to the terms Jsz and z

derived in Chapter 2. The frequencies a aar,  , and a are measures of the

effectiveness of the crosscell shear at coupling cells with different vertical

wavenumbers. These terms scale as the aspect ratio kD' times the crosscell shear.

o will be referred to as the crosscell tilting frequency. Substituting into equations

(3-3) yields the following linear eigenvalue problem.

(1) ik i) 0 /
Y ear k2+(/D')2 sz3

(2) 0 P(2) 1
(3-25) shear  -Y 0k2+4(/D') 2 sz3 =0

-i-y - vo

0 ik a -7 v 1

The growth rate of the most unstable mode may be solved for analytically.

Defining

(3-26a) 1) k42 0)2 33 k2+(//D')2" z3 sz3
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' 2)__k 2 ( 2
(3-26b) (2) k2

k(2dD)2 z3 sz3

The growth rate is given by

1 1)2 2)2-(1) ,( 2)

(3-27) 2 2)3 2 sh shear-

(1)2 2)2 e() ..(2) 2 ,(1) (2) 2 1)2 2)2

4shear shear / shear shear - 3

This complicated expression contains some interesting physics which is useful for

understanding the behavior of the cells observed thus far.

In the presence of small amounts of viscosity truncation T3 may still

appoximately capture the relevant structure of the cells. Equation (3-25) is then

replaced by
10,)#f ..(1) ik , ,V(1) 0

dliff shear k2+(r/D') 2 sz3
(2) 2) ik 6( 2) 1

(3-28) shear -diff O -k2+4(/D')2 sz3 =

-ikV- 0 -y-y, -C vo

0 iko - J\v

(2)where 3 't=La(k2+(/D')2) and yf=La(k2+(2n/D') 2) The damping terms on the

diagonal render it impossible to derive a closed-form solution. The most unstable
growth rate y from (3-28) in the presence of viscosity is compared to that from (3-

27) to evaluate the importance of diffusion in determining the cell structure and
growth rate.

3.5.2 Verification of the truncated model

The proof of the usefulness of truncated models such as those derived in the
last section is that they reproduce the relevant results. Figure 3.12 shows the
growth rate and depth of maximum vertical velocity for an initial current profile
which is the equilibrium solution of equation (3-7) given La=0.001, F=0.01,

mVImonochromatic waves and - =0=1. This current profile corresponds to the solid

line in the middle row, left-hand column of Figure 3.4. The top row shows the

predicted growth rate and depth of maximum vertical velocity from the full

instability code, the middle row the predictions from (3-27) and the bottom row

the predictions from solving equation (3-28). Over the range of unstable cases,
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Figure 3.12: A comparison between the truncated models and the spectral
instability code La--0.001, F--0.01, D=4, monochromatic waves oriented parallel
to the wind, and a surface Eulerian shear of 1. Growth rate and depth at which
vertical velocity is maximum Dmax are plotted against horizontal wavenumber
(vertical axis) and angle of cell orientation (horizontal axis). (a) Growth rate, full
instability code. (b) Dmax, full instability code. (c) Growth rate, Truncation T3
(largest growth rate from equation 3-27). (d) Dmax, producing the largest growth
rate in equation (3-27).(e) Largest growth rate from solving equation (3-28).
(f) Dmax which produced largest growth rate in equation (3-28).

78

3.2

2.4

1.6

0.8

0.0

3.2

2.4

1.6

0.8

0.0

Dmax



both the inviscid and viscous truncations do very well at predicting the growth

rates. The root-mean-square deviation over the entire plot is 0.026 for the inviscid

case and 0.035 for the viscous case. Adding viscosity narrows the range of

unstable angles somewhat and reduces the growth rates at high wavenumber.

The qualitative structure of the depth of maximum vertical velocity is well

captured by both of the truncations. There is a low in Dma in the region where is

cells are unstable and a high region where they are stable. For cases when the

growth rate is positive, using equation (3-27) results in a mean error in predicting

Da of 0.13 while using the viscous truncation results in a mean error of 0.26.

Both of these errors are quite small, given a water column depth of 4. The

truncations do not do as well at predicting D= when the growth rate is stable

(note those cases when o<0O), generally underestimating it. However, this is of less

importance, since the primary concern of this chapter is unstable Langmuir cells.

Since the truncations predict certain characteristics of the unstable modes, it

makes sense to use them to analyze the physical process which go into determining

the dependence of growth rate and depth of maximum vertical velocity on the

angle of orientation. This is done in section 3.5.3.

The fact that truncation T3 gives reasonable predictions for La=0.001,

F=0.01 implies that the relevant physical processes for this scenario are shear

instability and Craik-Leibovich instability. It also implies that Ekman instability is

not important for these parameter settings. Section 3.5.4 explores this question in

more detail using modified instability codes and shows that Ekman instability can

play a role in generating vortices with low horizontal wavenumber. Section 3.5.5

looks at the low wavenumber regime in more detail and presents a simple model

for low-wavenumber cutoffs.

3.5.3 How is the dependence of growth rate and depth of maximum

downwelling on angle of orientation determined?

In Chapter 2, the growth rate of the most unstable Langmuir cell mode in

the nonrotating case was shown to be determined by the following tradeoff:

*Maximizing the forcing on the vortices (given by the stratified Craik-Leibovich

instability parameter yCLS).

*Maximizing efficiency of the cells at reinforcing themselves (given by the aspect

ratio kD'=4tDm/L).
oMinimizing the diffusion (given by ydiff-La/Dmax2).



The next few sections show that for rotating mixed layers this tradeoff still holds,

but that with the additional constraint that the crosscell tilting frequency is

minimized. This is done by considering some scenarios where equation (3-26)

becomes simpler.
The first scenario is illustrated in Figure 3.13. Assume that the Stokes drift

and Eulerian shears are constant with depth and that the Stokes drift shear is

oriented along an axis 0 degrees to the right of the Eulerian shear. This means that

the terms which go as the second derivative of the Eulerian velocity vanish so that
(1) k2+(4//D')2  (2) k2+(x/D')2Sear-k 2+(4t/D) 2 _ and a,(2-k 2+(4C/D') 2 _. Then the growth rate in (3-27)

becomes

(3-29) 72(1) 2 32)2 - 22 1) 2 +3 202) 2 + 4a2 - 431)42)

where

192)_ k2  avavs
(3-30) 31'2) k2 +(1,4)12 z cos(a)cos(0-a)

Eulerian Shear Stokes Drift

cx

Coordinate System of Rolls

Figure 3.13: Schematic of simplified case used in Section 3.5.3 to explore effect
of changing the direction of the Stokes Drift relative to the shear.



Maximizing the growth rate for this scenario requires maximizing 31'2), and

minimizing a. Since for this simple scenario, the shears are constant over depth
maximizing yl and 72 for a given angle of orientation also means maximizing the
aspect ratio 2niD'/L=kD'. On the other hand minimizing a ,which goes as kD' times

the crosscell shear, means minimizing kD'.
Assume that the cells penetrate over the depth of the layer (an assumption

which is not correct when the crosscell shear is large). The angle of maximum
instability is determined by a tradeoff between minimizing a and maximizing the

product cos(a)cos(0-a). The former occurs for the present case when
u (3-31)s av a

(3-31) ;z d=-- sin(a)+ sin(0-a)-0

while the latter occurs when a=0/2. In the special case where the Stokes drift shear
and Eulerian shear are equal then,a=0/2 maximizes both the product of the

projections of the Stokes drift shear and Eulerian shear on the axis of cell
orientation and minimizes the crosscell shear. The growth rate in this case is just

k2 (V-Vs
(3-32) Ymax=V k2+ 2 az cOS2 (0/2)

Increasing the angle between Eulerian shear and Stokes drift shear decreases the

growth rate and increases the angle of orientation of the cells relative to the wind.

This is consistent with the picture developed in Section 3.4.

In Chapter 2, the growth rate when diffusion was weak was shown to go as

(333) k2  k
(3-33) 7 Sz z= CLSk2+12 'CL

Where yCL, the Craik-Leibovich instability parameter, defined the strength of the

wave-current forcing mechanism. Examining (3-32) it can be seen that

(3-34) CL= a O

provides the equivalent definition for YCL in the system at hand. This demonstrates

that the relevant shears for wave-current interaction are the Eulerian and Stokes

drift shears parallel to the axis of cell orientation.

Further insight into the physics of Langmuir cell instability can be gained

by considering the behavior of the solution of the solution to (3-26) when LaO,

but the crosscell shear terms are equal to zero. In this case the fastest growing

mode is given by the maximum of



(3-34)y = max 24( ')2 z33 Ydk 2+(2 rI) 2 z3 z3

If yCL3 =  Sz 2)3 then the presence of instability then, hinges on finding a

cell geometry such that

(3-35) RaCL3 = ((k2+((l,2)rD')2) ) / )k2) 2 > 1

The physics behind what determines ' in the absence of crosscell shears are very

similar to the physics in the absence of Coriolis forces in Chapter 2.

The structure and growth rate of linearly unstable Langmuir cells, given Ek

of order 0.1 or larger, are largely governed by the following tradeoff:
*Maximizing the forcing (given by yCL). Tends to favor cells concentrated near the

surface and oriented along an axis midway between the Eulerian and Stokes drift

shears.
*Maximizing efficiency of the cells at reinforcing themselves (given by the aspect

ratio Dm/L). Tends to favor cells which have deeper penetration.
*Minimizing the crosscell tilting frequency a. Tends to favor orientation along an

axis where the difference between the Eulerian and Stokes drift shears is

minimized and concentration at depths at which the crosscell shear is small. Also

tends to favor cells much wider than they are deep.
*Minimizing diffusion, given by the diffusive decay Ydiff. Favors deeper

penetration of the cells.

This tradeoff provides answers to the following questions about the results in

Section 3.4 which are important for understanding the larger problem:

1. Given a constant surface stress and Langmuir number, and assuming waves and

wind collinear, what is the dependence of the growth rate, cell structure, and

orientation of the cells on Ek?

When Ek is large (F small) the Eulerian shear and Stokes drift shear are
also collinear. The tendency to maximize yCLS and minimize a will result in the

axis of maximum instability lying parallel to the wind and waves. As the

wavenumber becomes large, the aspect ratio kD' of the cells becomes of order

unity for shallower and shallower depths. As is the case with the nonrotating

instability cases which were studied in the last chapter, the result is that Dm

becomes smaller and smaller.

As Ek decreases, the shear shifts to the right of the wind as the depth

increases. Near the surface, the two shears are still collinear, but the conditions on



maximizing the aspect ratio and minimizing diffusion mean that the cells cannot

take advantage of this fact. The axis of maximum instability will thus tend to move

to the right of the wind. As a result, the projection of the Eulerian and Stokes drift

shears on the cell axis decreases and the growth rates drop.

2. What changes in instability structure occur when the waves are represented

with a Pierson-Moskowitz spectrum?

When Ek is large, changing from monochromatic waves to a Pierson-

Moskowitz spectrum increases only the Stokes drift. The condition on minimizing

crosscell shear draws the axis of maximum instability closer to the direction of

wave propagation. Since the Eulerian shear does not change very much, the

growth rates essentially double, as they did for the nonrotating case.

When Ek is small, changing the representation of the waves from a

monochromatic wave train to a spectrum increases the Eulerian shear as well as

the Stokes drift shear. The increase in the growth rate is thus larger than for low

La, and the change in angle is smaller.

3.5.4 What processes are involved in causing the instability?

In the last section, the Craik-Leibovich wave-current interaction mechanism

was shown to be very important in creating Langmuir cells. A natural question

which arises is the role of other instability processes, in particular shear instability

and Ekman instability (Gammelsrod, 1975). A number of spectral codes (noted in

Section 3.2) were developed to estimate the importance of these various processes.

Figure 3.14a and b show growth rates for La=0.001, F--0.01. This case has

already been shown to be well described by the truncation T3. The solid lines are

for the full spectral instability code, the dashed lines for a modified code where the

effect of the Coriolis parameter on the cells was set to zero, the chain-dotted lines

are for shear instability alone. The x marks are for the growth rate derived from (3-

27). Figure 3.14a shows growth rates for L=4 (k=rd2) vs angle of orientation. The

absence of Coriolis forces makes little difference to the growth rate, with the

growth rates in the presence of Coriolis force being almost identical to those in the

absence of Coriolis force. There is some evidence of shear instability, but the

magnitude of the growth rates associated with it are small compared with the

growth rates calculated by the full code. Figure 3.14b shows the growth rate vs

loglo horizontal wavenumber using the same conventions as Figure 3.14a for

a=40. Once again the presence or absence of Coriolis forces makes little
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difference, while the presence or absence of Craik-Leibovich instability makes a

big difference. The presence of diffusion affects the cells at high wave numbers.

While Craik-Leibovich instability and diffusion are critical in setting the growth

rate of the cells for this particular case, Ekman instability and shear instability are

not that important for small enough La and F.

The situation is different for a scenario where La=0.01 and F=0.1. This

corresponds to increasing the effect of diffusion and Coriolis force, but retaining

the same velocity profile. Figures 3.14c and d show plots corresponding to 3.14a

and b with all parameters other than La and F the same. The presence or absence

of Coriolis forces can make a substantial difference in the growth rate. The

Coriolis force destabilizes some cases for low wavenumbers when the cell axis

points approximately downwind, while reducing the growth rate for k of order t/4.

Shear instability is not sufficient to account for the observed growth rates.

The Coriolis force is also a key player in accounting for the presence of

instability at low wavenumber. Figure 3.14e shows the pattern of growth rate vs.

angle in when Ekman instability was allowed to act on the cells (solid) and when it

was not (dashed) for cells with a horizontal wavenumber k of 0.001 given an initial

velocity profile corresponding to that for monochromatic waves with La=F=.01

and a surface shear of 1. Again, the size of the growth rate changes sharply in the

presence of Ekman instability, with vortices whose axes are oriented

approximately crosswind being destabilized, and those oriented about 50 degrees

to the right of the wind being stabilized. For the cases shown in 3.14e and f shear

instability was found not to play a role (the growth rates associated with shear

instability alone were approximately -0.0062). Figure 3.14f shows a plot of loglo

growth rate vs loglo horizontal wavenumber for La=F=0.01, given an angle of cell
orientation a=70. The solid lines show the results of the full code, the dashed lines

the growth rate when the Coriolis force does not act on the cells so that Ekman

instability is disallowed. In Table 3.1 the growth rate predicted by the full code did

not cut off at low wavenumbers for this angle of orientation. In the absence of

Ekman instability, the growth rate is sharply reduced, dropping by a factor of 10

over most of the range.

Although Craik-Leibovich instability is responsible for the growth of high-

wavenumber cells which quickly destabilize the Ekman layer, Ekman instability

can play a role as well. The Ekman instability process (Gammelsr0d, 1975)

produces very slowly growing, long wavelength cells when the scaled Coriolis

parameter F is large.



3.5.5 How are Langmuir cells stabilized at low wavenumber in the presence of

Coriolis forces?

The presence of Coriolis forces can stabilize long-wavelength Langmuir

cells (given the appropriate angle of orientation). The presence of a low-

wavenumber cutoff has implications for the final state of the mixed layer, since it

can serve to limit the depth to which Langmuir cells can penetrate. It is therefore

worthwhile to try to understand the physics which cause such a phenomenon. Two

hypotheses which might explain a low-wavenumber cutoff in the presence of

Coriolis force are the following:

1. The presence of Coriolis force stabilizes cells with long wavelengths.

2. The presence of Coriolis force produces crosscell shears which stabilize the

cells.

The presence of a low-wavenumber cutoff is not attributable to the effects

of the Coriolis force on the instability. The best piece of evidence for this result is

that the modified instability code used in 3.5.4, which removed the effects due to

Coriolis forces on the cells. For some cases where Ek was small, removing the

Coriolis force reduced the growth rate at low wavenumbers.

Crosscell shears can act to stabilize long-wavelength cells. An extremely

simplified instability model can be used to demonstrate this fact. Consider a case

with unstable mode A and stable mode B which are coupled as follows
DA

(3-35a) - FiA-41B

aB
(3-35b) D -F-2A+42B

where F 1,F2,4 1,and 02 are positive numbers. F1 represents the growth rate of the

unstable mode. 12 represents the decay rate of the stable mode. 1l,and 02
represent coupling coefficients between the two modes. In terms of the
phenomenon at hand, 02 represents the rate at which crosscell shears tilt a linearly

unstable mode with a particular vertical structure into a vertical structure
associated with a stable mode. 01 represents the rate at which the shear tilts the

stable mode (whose growth rate would be -1 2) back into the unstable mode

(whose growth rate would be F1). The growth rate of the coupled instability is

given by

(3-36) -- 2-2 22

If IF1<IF 21 any coupling at all between the two modes will damp out the

instability.
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This simple model may be applied to the case at hand as follows. As k-O0,

the most unstable mode when the effects of crosscell shears are excluded goes to
k 2YCL2

zero as TI= (k2+ 2/D2 )dif f where yCL is the Craik-Leibovich instability parameter

and ydiff=La(k24 2/D2) (Section 2.4.5). The next most stable mode has vertical
structure in the velocity perturbation. It will have a decay rate of order Ydiff which
is the diffusive time scale for damping out this velocity perturbation when kD is
very small. One may estimate a cutoff wavelength for the cells using the
hypothesis that it occurs when F 1=172.. Then if kminD/7<1 kmin is given by

XYdiff
(3-37) kmin=

Figure 3.15 shows the predicted and actual cutoff wavelengths for La=F
(Ek =1) as a function of La for different values of angle of orientatation. When the
cells have a low wavenumber cutoff, the simple theory from equation (3-37) does
a reasonable job at predicting at least the order of magnitude of the cutoff
wavelength. Thissupports the hypothesis that crosscell shear is responsible for
causing the cutoff of instability at long wavelengths.

3.6 Conclusions and Discussion

This chapter demonstrates that the Ekman layer in the presence of surface
gravity waves can be unstable to Langmuir cells with growth rates much larger
than the Coriolis frequency. With the exception of some cases at low La and
wavenumber, wave-current interaction is the dominant forcing mechanism. In
order for cells to grow, the forcing of the vortices due to wave-current interaction
and density (which scales as the stratified Craik-Leibovich instability parameter
YCLS) must be stronger than diffusion (which scales as Ydiff) and frequency with
which the cells are tilted in the crosscell direction C. The presence of Coriolis
force does not directly affect the instability for Ek of order 1 or larger, but it can
affect the instability indirectly by changing the angle between the Stokes drift and
Eulerian shears. At low values of La, Ek, and horizontal wavenumber Ekman
instability can also play an important role in creating unstable roll vortices.

This chapter also demonstrates that within the framework of Huang's
equations irrotational surface gravity waves are predicted to drive an Eulerian
return flow whose transport is equal and opposite that associated with the
Lagrangian Stokes drift. The vertical structure of this transport depends on the
ratio between the inverse wavenumber of the surface gravity waves and the Ekman



depth. When the wave velocities fall off on spatial scales longer than an Ekman
depth, the return flow is equal and opposite to the Stokes drift over most of the
water column. When the wave velocities fall off on spatial scales much smaller
than an Ekman depth the return flow is smoothed out over an Ekman depth.

These results support the main premise of this thesis, namely that Langmuir
cells driven by wave-current interaction play an important role in stirring the
mixed layer. By defining the characteristic scales associated with the important
physical processes, this chapter provides a framework within which the premise
can be tested with field data.

In addition to supporting the overall premise, this chapter provides insight
into the dynamics governing the orientation and structure of the cells in the
presence of Coriolis force. In Chapter 2, the depth of penetration and growth rate
of the cells in the absence of Coriolis forces were shown to be determined by a
tradeoff between maximizing the strength of the vortex forcing (maximizing YCLS),
maximizing the efficiency of this forcing (maximizing Dmax/L) and minimizing
the strength of diffusion (Ydiff). This chapter demonstrates that a similar tradeoff
(with one additional constraint) determines the growth rate, structure and
orientation of the cells in the presence of Coriolis forces. This constraint is that the
crosscell shear (which tilts the cells) be minimized. This tradeoff has the following
results:

* As in the absence of Coriolis forces, short-wavelength cells do not penetrate as
deeply into the mixed layer as long-wavelength cells.
* For longer-wavelength cells with depths of penetration of the same order as the
Ekman depth, the Eulerian shear over the depth of penetration is not oriented in the
same direction as the wind and waves. In order to maximize the wave-current
forcing and minimize the crosscell shear, the cell axis is oriented in between the
waves and shear (to the right of the wind in the northern hemisphere).
* Increasing F for constant La and surface stress results in concentrating the shear
closer and closer to the surface. If the cell geometry is held constant as F increases,
assuming truncation T3 to be approximately valid

2 0 02
(3 -3 8)'cL3 - sin2(sz/D e2kwz dz sin2(rzD) ez/8 dz D

where kw is the wavelength of the surface gravity waves and 8 is the Ekman depth.
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Increasing F decreases YCLS, both by increasing the angle between Stokes drift
shear and Eulerian shear and by trapping the Eulerian shear closer to the surface.

These facts have some interesting implications for cell dynamics. One of
the most important concerns the question of whether the surface-intensified
forcing associated with wave-current interaction can drive cells which penetrate
over the depth of the mixed layer. The scaling of 'YCL3 in equation (3-38) shows
that it goes as 1/D. The diffusive decay rate, on the other hand, goes as 1/D2. Thus,
given a deep enough unstratified mixed layer, the surface forcing will in fact be
able to drive cells which penetrate over the depth of the layer.

Crosscell shear, however, may combine with diffusion to limit the depth of
cell penetration. This is because the depth to which the cells penetrate is limited by
their horizontal spacing, and the presence of crosscell shear may limit this spacing.
Thus rotation may effectively limit the depth of penetration of the cells by
producing crosscell shears. The degree to which this is true depends on a number
of factors, including the effectiveness of Coriolis force in producing Ekman
instability, a question which remains to be sorted out in detail for particular cases.
The fact that crosscell shear can limit cell growth also has some implications for
the effect of initial conditions on cell growth.

The presence of a cutoff in the instability at low wavenumber has
implications for the effect of stratification on the depth of cell penetration. In the
absence of rotation and associated crosscell shears, the boundary conditions on
density result in long-wavelength cells not feeling the effect of density and
growing in spite of stratification (Chapter 2). In the presence of rotation, cells have
a maximum cell spacing, which allows stratification to set the depth to which cells
can penetrate.

Another interesting implication of this work is the light it sheds on what
happens to the growth rate ahd angle of maximum instability when the waves are
propagating at an angle 0 to the wind. Such a situation may occur when swell
propagation is important, though it is most likely not important during the
experiments studied later in this thesis. When Ek is very large, the presence of
waves does not change the Eulerian shear profile much and the Eulerian shear is
largely downwind over depths at which there is strong Stokes drift shear. As a
result increasing 101 will cause the growth rate to decrease, with the maximum
growth rate occurring at angles in between 0 and 0 but lying closer to the larger of
the two shears.
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For Ek-1, however, having waves propagate to the right of the wind
produces a decrease in the magnitude of the Eulerian shear, while having the
waves propagate to the left of the wind increases the magnitude of the Eulerian
shear. For such cases there will be a strong asymmetry in the dependence of the
instability on 0, with the water column being more unstable when waves are to the

left of the wind than when they are to the right of the wind.
When 0=180, it will be very difficult to find a situation in which there is

instability. When Ek is large, the Eulerian shear will largely be set by the wind
stress and will be opposite to the Stokes drift shear. When Ek is small the Eulerian
velocity below an Ekman depth or so will be essentially equal and opposite to the
Stokes drift.

A number of issues raised by this chapter are covered in more detail in the
remainder of this thesis. The question of which horizontal scales are chosen at
equilibrium is covered in Chapter 4. The question of how the resulting cells grow
to finite amplitude, come to equilibrium, and transport momentum and density is
considered in Chapter 5. Actual instability calculations for real mixed layers are
presented in Chapters 6 and 7 for the SWAPP and MILDEX experiments. The
existence of an Eulerian return flow is also considered in these chapters as well as
in Chapter 8.



Chapter 4: The Spatial Scale of Equilibrium Langmuir
Circulations

4.1 Introduction

The strength of the forcing of Langmuir circulations due to wave-current
interaction and buoyancy, damping due to diffusion, and the ratio between the two
depends on the depth to which the cells penetrate. This in turn depends on the
horizontal wavelength of the cells. Long-wavelength cells have smaller growth
rates than short-wavelength cells but penetrate more deeply into the water column
(Chapters 2 and 3). This chapter uses a finite-difference code to examine which
horizontal length scales are chosen when the cells grow to equilibrium.

Relatively few papers have considered what determines the horizontal scale
of Langmuir cells at equilibrium for realistic oceanic conditions. Leibovich
(1977a) showed that the horizontal scale of growing cells in an infinitely deep
fluid evolved to larger scales over time, but could not integrate the equations out to
a equilibrium. Lele (1985) and Li and Garrett (1993a) reported cells growing to fill
the model domain. None of these papers, however, consider the effects of Coriolis
forces or use model domains which are much wider than they are deep.

The finite-difference code looks at the evolution of the cells over time,
rather than looking for a fixed-point solution of the equations of motion. This
approach has a number of advantages when it comes to making comparisons with
field data. First, there are a number of possible equilibrium states, corresponding to
differing cell spacing. It is difficult to decide which one will dominate the
equilibrium state a priori. Second, any given fixed-point equilibrium state may
itself be unstable, so that the final state may be unsteady. Finally, as will be seen, it
may take an unrealistically long time to approach the equilibrium state-so that it
may never actually be seen in the field.

The approach taken is as follows. Section 4.2 reviews the equations of
motion, and introduces the mathematical methods used to solve them. Section 4.3

considers Langmuir cells in the absence of Coriolis forces, and analyzes possible

mechanisms for energy transfer at long-wavelengths. Section 4.4 examines scale

selection in the presence of Coriolis forces. Section 4.5 concludes this chapter.

The principal results are as follows:

* Finite-amplitude Langmuir cells generally have horizontal spacings larger than

that associated with the fastest growing mode for all horizontal wavelengths.



* In the absence of Coriolis forces, energy is passed to larger and larger horizontal

scales (implying deeper and deeper vertical penetration).
*In the presence of Coriolis forces, this evolution is arrested. As a result, the depth

of penetration of Langmuir cells is limited.

4.2 Equations of Motion and Methods of Solution

Figure 4.1 shows the physical setup of the problem for this chapter. The

waves propagate parallel to the wind, and the alongcell (+y) axis is oriented at
some angle a to the right of the wind and waves. Then if the +x axis is across the

cells and the +z axis is in the vertical, the velocities u,v, and w are defined as being
the velocities in the x,y, and z directions and the vorticity Q is defined as being the

vorticity in the +y direction the equations of motion are:

a a an ap a avsav ap(4-1a) - + (U+us) + w- =- gy + F v+vs)+ + Ri-- +LaV2Q

av av av
(4-1b) T +(u+us)' +w- = -F(u+u,) +LaV2v

(4-1c) p p
(4-c) -t +(u+us) +w = LaV2p

(4-1d) Q = V24

(4-1e) -x = -w z = u

ve f N2(4-1f) La Ve F - Ri N2
a2a k2 a20 k4a42

(4-1g) k'(x,y,z)=(x,y,z)

(4-1h) (kwa)2jw (u,us,v,vs,w)=(u,us,v,vs,w)

(4-1i) t=t
k~a2 a

In these equations, kw,a, and a are the wavenumber, amplitude and frequency of
the driving waves, ve the eddy viscosity, N the buoyancy frequency, f the Coriolis

parameter, and us and vs the Stokes Drift. La represents the Langmuir number,

which is a scaled eddy viscosity or inverse Reynolds number. Ri is the square of



the scaled buoyancy frequency and F is the scaled Coriolis parameter. Equations
(4-la-e) are for dimensionless variables, with equations (4-1g-i) showing how

these variables are converted to dimensional (italicized) form. The equations differ

from those in Chapter 3 in that the pressure gradient is not necessarily zero.

z Alongcell Axis

Crosscell Axi Wind/wave
direction F -Cell Axi

Figure 4.1: Schematic of the problem as solved in this chapter. The waves and
wind are collinear and propagate along an axis a degrees to the left of the cell axis.

The boundary conditions on the velocity and density are

(4-2a) La-z= 0 =coso

(4-2b) La = -- sin a

z=D p
(4-2d) La z= 0z= =

(4-2e) pl1 z=-D

where a is the angle of orientation of the cells relative to the wind and D is the

depth of the fluid layer. The boundary conditions on velocity are just those which

have been used throughout the thesis thus far. The boundary conditions on density

were discussed in some detail in Chapters 1 and 2. The effect of fixing density on

the bottom boundary is to eliminate its effect on the instability at very long

wavelengths (of order tens to hundreds of times the layer depth).

Two basic scenarios are considered in this chapter. In the first (identical to

that studied in Chapter 2), F-0, us--0, =j and a-0, so that the waves, wind and

cell axis are all parallel, and a pressure gradient balances the wind stress. In the

second scenario, Ft0 and ay =-0, so that the wind stress is balanced by the Coriolis

force. For the second set of cases, a is chosen by taking the angle of maximum



instability from the results of the spectral instability code discussed in Chapter 3.
When cc O there are crosscell Stokes drifts (us O).

The equations are approached using a finite-difference code. The code is a
relatively simple one, based on the methods described by Roache (1977). The
time-stepping is simple forward-difference. The Jacobian terms are treated using
the method of Arakawa (1966) which conserves finite difference analogues of the
first and second moments of momentum, vorticity, and density. Diffusion was
handled using simple centered differencing. Some details of the code, plus some
runs which were made to verify the physics, are shown in Appendix C.

There are clearly a large number of parameters which may be varied. The
investigation in this chapter is limited to scenarios with Langmuir numbers
between 0.01 and 0.1, scaled Coriolis parameters between 0.001 and 0.1 and layer
depths of 2-6. Ri (scaled N2) ranges from 0 to 0.5. All runs presented in this
chapter are for Stokes drift profiles corresponding to monochromatic waves. The
surface Eulerian shear is set to 1 (other values of surface Eulerian shear were tried
but the results did not differ in any substantial way). For purposes of the analysis
presented here, this means that the surface stress and Langmuir number are
linearly related. As in Chapters 2 and 3 this should not be taken as an assertion
about the real ocean.

The initial condition for all the runs was to take an equilibrium current
profile in the absence of waves and impose a pattern of jets and a small crosscell
flow upon it. Defining L as the domain width, the initial velocity perturbation has
the structure

(4-3) v=Vo(z)+ (sin(2x/L)+ sin(4ntxL)+4sin(6tx/L))

+ sin(8x/L)+sin(16nx/L)+lsin(24ix/L))

where 8 is a small number. When the domain size changes but the predicted

structure remains the same, the internal dynamics of the system rather than the
initial conditions set the wavenumber of the equilibrium disturbance.

In order to interpret the results of the finite-difference code two simple

truncated models of equilibrated Langmuir cells are also considered. The first

truncation is a nonlinear version of the depth-limited truncation T1 considered in

Chapter 2. This truncation includes the effects of density stratification, and
assumes that Langmuir cells do not alter the momentum balance or the density

structure below a certain depth z=-D'. It is denoted as truncation T1N, and is



appropriate to use when the cells do not feel the effect of the bottom boundary
because of stratification or because diffusion is small. The truncation is presented
below:
(4-4a) = .vllsin(7rz/D')eiklx + V21sin(rz/D')eik2x z> -D'

(4-4b) v=volcos(tz/2D')+v02cos(3tz/2D')+vllcos(rz/2D')eiklx

v21cos(x/2D')eik2x+Vo(z)+C z> -D'
(4-4c) p=Polcos(z/2D')+P os(3zp2cos(3z /2D')+pllcosx/2D')eikl x

+P21cos(nx/2D')eik2x+Po(z) z> -D'
(4-4d) V=o, v=Vo(z)+C, p=Po(z) z< -D'

where the constant C is determined by the initial momentum of the system. The
subscripts refer to the horizontal and vertical wavenumbers of the Fourier modes
respectively. Substituting this truncation into the energy balance equations in
Chapter 2 yields a set of nonlinear evolution equations for the amplitudes

V11,21,V01,02,11,21 land P01,02,11,21. If v21=V21=P21=0, the equilibrium state of this

system of equations has a simple analytic solution. Letting TCL1(D')=szSzlzl,

ydiff-=La(k 2+(t/D')2), Nl=(8/3)~J , where
0

(4-5a) 'ziA fzsin(z/D')cos(z/2D')dz

02 DV

(4-5b) Szl -ssin(nz/D')cos(nz/2D')dz
-D'

yields the equilibrium solutions

(4-6a) 11 = 2 TCL12-N -diff 2(k2+(71/2D') 2 )/k2

k 2+n2/D'2

(4-6b) vol = 3v02 z TCL 21 -diff(k2+(7/2D) 2)

(4-6c) v1 = CL1(YCLdi(k+(/2D)2)/k2TfCL 2  2  2 2

(4-6d) Poi = 3p02 = 8DPz 2\CL12_N2 Ydift2(k2+(/2D,)2)/k 2)
371'TCL12-N1)

31rkl(CL12 N)
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In section 4.3.2 the stability of this equilibrium state is examined to perturbations
with respect to V21 and v21.

The second truncation is one where the cells fill the entire depth of the fluid

layer, and is denoted as T2N. It can be used when La and L are large. If D is the
depth of the layer.
(4-7a) V=Vlsin(nz/D')eiklx + V2sin(zlD)eik2x

(4-7b) v=vocos(7rz/D)+vleiklx+v 2eik2x+Vo(z)

where the subscripts now refer only to the horizontal wavenumber of each term
(all terms correspond to the gravest vertical wavenumber). Substituting this
truncation into the equations of motion yields a set of nonlinear evolution
equations for the amplitudes AV1,2,vo,1,2 When V2=v2=0, the equilibrium state of

this system of equations has a simple analytic solution. Defining

YCL2(D)= ~'Sz2z2, ydiff2=La(k2+(rD)2), where
0

, z2 0av
(4-8a) Vz2=5 in(z/D)dz

0

(4-8b) dz2 nJ-sin(z/D)dz)

yields equilibrium solutions

2 11
(4-9a) 'Vi- +2 1 CL2 Ly' diff2

(4-9b) v- 2ff2

(4-9c) V Ydi2 , 2
v 1'z2 T7CL2Zi'dift2 2

The strength of truncated models is that they can be used to derive closed-
form solutions from which important physical processes can be isolated. A
concommitant weakness is that if the truncated models do not accurately

approximate the spatial structure of the cells, they cannot capture the relevant

physics which determine cell evolution. One such weakness of these truncations is

that they assume that cells with different spacings have the same vertical structure.

As seen in Chapters 2 and 3 this is only true when the wavelength is relatively

long. A second weakness of these simple truncations is their inability to model



triad interactions, which are responsible for the flow of energy to large scales in

two-dimensional turbulence. As a result, the truncations are only really useful at

modelling interactions between long-wavelength cells where (as shown later in the

chapter) triad interactions are not as important and the cell structure is relatively

constant as a function of cell spacing.

4.3 Scale Selection in the Absence of Coriolis Force

4.3.1 Results from the Finite-Difference Code

A certain understanding of the evolution of the cell structure can be gained

by considering the development of the eddy kinetic energy. Figure 4.2 shows a

schematic of the energetic evolution of the cells when the model domain is much

wider than the depth. There is an initial phase during which the cells grow

strongly, overshoot an equilibrium level, and return to this level. This phase will

be referred to as the initial growth phase. The initial growth phase generally lasts

approximately 20-100 nondimensional time units. Given that oceanic surface

gravity waves have periods ranging from 6-10 seconds and steepnesses of about

0.06, one nondimensional time period corresponds to a dimensional time of

roughly 4 minutes. Dimensionally, then, the initial growth phase corresponds to

time periods of 1-5 hours. In lakes, where the waves have shorter periods, the

initial growth phase would most likely itself be shorter. The structure of the

streamfunction, velocity, and density fields during this phase are expected to be a

strong function of the initial conditions. Numerical results during the initial

growth phase cannot be interpreted in terms of the mean forcing functions alone.

For this reason, the evolution of cell structure is briefly examined in one case

below, but is not studied in detail during this chapter.

The equilibrium which is set up after the initial growth phase is not a steady

state for all times. It does, however, last for periods of up to 1200 nondimensional

time units, corresponding to dimensional times of about 2-4 days. This stage of

development is termed the "first quasiequilibrium phase". During this phase, there

is an identifiable and relatively constant cell spacing. This stage of cell

development is examined in more detail, since it appears to be an appropriate one

for comparison with much of the data. Given that forcing functions in the field

often change over periods of a few days, an equilibrium state which requires 4-5

days to develop will rarely be seen. Chapter 5 considers the necessary condition



for the cells to replace small-scale diffusion as the dominant transport mechanism
during a given quasiequilibrium stage.

The first quasiequilibrium stage is followed by a time period during which
some or all of the cells within the domain cells merge, referred to below as the
"first merging phase". There is generally a rise in the level of eddy kinetic energy
associated with this merging process. The merging is surprisingly slow. For the
runs which have been analysed for this work, the merging took a few days in
general, and sometimes even longer. The first merging phase is followed by a
second quasi-equilibrium phase, which in turn is followed by more cycles of
merging and equilibrium.

An illustration of these concepts can be seen for a scenario with La=0.01,
Ri=O, and D=2. The domain width L is 32. The most unstable mode for this case
has a wavelength of 1.85 and a growth rate of 0.437. Figure 4.3 illustrates the
development of this scenario during the initial growth phase. The evolution of the
eddy kinetic energy is shown in Figure 4.3a and the development of the
perturbation streamfunction during the initial growth phase for times T=8, 15, and
40 is shown in Figures 4.3b,c and d respectively. The streamfunction field initially
contains several scales of cells. Over time these tilt and merge into larger cells. By
T=40 a spacing of L=8 has developed. This spacing persists for quite a long time.
Figure 4.4 shows the streamfunction at T=320, 640, and 2880. The last of these
corresponds to a dimensional time of 4-9 days. For T=320 (4.4b) there are still
four pairs of cells in the model domain, although there are hints that some of them
are becoming smaller. At T=640 the pair of cells in the rightmost part of the
domain has merged. At T=2880 the cells in the middle of the domain have been
squeezed out (a day later there is only one pair of cells left in the domain). As a
pair of cells is "gobbled up" by the cells around it the location at which the
downwelling occurs shifts to a region where there was previously upwelling.

The merging process shown here was observed in a large number of runs.
In all cases the merging involved two downwelling zones, with their associated
velocity plumes moving closer and closer together. As this happened, the pair of
cells in between the downwelling plumes was squeezed into a smaller and smaller
space, eventually collapsing as the two plumes coalesced into a single plume.

The first equilibrium stage in unstratified mixed layers is often
characterized by a ratio between cell spacing and layer depth of approximately 4:1.
Figure 4.5 shows a number of unstratified runs with different parameter settings.
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Figure 4.2: Schematic of the evolution of eddy kinetic energy during the
development of Langmuir cells, illustrating the various stages of cell evolution.
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Figure 4.3: Short-time evolution of Langmuir circulations. La--0.01, Ri=0.0,
D=2. (a) Evolution of the eddy kinetic energy. (b) Streamfunction field T=8.
Contour level is 0.05 (c) Streamfunction field,T=15 (d) Streamfunction field,
T-40.

100

0.10
0.05
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Figure 4.4: Long-time evolution of Langmuir circulations. La=.01, Ri=O.0, D=2.
(a) Evolution of the eddy kinetic energy. (b) Streamfunction field T=320. Contour
level is .05. (c) Streamfunction field,T=640. (d) Streamfunction field, T=2880.
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Figure 4.5a shows contours of streamfunction for a run where La--0.01, Ri=0,
D=2, and L=64. There are now 8 pairs of cells in the domain. Doubling the domain
size does not make a difference in the solution at this time. Figure 4.5b shows
contours of streamfunction for La=0.1, Ri-=0, D=2, and L=32 at T=400. Changing
the value of La by a factor of 10 also does not change the crosscell spacing for the
quasi-equilbrium state. Figure 4.5c shows contours of streamfunction for La=0.1,
Ri=0, D=4, and L=32 at T=400. There are now only two pairs of cells in the model
domain (so that the ratio between cell spacing and depth is still 4:1). This turns out
to be the first quasiequilibrium state for D=4 for La=0.01, 0.025, and 0.05 as well.
Interestingly, Langmuir cells in the field appear to have a similar ratio between
cell spacing and mixed layer depth of 3-4 (Smith et al.,1987).

Stratification does not greatly inhibit the transfer of energy to large scales.
Figure 4.6a shows contours of streamfunction for La=0.005, Ri=0.1 at T=400.
Figure 4.6b shows the same field at T=800. For T=400, the depth of cell
penetration is limited to about half the depth. As time progresses and cells merge
the penetration increases. This process takes quite a bit of time, however (again the
T=400 is roughly 1 day). When the temporal evolution of this particular run is
examined in more detail, it becomes clear that the merging process is still
continuing at T=800. The implication is that the long wavelength-cells eventually
dominate the flow field, but that this takes a long time to occur. Figure 4.6c shows
the streamfunction for La=0.01, Ri=0.2 at T=800. Once again, the horizontal
spacing is limited over time periods of days, thus limiting the vertical penetration
of the cells.

Knowing the cell spacing provides a certain amount of information about
the vertical structure of the cells. When there is only one linearly unstable mode at
a given wavenumber, the normalized streamfunction perturbation strongly
resembles this mode. Figures 4.7 and 4.8 show the standard deviation of the
streamfunction as a function of depth, normalized so that the peak value is 1 for a
number of scenarios. The + marks denote the model runs, the solid lines show the
most unstable mode from the spectral instability code derived in Appendix B. The
dashed lines show the second most unstable mode (when there is one) at the cell
spacing observed in the finite-difference code. The cases shown in Figure 4.7
correspond to those in Figure 4.5. Figure 4.7a shows a case (corresponding to that
in Figure 4.5a) where La=0.01, Ri=0, at a time T-400. There are two unstable
modes, and the streamfunction splits the difference between them. Figure 4.7b
shows a case (corresponding to Figure 4.5b) where La=0.1, Ri=0.0,D=4. For this
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Figure 4.5: Quasiequilibrium states of Langmuir circulations. All plots are
contours of streamfunction at time T=400. Contour interval is 0.05. (a) La=0.01,
Ri=0.0, D=2. Domain size L=64. (b) La-0.1, Ri=0, D=2, L=32. (c) La-0.1, Ri=0,
D-=4, L=32.
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Figure 4.6: Quasiequilibrium states of Langmuir circulations. All plots are
contours of streamfunction. Contour interval is 0.05.D=4,L=64. (a) La--0.05,
Ri--0.1, T=400 (b) La=0.1, Ri=0.1,T=800. (c) La-0.01, Ri-0.2, T=800.
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Figure 4.7: Structure of the streamfunction perturbation compared with the
spectral instability code. In all figures, the solid line represents the most linearly
unstable mode from code in Appendix B,dashed lines, if present, the 2nd most
unstable mode from the code, and + marks the output of the finite-difference code.
All fields are normalized to a maximum value of 1, since the instability code only
predicts structure, not amplitude. Cases shown correspond to those in Figure 4.5.
(a) La-0.01,Ri-0,D=2, T=400. (b) La-0.1, Ri=O, D=2, T=400. (c) La-0.1, Ri=0,
D=2, T=800.

case, given the modelled cell spacing of 16 there is only one linearly unstable
mode, and the vertical structure of the perturbation streamfunction corresponds
closely to this mode. Figure 4.7c shows the perturbation streamfunction for T=800.
The cell spacing is now 32. Once again, the streamfunction perturbation looks very
similar to that associated with the linearly unstable mode.

In the presence of stratification, the instability theory can be even more
useful at predicting the cell structure. Figure 4.8 shows the streamfunction
perturbation for the three cases in Figure 4.6, La=0.05, Ri=0.1, D=4 and T=400
(Figures 4.6a and 4.8a). La=0.05, Ri--0.1, D=4, and T=800 (Figures 4.6b and
4.8b), and La=--0.01, Ri-0.2, D=4 and T=800 (Figures 4.6c and 4.8c). In all three
cases the instability code captures the vertical structure of the streamfunction
perturbation. The difference between the case shown in Figure 4.8a and that in
Figure 4.8b is that the cell spacing L is 8 in Figure 4.8a and 16 in Figure 4.8b. The
instability code captures the change in the depth of penetration associated with this
increase in the cell spacing. The reason for the deeper penetration of cells with
larger wavelengths was discussed in Chapter 2.
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Figure 4.8: Same as Figure 4.7, but for three cases corresponding to Figure 4.6.
All cases have D=4. (a) La=0.05, Ri-0.1, T=400. (b) La=0.05, Ri=0.1, T=800.
(c) La-0.01, Ri-0.2, T=800.

The instability code qualitatively reproduces the vertical structure of the
alongcell velocity perturbations as well. Figure 4.9a shows the standard deviation
of the alongcell velocity as a function of depth for La-0.01, Ri=O, D=2 (shown in
Figures 4.2-4.4) at T=1500. The velocity perturbation for this case is basically
constant with depth, although there is some variability. The instability code
predicts a structure which is also relatively constant with depth, but the details are
different. At larger values of La, the structure predicted by finite-difference code is
much more similar to that predicted by the instability code. Figure 4.9b shows the
standard deviation of the alongcell velocity for La=O.1, Ri=O, T=400 (considered
in Figure 4.5a and 4.7a). The agreement between linear theory and the finite
difference code is much closer. The constancy of the velocity perturbation with
depth implies that Truncation T2 is an appropriate approximation with which to
extract the relevant dynamics.

In the presence of stratification, the velocity structure also becomes surface-
trapped. Figure 4.9c shows the standard deviation of the alongcell velocity as a
function of depth for La-0.01, Ri=0.5,.T=400. For this case,there are different
scales of cells in the model, but the most energetic wavelength is L=16. The
velocity perturbation now falls off quite sharply with depth in both the finite-
difference code and the linear instability code. It is arguable that the appropriate
truncation to use for this case is Truncation T1.
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La=0.01, Ri=0.5, T=400

S-1 -2

-1.5 A -1.5 -3

-2 -2 -4
0 0.5 1 0 0.5 1 0 0.5 1

(a) (b) (c)

Figure 4.9: Vertical structure of the alongcell velocity perturbation. Solid lines are
from instability code,+ marks from finite-difference code. (a) La=0.01, Ri=0, D=2,
T=1500. (Case shown in Figures 4.3-4.4).(b) La--0.1, Ri--O, D=2, T-400. (cf.
Figure 4.5b). (c) La--0.01, Ri=0.5, T=400.

This section concludes by examining the merging process in detail for a
single run. The current profiles and total eddy kinetic energy for this run do not
change substantially after a nondimensional time of about 30, so that the
momentum transport carried by the cells and the energy balance are relatively
constant. Figure 4.10 shows the evolution of the amplitude of the Fourier modes of
the crosscell and alongcell velocity as a function of horizontal and vertical
wavenumber over time for the case studied in the Figures 4.3 and 4.4 where
La=0.01,Ri-0, and D=2. The domain width L is 32. Figure 4.10 shows the
evolution of streamfunction modes with the form 'Vmexp(2imnx/L)sin(mntz/D) and
velocity modes with the form vnmexp(2irnx/L)cos(mtz/D). The four gravest
modes in the horizontal (n=1,2,3,4 corresponding to lengths of 32,16,10.67, and 8)
are considered, as well as the n=8 mode (corresponding to a length of 4). In the
vertical direction, the two gravest modes (for velocity, m=0,1, and for
streamfunction m=1,2) are considered.

Figure 4.10a shows the energy for the streamfunction modes with one cycle
in the vertical and 1,2,3,4 and 8 cycles in the horizontal during the time period
shown in Figure 4.4. During the time period shown, energy moves to larger and
larger scales in the horizontal. The pattern is one in which the smaller-wavelength
mode grows to large amplitude, then decays as the larger wavelength mode grows.
The time required for a mode with L=8 (n=4, marked by + marks) to replace
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Figure 4.10: Energetic evolution of the Fourier modes for a domain width of 32.
La=.01,Ri=1,D=2 assuming a surface shear of 1 and monochromatic waves. (a)
Streamfunction, M=1,N=1 (solid),2 (dashed),3, (chain-dot) 4 (+), and 8 (o). (b)
Same as (a), but for M=2. (c) Alongcell velocity, m=O. line conventions are same
as for (a). (d) Same as (c) but for M=1.
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a mode with L=4 (n=4, marked with open circles) as the dominant streamfunction
mode is very short, roughly 10 nondimensional time units. The time required for
the wavelength of the dominant mode to double a second time (to n=2, L=16
marked by a dashed line) is much longer, 200-300 nondimensional time units. The
time required for the wavelength to double again (to n=l, L=32, marked by a solid
line) is even longer, about 1500 nondimensional time units. Interestingly, the final
doubling of horizontal scale when the streamfunction field goes from two pairs to
one pair of cells in the domain (shown in Figure 4.4) involves energy being
pumped into both wavenumbers with 1 and 3 cycles per domain. This is evidence
that some sort of nonlinear coupling is involved. Although the scales of the
different cells differ by a factor of 4, the overall level of energy is fairly constant.

Figure 4.10b shows the energy in the streamfunction modes with m=2. In
general, these modes have much less energy in them than the gravest (m=1)
modes. The exception is right near the start of the run, when the shorter modes
dominate (since we know from our linear stability analysis that the most unstable
cells at small wavelengths tend to be trapped closer to the surface, it is not
surprising that there is more energy in the m=2 mode). Note that as time
progresses, the horizontal wavelength which is dominant in the m=2 band does not
progress uniformly to lower and lower wavelength. The dominant modes are
succesively n=4, n=8, n=l, n=3, n=4, and n=2. The processes involved in setting
the energy level at this wavenumber band are complex and probably nonlinear.

Figure 4.10c shows the vertically gravest mode of the alongcell velocity
perturbations (m=0), for n=l, 2, 3, 4, and 8. The velocity perturbation of the n=1
mode has a constant amplitude for quite a long time. As the long-wavelength cells
take over it starts to increase. Unlike the streamfunction, the strength of the
velocity perturbation does have a very strong dependence on wavelength. This is
consistent with the equilibrium results in equations 4-6 and 4-9 (a similar result
was seen by Li and Garrett, 1993a). The (relatively small) increases in the eddy
kinetic energy seen in Figures 4.3a and 4.4a are due to this increase in jet strength.

Figure 4.10d shows the energy in the alongcell velocity modes with m=l.
As is the case for the streamfunction modes, the second-gravest velocity modes are
initially strong, then become much weaker than the gravest velocity modes. There
is again no steady transfer of energy to large scales with the n=2 mode being
succeeded by the n=3 as the dominant mode, followed by n=1 and then n=2 at the
end. This result suggests that nonlinear interaction is important in moving energy
from one scale to another.
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In summary, the results of this section are
*For nonrotating (F=O) fluid layers with Langmuir cells, the energy associated with
the cells evolves to larger and larger horizontal scales.
*Since longer wavelengths penetrate deeper into the water column, the evolution to
larger and larger horizontal wavelengths implies a deeper and deeper penetration
of the cells over time.
*The evolution to large scales is initially quite fast, but then slows down with the
eddy kinetic energy being constant for quasi-equilibrium periods which may be
quite long (of order hundreds to thousands of nondimensional time units). This
means that the initial quasiequilibrium state may be the one actually seen much of
the time in the field, since both wave and wind directions vary over time, and the
cells may sometimes be capped off by heat fluxes.
*When there is only one unstable mode at a given wavenumber, the vertical
structure of the streamfunction and velocity fields are well described by the linear
instability code.

4.3.2 Some mechanisms for scale selection in the absence of Coriolis forces

As has already been shown the horizontal scale determines the depth of
penetration and the depth of penetration in turn determines a number of important
parameters. Knowing the horizontal scale is therefore important for characterizing
the cells. In Section 4.3.1 it was demonstrated that the horizontal scale for
nonrotating Langmuir cells evolves over time with energy moving to larger and
larger scales. This section considers the following questions
* What are the processes which govern this evolution?
* What makes the scale change proceed so slowly after some given point?
The simple truncated models introduced in section 4.2 are used to isolate relevant
processes and obtain rough scalings for how fast they should operate. Although the
results are inconclusive, they do isolate a candidate mechanism for future work, as
well as providing a baseline against which to compare three-dimensional theories
of merging. It is argued that cell merging results from a process in which vortices
at long wavelength advect smaller-scale velocity perturbations, creating longer-
wavelength perturbations which then strengthen the long-wavelength vortices
through the Craik-Leibovich wave-current interaction.

The failure of long-wavelength modes to dominate the final solution is not
the result of the linear growth rates of these modes being very small. Consider, for
example, the scenario presented in Figures 4.3 and 4.4 for which La=O0.01, Ri=--O,
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and D=2. The initial growth rate y(8) of the most unstable mode for L=8 is 0.205,
while '(16) (the growth rate for L=16) is 0.102. The most unstable mode for any
wavenumber has a wavelength of about 1.85 and a growth rate of 0.437. The
failure of the L=16 mode to dominate the flow fields at times of order 400 (more
than 40 times 1/y(16)) is not due to its linear growth rate being very small.

Examination of the actual processes which result in energy transfer between
different horizontal scales is necessary to explain the selection of L=8 as the
horizontal scale which dominates the first quasiequilibrium state.

Looking at the equations of motion yields at least three possibilities which
can explain the transfer of energy from one scale to another. These are:
*Interactions between cells of various scales through the advection terms in the
vorticity transport equation. Such interactions are known to be responsible for the
cascade of energy to large scales in two-dimensional geostrophic turbulence
(Salmon, 1980).
*Interactions between cells of different scales through the advection term in the
velocity and density transport equations.
*Interactions between finite-amplitude cells of different scales and the mean flow
and stratification, in which cells of one scale alter the flow so that it is stable to
cells of a smaller scale, but unstable to cells of a larger scale. A similar process has
been shown to result in scale changes in baroclinically unstable waves
(Pedlosky,1981) and Rayleigh-Benard convection (Fiedler,1989). Each of these
processes is considered below. It is argued that the latter two are probably
responsible for the merging seen in nonrotating Langmuir cells.

One process which is involved in transferring energy to large scales in two-

dimensional flows is the two-dimensional enstrophy cascade first discussed by
Batchelor (1969). The cascade of energy to large scales is a well-known
phenomenon in two-dimensional turbulence and results from interactions between
triads of waves These triad interactions require that the wavenumbers of the
modes involved be summable to zero in some way. In order to transfer energy
from a mode whose streamfunction is given by
(4-10) V=Vf2sin(2kx)sin(7tz/D)

to one which has a form
(4-11) y=i icos(kx)sin(tz/D)

there must be a triad interaction with modes which have a horizontal wavenumber

of k or 3k and a vertical wavenumber of 27t/D. A schematic of this process is
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Figure 4.11: Schematics of three mechanisms for changing the cell spacing.
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shown in Figure 4.11a. Initially, there is a linear array of vortices of opposite
signs. A perturbation in vorticity is added so that vortices of opposite sign are
moved together, forming a pair such that one vortex becomes weaker and the other
becomes stronger. The weaker vortex then rotates around the stronger one as
shown. In the presence of viscosity, as the weak vortices are advected towards
each other by the strong vortices, they merge, resulting in a line of vortices with
twice the spacing as the original one. This process will be referred to as the
vorticity advection mechanism for changing the cell scale.

There are some questions about whether or not this process could really
apply to Langmuir cells (Li and Garrett, 1993a). One serious objection to vorticity
advection as an explanation for the change in cell spacing is that the presence of
horizontal boundaries acts to stabilize a row of vortices. Rosenhead (1929) showed
for an inviscid layer of fluid that when the vortex spacing was more than 1/i2 the
layer depth, that a row of point vortices of alternating signs was stable to small
perturbations of the vortex position. Since the cell spacings under consideration
range up to 16 times the layer depth, it is somewhat unlikely that this mechanism
is really responsible for Langmuir cell merging.

A second objection to the vorticity advection mechanism being really
important is that it does not affect the energy balance of the largest cells. In Figure

Sources and Sinks of Energy for Gravest Mode, La=.01,Ri=O,D=2
102

Solid:Stokes Production
Dashed:Dissipation
Chain-dot:Absolute Value of Net Change

10 -

100

10- 0 1
100 10 102  10 10

Time

Figure 4.12: Energy balance of a long-wavelength Langmuir cell during merging.
Stokes production is the solid line, dissipation the dashed line. The chain-dotted
line is the net change in the energy needed to give the observed change in Figure
4.10a.
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4.10, the energy in the longest streamfunction mode went from about 0.05 to 0.2 in

about 1000 nondimensional time units, implying a rate of increase of about 1.5 x

10-4 . Figure 4.12 shows the dissipation (dashed) and Stokes production (solid) for

this mode during the time period T=320 to T=3200. The dissipation and Stokes

production are much larger than the total rate of energy gain and essentially

balance. This means that the advection of vorticity (the only remaining energy

source term) is not a significant source of energy for this long wavelength-mode. If

it were, the observed growth rate would be much larger than 1.5 x 10 -4.

A second mechanism which can change the spatial scale of Langmuir cells

involves the velocity and density transport equations. Given a velocity perturbation

of the form v=vlcos(klx) and a streamfunction perturbation of the form

V'=Vlsin(k2x)sin(rz/D), then
av ov kir

(4-12) u %+w - 2DjlVl(cos((kl+k2)x) +cos((kl-k2)x)) cos(nz/D)

A schematic of this process is shown in Figure 4.11b. Initially, there is an array of

vortices, shown by the + and - signs, of equal strength. Between each pair of

vortices, there is a downwelling plume, with associated strong alongcell velocities.

The horizontal shear in the alongcell velocity on each side of the plume results in a

region of strong vorticity generation near the top surface as the result of the Craik-
Dvav

Leibovich instability term a. Suppose that a perturbation in the vortex strength

is introduced, as shown, so that the rightmost and leftmost vortices are

strengthened while the middle two vortices are weakened. The result is that the

plumes of fast-moving alongcell velocity tilt, so that the surface expression of the

plume moves towards the weaker of the two vortices. This means that the vortex

generation region shifts. As a result the vortex locations shift as well. As the

plumes get closer and closer together, viscosity acts to reduce the gradient between

them and the intermediate vortices become weaker. This process for changing the

cell scale is referred to as the velocity advection mechanism.

Both mechanisms advanced thus far suppose that cells of different scales

couple to each other directly through the advection terms in the vorticity, alongcell

velocity and density equations. There is also the possibility that cells of different

scales can couple to each other through the mean flow and stratification. The basic

idea is that a given quasiequilibrium state is associated with a mean profile which

is unstable to longer-wavelength disturbances, albeit with growth rates which are

much smaller than those for the initial state. A schematic of how this process

works is shown in Figure 4.11c. At early times, the mean flow is unstable to both
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short wavelength, quickly growing Langmuir cells and longer wavelength, slowly

growing cells. In the first stage, both scales of cells grow, with the quickly

growing short wavelength mode predominating. In terms of classical instability

theory, the flow is supercritical to both long and short waves during this initial

stage. As the small cells reach large amplitude they modify the mean Eulerian

flow, until it is no longer supercritical to the smaller wavelengths. This mean flow

is still supercritical, however, to the longer wavelength disturbance which

continues to grow. Eventually, the flow becomes further modified so that it is

supercritical to the long wavelength cells, but subcritical to the short wavelength

cells. The cells with long wavelengths then grow while those with smaller

wavelengths decay. This process for changing the cell scale is referred to as the

wave-mean flow interaction mechanism for changing the cell spacing.
It is possible to model the last two processes using the two simple truncated

models of the wave and mean flow.introduced in Section 4.2 The first of these

truncations (T1N) is used to focus on the predicted growth rate for a doubling of

the dominant wavenumber caused by the velocity advection mechanism. The

second truncation (T2N) is used to consider the effectiveness of wave-mean flow

interactions in changing the cell spacing.
Consider the nonlinear evolution equations for 121,v21, and p21 in

truncation TIN. Letting k2=k and ki=2k, the equations become

at21 k szl 8kRi/3xt
(4-13a) Dt k2z+(Tt/D') 2 v21 + k2+(D')2 P21- La (k2+(7rfD') 2)V21

(4-13b) 2 k~2( zI- 7 31c 37I
(4-13b) I2( 8D'- ( -- D vo2 + 4D v1) - La (k2+(t/4D')2)v21

(4-13c) kV2( - DP01 - 8 P 2 + 11) - La (k2+(/4D')2)P21

This system of equations can be solved for the largest linear eigenvalue. Letting as

in Chapter 2, Ydiffl= La(k2+(t/D')2)-k 2+(r4D')2/k

(4-14) ,TlN= - La(k2+52/8D'2)+

2 k2  Ic 37c 37c
( 45it2/8D'2) k2+(i/D')2 ( 5zl(l zi 8DvOl - 8D- v02 + 4D V21)

2l - 8D0 2 4D'21 - ff

In Chapter 2, the growth rate in the absence of nonlinearity was shown to be:

(4-15) yTl= -La(k2+(5t/8D') 2)

SLa2(k2+(5kt/8D')2)+k 2+ (/D, V 5i Rioz) -diff(k2+(/4D')2/k2).
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Long-wavelength Langmuir cells growing on an equilibrium field have a growth
rate which resembles (4-15) but with two modifications. The first modification of
the growth rate is due to long-wavelength cells advecting the shorter-wavelength
velocity and density jets, resulting in production of structure at longer
wavelengths. In physical space, this corresponds to the velocity advection
mechanism discussed earlier in this section. The second is that the depth-weighted
horizontally averaged velocity shear %¢z1 and density stratification ,z are replaced

with z1- o - 8D 8D' 01 - 8D 02 respectively. This

corresponds to the effect of changes in the mean flow, and is the mathematical
signature of the wave-mean flow interaction mechanism. The short-wavelength
cells reduce the mean shear and stratification, resulting in a mean profile which is
more stable to Langmuir cells. Suppose that the terms, vll, p1 vI, vo, 02, Pi0, P02
are given by their equilibrium values in equation (4-6) Recalling the earlier

definitions that yCL1= Sz1/ z1 and N1 = - Roz one may also define for

k2+572/8D'2 k2+(7/4D')2notational convenvience Ydiff2=La(4k2+(7r/D') 2), G1- k2+(x/D')2 G2- k2

4k2+(r/4D')2
and G3- 4k2  Then

(4-16a) Szl(z 3 G3V do = 2L1 ff2

7C 37c 1 2 ____(4-16b) Ri(oz 8D'Poo - DPo = N2 - 2

so that the the growth rate is given by
(4-17) TiF= -G1 diff

+ (G17diff)2 + k2+(-/D')2 iG3 diff2+ 4kD' 'CL1 - N1 - f2-G2 )

When the initial state is highly unstable the stratified Craik-Leibovich instability

parameter is much larger than diffusive scales CL1 -N >> G(1,2,3)diff. In this

case, becomes very small, and the growth rate asymptotes to

(4-18) yTN. ~ 4D'k2+D'(2/D')2diff2 L1- 1

so that the velocity advection mechanism is more important for driving instability
than is the mean flow. For k<<r/D' (4-18) becomes
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(4-19) yT1N 4r Ydift2 l = 41 Ydiff2 YCLS1

So that the growth rate, instead of scaling as the Craik-Leibovich instability
parameter, scales as the geometric mean of the Craik-Leibovich instability
parameter and a characteristic diffusive decay scale. For strongly forced cells, this
implies a nonlinear growth rate much slower than the linear growth rate.

Thus, given a nonrotating fluid layer containing finite-amplitude, depth-
limited Langmuir cells with spacing L at equilibrium, the initial pattern is unstable
to cells with twice the wavelength and the same depth of penetration. The longer
wavelength cells grow as a result of a process in which
1. Advection of the shorter wavelength alongcell velocity jets by the longer
wavelength cells produces alongcell jets with a longer wavelength
2. These jets act to reinforce the longer wavelength cell via the Craik-Leibovich
instability mechanism.

Although truncation TIN may be appropriate for cells which are limited in
depth (small L or large Ri), it not appropriate for cases where the cells fill the
domain and the velocity jets are basically constant from top to bottom (large La,
L). Truncation T2N is more appropriate to examine these cases. Assume that the
initial state is given by equations 4-9. Then the equations for N2 and v2 are

(4-20a) it k2 22 - La (k+(/D)2) V2

(4-20b) at = k22( z2-v ) -La kV 2

As noted earlier in this chapter, the only mechanism for scale change in this set of
equations is wave-mean flow interaction. The growth rate of the most unstable
mode is then given by

(4-21) yT2N = -La (k+2)+

2

La k 2  2  2/D2 (Sz2(z2 - v0) - La2 (+r2/D2) 2 )

k22/2D2
As in Section 4.2, ,CL2= Sz2z2, and ydiff2= La(k2+2/D2). If G4- 2 ,

2and Ydiff2_2= La(k +2/D2) then substituting the value of vo from equation (4-9)

yields:
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(4-22) T2N = - G4Ydiff2_2+

This solution predicts that given an initial pattern of equilibrated cells with
horizontal wavenumber kl, only cells for which Ydiff2>Ydiff2_2 should be unstable.
This implies that only cells with a longer wavelength can grow. If kl,k2<<t/D, then
(4-22) asymptotes to

2

(4-23) T2N, 2 (Ydiff2diff2-2 2) -2 LakD2(k2 - k)
2G47diff2_2 (Oq2 /D2)

This will be very much smaller than even Ydiff2 which is in turn smaller than TCL2.
Thus if the forcing is very strong, so that the characteristic diffusive decay is much
less than the Craik-Leibovich instability parameter, then wave-mean flow
interaction is much weaker than velocity advection in causing scale changes.

Table 4.1 shows linear and nonlinear growth rates predicted by these
mechanisms for La=0.01, Ri=0, D=2 for cells of wavelength L. The time taken in
the finite difference code for cells of length L=8 to take over from cells of length 4
was about 10 nondimensional time units, while that for L=16 to take over from
L=8 was roughly 400 nondimensional time units and that for L=32 to take over
was about 2000 nondimensional time units. The growth rates shown are 1) the
linear growth rate predicted by the spectral instability code, assuming a fully
developed flow without Langmuir cells 2) the linear growth rate predicted by
truncation T1 in the absence of cells. 3) the linear growth rate predicted by
truncation T1N assuming fully developed cells with wavelength 2L. 4) the linear
growth rate predicted by truncation T2 in the absence of cells. 5) the linear growth
rate predicted by truncation T2N assuming fully developed cells with wavelength
2L. In general:
* The linear growth rates for an initial flow with no cells agree fairly well.
*The nonlinear growth rates are smaller than the linear growth rates, and the
growth rates do decrease at larger and larger wavelengths. For truncation T1 the
growth rates are in general only slightly smaller (10-30%), whereas for T2 they are
much smaller.

*The nonlinear growth rates predicted by truncation TIN (which includes
extremely efficient velocity advection) are quite a bit larger than those actually
seen, while those predicted by T2N (which only allow wave-mean flow
interaction) are quite a bit smaller.
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L -(20) yT1 YT1N YT2 T2N

8 0.205 0.179 0.132 0.218 0.007
16 0.102 0.092 0.068 0.115 5 xl0 4

32 0.045 0.040 0.031 0.054 4 x 10-5

Table 4.1: Growth rates for a mode of length L assuming La=.01,Ri=0, D=2.
y(20):linear growth rate from spectral instability code assuming no cells initially.
yT1: linear growth rate from truncation TI assuming no cells initially. fT1N: linear
growth rate from truncation TIN assuming fully developed cells with wavelength
2L. y2: linear growth rate from truncation T2 assuming no cells initially. yT2N:
linear growth rate from truncation T2N assuming fully developed cells with
wavelength 2L.

Neither truncation presented here exactly captures the physics involved in
cell merging. Nonetheless, they both provide important physical insight into the
relative strengths of two processes potentially responsible for this phenomenon.
Given strongly forced cells, both truncations show that the wave-mean flow
interaction will be very weak in producing changes in cell size. Truncation T1
shows that if the structure of the alongcell velocity plumes falls off with depth in
the right way, advection of these plumes is very effective in producing cascades of
energy to large scales. On the other hand, truncation T2 shows that if the plumes
do not have any structure with depth the growth of longer-scale instability is very
small. In reality, the structure of the velocity plumes lies somewhere in between
their representations in truncations T1 and T2, and so the growth rate of a mode of
length L driven by velocity advection is between those predicted by T1 and T2.

The results of this section have a number of implications for numerical
simulations of Langmuir circulation.
*In the absence of Coriolis forces, the final structure is a function of the domain
size. This has worrisome implications for applying the results of a particular model
to the real ocean. However, there is the interesting caveat that for large enough
domains it takes a very long time to get to the final state and that there are quasi-
equilibrium states along the way which may be more suitable for comparison with
field data. This means that one can run a numerical model of Langmuir cells
which is much wider than it is deep and have some reasonable expectation of
being able to use the results. Models of Langmuir circulation which simply seek to
converge on the final equilibrium state will miss these intermediate quasi-
equilibrium states which may actually be the states of interest.
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*Fully developed cells with a given wavelength L and depth of penetration D' will
slow down the growth of cells at a longer wavelength when

1. The stratified Craik-Leibovich instability parameter for depth D' is
much larger than the characteristic decay scale of disturbances of
that size (Racs is small).
2. The disturbances at longer wavelength have a similar depth of
penetration.

The stratified Craik-Leibovich instability parameter serves as an upper bound for
the rate at which vortices can merge. Again, this means that a good understanding
of the dependence of the Craik-Leibovich instability parameter and characteristic
diffusive decay rate on depth helps to understand the development of larger and
larger scales.
*The details of cell evolution have quite a strong dependence on the ratio between
the Craik-Leibovich instability parameter and the characteristic diffusive decay
scale. When this ratio is large, the flow will be modified to such an extent that only
advection of small-scale plumes by larger-scale cells will be able to cause cell
merging.

4.4 Scale Selection in the Presence of Coriolis Force

4.4.1 Results from the Finite-Difference Code

We now turn to the question of Langmuir cells in the presence of Coriolis
forces. Chapter 3 demonstrated that the presence of Coriolis forces can strongly
modify the instability characteristics of the cells. In particular, the Coriolis force
was shown to result in crosswind shears which limited the growth of long-
wavelength cells. This section demonstrates that the Coriolis force can modify the
equilibrium properties as well.

Figure 4.13 shows contours of perturbation streamfunction (the horizontally
averaged crosstream flow has been removed) for T=300, 600, 1500, and 2700 for
La=F--0.01. At very long times (up to T=2700, which is more than four pendulum
days) the energy containing eddies retain a wavelength of 64/3. There are no
hints, as was the case in the nonrotating cases, of cells getting squeezed together as
time progresses. The merging process has been arrested by the presence of Coriolis
forces.

Although increasing F from 0 to 0.01 suppresses the transfer of energy to
large scales, the exact point at which such transfer stops has a complicated
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dependence on F. This can be seen by increasing the Langmuir number and
Coriolis parameter together, so that the initial current profile does not change.
Figure 4.14a shows the streamfunction at a time T=1500 for La=F-0.05.The
pattern of streamfunction presented here is quite different qualitiatively from that
for La=F--0.01. There is no single dominant wavelength in this case. Examination
of a series of contour plots of streamfunction shows that this is due to the fact that
the pair of cells between x=40 and x=50 is merging. This case takes much longer
to come to equilibrium than La=F=0.01, and the equilibrium state has a longer
wavelength.

If La and F are increased yet further, the picture changes again. Figure
4.14b shows contours of perturbation streamfunction for La=F=0.1 at time
T=1500, corresponding to doubling the Langmuir number and Coriolis parameter
relative to Figure 4.14a. This time the increase in Coriolis parameter and La seems
to have strongly suppressed the cascade of energy to large scales. The dominant
wavelength is now 64/7. Examination of the flow field at various earlier times
shows that the structure at this time is essentially constant. Even if the mean
structure (determined by La/F) is kept constant, there is no simple dependence of
cell spacing on La and F.

If La is increased, but F is kept constant the mean structure in the absence
of cells changes, and the transfer of energy to large scales is suppressed. Figure
4.14c and 4.14d show contours of perturbation streamfunction for F-0.01, with
La=0.05 and 0.1 respectively. As La increases the field changes from having three
pairs of cells in the domain (La=F--0.01, Figure 4.13) to four pairs of cells which
might be showing signs of slow merging (Figure 4.14c) to four pairs of cells which
look very even and show basically no signs of merging (Figure 4.14d). A number
of other runs were done for different values of La and F. The general pattern
shown in Figure 4.14 was found in all of these runs. In general, the larger La, the
sooner the evolution to large scales broke down.

Such simple dependence was not found for F. Increasing F while keeping
La constant was found in some cases to increase the cell spacing, and in others to
decrease the cell spacing at equilibrium. The behavior parallels that for the
instability, where increasing F made the low wavenumbers more unstable by
increasing the effect of Ekman instability, but also reduced the effect of the Craik-
Leibovich wave-current interaction by increasing the angle between the Stokes
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Figure 4.13:Equilibrium states of unstratified, rotating Langmuir circulations. Allplots are contours of perturbation streamfunction for La=F=0.01. Contour interval
is 0.1. (a) T=300 (b) T=600 (c) T=1500 (d) T=2700.
is .1. (a) T=300 (b) T=600 (c) T=1500 (d) T=2700.
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Figure 4.14: Quasiequilibrium states of unstratified, rotating, Langmuir
circulations. All plots are contours of perturbation streamfunction. (a) La=F-0.05,
T=1500 (b) La=F=0.1, T=1500. (c) La=0.05, F--0.01,T=1500 (d) La=0.1, F=0.01,
T=1500.
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Perturbation Streamfunction La=F=.01.Ri=.05,T=750 (clev=.05)
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Perturbation Streamfunction La=F=.01,Ri=. 15,T=750 (clev=.05)
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Alongcell Velocity La=F=.01,Ri=. 15,T=750 (clev=.05)
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Figure 4.15: Equilibrium states of stratified, rotating Langmuir circulations. (a)
Perturbation streamfunction. La=F=O0.01, Ri=0.05, T=750 (b) Perturbation
streamfunction, La=F-0.01, Ri-0.05, T=750. (c) Alongcell velocity, La=F-0.01,
Ri-0.15, T=750. (d) Vertical velocity spectrum, La=F=O0.01,Ri-0.15,T=750, at a
depth z of -2. (e) Alongcell velocity spectrum, La=F-0.01, Ri=0.15, T=750 at a
depth of -2.
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drift and the Eulerian shear and created crosscell shears which suppressed the
instability.

The presence of stratification complicates matters further. Figure 4.15a
shows contours of streamfunction for La=0.01, F--0.01, Ri=0.05. The stratification
in this case is dynamically weak compared with the Craik-Leibovich instability
mechanism, but it produces a change in the observed pattern. The regular pattern
of Figure 4.13 has been replaced by a pattern in which there are some hints of
smaller cells (notice the multiple downwelling zones on the leftmost vortex) riding
atop larger cells. Figure 4.15b shows the perturbation streamfunction for
La=F=--0.01, Ri=0.15 at a time T=750. Figure 4.15c shows the alongcell velocity
for the same case. There are now multiple scales of cells. The presence of
stratification also limits the transfer of energy to larger scales.

In the presence of multiple scales of cells, the question of which scale
dominates a particular field depends on the field chosen. Figure 4.15d shows a
spectrum of vertical velocity and 4.15e a spectrum of alongcell velocity vs.
wavenumber (in cycles/nondimensional length) at the middle of the layer. The
vertical velocity at this depth is dominated by wavenumbers of 0.15-0.3
corresponding to lengths of 3-6 while the alongcell velocity is dominated by
longer wavelengths.
To summarize, in the presence of rotation
*The evolution of cell spacing to low wavenumbers is halted. Steady equilibrium
states are found for which the merging of cells is suppressed.
*The exact spacing at which the evolution stops is a function of La, F, and
stratification. In general, increasing La seems to cause the dominant wavelength to
decrease (as long as we are not in a regime where increasing La causes a high-
wavenumber cutoff). The exact dependence on F and stratification is less clear.

4.4.2 Discussion

The physical processes which lead to the results of the last subsection are at
present unclear. This subsection explores three possibilities which could lead to
interrupting the transfer of energy to large scales. Two of these are shown to have
potential to interrupt the cascade. The results are speculative, however, as a
rigorous theory for explaining the interruption of cell merging by Coriolis forces
has not been developed.
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As with the nonrotating case there are a number of possibilities for how the
interruption of the cascade to long wavenumbers takes place. Three of these are
listed below:

1. Stabilization of the low wavenumber modes. If the low-wavenumber mode has a
very small linear growth rate, it may not be able to build up much energy.
2. Breaking of a resonance condition in frequency. In the presence of Coriolis
force, the linearly unstable modes have complex eigenvalues, (they are traveling
waves). In order for resonant transfer of energy to occur, a triad of such waves
must have

(4-24a) kl+k2=k3
(4-24b) 1-1-2=U 3
where k1 ,2,3 are the wavenumbers of the linear modes and GT1,2,3 are the

frequencies. Breaking this resonance could result in sharply reducing the
efficiency of velocity and vorticity advection in producing changes in the scale of
the cells.

3. Breaking a resonance condition in space. Consider a simple model in which we
have three modes, each with an associated streamfunction and velocity
perturbation field. Suppose further that these fields have the horizontal dependence
(4-25a) V1,2,3~sin(kl,2,3x)
(4-25b) v 1,2 ,3~-cos(k1,2,3x+ 1,2,3)

Suppose kl+k2=k3 and consider what terms are generated in the Jacobians
of the various equations by interactions between modes 1 and 2.
* Vorticity: J(V,Q) generates products of the form sin(kl,x)cos(k2x) and

cos(kl,x)sin(k 2x) . Each of these terms is capable of giving rise to a term which
goes as sin(k 3x).
* Alongcell velocity: J(V,v) generates products of the form sin(klx)sin(k2x+62)
and cos(klx+8 1)cos(k2x) . Each of these terms is capable of giving rise to a term
which goes as cos(k3xL8 1,2). If 81,82 83, then the nonlinear advection of

alongcell velocity forces a linear mode which is out ofphase with that forced by
the advection of vorticity. Blocking resonant transfer in space would therefore
limit the effectiveness of velocity advection in changing the scale of the dominant
mode.

It is easy to show that the first of these three mechanisms is not the answer.
Table 4.2 shows the real and imaginary parts of the eigenvalues corresponding to

the linearly most unstable mode for La=F=0.05, 0.075, and 0.1, for L=16, 8, and

5.67. The last two of these (La,F) pairs give two pairs of cells in the model box at
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Most Unstable Mode. F=. 1,La=. 1, L=8
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Most Unstable Mode, F=. 1,La=. 1, L= 16

-41
0 2 4 6 8 10 12 14

(b)

Figure 4.16: Breaking the resonance between modes of different scales in space.
Streamfunction (solid lines) and alongcell velocity (dashed lines) associated with
the most unstable mode for F=.1, La=. 1,surface shear=l1, monochromatic waves
aligned with the wind and cells oriented 15 degrees to the right of the wind. (a)
L=8. (b) L=16.
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equilibrium, while the first one gives only a single pair of cells. The lowest

horizontal wavenumber has an unstable eigenvalue for all three cases. The value of

this growth rate is large enough so that the failure of the long-wavelength mode to

dominate the flow field at nondimensional times of order 1000 is not explicable

through the growth rate being too small.

La,F y,L=16 a,L=16 ,L=-8 a,L=8 y,L=5.67 a,L=5.67

.05 .055 -.141 .102 -. 256 .115 -. 385

.075 .037 -. 153 .059 -.261 .045 -. 385

.1 .011 -.164 .021 -.267 .021 -.387

Table 4.2: Real and imaginary parts of the eigenvalues of the most unstable for
three cases where Ek=l.

By constrast, decoupling of the frequency resonance is a possibility for

explaining why the gravest unstable mode does not dominate the solution. Table

4.2 shows that the complex part of the eigenvalues for the three cases change

slightly as La and F increase. The complex part of the eigenvalue given L=16

changes by about 15%, while that for L=8 changes about 4%. Thus interactions

which were resonant for La=F=0.05 may no longer be resonant for La=F=0.075.

The third possibility, decoupling of the resonance term in space, is

illustrated in Figure 4.14. The streamfunction field (solid lines) and alongcell

velocity field (dashed lines) are shown for F=La=0.1 for L=8 and 16. For L=8,

(top) the downstream velocity jets are not located exactly along the center of the

downwelling, but are offset to one side. For L=16 (bottom) the downwelling and

the jet are basically aligned. This offset is the result of the Coriolis force. In the

absence of Stokes' drift and mean shear, the Coriolis force creates velocity jets

which are in phase spatially with the streamfunction, instead of out of phase, as is

the case with Craik-Leibovich instability. In Section 4.3 it was argued that

advection of the alongcell velocity is the most likely mechanism for causing

transfer of energy between cells with long wavelengths. Breaking the resonance in

space interferes with this mechanism, making it a likely candidate for explaining

the failure of cells to transfer energy to large wavelengths in the presence of

Coriolis forces.

126



4.5 Conclusions

The importance of Langmuir cells as a transport mechanism within the

mixed layer depends both on their depth of penetration and the ratio of the strength

of the forcing driving the cells to the dissipation damping them. In Chapters 2 and

3 these quantities were shown to be closely linked to the horizontal scale of the

cells. This chapter has investigated the physics which set this horizontal scale. The

results are far from complete, but they suggest a number of further avenues of

research.

In the absence of Coriolis forces, cell spacing increases over time, in

accordance with theories of two-dimensional turbulence. This evolution to large

scales is very slow, however, and for times corresponding to dimensional times of

order days, there are intermediate quasi-equilibrium states. The increase in spatial

scale appears to be due to a process involving advection of the small-scale velocity

and density perturbations by large-scale cells, creating large scale perturbations.

These in turn reinforce the large-scale cells through the Craik-Leibovich
mechanism.

In the presence of Coriolis forces, the energy transfer stops. Stratification

further limits the cell spacing. It is suggested that the limitation of the horizontal

length scale is due to the Coriolis force interfering with the velocity advection

mechanism. The cascade of energy to large scales is shown to be affected by the

Langmuir number and scaled Coriolis parameter-but not necessarily in a simple

way.
There are several implications to this work. The first is that, in general, the

cell spacing is not dominated by the fastest-growing mode over all wavelengths,

but by a mode with a much longer wavelength which may well fill the mixed

layer. Since the fastest-growing mode over all wavelength is often one with a very

short wavelength and small depth of penetration, this is good news for

observationalists. It means one has some hope of measuring the important

wavelengths at some equilibrium or quasiequilibrium state.

A second important implication to this work is that the depth of penetration

of Langmuir cells can be limited over time periods of days, even when cells with

longer wavelengths (and hence deeper penetration) than those observed are

unstable. The limitation of cell depth is closely linked to the limitation of the

horizontal wavelength. The cells are generally wider than they are deep. If the

scaled Coriolis parameter is sufficiently large (so that the Coriolis parameter is
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large or the waves are small). Langmuir cells may be limited to depths of order the

Ekman depth. In Chapters 6, 7, and 8 it will be shown that during two field

experiments the cell depth of penetration is not limited for unstratified mixed

layers, but that it can be limited when stratification is included.

A third important implication is that the stratified Craik-Leibovich

instability parameter and diffusive decay rate are important quantities to estimate

in the field, since they give insight into the relative importance of various

nonlinear processes as well as insight into the linear instability problem. In

Chapters 6 and 7, the estimation of these parameters is carried out for two field

experiments.
A final important implication of this work is that it shows that a finite-

difference code can give some very important information about the evolution of

Langmuir cells which will not be gained from other approaches, such as linear

instability theory, or simply choosing an equilibrium state with a given

wavenumber.
One major limitation of the runs described here is their general failure to

produce multiple scales of cells. A number of observers have reported seeing

small-scale cells embedded within bigger cells and sonar observations seem to

support this picture (Farmer and Zedel, 1991). Although a few cases with

stratification and Coriolis force did produce multiple scales of cells, these were

exceptional. The reason for this failure to reproduce observation is probably due to

the lack of mechanisms within the model to erase the large-scale cells and to

reseed the mixed layer with smaller-scale cells. This question is addressed in more

detail in Chapter 8.
The question of what actually causes the transfer of energy to large scales

has not been adequately investigated. It is suggested that the most likely

mechanism involves the advection of small-scale plumes by large-scale cells and

the subsequent reinforcement of these cells through the Craik-Leibovich forcing

mechanism. In some simple truncations this mechanism is more important than

wave-mean flow interactions in causing changes in cell scaling. While these

results are highly suggestive, they are not rigorous proofs that velocity advection is

in fact responsible for changing the cell scaling. Resolution of the exact process

involved would help to answer the question of whether or not it is the interruption

of this process by the presence of Coriolis forces and stratification that result in the

limitation of the equilibrium cell spacing.
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Chapter 5: The Velocity and Density Structure of Fluid Layers
with Finite Amplitude Langmuir Circulations

5.1 Introduction
The first chapter of this thesis set forth the hypothesis that vortices driven

by the Craik-Leibovich wave-current interaction mechanism with vertical scales

comparable to the oceanic mixed layer are the principal transport mechanism for

velocity and density within that layer. This conceptual picture contrasts with one

in which near-surface mixing is accomplished by homogeneous small-scale

turbulence. The major problem with testing this hypothesis is that the

concentration of the forcing near the upper boundary makes it difficult to define

a characteristic scale for the forcing analogous to the mean stratification for

Rayleigh-Benard convection. As a result, it is difficult to define an analogue to

the Rayleigh number which would determine whether or not a layer mixed only

by small-scale turbulence should become unstable to Langmuir circulations and

whether or not these circulations should play a role in density and buoyancy

transport.
Chapters 2 and 3 showed that for infinitesimally strong disturbances, the

analogue to the stratification for Rayleigh-Benard convection was the stratified
Craik-Leibovich instability parameter YCLS. This parameter is a function of the

vertical structure of the cells (see page 39 for a derivation):
S0 0 04 av

(5-1) LS(D) F(Zz dz z)- z- (z z

where vs and V are the Stokes drift and Eulerian velocity parallel to the alongcell
axis, z is the vertical axis and p is the density. The functions F(z) and G(z) are

weighting functions which depend on the boundary conditions and are

proportional to the nonlinear flux of momentum and buoyancy carried by the
most unstable mode at a given horizontal wavenumber. If Ydiff is the characteristic

diffusive decay scale for the particular mode then the stratified Craik-Leibovich

Rayleigh number (RaCLS) is defined as

(5-2) RaCLS = CLS/dur

In Chapters 2 and 3 it was shown that the necessary condition for an idealized

surface layer to be unstable to Langmuir cells is that

(5-3) YCLS > Ydiff, G
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where a is the frequency with which crosscell shear tilts the cells (for a formal

definition see pages 75-76).
One complication of this result is that YCLS, Ydiff, and a all depend on the

geometry of the cells, so that understanding the spatial scale of the dominant

mode is important. In Chapter 4 it was shown that in the absence of Coriolis

forces, the dominant mode evolves to larger and larger crosscell spacing, resulting

in deeper and deeper penetration over time. This evolution to large scales can be

very slow, however, so that stratification may effectively limit the depth of

penetration in nature (even though it does not do so mathematically). The

presence of Coriolis forces halts the cascade of energy to horizontal scales, and as

a result limits the depth of penetration of the cells at equilibrium.

In this chapter it is assumed that the horizontal and vertical scale of the

cells is known. The effect of fully developed cells on the velocity and density

structure of idealized surface layers is then considered. When RaCLS> 1:
*The cells replace small-scale diffusion as the primary transport mechanism for

momentum and density.
*The vertical shear of the horizontally varying horizontal velocity scales as YCLS

rather than as the mean shear.

The approach taken is as follows. Section 5.2 reviews the equations of

motion and suggests how to derive an approximate theory for their solution in

the absence of Coriolis forces (for which closed-form solutions are more easily

found). Section 5.3 develops this approximate theory and compares the predicted

momentum flux, density flux and vertical shear of horizontal velocity to solutions

from the finite difference code introduced in Chapter 4 and documented in

Appendix C. Section 5.4 considers the velocity and density structure in the

presence of Coriolis forces. Section 5.5 considers the implications of these results

for dynamical modelling of the mixed layer.

5.2 Equations of Motion and Methods of Solution

The physical scenarios considered in this chapter are identical to those

considered in Chapter 4. A schematic showing these scenarios is given in Figure

4.1 (page 94). The equations of motion are repeated from Chapter 4 below.

a Un au) n a avsv Dp
(5-4a) -+(u+us)--+w- z- = F-(V+vs)+ )z )x+Rix + L aV 20
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av av av 8p(5-4b) a +(U+Us)+wv z - y -F(u+us) +LaV2v

ap ap ap
(5-4c) +t(u+us)x+w-F- = LaV2p

(5-4d) J=V24

(5-4e) x-- w z-u

ve f N2

(5-4f) La- F- -Ri- 2
a2y ka2 kaTa4k2

(5-4g) k (x,y,z)=(x, y,z)

(5-4h) ((kwa)2j ,us,v,vs,w)=(u, Us, Vs,w)

1
(5-4i) 2~  t'

ka 2a

In these equations kw, a, and a are the wavenumber, amplitude and frequency of
the driving waves, Ve the eddy viscosity, N the buoyancy frequency, f the
Coriolis parameter, and us and vs the Stokes Drift. La represents the Langmuir

number, which is a scaled eddy viscosity or inverse Reynolds number. Ri is the

square of the scaled buoyancy frequency and F the scaled Coriolis parameter.
Equations (5-4a-e) are for dimensionless variables, with equations (5-4g-i)

showing how these variables are converted to dimensional (italicized) form. The

boundary conditions on the velocity and density are

av 't(5-5a) Laa- Z= =-cosa

(5-5b) Lag21 - -sin az=0 p

avi I
(5-5c) La- I z== -0

(5-5d) La z-P-=1

131



(5-5e) p z=-DD

where a is the angle of orientation of the cells relative to the wind and D is the

depth of the fluid layer.
The shortcomings of these equations as a realistic idealization of the

oceanic surface layer have been explored in great detail in the last four chapters.
A detailed discussion of the assumptions made in these equations may be found
in Chapter 1 and in Appendix A. As in Chapter 4, two cases are considered, one
for which F=a=O and ap/ay=t/D, the other for which p/l)y=O and a,FAO.

The focus in this chapter is on determining the velocity and density
structure given a field of cells at equilibrium. In order for the mixed layer to be at
equilibrium, a number of balances must hold. These are derived as follows. Let the

velocity, vorticity density fields be given by a horizontally averaged part and a
horizontally varying part:

(5-6a) (,v,p) = (,VPXz,t)+(',v',p'Xx,z,t)

(5-6b) u(x,z,t) = U(z,t)+u'(x,z,t) = wz((z,t)+V(x,z,t))

(5-6c) w(x,z,t) = w'(x,z,t) = -D((z,t)+'(x,z,t))

(5-6d) !(x,z,t) = z((z,t)+V'(x,z,t))+u-c(x,z,t)

If the overbar symbol is defined to denote horizontal averaging then

(5-7) U(z,t)= u(x,z,t) V(z,t) = v(x,z,t) P(z,t) = p(x,z,t)
At equilibrium, the horizontally averaged vorticity, velocity and density fields are
given by the following balances:

2 - a 3
(5-8a) az2'w' - F (V+vs) = La U

a, = La-z3

(5-8b) v 'w'+ F(U+us) = -ay + La--V

(5-8c) ;p'w'= La P
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Equation (5-5c) may be integrated from the base of the layer (at which point w' is

zero) to give an equation for the density flux. If F=O both equations (5-8a,b) can

also be integrated to yield equations for the momentum flux. In this case:

au
(5-9a) -u'w'+La - = 0

(5-9b) -v 'w+Laz = La

-P apo
(5-9c) -p'w+La-z = La

where Vo and Po are the velocity and density profiles, respectively, in the absence

of Langmuir cells. In the absence of the Coriolis force the steady-state momentum

and density flux are independent of whether or not cells are present. The cells

replace eddy diffusion due to small-scale turbulence as the major mechanism

carrying the fluxes of momentum and density.

As in Chapter 2, balance equations for the eddy kinetic energy in the

crosscell direction, eddy kinetic energy in the alongcell direction, and density

variance may also be derived. These are:
0 0 0 0

(5-10a) ? wa'dz dz -d' Sdz -Ri dz

0 0
au'2 au'2 w'2 Dw'2

-F i dz -La + +- + dz

D

0 0 0 0

a C- z'2
(5-11lb) Vv + F '7dz z -La 5T + -j dz

00 0 0

(5-11lc) St dz = p'w'j z -La + z dz= -_- ax z

At equilibrium, the energy balance is
a

(5-12a) at E = Pc+ Pstokes - Erot - Burns - erx = 0
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(5-12b) j9t Eac = Pdc + Erot - Eac = 0

where Ecc,ac are the energies associated with flow in the crosscell and alongcell

directions respectively. Pstokes is the Stokes production (the work done by the

waves on the cell vortices). Pcc,ac are the shear production terms caused by the

nonlinear shear stress working against the crosscell and alongcell shears,
respectively. Erot is the transfer of energy from crosscell to alongcell via the
Coriolis force. Btrans is the buoyancy transport. ecc,ac are the dissipation terms

associated with the crosscell velocities and alongcell velocity respectively.

In Chapter 2, the energy balance equations were used to extract the

characteristic frequencies associated with the important physical processes. In the

absence of rotation, one can combine the equations for momentum and density

balance with those for energy balance and obtain equations depending solely on
the nonlinear amplitude of the cells. To do this one must solve for:
1. The shape of the horizontally varying streamfunction, velocity and density
perturbation associated with the equilibrium cells.

2. The amplitude of these streamfunction, velocity, and density perturbations.
Three methods for doing this are given below:

Method I: Assume that the shapes of the alongcell velocity, vorticity, and density
perturbations are given by linear instability theory, but that the relationship
between their amplitudes is not.
(5-15a) v'=vlV(z)eikx
(5-15b) p'=p1p(z)eikx

(5-15c) '=Vyl z)eik

This methodology is similar to the finite-amplitude convection results of Malkus
and Veronis (1958).* Their paper assumed that the shape and relationship

between the density and streamfunction perturbation of the finite amplitude
modes was given by the neutrally stable solution at the critical Rayleigh number.
For cells oriented in alongwind direction in the absence of Coriolis force the
assumption that the relationship between streamfunction, density, and alongcell
velocity perturbations is given by the neutrally stable solution is equivalent to

demanding that

avsav .p
(5-16) z x Riax + LaV20 = 0

* It should be noted that Malkus and Veronis derived this approximation rigourously using
a weakly nonlinear approach. This is not done in the present case.
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This is functionally equivalent to requiring that the energy balance in the

crosscell direction given in equation (5-10a,12a) hold for the equilibrium cells.

This approach differs from Malkus and Veronis in that the structure

functions V(z), p(z), and yVz) and the wavenumber k of the unstable cells are

allowed to differ from those asssociated with the neutrally stable cells at the

critical Rayleigh number Rac. This is important since in the absence of rotation k

is infinite at Rac. One further difference between this work and that of Malkus

and Veronis is that the self-advective effects of the finite-amplitude cells are not

solved for. Consideration of such effects is necessary in order to obtain a full

description of the flow and extend the results to cases where the forcing is very

strong, but is not necessary to answer the basic question addressed here.

Method H: Assume that the structure functions V(z), p(z), and p(z) are given by

the neutrally stable solution for cells with wavenumber k identical to that

dominating the final solution. This solution is found by increasing La and F

together, until cells with wavenumber k are neutrally stable and then taking the

structure functions predicted by the instability code for this neutrally stable

solution. As a weakly nonlinear theory, this method is again similar to that of

Malkus and Veronis, and is slightly more rigorous than Method I.

The effect of using this method as opposed to Method I can be seen by

considering the dependence of depth of maximum vertical velocity Dmax on

Langmuir number. Chapter 2 showed that if La increased while the horizontal

wavenumber remained constant, Dmax also increased. The effect was most

pronounced at large wavelengths, and was not as pronounced when stratification

was present. This method is more cumbersome than simply using results from the

instability code, and as a result it will be used in only a few cases.

Method III: Use instability theory or finite-difference code runs to guide the

choice of some simple, analytic truncation. The basic idea is to use some prior

information about cell shape to obtain a closed-form solution from which

information about the relevant physics can be extracted.

Both of the truncations used below were introduced in Chapter 2 to look

at the physics of Craik-Leibovich instability. The first truncation (TI) assumed

cells with a limited penetration depth D' and identical vertical structures for the

density and alongcell velocity perturbations. It is used in cases where

stratification limits the depth of penetration of the cells. This truncation predicts
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the growth rate and depth at which the maximum vertical velocity occurs for
infinitesimally strong cells.
(5-17a) Wy'= lsin(nz/D')eik x  z> -D'
(5-17b) (v',p')=(vl,p )cos(nz/2D')eikx z> -D'
(5-17c) (',v',p')-0O z< -D'

The second truncation (T2)'was for cells which had a long enough
wavelength so that the velocity perturbation was relatively constant with depth
and the effect of stratification was negligible (La and or cell spacing L large).
(5-18a) y'=j1sin(nz/D)eikx

(5-18b) v'=vleikx

As in Chapter 2, these truncations are special cases of Method I which give useful
insights into the physics determining the evolution of Langmuir cells. It is worth
noting that the structure functions in T2 are identical to those for the neutrally
stable solution at the critical Rayleigh number (as used by Malkus and Veronis).

5.3 Velocity and Density Transport Accomplished by Finite-Amplitude Cells
in Non-rotating Mixed Layers
5.3.1 Theoretical Results from Methods H and HI

When the cells are oriented in the alongwind direction and there is no
Coriolis force (F=O), the streamfunction and velocity/density perturbations (V ,v'
p') are out of phase. Suppose then that:

(5-19a) v'=viV(z)cos(kx)
(5-19b) p'=pl p(z)cos(kx)
(5-19c) q=yfj z)sin(kx)
with the normalization of the structure functions V, y,p given (as in Chapter 2) by

2 0
(5-20) _ j(Vvp)I2dz =1

Then the crosscell energy balance then yields the following equation:
0 0

(5-21) lv12 (z)V(z S dz + Rivipi (z)p(z)dz =

+ 2k2(k4y2 dz2 Cp 2

Following Chapter 2, define
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0

S2 D

Vz= DVzY)V(z)9 dz

0

4 2 2K i5_(D2

Dividing out common terms yields

(5-23)

+ 2k2(( +k4 V2 dz

kVszvl + Ri Pk pi = La K r1

The alongcell variance balance yields

k z)V(z
W1v12 a )Vz zdz

2 0
La vi D V 2 kV d

-2 1(z +k2 2 dz

av
Solving for a using (5-8) yields

k
(5-25) ivi2 "(z)Vz

Letting
0

^ 2 z VO
(5-26a) Vz=D_ i z)V(z) dz

(5-26b) av - D (z)V(z))2dz

0

(5-26c) kv = 5+k2, 2 dz

allows for the equlibrium amplitude of the alongcell velocity perturbation vl to be

solved for in terms of the streamfunction amplitude V1.

(5-27) v= 2 2
La kv +k2av V1/2La

Similarly, defining
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(5-22b)

(5-22c)

(5-24)

k- 2La vllV(z)V(z)
20
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0
(5-28a) - D)p(z))2dz

0

(5-28b) kp = f +k2p2 dz

the density perturbation amplitude P1 is given by:
kpPozVI

(5-29) p1=  2 2
La kP +k2ap V1/2La

Substituting into (5-23) gives the following quadratic equation in I1.

k 4 av% 4 ( 2  2 P2 k4
(5-30) 4La2  + a+avkp) - 2La4k U Z z + avRiPoz2) 2+

La2kpk2 - (k z' z+kL RiPoz2 = 0

which gives a solution for the streamfunction amplitude. The resulting formula is

quite complicated and difficult to interpret. However, it is possible to find

simplified solutions by making certain assumptions. Two such solutions are

explored below.
The first simple solution of equation (5-30) can be found as k goes to 0. In

Chapter 4 it was shown that for nonrotating cells energy cascades towards long

wavelengths over time, and that the result is steadily deeper penetration into the

mixed layer over time. The vertical structure of the velocity and streamfunction

perturbation reflects that of the most unstable mode with wavelength equal to the
dominant cell spacing. As k -+0, the vertical structure of the alongcell velocity

perturbation asymptotes to a constant.

(5-31a) V(z)-* 1/-2
2

(5-31b) k2 - k2

while the density perturbation continues to have some vertical structure since the

density is fixed on the bottom boundary. The streamfunction perturbation

likewise retains vertical structure. Then as k goes to 0,
(5-32) kv/KV-- 0 kv/kp-+0

Then as k goes to zero, the quadratic equation (5-30) tends to:

(5-3k4) av 4 k2  +La2k - k2k =
(5-33) 4La2 Vi +2vk +Lakpk-z = 0
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Solving this and applying the relationships in (5-32) yields

(5-34) v12 z' z - La2K kk2)

substituting in (5-27) yields an equation for the velocity perturbation amplitude.
LaK

(5-35) vI= s ( z - La2Kk2/k2)

This solution is also the correct one for Ri--. For equilibrium solutions which

have a long enough wavelength so that they "feel" the bottom strongly, the
effect of stratification vanishes. This parallels the result for instability.

The horizontally averaged alongcell shear is given by

-V 1 ( zzLa2K k2)
(5-36) -= - av z - La2Kk 2

As in previous chapters let yCL=4zA ydiff = La Kkv/k. Then if

(5-37) RaCL-CL/2diff

the horizontally averaged shear is
;V aV0 1 ~iCLOV0 (1-1/RacL)

(5-38) =  - - =-

Substituting for av, equation (5-38) becomes
0

Sz) V(z)

(5-39) r = az -a -Vo 0 Vz)V(z)(1 - 1/RaCL)

L/(z)2V(z)2dz

When the wave-current forcing is strong, Langmuir cells erase that part of the

initial shear which projects on the nonlinear momentum flux. The cells replace

small-scale diffusion as the principal transport mechanism for momentum over
their depth of penetration.

Truncation T2 is a special case of these results. Suppose the Stokes drift

and Eulerian velocity are given by the Fourier expansion

(5-40a) vs(z)=Vso+vslCcos(tz/D)+...

(5-40b) Vo(z)=Voo+Volcos(Ttz/D)+...
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When the functional forms from equations (5-19) are substituted into the

formalism developed above,
0

(5-41a) §z2 = D 2 sin(nzD) dz = v s 1
5 J2aZ

0

(5-41b) 4z2 = 2 in(nz/D) dz - V01

(5-41c) diff2 = La(k2+(r/D)2)

(5-41d) RaCL2 - .z2 - - L2
*diff2 -dif2

(5-41e) V = Vo(z)-Volcos(7rz/D)(1 - 1/RaCL2)

When the cells are strongly forced (RacL2>>1) they erase the first nonconstant

component of the Fourier expansion of the velocity.
The second set of simple solutions is for V(z)=p(z) (velocity and density

structure functions identical). Within the framework of equations (5-4), this is

only approximately true unless the Stokes drift profile is linear with depth and the

boundary conditions for density and alongcell velocity are the same. Nonetheless,

as in Chapters 2 and 3 this idealization provides useful insight into the effect of

stratification on equilibrium Langmuir cells. If the alongcell velocity and density
perturbations have the same structure, then kv=kp, (Xv= p. Letting -N 2=Ri P2 Poz
the solution becomes

(5-42a)1 = 12 z z +Ri P2 p0z- La2K' !k2) = 1 L2 2 2

(5-42b) v1 = Lal z 2

(5-42c) P1= Lak(cLN2)P

The momentum and density fluxes associated with this solution are

(5-43a) -v'w' La 1 - LN 2)

- vr
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La PPoz (PjL(N2))
(5-43b) -pW La 1 -  .(I J LN2)

Defining ,CLS= CL2-N2 the condition for the cells to transport a large fraction

of the momentum and buoyancy flux within the mixed layer is then just that

(5-44) RaCLS = CLS/iff

The condition that RaCLS be large is not the same as demanding that the

growth rate of the unstable modes be large compared with the diffusive decay

rate. In Chapter 2, it was shown that when (5-44) is satisfied
k

(5-45)

When k is small compared with it/D' the growth rate is quite small compared with

YCLS, so that it need not be much larger than Ydiff.
We now turn to the question of the vertical shear of the horizontally

varying horizontal current associated with the cells. This quantity will be referred

to as the perturbation shear. When the forcing is strong, (RaCLS >0), the simple

models predict that the perturbation shear in the crosscell direction occ will be

given by

(5-46) Docc-1 2 (z)

One can get a better sense of what this means by considering the form predicted

by truncation TI (used for La and L small , or stratification strong).

(5-47) oCC 2 L-N2-di ) 2(Z)

YCLS C2/D'2 N2
= k E2/D'2  (1 - 1/RaCLS) sin(cz/D')

For long-wavelength cells k is much smaller than d/D', while for small

wavelengths, kD' is of order 1 (Chapters 2 through 4). This means that the

horizontal shear scales as 7CLS, where YCLS is appropriately defined for the

penetration depth of the cells producing the shear. Chapter 4 showed that for

many cases, the dominant cell structure consisted of cells whose crosscell spacing

was quite a bit larger than their depth of penetration. For such cells, the shear

predicted by equation (5-47) will not change substantially as the wavenumber

decreases due to cell merging.

A similar scaling of the shear can be predicted on energetic grounds by

assuming a local energy balance. Taking the dimensional energy balance
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equation for crosscell flow, and assuming that occ is a characteristic scale for the

shear associated with perturbations (rather than with the mean flow) then

(5-48) -v w dz + -VeCC

where Ve is the eddy viscosity. But in the presence of strongly forced cells, the

cells carry momentum and density fluxes of the same order as the viscous fluxes
av ap

in the absence of cells (Vej, for momentum and Ve-- for density) so that

(5-49) Ve 2C Ve dz pd e LSd)VeCLS

When the eddy viscosity cancels out, OCC scales as YCLS. This is different than the

scaling which would be expected if shear instability was balancing dissipation. In

such a case the equation (5-48) would be replaced by
2

(5-50) -v w z + P -veOcc

leading to a characteristic scale for horizontally varying shear which would go as

(5-51) (CC- (j -)2

To summarize, approximate models of finite-amplitude Langmuir circulation

in the absence of Coriolis forces predict that when the wave-current interaction

forcing, corrected for buoyancy effects, is much stronger than the characteristic
2 2

diffusive decay scale (yCLS/fiff = RaCLS > 1):
*Langmuir cells are the principal transport mechanism within the mixed layer.
*The perturbation crosscell shear is proportional to YCLS.
These predictions are independent of whether the growth rate of the most

unstable mode is larger than the characteristic diffusive decay scale and are

relatively insensitive to the actual value of the Langmuir number.

5.3.2 Testing the Model Predictions for Momentum and Density Transport

The model predictions derived above are approximate solutions, since they

are not complete descriptions of the flow field. This subsection tests the

predictions of the finite-amplitude theory against solutions from a finite-difference
code. In a number of cases the cells penetrate over the full depth of the layer.
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Three such cases are listed below, two which represent relatively good agreement

between the approximate theory and actual model runs and one for which the

agreement shows some systematic differences from the approximate theory.

Table 5.1 lists the three cases, giving the layer depth, the Langmuir number,

the growth rate of the linearly most unstable mode with wavelength equal to the

dominant cell spacing and YCL, Ydiff and RaCL. The estimates of the important

scales given by truncation T2 (YCL2, ydiff2 and RacL2) are also shown for

comparison.

Case D La 7 YCL Ydiff RaCL YCL2 Ydic2 RaCL2

1 2 0.05 0.118 0.492 0.154 6.16 0.396 0.154 6.61

2 2 0.1 0.045 0.455 0.308 2.18 0.396 0.308 1.65

3 4 0.01 0.145 0.432 0.033 173.1 0.232 0.008 841

Table 5.1: Scales for forcing and dissipation in finite-amplitude Langmuir cells.
Three cases are shown. D is the layer depth, La the Langmuir number, y the
growth rate of the most unstable mode with wavelength equal to that of the
dominant cell spacing, eCL the Craik-Leibovich instability parameter, Ydiff the
diffusive decay scale, RaCL the Craik-Leibovich-Rayleigh number predicted
using the cell structure given by the most unstable mode. YCL2, Ydiff2 and RaCL2
are the equivalent quantities predicted by Truncation T2.

Case 1: Layer depth D=2, Langmuir number La-0.05. For this case YCL>Ydiff>Y for

all three approximate representations of the flow field. Since RaCL is quite a bit

larger than 1, the cells are predicted to transport a lot of momentum. Figure 5.1 a

shows the horizontally averaged downstream velocity profile averaged over

nondimensionalized times T=200-400 (about 12-24 hours after the start of the

run). The solid lines show the results of the finite-difference code runs. The chain-

dotted line in Figure 5.1a shows the velocity profile in the absence of cells. The

dashed line shows the prediction of the mean velocity profile assuming the

perturbations to have a shape given by the instability code, but amplitudes

allowed to vary freely. The open circles show the prediction using truncation T1

(cells fill the layer and feel the bottom boundary), while the crosses show the

predictions using truncation T2 (cells need not fill the layer and do not feel the

bottom boundary).

The horizontally-averaged velocity profile for an idealized mixed layer

with finite-amplitude Langmuir cells is much less sheared than the profile without
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Figure 5.1: Alongwind velocity in an unstratified layer with finite-amplitude
Langmuir cells. All cases have nondimensional surface Eulerian shear of 1 and
monochromatic waves. (a) Horizontally averaged alongwind velocity, La=0.05,
D=2. Solid: Finite-difference code. Dashed: Solution from equation (5-30)
assuming cell structure given by instability code. o: Solution assuming cell
structure described by Truncation T1 +: Solution assuming cell structure
described by Truncation T2. Chain-dotted line is velocity profile in absence of
cells. (b) Vertical flux of alongwind momentum La-0.05, D=2. Labels same as in
(a), except that chain-dotted line is the momentum flux carried by viscous stresses
in the absence of cells. (c) Same as (a) but for La-0.1, D=2. (d) Same as (b) but for
La=0.1, D=2. (e) Same as (a) but for La=0.01, D=4. (f) Same as (b) but for
La--0.01, D=4.
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Langmuir cells. All three approximate representations of the velocity and

streamfunction perturbations capture this homogenization of the interior to first

order, although there are some qualitative differences between the various

predicted profiles. The profile predicted by the finite-difference code and

truncation T2 are essentially identical down to z=-1.5, at which point T2 shows

slightly more upwind velocity than the finite-difference code.

The chain-dotted line in Figure 5.1b shows the total stress at equilibrium,
avinormalized by the surface stress Laz 0. The approximate theories do a good

job at predicting both the magnitude and the structure of the stress, with the

theory based on the instability code and truncation T1 capturing the location of

the maximum slightly better than truncation T2, but slightly overestimating the

magnitude of the momentum transport.

Case 2: D=2, La--O.1. The dominant spacing is L=8 and the cells penetrate from

top to bottom. Once again yCL>ydiff>y. Now however, yCL is of the same order as

Ydiff so that the stress carried by the cells should be a great deal smaller than in

Case 1. This is the case. Figures 5.1c and 5.1d show the horizontally averaged

velocity and alongwind momentum flux for this case. The velocity range is

slightly reduced (of order 20%) in the presence of cells, but the general character

of the flow does not change.

Two of the three approximate theories (that based on the instability code

and Truncation T2) do well at predicting the equilibrium velocity profile,

indicating that the finite-amplitude cells are well-approximated by these simplified

representations. Because the cells do in fact penetrate from top to bottom with

little vertical structure in the velocity perturbation, Truncation T1 turns out not to

be a very good representation of the flow field. As a result it underpredicts the

effective Rayleigh number and thus underpredicts the stress carried by the cells.

Case 3: D=4, La=0.01. The dominant spacing is 16 and the cells penetrate from

top to bottom. Figures 5.1e and 5.1f parallel 5.1a and b for this scenario. Since

YCL>Y>diff the theory predicts that the cells carry almost all the stress in the layer.

Figure 5.1f shows that the cells do carry most of the stress. As a result, there is

very little shear in the layer at equilibrium except for a very thin layer near the

surface.

This case provides another example of how approximate theories fail when

the shape of the equilibrium mode is incorrectly chosen. In this case, there are two
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unstable modes and the final equilibrium state is a mixture of the two. The two
approximate theories which suppose the cells to be given by the most unstable
mode alone fail to capture the shape of the cells and the depth to which they
penetrate, as noted in Chapter 4. Note that the simple truncation T1 does an
extremely good job at approximating the shape of the most unstable mode
predicted by the instability code, as was generally found to be the case in
Chapter 2. Truncation T2, however, comes closest to approximating the actual
flow field. The difference between the observed and predicted shear profiles has a
structure that looks like cos(2inz/D), a mode which is not included in the
truncations which would represent self-advection by the cells.

The condition that the Craik-Leibovich instability parameter be much
larger than the diffusive decay scale gives at least a qualitative prediction of
when Langmuir cells are capable of transporting a great deal of momentum within
the mixed layer. As RaCL decreases, the cells transport less and less momentum.
Quantitatively, the comparison between theory and data is sometimes superb
(Figure 5.1a) and sometimes less good (Figure 5.1e). Analysis of why this might
be the case shows that the comparisons are in general best when there is only one
unstable mode at a given wavenumber. This will in general be true at moderate
values of Rayleigh number (of order 1-100).

Case La Ri 7 YCLS Ydifr RaCLS YCLS1 Ydiffl RaCLS1
4 0.05 0.2 0.022 0.460 0.090 26.0 0.377 0.065 33.3

5 0.1 0.2 0.002 0.356 0.237 2.25 0.257 0.182 2.01

6 0.025 0.05 0.106 0.391 0.072 29.8 0.330 0.054 37.6

Table 5.2: Scales for forcing and dissipation in finite-amplitude Langmuir cells in
stratified surface layers. Three cases are shown. La is the Langmuir number, Ri the
Richardson number, y the growth rate of the most unstable mode with
wavelength equal to that of the dominant cell spacing (16 in all three cases), yCL
the Craik-Leibovich instability parameter, Ydiff the diffusive decay scale, RaCL the
Craik-Leibovich-Rayleigh number. The estimates of these last three parameters
given by Truncation T1 are shown for comparison.

The presence of stratification limits the depth of penetration of the cells for
at least some finite time. As a result, Truncation TI is a more appropriate

truncation to use. This is illustrated in Figure 5.2. In order to compute the profiles

shown, the depth of penetration D' was assumed to be that of the most unstable
mode with the observed cell spacing. As noted already, there are problems with
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this approach. Three cases are shown, one for which the qualitative agreement is

quite good but the detailed structure is different, and another two for which the

agreement between the approximate theory and the full model is excellent. Table

5.2 gives the Langmuir number, Richardson number, growth rate of the most

unstable mode and the CL instability parameter YCL, characteristic diffusive decay

rate Ydiff and stratified Craik-Leibovich Rayleigh number RaCLS for the three

cases. Estimates of these parameters given by truncation T1 (yCL1, Ydiffl, and

RaCLS1) are also shown. In general, truncation T1 does a good job at estimating

the approximate size of RaCLS.

Case 4: Layer depth D=4, La=0.01, Ri=0.2. For this case YCLS > Ydiff> y. The

finite-amplitude theory predicts that the finite-amplitude cells transport a great

deal of momentum and density. Figure 5.2a shows the horizontally averaged

velocity profile, 5.2b the horizontally averaged density, and 5.2c the vertical flux

of alongwind momentum. The solid lines show the finite-difference code runs, the

chain-dotted lines the profiles in the absence of Langmuir cells (density, alongcell

velocity, and vertical flux of alongcell velocity carried by small-scale diffusion).

The results of the approximate theory developed earlier in this section are shown

by the dashed lines (assuming cell structure to be given by the most unstable

mode from the full instability code) and o-marks (assuming cell structure to be

given by truncation T1, cells limited in penetration depth).

The prediction made by the approximate theory that the cells alter the

velocity and density profile over the depth of penetration is accurate. The

presence of stratification results in the creation of a shallow mixed layer with a

depth of about 1.5. At some depths, the fluxes carried by the cells exceed those

carried in the absence of cells by small-scale diffusion. As a result, there are

reversals in the shear and density stratification. The quantitative agreement

between the approximate theories and the full finite-difference code is extremely

good. A mixed layer is created even though the growth rate of the cells with

dominant wavelength is smaller than the characteristic diffusive decay scale for

the mixed layer.

Case 5: D=4, La-0.1, Ri=0.2. This time YcLs > Ydiff > y. The velocity profile,

momentum transport and density flux are shown in Figure 5.2d,e, and f

respectively. For this case the diffusive term is of the same order of magnitude as

the instability parameter. As a result, the total transport of momentum and density
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Figure 5.2: Velocity and density structure in a stratified layer with finite-
amplitude Langmuir cells. All cases have surface Eulerian shear of 1 and
monochromatic waves. (a) Horizontally averaged alongwind velocity, La=0.05,
Ri=0.2, D=4. Solid: Finite-difference code. Dashed: Solution from equation (5-30)
assuming cell structure given by instability code. o: Solution assuming cell
structure described by Truncation T1. +: Solution assuming cell structure
described by Truncation T2. Chain-dotted line is velocity profile in absence of
cells. (b) Density. La=0.05, Ri=0.2, D=4. Labels same as in (a), except that chain-
dotted line is the density in the absence of cells. (c) Vertical flux of alongwind
momentum La=0.05, D=2. Labels same as in (a), except that chain-dotted line is
the momentum flux carried by viscous stresses in the absence of cells. (d) Same as
(a) but for La=O.1, Ri=0.2, D=4. (e) Same as (b) but for La=0.1, Ri=0.2, D-=4. (f)
Same as (c) but for La=--0.1, Ri=0.2, D=4. (g) Same as (a) but for La-0.025,
Ri=0.05, D=4. (h) Same as (b) but for La=0.025, D=4. (i) Same as (c) but for
La=--0.025, Ri=0.05, D=4.
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decreases relative to Case 4. Again the theoretical result of equation (5-30) seems

to produce not only an excellent qualitative result, but also a excellent

quantitative prediction of the mean velocity and density structure. The theory

does seem to overestimate the fluxes slightly but the shape and magnitude of the

flux profile are well reproduced. The cells seem to have come to equilibrium

despite the fact that the growth rates predicted by the instability code are very

small

Case 6: D=4, La-0.025, Ri-0.05. In this case YCLS > Y> Ydiff. The cells penetrate

over most of the depth of the water column. The approximate theory does a

good job at predicting the velocity structure but not such a good job at the

density. The reason is apparently that the density perturbation is quite poorly

represented by the theory (it turns out to be constant over most of the depth with

a narrow boundary layer starting at a depth of z = -3.5). As a result, the density

flux is underestimated. In general, the cells carry most of the velocity and density

flux over all but the surface region.

The solutions in Figures 5.1 and 5.2 were based on the most unstable

modes for cells with the observed wavelength (Method I, above). It is worthwhile

to briefly consider solutions based on the neutrally stable solution. For small

Case 3: Alongcell Velocity Case 6: Alongcell Velocity Case 6: Density
0 0 (0

- -1 IZ- ,' 1 -

I 1f

I I-3 -3 / -
-4 -4

0 1 2 0 1 2 0 2 4
(a) (b) (c)

Figure 53: Effect of using different methods of estimating the structure
functions when RaCL is large. Solid lines are solutions from finite-difference
code. Chain-dotted lines are solutions in the absence of Langmuir cells. Dashed
lines are solutions from equation (5-30) assuming cell structure given by most
unstable mode at dominant wavelength, + marks are solutions from (5-30)
assuming cell structure given by the neutrally stable mode at the dominant
wavelength. (a) Mean Alongcell Velocity: Case 3 (Figure 5.1e) La=0.01, Ri--0.O,
D=4. (b) Mean Alongcell Velocity: Case 6 (Figure 5.2g), La=0.025, Ri=0.05,
D-4. (c) Mean Density: Case 6 (Figure 5.2h).
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values of RaCLS, this method asymptotes to Method 1. When RaCLS is large,
however, the structure of the neutrally stable solution may be very different from
the most unstable mode. Figure 5.3 shows predictions made using the neutrally
stable solution for two cases when RaCLS was large, Cases 3 (RaCL somewhere
between 150 and 900) and 6 (RaCLS about 30). Figure 5.3a shows the mean
alongcell velocity profile predicted by Method I (dashed lines) and Method II (+
marks) for Case 3. The solid lines show the solutions from the finite-difference
code and the chain-dotted lines show the solutions in the absence of Langmuir
cells. Method II appears to do a slightly better job at predicting the horizontally
averaged velocity structure than Method I, reflecting the fact that the cells at
equilibrium have a deeper penetration than the most unstable mode. Figure 5.3b
repeats 5.3a for Case 6. Here the finite-difference code splits the difference
between Methods I and II. Figure 5.3c, however, shows that Method II produces
a slightly better prediction of the horizontally-averaged density profile in the
presence of fully developed Langmuir cells. In general, the differences between
Methods I and II are small, except as RacLS becomes very large.

5.3.3 Testing the Model Predictions for Shear Scaling

We now turn to the question of how the vertical shear of the horizontally
varying horizontal current (the perturbation shear) scales in the presence of finite-
amplitude Langmuir cells. The six case studies from section 5.3.2 are used as test
cases. In general, the truncated models did not do a very good job at predicting
the shape of the shear, since they did not capture the curvature of the unstable
modes. This is hardly surprising since the theory developed in Sections 5.2 and
5.3 is primarily sensitive to the shape of the streamfunction, not necessarily its
second derivative. For this reason this section concentrates on comparing the
approximate theory which uses the cell shape given by the instability code with
the results of the finite-difference code.

The three unstratified cases are considered first. Figure 5.4 shows the shear
in the crosswind (left column) and alongwind (right column) direction for Cases 1
(La-0.05, D=2, top row), 2 (La=0.1, D=2, middle row), and 3 (La--0.01, D=4,
bottom row).

Case 1: For this case, it has been established that RaCL is roughly 6 (the critical
value being 1). The approximate nonlinear theory captures a number of the
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Figure 5.4: Horizontally varying shear in an unstratified layer with finite-
amplitude Langmuir cells. All cases have surface Eulerian shear of 1 and
monochromatic waves. Solid: Finite-difference code. Dashed: Solution from
equation (5-30) assuming cell structure given by instability code. (a) Standard
devation of the crosswind shear, La-0.05, D=2. (b) Standard deviation of the
alongwind shear, La-0.05, D=2. (c) Standard deviation of the crosswind shear,
La=0.1, D=2. (d) Standard devation of the alongwind shear, La=O.1, D=2. (e)
Standard deviation of the crosswind shear, La-0.01, D=4. (f) Standard deviation
of the alongwind shear, La=0.01, D=4.
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Figure 5.5: Horizontally varying shear in a stratified layer with finite-amplitude
Langmuir cells. All cases have surface Eulerian shear of 1 and monochromatic
waves. Solid: Finite-difference code. Dashed: Solution from equation (5-30)
assuming cell structure given by instability code. (a) Standard deviation of the
crosswind shear, LaO.05, Ri=O.2, D-4. b) Standard deviation of the alongwind
shear, La=O.05, Ri=O.2, D=4. (c) Standard deviation of the crosswind shear,
La=O.1, Ri=O.2, D=4. (d) Standard deviation of the alongwind shear, La=O.1,
Ri=O.2, D=4. (e) Standard deviation of the crosswind shear, La=O.025, Ri=O.05,
D=4. (f) Standard deviation of the alongwind shear, LaO.025, Ri=O.05, D-4.
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qualitative features of the shear seen in the finite-difference code. The overall

magnitude of the shear in both directions is captured to within about 30% as is

the fact that the crosswind shear is much more energetic than the alongwind

shear. The rough locations of the maxima in the shear are also reproduced by the

theory. However the shear in the finite-difference code "fills in" the places where

the approximate theory predicts no shear at all.

Case 2: For this case RaCL is about 2. Again the approximate theory does a good

job at reproducing the order of magnitude and the location of the maximum for

both the alongwind and crosswind shears. Although the Langmuir number is

twice that for Case 1, the amplitude of the crosswind shear only changes by 20%.

There is, once again, more shear away from the maximum in the finite-difference

code than there is in the model.

Case 3: For this case RaCL is very large, of order 200-800 and there is more than

one linearly unstable mode. Despite this fact, the standard deviation of the

crosswind shear is only 25% larger than for Case 1. Figure 5.1 showed that the

instability code did a poor job at predicting the structure of the momentum

transport for this case. The same is true for the shear.

Figure 5.5 repeats Figure 5.4 for cases 4 (La=0.05, Ri=0.2, D=4, top row),

5 (La=0.1, Ri=0.2, D-4, middle row), and 6 (La=0.025, Ri-0.05, D=4, bottom

row) in which stratification was important in determining the cell structure. The

results parallel those for the unstratified cases. In general, the approximate theory

overestimates the level of the crosswind shear by about 20% and captures the

location of the shear maximum. The level of the alongwind perturbation shear is

also captured with reasonably fidelity, but the vertical structure of the

perturbation shear is much less well captured.

5.3.4 Conclusions

The primary results of this section are as follows

*For surface layers without Coriolis forces in which RaCLS is large, and Langmuir

cells are thus strongly forced, the cells replace small-scale turbulent diffusion as

the most important mechanism for momentum and density transport. As a result
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the shear and stratification over depths where the cells are important are sharply

reduced.
*When only one unstable mode is allowed for the wavelength which dominates

at equilibrium, relatively simple finite-amplitude models of cell structure give good

predictions for the horizontally averaged velocity and density structure, given

RaCLS between 1 and 100.

*For RaCLS between about 5-100, the level of the vertical shear of the horizontal

velocity scales as yCLS. This result is not strongly dependent on the Langmuir

number if the cells are strongly forced. The detailed structure of the shear is not

well explained by the finite-amplitude theories.

These major results and their implications are considered on more detail in

section 5.5.

A number of points of subsidiary interest are raised by these runs. One of

the more interesting ones is that the instability code does give, for moderate

values of RaCLS, a prediction of the depth to which the cells can mix in a viscous,

stratified surface layer. The depth of the mixing is not only dependent on the

stratification, Stokes drift profile, and Eulerian shear profile, but also on the

Langmuir number. This may be seen by looking at Cases 4 (La=0.05, Ri-0.2) and

5 (La--0.1, Ri=0.2) in Figure 5.2. Increasing La causes a decrease in the strength

of the momentum and density flux, but increases the depth to which mixing

occurs. The physics behind this increase, the result of a tradeoff between

minimizing the diffusive decay scale and maximizing the Craik-Leibovich

instability parameter, are explained in Chapter 2. Such an increase would not be

predicted by Method II, which would assume the same cell structure for both

cases. The use of Method I, while less rigorous and accurate at high values of

RaCLS, has some advantages at lower values.

5.4 Finite-Amplitude Cells in Rotating Surface Layers

5.4.1 Linking the Nonrotating Solutions to Rotating Solutions

The theory developed in section 5.3 can give certain insight into the

dynamics of Langmuir cells in mixed layers with Coriolis forces. One of the

problems of working with such layers is that one cannot integrate the equations

for horizontally averaged momentum momentum at equilibrium

a a2v
(5-52a) z v'w' +F(u +u,)= LaDZ2
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(5-52b) z - F(v +vs)= Lalz2

(where the overbar denotes horizontal averaging) to solve for the shear directly.

Two alternatives would be:

1. Using Green's functions to solve for the shear profile in terms of the amplitudes

of the finite-amplitude modes.

2. Simplifying the equations yet further by making some assumptions about the

final flow.

The first approach is more rigorous, but has the drawback that it does not result in

closed form solutions which permit simple insight into the physics governing the

final flow. Since one major reason to develop an approximate theory is precisely

to obtain such solutions the second method is used below.

Suppose that RaCLS, calculated using the Ekman spirals in the presence of

waves derived in Chapter 3, is large. Suppose further that us is small (the cells are

oriented roughly parallel with the wind and waves). Then if the cells are the major

mechanism for transporting momentum, equation (5-52a) can be replaced with

(5-53) -v'w' +Fu = 0

Assuming a slab-like mixed layer, in which the cells account for most of the

momentum transport, (5-53) can be integrated to obtain

(5-54) v'w' =Fu (z+D)= La (z+D)/D

But this is exactly the stress profile for the nonrotating case. This suggests that in

the presence of strongly forced cells, the solution for the horizontally averaged

velocity and density structure in a rotating mixed layer will largely be given by

that for a nonrotating mixed layer, with the addition of an offset term to account

for the wave return flow and the Ekman transport. The perturbation shear in such

cases would be expected to scale as in the nonrotating layer, since essentially the

same dynamics hold. This would imply, however, that RaCL for the infinitesimal

disturbances is not the correct RaCL for the fully developed flow.

Another set of cases where the nonrotating solutions can be used to gain

insight into the mean flow and shear is when La/F is large. While the solution

derived above was basically derived by throwing away the diffusive term, the

solution for these cases is derived by essentially neglecting the Coriolis force. For

these cases the initial profile is identical to that for the nonrotating case with an

offset to account for the Ekman transport and wave return flow.
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Figure 5.6: Horizontally averaged velocity and shear in an unstratified layer in
the presence of Coriolis forces. All cases shown here have La=F=0.01 and a
surface Eulerian shear of 1. (a) Velocity in the absence of waves and cells. (b)
Shear in the absence of waves and cells. (c) Velocity in the presence of waves but
with no cells. (d) Shear in the presence of waves but with no cells. (e) Velocity in
the presence of waves and finite-amplitude Langmuir cells. (f) Shear in the
presence of waves and finite-amplitude Langmuir cells.
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Both of the arguments outlined above are approximate and sketchy.

Somewhat surprisingly, however, they turn out to be valid. This is demonstrated

in the following section.

5.4.2 Momentum and Density Transport in Rotating Surface Layers

In Section 5.3 it was shown that the necessary condition for Langmuir

cells to replace small-scale diffusion as the dominant transport mechanism within a
mixed layer with no Coriolis forces is that RaCLS defined using the structure of

the linearly unstable mode with the dominant cell spacing be large. This section

uses the finite-difference code to argue that the same condition holds for surface

layers in the presence of Coriolis forces.

Consider a scenario with La=F=0.01 (Ek=l), a layer depth D-4,

monochromatic waves and a surface Eulerian shear of 1. In Chapter 4 it was

shown that a steady equilibrium for this scenario was reached in which the cell

wavelength was 21.33. Using the current profile in the absence of cells and the

structure of the most unstable mode for this wavelength, one can estimate the

important scales for this case. The results are shown in the top row of Table 5.3.

The Rayleigh number of the most unstable mode with a wavelength of 21.33 is

13.8, indicating that the cells could transport a good deal of momentum.

Figure 5.6 shows three-dimensional vector plots of the mean velocity and

shear for this scenario (the velocity is averaged over an inertial period as well as

horizontally). The top row shows the velocity and shear predicted for an Ekman

spiral in the absence of waves. The center row shows the velocity and shear

predicted for an Ekman spiral in the presence of waves, but not Langmuir cells.

The presence of waves introduces a slight upwind shift of the velocity, but does

not greatly modify the shear. The bottom row shows the horizontally-averaged

Ekman spiral and shear in the presence of waves and cells. The current and shear

structures are quite different in the presence of cells. As might be expected from

the nonrotating results, the finite-amplitude cells erase the alongcell shear over

most of the domain. At depth there is a hint of upwind shear, with water near the

base of the surface layer moving more quickly in the downwind direction than

water in the middle of the layer. The solution in the presence of finite-amplitude

cells shows not only some upwind shear but also crosswind shears which result in

the water at depth moving more to the right of the wind than water near the

surface. This behavior is discussed in more detail later on in this section.
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La=F Ri L YCLS Ydiff RaCLS

0.01 0 21.3 0.314 0.085 13.8

0.025 0 16 0.300 0.127 5.6

0.05 0 21.3 0.249 0.172 2.1

0.075 0 8 0.335 0.300 1.2

0.1 0 9.2 0.294 0.306 0.9

0.01 0.05 16 0.253 0.087 10.8

0.01 0.015 8 0.231 0.102 5.1

0.01 0.5 2 0.388 0.406 0.9

0.01 1.0 Stable Stable Stable Stable

Table 5.3: Estimates of the critical parameters for five cases with identical shear
and Stokes drift profiles but different values of Langmuir number La = F the
scaled Coriolis parameter. Ri is the Richardson number. L is the wavelength of
the dominant mode. The Craik-Leibovich instability parameter TCLS, the
characteristic diffusive decay scale Ydiff , and the Craik-Leibovich Rayleigh
number RacLS are calculated using the most unstable mode with length L.

Increasing the Langmuir number and the scaled Coriolis parameter

together while keeping the shear profile constant decreases the strength of the

momentum transport carried by the cells (physically, changing La and F together

corresponds to changing the wave amplitude). In Table 5.3 it can be seen that as

La=F increases RaCLS drops. Figure 5.7 illustrates the corresponding drop in the

momentum transport by showing profiles of the mean shear, averaged over the

final inertial period of each of the unstratified runs reported in Table 5.3. As

RaCLS drops the shear approaches that in the absence of cells. Again, the Craik-

Leibovich Rayleigh number computed from the linearly unstable cells is a good

diagnostic of whether or not Langmuir cells make an important contribution to

keeping the mixed layer mixed.

Stratification also reduces the momentum transport. Figure 5.8 shows the

effect of increasing Ri on the scenario with La=F=0.01. As noted in Table 5.3, the

effect of increasing the stratification is to cause the diffusive decay scale to

increase as the cells become trapped closer and closer to the surface. Figure 5.8a

shows the shear profile for Ri=0, Figures 5.8b-d illustrate how the horizontally-

averaged shear approaches that in the absence of cells as Ri increases and RaCLS

decreases. Note that even a small amount of stratification (Ri=0.05, a case shown
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Figure 5.7: Horizontally averaged shear in an unstratified surface layer in the
presence of finite-amplitude Langmuir cells. This figure demonstrates how
increasing La (and thus decreasing RaCLS) results in reducing the momentum
transport. All cases shown here have monochromatic waves and a surface
Eulerian shear of 1. (a) La=F=0.01. (b) La=F=0.025. (c) La=F=0.05. (d)
La=F=0.075. (e) La=F--O.1. (f) La=F, No cells present.
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Figure 5.8: Horizontally averaged shear in a stratified surface layer in the
presence of finite-amplitude Langmuir cells. This figure demonstrates how
increasing Ri (and thus decreasing RacL) results in reducing the momentum
transport. All cases shown here have monochromatic waves, a surface Eulerian
shear of 1, and La=F--0.01. (a) Ri=0.0. (b) Ri=0.05. (c) Ri=0.15. (d) Ri=0.5.
(e) No cells present.
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in Figure 4.15a) results in changing the shear below a nondimensional depth of

1.5 from lying to the left of the wind to lying to the right of the wind. For Ri=0.15

(shown in Figure 4.15b-e) the shear below a depth of about 2 is basically

identical to that in the absence of cells, while above that depth the cells transport

momentum and density.

Another way of suppressing the momentum transport is to increase F while

keeping La constant. Increasing F reduces the Ekman depth, and thus traps the

unstable modes closer and closer to the surface, increasing Tdiff and decreasing

RaCL. Figure 5.9 demonstrates this effect. Three-dimensional shear stick plots are

shown for La=0.01, F=0.025 (top row), 0.05 (middle row), and 0.075 (bottom

row). The left-hand column shows the shear in the absence of cells, while the

right-hand column shows the shear in the presence of cells. One can compute

RaCLS using the structure of the most unstable mode predicted by the instability

code given the dominant wavelength from the finite-difference code. The

resulting RaCLS is 7.3 for F=0.025, 2.5 for F=0.5, and 1.3 for F=0.075. As

expected, for F=0.025 the shear is essentially erased by the finite-amplitude cells,

which take over from the small-scale viscosity the task of transporting the

momentum. For F=0.05 the effect of the cells is still present but much weaker, and

for F=0.075 it is negligible.

This section concludes by arguing that the mean structure of a surface

layer with Coriolis forces can sometimes be predicted by looking at the structure

of a surface layer without Coriolis forces. Figure 5.10a and b compare the mean

velocity structure for two idealized surface layers, one with F=0 (denoted by

open circles) and the other with F=0.01 (denoted by solid lines), given waves

which are monochromatic and parallel to the wind and a surface Eulerian shear of

1. Figure 5.10a shows the mean alongwind velocity profile from two runs where

D-4, the surface shear is 1 and La=0.01 (the solution for F=0 is offset so that the

two profiles have the same mean). Figure 5.10b shows the perturbation shear in

the crosswind direction from the two runs. This is a very strongly forced case. The

vertical structure of both the velocity profile and the perturbation shear is very

similar for the rotating and nonrotating cases, as predicted at the start of this

section. This is despite the fact, noted in Chapter 4, that the presence of rotation

suppresses cell merging. As noted in Section 5.3, the level of the perturbation

shear produced by long-wavelength cells is relatively insensitive to the length

scale responsible for the forcing. This result supports the hypothesis advanced at

the beginning of this section that when a rotating surface layer is unstratified and
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Figure 5.9: Horizontally averaged shear in an unstratified surface layer in the
presence of finite-amplitude Langmuir cells. This figure demonstrates how
increasing F results in trapping the shear closer to the surface, decreasing RaCL
and thus decreasing the momentum flux. All cases shown here have
monochromatic waves, a surface Eulerian shear of 1 and La--O.01. (a) Shear with
waves but no cells, F=0.025. (b) Shear with finite-amplitude cells, F=0.025. (c)
Shear with waves but no cells, F=0.05. (d) Shear with finite-amplitude cells,
F=0.05. (e) Shear with waves but no cells, F-0.075. (f) Shear with finite-
amplitude cells, F=0.075.
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Figure 5.10: Comparing runs with rotation with runs without rotation. All cases
shown are unstratified with monochromatic waves and a surface Eulerian shear of
1. Results for F=0.01 are shown as solid lines, results for F-0O as open circles.
Velocity in the absence of cells is shown by chain-dotted line. Velocity for FO-0
has been offset for sake of comparison. (a).Horizontally averaged alongwind
velocity. La=0.01. (b) Perturbation crosswind shear, La--0.01. (c) Horizontally
averaged alongwind velocity, La=O.1. (d) Perturbation crosswind shear La-O. 1.
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RaCL is large, the final velocity profile and vertical structure of the perturbation

shear resemble those in the absence of rotation.

Figures 5.10c and 5.10d repeat Figures 5.10 and b for La=0.1, Ri=0. For

these cases RaCL is estimated to be 7.8. In this case the initial velocity profile in

the presence of rotation is essentially identical to that in the absence of rotation

with an offset to account for the wave return flow and Ekman transport. In

Chapter 4, it was shown that the solutions for this scenario in the presence of

rotation are qualitatively somewhat different from those in the absence of

rotation, with the cells in the presence of rotation showing a distinct handedness

(cf. Figure 4.13). Nonetheless, the vertical structure of the perturbation shear and

horizontally averaged alongwind velocity are essentially identical to that in the

absence of rotation. Thus in the two limits where RacL is large and Ek is large, the

nonrotating scaling for shear seems to hold.

5.4.3 Discussion of the Rotating Results

The most important results from this section parallel those for the

nonrotating case. Cells which are strongly forced transport large amounts of

density and create horizontally varying shears which are the same order of

magnitude as the mean shears in the absence of cells. The most important

implications of these results will be discussed in detail in the final section of this

chapter. At this point one result of interest is highlighted.

The creation of horizontally averaged crosscell shears was seen in one case

presented in this chapter (Figure 5.4) for which RaCL was large. It is interesting to

note that similar behavior was observed in a number of model runs (including

some with F=0) when RaCL of the final state was larger than 100-200. The

creation of such shears has not been studied in detail, since the analysis of their

formation involves an even more detailed stability analysis. At present there is

reason to believe that the creation of such crosswind shears is similar to that seen

by Krishnamurti and Howard (1981) in lab experiments involving Rayleigh-

Benard convection. The mechanism by which such shears form was discussed in

Howard and Krishnamurti (1986). It involves the tilting of cells by the mean

crosscell shear. The tilted cells then have correlated crosscell velocities u' and

vertical velocities w'. The nonlinear stress u'w' carried by these cells reinforces the

crosscell shear which then tilts the cells yet more. An equilibrium is reached when

S balances La 2
u w TZ balances La- -).
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5.5 Conclusions

In Chapters 2 and 3 the presence of Craik-Leibovich instability in mixed

layers with stratification and Coriolis force was shown to depend on the stratified

Craik-Leibovich instability parameter being larger than diffusive decay, tilting

due to crosscell shear, and the Coriolis frequency. This chapter demonstrates that

when the cells are strongly forced:

* They replace small-scale diffusion as the principal transport mechanism for
velocity and density. The result is to homogenize the velocity structure in the
mixed layer in the alongcell direction relative to that predicted by assuming small-

scale mixing alone. In some cases, the cells produce upwind shears at depth.

* There are spatially varying shears within the layer which go (roughly) as the

stratified Craik-Leibovich instability parameter.

Simple truncations which approximate the vertical structure of the velocity,
density, and streamfunction perturbations are capable of giving excellent

predictions of the horizontally averaged velocity and density structure in the

presence of finite-amplitude cells as long as RaCLS is of order 1-30 times the
critical value.

These results have a number of implications for observing cells in oceanic

surface layers. Firstly, they point to the importance of the velocity and density

profile in the absence of cells for understanding the finite-amplitude solution in

the presence of cells. These profiles are determined by the external forcing and by

the strength of the small-scale mixing.

A second important implication of these results relates to how the cells

come to equilibrium. The basic cycle leading to Craik-Leibovich instability is as
follows:
1. The vertical velocity associated with the cells acts on the vertical shear of

alongcell velocity to produce horizontal perturbations in alongcell velocity.

2. The perturbations in the alongcell velocity reinforce the cells through the

Craik-Leibovich instability mechanism.

In the theory developed above the finite-amplitude cells reduce the vertical shear

of the alongcell velocity. This limits the size of the perturbations in alongcell

velocity which are produced by the cells. This in turn limits the magnitude of the

vorticity in the cells themselves.

The weak dependence of the perturbation shear on the Langmuir number

and RaCLS is also an important point, since in the field the Langmuir number is
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Figure 5.11: Energy balance for finite-amplitude Langmuir cells. All cases shown
are for monochromatic waves, a surface Eulerian shear of 1 and a layer depth of 4.
Horizontal axis is Ri. Three different values of La are shown, 0.01 (denoted by +),
0.025 (denoted by x), and 0.05 (denoted by o). (a) Buoyancy transport
nondimensionalized by surface stress times the surface Stokes drift. (b) Shear
production nondimensionalized by surface stress times the surface Stokes drift.
(c) Stokes production nondimensionalized by surface stress times the surface
Stokes drift. (d) Flux Richardson number (defined as buoyancy transport over
Stokes production).
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extremely difficult to estimate. Examination of truncated, finite-amplitude

solutions shows that a number of other parameters such as the kinetic energy ,
alongcell velocity perturbation, and vertical velocity depend strongly on the cell

spacing and Langmuir number. The fact that the shear is insensitive to the exact

value of the Langmuir number makes it a good candidate for an index of cell

strength which can be compared with theory. This is done in Chapters 6 and 7

with marked success. A related implication of importance, made in Chapters 2 and

3 but which deserves to be reiterated here, is that the key shears for determining

cell dynamics are not those right at the surface but rather those at depths where

the cells transport momentum and density.

Instability codes and truncated models which capture the cell structure are

able to predict RaCLS. This means that such models can not only be used to test

whether the water column is unstable to Langmuir cells, but whether or not the

unstable cells will replace small-scale diffusion as the primary transport mechanism

when they grow to finite-amplitude.
A final implication of these results is the introduction of a new source of

energy for turbulent mixing within the oceanic mixed layer. Earlier sections of

this chapter showed that when RaCL is large, the momentum transport is a large

fraction of La Iz=0.This in turn means that the Stokes production scales as the

surface stress times the surface Stokes drift.
0
r sav V

(5-55) Pstokes La z--o dz = vsLa = T*vs(z=0)

Figures 5.11a-c show the buoyancy production, shear production in the
alongcell direction and Stokes production normalized by T*vs(z=O) as a function

of La and Ri from the nonrotating numerical model runs. The Stokes production is
indeed a large fraction (up to 60%) of r*vs(z-0), and is in general as large, or

larger than the shear production. This is especially true at low La (large RaCL)

when the cells are strongly forced. How big is this energy source term in the real

world? Wu (1975) argued that the surface drift due to waves was about 5-13% of

the total surface drift current (of order 1-2u*). While Wu's results are likely to

underestimate the size of the Stokes drift since they contain only wind waves and

not swell waves, this would mean that r*vs(z-O) would be a small fraction (of

order 10%) of the total turbulent kinetic energy production t*v(z=0). This means

that the presence of Langmuir cells does not greatly alter either the overall level
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of the small-scale turbulent kinetic energy or the dissipation. However, dissipation

due to wall-layer shear would be expected to fall off as

(5-56) E(z)-~v'w'

which, for a logarithmic layer, falls off as 1/z. Dissipation due to Langmuir cells, on

the other hand, would be expected to be concentrated in the downwelling

plumes, and so to persist to fairly great depths. Thus, while Langmuir cells might

play a small role setting the peak levels of dissipation or turbulent kinetic energy,

they could play an important role in setting the structure and level of the

dissipation and turbulent kinetic energy at greater depths.

Although the Stokes production due to Langmuir cells is potentially quite

a small player in the total turbulent kinetic energy budget of the upper ocean, it is

potentially quite important when the density transport is concerned. Figure 5.11 d

shows the Flux Richardson number

(5-57) Rif tr s
- Pstokes

Up to 60% of the Stokes production can go into buoyancy transport. This is

much larger than the 8-12% which is associated with three-dimensional turbulent

mixing (Linden, 1981; Park, Whitehead and Gnanadesikan, 1994) in stratified

fluids. (It should be noted that this value is an upper bound. Within a boundary

mixed layer, Park et al. found efficiencies which were closer to 4%). Thus even if

the cells only make up 15% of the total turbulent kinetic energy production, they

could still account for the majority of the turbulent transport of density. Denman

and Miyake (1973) showed that the entrainment fluxes associated with the
3

yearly cycle of mixing at ocean station Papa were of order puc and Davis et al.,
3

(1981) found that an energy flux of about 0.4pu* was necessary to account for

observed mixed layer deepening during the MILE experiment. The density

transport due to Langmuir circulation is of the same order of magnitude. In

Chapter 7 two days during the Surface Waves Processes Program when this

energy source may have played a role in mixed layer deepening are considered.

Some of the questions that these model runs raise which have not been

answered and must be left for future investigation are listed below:

*Is there some optimum flow towards which the mixed layer tends in the presence

of finite-amplitude cells? A number of investigators (Malkus and Veronis, 1958

and Foster, 1969 among them) have proposed that the equilibrium flow in

Rayleigh-Benard convection is that which maximizes density transport. Is there
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some analogous quantity for Langmuir circulations? For example, is the final flow
chosen so as to maximize momentum transport?
*Can we develop a method of predicting the mean flow given finite-amplitude
cells in rotating mixed layers where RaCL is not so large that one can use the
nonrotating solutions?

*What determines the presence of mean crosscell shears?
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Chapter 6: Langmuir Circulation during the Mixed Layer
Dynamics Experiment

6.1 Introduction
As stated in the first chapter of this thesis, there are at present two different

conceptual views of how the oceanic mixed layer is maintained. One view
supposes that it is primarily stirred by eddies which have dimensions small with
respect to those of the layer. A second view supposes that the layer is mixed by

structures with horizontal and vertical dimensions comparable to the mixed layer

depth which may have some associated coherent pattern. This thesis argues that
when diffusion is small enough large eddies driven by the Craik-Leibovich wave-
current interaction mechanism (Langmuir cells) replace small-scale diffusion as the
main mixing mechanism within the mixed layer.

Chapters 2 through 5 of this thesis assumed that wave-current interaction
was responsible for driving Langmuir cells and showed how to derive the
equivalent of the buoyancy frequency and Rayleigh number which characterize

the buoyant convection problem. Given Langmuir cells of a given size in the
presence of Coriolis forces and stratification, it was shown that the analogue of
the stratification is the Craik-Leibovich instability parameter (YCLS) and that an

analogue of the Rayleigh number (RaCLS), could also be defined. When RaCLS
was large (so that the cells were strongly forced by the Craik-Leibovich
instability mechanism), an idealized surface layer was unstable to Langmuir cells.

When the resulting cells grew to finite amplitude, they replaced small-scale

turbulence as the dominant mechanism for momentum and density transport

within this surface layer. When RaCLS was large, the horizontally varying
velocity shear associated with the cells scaled roughly as YCLS.

This chapter and the following one take a different approach to the
problem. They begin by demonstrating that eddies which are large in comparison

to the mixed layer are important in determining the velocity and density structure
and then try infer their driving mechanism. It is found that:

* When Langmuir cells are present, the mean mixed layer drift carries them across

fixed strings of current meters, producing time-varying velocity shears at

superinertial (1-30 cph) frequencies.

*In the presence of elevated levels of high-frequency shear, the subinertial

response of the mixed layer to surface forcing differs from that predicted by two

standard models.
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Assuming the cells to be driven by the Craik-Leibovich mechanism allows:
*Prediction of the level of the high frequency shear.

*Explanation for the failure of standard models to predict the velocity or density

structure of the upper layer.
This chapter uses data from the Mixed Layer Dynamics Experiment (MILDEX),
while the next chapter uses data from the Surface Waves Processes Program

(SWAPP).

The Mixed Layer Dynamics Experiment main cruise provides a good

opportunity for testing the main hypothesis. Measurements of surface forcing,

waves, temperature, salinity, turbulence, and horizontal and vertical currents were

all made during the cruise. Most importantly, the current measurements were

made from the Research Platform FLIP as it drifted freely. In such a deployment

mode FLIP is extremely stable, so that it is possible to obtain measurements which

are at a constant depth while minimizing contamination by wave motion.

A number of papers have been published which use the MILDEX dataset.

Smith, Weller, and Pinkel (1987, henceforth SWP) compared Doppler sonar data

with data from current meters to construct a picture of Langmuir cells during a

storm on November 9th and 10th. Weller and Price (1988, henceforth WP)

published the most complete summary of the evidence for Langmuir circulations

in the current meters. Paduan et al., (1989) reported on the amplitude of near

inertial motions during MILDEX, demonstrating that the response of a mixed
layer model to wind forcing depended on the pre-existing velocity structure. To

date, there has been no detailed examination of the relationship between the level

of the high-frequency shear and Langmuir cell strength. Additionally, the

response of the mixed layer during the experiment has not been studied in detail

for sub-inertial frequencies. This chapter addresses these questions.

The approach taken is as follows. Section 6.2 outlines the MILDEX

experiment, presenting the oceanographic and meteorological background for the

experiment. Section 6.3 links the strength of Langmuir cells to the level of the

high-frequency shear. Section 6.4 examines the near-surface current response

during MILDEX during time periods of differing cell strength, Section 6.5 argues

that the level of the high frequency shear is consistent with wave-current

interaction being responsible for driving the cells. Section 6.6 demonstrates that

the velocity profile produced by assuming small-scale mixing is unstable to

Langmuir cells. Section 6.7 provides a discussion of the results.
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Figure 6.1: Schematic of measurement approach during MILDEX. (a) Velocities,
bubble clouds, and surface convergence of cards associated with cells. (b)
Current shears seen near surface as the result of cells drifting across current meter
array. (c) Sonars scattering sound off of bubble clouds
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6.2 The MILDEX Dataset
6.2.1 Overview and Instrumentation

The Mixed Layer Dynamics Experiment main cruise took place in 1983 off
the coast of Southern California. Participating vessels were the Research Platform
FLIP, R/V Acania and the R/V Wecoma . This chapter primarily uses data taken
from FLIP, the exception being longwave radiation and microstructure data taken
aboard the Acania and a hydographic survey made from the Wecoma.

Figure 6.1 shows a summary schematic of the measurement strategies used
to look at Langmuir cells during MILDEX. The cells organize surface drifters into
windrows, and bubbles into plumes (Figure 6.1a). These plumes scatter sound
from Doppler sonars, producing high-backscatter regions which persist over time
(Figure 6.1c). The bubble plumes are also associated with strong alongwind jets
of velocity. In the presence of a mean mixed layer drift, FLIP moves relative to
these features, so that Doppler sonars see persistent features which seem to move
along the beam, and current meters see time-varying currents and shears as they
pass through the cells (Figure 6.1b).

During the MILDEX main cruise, FLIP drifted within a 50 km radius of
34oN, 126°W, approximately 600 km due west of Point Conception. Figure 6.2a
shows a map, taken from Weller and Price (1988), showing the experiment site
and FLIP's drift. Figure 6.2b is taken from Smith et al, (1987) and shows the
general layout of FLIP for MILDEX. In all, three booms were deployed during the
experiment, a short 10m boom canted about 45 degrees to the left of the heading
(forward boom), a 15 meter boom off to port (port boom), and a 15 meter boom aft
of FLIP (aft boom). The angle of the platform relative to the wind was maintained
by a thruster at a depth of 15 meters. Six doppler sonars were deployed on FLIP's
hull, two of which were set up to look at Langmuir circulation. Figure 6.2c, also
taken from Smith et al., 1987, shows a planview of FLIP, showing the locations of
the various measurements along the booms, and the angles along which the two
Doppler sonars were deployed.

Because of its great draft when vertical, FLIP has a natural period larger
than those associated with surface waves. As a result, the platform is very stable
even in energetic wave fields. This means that instruments suspended from the
booms do not move large distances in the vertical, as as is the case for instruments
suspended from a surface float.
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Figure 6.2: (a) The location of the Mixed Layer Dynamics Experiment, from
Weller and Price, 1988. (b) The Floating Instrument Platform during MILDEX,
showing the setup of the instrumentation from Smith et al., 1987. (c) Planview of
FLIP during MILDEX main cruise showing location of instrumentation along the
booms and orientation of the sonars.
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A large number of environmental measurements were made from FLIP
during MILDEX. Two resistance wires were deployed from the port and aft
booms to measure wave height. These measurements agreed well in general, and
were in close agreement when they were used to calculate the Stokes drift
(calculated Stokes drifts from the two wavestaffs were within 1 cm/s most of the

time). Meteorological measurements were made from the mast on FLIP. Incoming
shortwave radiation, air temperature, sea surface temperature, wind speed and
direction, and relative humidity were measured using a Vector-Averaging Wind
Recorder (VAWR) package. Wind stress was calculated from these measurements
using the formula of Large and Pond (1981), latent and sensible heat fluxes using
the formulae of Large and Pond (1982), and net shortwave by using a surface
albedo of 0.06 (Payne, 1972). Net longwave radiation was calculated by a
combination of bulk formula estimates (List, 1972) and interpolated incoming
longwave data from the R/V Acania.

Water velocities were measured during MILDEX by a number of current
meters suspended off the booms. Two strings of Vector Measuring Current
Meters (VMCMs) were used. These current meters were designed to measure
small mean flows in the presence of waves (Weller, 1978). They accomplish this
by using propellors which are large compared with eddy-shedding parts of the
current meter and which have a cosine response to flows. The first of the two
current meter strings consisted of three VMCMs which were fixed at nominal
depths of 2, 6.5 and 12 meters. The second string had four instruments which

were profiled through the water column during the first part of the cruise from
October 25 to November 3rd and fixed at nominal depths of 20, 35, 50 and 65
meters from November 3rd to November 14. Additionally, a new instrument,
known as the Real-Time Profiler (RTP) was deployed midway down the port
boom. This instrument measured vertical as well as horizontal velocities,
temperatures, and conductivity. The RTP was profiled over the water column
during some time periods and held fixed at various depths during other time
periods. All the VMCMs averaged over periods of one minute before writing to

tape. The RTP averaged over a period of 14.025 seconds (1/256th of an hour).

The data from the RTP and the VMCMs was binned, averaged, and

interpolated in time and space. The top two bins covered 0-3 and 3-7.5 meters

respectively, with the remaining bins covering 5 meter intervals down to a depth

of 170 meters. Each bin contained a 1-hour average in time. The binned data was

used to calculate the response to wind forcing.

175



A thruster on FLIP's hull at a nominal depth of 15 meters was used to

maintain a constant orientation relative to the wind. This thruster was found to

produce a narrow jet with speeds up to 60 cm/s which contaminated the fixed

VMCM at 12 meters. The velocity signal due to the thruster needed to be

removed in order for the binned data to be useful in calculating the mixed layer

response to surface forcing. This was done by hand, taking times when the

velocity at 12 meters was grossly different from the velocities around it and

interpolating across the contaminated depth. It is not thought that the thruster

contaminated the VMCMs at 6.5 and 20m. Evidence for this conclusion is

presented in Appendix E.
At a number of times during the experiment, surface drifters (computer

cards during the day, bags of florescent dye during the night) were deployed

from FLIP. If Langmuir cells were strong, these drifters lined up into rows. These

measurements gave a crude sense of when Langmuir cells were present and an

order of magnitude estimate at certain times for the spacings and crosscell

velocities associated with some small scales of cells.

One of the more striking techniques which showed the effect of Langmuir

cells during MILDEX were Doppler sonar measurements carried out by Jerome

Smith and Robert Pinkel of Scripps. Microscopic bubbles (with diameters of 20-
400pm) are generated by wave breaking and organized by Langmuir cells into

clouds many meters deep which are roughly aligned with the wind. When a pulse

of sound is propagated through the near-surface layer, these clouds show up as

regions of high scattering. The Doppler shift associated with bubble motion is

used infer the velocity with which the bubbles are being advected. Because

scattering is a strong function of bubble density, the returns are dominated by the

regions with the most bubbles. On short time scales (1-2 seconds), the Doppler

velocities can be used to track surface waves (Pinkel and Smith, 1987). If the data

is averaged over longer periods of time the velocities due to the surface waves

can be removed and those due to Langmuir circulation may be recovered. During

MILDEX the two upward-looking sonars on FLIP produced 3-minute averages

of the backscatter and velocity from a range bin approximately 11.25 meters long

along the beam. One of these sonars looked across the wind and was dominated

by surface scattering over a range of 600-1400 meters. The other looked

alongwind and was dominated by features within the mixed layer at depths of

20-35 meters for the first 800 meters or so. Details of the sonars deployed during

MILDEX are given in SWP.
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Lastly, microstructure measurements were made from the Acania using a
tethered free-fall vehicle (Lueck, 1988, unpublished). The shears at small scales
were measured and used to produce profiles of the near-surface dissipation. The
instrumentation and data processing followed closely that of Yamazaki and
Lueck (1987).

6.2.2 Review of Meteorological and Oceanographic Conditions during
MILDEX

A summary of the meteorological and oceanographic conditions during the
experiment is shown in Figures 6.3 and 6.4. The first of these figures shows
meteorological variables measured from the VAWR on FLIP and from the current
meter at 2 meters depth. From top to bottom the fields shown are the wind speed
in m/s, the wind direction (towards which the wind is blowing) in degrees, the
incoming shortwave radiation in W/m2, the barometric pressure in mb, the air
temperature in degrees C and the water temperature in degrees C. As outlined
above, the measured meteorological quantities were used to calculate the heat
and momentum fluxes using bulk formulae. The fluxes and some measures of the
oceanographic response to them are shown in Figure 6.4. From top to bottom, the
fields shown are the zonal wind stress in Pa, meridional wind stress in Pa, total
heat flux in W/m2, temperature difference between the current meters at 2 and
6.5m depth, and significant wave height in m.

During the first week of the experiment (October 23-30th) the winds were
fairly low (with the exception of October 28th). The upper part of the surface
layer became stratified during the day and mixed during the night. On October
31st and November 1st the winds blew from the north, the temperature dropped
and strong latent and sensible cooling led to heat losses of 200 W/m2. The upper
6.5 meters did not restratify during these two days. November 2nd-6th saw a
return to milder conditions. Interestingly, the wave height increased sharply on
November 2nd despite the lack of wind, indicating a swell propagation event.
The near-surface temperature difference showed some indications of frontal

activity on November 3rd, with a temperature inversion despite very little surface
cooling. On November 6th there was another episode of cold air blowing from

the north, with strong resultant latent and sensible cooling leading to heat losses

up to 300 W/m 2. During November 8th the wind slackened, then reversed

direction as a strong low pressure system moved over the experiment site. During
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Figure 6.3: Meteorological fields measured from FLIP during MILDEX main
cruise. From top to bottom, the fields are, wind speed in m/s, wind direction
(towards) in degrees, incoming shortwave radiation in W/m 2, barometric pressure
in mb, air temperature in C, water temperature in C.
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the early morning hours of November 10th, the winds reached their maximum
strength for the entire experiment. Sustained wind speeds of 19.2 m/s were seen,
leading to wind stresses of 0.5 Pa. Wave heights approached 6m. In the wake of
the low, wave heights continued to be high during much of the 10th and 11 th,
falling off slightly on November 12th as another period of cold winds from the
north began.

In order to understand the subinertial response during MILDEX, the
importance of frontal activity must be considered. The heat balance during
MILDEX was affected both by atmospheric forcing and by fronts. Figure 6.5a
shows contours of the temperature smoothed over 12 hours to eliminate the
effects of variability associated with the semidiurnal tide. The contours are every
1 degree in the main thermocline (below temperatures of 18 C), and every 0.1
degrees in the mixed layer (18.2 C and above). Figure 6.5b shows the cumulative
heat flux (solid) , integrated heat content, defined as

0
(6-4) H(D)= fpcpT(z)dz

z=-D

for D=20 meters (dashed) and 40 meters (chain-dotted), computed using the 12-
hour averaged temperature.

During the experiment, the depth of the top of the main thermocline was
relatively constant at about 40 meters. The fact that the integrated heat flux
disagrees with the heat content above this depth is evidence for frontal activity.
The rise in heat content on October 26 corresponded to a warm intrusion
between depths of 20 and 40 meters. The temperature anomaly associated with
this intrusion was quite small, of order 0.1-0.2 degrees C. The divergence of the
integrated heat flux and the heat content curves on October 29th was the result
of the movement of a mass of slightly colder water over the site. Again the
temperature anomaly was small, of order 0.1-0.2 degrees. During the following
week, both the heat content and integrated heat flux were fairly flat, indicating a
regime in which diurnal warming is balanced closely by nighttime cooling. The
upper 10 meters of the water column saw some frontal activity during this time
(note in particular the persistent stratification of the upper water column during

the nights of November 3rd and 5th) in Figure 6.4, but the fronts had very small
amplitude, of order 0.05 C.

During November 6th, there was a sharp drop in the heat content and

integrated heat flux associated with passage of a cold air mass over the site. The
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181



heat content dropped about twice as far as the integrated heat flux, indicating the

presence of a second cold intrusion. The magnitude of this cold intrusion was

about 0.2 C.

In general, the temperature anomalies associated with these frontal events

were not associated with significant salinity anomalies. From the beginning to the

end of the cruise, profiling CTD measurements made by Pinkel and Smith of

Scripps showed the salinity within the mixed layer to have decreased by only

about 0.1 PSU. About half of this freshening occurred during the frontal intrusion

on November 6th, compensating the cooling. The magnitudes of the salinity and

temperature changes associated with the fronts are consistent with a survey made

from the Wecoma (Paduan, pers. comm.) which showed temperature changes of

about 0.2 C and salinity anomalies of about 0.05 PSU with spatial scales of tens

of kilometers. Using the thermal wind relationship, the shear associated with these

fronts is calculated to have been smaller than 0.001 s-1. This value is smaller than

the shear signals associated with the wind-forced response.

6.3 Indices of Langmuir Circulation Strength during MILDEX

6.3.1 From Dopplers to Shear

In order to measure the effect of Langmuir cells, it is first necessary to

characterize their strength. This section examines measures of Langmuir cell

strength during MILDEX, connecting the presence of spatially and temporally

coherent roll vortices aligned close to the wind with enhanced levels of

superinertial shear.

As noted in Section 6.2, Doppler sonars are particularly well suited to

detect the spatially and temporally coherent structures associated with bubble

plumes. SWP demonstrated that such structures were present during MILDEX,

concentrating on an eight-hour period from 2200 PST November 9th to 0600

PST November 10th. Their results, reviewed below, demonstrate the existence of

persistent velocity structures closely tied to concentrations of scatterers.

Figure 6.6 shows high-pass filtered sonar data taken from Figures 12-16 of

SWP. The color contour plots from these figures have been converted by hand-

tracing into "skeletonized" plots showing the locations of persistent features. The

top panel (6.6a) shows data from the alongwind (x) beam, which pointed aft from

FLIP, sampling depths of 20-40 meters over the first 800-1000 meters before the

beam dipped into the main thermocline. Maxima in intensity (solid lines) and
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Figure 6.6: Skeletonized Plots of Intensity and Velocity Structure from Doppler
Sonars. Plots are hand-drawn from Figures 12-16 of Smith et al., 1987. (a) Data

from the alongwind beam. Solid lines are maxima in intensity, dashed lines minima
in alongwind velocity. (b) Data from crosswind beam. Solid lines are maxima in
intensity, dashed lines maxima in divergence in alongbeam velocity.
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minima in velocity along the beam (dashed lines) were subjectively drawn by

hand from color contour plots. The plot shows that features were seen in both the

intensity and velocity fields with roughly the same spacing and translation

velocity relative to FLIP. Additionally, the relative phasing of the velocity and

intensity features was such that alongwind velocity minima were out of phase

with intensity maxima. This is consistent with a conceptual picture in which the

cells create plumes of bubbles associated with jets of water moving more quickly

in the alongwind direction.

Figure 6.6b shows data from the crosswind (y) beam, which was

dominated by surface returns at ranges from 700-1400m. The solid lines are, as

before, regions of intensity maxima, representing centers of bubble clouds. The

dashed lines in this case are minima in aVy/y, regions where the surface velocity

was divergent. Again, the features in intensity and convergence had roughly the

same horizontal wavelength and translation velocity relative to FLIP.

Furthermore, regions of divergence were out of phase with regions where

bubbles collected, a picture consistent with the presence of Langmuir cells.

The spatial structure of the scatterers is also consistent with their being due

to Langmuir circulation. The bands of scatterers had a much longer wavelength in

the alongwind beam (of order 500-700 meters) than they did in the crosswind

beam (of order 100 meters). This means that the features were elongated in the

alongwind direction. During the time that this data was taken, FLIP was moving

through the mixed layer with an average velocity of about 12 cm/s in the

downwind direction (less at the beginning of the time period, more at the end).

Because of this movement, features which persisted in the crosswind beam for up

to two hours at a time must have been at least 700 meters in length, a result

consistent with that inferred from the alongwind sonar.

Jets of alongwind velocity similar to those seen in the Doppler sonars were

also detected by the VMCMs and RTP. These jets were linked to strong

downwelling events. Figure 6.7 demonstrates this by presenting time series of

horizontal and vertical velocity from 0715-1050 PST, November 10, just after the

time period studied in SWP. During this time period the thruster was turned off.

The time series are from the RTP which was parked at a depth of 28 meters.

Alongwind velocity is shown in the top panel (6.7a), crosswind velocity in the

middle panel (6.7b) and vertical velocity in the bottom panel (6.7c). A number of

strong alongwind jets occur at the same time as strong downwelling events

during this time period.
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Figure 6.7: Velocity data from the Real-Time Profiler showing the relationship
between the downwind jets and strong downwelling. Time shown is 0715-1050
PST on November 10. Depth is 28m. (a) Alongwind Velocity. (b) Crosswind
Velocity. (c) Vertical Velocity.
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In WP, it was demonstrated that on days when Langmuir circulation was

strong, scatterplots of the near surface shear showed "upwind" velocity shears,
times when the water at 6.5 meters appeared to be moving faster in the

downwind direction than water at 2 meters. These shears can be linked to the

velocity jets and downwelling seen by the RTPs. Figure 6.8 shows spectra of

velocity from the RTP and shear from the top two current meters during the time

(0715-1050 PST, November 10) shown in Figure 6.7. The solid lines are the

spectral density, the dashed lines show the 95% confidence level. The short

length of the time series means that the confidence levels were in general nearly

as large as the signal, implying that caution should be used when making detailed

comparisons between the various signals. Figure 6.8a and b show spectra of

downwind and vertical velocity respectively from the RTP. Both signals showed

clear peaks at frequencies of 2-6 cph, with a secondary plateau from 10-20 cph.

Coherence (not shown) between the two signals was excellent in both of these

frequency bands, dropping off outside them.

Figures 6.8c and d show spectra of the shear from the top two current

meters (2 and 6.5m) in the alongwind and crosswind directions. The alongwind

shear was fairly flat while the crosswind shear retained many of the same broad

qualitative features (a peak from 1-5 cph, a plateau at 10-20 cph) as the RTP

velocities. Both the 2-6.5m crosswind shear and the RTP velocities are peaked in

a band from 1-6 cph, although the crosswind shear has a slightly different

structure from the RTP velocities. This agreement is surprisingly good given the

fact, (noted in Chapter 5), that the velocity structure of fully developed Langmuir

cells is highly dependent on cell spacing. The alongwind shear spectrum is quite

different from the crosswind shear spectrum even though the integrated
amplitude is very similar.

It is instructive to compare these signals to a time when the wave field was

energetic, but Langmuir cells do not appear to have been strong. Figures 6.8e and

f show spectra alongwind and crosswind shear respectively for 1600-2400 PST

on November 4. During this period, the significant wave height was between 4

and 5 meters, nearly as large as during 0715-1050 PST on November 10. Despite

the fact that the waves were high, the spectral levels for velocity and shear are

much lower (by a factor of 10) than those corresponding to the period when cells

were strong. Note that the time-varying shear is lower across almost the entire

frequency band for both crosswind and alongwind shear. This means that wave

aliasing cannot be solely responsible for generating the shear signals.

186



Vertical Velocity SpectrumAlongwind Velocity Spectrum
102 rr.I 4

101 102 -10o 101
Frequency in cph Frequency in cph

(a) (b)

Alongwind Shear Spectrum 2-6.5m

VMCMs:Nov 10

715-1050 PST

/ ilA

100

Crosswind Shear Spectrum 2-6.5m
1u

z.
C
0

.O 10"

101
Frequency in cph

Alongwind Shear Spectrum 2-6.5m
10-s  

VMCMs:Nov 4
1800-2400 PST

10-

1A
7

100 101
Frequency in cph

(e)

VMCMs:Nov 10

/ 715-1050 PST

i

00 10 1(
Frequency in cph

(d)

Crosswind Shear Spectrum 2-6.5m

10 VMCMs:Nov 4
1800-2400 PST

106

S10V
10 10 1(

Frequency in cph
(f)

Figure 6.8: Current and shear spectra in the presence and absence of Langmuir
cells.Dashed lines are confidence interval. (a) Spectrum of alongwind velocity
from the RTP, 0715-1050 PST, November 10. (b) Spectrum of vertical velocity
from the RTP, 0715-1050 PST, Novmeber 10. (c) Spectrum of alongwind velocity
shear from the VMCMs at 2 and 6.5m, 0715-1050 PST, November 10.
(d) Spectrum of crosswind velocity shear from the VMCMs at 2 and 6.5m, 0715-
1050 PST, November 10. (e) Spectrum of alongwind velocity shear from the
VMCMs at 2 and 6.5m, 1600-2400 PST, November 4. (f) Spectrum of crosswind
velocity shear from the VMCMs at 2 and 6.5m, 1600-2400 PST, November 4.
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To summarize then, during MILDEX there is evidence of persistent

structures with much broader extent in the alongwind direction than in the
crosswind direction (Doppler sonars) involving surface convergences (Doppler
sonars) which are in phase with alongwind jets (Dopplers, VMCMs) of velocity
and strong downwelling events (RTP). These structures were associated with

shear in the 1-30 cph band (VMCMs).

6.4.2 High-Frequency Shear as an Index of Cell Strength

We have established a number of measures of cell strength during
MILDEX. Unfortunately, it is only possible to compute indices of cell strength
spanning the length of the cruise from the current meters. Two logical signals are
the amplitude of time-varying current or shear in the 1-30 cph band. As noted
earlier, such variability would be the result of any mean drift in the mixed layer
sweeping the cells past the current meter strings. If the cells had more than one

scale, as has been suggested by many observers, large-scale cells would also have
advected small-scale cells past the current meters.

The high-frequency shear and velocity were extracted as follows. Hour-
long segments of data from the VMCMs were rotated relative to the wind and the
trend was removed. The standard deviation of the current and shear was then

used to compute a measure of the strength of the high-frequency variability (1-30

cph) associated with the passage of cells. Figure 6.9 shows the results when this
procedure was applied to the current at 2m and 6.5 m and the shear between 2m
and 6.5m, 6.5m and 20m, and 20m and 35m. The current and shear in the

alongwind direction are shown by the solid lines, the crosswind current and shear
by the dashed lines. The signals were very similar at all depths and did not show
significant differences between the crosswind and alongwind direction. The
amplitude of the shear signal fell off with depth, being strongest near the surface.
There were "noise floors" beneath which the high-frequency shears and currents
never seemed to drop. The level of these noise floors was consistent with the

error calculations presented in Appendix D.

As already stated, there are two different physical regimes during

MILDEX. During the early part of the cruise (October 26-November 6), the mixed

layer was dominated by diurnal restratification with only a few time periods with

strong variability. These periods were relatively short in duration (of order a few

hours) and occurred mostly at night. During the latter part of the cruise
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Standard Deviation of High-Frequency (1-30cph) Velocity 2m
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Figure 6.9: Time-varying current and shear during MILDEX. In all cases, solid
lines indicate alongwind velocity or shear, dashed lines crosswind velocity or
shear. From top to bottom. Standard deviation of the detrended velocity at 2m.
Standard Deviation of the detrended velocity at 6.5m. Standard deviation of the
detrended velocity shear between 2 and 6.5m. Standard deviation of the
detrended velocity shear between 6.5 and 20 meters. Standard deviation of the
detrended velocity shear between 20 and 35 meters.
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(November 6-13) when the forcing was stronger and the mixed layer was deeper,

there were a number of strong, persistent rises in the level of the high-frequency
current and shear. While these high-shear periods were related to the strong wind

events mentioned earlier, the relationship is not simple, as the levels of the high-

frequency current and shear showed a much more spiky signal than either the

wind speed or the wave height.
The high frequency shear is chosen as an index of cell strength for a

number of reasons. First, the errors introduced by wave aliasing are less important

for high-frequency shear (Appendix D). Additionally, as argued in Chapter 5, the

characteristic scale of the shear associated with the cells provides information

about the forcing which drives the cells.

The high-frequency shear has an amplitude much larger than that

associated with wave aliasing. This does not mean, however, that it is necessarily

the result of Langmuir cells. It is not clear a priori that the 1-30 cph frequency

band captures the right range of wavelengths for Langmuir circulation.

In order to address this question a technique to estimate the energy in a

wavelength band from 10-200 m (assuming a frozen-field approximation) was

developed. For a 2-hour time period, the mean velocity was computed and

rotated into alongwind and crosswind directions. Assuming a frozen field of cells

oriented parallel with the wind, the crosswind velocity is a measure of the speed

at which cells are advected past FLIP. If k is the wavenumber of the cells and Uad

is the advection velocity then
(6-8) . o=kUa

is the frequency at which one might expect to see velocity fluctuations

corresponding to cells of a given horizontal wavenumber. From Figure 6.6 it is

clear that simply taking the crosswind velocity will not give the right encounter

rate, since the cells may be oriented at some small angle to the wind.

Three possible orientations of cells were allowed, 15 degrees to the left of the

wind, parallel with the wind, and 15 degrees to the right of the wind, and the

crosscell advection velocity was computed for each one. Uad was then taken as

the maxima of the three possible crosscell advection velocities. The spectrum of

the shear was calculated, and the variance in a frequency band associated with

spatial scales of 15-200 meters was extracted. This method is termed the "LC

Bandpass".

The shear between 2 and 6.5m due to disturbances with wavenumbers of

10-200 meters wavelength was computed using this method. The result is shown
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MILDEX: High-frequency Shear
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Figure 6.10: Demonstration that high-frequency bandpass captures a range of
wavelengths associated with Langmuir cells. Solid line is standard deviation of
hourly detrended velocity shear between 2 and 6.5 m. Dashed line is LC
bandpass technique discussed in the text.

by the dashed line in Figure 6.10. The solid line shows the simple frequency
bandpass. The LC bandpass created a signal with an envelope essentially
identical with the frequency band-pass with drop outs due to low crosswind
advection. The overall character of the signal was not significantly changed. The
overall agreement between the two signals supports the use of the high-
frequency shear as a measure of Langmuir circulation, since it offers yet more
evidence that the frequency band from 1-30 cph is affected by structures with the
right wavelengths to be Langmuir circulation.

How does the high-frequency shear compare with previously published
measurements of Langmuir circulation strength? Figure 6.11a shows the high-
frequency shear over the entire experiment and Figure 6.11 lb shows an index of
cell strength based on alignment times for surface drifters and vertical velocities
seen by the RTP presented in WP. Figure 6.1 1c shows the wind stress and Figure
6.1 ld the significant wave height. The indices of cell strength presented here
agree in that on days with large high-frequency shears there are also large
downwelling and fast alignment of cards. It is difficult, however, to link changes
in strength in the card or vertical velocity index to those seen in the high-

frequency shear.
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Figure 6.11: Cell Strength during MILDEX (a) High frequency shear (standard
deviation of hourly detrended velocity shear between 2 and 6.5m) over the course of the
whole cruise. (b) Card and vertical velocity index (from Weller and Price,1988). Intensity
of Langmuir circulation at a given depth is summarized as a function of time (horizontally)
and depth (vertically) by the shading inside the boxes. Boxes indicate periods of
observation at a given depth, level 1 is the surface, 2 is 0 to 15m 3 is 15-30 m. 4 is depths
below 30 m. For level 1, surface drifter observations were quantized by the length of time
needed for an initially scattered distribution to form into organized lines; black indicates
alignment within 1-2 minutes, closely spaced slanted lines indicate alignment took up to 10
minutes, horizontal lines indicate alignment took 30 minutes to an hour and the most widely
spaced lines indicate alignmen took more than an hour. For RTP observations at the
various depths the same shading scale is used with the shades (darkest first) corresponding
to downwelling speeds of >25 cm/s, 15-25 cm/s, 5-15 cm/s and more than 0 but less than
5 cm/s. (c) Absolute value of wind stress in Pa. (d) Significant wave height in m.
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Section 6.3.1 showed that the presence of high-frequency shear was

related to the presence of Langmuir cells as measured by the Doppler sonars. An

attempt was made to make a more quantitative comparison using a subjective

index of cell strength based on the Doppler sonar data. This index was

constructed as follows. Sonar images during the intensive period studied in SWP

were examined in 2-hour segments. During each two-hour segment an index of

the cell strength (varying from 0-4) was assigned based on the strength of the

coherent velocity structures in the crosswind beam. Figure 6.12a and b show the

level of the high-frequency shear and the subjctive sonar index during the

passage of the low pressure system on November 8, 9 and 10. The indices do not

agree particularly well, especially as regards the timing of the maximum cell

strength. This result is presented as a cautionary example of the difficulty in

constructing a consistent picture of cell strength.

To summarize, it has been shownthat the presence of Langmuir cells in the

mixed layer during MILDEX was broadly correlated with enhanced shear

variability in a frequency band from 1-30 cph. Within this frequency band, the

upper part of the mixed layer was far from slab-like. The standard deviation of this

high frequency shear is a measure of the strength of the cells. As such, however, it

did not agree particularly well with the wind stress wave height, or a subjective

measure of cell activity based on the Doppler sonar images.

Total Amplitude of HF Shear

S0.02 -

( 0.01
C,,

Nov.8 Nov.9 Nov.10 Nov. 11
Subjective Sonar Index

F

Nov.8 Nov.9 Nov.10 Nov. 11

Figure 6.12: Comparison of high-frequency shear and subjective sonar index.
Top: Total amplitude of high frequency shear (standard deviation of hourly
detrended shear 2-6.5m). Bottom: Subjective sonar index.
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6.5 Effects of Langmuir Cells on the Velocity and Density Structure

6.5.1 Models of Oceanic Response to Wind and Buoyancy Forcing

Having derived an index of Langmuir cell strength, we now turn to the

question of when and how the cells affect the horizontally averaged structure of

the upper ocean. As noted earlier in this chapter there are at present two

competing conceptual pictures of how the mixed layer is mixed. In the first of

these conceptual pictures the processes maintaining the mixed layer have the

same scale as that layer. Up to the present point, models within this framework

have taken the mixed layer to be a slab, well-mixed with respect to all scalar and

vector quantities (Pollard et al., 1973; Denman and Miyake, 1973; Price et al.,

1986, henceforth PWP). The depth of the mixed layer changes as the result of

buoyancy forcing and shear instability and/or isotropic turbulence produced at

the upper boundary and transported to the mixed layer base by unspecified

processes. The processes maintaining the slab have not been specified.

This section uses the slab model presented by Price,Weller, and Pinkel

(1986) as a baseline against which to compare the observed the response. The

PWP model has been verified on a number of occasions (PWP, 1986; Stramma, et

al., 1986; Price, Weller, Bowers, and Briscoe, 1987) and is used operationally by

the U.S. Navy. The model has two regimes in which active mixing occurs. In the

"mixed layer" regime, the upper part of the water column is treated as a perfectly

mixed slab which becomes shallow as the result of surface heating or freshwater

input and deepens as the result of shear (Kelvin-Helmholtz) instability or buoyant

convection. Below this layer is a transition layer which mixes so as to maintain a

local Richardson number greater than 0.25. In the transition layer, mixing occurs

only between neighboring grid points and so is small-scale in its character.

A second conceptual picture of how the mixed layer is maintained is a pure

small-scale mixing picture, exemplified by the work of Mellor and Yamada (1974).

In this picture, mixing is driven by Kelvin-Helmholtz and Rayleigh-Taylor

(buoyant) instabilities which have small (order tens of centimeter) scales. The

Mellor-Yamada models produce fields of conservative scalar quantities like

temperature and salinity which are similar to those given by the PWP model, with

the difference that they allow for mean gradients within the well-mixed portions

of the surface layer. This section uses a level 2 Mellor-Yamada model, similar to

that of Klein and Coste (1984). This model will be referred to as the MY2 model.

It assumes a balance between local production and dissipation:
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(6-9) -U W Z Z W

Shear Production + Buoyancy Production = Dissipation

The nonlinear transports and dissipation are then parameterized in terms of the

eddy viscosity, eddy diffusivity, mean shear, and stratification, and the viscosity

and diffusivity are solved for. The energy balance does not include a term for

wave forcing corresponding to the Craik-Leibovich mechanism.

Because mixing within the MY2 model is accomplished by eddy

diffusivity and viscosity, the model produces a horizontally averaged velocity

profile which is quite different from the PWP model. As shown in Chapter 8, a

conceptual picture in which Langmuir circulations are responsible for maintaining

the mixed layer can narrow the gap between the slab models and small-scale

mixing models by allowing Langmuir cells to homogenize the velocity structure

within the mixed layer produced by small-scale mixing.

6.5.2 The Near-Surface Shear and Stratification during MILDEX

We begin our analysis of the low-frequency response by looking at time

series of the near-surface shear and stratification during MILDEX. Figure 6.13

shows the temperature difference between 2 and 10 meters computed from the

hourly-binned data. The solid line shows the result from data, the dashed line the

Temperature Difference, 2-10m

!I Solid:Data

0.2- Dashed:PWP

1 Chain-dot:MY2

0.15 iii SI

0.1

0.05

-0
O.24 26 28 30 Nov. 1 3 5 7 9 11 13

Figure 6.13: Temperature difference between 2 and 6.5m. Solid: Data. Dashed:
PWP model. Chain-dotted: Mellor-Yamada Model.

195



result from the PWP model, and the chain-dotted line the result of the MY2

model. The three curves were generally in good agreement. When the data

showed diurnal restratification, both of the models did too. In general, the

amplitude of the diurnal restratification was quite well captured, but there were a

few exceptions. On October 28th both the PWP and MY2 models overpredicted

the diurnal restratification by a factor of about 2. On October 30, the PWP model

underpredicted the temperature difference, while the MY2 model overpredicted

it. On November 1st and 6th, the models underpredicted the stratification, which

appeared to be associated with frontal activity.
In general, the two models did relatively well at reproducing the observed

temperature stratification. The velocity structure is another matter altogether.

Figure 6.14a and 6.14b show the velocity difference between 2 and 10 meters in

the alongwind and crosswind directions respectively. There were major

differences between the observed velocity and that predicted by the models. A

time of particular interest is November 7-11, where the PWP model predicted no

shear between 2 and 10 meters and the MY2 model predicted shear in the

downwind direction. The data in fact shows the water at depth moving more

strongly upwind and to the right of the wind than the water at the surface.

The presence of such upwind shear is an indicator of mixing accomplished

by large-scale processes. In a small-scale mixing picture, shear is the result of local
"eddy viscosity" producing mixing proportional to a mean velocity gradient.

Upwind shear implies that the eddy viscosity must be negative, something which

can only occur in the presence of organized, nonlocal mixing.

The presence of upwind shear was related to the presence of high-

frequency shear, while strong downwind shear was related to stratification.
Figure 6.15a shows the shear along an axis 45 degrees to the right of the wind,
Figure 6.15b shows the the standard deviation of the shear between 2 and 6.5m

while 6.15c shows the temperature difference between 2 and 10m. Strong

upwind shears occurred on October 31 and each day between November 6 and

12. Additionally, there were episodes of downwind shear on October 24, 26, 27,

28, November 2,3 and 4.

The strong low-frequency upwind shears were correlated with the

elevated levels of high-frequency shear while the downwind shears were

correlated with diurnal restratification. Figure 6.15d shows a scatterplot of the

level of high frequency shear versus the velocity difference along an axis 45
degrees to the right of the wind. Times when the high-frequency shear was large
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Figure 6.14: Velocity Difference between 2 and 10 meters in m/s. Solid: Data.
Dashed: PWP model. Chain-dotted: MY2 Model. (a) Alongwind velocity.
(b) Crosswind velocity.
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2-10m Velocity Difference Along Axis 45 Degrees to Right of Wind
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Figure 6.15: Occurence of upwind shear is related to presence of high-frequency
shear. (a) 2-10m velocity Difference along axis 45 degrees to the right of the
wind. (b) Standard deviation of the detrended shear between 2 and 6.5m, solid is
alongwind,dashed is crosswind. (c) Temperature Difference between 2 and 10
meters. (d) 2-10m velocity difference in axis 45 degrees to right of wind vs. level
of alongwind high-frequency shear. (e) 2-10m velocity difference along axis 45
degrees to right of wind vs. 2-10m temperature difference.
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corresponded to times when there was more upwind shear (negative values of

velocity difference). Figure 6.15e shows temperature difference between 2 and

10m plotted against the velocity difference along an axis 45 degrees to the right

of the wind. When there was strong temperature stratification, there was

generally a corresponding downwind shear (positive velocity difference).

In summary, neither a small-scale mixing model or a slab model accurately

captured the velocity structure in the top 10 meters during MILDEX when

Langmuir cells were strong, even though both models did a reasonable job at

capturing the temperature structure. The following subsection studies how this

difference is reflected in the low-frequency (0.01-0.1 cph) response of the mixed

layer to wind forcing.

6.5.3 The Ekman Response during MILDEX

In order to attack the question of the Ekman response during MILDEX,

the first and second parts of the experiment are considered separately. During the

first part of the experiment (October 25-November 5) , the mixed layer was

dominated by the cycle of daytime heating and nightime cooling described in

PWP. Langmuir cells, as measured by cards and current meters appear to have

been weak. During the second part of the experiment (November 6-14) the

mixed layer is fairly deep and cells were strong. This section examines the Ekman

response to surface forcing during these two periods and compares it to that

predicted by the MY2 and PWP models.

In order to properly characterize the wind-driven part of the flow, it is

necessary to separate the wind-driven flow from the mean geostrophic flow

associated with mesoscale features. This is done by choosing a reference depth,

below which the response to the local stress (as opposed to the curl or gradient of

that stress) is taken as zero.
Davis et al. (1981) proposed a spectral model for extracting the Ekman

response. They asssumed that the velocity profile might be modelled by the

relationship
A

(6-10) U(z,o) = S(z,o)(A0)
where I represents the Fourier transform of the complex stress vector x+iry and
A

U represents the Fourier transform of the complex velocity vector u+iv relative to

some reference depth. Within this model, the reference depth zref is computed as
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that depth which maximizes the coherence between velocities above that depth
and the wind stress.

An alternative methodology is to simply rotate the velocity into a

coordinate system referenced to the wind direction and to average over time. This

method picks out the velocity response which is in phase with the most energetic

components of the wind. Within this framework, the reference depth is chosen as
that which gives the most nearly correct value for the magnitude of the Ekman

transport. The magnitude of this transport can be predicted using a mixed layer

model (which has to close the momentum budget within its domain). One problem
with this method is that it convolves the velocity response across many different
forcing frequencies. It has the advantage, however, of being applicable to
relatively short data sets (as short as a single inertial period).

In order to isolate the effect of Langmuir circulation, the experiment is
divided into a time period where cells were not strong (Period 1), and a time

period where cells were strong (Period 2). The 14 inertial periods from 0200 PST

October 25 to 1400 PST November 5th are denoted as Period 1. Choosing this

interval avoids effects from the cold front which passed through the experiment

site on November 6. Period 2 covers five inertial periods starting at 1500 PST on
November 8.

During Period 1, diurnal restratification was strong. Figure 6.16 presents
the Ekman response during this period given a reference depth of 35 meters for

the data (top row), PWP model (middle row) and Mellor-Yamada model (bottom

row) using the methodology of Davis et al. (1981). The left-hand column shows

the coherence between velocity relative to 35 meters and wind stress. Only

contours above 0.3 are shown. The 90% confidence level, (computed by taking
100 Gaussian white noise time series of the same length and applying the same
processing) is 0.32, the 95% level 0.40. The right-hand column shows the
structure of the velocity response for a frequency band centered at -0.01 cph as a

function of depth.
During Period 1, the velocity relative to 35 meters was significantly

coherent with the surface stress over a range of frequencies from about -0.05 cph

to 0.05 cph and over depths down to 20 meters. Maximum coherence was found

at low frequencies, in a band centered around -0.01 cph. There was a drop in

coherence near the inertial frequency (not surprisingly, since inertial oscillations

need not be coherent with the wind stress). The transfer function at -0.01 Hz
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Figure 6.16: Velocity response relative to 35 meters during Period 1 computed by
spectral method. 95% confidence level is 0.35. (a) Coherence between wind
stress and observed velocity. (b) Transfer function for frequency band with
maximum coherence (centered at -0.01 cph) between wind stress and observed
velocity. (c) Coherence between wind stress and PWP velocity. (d) Transfer
function for frequency band with maximum coherence (centered at -0.01 cph)
between wind stress and PWP velocity. (e) Coherence between wind stress and
MY2 velocity. (f) Transfer function for frequency band with maximum coherence
(centered at -0.01 cph) between wind stress and MY2 velocity.
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between wind stress and velocity showed a response off to the right of the wind.
The response was concentrated in the upper 20 meters of the water column.

Both the PWP and MY2 models did a reasonable job at reproducing the
observed coherence, although both models predicted significantly more

coherence at superinertial frequencies and the PWP model predicted less

coherence at the inertial frequency. The PWP model produced a low-frequency
Ekman response similar to the data, though it was more to the right of the wind
near the surface. The MY2 model's low frequency Ekman response was more
strongly sheared than the data or the PWP model. As a result, the surface velocity
was about 50% larger than the data and oriented more in the crosswind direction.

The picture changes when shear rather than velocity is examined. Figure
6.17 shows the coherence between the wind stress and local shear and the

structure of the coherent shear during Period 1 for the data and the two models.
The coherence is shown in the left-hand column. The data showed low coherence

near the surface with high coherence near the mixed layer base at 25 meters. In
this case the PWP model performed significantly better than the MY2 model in
reproducing the observed coherence. The MY2 model showed strong coherence
at low frequencies all the way up to the surface. In fact, the highest coherences in
the MY2 model occurred near the surface. The PWP model, with a slab-like near-

surface layer did not show such coherence. This point is considered in more detail
in 6.5.5.

The shear response during Period 1 is shown in the right-hand column of

Figure 6.17. Once again, the PWP model comes closer than the MY2 model to
reproducing the near-surface shear. In both the data and the PWP model the
shear was small and off to the right of the wind near the surface. In both the
model and data the shear increased with depth, turning slightly to the right of the
wind reaching a maximum around 10 meters. The data showed slightly more
downwind shear than the PWP model, but the differences were not glaringly
obvious. The MY2 model, on the other hand showed a concentration of shear
near the surface, decreasing and turning to the right with depth as in the classical

Ekman spiral.

The normalized Ekman transport Tek during Period 1 may be computed by
integrating the transfer functions shown in Figure 6.16 down to a given depth.

0
(6-11) Tek p f S(o,z) dz

zint
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Figure 6.17: Shear response to surface wind stress during Period 1 computed by
spectral method.. (a) Coherence between wind stress and observed shear.
(b) Transfer function for frequency band with maximum coherence (centered at
-0.01 cph) between wind stress and observed shear. (c) Coherence between
wind stress and PWP shear. (d) Transfer function for frequency band with
maximum coherence (centered at -0.01 cph) between wind stress and PWP
shear. (e) Coherence between wind stress and MY2 shear. (f) Transfer function
for frequency band with maximum coherence (centered at -0.01 cph) between
wind stress and MY2 shear.
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Ekman Transport: Spectral Method, Period 1

0 0.5 1 1.5
Crosswind Transport in Units of Ekman Transport

Figure 6.18: Ekman transport calculated by integrating the spectral transfer
function S(co,z) calculated using a reference depth of 35 meters from the surface
to a depth z=zint for o=-0.01 cph. (Equation 6-11) Values shown are normalized
by the theoretical value of Ekman transport. Solid lines are using the observed
transfer function, dashed lines that predicted by the PWP model, chain-dotted
lines that predicted by the MY2 model. Letters represent different values of zint.
(a = 2m, b = 10m, c = 20m, d = 30m, e =40m, f= 50 m). Arrow points to theoretical
value of transport (1 in the crosswind direction, 0 in the alongwind direction).
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Essentially, zref is chosen so as to extract the wind-driven response while zint
gives some measure of the depth to which there is structure in that response. If
the response is modal, an appropriate zref might occur at a zero-crossing of the
mode while zint would be deeper in the water column. The results of the
calculation outlined in (6-11) are shown in Figure 6.18 as a function of zint. The
solid line represents the integration of the transfer function from data from the
surface downward, the dashed line the PWP model, and the chain-dotted line the
MY2 model. The letters a through f show different values of Zint (a=2m, b=10m,
c=20m, d=30m, e=40m, f=50m). The theoretical Ekman transport is shown by the
arrow. The model transfer functions show essentially no change when zint is
greater than 20 meters, indicating the transport is entirely carried at depths of 20
meters and above. The data, however, does show some change when zint is
greater than the reference depth. As the coherence between current and wind
stress is low for these depths, the agreement may be fortuitous, but it is indicative
of the difficulty in making good estimates of the Ekman transport.

If the three transfer functions are integrated down to 30 meters, the
transport in the data is 120% of the theoretical value and 79 degrees to the right
of the wind. The PWP and MY2 models both give transports which are also
about 25% larger than the theoretical value and are 94 and 100 degrees to the
right of the wind respectively. The models do not give a result which agrees with
theory exactly because of inertial oscillations and because the model output has
been degraded to the same resolution as the data. As such the models provide a
rough estimate of the inherent error in measuring the Ekman transport given the
available spatial and temporal resolution. The final transports agree to within
20%.

The above calculation demonstrates that the Ekman transport during the
first part of MILDEX may be recovered by using the spectral method of Davis et
al. (1981). A second method, involving orienting relative to the wind and
averaging is now considered. In this method, one begins by choosing a reference
depth and then looking at the response.

During Period 1, the mean rotated and averaged transport from the models
was very close to the theoretical value when reference depths below 30 meters
were chosen. The data showed its best agreement with the theory and the models
when the reference depth was chosen to be 40m. This was quite close to the 35
meters chosen as the reference depth by the coherence criterion of Davis et al.
(1981). As in the spectral model, most of the transport was carried above 20
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Figure 6.19: Ekman transports computed by orienting the velocity relative to the
wind and averaging. Transports are normalized by ItI/pf where I'd is the mean
stress over each time period. Theoretical value is 1 in the crosswind, O in the
alongwind direction. (a) Period 1 (Wind and Langmuir cells weak). (b) Period 2
(wind and cells strong).

meters depth and the transport in the data is slightly smaller and more downwind
than in the models. The Ekman transports for this period are shown in Figure
6.19a. The transports predicted by orienting the current relative to the wind and
averaging are in close agreement with the naive prediction. The observed
transport is slightly larger in the alongwind direction than predicted, as was the
case for the spectral model.

The Ekman transports for Period 2 are shown in Figure 6.19b. During
Period 2, the transport in the models was slightly larger than the naive theory
would predict and was somewhat downwind. The data came closest to
reproducing this transport when a reference depth of 60 meters was chosen. The
transport was 85% of the theoretical value in the data, 104% in the PWP model
and 111% in the MY2 model. The data and both models showed the transport to
be oriented about 70 degrees to the right of the wind.

The agreement between the predicted and observed transport is interesting
since the theory developed in Chapters 3 and 5 predicted that there should be an
Eulerian return flow associated with the waves. A strong upwind transport
associated with this flow is not seen. Instead, the data shows a flow which has a
larger downwind transport than is predicted by the models.
larger downwind transport than is predicted by the models.
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Figure 6.20: Velocity response relative to 40 meters and shear response as a
whole during Period 1 computed by orienting relative to wind and averaging.
(a) Velocity response, Data. (b) Shear Response, Data. (c) Velocity response,
PWP. (d) Shear response, PWP. (e)Velocity Response, MY2. (f) Shear response,
MY2.
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Figure 6.20 shows the velocity and shear responses during Period 1

computed by orienting the velocity and shear profiles relative to the wind and

averaging. The reference depth for velocity was taken to be 40 meters. The left-

hand column shows the velocity response and the right-hand column the shear

response. Comparison between these response functions and those computed by

spectral methods shows that the two methods are almost identical for Period 1

(though there are some small differences which account for the difference in
transport calculated using the two methods).

Having built a case for rotating the velocity relative to the wind and
averaging, we now turn to later in the experiment when Langmuir cells were

strong. During this time, the high-frequency shear shows evidence of very strong
cells. Because this time period represents such a short record it was not possible
to obtain results of high enough significance using spectral methods. The

response was computed using the method of rotating the velocity relative to the
wind and averaging. The results of this procedure are shown in Figure 6.21. The
velocity response during Period 2 relative to a reference depth of 60 meters is
shown in the left-hand column of Figure 6.21. Again the results are shown for the
data and the two models, with 6.21a showing the response from data, 6.21c from

the PWP model, and 6.21e from the Mellor-Yamada model. During Period 2, the

velocity structure was again better characterized by the PWP model than the
MY2 model. However, in this case there were clear differences between the PWP
model and data. The observed velocity response exhibited a subsurface maximum
at depths of 5-10 meters, while the PWP model predicted a slab down to a depth
of 25 meters. The MY2 model, as before, showed the velocity response as being

concentrated near the surface, with a surface response 4 times as large as that
seen in the data and 1.7 times as large as that seen in the PWP model.

An additional difference between the data and the models is that the

velocity response seems to penetrate more deeply into the water column in the

data. This can also be seen by looking at the transport calculation used to

calculate the reference depth. Whereas the models converged on a transport

given a reference depth of about 45 meters, in the data it was necessary to

integrate down to 60 meters to get close to the right value for the transport. Since

the top of the main thermocline was at 40 meters during MILDEX, it appears that

the observed velocity response did penetrate into the thermocline.
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Figure 6.21:Velocity response relative to 60 meters and shear response as a whole
during Period 2 computed by rotating relative to the wind and averaging. (a)
Velocity response, Data (b) Shear Response, Data. (c) Velocity response,PWP. (d)
Shear response PWP. (e)Velocity Response, MY2 (f) Shear response MY2.
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The shear response during Period 2 is shown in the right-hand column of
Figure 6.21. Here the differences between the data and the two models are most
clearly shown. The data showed strong upwind shear near the surface, crosswind

shear at a depth of 12 meters, downwind shear at about 20 meters and shear
which rotates below that. The PWP model showed almost all shear concentrated

at depths of 30-40 meters, near the main mixed-layer base. The MY2 model

showed large shears throughout the mixed layer which rotated clockwise with

depth in classical Ekman spiral form. The shears were surface-concentrated, but it

is notable that the shear at 25 meters in the MY2 model was almost as large as the
shears at 25 meters in the PWP model. There are major disagreements between the
three pictures of mixing presented here.

In summary, the mean Ekman transport during both Periods 1 and 2 was
off to the right of the wind and was relatively close to theoretical values. The
vertical distribution of the Ekman transport was more similar to that predicted by
a slab model than that predicted by a Mellor-Yamada model. The structure of the

Ekman response was affected by the presence of Langmuir circulation. When the

cells were strong, the velocity response had a maximum in the mixed layer interior,
and may have penetrated into the main thermocline. The shear response was

radically different in the presence of Langmuir circulation. The mixed layer was

far more sheared near the surface than predicted by a slab model but less sheared

at depths of 5-20 meters than predicted by a Mellor-Yamada model.

6.5.5 Discussion

The results from MILDEX are in better agreement with a conceptual
picture in which Langmuir cells stir the surface mixed layer then one in which
small-scale mixing is responsible for momentum and buoyancy transport. When
the cells were energetic they resulted in the creation of mean shears within the
mixed layer, and perhaps in a greater penetration of the surface momentum input
than predicted by either of the standard mixing models.

An interesting point is the low coherence between the shear within the

mixed layer and the surface stress seen during MILDEX. This lack of coherence is

predicted by the PWP model but not by the Mellor-Yamada model, even during

times when the cells were weak. This phenomenon occurs because the

coherence between two signals drops when the dependence of one signal on the

other is nonlinear, and particularly when it is not monotonic. An example is the
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PWP model given a fixed surface heating. Consider a fixed depth zf, well above
the seasonal thermocline, but below the depth at which most solar radiation is
absorbed. At low wind stresses, mixing does not occur and the shear at this depth
is zero. As the wind stress increases, the transition layer penetrates deeper into the
water column and the shear at z=zf increases. However, if the wind stress
increases enough so that the mixed layer depth is greater than zf, the shear at
z=zf vanishes. Thus in the PWP model, if the stress to the east increases, the
vertical shear of the eastward velocity will not necessarily increase.

Similarly, if Langmuir cells stir the mixed layer, the mean shear does not
depend monotonically on the wind stress. Given low values of wind stress and
waves, so that cells are weak, the shear is aligned with the wind and presumably
increases with the wind stress. If the wind stress increases so that the Langmuir
cells take over from small-scale diffusion, the shear within the mixed layer may
reverse direction (as occurred near the surface during MILDEX), or vanish (as
occurred in the middle of the water column). If such non-monotonic behavior
occurs frequently at a given depth, the wind stress and shear become incoherent.

For the Mellor-Yamada model on the other hand, given a constant
buoyancy forcing, increasing the stress increases the shear. At large values of
wind stress, the shear scales as the friction velocity. As a result, the coherence
between the shear and surface stress is high. The fact that this did not occur
during MILDEX is another indication that the physics of the MY2 model were
insufficient to explain the observed velocity structure.

Before bringing this section to a close, the effect of Langmuir cells on the
density field will be touched on. Both models did a reasonable job at modelling
the temperature stratification. In Figure 6.13 the amplitude of the diurnal warming
relative to 10 meters predicted by the models differed substantially from the data
on only two days (October 27th and 28th). Although the level of the high
frequency shear was elevated during the night of October 27th, there was little
difference between the mixed layer depth seen in the data and that predicted by
the two models. During daylight hours on the 27th and 28th, there was no
evidence that Langmuir cells were in fact present. Whether or not Langmuir cells
had an effect on the density structure in MILDEX remains an open question, but
the answer is apparently that such effects were not significant.

To summarize, the velocity structure of the mixed layer during MILDEX
was characterized by the following phenomena.
1. High-frequency shear within the mixed layer.
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2. Coherent velocity structures which were much longer in the alongwind than
the crosswind direction.
3. A low-frequency velocity response which was far less sheared than that
predicted by a model which assumed mixing accomplished by small-scale eddies.
4. A low-frequency velocity response with more shear within the mixed layer
than was predicted by a mixing model which parameterizes the mixed layer as a
homogeneous slab.

These phenomena are consistent with a conceptual picture in which the
mixed layer is stirred by Langmuir circulation. As demonstrated in Chapter 5,
Langmuir cells can remove some of the low-frequency shear associated with
small-scale mixing by actively transporting momentum and density throughout
the mixed layer. However, when the cells are very strong, they can produce
crosswind or even upwind shears.

Sections 6.6 and 6.7, discuss the question of whether the Craik-Leibovich
theory, which models the cells as being driven by wave-current interaction, can
account for the phenomena we have seen above. The level of the high-frequency
shear is considered in 6.6, and the presence of cellular structures and the
breakdown of small-scale mixing is treated in 6.7.

6.6 Understanding Langmuir Cell Variability During MILDEX: Evidence for
Wave-Current Interaction

Section 6.3 argued that the amplitude of the high-frequency shear during
MILDEX was an indicator of cell strength. If the cells are driven by wave-current
interaction the level of the high frequency shear (according to Chapter 5) should
go as the stratified Craik-Leibovich instability parameter TCLS. Chapters 2-5
considered how to calculate TCLS for a wide variety of situations. In all of them,
however, the velocity and density profile in the absence of Langmuir cells was
known. When working with field data, one must estimate the velocity and
density structure in the absence of Langmuir cells from the velocity and density
structure in the presence of Langmuir cells. In particular, the eddy viscosity and
eddy diffusivity must be estimated, a non-trivial exercise. Section 6.5
demonstrated that during times when cells were strong, the shear across the top
two current meters was 135 degrees to the left of the wind rather than along the
wind direction. Thus even the topmost current meter pair, which one would hope
would capture a near-surface shear layer, did not do so.

212



One simple way of estimating the eddy viscosity is to assume that near the
surface

(6-12) ve - - < Ve= -

This may be a reasonable approximation at depths where Langmuir cells are not
strong. It is not necessarily such a good approximation at depths where they are
strong. Chapter 5 showed that when the Craik-Leibovich instability parameter is
much larger than the characteristic diffusive decay scale, finite-amplitude
Langmuir cells are capable of altering the shear over a large portion of the layer,
causing it to reverse direction at some depths and change from downwind to
crosswind in some cases. During MILDEX such reversals in the mean were linked
with the presence of strong high-frequency shear. Under such circumstances a
better approximation is for

(6-13) Vel Ia- I Ve= /pa [
so that the absolute value of the shear is proportional to the absolute value of the
stress. As in Chapters 2-5, the turbulent Prandtl number is assumed to be 1 (eddy
diffusivity = eddy viscosity). The eddy viscosity computed from equation (6-13)
is shown by the solid line in Figure 6.22.

One check on the size of the viscosity estimated from the data is to
compare it with that obtained from the Mellor-Yamada model. The eddy viscosity
from the Mellor-Yamada Level 2 model between the depths of 2 and 5 meters is
shown by the dashed line in Figure 6.22. The two curves agree fairly well, the
correlation of the log(eddy viscosity) being 0.50. The eddy viscosity predicted by
(6-13) is generally within a factor of 3 of that predicted by the model, even as the
overall level of the viscosity varies over two orders of magnitude. There are, of
course, many small-scale differences which prevent the correlation from being
even higher.

A second check on the size of the eddy viscosity may be derived from
some unpublished dissipation data of Lueck (1988). As noted above, dissipation
profiles were taken during three periods on the 8th and 9th of November. If the
measured dissipation at some depth is due only to shear production, then if o is a
characteristic frequency for the shear, the dissipation should go as
(6-14) E-Ve 2

If w is given by the mean shear, an estimate for the size of ve can be obtained As
with the previous estimate, this one will also be biased somewhat high, since there
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Figure 6.22: Estimated eddy viscosity during MILDEX. Solid lines are estimated
from data (equation 6-13), dashed lines taken from Mellor-Yamada, Level 2
model. The solid squares are estimated from Lueck (1988).
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is no provision for turbulence driven by buoyant overturning or by wave-current
interaction. Eddy viscosities were computed for three time periods during
MILDEX. The results are shown by the squares in Figure 6.22. The first two
values agree fairly well with the estimates from the data and MY2 model. The
third value is quite a bit lower than either the data or the MY2 model. To some
extent, the low value may be blamed on undersampling (only 12 profiles were
used in its calculation, so that if mixing was patchy, the profiler might never have
gotten into a turbulent patch).

It is unlikely that either of the methods used to estimate the eddy viscosity
seriously underestimate the diffusive decay scale, and thus overestimate RaCLS.
This lowers the chance that the theory will predict Langmuir cells when none
would actually occur, but raises the possibility that it might predict the cells to be
weak when they are actually strong (RaCLS may be underestimated).

In order to compute the Craik-Leibovich instability parameter, the Stokes
drift shear and the stratification in the absence of Langmuir cells need to be
estimated. The Stokes drift can be computed from the time series of wave height
at the wavestaff.

(6-15) vs(z)= o31a(co)12/g do

where a(o) = jr(t)e-imtdt. Figure 6.23a shows the Stokes drift shear between 2

and 6.5 meters during MILDEX. The Stokes drift shear has a noticably different
structure than the significant wave height (Figure 6.4). In many ways, it
resembles the wind stress.

Estimating the stratification in the absence of cells also poses a challenge.
Obviously in the presence of near-surface temperature gradients one can let

(6-16) N= g0T
where g is gravity and a is the coefficient of thermal expansion. If the gradient is
being mixed away, the problem is more difficult. Using the estimated eddy
viscosity, one can estimate the temperature stratification required to carry a heat
flux of the same value as the surface heat flux.

(6-17) N2 _gaQ
pre pCpVe

where Q is the heat flux, p the density, and cp the specific heat. Figure 6.23b
shows a time series of N2 computed from (6-16) (solid) and (6-17) (dashed). There
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Figure 6.23: Frequency scales which go into making the estimate of the Craik-
Leibovich instability parameter. (a) Stokes drift shear between 2 and 6.5m.
(b) Buoyancy frequency from equation 6-20 (solid) and 6-21 (dashed).
(c) Absolute value of the hourly mean shear between 2 and 6.5 meters.
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are some times when the two agree very well. Only on October 30, November 4th
and November 12th does the predicted value exceed the observed value. In what
follows N2 is taken as the maximum of (6-16) and (6-17) so as to capture cases
when the Langmuir cells might be transporting buoyancy.

All the quantities needed to put together a rough estimate of the Craik-
Leibovich instability parameter have been discussed. As noted in Section 6.1, this
parameter measures the strength of the wave-current interaction in driving the
cells. Since this work focuses on the shear near the surface, the relevant Craik-
Leibovich instability parameter is one for cells which are relatively small, roughly
12 meters depth. From Chapter 2, the characteristic Stokes drift shear for driving
such cells is found at roughly 4 meters. Then if co is a characteristic size for the
high-frequency shear, it is proposed that:
(6-18) -~\,VV N2 Avs, AV N2,
(6-18) co - z - V Az-12-6mA-z.5m 12-6 5m- N 2 =  CL- N2 = 'CLS

where the shears and stratification are defined across 2 and 6.5 meters and N2 is
calculated as the maximum of (6-16) and (6-17). This shear scaling is clearly
analogous to that in Chapter 5, with the key difference that the Stokes drift and
Eulerian shears are not weighted over the depth of the mixed layer.

Figure 6.24a shows the stratified Craik-Leibovich instability parameter
calculated over the top 10 meters during the experiment Figure 6.24b shows the
diffusive decay rate and 6.24c shows the ratio of the two. Figure 6.24d shows
the level of the high-frequency shear. The mixed layer during MILDEX should
often have been unstable to Langmuir circulations, with the Craik-Leibovich
instability parameter being much larger than the diffusive decay scale most of the
time. However, the Craik-Leibovich instability parameter was often quite small, so
that the shears associated with Langmuir cells might not necessarily have risen
above the background noise. The Craik-Leibovich instability parameter
reproduces most of the major features in the high-frequency shear. The events on
October 31, November 6-8th, and November 8-11 are all captured quite well by
the Craik-Leibovich instability parameter. The instability parameter captures the
temporal variability during and after the passage of the low pressure system on
November 9-11, showing episodic bursts of activity during this time period, a
signal also found in the high-frequency shear.

The predicted and observed amplitudes of the high-frequency shear during
MILDEX compare fairly well quantitatively as well as qualitatively. Table 6.1
shows the correlations between the high-frequency shear from the current meters
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Figure 6.24: Craik-Leibovich instability and high-frequency shear during
MILDEX. (a) Estimate of stratified Craik-Leibovich instability parameter (solid
using data, dashed Mellor-Yamada) (b) Diffusive decay scale over the top 10
meters (solid using data, dashed Mellor-Yamada). (c) Ratio of Craik-Leibovich
instability parameter to diffusive decay scale. (solid using data, dashed Mellor-
Yamada) (d) High-frequency shear (standard deviation of the hourly detrended
shear between 2 and 6.5m)
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Field Correlation
Wind Stress x .5448

Significant Wave Height .1362

Eulerian Shear .6825

Stokes Drift Shear V .6007

DVCL= .8396
YCL= 7

av av .7931
YCLS= ]) -N 2

-N2  .6294

Table 6.1: Correlation of the high-frequency shear between 2 and 6.5 meters on
various parameters.

at 2 and 6.5m and the wind stress,wave height, Stokes Drift shear, Eulerian shear,
and various combinations thereof. The 98% confidence level for significance is
0.089. The time-varying shear is clearly strongly correlated with a number of
related parameters. The correlation is highest for TCL and YCLS. In reality, it is hard
to differentiate between these two cases. Both YCL and YCLS are superior to
indices based on the Eulerian shear alone for determining the strength of the
high-frequency shear.

The fact that a simple scaling based on Craik-Leibovich instability does
such a good job at predicting the amplitude of the high-frequency shear has a
two important implications. The first is that it supports the claim that the signals
seen during MILDEX were in fact due to Langmuir circulation. It is difficult to
postulate another mechanism which would produce shear variability which is so
well described by a parameter involving both mean shear and Stokes drift shear.
The second is that it supports the idea of the Craik-Leibovich instability
mechanism as playing an important role in the generation of Langmuir cells in the
field. Although both the estimation of the Craik-Leibovich instability parameter
and the shear associated with the cells are rather crude, the fact that the two
correlate so well is an extremely significant result.

In conclusion, there is hard quantitative evidence that Langmuir cells
during MILDEX are driven by wave-current interaction. The fact that the
amplitude of the high-frequency shear scales better with a crude estimate of the
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Craik-Leibovich instability parameter than with the mean value of the shear is

particularly encouraging. On the one hand, it is evidence against shear instability

or Kelvin-Helmholtz instability being responsible for the presence of near-surface

shear. Additionally, it provides confidence that the thruster is not causing both

the increase in the high frequency shear as well as the low-frequency shear

reversal, since one would expect a closer relationship between the two were this

true.

6.7 The Breakdown of the Mellor-Yamada Model: Further Evidence for

Wave-Current Interaction

Section 6.5 used the level of the high frequency shear to argue for Craik-

Leibovich instability as a driving mechanism for Langmuir cells. This section uses

the failure of the Mellor-Yamada model to capture the velocity structure as

evidence for the importance of Craik-Leibovich instability.

Section 6.4 showed that a model which only includes small-scale mixing

fails to capture the observed velocity structure during MILDEX. Bulk mixing

models which treat the mixed layer as a slab mixed by large eddies do a better job

at characterizing the velocity structure, even though they do not succeed in

capturing the shear structure. This section argues that the MY2 model fails to

produce a mixed layer which is suffiiciently slab-like because it does not account

for Langmuir cells driven by the Craik-Leibovich instability mechanism. By

combining the results of the last section with the instability codes developed in

Chapters 2 and 3, it is shown that the Mellor-Yamada model produces a mean

Ekman response which is unstable to Langmuir cells driven by wave current

interaction.
We begin by considering the Ekman response predicted by the Mellor-

Yamada model during Period 2, shown in Figure 6.21e and f. The velocity and

shear structure within the mixed layer are very similar to that predicted by

Ekman's (1905) simple spiral solution. The MY2 model computes the eddy

viscosity at each time step, and the mean between 2 and 5m over Period 2 is

approximately 0.017 m2/s. When this value is used to predict the velocity

response over the depth of the mixed layer the result is one which agrees

surprisingly well with the averaged response. Figure 6.25a shows the velocity

response relative to 60 meters from the MY2 model (solid), and assuming an eddy

viscosity of 0.0168 m2/s (dashed). The two responses are almost identical.
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Figure 6.25: Instability of the Mellor-Yamada Ekman response. (a) Ekman
Response relative to 60 meters during MILDEX Period 2. Solid lines are MY2
model, dashed lines Ekman spiral computed using an eddy viscosity of 0.0168
m2/s. (b) Mean Stokes drift profile during Period 2. Solid is from data, dashed is a
Pierson-Moskowitz spectrum with rms amplitude of 1.26m and peak period of 10
seconds. (c) Growth rate of most unstable mode in s-1 for Period 2 Ekman
response (assuming surface stress of 0.13 Pa) when effects of waves are included.
(d) Growth rate of most unstable mode in s-1 for Period 2 Ekman response
(assuming surface stress of 0.13 Pa) when effects of waves are NOT included.
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The averaged Stokes drift during Period 2 can by modelled by a Pierson-

Moskowitz spectrum which has a peak period Tpeak of 10 seconds and an rms

wave amplitude of 1.26m. This implies a characteristic length scale L of 25m (the

inverse wavenumber of a deep-water surface gravity wave with a period of 10s).

This in turn implies a Langmuir number of

(6-19) La= 2=a2  0.017

and a scaled Coriolis frequency

(6-20) - L2 =0.051

where f is the dimensional Coriolis frequency. By taking the mean absolute stress

over this time period (0.131 Pa), one can calculate a mean, nondimensionalized

surface shear. These values, together with a mixed layer depth of 43 meters were

used to run the spectral instability codes introduced in Chapters 2 and 3 which

are documented in Appendix B. The results were then converted to dimensional

units.
Figure 6.25c shows contours of the growth rate in s-1 of the most unstably

growing mode as a function of wavenumber in cpm and angle of cell axis relative

to the wind.The fastest-growing cells have a wavelength of 25-50 meters, an

angle of orientation slightly to the right of the wind, and grow on time scales of

400 seconds. In the absence of waves (Figure 6.25d) there are no unstably

growing cellular structures with wavelengths less than 200 meters. Those that are

unstable are very weakly so, with growth rates of the same size as the Coriolis

frequency.
In the presence of waves the Ekman layer produced by a local mixing

model is unstable to Langmuir circulation. The unstable disturbances are oriented

close to the wind, with relatively small spacing compared with the mixed layer

depth, and very large growth rates. This then, is a possible explanation for the

failure of the MY2 model to capture the velocity structure during MILDEX.

In the absence of waves (and thus Craik-Leibovich instability) the Ekman

layer produced by local mixing is very stable to two-dimensional disturbances.

Insofar as the cells observed in MILDEX were two-dimensional, the failure of the

the MY2 model to capture the velocity structure is evidence that Craik-Leibovich

instability (rather than Kelvin Helmholtz or Ekman instability) is responsible for

driving the cells which then homogenize the mixed layer.

222



6.8 Conclusions

The Mixed Layer Dynamics Experiment provides an opportunity to

examine both the effects and dynamics of Langmuir cells. The results, though

somewhat rough, are extremely promising. During MILDEX, the mixed layer was

maintained by processes with time scales which were fast in comparison with the

Coriolis frequency. Langmuir cells, which have spatial scales similar to the mixed

layer depth and mix on time scales fast in comparison with the Coriolis frequency,

were shown to be present by both sonars and current meters during one period of

the experiment, and by the current meters at a number of other times. The

presence of Langmuir cells was shown to affect both the level of the high

frequency shear and the structure of the low- frequency response to wind

forcing. The shear structure of a mixed layer with strong cells was not captured

either by a bulk model which treats this layer as a slab (PWP) or by a model where

the mixing occurs as the result of purely local processes (Mellor-Yamada).

Instability calculations show that the latter fact can be explained as the result of

the current profile produced by local mixing processes alone being unstable to

roll vortices driven by wave-current interaction. The level of the high frequency

shear varies over time in a manner which is also consistent with the cells being

driven by wave-current interaction.

While the evidence developed in this chapter is promising, it should be

emphasized that the agreement between theory and data is far from exact. Two

differences which stand out are:

1. The presence of strong, low-frequency upwind shears near the surface. Such

shears were not seen at equilibrium in any of the model solutions presented

during Chapters 4 and 5. In Chapter 8 it is shown that they do not appear for

finite-difference code solutions given the mean conditions during MILDEX.

2. The Ekman transport was close to that predicted by mixed layer models which

did not include surface gravity waves. There is no evidence of an Eulerian return

flow associated with the surface gravity waves.

These differences are discussed in more detail in Chapter 8.

This work has a number of important implications. The fact that the mixed

layer does appear to be mixed by large eddies is a validation of the large-eddy

mixing approach taken by many authors. However, this work points out some

shortcomings of that approach, particularly as regards the assumption that the

mixed layer is perfectly mixed with regard to all scalar and vector quantities.
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Another shortcoming of existing slab models is that they do not include effects of

the wave field. As seen in this chapter, the velocity structure in the oceanic

surface layer is coupled to the wave field. Wave fields which result in large

Stokes drift shears drive Langmuir cells and cause mixing. If, as argued above, the

driving mechanism for this mixing is wave-current interaction, this implies that

there is an energy source for the cells which goes as the Stokes drift multiplied by

the wind stress. As noted in Chapter 5, this energy source will in general be

smaller than those sources associated with turbulence production. However, it

may well be a very efficient means of mixing density and as such may play a

disproportionate role in maintaining the slab-like structure of the mixed layer.

The MILDEX experiment has a number of weaknesses. The most

prominent of these is the lack of any independent quantitative measure of cell

strength over the course of the experiment. The lack of correspondence between

cell strength and wind stress and wave height on November 9th and 10th leads to

some interesting questions about the potential role of wave breaking in

suppressing cells. It would be reassuring if the Doppler sonar data collected

during the experiment could be analyzed to give objective measures of cell

strength which could be compared with the VMCMs. Another major weakness of

the MILDEX experiment is the fact that at least some of the data was
contaminated by the thruster. A third weakness of the MILDEX data set is the

relatively low temporal and spatial resolution. In particular, the lack of infomation

about the shear structure very close to the surface leads to major questions about

the way in which the eddy viscosity was estimated.

Some of these shortcomings have been addressed in the dataset studied in

the following chapter, which was collected during the Surface Waves Processes
Program (SWAPP). During this experiment, many of the same measurements were
made as during MILDEX, but with higher spatial and temporal resolution. As will

be seen, although some of the details differ, the picture offered by SWAPP

reinforces the broad outlines suggested by MILDEX.
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Chapter 7: Langmuir Circulation during the Surface Waves
Processes Program

7.1 Introduction

Chapter 6 examined the velocity structure of a mixed layer in which
Langmuir cells were strong. The structure was more consistent with a conceptual

picture in which mixing is carried out by motions with the same vertical scale as

the layer than one in which mixing is carried out by small-scale instabilities with

spatial scales of centimeters. In contrast, however, to standard large-eddy mixing

models which treat the mixed layer as a homogeneous slab, the mixed was sheared

at both high (1-30 cph) and low frequencies (0.01-0.1cph). These shears were

argued to be associated with the presence of Langmuir cells. Using results from

Chapters 2-5 of this thesis, evidence was presented that the cells were driven by

the wave-current interaction mechanism of Craik and Leibovich (1976).

The measurements made during MILDEX had a number of shortcomings,

however. Primary among these were the lack of spatial and temporal resolution,

the contamination of some of the velocity measurements by a thruster, and the lack

of an independent time series measuring Langmuir circulation strength. This

chapter, looks at another experiment, the Surface Waves Processes Program

(SWAPP). The general setup of the instrumentation during SWAPP was similar to

that during MILDEX, but with higher temporal and spatial resolution. In addition

indices of cell strength based on Doppler sonars and computer cards were

available for extended time periods during the experiment. Many of the techniques

developed in Chapter 6 will be used to look at the behavior of Langmuir
circulations during SWAPP. The general conclusions of the MILDEX experiment

hold for SWAPP as well, although some of the details are different. In particular,

the Langmuir cells observed during SWAPP were weaker than those during

MILDEX. In contrast to MILDEX, the Research Platform FLIP was moored

during SWAPP. The result is that platform motion and FLIP's wake are more

important than in MILDEX, where their effect was small. The thruster, however,

does not contaminate the velocity measurements as it did during MILDEX.

The SWAPP experiment has already been discussed in a number of papers.

A summary of the overall experiment is given in Weller et al., (1990). Weller and

Plueddemann (1994, henceforth WP94) studied the subinertial response to surface

forcing during SWAPP. They extracted the Ekman response and demonstrated the
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presence of shear within the unstratified mixed layer. Plueddemann et al.

(1994,henceforth PEA94) examined a number of the measurements of Langmuir
cells made during the experiment. They demonstrated that one can combine

different types of measurements (computer cards, current meters, and Doppler

sonars) to produce a picture of coherent structures within the mixed layer which
match the conceptual picture we have of Langmuir cells. Some of the Doppler

sonar measurements are reported separately in Smith (1993). This chapter draws
on these papers as it summarizes the results of the experiment.

The structure of this chapter is as follows. Section 7.2 presents the
instrumentation used during SWAPP and gives an overview of the background
meteorological and oceanographic conditions during the experiment. Section 7.3
expands on the work of PEA94, documenting the high-frequency (1-30 cph) shear
as a measure of Langmuir cell strength. Section 7.4 expands on the work of WP94,
looking at the dependence of the low-frequency response on the presence of cells.
During times when the cells are strong, the velocity structure of the mixed layer is
more sheared than predicted by a slab model, but less sheared than predicted by a
Mellor-Yamada model. Additionally, on two days when the cells are present the

mixed layer fails to restratify as predicted by the models. Section 7.5 demonstrates
that the scaling for the level of the high-frequency shear derived in Chapter 6 holds
during SWAPP as well as during MILDEX, supporting the idea that the cells are
driven by wave-current interaction. Section 7.6 presents results from the instabilty
codes derived in Chapter 3 and documented in Appendix B to show that on two

days, the current and temperature profile predicted by the Mellor-Yamada model is

unstable to Langmuir cells. Section 7.7 demonstrates that the Craik-Leibovich

mechanism could provide sufficient energy to explain the failure of the mixed

layer to restratify on two days. Section 7.8 concludes this chapter.

7.2 The SWAPP Field Experiment
7.2.1 Instrumentation

The SWAPP main field experiment took place off the California coast in

February and March of 1990. As in MILDEX, the experiment was again centered

around the Research Platform FLIP, which was taut-moored at 35.08N, 127.59W,
approximately 200 miles northwest of San Diego and in close proximity to the

MILDEX experiment site. Participating in the experiment were the R/P FLIP, the

USNS Navajo, and the Canadian Survey Ship Parizeau. Current meter, profiling

226



Current meter 2ria Mean Mixed Layer Drift

(a)

Shear

4 r
(b)

Tinme

Velocity Jets

Stick plot
of velocity

4 shear near
surface

FLIP

Sonar Beams

IOS Drifting
Buoy

(c)

Figure 7.1: Schematic of measurement approach during SWAPP. (a) Velocities,
bubble clouds, and surface convergence of cards associated with cells. (b) Current
shears seen near surface as the result of cells drifting across current meter array.
(c) Sonars scattering sound off of bubble clouds.
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CTD, and Doppler sonar measurements were made from FLIP as shown in the

schematic in Figure 7.1c. An acoustics drifter was deployed from the Parizeau.

Profiles of turbulence were made from the Parizeau as well as from the launch

Slicker. A mesoscale survey of the temperature structure was carried out from the

Navajo.
The experimental strategy during SWAPP was basically identical to that

during MILDEX. As shown in Figure 7.1a, in the presence of Langmuir cells

surface drifters (i.e computer cards) are organized into rows and bubbles are

organized into plumes. The bubble plumes are good scatterers of sound and may

be detected using sonars. During SWAPP, both sidescan sonars deployed from

FLIP and upward looking sonars from the IOS drifting instrument SUSY were

used to image the plumes (Figure 7.1c). As the mixed layer moves relative to

FLIP, the bubble clouds are advected past the platform and the velocity structures

associated with the cells result in time-varying velocity and shears. These are

measured by the current meters suspended from FLIP's booms (Figure 7.1b).

We begin the detailed description of the measurements made during

SWAPP by considering the measurements made from FLIP. Figure 7.2 shows a

planview of FLIP, illustrating the measurements made during the cruise. Three

booms were deployed from FLIP, one jutting out from the port side of the vessel at

approximately right angles to FLIP's direction of orientation (port boom), one on

the port side pointing directly aft (aft boom), and one pointing slightly to the

starboard side of the vessel (starboard boom).

Wind speed and direction, air and sea surface temperature, incoming

shortwave and longwave radiation, and precipitation were all measured from FLIP.

Except for sea surface temperature and precipitation, all other measurements were

made from the mast at a height of 28.9m. Sea surface temperature and all the other

meteorological variables were measured by a Vector Averaging Wind Recorder

(VAWR) every 56.25 seconds. Precipitation was measured 15 meters out along the

port boom. Details of the measurements and corrections made to the dataset for

shifts in calibration are given in WP94.

Water velocities and temperatures were measured at a number of depths

throughout the mixed layer using three types of instruments. This chapter will use

data from only two of these types, the Vector Measuring Current Meters (VMCM)

described in Chapter 6. Two strings of these current meters were deployed. A long

string with VMCMs at 2.25, 4.5, 6.75, 9.0, 11.25, 15.75, 20.25, 24.75, 33.75,

41.0, 53.25, 70.5, 100, and 132.25m, and an RTP at 29.25m was deployed from
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Figure 7.2: Planview of sonar beams and location of various measurements during
SWAPP main cruise.

the aft boom. A shorter string with VMCMs at 2.25, 6.75, 11.25, 20.15 and 41.3m

was deployed off of the port boom. The VMCMs were sampled at a rate of once

every 2 seconds.
During SWAPP, FLIP was moored using a three-point mooring. This

created two sources of potential contamination for the current meter

measurements. The first of these was that the platform was found to move in phase

with the waves. The error introduced in velocity measurements due to such motion

is studied in Appendix D and is shown to be a small fraction of the overall

variance and shear. The second source of error is that large velocities relative to

FLIP's hull caused the shedding of eddies in a relatively narrow wake which would

alternately contaminate one or the other of the two current meter strings. The wake

was found not to affect the time-averaged velocity structure when averaging

periods of 15 minutes or more were used. However, it did cause enhanced variance

in the 10-30 cph frequency band. In the real-time displays aboard FLIP, the wake
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was easily detectable, as the character of the shear in the two current meter strings
was clearly different (only one string at a time was affected). As a result, by taking
the minimum of the variance between the two strings, the effect of the wake could
be removed when calculating the level of the high-frequency (1-36 cph) shear.

The fact that FLIP was moored means that the relative velocities measured

from the platform are much closer to being identical to the absolute velocities than
those measured during MILDEX. WP94 show that FLIP did move on its mooring,
with velocities of order a few mm/s and frequencies near the inertial frequency.
As shown in Appendix D, during SWAPP FLIP did rotate in phase with the
surface gravity waves, as well as moving on its mooring with a period of about
100 seconds. For purposes of this chapter, it is assumed that the velocities which
vary with periods longer than 100 seconds are absolute velocities. In order to
isolate the wind-forced response however, it is still necessary to choose a reference
level to eliminate the effect of subinertial flows.

Temperature and salinity were also measured from FLIP using a profiling

CTD system. The CTD was profiled off the starboard boom from the surface down

to a depth of 150 meters. CTD data above 10m was found to exhibit effects from
bubbles and was not used.

A four-beam Doppler-sonar system was deployed from FLIP. The setup of
the sonars is similar to that deployed in MILDEX, with the critical difference that
the sonar range was quite a bit smaller (only 450 meters as opposed to 1400 meters
during MILDEX). The short range of the sonars made it impossible to detect the

long-wavelength alongwind features associated with Langmuir cells--only the
beams in the crosswind direction gave reliable indices of cell strength. Details of
the sonar setup are given in Smith (1993) and PEA 94. Smith (1993) used data
from the side-scan sonars to construct an index of the crosswind velocity
associated with the cells. He did this by the following process:

1. Averaging the velocity returns over 1 minute to filter the effect of the surface
waves.

2. Taking the spatial Fourier transform of the velocity along each beam.

3. Forming the cross-spectrum of the Fourier coefficients at time t with those at
time t+At. and averaging over one hour. This process isolates features which have

some temporal persistence of at least At (in this case taken as 1 minute) and a

reasonably constant phase speed over the averaging period. The coefficients C are

complex numbers whose phase is proportional to the amount by which the features
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have been advected over the delay time. If Uad is the advection velocity along the

beam the phase shift is proportional to kUad.

4. Computing the lagged cross-correlation D in wavenumber of the temporally

lagged cross-spectra. This selects out features in wavenumber space that have

similar advection velocities. The phases are rescaled and wavenumber bands are

chosen so that only advection velocities less than 0.8 m/s contribute significantly

to the cross-correlation. (Details of how this is done are given in Smith,1993).

The fourth root of D is a measure of the velocity contained in temporally

persistent, spatially coherent structures which propagate along the beam at speeds

less than 0.8 m/s. Smith (1993) refers to this velocity as the "doubly-lagged"

velocity and uses it as a measure of the velocity associated with the Langmuir cell

vortices. It is referred to below as the "sonar LC velocity amplitude".

Waves were measured off the port boom using a wavestaff which sampled

at 4Hz, off the starboard boom by an three-wire wave gauge array and by the

Doppler sonars. This work concentrates on measurements made with the wavestaff

on the port boom, since this was the dataset most readily available. Time series of

wave height from this instrument were used to compute the vertical profile of the

Stokes drift.

A group from Institute of Ocean Sciences, Victoria, BC used side-scan

sonar deployed from a drifting buoy to track bubble clouds as they drifted over the

instrument. These observations were correlated with backscatter measurements

from an inverted echo-sounder to show that the features observed in the side-scan

sonar corresponded to plumes of bubbles.

Turbulence measurements were made using a profiler which was dropped

from the Parizeau or from the launch Slicker when the weather was calm enough

to permit deployment. The instrument used was the IOS Fast Light Yo-Yo II (FLY

II) described in Crawford and Gargett (1988), which uses airfoil shear probes to

measure the shear on small scales. These measurements are then used to infer the

the dissipation of eddy kinetic energy. The measurements used here are reported in

Crawford (1992).

7.2.2 Meteorological and Oceanographic Background

We begin our examination of the SWAPP data set with a summary of the

meteorological and oceanographic conditions during the experiment. Figure 7.3

shows a series of weather maps for the west coast of North America during the
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Figure 7.3: Summary weather maps of the meteorology during SWAPP from
Weller and Plueddemann, 1994. FLIP's position is marked with a *.
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course of the experiment. The meteorological conditions during SWAPP were
largely determined by slow-moving high pressure systems which formed over the
North Pacific and moved onto land over a time scale of about 2 weeks. The first of
these highs formed in mid-February and moved onto the continent about March 2.
The second high formed about March 4 and moved onto land around March 16th.
Fast-moving low pressure systems tracked around the edges of these quasi-
stationary highs. During most of SWAPP, the experiment site was located on the
flanks of the high pressure systems. However, during the intervals between the
passage of the highs, (March 2, March 16) two low pressure systems did pass near
the site.

The background meteorology during SWAPP is summarized in Figures 7.4
and 7.5. Figure 7.4 shows the wind speed and direction, barometric pressure,
relative humidity, sea surface temperature, air temperature, and cumulative
precipitation. Figure 7.5a shows the wind stress in the east-west (solid) and north-
south (dashed) directions. Figure 7.5b shows the total heat flux computed from a
combination of measured fluxes (incident shortwave and longwave radiation) and
bulk formulae (latent heat flux, sensible heat flux, and outgoing longwave
radiation). Figure 7.5c shows the significant wave height, and 7.5d shows the
Brunt-Vaisala frequency calculated from the temperature difference between 2.25
and 4.5 m.

The time series of wind shows five events, occurring on March 1st and 2nd
(Event 1), March 4th and 5th (Event 2), March 8-10 (Event 3), March 11-13
(Event 4), and March 16-17 (Event 5). Events 1 and 5 are associated with the
passage of lows to the north of the experiment site, while events 2, 3, and 4 are the
result of the flanks of the high pressure system shifting over the experiment site.
As the leading edge of the high moves over the site, the winds intensify in a
southerly direction bringing colder, dryer air from the north. The result is large
latent and sensible heat fluxes, leading to the large negative values of heat flux on
the nights of March 5, 8, and 11. By contrast, wind events 1 and 5 are not
associated with strong heat losses- although heating due to shortwave radiation
does decrease during wind event 1.

The surface gravity wave field shows a somewhat sawtooth response to
these wind events, building up quickly and then dying off slowly. The slow die-off
of the waves after wind events 2, 3, 4 is due to the long fetch associated with the
flanks of the high pressure system combined with the fact that the wind does not
change direction as the high pressure system shifts position.
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Figure 7.4: Time series of meteorological variables recorded from FLIP during
SWAPP from Weller and Plueddemann, 1994. From top to bottom, wind speed in
m/s, wind direction (towards) in degrees, barometric pressure in nb, relative
humidity in percent, sea temperature (solid) and air temperature (dashed), and
cumulative precipitation in cm are shown. Data plotted are 60 minute running
means of original one minute data. The five wind events mentioned in the text are
labelled 1 through 5.
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Figure 7.5: Time series of (from top to bottom) wind stress magnitude in Pa, heat
flux in W/m2, significant wave height in m calculated using the WHOI wavestaff,
and buoyancy frequency calculated from the temperature gradient between 2.25
and 4.5m. Each data point represents an average over 15 minutes.
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Figure 7.6: Contour plot of surface temperatures from mesoscale XBT survey
conducted from USNS Navajo during a 30 hour period after FLIP was moored at
35N, 127 W. Temperatures are representative of the mean mixed layer
temperature. Plot is taken from Weller and Plueddemann (1994), Data is reported
in Gnanadesikan (1990).
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During SWAPP, FLIP was moored in the middle of a frontal system. Figure
7.6 shows the results of an XBT survey made from the Navajo, (reported fully in
Gnanadesikan, 1990). As seen from the isotherms, FLIP was moored in the middle
of a strong temperature front, with warm (>14.OC) water to the northwest and
cooler (<12.8 C to the southeast). Over the course of the experiment, the front
moved past FLIP a number of times. However, during the most of the cruise the
temperature anomaly associated with this front was almost totally compensated by
salinity within the mixed layer. Figure 7.7 illustrates this fact. Figure 7.7a is a
mesh plot of temperature from the CTD data over a depth range of 10-70m. During
the early part of the experiment (from February 25 until March 1st) there is strong
frontal activity in the vicinity of FLIP and the temperature over the top 70 meters
varies by of order 0.5C. Later on in the experiment, (around March 11 th) the entire
top 70 meters warms by almost 1.5 degrees, then cools around March 13th, then
warms again, with some vertical structure being again evident. The density
changes associated with this movement of the warm and cold water masses across
the experiment site would be of order 0.4 kg/m3 in the absence of salinity
compensation. Figure 7.7b shows the density at a depth of 30m calculated from the
CTD data. The strong changes in temperature in the upper part of the water
column are not reflected in changes in density, which only changes by of order
0.05 kg/m3.

Because of salinity compensation, the strong shears that would be expected
to be associated with the frontal structure seen in Figure 7.6 were not seen over the
top forty meters of the water column. If the shear is given by the thermal wind
relation and salinity compensates approximately 80% of the temperature anomaly,
then based on the XBT survey the shears within the mixed layer associated with
the presence of the front are of order 0.001 s-1. This is a small signal in comparison
with the shears of interest. The movement of the front also apparently does not
introduce strong stratification into the mixed layer above depths of 40 meters or
so. Figure 7.7c shows the density difference between 10 and 40 m. Again, the
changes seen are about 0.05 kg/m3, corresponding to a buoyancy frequency of 3.5
x 10-3 s-1. This is smaller than the stratification due to diurnal warming. Below
about 40 meters, however, frontal dynamics are potentially important in
determining the stratification.
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7.3 Measurements of Langmuir Cells made during SWAPP: A synopsis of
measurements of Cell Strength

One weakness of the MILDEX dataset studied in Chapter 6 is that, except
for the time period intensively studied by Smith et al, 1987, there is only
qualitative evidence that Langmuir cells were present in the mixed layer. This
means that there is no objective way to distinguish the Langmuir cell indices
derived in Chapter 6 from possible noise terms such as thruster contamination.

In contrast, PEA94 combine evidence from computer card deployments,
doppler sonars, and current meters to come up with a time series of cell strength
for the entire SWAPP experiment. They find that at times when cells were strong
*Computer cards at the surface are aligned into rows.
*Bubbles also are aligned into rows, producing regions of high backscatter in the
sidescan sonars. The IOS and SIO sonars both see the clouds and report similar
structures.
*These rows of bubbles are associated with plumes of bubbles penetrating 5-15
meters into the water column by the IOS sonars. Zedel and Farmer (1991) showed
that similar plumes during the Ocean Storms experiment were linked to
downwelling.
*The rows of bubbles are also correlated with convergence in the crosswind
velocity in the SIO sonar.
*When the SIO sonars show strong convergent velocities enhanced levels of high-
frequency (1-36 cph) current and shear are seen in the current meters.

The last of these results represents the author's contribution to PEA94.
Because of limited space it was not possible to give a full development of the
difference in character between those times when Langmuir cells were present and
those when they were not, and to rigourously characterize the long-time variation
of cell strength. These shortcomings are addressed in this section. A period of 18
days (0000Z February 26-0000OZ March 16) is considered during which data were
available from both strings of current meters, the SIO Doppler sonar, and the
wavestaff.

The high-frequency velocity and shear during SWAPP has a different
character when Langmuir cells are present. Figure 7.8a shows a six-hour time
series of current difference between 2.25 and 4.5m during a calm period on
February 28th. During this time, the surface stress was very small (about 0.01 Pa)
the temperature difference between the current meters at 2.25 and 4.5 meters was
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Figure 7.8: Example of how Langmuir cells change the character of the near-
surface shear. Wind points the the +y direction. Each stick represents a 100 second
average. Top two panels show the shear between 2.25m and 4.5m and 4.5m and
6.75m from 0000Z - 0600Z on February 28th when the upper portion of the water
column was stratified. Bottom two panels show the shear between 2.25 and 4.5m
and 4.5m and 6.75m from 0000Z - 0600Z on March 5th when the upper portion of
the water column was well-mixed and Langmuir cells were strong.
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Figure 7.9: Spectra of shear between 2.25 and 4.5m from two time periods: 0000-
0700Z, February 28th (cells weak) and 0000-0700Z, March 5th (cells strong).
Time series were divided into six overlapping two-hour intervals, spectra were
computed for each interval and averaged to form the spectra shown above. The
solid lines show the spectra, the dashed lines the confidence interval. The chain-
dotted lines show the limits of a frequency band corresponding to crosswind
advection of features with wavelengths of 15-200m. (a) Alongwind shear,
February 28th. (b) Crosswind shear, February 28th. (c) Alongwind shear, March
5th. (d) Crosswind shear, March 5th.
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0.05C and the sonar LC velocity amplitude was 2.4 cm/s. Figure 7.8b shows the
same picture for the current meters at 4.5 and 6.75m. The shear varies smoothly
with little variability on periods less than an hour or so. The shear is also oriented
opposite to the wind direction, with water at depth moving faster in the downwind
direction than water near the surface. Figure 7.8c shows the current difference
between 2.25 and 4.5 meters and 7.8d the difference between 4.5 and 6:75 meters

for 0000Z-0600Z on March 4th, when the wind stress averaged 0.23 Pa and the
cells were strong. The sonar velocity LC amplitude for this time period is 6.8 cm/s
and the upper part of the water column is unstratified. Near the surface the shear is
oriented in the downwind direction and shows a great deal more variability than on
February 28th. Between 4.5 and 6.75m, there is very little discernable mean signal
and a good deal of variability with periods shorter than one hour.

Figure 7.9 shows spectra of the velocity shear from the two periods shown
in Figure 7.8. Two-hour segments of data were taken, oriented relative to the wind,
and Fourier-transformed. The solid lines show the spectral density of the velocity
and the chain-dotted lines the confidence level. Figure 7.9a shows the spectrum of
the crosswind velocity and 7.9b the alongwind velocity for 0000Z-0700Z on
February 28th for the shear over 2.25-4.5m. Figure 7.9c and 7.9d show the spectra
of crosswind and alongwind velocity respectively for 0000Z-0700Z on March 5th.
When the mixed layer is strongly forced there is enhanced variability in the shear

over a frequency band from 2 to 50 cph.
As noted in the last chapter, by assuming that the Langmuir cells have

spacings from 15-200 meters and are oriented parallel to the wind, one can
estimate the frequency with which convergence zones pass over the current meter
array. If Ucw is the velocity in the crosswind direction then the frequency band in
which cells of such wavelengths contribute to the variance is given by

(7-1) Ucw/200m < f < Ucw/15m
The dashed lines in Figure 7.9 show the limits of this frequency band, given the

mean IUcwl over the six two-hour periods which went into making up the spectrum.
The frequency band which would correspond to wavelengths of the right size for

Langmuir cells exhibits enhanced variance when the cells are strong.

During SWAPP, times when Langmuir cells are strong correspond to times
when the shear and current variance are elevated in a band between the inertial

frequencies and wave frequencies. Chapter 6 showed that during MILDEX the

overall level of the shear provided a measure of the cell strength which compared

well with theory. Figure 7.10 shows a time series of the standard deviation of the
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Figure 7.10: Shear standard deviation in 1-36 cph frequency band. Data shown is
minimum from the two current meter strings. Solid is alongwind shear, dashed is
crosswind shear. (a) 2.25-6.75m (b) 6.75-11.25m (c) 11.25-20.15m.
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Figure 7.11: Demonstration that high-frequency (1-36 cph) shear corresponds to
the right wavelength band for Langmuir cells. Solid lines are standard deviation of
high-frequency (1-36 cph) shear. Dashed lines are standard deviation of shear in a
frequency band chosen to correspond to features with spatial scales of 15-200m
being advected past the current meters in the crosswind direction (LC Bandpass).
(a) 2.25-6.75m crosswind shear. (b) 2.25-6.75m Alongwind shear. (c) 2.25m-
6.75m total shear amplitude.
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shear in a frequency band from 1-36 cph over the course of SWAPP for three
depth pairs, 2.25 and 6.75m, 6.75m and 11.25m and 11.25 and 20.75m. The data
shown is the minimum of the standard deviations seen in the two strings of current
meters, since when one current meter string was in the wake of FLIP it showed a
much higher variance than the one which was not in the wake.

During the time periods shown in Figure 7.9 assuming a frozen field of
cells means that the frequency band of 1-36 cph corresponds to a wavenumber
band of the right general size for Langmuir cells. We now consider if that result is
generally true. The "LC Bandpass" was constructed as follows:
1. For a two-hour period the velocity in the crosswind direction was computed.
2. Using equation (7-1) the frequency band corresponding to crosswind
wavelengths of 15 to 200 meters was computed.
3. The standard deviation of the crosswind and alongwind velocity and velocity
shear in this frequency band was computed.
Results of this calculation are shown in Figure 7.11, expanded to show the days
when Langmuir cells were strongest. As noted in Chapter 6, using this method
ignores the possibility that large scale cells may be advected by small-scale cells,
and that the cells may not be oriented parallel to the wind. The solid lines represent
the standard deviation computed by using the pure frequency bandpass, the dashed
lines the result of using a frequency bandpass based on cell wavelength denoted as
the "LC Bandpass" in the figure. The results agree well on most days, but there are
sometimes "drop-outs" when the crosswind advection velocity was too small. The
results support the idea that the frequency band of 1-36cph is the right one to use
to capture features the size of Langmuir cells. Because using the LC Bandpass
would introduce spikiness into the time series, making correlation with other
indices difficult and because of the caveats given above, the pure frequency
bandpass was chosen as an index of cell strength.

The amplitude of the shear resembles, but does not exactly track, the wind
and waves. Figure 7.12a shows the absolute value of the wind stress and 7.12b
shows the significant wave height. Figure 7.12c shows the standard deviation of
the high-frequency shear between 2.25 and 6.75m. The high-frequency shear
tracks the wind on most days, except March 5th and 12th, the days immediately
following wind events 2 and 4 respectively.

The level of the high-frequency shear agrees very well with the sonar LC
velocity amplitude as a measure of cell strength. Figure 7.12d shows the sonar LC
velocity amplitude. The correlation between the high-frequency shear amplitude
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and the sonar LC velocity amplitude is 0.81. Note that the sonar velocity amplitude
is also elevated on March 5th and 12th, when the wind is low but the waves are
high.

To summarize, then, the high-frequency vertical shear of the horizontal
current gives a measure of Langmuir circulation which is consistent with measures
drawn from SIO doppler sonar measurements. Band-passing the cells to isolate a
frequency band corresponding to wavelengths of order 15-200 meters does not
produce substantial changes in the velocity or shear time series, indicating that the
frequency band chosen corresponds to disturbances with the right order of
magnitude spacing to be Langmuir cells.

7.4 Low-Frequency Response to Surface Forcing during SWAPP

7.4.1 Time Series

Having derived an index of the Langmuir cell strength, we now consider
how the low-frequency response of the horizontally averaged velocity and density
structure differs from standard models of mixed layer dynamics when the cells are
strong. As in Chapter 6, the observed response is compared to that predicted by
two models. The first of these is the PWP model of Price et al., (1986), which
parameterizes the mixed layer as a slab in which mixing occurs completely and
instantaneously over the whole layer. Implicit in this model is the idea of large
eddies driven by shear instability which mix the entire mixed layer. The second
model is a Mellor-Yamada Level 2 model which parameterizes mixing in terms of
a local eddy viscosity, implicitly assuming eddies which are small in comparison
to the scale of the diffusive features. (A Mellor-Yamada Level 2.5 model was used
in earlier runs but did not produce significantly different results).

We begin to examine the low-frequency response by looking at the
temperature difference. Figure 7.13a shows the temperature difference between the
current meters at 2.25 and 11.25 meters. Figure 7.13b shows time series of the
temperature difference predicted by the PWP (solid) and MY2 (dashed) models.
Each day that the mixed layer restratifies as a result of solar heating, the
temperature difference between 2.25 and 11.25 meters exhibits a positive spike
with an amplitude of a few tenths of a degree. Figure 7.13c shows two indices of
Langmuir cell strength scaled so as to be on the same vertical axis. The solid lines
show the high-frequency shear over 2.25-6.75 meters multiplied by 1000 and the
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dashed lines the SIO sonar LC velocity amplitude. One of the most striking
features of the data is the failure of the mixed layer to restratify on March 5th and
12th. Both the PWP and MY2 models predict such restratification, but the data
shows a layer which is well mixed down to 11.25 meters. As can be seen by
comparing with Figure 7.13c, the failure to restratify is linked to the presence of
Langmuir cells. On both March 5th and 12th, the sonar velocity index and high-
frequency shear are elevated. With the exception of March 5th and 12th, both
models reproduce the observed temperature stratification to first order, capturing
the magnitude of the observed restratification to first order.

Even when they disagree with the data, the PWP and MY2 models show
similar temperature structures. This is not the case for velocity. Figure 7.14 shows
the alongwind velocity difference between 2.25m and 11.25m Figure 7.14a and b
show the observed alongwind velocity as solid lines, with the alongwind velocity
difference predicted by the PWP model overlaid as the dashed line in Figure 7.14a
and that for the MY2 model in Figure 7.14b. Figures 7.15a and b repeat 7.14a and
b for the crosswind velocity. The MY2 model agrees very well with the data early
on (February 24-26th) and late (March 14-17th) in the experiment, when diurnal
restratification is strong and Langmuir cells are weak. On March 1-2nd, 4-5th, and
7th-13th when the winds and Langmuir cells are strong, however, the velocity
differences predicted by the MY2 model are much larger than observed.

7.4.2 The Ekman Response during SWAPP

Chapter 6, showed that by rotating the velocity into a coordinate system
referenced to the wind and averaging over time the low-frequency Ekman response
could be recovered. In this section the same methodology is applied to the SWAPP
dataset. As noted earlier, in order to recover the wind-driven response, it is
necessary to reference the velocities to some depth so as to eliminate signals
associated with fronts and eddies. Using methods identical to those used in
Chapter 6, a reference depth of 70 meters was chosen. This depth is right at the top
of the main thermocline, so that choosing it as a reference level reduces the effect
from fronts within the thermocline. As noted in Section 7.2, frontal structures
above the main thermocline depth are not associated with strong shears, since the
temperature and salinity signals compensate each other to a large extent.

We begin by considering the dataset as a whole. Figure 7.16 shows the
velocity relative to 70m (left-hand column) and the shear response (right-hand
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Figure 7.14: Velocity structure during SWAPP. (a) Mean alongwind velocity
difference 2.25-11.25m. Solid line is data, dashed is PWP model. (b) Mean
alongwind velocity difference 2.25-11.25m. Solid line is data, dashed is MY2
model.
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Figure 7.15: Velocity structure during SWAPP. (a) Mean crosswind velocity
difference 2.25-11.25m. Solid line is data, dashed is PWP model. (b) Mean
crosswind velocity difference 2.25-11.25m. Solid line is data, dashed is MY2
model.
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column). The top row shows the response calculated from data, the middle row the
response from the PWP model and the bottom row the response calculated from
the MY2 model. Each stick corresponds to a depth at which current meter
measurements are made, and so the measurements are closely spaced near the
surface, and widely spaced at depth.

There are clear differences between the observed and modelled responses.
As was the case during MILDEX, the MY2 model predicts a velocity response
which looks like an Ekman spiral, relatively closely trapped to the surface, with
most transport occuring above 25 meters depth. The top 10 meters are quite
strongly sheared. The PWP model, on the other hand, predicts a flat spiral, with
small shears (of order 10-3 s-1) throughout the top 50 meters. The data lies
somewhere in between. The deep velocities are closer to that predicted by the
PWP model than the MY2 model. There is considerably more shear within the
upper 20 meters than predicted by the PWP model, but much less than predicted
by the MY2 model.

The difference between the models is not primarily the result of different
responses on days when the mixed layer restratifies. This may be seen by looking
at a time period when Langmuir cells were strong. Figure 7.17 parallels 7.16 for a
time period from 0000Z on March 4th until 1715Z on March 12th. During this
time period, Langmuir cells were strong on all but one day (March 6th) which was
also the only day on which the mixed layer restratified. The response is extremely
similar to that derived for the experiment as a whole. The observed velocity
structure looks like a combination of the PWP and Mellor-Yamada models. Again,
there is shear near the surface in both the data and Mellor-Yamada model, but very
little in the PWP model. The near-surface shear is only about half as large in the
data as predicted by the MY2 model. At depths below about 10 meters, the shear
seen in the data is far smaller and less clearly downwind than that predicted by the
MY2 model. Comparing these results to the time series in Figure 7.8 results in a
similar picture, in which the shear near the surface is essentially downwind and
large, but at deeper levels the mean shear is smaller and its signal is essentially
drowned out by strong time-varying shears.

It is more difficult to interpret these results than those during MILDEX.
During MILDEX, the structure of the near-surface velocity response was far more
similar to that given by the PWP model, than the MY2 model. The lack of shear in
the mixed layer interior was used to argue that the mixed layer during MILDEX

was mixed on time scales fast compared with an Ekman period, presumably by
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Figure 7.16: Ekman response for SWAPP for models and data. Velocities are
relative to 70m in ms-1, shear in s-1, depth in m. Velocity vectors are shown at
2.25, 4.5, 6.75, 9.0, 11.25, 15.75, 20.25, 29.0, 41.0, 50.0, and 70.0m. Shear vectors
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Figure 7.17: Ekman response for SWAPP high-forcing period (0000Z March 4th-
1715Z March 12th) for models and data. Velocities are relative to 70m in ms-1,
shear in s-1, depth in m. Velocity vectors are shown at 2.25, 4.5, 6.75, 9.0, 11.25,
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to the wind in /s for data. (c) Ekman spiral for PWP model (d) Shear relative to the
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large eddies. During SWAPP, the picture which emerges is more ambiguous.
There is evidence for large-scale eddies which mix the surface layer quickly,
homogenizing the mixed layer below the surface and thus reducing the shear
relative to the Mellor-Yamada model. However, there is also evidence for a near-
surface layer which is strongly sheared. In this near-surface shear layer small,
slowly mixing eddies would also play a role in the momentum transport. A similar
sheared surface layer was seen in the finite-difference code runs in Chapter 5.

The transport associated with all these current spirals is in close agreement
and off to the right of the wind. Once again there is no sign of the upwind transport
expected as a result of the Eulerian return flow balancing the Stokes drift. This
issue is discussed in more detail in Chapter 8.

7.4.3 Summary of Observational Results

The experimental results are summarized as follows:
*The existence of Langmuir circulations is demonstrated by the presence of
coherent backscatter structures in sidescan and upward-looking sonars. The
presence of these structures is correlated with spatially coherent, temporally
persistent velocity signals in the sonars. These in turn are linked to the presence of
high-frequency (1-36 cph) signals in the velocity and shear seen by VMCMs.
*On two occasions, the mixed layer fails to restratify immediately after a wind
event when the waves were high but the wind stress was small. This enhanced
mixing is not seen in either the PWP or Mellor-Yamada models.
*Within the mixed layer there is persistent low-frequency shear which is smaller
than that predicted by the Mellor-Yamada model, and larger than that predicted by
the PWP model.

The remainder of this chapter concentrates on explaining the long-time
variability of the high-frequency shear, the failure of the mixed layer to restratify
when the surface forcing was weak but the waves were high, and the breakdown
of the MY2 model. The last question is also studied using a finite-difference code
in the next chapter.

7.6 Does the theory explain temporal variability in cell strength?

There are a number of possible physical interpretations for the long-time
variability in the two indices (sonar velocity amplitude and high-frequency shear)
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which were defined as being representative of Langmuir cell strength in Section

7.3. Three such possibilities are listed below

1. The variability seen in the current meters and sonars is due to turbulence

associated with a flat plate (see Robinson, 1991 for a review). If this were true, the
mean shear I V/Dzl and high-frequency shear co would scale as the friction

velocity.
2. The variability is due to Kelvin-Helmholtz instability. As outlined in Chapter 6,

this would imply that the level of the high-frequency shear would scale as

(7-2) o= IV/)zI 2 - N2 ~ AV 2/A 2 -maxg

where DV/az is the mean Eulerian shear, N is the buoyancy frequency, AV is the

Eulerian current difference across the top two current meters, Az is the distance

between these two current meters,g, the gravitational constant, a the coefficient of

thermal expansion, and Ve is the eddy viscosity. The eddy viscosity may be

estimated either from data (as tAz/AV), or from the Mellor-Yamada model.

3. The variability is due to Craik-Leibovich instability. Based on the results in

Chapter 5, it was argued in Chapter 6 that the level of the high-frequency shear

would scale as

(7-3) w-,yCLS - I V/z s- N2 - AAV/Az DZ-ma C z . pcpve)

where vs is the Stokes' drift computed from the nondirectional wave spectrum,

The scaling of the shear with the Craik-Leibovich instability parameter was

shown to hold only if the equivalent of the Rayleigh number for stratified CL

instability
CLS ?CLS

(7-4) RaCLS- d (2Ver 2/D2)2

(where D is a depth of penetration for the cells), was large. In order to argue that

the cells are in fact driven by wave current interaction, it is necessary to show to

show that RaCLS is large when the cells are strong.
The validity of the estimate of RaCLS is highly dependent on the assumption

that the shear near the surface is proportional to the ratio of the wind stress over

the eddy viscosity. We can check that the estimate of the viscosity is reasonable by

comparing it to that predicted by the MY2 model. This is done in Figure 7.18a.

There is a general qualitative agreement between the two estimates of viscosity,

the difference is generally only about a factor of 2-4 while the viscosity itself

varies by several orders of magnitude. The correlation between the two curves is
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Estimated Eddy Viscosity (Solid: Data, Dashed:MY2 Model)
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Figure 7.18: Estimate of the supercriticality of Langmuir cells during SWAPP.
(a) Eddy viscosity estimated from data (solid) and MY2 model (dashed).
(b) Stratified CL instability parameter from equation (7-3). (c) Racs from
equation (7-4) using eddy viscosity estimated from data (solid) and MY2 model
(dashed).
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0.72. The viscosity predicted by the MY2 model is generally smaller than that
predicted by the data (no surprise considering that the MY2 model overpredicts the
near-surface shear). This means that estimating RacLs from data may result in an
underestimate. Thus the theory may predict the non-existence of cells when they
are actually present, but it is unlikely to predict that cells exist when they do not.
Taking the Stokes drift shear and Eulerian shear across 2.25 and 4.5m, one can
show, in a method parallel to that used in Chapters 2 and 5, that this corresponds to
the appropriate stratified Craik-Leibovich instability parameter for a depth of
approximately 8m. Figure 7.18b shows the stratified Craik-Leibovich instability
parameter and 7.18c RaCLS. With only a few exceptions, RacLS is greater than 1
for most of the experiment. As shown in Chapter 5, this indicates that the high-
frequency shear ought to scale as YCLS and that the cells are involved in

momentum and density transport within the mixed layer.
Given that RaCLS is large, the high-frequency shear should scale as TCLS.

This is in fact the case. Figure 7.19 shows time series of the unstratified Craik-
Leibovich instability parameter, the stratified Craik-Leibovich instability
parameter, the friction velocity, and the Kelvin-Helmholtz instability parameter
compared with the observed band-passed shear. The variability of the band-passed
shear is well captured by both the stratified Craik Leibovich instability and by the
friction velocity. There are some differences. On days when restratification does
occur the sonar velocity amplitude and high-frequency shear are still nonzero
despite the fact that the stratified Craik-Leibovich instability parameter is zero. On
February 28th, for example, during a time period when the upper portion of the
water column is stratified, the high frequency shear is 0.0015 s-1, and the sonar
velocity amplitude is 2.8 cm/s. This gives an estimate of the "noise floor" inherent
in each of these measurements of cell strength. On March 7th and 8th at the start
of wind event 3, the Craik-Leibovich instability parameter rises more slowly than
the friction velocity, sonar velocity amplitude, and high-frequency shear. This may
be because the cells initially mix away much of the near-surface shear, thus
leading to an underestimate of the CL instability parameter. In general, however,
the agreement between the Langmuir cell strength and the stratified Craik-
Leibovich instability parameter is still good. A more quantitative comparison of
cell strength and forcing functions is given below.

258
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Figure 7.19: Forcing functions for Langmuir cells. (a) Two indices of cell
strength. Solid is total HF shear between 2.25 and 6.75m, dashed is sonar velocity
amplitude/1000. (b) Friction velocity in m/s. (c) KH:Kelvin-Helmoholtz instability
parameter from equation (7-2). (d) yCL: Unstratified Craik-Leibovich instability
parameter from equation (7-3) (assuming N2=0). (e) TCLS: Stratified Craik-
Leibovich instability parameter from equation (7-3).
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Sonar LC Velocity Band-Passed Shear
Amplitude

Absolute Shear 2.25-4.5m 0.05 0.05

TW'l 0.42 0.43

Significant Wave Height 0.65 0.74

7CL 0.67 0.72

2.25m Stokes Drift 0.74 0.84

YcLs 0.80 0.82
Friction Velocity 0.85 0.82

Stokes Drift Shear 2.25-4.5m 0.83 0.88

Table 7.1: Correlation between various forcing functions and two measures of
Langmuir cell strength. Note that the correlation between the two measures of cell
strength is 0.81.

Table 7.1 shows the correlation coefficients between the cell strength (as

given by sonar LC velocity amplitude and band-passed shear) and various

quantities. It should be recalled that the correlation between these independent

measurements of cell strength is 0.81, which serves as a rough upper bound for

how well any theoretical index of cell strength could be expected to agree with an

observational index of cell strength. The correlation is highest for the stratified

Craik-Leibovich instability parameter, Stokes drift shear and friction velocity. As

predictors of cell strength these three quantities are essentially indistinguishable.

The indices of cell strength are not well correlated with the absolute value of the
Eulerian shear. The Kelvin-Helmholtz instability parameter is somewhat better

correlated with the cells strength than is the raw shear, but is still significantly less
well correlated than the friction velocity and Craik-Leibovich instability
parameter.

The results support the physical interpretation that the cell strength as

measured by sonars and current meters is the result of the Craik-Leibovich

instability mechanism. Although the correlation between the cell strength and

friction velocity is high, the physical mechanism which yields such a scaling also

implies that the mean shear should be logarithmic (and as such should scale as the

friction velocity). This was not found to be the case in the data. The natural scaling

for Kelvin-Helmholtz instability was also found not to give a high correlation with
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the cell strength. The fact that the Stokes drift shear correlates highly with the
Langmuir cell strength explains in large part the fact that the Craik-Leibovich
instability parameter does a much better job at explaining the observed variability
than the Kelvin-Helmholtz instability parameter. Apart from the Craik-Leibovich
theory, there is no independent mechanism which would explain the high levels of
correlation. These facts support the hypothesis that the cells are driven by the
Craik-Leibovich instability mechanism.

7.6 Instability of the Predicted Current Spiral to Langmuir Circulation:

7.6.1 Instability of the Mean Structure

The failure of the MY2 model to capture the observed shear structure
during SWAPP, while not as spectacular as that during MILDEX, is still striking.
One possible explanation is that the MY2 model systematically underestimates the
turbulent production, and thus the eddy viscosity, near the surface at times when
the mixed layer is unstratified. A second possibility is that the current spiral
predicted by the model is unstable to Langmuir cells as a result of the CL wave-
current interaction mechanism. Chapter 6 demonstrated that the mean profile
predicted by the MY2 model during MILDEX was strongly unstable to Langmuir
cells. This analysis is now repeated, demonstrating that the same conclusion holds
during SWAPP.

We will focus on a time period referred to in Section 7.4 as the "high-
forcing period", comprising 10 inertial periods from 0000Z on March 4th until
1715Z on March 13th. During this time period Langmuir cells were strong on all
but one day (March 6th) and the top 11.25m of the water column remained
unstratified on all but that same day. Figure 7.20a shows the mean Stokes drift
during this time period, and demonstrates that it may be well-approximated by a
Pierson-Moskowitz spectrum with a peak period of 11.2s and an rms wave
amplitude of 1.4m (corresponding to a mean significant wave height of 4m).
Figure 7.20b shows the mean Ekman spiral predicted by the MY2 model during
this time period (solid), compared to that predicted by taking the mean MY2-
predicted eddy viscosity of 235 cm2/s (dashed). The fact that the two spirals agree
relatively well means that this mean viscosity can be used to calculate the
Langmuir number La = ve/a 2o = 0.021where a is the rms wave amplitude and a

the wave frequency. The scaled Coriolis frequency is 0.0736. The mean
nondimensional shear is 4.4.
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Mean Stokes Drift:High Forcing Period
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Figure 7.20: Instability of the Mean Ekiman Spiral predicted by the MY2 model
during high-forcing period (0000Z March 4th-1715Z March 13th). (a) Mean
Stokes drift. Solid:Data. Dashed:Stokes drift for Pierson-Moskowitz spectrum with
peak period of 11.2 sec and rms amplitude of 1.4m. (b) Mean current spiral.
Solid:predicted from MY2 model. Dashed: Ekman spiral given mean eddy
viscosity predicted from MY2 model and mean wind stress. (c) Contours of
growth rate of the most unstable two-dimensional mode in s-1 as a function of
angle of cell orientation relative to the wind and waves and horizontal
wavenumber in cpm. (d) Contours of growth rate of the most unstable two-
dimensional mode with no CL instability present.
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The instability code introduced in Chapter 3 and documented in Appendix
B is used to calculate the growth or decay rate of the fastest growing (or slowest
decaying) two-dimensional mode at a given wavenumber and angle of cell
orientation. By calling a mode two-dimensional we mean that there is a direction
along which its structure does not vary, thus distinguishing it from the three-
dimensional mixing events associated with wall layers. Figure 7.20c shows the
growth rate of the most unstable mode when waves are included, so that the mean
shear is modified as indicated in Chapter 3 and the Craik-Leibovich instability
mechanism is operative. The angle of cell orientation relative to the wind is shown
along the horizontal axis and the crosscell wavelength in cpm is shown along the
vertical axis. Figure 7.20d shows the growth rate of the most unstable mode when
there are no waves and thus no Stokes drift.

In the presence of waves, the instability code predicts that the mean Ekman
spiral predicted by the MY2 model should be unstable with growth rates exceeding
1.5 x10-3 s-1. The maximum growth rate is 1.62 x 10-3 s-1, implying a time scale
for the fastest growing modes of about 10 minutes. This is far shorter than the time
needed to set up an Ekman spiral, implying that such a spiral would become
unstable to Langmuir cells and thus would not be seen. In the absence of waves,
however, the instability code predicts that all modes sampled should be stable.
This result, which parallels that obtained for MILDEX in Chapter 6, offers an
explanation for why the MY2 model fails to predict the shear during both
experiments.

7.6.2 Three Case Studies

In section 7.5 it was shown that the Craik-Leibovich instability parameter
usually tracked the friction velocity during SWAPP. We now turn to a time period,
March 5th, when this was not the case. Section 7.3 showed that during this time
period the mixed layer failed to restratify, even though such restratification was
predicted by both the PWP and MY2 models. The failure of the mixed layer to
restratify when Langmuir cells were present offers a chance to determine the

mechanism driving the cells.

Three 12-hour periods are considered, each corresponding to 1200Z-2400Z,

on March 4th, 5th and 6th. During the first of these time periods the wind and

cells were strong. During the second time period, the wind was weak, but the
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waves continued to be strong and the cells were still strong. During the third time
period, the waves and wind were much weaker and mixed layer restratified.

The time-averaged velocity structure, heat flux, and wave conditions on

each of these three days were used to estimate the parameters for driving the
equations. It should be stressed that using the time-averaged structure smooths out
variations in the buoyancy forcing, near-surface shear, Stokes drift, and eddy
viscosity which might result in the mixed layer being stable to Langmuir cells for
part of the averaging period, and unstable for the remainder of that period. The
results should thus be taken as an indication of the tendency of the current profile
to become unstable, not necessarily as a prediction of the growth rate at a specific
time.

Table 7.2 shows the parameters used as input to the instability code for each
of these three days. The mean stress was sharply different on the three days, with
the largest winds on March 4th, smaller wind stresses on the 5th, and still smaller
stresses on March 6th. On the other hand, the Stokes drift is twice as large on
March 5th as it is on March 4th and 6th. The mean heat flux is roughly the same
on all three days. The maximum growth rate for modes on March 4th and 5th is

March 4th March 5th March 6th

Peak Frequency (s- 1) 0.70 0.63 0.63

Wave Amplitude (m) 0.96 1.60 1.09

2.25m Stokes Drift (cm/s) 4.8 10.6 5.2

Mean Surface Stress (Pa) 0.161 0.086 0.018

Mean Heat Flux (W/m2) 197 199 251

Mean Eddy Viscosity (m2/s MY2 0.0123 0.0140 0.0073
Model)

Langmuir Number (La) 0.020 0.009 0.01

Nondimensional Surface Shear 8.42 2.32 1.98

Richardson Number (Ri) 3.28 1.00 11.20

Scaled Coriolis Parameter (F) 0.054 0.033 0.070

Maximum Growth Rate with CL 3.7 x 10-3 3.2 x 10 -3 1.8 x 10 -4
Instability (s-1)

Table 7.2: Parameters used as input
instability code.

to the instability code, and the output of the
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Figure 7.21: Three Case Studies of Instability during SWAPP. All plots show
contours of the most unstable growth rate in s-1 as a function of angle of cell
orientation relative to the wind and waves and horizontal wavenumber in cpm.
(a) Growth rates for March 4th, with effects of waves included. (b) Growth rates
for March 4th, without effects of waves included.(c) Growth rates for March 5th,
with effects of waves included. (d) Growth rates for March 5th, without effects of
waves included.(e) Growth rates for March 6th, with effects of waves included.
(f) Growth rates for March 6th, without effects of waves included.
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essentially identical. The time scale required for cells to grow on these two days is

of order 10 minutes. On March 6th the growth rate of the most unstable mode is

more than an order of magnitude smaller.
Figure 7.21 shows contours of the growth rate for each of the three 12 hour

periods on March 4-6 as a function of horizontal wavenumber and angle of cell

orientation. The top row shows growth rates for March 4th, the middle row growth

rates for March 5th, and the bottom row growth rates for March 6th. The left-hand

column shows the growth rate in the presence of waves while right-hand column

shows the growth rate in the absence of waves. The most important result is that in

the absence of waves, the profile is basically stable. In the presence of waves and

thus Craik-Leibovich instability, there are unstable rolls. Again the presence of

waves strongly destabilizes the Ekman spiral.

The second most important result is that on March 4th and 5th there is

strong instability, with cells growing on scales of 5 minutes. On March 6th, the

instability is much weaker, by a factor of about 20. This argues that the waves

would have destabilized the predicted profile on March 5th, but not on March 6th,

when the growth rates are comparable to the inertial frequency. Additionally, on

March 6th, the diffusive decay rate for a mixed layer depth of 12m is roughly the

same size as the largest growth rates. This means that the Craik-Leibovich
Rayleigh number is small, so that the cells cannot modify the Ekman spiral

significantly even if they do grow. The maximum growth rates in all three cases

occur for horizontal wavelengths of about 20m and the axis of orientation of the

most unstable cells is slightly to the right of the wind.

On a number of occasions, then, the viscosity predicted by the MY2 model

produces a velocity and density profile which is itself unstable to Langmuir

circulations driven by wave-current interaction. In the absence of waves, the

predicted structure is stable to two-dimensional disturbances. The degree to which

the predicted structure is unstable mirrors the strength of Langmuir circulations.

On a day when the maximum growth rates are of the same order as the Coriolis

frequency, the mixed layer restratifies.

7.7 Could wave-current interaction produce enough energy to prevent diurnal
restratification?

Sections 7.4 and 7.5 showed that during both March 5th and 12th estimates

of the stratified Craik-Leibovich instability parameter and the diffusive decay scale
indicated that the cells were strongly forced (RaCLS>>l). Section 7.6 showed that
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during March 4th and 5th the current profile predicted by the MY2 model should

have been unstable. These conclusions are now extended to test one of the
predictions of Chapter 5, namely that if RaCLS> 1, the Craik-Leibovich mechanism

will provide an energy source as large as 0.2 5 t*vs(z=0) for transporting density

within the mixed layer. The temporal variability of this energy source explains

why the mixed layer restratified on March 6th and 13th but not March 5th and 12th

We begin by considering sources of energy which could be responsible for

mixed layer deepening and evaluating whether or not they could explain the failure

of the mixed layer to restratify on March 5th and 12th.

*Buoyant convection: This mechanism is included in the PWP and MY2 models

and is the result of unstable buoyancy flux at the surface leading to convective

deepening. During the days when the mixed layer fails to restratify, the heat flux is

stabilizing, so that this cannot explain the observations.

*Shear Production:This mechanism, included in the PWP and MY2 models,

assumes local turbulence production by Kelvin-Helmholtz instability. The fact that

both of these models restratify on March 5th and 12th indicates that this

mechanism cannot explain the observations unless the surface stress is grossly in

error.
*Near-Surface Turbulence: Studies made in turbulent wall layers indicate that the

3
rate of turbulence production goes as u*. A number of studies have attempted to

use this surface-produced turbulence to deepen the mixed layer (Denman, 1973;

Davis et al., 1981). The constant of proportionality required to explain the

observed mixed layer evolution in these studies was found to be small, of order

0.4-1.0 This is a viable candidate for explaining the failure of the mixed layer to

restratify on March 5th since it is not included in the PWP model.
*Stokes Production: Chapter 5 showed that Langmuir cells have the ability to

transport density within the mixed layer. The energy source was shown to be of
2

order 0.25 u**vs(z-0). This is also a viable candidate for explaining the failure of

the mixed layer to restratify.
*Wave breaking: Breaking waves would result in deepening the mixed layer in two

ways. The turbulence produced by breaking waves will directly deepen a very

shallow mixed layer. Additionally, the momentum input from the waves to the

mixed layer will enhance the Kelvin-Helmholtz instability mechanism. Since the

waves were high on both March 5th and 12th, wave breaking is a third possibility

for explaining the lack of restratification on these two days.
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We begin the analysis of the enhanced mixing on March 5th and 12th by
considering whether wave breaking could have enhanced the Kelvin-Helmholtz
mechanism. In the presence of wave breaking, the near surface stress should have
increased. During March 5th, however, the momentum budget within the top 13.5
meters can be closed with only slight adjustments to the stress.

Suppose the Ekman transport is carried above a given depth D. Then if U
and V are the transport with geostrophic contributions removed by referencing
relative to some depth

aXiy
(7-5) 4 U+iV = -iF(U+iV) + P

Inserting the observed transport and stress into the right-hand side and integrating
over time yields

t
zx(t')+ir (t')(7-6) Up+iVp=J-iF(U(t')+iV(t'))+ p dt'

If the actual stress is very different from that produced by the bulk formulae,
Up+iVp will diverge from U+iV and the size of the correction needed to bring the
two curves back together gives an estimate of the size of the error in the stress.

Consider March 5th. Figure 7.22 shows the predicted and observed
transport over the top 13.5m. A reference depth of 70m was used to eliminate the
geostrophic components. The east transport matches its predicted value very well
(Figure 7.22a) but the north transport diverges (7.22b). In order to bring the curves
back together, a mean stress of 0.005 Pa was applied to the south (7.22c). This
gives an estimate of the error in the stress, which is less than 10% of the observed
stress of 0.057 Pa. Given the error in the measurements in the mean current, the
agreement is extremely good. It implies that wave breaking did not significant
amounts of momentum to the mixed layer. Figure 7.22d shows the temperature
difference between 11.25 and 15.75 meters. Large temperature differences indicate
when the diurnal mixed layer was shallower than 15.75 meters.

A similar analysis was done for March 12th-13th. Again the mean
correction to the wind stress required to bring the predicted and observed north-
south transports together is 0.005 Pa, less than 10% of the bulk-formula-derived
stress of 0.063 Pa. Once again, this means that the wind stress is quite close to the
real momentum flux during the time period in question, so that wave-breaking

does not significantly alter the momentum balance within the mixed layer.
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Figure 7.22: Closing the momentum balance in the upper 13.5m during SWAPP.
(a) East transport on March 5th. Solid line is observed transport, dashed line is
predicted from equation (7-6). (b) North transport on March 5th. Solid line is
observed transport, dashed line is predicted from equation (7-6).(c) North transport
on March 5th. Solid line is observed transport, dashed line is predicted from
equation (7-6) with stress to the south increased by 0.005 Pa. (d) Temperature
difference 11.25-15.75.

269

-200

-400

f2z

50O

o -I 2Z

S0.04
0 0.02

12Z
I--

-&%I 
I

I r



Therefore, wave breaking does not enhance Kelvin-Helmholtz instability during
March 5th and 12th.

We now turn to the question of whether or not Stokes production or
turbulent kinetic energy production could be responsible for the enhancement in
mixing. Figure 7.23 compares the energy needed to mix the surface density flux
down to a depth of 11.25 meters over two three day periods March 4-7 (in 7.19a)
and March 11-14 (in 7.19b). compared with a reasonable value for turbulent

3
production (u*) and Stokes production . Because the range of values is so large,
the cube roots of these three energy sources in are presented. The solid line is

2
(7-7) uCL=(0.25 utus(z=2.25m)) 1/3

and is an estimate of the energy available from Stokes production. (The Stokes
drift at 2.25m is used because the Stokes drift right at the surface is strongly
affected by high-frequency waves which were not measured. In Chapters 2-5, it
was argued that such waves were not important to the dynamics well away from
the surface). The dashed line is the friction velocity. The chain-dotted line is the
cube root of the energy flux which is either needed to mix the incoming buoyancy
flux down to a depth of 11.25 m (for times of net heating) or released by mixing
the surface buoyancy flux down to 11.25m (for times of net cooling). This quantity
is referred to as Ubuoy. When ubuoy is greater than zero, energy needs to be added to
the mixed layer to mix the surface flux down to 11.25 meters. When Ubuoy is
negative, turbulent convection down to 11.25 provies an energy souce for mixing.

The mixed layer failed to restratify on March 5th and 12th. but did restratify
on March 6th and 13th. Figure 7.23, shows that during both March 5th and 12, u*

is of the same order as Ubuoy, but uCL is much larger than Ubuoy. Thus Stokes
production would provide more than enough energy to mix down to 11.25m while
turbulent production would provide only just enough. On the other hand, on March
6th and 13th, both uCL and u* are of the same order as Ubuoy. If surface turbulent

production is the mechanism for mixed layer deepening on March 5th and 12th
one cannot explain why the mixed layer does restratify on March 6th and 13th.
However, if Craik-Leibovich instability is responsible, there is plenty of available

energy on March 5th and 12th, but only barely enough on March 6th and 13th.

It is of course possible that wave breaking could be responsible for altering

the mixing depth on March 5th and 12th directly, even if it does not affect the

momentum balance. If this were true, the estimate of turbulence production as
3

going as u, underestimates the true dissipation. Unfortunately, rigorous estimates
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SWAPP:Sources of Energy For Mixing
0.025

March 8

SWAPP:Sources of Energy For Mixing

Figure 7.23: Sources of energy for mixing during two periods during SWAPP.
Solid lines show the cube root of the Stokes production, dashed lines the friction
velocity, and chain-dotted lines the buoyancy production which is the result of
mixing the observed surface heat flux down to 11.25 m. (a) March 4-8th. The
mixed layer restratifies on March 6th, but not on March 4th, 5th and 7th. PWP and
MY2 models predict restratification on 5th and 6th. (b) March 11-15th. The mixed
layer restratifies on March 13th and 14th, but not on March 11th and 12th . PWP
and MY2 models predict restratification on 12th, 13th and 14th.
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of the turbulent dissipation are not available. However, visual inspection of plots
of turbulent dissipation in Crawford's (1992) preliminary report on the SWAPP
dataset does provide some information about the level of turbulence on March

12th. On this day, the launch Slicker was deployed from 2230-2400Z and made

about 20 profiles within the mixed layer. During this time period the mean friction
velocity was 0.64 cm/s. The measurements showed dissipation levels which rarely
exceeded 10-3 cm 2/s3. Assuming an average dissipation rate of 10-3 cm 2/s3 (a high
value considering the data) over this depth range implies that the total dissipation

3
over 5-15 m was less than 1 cm 2/s3 -4 u*. Assuming 20% of the total turbulent

production to go to density transport and 80% to dissipation, this implies that only
3

about of order u, worth of density transport was occurring, just the size of the

turbulent production we considered earlier in this section. But as we have already
seen, assuming the density transport to be carried by turbulent production does not
explain the increased levels of transport seen on March 5th and 12th relative to
March 6th and 13th.

The failure of the mixed layer to restratify on March 5th and 12th, days
when both the sonars and current meters saw evidence of Langmuir circulations,
supports the hypothesis that the cells are driven by wave-current interaction. A
rough estimate of the energy flux due to the CL mechanism (the Stokes

production) which would be expected to go to density transport reveals that wave-
current interaction could provide more than enough energy to explain the observed
mixing. The Stokes production was significantly larger on days when the mixed
layer failed to restratify, thus explaining why the mixed layer responded
differently to surface forcing on days with nearly identical wind and buoyancy
forcing but different wave conditions.

7.8 Conclusions and Implications

The SWAPP experiment supports the hypotheses that the oceanic mixed
layer is stirred by large cellular vortices which are driven by the Craik-Leibovich

wave-current interaction mechanism. There are three pieces of direct evidence for

this conclusion:

*The presence of high-frequency (1-36 cph) shear whose presence is linked to

strongly forced Langmuir cells and whose amplitude scales as the stratified Craik-

Leibovich instability parameter.
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*The failure of the mixed layer to restratify on two days when the waves were high
but the wind was low. CL instability provides sufficient energy on both days to
explain the failure of the mixed layer to restratify.

*The breakdown of the Mellor-Yamada Level 2 in explaining the observed shear
profile. The predicted profile is strongly unstable to two-dimensional roll vortices
when the CL instability mechanism is present, but not when it is absent.

Although these pieces of evidence are promising, the comparison between
theory and data is still far from complete. The actual structure of the low-
frequency shear response, the cell spacing, and the perturbation shear have not
been rigorously compared with solutions from the full finite-difference code.
These comparisons are made in Chapter 8 for some of the cases studied in this
chapter as well as during the MILDEX experiment.
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Chapter 8: Finite-Amplitude Langmuir Circulation during
MILDEX and SWAPP

8.1 Introduction
This thesis hypothesizes that the oceanic mixed layer is stirred by

Langmuir cells driven by wave-current interaction which are of the same spatial
scale as the layer rather than by small-scale diffusion. Chapters 2-5 developed a
theoretical framework within which this idea could be tested. Chapters 6 and 7
examined the velocity and density structure during two field experiments in the
light of this theory. Three points of consistency with the principal hypotheses
were found. These were:

1. Small mean shears in the interior of the mixed layer.
2. Instability of the velocity profile predicted by small-scale mixing to roll
vortices.
3. Scaling of the level of the high-frequency shear consistent with wave-current
interaction driving the cells.

Although these results provided powerful support for the main
hypotheses, a detailed comparison between theory and data given fully-
developed cells was not made. This chapter makes this comparison with the finite-
difference code used during Chapters 4 and 5. The focus is on:
*The horizontally-averaged velocity and shear structure in the presence of finite-
amplitude Langmuir cells.
*The spatial structure of the fully-developed cells.
*The horizontally varying velocity and shear structure in the presence of cells.

As expected, the finite-amplitude cells replace small-scale diffusion as the
primary mechanism for momentum and density transport through much of the
layer. The details of both the horizontally varying and horizontally averaged
structure, however, differ from observations. Possible reasons for these differences
are considered at the end of the chapter.

8.2 Equations of Motion and Methods of Solution

The equations of motion used in the finite-difference code are identical to
those used in Chapter 5 when the wind stress is balanced by the Coriolis force.

(8- a) an a avsav ap
(8-la) -+(u+u.S)T+w z = F(v+vs) +- -+Riax +LaV2 2
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(v av av
(8-1b) F-+(u+us)-+w-= -F(u+us) +LaV2v

ap ap ap
(8-1c) t+(u+us) p +w =LaV 2p

(8-1d) Q2 = V2

(8-le) -x =-w -z = u

Ve f N 2

(8-1f) La Fa F- Ri-
kwa2 kWa 4a 2

(8-1g) k-'(x,y,z)=(x,y,z)

(8-1lh) (kwa)2- U,Us,V,Vs,W)=(U, Us, V, Vs, W)
1

(8-1i) 2 t=t
kwa 2 a

In these equations kw,a, and a are the wavenumber, amplitude and frequency of
the driving waves. ve is the eddy viscosity, N the buoyancy frequency, f the
Coriolis parameter, and us and vs the Stokes Drift. La is the Langmuir number,

which is a scaled eddy visocity or inverse Reynolds number. Ri is the square of
the scaled buoyancy frequency and F is the scaled Coriolis parameter. Equations
(8-la-e) are for dimensionless variables, with equations (8-lg-i) showing how
these variables are converted to dimensional (italicized) form. The boundary
conditions on the velocity and density are.

(8-2a) Laz-oI o =-cosa

(8-2b) LaI = - sin a

(8-2c) L av == = 0
z=O z=-D 0

(8-2d) La -o=1

(8-2e) p z= -D

where a is the angle of orientation of the cells relative to the wind and D is the

depth of the fluid layer. The shortcomings of these equations as a realistic

idealization of the oceanic surface layer are explored in great detail in Chapters
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2-5 and in Appendix A. These equations are solved using the finite-difference
code introduced in Chapter 4 and outlined in Appendix C.

As part of the analyses of both the MILDEX and SWAPP datasets, the
mean Langmuir number, scaled Coriolis parameter, Stokes drift and surface shear
were computed. The current profiles obtained by using these parameters to force
a one-dimensional balance (as in Chapter 3) were shown to be unstable to

Langmuir circulations. This chapter focusses on three time periods where this
analysis was done:

1. 1500 PST November 6th -0200 PST November 11th during MILDEX (referred

to in Chapter 6 as Period 2). Cells were strong during almost all of this period.

2. 0000Z March 4th - 1715Z March 13th during SWAPP. Again, during this
period the cells were strong on all but one day (March 6th) which was the only
day on which the upper part of the water column restratified.
3. 1200Z March 5th - 0845Z March 6th. During this time period, both the PWP
and MY2 models predicted restratification which was not seen in the data.

The parameters were used to force the finite-difference code for each of these

three cases are shown in Table 8.1. The results from the runs are presented in

Sections 8.3 and 8.4.

MILDEX : SWAPP: SWAPP:
November 6- 11 March 4-13 March 5

Time Scale 630 sec 900 sec 380 sec

Length Scale 25 m 31 m 25 m

Velocity Scale 4.0 cm/s 3.5 cm/s 6.5 cm/s

La 0.017 0.021 0.009

F 0.051 0.074 0.033

Ri 0.0 0.0 1.0

Surface Shear 4.8 4.4 2.3

Layer Depth 2 2.5 2

Table 8.1: Nondimensional parameters input to the finite-difference code to
predict momentum and density structure during SWAPP and MILDEX.

During SWAPP the waves had a somewhat lower frequency than during

MILDEX, possibly as a result of the long fetches associated with the flanks of the
high-pressure system. Since the time scale T=1/(kwa)2 =g2/a2a 5 which is used to
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nondimensionalize the problem is strongly dependent on a, the 10% difference in

frequency results in a large difference in T. As seen below, this makes the effect of
stratification more important. Another difference between SWAPP and MILDEX

was the difference in the depth of the main thermocline. These differences are

reflected in the different cell strengths and structures seen during the two

experiments.
There are some problems with using averaged forcing functions to predict

the averaged response. The shear in a long-term average may occur at times when

the surface layer is stratified and the cells are weak. Using this shear to drive the

cells is not consistent. Additionally, given the fact that the forcing changes over

time scales of days, the mixed layer may actually come to equilibrium. An attempt

to minimize the first effect was made by limiting the analysis to periods when the

mixed layer was generally deep and Langmuir circulations were strong. The

second effect is a general problem with looking at an equilibrium state.

During all preceeding chapters, the upper boundary condition with respect

to velocity was taken to be constant with respect to the crosscell direction. In

Section 8.5 this assumption is relaxed and the surface shear allowed to vary in an

attempt to explain the failure of the models to produce a range of cells. The upper

boundary condition on density is also allowed to vary to simulate the effect of

diurnal buoyancy forcing.

8.3 The Horizontally-Averaged Structure of the Mixed Layer

8.3.1 The MILDEX Experiment

Chapters 6 and 7 showed that in the presence of strong Langmuir cells, the

horizontally-averaged velocity and shear structure differed from that predicted by

either a slab model or small-scale turbulence model. In both experiments, the

velocity structure was more slab-like than predicted by the small-scale turbulence

model, but near the surface the velocity response was strongly sheared. This

section shows that a layer with finite-amplitude Langmuir cells has a qualitatively

similar structure.

The horizontally-averaged response for Period 2 (1500 PST November 6 -

0200 PST November 11) during MILDEX is shown in Figures 8.1 and 8.2. Figure

8.1 shows the velocity response during this time period, from data (8.1a), from the

PWP model (8.1b), from the MY2 model (8.1c), from equations (8-1) assuming no

cells (8.1d) and from the finite-difference code assuming fully-developed cells
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Figure 8.1: Ekman spiral during MILDEX, November 6-11. (a) Observed
velocity relative to 65 meters. (b)-(f) Predicted velocity: (b) from PWP model,
(c) from MY2 model, (d) using mean MY2 viscosity in the presence of waves but
without cells, (e) from finite-difference code given finite-amplitude Langmuir cells,
and (f) from finite-difference code given finite-amplitude Langmuir cells with
transport corrected to agree with data.
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Figure 8.2: Ekman Shear during MILDEX, November 6-11. (a) Observed shear.
(b)-(f) Predicted shear: (b) from PWP model, (c) from MY2 model, (d) using mean
MY2 viscosity in the presence of waves but without cells, (e) from finite-
difference code given finite-amplitude Langmuir cells, and (f) from finite-
difference code given a stabilizing heat flux of 60 W/m2 (Ri=0.5).
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(8.1e). Over most of the water column, the velocity in the presence of cells is
slightly upwind. The transport resulting from integrating the velocity profile is
also upwind, in contrast to the observed transport, which is slightly downwind
(see Figure 6.19b). Some of the difference between the observed and the
modelled velocity profiles presented here stems from the difference in the mean
velocity. Figure 8.1f corrects for this effect by offsetting the velocity profile
predicted by the finite difference code so that the total transport agrees with that
seen in the data. Figures 8.2 a-e repeat 8.la-e for the shear instead of the velocity.
The shear is a measure of the momentum transport carried by small-scale diffusion.
When the shear is small, little small-scale diffusive transport occurs.

The velocity and shear profiles in the presence of finite-amplitude cells
show a number of common features with the data. Both show strong shear near
the surface, (<5m) with little shear in the middle of the water column (5-20m).
Below that the finite-difference code predicts more shear again, but in the
opposite direction from that predicted by the Mellor-Yamada model. Within the
finite-difference code the cells are not very important near the surface but replace
small-scale diffusion as the primary transport mechanism at depths below 5-10m.

Although the shear is strong near the surface in both the data and the
model, the observed shear is upwind, with water at depth moving faster in the
downwind direction than water near the surface. This is the opposite direction
from the shear seen in the finite-difference code runs and predicted by the Mellor-
Yamada model. Insofar as it is believed that the upwind shear is linked to the
presence of cells (as argued during Chapter 6) the finite-difference code does not
capture these cells or the momentum transport which they accomplish.

As a result of the cell momentum transport, the mean velocity profile in the
finite-difference code is much more homogeneous in the alongcell direction than
it is in the absence of cells. The presence of cells does not only produce
homogenization, however. Looking at a hodograph of the currents from above,
the Mellor-Yamada model predicts that the current vectors rotate clockwise
around the mean value as one goes deeper in the water column. The finite-
difference code predicts that the current vectors will rotate the other way. The
reason is that there is strong crosswind transport at the base of the layer. This is in
contrast to the observed response in Figure 8.1a which shows a decrease in the
velocity associated with the Ekman spiral as the mixed layer base is approached.

While there are a number of possible explanations for the enhanced
crosswind velocities at depth, one natural supposition is that the observed fall off
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in velocity is the result of interaction with the thermocline. The finite-difference
results presented above assume no stratification, with the bottom boundary being
essentially taken as a hard boundary below which mixing could not penetrate.
Given the inability of the finite-difference code to allow for a nonconstant
diffusive coefficient, the only way to test the sensitivity of these results to the
presence of a thermocline is to force a constant heat flux through the domain.
This was done assuming a temperature difference of 0.03 C across the layer,
corresponding to a stabilizing heat flux of 60 W/m2 and a Richardson number of
0.5. The resulting shear profile is shown in Figure 8.2f. The presence of
stratification does not change the shear or velocity profile substantially. Although
stratification probably does play some role in explaining the large deep crosswind
velocities modelled during MILDEX, it is most likely not the primary explanation.

8.3.2 The SWAPP Experiment

Over the time period from 0000Z March 4th to 1715Z March 13th during
SWAPP, Langmuir cells appear to have been strong with the exception of one
day. Finite-difference code runs were computed using the mean forcing functions
and diffusion during this time period as well. The results in the absence of
stratification are quite similar to those seen during MILDEX. Figure 8.3 repeats
8.2 for the horizontally-averaged shear seen during SWAPP. Once again, the
finite-difference code predicts a near-surface shear layer, as seen in the data and
in contrast to the PWP model. The finite-difference code also predicts that the
alongwind shear is essentially erased at depths below about 10m. The
observations do show some alongwind shear at this depth, though the amplitude
of this shear is much smaller than that predicted by the MY2 model. Finally, at
depths below about 30 meters, the finite-difference code predicts shear which is
off to the left of the wind. As during MILDEX, the velocity profile (shown in
Figure 8.4a) also exhibits large crosswind velocities at depth and the velocity
rotates counterclockwise around the mean value.

In contrast to MILDEX, however, these results are quite sensitive to the
presence of stratification. The sensitivity was tested by assuming a temperature
difference across the layer of 0.05 C (corresponding to a heat flux of about 60
W/m2 as in MILDEX). Because the time scale T for the evolution of the cells is

longer during SWAPP than during MILDEX, the effective Richardson number
during SWAPP is 1.0, twice that during MILDEX. The results of including
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Figure 8.3: Mean shear during SWAPP, March 4th-13th. (a) Observed shear.
(b)-(f) Predicted shear: (b) from PWP model, (c) from MY2 model, (d) using mean
MY2 viscosity in the presence of waves but without cells, and (e) from finite-
difference code given finite-amplitude Langmuir cells.
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Figure 8.4: Sensitivity of the results during SWAPP to stratification. (a)-(d)
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stratification are shown in Figure 8.4. Figures 8.4a and b show the velocity and

shear respectively in the absence of stratification (Ri-0.0), while Figures 8.4c and
d show the velocity and shear in the presence of stratification. Figures 8.4e

shows the temperature profile after the finite-difference code has evolved for 1
pendulum day and 8.4f shows the heat flux accomplished by the equilibrium

cells.

In the presence of stratification, the cell depth of penetration is limited to

about 40 meters. The cells reduce the temperature difference between the surface

and 40 meters from about 0.025 C to about 0.01 C. Interestingly, during SWAPP

the maximum observed mixed layer depths (defined as the depth at which the

temperature was 0.01C colder than the surface) were about 40 meters, while the

PWP and MY2 models both predicted mixing down to the main thermocline at 70
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Figure 8.5: Velocity Structure during SWAPP. (a) Observed relative to 70 meters.
(b) Predicted from the MY2 model. (c) Predicted from the finite-difference code
assuming stratification (Ri=1.0) and with the mean velocity corrected so that the
transport agrees with the data.
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meters. The agreement of the finite-difference code and data in this respect may

be fortuitous, but is nonetheless encouraging.

The reduction in the depth over which the cells penetrate is reflected in the

shear and velocity structure. The shear is now more or less in the alongcell

direction down to a depth of about 40 meters, though it is very small below a

depth of about 10 meters. The velocity structure reflects this fact. Figure 8.5

shows the velocity structure predicted during SWAPP given stratification

compared with the observed velocity structure where the finite-difference code

has been adjusted to give the same transport as the data. In the absence of cells

(Figure 8.5b) small-scale mixing is not very strong, so that there is a strong

intensification of the velocity near the surface. In the presence of cells, the

velocity profile is extremely close to that seen in the data when the transport is

corrected. For the mean conditions during SWAPP, imposing stratification limits

the depth to which the cells penetrate within the mixed layer and gives a realistic

velocity structure.

In the model runs just presented, stratification was included in an ad hoc

way. We now turn to a time period during which it is known that buoyancy flux

was important. During March 5th, the mixed layer failed to restratify in the

presence of waves and Langmuir cells as predicted by the PWP and MY2 models.

In Chapter 7, it was demonstrated that the mean Ekman spiral predicted by the

MY2 model during March 5th was strongly unstable to Langmuir cells. The

equilibrium state of the finite-difference code in the presence of fully developed

Langmuir cells is now considered.

Figure 8.6a shows the mean Ekman spiral relative to the wind on March

5th from data. The Ekman spiral was calculated by orienting the currents relative

to the wind and averaging over a pendulum day. Figure 8.6b shows the

prediction of the PWP model, Figure 8.6c the prediction of the MY2 model. Both

models predict surface intensification of the velocity with lots of shear in the top

10 meters. The data, on the other hand show a profile which is much more well-

mixed. This difference reflects the fact that the top 10 meters was erroneously

predicted to restratify by the models.

The finite-difference code predicts that Langmuir cells will in fact mix the

upper portion of the water column. Figure 8.6d shows the predicted velocity

structure from the finite-difference code assuming finite-ampliude cells. Figure

8.6e shows the mean temperature stratification after 1 day. Figure 8.6f shows the

heat flux in W/m2 predicted by the finite-difference code to be carried by the cells
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Figure 8.6: Velocity and Density structure on March 5th. (a) Observed velocity
structure. (b)-(d) Predicted velocities (m/s). (b) From the PWP model. (c) From the
MY2 model. (d) From the finite-difference code assuming finite-amplitude cells.
(e) Horizontally averaged temperature structure. Solid line is structure at end on
one day, dashed line initial condition. (f) Heat flux in W/m2 at equilibrium Ri=1.0.
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at equilibrium. The mean heat flux carried by the cells reaches 200 W/m2, a

remarkably large value to be sustained in the absence of strong surface winds.

This result again illustrates the importance of including wave-current interaction

as an energy source for stirring in the surface layer.

The presence of finite-amplitude cells changes the structure of the mixed

layer on March 5th, although the change mostly occurs in the upper 20 meters of

the water column. The model with finite-amplitude cells shows a mixed layer with

a depth of approximately 25 meters, about twice the depth actually seen during

March 5th. The mixing is very strong, carrying heat fluxes of approximately 200

W/m2 in the mean. Langmuir cells are clearly sufficient to explain the failure of the

mixed layer to restratify on March 5th during SWAPP.

8.3.3 Discussion

In Chapters 6 and 7, the current profile predicted by the Mellor-Yamada

model, which assumes mixing on scales which are small compared with the mixed

layer, was shown to be unstable to Langmuir cells when surface gravity waves

are added to the picture. The size of the growth rates was an indication that the

Craik-Leibovich Rayleigh number (RaCLS) was large. According to the theory

developed in Chapter 5. this means that the cells should be more important for the

transport at equilibrium than small-scale diffusion.

This section has verified the prediction that the finite-amplitude cells take

over the transport of momentum and density within the interior of the mixed

layer. As a result the mean shear within the mixed layer is far smaller than

predicted by small-scale mixing-a result consistent with the two field

experiments. Near the surface, the finite-difference code runs predict a remnant

shear layer, in which small-scale turbulence is still responsible for carrying stress.

The details of the picture are somewhat different from the data. A shear

layer was observed during SWAPP, but the size of the shear was smaller than that

predicted by the MY2 model. During MILDEX, a near-surface layer with strong

upwind shear was seen in the data but not in the model. Strong crosswind

velocities were also predicted at the base of the layer in contrast to data.

Another difference between the model and the theory is the overall

transport predicted within the mixed layer. In the presence of waves, Huang's

equations predict an Eulerian transport in the upwind direction, balancing the

Lagrangian transport associated with the Stokes drift. This upwind transport was
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Figure 8.7: Cell structure during MILDEX. (a) Streamfunction in m2/s.
(b) Vertical velocity in cm/s (contour interval is 1 cm/s, strong velocities are
downwelling). (c) Alongcell velocity in cm.s (contour interval is 1 cm/s).
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not seen in either of the two experiments. The differences between theory and

data are considered in more detail in the final section of this chapter.

8.4 Horizontally and Temporally-varying Velocity and Shear during
SWAPP and MILDEX

Having considered the effect which the cells have on the mixed layer, we

now turn to the question of the velocity and spatial structure of the cells

themselves. Figure 8.7 shows a snapshot of the velocity structure during

MILDEX after 1 day has elapsed and the model is more or less at equilibrium.

Figure 8.7a shows the streamfunction in m2/s, 8.7b the vertical velocity in cm/s

and 8.7c the alongcell velocities in cm/s.

The field of cells is dominated by a single scale, consisting of cells with an

approximately 200 meter wavelength. The cells are associated with narrow

plumes of downwelling approximately 25 meters across in which the vertical

velocities reach 6 cm/s and the alongcell velocities are up to 3 cm/s larger than the

mean velocity at a given depth. Both of these velocities are somewhat lower than

those seen in the field. The cell spacing seen here is somewhat larger than the

spacing seen during MILDEX. During the time periods when they were strongest,

the cells had a spacing of about 100-140 meters (Figure 6.6). In a gross sense the

model does predict cells of the right order of magnitude with respect to spacing

and depth of penetration, but there is still a factor of 2 difference in the spacing.

The cell spacing predicted by the models is often quite a bit larger than

that observed in the field. Figure 8.8 shows spectra of the crosswind horizontal

velocity at the surface predicted by the finite-difference code. Figure 8.8a shows

the results from SWAPP assuming the forcing to be described by the mean

parameters over March 4th-13th. The solid line shows the spectrum when the

layer is unstratified, the dashed line when stratification is imposed. In the absence

of stratification, the velocity spectrum is dominated by very long cells, with

wavelength of 500 meters. In the presence of stratification, the spectrum flattens

somewhat, with a marked increase in the energy at high-wavelengths but the

peak is still at wavelengths of 250 meters.

Figure 8.8b shows the spectrum of surface crosswind velocity during

MILDEX, again with and without stratification. In this case stratification does not

changes the cell population measurably. The peak wavelength is for cells 250

meters across. Figure 8.8c shows the spectrum of surface crosswind velocity
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Figure 8.8: Spectra of horizontal velocities and shears during the two field
experiments. (a) Crosswind velocity spectra during SWAPP from the finite-
difference code assuming mean conditions from March 4th - 13th. Solid: Ri=0.0,
Dashed: Ri=1.0 (stabilizing heat flux of 60 W/m2). (b) Crosswind velocity spectra
during MILDEX from the finite-difference code assuming mean conditions from
November 6th - 11 lth. Solid: Ri--0.0, Dashed: Ri=0.5 (stabilizing heat flux of 60
W/m2). (c) Crosswind velocity spectrum from finite-difference code during
SWAPP assuming mean conditions on March 5th. (d) Spectrum of crosscell
velocity from SIO sonars during SWAPP, March 4th and 5th (from Smith, 1993).

290



during March 5th in SWAPP. The velocity shows a peak at about 125-160 m, but

there is also enhanced activity at higher wavelengths.

The structure of the velocity spectra during SWAPP can be compared with

the SIO Doppler sonars. Figure 8.8d shows spectra of the velocity seen by the

sonars during SWAPP from Smith (1993). The time period shown covers a 21

hour period during which Langmuir cells were very strong on March 4th and 5th.

The appropriate figure for comparison is Figure 8.8a. The spectra are noticeably

peaked at a wavelength of about 120 meters, quite a bit smaller than the 250

predicted even in the presence of stratification. The peakedness is not very

strong, only a factor of about 70 separates the spectral density at 0.01 cpm and

0.1 cpm in the data, while the model predicts a much faster falloff (about a factor

of 3000). In general, the model predicts spectra with too much energy at long

wavelengths and not enough at short wavelengths (even though wavelengths of

10 meters are resolved by the model and are unstable).

The vertical structure of cell velocities and shears is considered in Figure

8.9. The amplitude of the shear and velocity (defined as I times the standard

deviation) is shown as a function of depth. The left-hand column shows the

velocities, with crosscell horizontal velocities (x-direction) denoted by solid lines,

alongcell horizontal velocities (y-direction) denoted by dashed lines, and vertical

velocities denoted by chain-dotted lines. The right-hand column shows the shear.

The solid lines are the crosscell shear, while the dashed lines are the alongcell

shear. Because the results with an imposed stratification during March 4-13 in

SWAPP gave a more realistic velocity profile and cell spacing they are used to

compare with MILDEX and March 5th during SWAPP.

The model predicts that the strongest cells should have been seen during

MILDEX, with both vertical and horizontal velocities being much larger than

during SWAPP. This was in fact the case. During MILDEX large downwelling

velocities (up to 20 cm/s) were seen, while during SWAPP they were not. The

reason for the difference is apparently that the larger Stokes drift shears and

smaller viscosities during MILDEX resulted in a larger effective Rayleigh number

for the cells.
The highly asymmetric nature of the cells means that using the standard

deviation leads to an underestimate of the peak velocities. For example, during

MILDEX the peak downwelling velocities are more than 6 cm/s, while the

amplitude in Figure 8.9a is only 2.5 cm/s. The upwelling velocities on the other

hand, are of order 2.5 cm/s. Similar asymmetry was seen in the field data.
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Figure 8.9: Velocity and shear structure during the two experiments. Left hand
column is amplitude of the velocity fluctuation associated with the cells, with
solid being the crosscell horizontal (U), dashed being the alongcell horizontal (V),
and chain-dotted being the vertical (W). Right-hand column is the amplitude of
the vertical shear of the horizontal current. Solid lines are the vertical shear of the
crosscell current (eu/az), dashed lines are vertical shear of alongcell current
(d)v/az). (a) Velocities from MILDEX assuming mean conditions, November 6-11th.
(b) Shears from MILDEX, November 6-11th. (c) Velocities from SWAPP, March
4th-13th. (d) Shears from SWAPP, March 4th-13th. (e) Velocities from SWAPP,
March 5th. (f) Shears from SWAPP, March 5th.
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The difference in cell strength between SWAPP and MILDEX is not

reflected in the shear. During SWAPP the perturbation shear is smaller than

during MILDEX (about 30-40%) but not as much smaller as was seen in the data.

This is despite the fact that an approximate theory which assumed cells of about

10 meters depth did an excellent job at reproducing both the level and temporal

variability of the high-frequency shear during both SWAPP and MILDEX. The

reason for the failure of the model to reproduce the level of the perturbation shear

is most likely that the short-wavelength cells which were assumed to contribute

to the high-frequency shear in the field experiments are absent in the model.

8.5 Conclusions and Discussion

In a qualitative sense, the finite-difference code runs validate the

hypothesis that Langmuir cells were more important than small-scale diffusion in

homogenizing the mixed layer during SWAPP and MILDEX. As expected from

the instability calculations, the finite-amplitude cells do replace small-scale

diffusion as the major transport mechanism over some part of the layer. This

supports the idea that Langmuir cells are the fast processes implicitly included in

slab models which homogenize the mixed layer. The models also reproduce the

observational result that the cells were stronger during MILDEX than during

SWAPP.

In a quantitative sense, however, the agreement is not as good. The finite-

difference code predicts a surface shear layer which is stronger than actually

observed during SWAPP and one in which the shear is downwind rather than

upwind during MILDEX. The code also predicts strong crosscell velocities near

the base of the mixed layer during MILDEX and SWAPP which are not seen in

reality (although adding some stratification to the SWAPP results does produce a

more realistic velocity and shear profile). Lastly, the predicted mean Eulerian

transport includes an component which balances the Stokes drift flow which is

not seen in the data.
The difference between the predicted and observed surface shear layers

may be attributed to the fact that the models underestimate the effect of cells near

the surface. As seen in section 8.4 the models predict very long-wavelength,

essentially monochromatic cells during MILDEX. Over the course of Chapters 2

and 3, it was demonstrated that short-wavelength cells were much more efficient

than these long-wavelength cells at taking advantage of the high shears near the
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surface. The failure of the models to capture the observed horizontally averaged

structure is probably linked to their failure to capture the short-wavelength cells.
The presence of crosscell velocities near the base of the mixed layer may

be explained by considering the Ekman balance. For every layer contained

within the surface layer, in order for a time-mean equilibrium to hold, the Coriolis

force in the crosswind direction must balance the alongwind stress. If U(z) is the

horizontally averaged velocity in the crosswind direction,

z2

(8-3) F jCrosswind velocity dz = Alongwind Stress IZ
zl

As the problem is currently cast, the alongwind stress must vanish when z=-D, so

that there can be no interaction with the thermocline. This means that if the cells

penetrate to depths near D, carrying large alongwind stress, there must be strong

crosswind velocities or strong shears to the left of the wind to balance this stress.

Both of these are seen in the unstratified runs in MILDEX and SWAPP. The

problem then is either that the bottom boundary condition on velocity is

inaccurate, that the cells penetrate too close to the bottom boundary, or some

combination of the two.

The remaining discrepancy between theory and data is the lack of a wave

return flow in the Eulerian transport. The theory developed during Chapter 3

predicted such a return flow but it was not seen either during MILDEX (Figure

6.19) or SWAPP (Figure 7.17 also Weller and Plueddemann, 1994). There is no

good explanation for this discrepancy at the present time, only speculations. One

possible explanation is that the reference level for the data was improperly

chosen in SWAPP and MILDEX. If the reference depth chosen was one for

which there was actually wave return flow, the resulting transport would be

biased in the downwind direction. This is unlikely, however, for the following

reasons.

*During both SWAPP and MILDEX shifting the reference level higher in the

water column would have reduced the crosswind as well as the alongwind

transport. As the crosswind transport was fairly close (within 10%) to the classical

Ekman transport this makes the problem of the transport worse rather than better.

*Shifting the reference level lower in the water column would require moving it

well below the mixed layer into the main thermocline. In the absence of mixing,

the return flow in the main thermocline should just be equal and opposite to the

294



Figure 8.10: Picture of momentum associated with a finite-length wave group in
deep water, from McIntyre (1981). Near-surface Stokes drift is balanced by a deep
return flow. The irrotational return flow underneath the wave packet is shown for
a packet of surface gravity waves propagating to the right. A third, equivalent
contribution propagates with the speed of the long-wave group.
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Stokes drift (Chapter 3). For SWAPP, the return flow at 70m would be less than

0.5 cm/s
oWeller and Plueddemann, 1994 applied an EOF analysis to isolate the Ekman

response during SWAPP which was coherent with the wind. The structure of this

response is not dependent on reference level. Since the wind and waves are

correlated, this analysis should have captured the wave return flow. In fact, the

transport calculated from the EOF analysis was almost exactly the classical

Ekman transport.
One possible explanation why a wave return flow is not seen is that wave

groups have finite-length. Figure 8.10 is taken from McIntyre (1981) and shows
the structure of the momentum associated with a finite-length group of surface
gravity waves. A finite-length group of gravity waves has a pressure disturbance
associated with it. This pressure disturbance will force a return flow whose
transport balances the Stokes drift. A third phenomenon associated with the
pressure disturbance is a long-wavelength wave which propagates away from the
group. The momentum associated with this long wave is the same as that
associated with the Stokes drift. The upshot is that the momentum associated
with a finite-length wave group may not actually be co-located with the group
itself, and so neither will the return flow. This is speculation, however, as the
equations for such a case have not been worked out.

Two of the major shortcomings of the finite-difference code results have
been linked to the fact that they fail to reproduce the range of scales seen in the
open ocean experiments. One problem is that once large-scale cells form in the
models they persist. Additionally, there is no mechanism that can "reseed" the
smaller scales quickly enough in order for them to grow on top of the larger cells.

Four possibilities for explaining the failure of the finite-difference code to
produce multiple scales of cells are listed below.
*The models assume a surface stress which is constant spatially. In reality the
surface stress is horizontally heterogeneous as the result of breaking waves, cat's
paws in the wind, and so forth. Such heterogeneity might be able to provide
initial perturbations for small-scale cells to grow atop the larger-scale cells.

*The mean equilibrium structure forced by the average parameters has been

compared to a mixed layer in which there is time-dependent forcing. If the forcing

in the ocean mixed layer changes quickly enough, the mixed layer may never

reach equilibrium.
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*The boundary conditions which were chosen, in which the bottom is taken as a
no-stress boundary with respect to momentum but fixed with respect to flux are
not realistic. They tend to favor very long-wavelength cells which do not feel the

effects of stratification easily (the density perturbations are much more strongly

damped than the velocity perturbation, Chapters 3 and 5).
*Since they are two-dimensional, the models neglect three-dimensional merging

processes such as those studied by Thorpe (1992). These, rather than the

relatively slow two-dimensional merging processes studied in Chapter 4, may be

responsible for limiting both the persistence of the large-scale cells and their

horizontal extent.

Of these four explanations for the failure to reproduce the cell population,

only the first two are testable within the basic assumptions of Huang's equations.

A few simple finite-difference code runs have been done to test whether or not

the inclusion of forcing which varies over space and time can explain the failure

of the models to reproduce the spatial structure of the cells.

It is possible to examine the question of spatial and temporal variability in

the wind stress by changing the upper boundary condition on velocity so that
dv T

(8-4) La- = p (1 +8 sin(2rx/Lc) sin(2xt/tc))

The purpose of this change is to simulate surface variability which can result in

changing the horizontal velocity and shear spectrum associated with the cells. In

order to do this one must first choose the time and space scales associated with

the perturbations. In the field, Edson (pers. comm.) and others have found that it

is necessary to average sonic anemometers 30m apart for at least 30 minutes in

order to obtain consistent estimates of the stress. The surface stress is allowed to

vary with a dimensional time period of 30 minutes and dimensional length scale of

30m. (This length scale was chosen as being close to the fastest-growing mode).

Model runs made with the revised boundary conditions do not differ

substantially from those made with spatially constant boundary conditions. The

mean Ekman spirals are found to exhibit somewhat different shear profiles in the

middle of the water column, where the shear was small to begin with, but there is

no evidence at present that small-scale cells are generated given the parameter

settings used to model the response during MILDEX and SWAPP.

The question of temporal variability may be considered by allowing the

surface density flux to vary so that the cells are partially suppressed during the

day and reappear at night. Runs made in the absence of rotation generally
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showed that unless the cells were totally erased, the long-wavelength cells

dominated for all time periods. The fundamental problem is that for most cases in

our two-dimensional framework, the long-wavelength cells are hard to kill off.

When the boundary conditions change, they may become weaker or stronger but

they do not disappear and clear the way for smaller-scale cells.

To summarize then, finite-difference code results support the idea that

Langmuir cells are responsible for maintaining the mixed layer. The velocity and

density profiles set up within the mixed layer by small-scale diffusion during

SWAPP and MILDEX are unstable to cells. When these cells grow to finite-

amplitude, they replace small-scale diffusion as the major mechanism for transport.

The quantitative results are sometimes dependent on the degree to which dense

water is entrained from the bottom of the mixed layer. The finite-difference code

runs do not predict the cell spacing at equilibrium very well, and so do not

capture the quantitative structure of the mixed layer. Inclusion of three-

dimensional Langmuir cells is probably necessary to capture the full quantitative

structure of the mixed layer.
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Chapter 9: Conclusions and Discussion

9.1 Summary of the Main Results

This work examines whether Langmuir cells driven by wave-current

interaction or diffusion associated with isotropic turbulence is the primary

transport mechanism for momentum and density within the oceanic mixed layer.

A natural response based on knowledge of Rayleigh-Benard convection is that

organized convection is more important than diffusion when the characteristic

scale for the forcing is larger than the characteristic scale for diffusion. However,

the wave-current interaction mechanism of Craik and Leibovich is intensified

near the surface, making it difficult to define a characteristic scale for the forcing.

Additionally, because the forcing is so surface-intensified it is not initially obvious

whether the mechanism can drive cells which penetrate over the depth of the

mixed layer.
Equations for two-dimensional Langmuir cells in the presence of

stratification and Coriolis forces assuming a mixed layer in which the diffusive

coefficient is constant were introduced by Huang (1979). The approach taken in

this thesis has been to solve these equations for the equilibrium state in the

absence of cells, to calculate the instability of this state to Langmuir cells, and to

consider how the finite-amplitude cells modify the velocity and density structure

at equilibrium.
Chapter 2 considered the problem of instability in a layer in which the

surface stress was balanced by a pressure gradient and the wind, waves, and axis

of cell orientation were all parallel. Using the energy balance for unstable cells,

the strength of the forcing was shown to go as (page 39):
(0 0 0

2 4 v" C C P
(9-1) YCLS-D2 F(z) ~Z (z)dz- G(z z

where v5 and V are the Stokes drift and Eulerian velocity parallel to the alongcell
axis, z is the vertical axis and p is the density. The functions F(z) and G(z) are

weighting functions which depend on the boundary conditions and are

proportional to the nonlinear flux of momentum and buoyancy carried by the

most unstable mode at a given horizontal wavenumber. At the surface F(z) = G(z)

=0 since the vertical velocities associated with Langmuir cells are zero. This

means that the important shears for driving Langmuir cells are not those right at
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the surface, but those at depths where v'w' is large. The square of the ratio of YCLS
to the characteristic diffusive decay scale Ydiff is the stratified Craik-Leibovich

Rayleigh number RaCLS.

(9-2) RaCLS = YCLS diff

When RacLS is large the growth rate was shown to go as:
k

(9-3) 7- YCLS
9k2+((/D)2

where k is the horizontal wavenumber and D' is the depth of penetration of the

cells. Physically, the growth rate and structure of the unstable cells with a given

wavelength was shown to be determined by a tradeoff between:

*Maximizing the strength of the forcing.

*Maximizing the efficiency of the forcing at reinforcing the instability,

corresponding to maximizing the aspect ratio D'/L.

*Minimizing the characteristic diffusive scale.

A principal result of this tradeoff is that long-wavelength cells penetrate

more deeply into the mixed layer than shorter-wavelength, more quickly growing

cells. Because the bottom boundary conditions for density and velocity were

assumed to be different, at long wavelengths the effect of stratification was found

to vanish. In order for the finite-amplitude cells to replace small-scale diffusion as

the dominant transport mechanism over the majority of the mixed layer, such

long-wavelength cells must dominate the solution at equilibrium.

Chapter 3 considered instability of an Ekman spiral in the presence of

surface gravity waves. It was shown that the waves induce an Eulerian return

flow whose transport balances the Stokes drift. The importance of Craik-

Leibovich instability depends on the Ekman number Ek=vek/f, where Ve is the

eddy viscosity, kw is the wavenumber of the gravity waves, and f is the Coriolis

frequency. When Ek is very small, the return flow is equal and opposite to the

Stokes drift over much of the depth and wave-current interaction is less important

for driving unstable roll vortices. When Ek is large, wave-current interaction is the

primary driving mechanism for roll vortices. The presence of the Coriolis force

was found to cause crosscell shears, which stabilized the cells at low

wavenumber. In the presence of stratification, the cell penetration depth was

limited by this crosscell shear.

Although Chapters 2 and 3 isolated the important physical parameters

governing Langmuir cell instability, these parameters were found to depend

critically on the vertical scale of the cells. This scale was in turn found to depend
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on the horizontal scale. In order to determine whether or not the cells were

important, it was necessary to ascertain which horizontal scale dominated the

flow at equilibrium. Chapter 4 considered this problem. It was shown that the

dominant scale at equilibrium is generally larger than that associated with the

fastest growing mode. In the absence of Coriolis force, the cell spacing increases

without discernable limit. As a result, the cells were predicted to penetrate over

the entire depth of the mixed layer at long enough times. However, the evolution

of flow field to large scales is very slow after the cells establish a quasi-equilibrium

state, so that in the field Langmuir cells might never have enough time to reach an

equilibrium state in which they penetrate over the depth of a given mixed layer.

The physical process governing cell merging was hypothesized to be one in

which large-scale vortices advect smaller-scale plumes of alongcell velocity,

creating velocity structure with larger wavelengths. This large-scale velocity

structure then feeds back on the large-scale vortices through the Craik-Leibovich

instability mechanism.
In the presence of Coriolis forces, the cascade to large horizontal scales is

halted so that the cells do not penetrate over the entire surface layer. The

dominant mode at equilibrium is generally one with a larger wavelength than that

associated with the fastest-growing mode, but a smaller wavelength than the

longest unstable mode. Some mechanisms for the interruption of the cascade were

considered, but only in a speculative way,

Chapters 2 and 3 showed that when RaCLS the equilibrium layer set up by

small-scale diffusion is unstable to Langmuir cells. Chapter 5 considered the effect

of such cells on the velocity and density structure within the mixed layer when

they grow to finite amplitude. When RacL is large, Langmuir cells replace small-

scale diffusion as the principal vertical transport mechanism within the surface

layer. Near the upper surface there is a layer within which turbulent diffusion was

important but elsewhere Langmuir cells are the dominant transport mechanism.
The vertical shear of the horizontal velocity was shown to scale as YCLS-

When only one linearly unstable mode is present at the dominant cell

spacing, RaCLS can be estimated from the shape of the unstable mode, providing a

simple way of estimating the importance of Langmuir cells as a transport

mechanism. Simple truncations which capture the shape of the nonlinear

momentum and density transport were also found to yield accurate predictions of

the horizontally averaged velocity and density profiles at equilibrium. Thus by
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knowing the shape of the cells, one can predict their effect on the mixed layer at

equilibrium.
Chapter 6 applied the theoretical results to data collected during the

Mixed Layer Dynamics Experiment (MILDEX). It was demonstrated that the

shear in a high-frequency band (1-30 cph) did in fact scale as 'YCLS, providing

evidence that wave-current interaction did drive the cells. When YCLS was large,

the velocity structure within the mixed layer showed evidence of mixing

accomplished quickly by large eddies rather than more slowly by small-scale

eddies, in that it was far less sheared than predicted by a Mellor-Yamada model.

However, the data showed shear within the isothermal mixed layer, a result not

produced by a slab model which implicitly assumes homogenization of the mixed

layer by large eddies.

Instability code solutions revealed that the Ekman spiral predicted by

assuming small-scale mixing was strongly unstable to two-dimensional roll

vortices in the presence of surface gravity waves, but not in their absence. Since

such large vortices were in fact seen, this is evidence that wave-current

interaction was in fact driving them.

Chapter 7 extended the results of Chapter 6 to data gathered during the

Surface Waves Processes Program (SWAPP). The results from this experiment

generally supported those from MILDEX, although the cells were weaker. A
particularly interesting result was that YCLS was found to predict not only the

level of high-frequency shear, but the time evolution of the Langmuir cell

strength measured by sonars. During SWAPP, the mixed layer failed to restratify

on two days following strong wind events. This failure could be explained when

wave-current interaction was presumed to drive the Langmuir cells.

Chapter 8 compared the velocity and density structure observed during

SWAPP and MILDEX with solution from a finite-difference code. The finite-

dfference code results were found to produce mixed layers which were less

sheared than those predicted by a small-scale mixing model, but more sheared

than predicted by a slab model. On one day when both one-dimensional models

erroneously predicted restratification, the finite-difference code predicted mixing.

The picture which emerges from the two experiments is one in which Langmuir

cells grow on and greatly modify the velocity and density profile established by

small-scale mixing.

Quantitative disagreements between the observed structure and that

predicted by the finite-difference code may be attributable to the failure of the
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two-dimensional theory to correctly predict the range of cells observed in the

field. An additional discrepancy between theory and data is that the Eulerian
return flow predicted in Chapter 3 was not seen in either experiment.

These results have important implications for mixed layer dynamics, and

thus in turn for a number of problems of interest to a wide range of marine

scientists. Section 9.2 discusses how the presence of Langmuir cells affects the

dynamics of the mixed layer. Section 9.3 considers how Langmuir cells are

relevant to a number of other oceanographic problems. Section 9.4 concludes this

thssis by examining avenues for future research on Langmuir cells.

9.2 The Role of Langmuir Circulations in Mixed Layer Dynamics

This thesis has shown that Langmuir cells are an important process for
maintaining mixed layers. Some results of particular importance are as follows:

*Langmuir cells play an important role in determining the mean velocity structure.
of the upper ocean. By homogenizing the mixed layer, they play a critical role at

determining the velocity shear at the layer base. Insofar as slab models capture

mixed layer evolution, they do so because Langmuir cells homogenize the mixed

layer.
*Wave-current interaction serves as a source of energy for driving the cells. This

means that mixed layer dynamics is coupled with surface wave dynamics.

* The cells are extremely efficient at transporting density relative to small-scale

turbulence. Even if cells play a minor role in the total turbulent kinetic energy
budget, they may be very important sources of energy for entrainment and
mixing.
*The cells set the "cycle time" for particles to make a circuit from the surface to the

base of the mixed layer and back again.

*The spatially coherent, temporally persistent velocity circulations associated with
the cells mean that particles which maintain some depth will be carried into

convergence zones. As a result, the velocity seen by such particles will not be

representative of the mean velocity of the mixed layer as a whole.

A natural question which arises is how best to incorporate these results in

operational models of the mixed layer. Two suggestions present themselves,

although both have some problems. The first possibility is that the Stokes

production could be added as a source of energy for mixed layer deepening

within slab models. The problem with this approach is that it will overestimate the
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contribution of Langmuir cells when the mixed layer is either very weakly or very

strongly stratified, when RaCLS is near 1, or when the waves are at a strong angle

to the shear. Additionally, it will not improve the accuracy of the velocity

structure predicted by the slab models. A second possibility is that the truncated

model solutions introduced in Chapter 5 could be used to modify the velocity

solutions predicted by the Mellor-Yamada model. In order to do this, however,

better understanding of the dynamics governing cell spacing needs to be

developed.

In some cases (as during SWAPP) Langmuir cells are responsible for

creating the mixed layer rather than merely maintaining it. It is reasonable to ask

whether such cases represent the rule rather than the exception, so that Craik-

Leibovich instability rather than small-scale shear instabilities is responsible for

mixed layer creation. In this case, the depth of penetration of the cells would

determine the depth of mixed layer.

One problem with framing the question in such a way is that the concept

of a mixed layer is not very well defined. Insofar as it represents a region of low

stratification, a mixed layer can be created by high levels of small-scale turbulence

as well as by large-scale Langmuir cells. At some level this is a "chicken and egg"

problem, since both Langmuir cells and small-scale turbulence reduce the

stratification and both grow to larger amplitudes when the stratification is small.

The turbulent diffusive coefficient during SWAPP and MILDEX was estimated at

around 200 cm 2/s, 200 times as large as the canonical value for the thermocline.

Given a one-dimensional balance, the mean stratification in the mixed layer could

then be much smaller than that in the thermocline without having to invoke

Langmuir cells. On the other hand, the high levels of near-surface turbulence may

be due to the low stratification, which allows such turbulence to grow and

persist.
Insight into which process is more important can be gained by considering

the scaling of the growth rate as the eddy visocity becomes very small. From

Chapters 2 and 3, the growth rate of Langmuir cells goes as:

(9-4) 'CL - a s/-zz- -N /i7 /pve- . --Q/cp

while the growth rate of Kelvin Helmholtz instability goes as (from Howard,

1960):

(9-5) TKH - 2  L 2 -veQ/pcpONF V -eQPc
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As the eddy viscosity drops, the growth rate for Kelvin-Helmoholtz instability
increases faster than that for Langmuir cells. If v is the molecular viscosity, the

condition for Craik-Leibovich instability to be more important than shear

instability in creating the mixed layer is that

(9-6) I/pv < az

where the Stokes drift shear is appropriately chosen for the mixed layer depth of

interest. Given of order 0.1 s-1 (a rather large value) and a kinematic viscosity

of 10-6 m2/s, shear instability is more important than Craik-Leibovich instability for

initially creating the mixed layer if wind stress is above 10-4 Pa. This suggests that

for very small viscosity, the surface stress is initially carried into the water column

by Kelvin-Helmholtz instability rather than by Langmuir cells.

Once a region with low stratification is established, however, Langmuir

cells become more important as a transport mechanism. If the turbulence is strong

enough so that the eddy diffusivities are of order 0.01 m2/s, Craik-Leibovich

instability will be more important than Kelvin-Helmholtz instability for wind

stresses less than 1 Pa (larger than observed during both SWAPP and MILDEX).

Langmuir cells can be the dominant transport mechanism in mixed layer

maintenance even if they are not the dominant process in mixed layer creation.

9.3 Implications for Other Problems

The conceptual picture of a mixed layer stirred by Langmuir cells has

implications for a number of other problems in physical, chemical, and biological

oceanography. A few of these are listed below.
*Lagrangian measurements of surface drift currents: Drifters are used to

measure the Ekman flow within the mixed layer. The convergence of this flow is

used to calculate the Ekman pumping which in turn drives the general circulation.

Suppose an Ekman transport is 1 m3/s, about the size of that seen during SWAPP

and MILDEX. Measuring such transport in a 40 meter deep layer requires

measuring a mean current of 2.5 cm/s.

Insofar as the velocity structure of the mixed layer is not homogeneous

velocity measurements made by drifters will be biased. This work has treated

three possible sources of bias.

1. The Stokes drift.

2.The vertical shear of the horizontal current.
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3. The alongwind jets associate with convergence zones.

The results from this work suggest that all of these biases are significant.

The surface Stokes drifts during SWAPP and MILDEX are of order 10 cm/s.

Although the presence of Langmuir cells does reduce the amount of alongwind

shear in the mixed layer, a surface shear layer is predicted in which the shear is of

order 0.005 s-1 and which is at least 5m deep. A surface drifter will therefore have

a bias of approximately 2.5 cm/s in the alongwind direction relative to the mean

mixed layer velocity. The peak velocities associated with the jets were measured

as being of order 10 cm/s during MILDEX and modelled as being of order 5 cm/s,

giving a large bias in the alongwind direction. In combination these results

suggest that the velocity measured by a surface drifter will be biased in the

alongwind direction with respect to the mean mixed layer flow.The size of the

bias is potentially large in comparison with the velocities associated with the

Ekman transport. As a result estimates of Ekman pumping based on drifters will

include errors which are proportional to the wind stress divergence. Moreover,

droguing the drifter to some depth will not necessarily help. If the depth at which

the drogue is located is above the center of the mixed layer, Langmuir cells will

still carry it into convergence zones, and the velocity will still be biased in the

alongwind direction.

*Oceanic Photochemistry: A number of geophysically interesting photochemical

trace compounds (carbon monoxide, hydrogen peroxide, carbonyl sulfide) are

produced by sunlight and consumed by biota within the surface layer.

Gnanadesikan (1994, subm.) shows that the surface concentrations are strongly

dependent on whether the mixing through the layer is fast or slow in comparison

with the rate at which the compounds are consumed. If Langmuir cells are active

the mixing will be quite fast, implying lower near-surface concentrations and air-

sea fluxes than predicted by Mellor-Yamada type models.

*Biological Productivity: The amount of light which phytoplankon can capture

is a major factor in their productivity. It depends on the level of light and the

amount of pigment which can be used to capture the light. In turn, the

pigmentation of phytoplankton is a function of the amount of light to which they

are exposed. (Olson et al., 1990) At depths below the e-folding scale of

penetrating radiation phytoplankton maintain high levels of pigment so as to take

advantage of what little light there is. Plankton near the surface, on the other

hand, have much lower levels of pigmentation. Olson et al.(1990) showed that the
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picoplankton Synechococcus required many hours (of order 20-30) to adjust
from high to low light levels.

In a layer where Langmuir cells are strong, phytoplankton will see rapidly

varying levels of light as they are advected around the vortices. By contrast, in a

mixed layer mixed by small-scale diffusion (given that the levels of turbulence are

those predicted by a Mellor-Yamada type model) the level of light seen will vary

essentially as the diurnal cycle. This difference in the light seen been the cells will

be reflected in differences in the productivity of the cells.

oAcoustic Backscatter and Ambient Noise: The organized motions associated

with the cells create curtains of bubbles The scattering from these bubble plumes

has been invoked as an explanation for the degradation of active sonars in high

sea states (Chapman and Harris, 1962). The oscillation of bubble plumes has been

suggested as an explanation for increase in ambient noise in the 500-800 Hz

band. These acoustic effects depend on the amount of air entrained by the cells

into plumes and the spatial structure of the cells. In order to predict these

phenomena, a better understanding of cell structure is necessary.

9.4 Suggestions for Future Research

Future work on Langmuir cells needs to take two paths; one seeking a

better understanding of Craik-Leibovich instability, the other a better

understanding and description of the equilibrium state. The first of these paths

addresses whether Langmuir cells can "pull themselves up by their bootstraps" or

as argued earlier in this chapter, small-scale diffusion provides the initial shear on

which the cells grow. A theoretical study which would give useful information on

this point would consider the development of a mixed layer from initial state at

rest given a spatially variable viscosity dependent on the local shear and

stratification. This would parallel work on large eddies in the atmospheric

boundary layer, where turbulence closure models such as the Mellor-Yamada

model are used to model subgrid-scale processes while eddies with spatial scales

of order the mixed layer depth are modelled directly. By examining the

propagation of the turbulence and Langmuir cells together it would be possible

to disentangle the relative importance of the two processes in mixed layer

creation.

It should be noted however, that disentangling Langmuir cells and

turbulence in the field will be difficult. Low levels of turbulence are always
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present and the water column is never at rest. Good measurements of turbulent

intensity are difficult to make. Additonally, in order to distinguish the cells from

the energetic surface gravity wave field, it is often necessary to average over time

periods which are comparable to the time scales on which the mixed layer

evolves.

The second path involves clarifying the behavior of the cells once a mixed

layer has been formed and the cells have reached finite amplitude. As shown in

Chapter 8, the theory as currently stated fails to predict the correct cell
population, with finite-difference code runs yielding (with only a few exceptions)

persistent fields of cells which have only very long wavelengths. Since these cells

penetrate deeply into the mixed layer, the surface shear layer is thicker and

stronger than is actually seen in the data. Additionally, the theory predicts an

Eulerian return flow whose volume transport balances that associated with the

Stokes drift, a phenomenon not seen in the data.
These shortcomings suggest a number of directions for future theoretical

work on Langmuir circulations.
* The theory needs to be extended to allow for nonconstant eddy diffusivity. This

would enable a thermocline and a mixed layer to coexist within the same model
domain, so that interactions between the mixed layer and thermocline in the

presence of cells could be studied.

* From a practical point of view, the question of cell population is clearly

important. Extension of the results of this thesis to three dimensions is a necessary

step to see if three-dimensional vortex interactions (Thorpe, 1992) allow for

multiple scales of cells and thus momentum transport on different vertical scales.
* The whole question of whether there should be an Eulerian return flow
balancing the Stokes drift needs clarification.
* The temporal variability of cells in a mixed layer with non-constant surface

forcing should be explored.
The equilibrium state also needs to be better characterized observationally.

While the observations described in this thesis provide evidence that the

Langmuir cells are driven by wave-current interaction and that they affect the

velocity structure of the mixed layer, the case is far from complete. The cell

structure remains relatively poorly characterized. The evidence for the cells

actually being driven by wave-current interaction hinges on two days during

SWAPP when the waves were high but the stress was low.The following

experiments would help resolve these shortcomings:
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*In the field, cells have many different horizontal scales which in turn have

different vertical scales. This makes it difficult to characterize the structure, since it

is impossible with the present measurements to know where one is with respect to

the cells. Measurements combining velocity and acoustic backscatter (or perhaps

some other passive tracer such as dye) need to be made in order to obtain a better

three-dimensional kinematic picture of the cell structure. The WAVES experiment

on Lake Ontario (Agarwal et al., 1992) did make such measurements, but the

water depth was small and the crosswind velocity low, so that it is unclear that a

full three-dimensional picture of the cells can be extracted.

*A better verification of the wave-current interaction mechanism needs to be

made by considering longer time series with more realizations of the forcing.

Analysis of datasets collected during the 2nd and 3rd Acoustic Surface

Reverberation Experiment (ASREX II and III) which include long time series (60

and 100 days respectively) of currents and directional wave spectra will help to

accomplish this.

*The behavior of cells in very deep mixed layers (of order 200 meters) has not

been studied. Does the level of cell activity scale as predicted by theory? Is

buoyancy forcing more important? Do the cells alter the structure in ways

comparable with the alterations seen in shallower mixed layers? The ASREX III

dataset will provide interesting insight into these questions as it includes time

periods when the mixed layer was over 200 meters deep.

In conclusion, Langmuir cells are an important phenomenon for upper

ocean dynamics. It is to be hoped that future investigations into their role as

agents for heat, mass, and momentum transfer in the upper ocean will resolve

some of the puzzles which have plagued observational oceanographers for a

large part of a century.
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Appendix A: Derivation of Huang's Equations

A diagram of the coordinate system in which we will be working is shown

in Figure A.1. The x-axis is taken to refer to the crosswave axis, the y-axis to the

alongwave axis , and the z-axis to the vertical axis. Using this coordinate system

simplifies the representation of the boundary conditions. The equations obtained

are then rotated into the coordinate system used in the text, where x is the

crosscell, y the alongcell, and z the vertical coordinate. The derivation presented

below follows the published derivations of Leibovich (1977a) and Huang (1979)

with two exceptions. The first is that the consistency conditions on the

irrotational pressure-driven flow are calculated and a frictional boundary layer is

considered at the upper surface. These additions lead to momentum fluxes due to

wave damping and Bragg scattering of the waves off of the Langmuir cells. Both

effects are neglected in the Huang's equations and in the text of the thesis. This

neglect is justified below.

The velocity in the x, y, and z axes are denoted by u,v, and w respectively.

The vorticities in these axes are denoted by , , and ;. respectively.

Figure A.1: Schematic of the coordinate system used in deriving the equations.
Note that for the purposes of deriving the equations y is the alongwave and x the
crosswave direction (rather than along- and crosscell directions).

Let u=(u,v,w), (italics henceforth represent dimensional quantities). o =( , 2, ;),
D

and i, j, and k, be the unit vectors in the x, y, and z directions. Furthermore, let D

D d d d a a D2
be the total derivative T + u- + v,- +w j, V= i + j + k and V2 _ -x2

a2 D2
+ V + 2. A further assumption, discussed in more detail in the text, is that

mixing processes on scales smaller than those with which this work is concerned
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can be simply parameterized by a constant eddy viscosity Ve. Then if Up is the

planetary vorticity) the Boussinesq Equation in dimensional form becomes
Du 1 gp

(A-1) Dt +20p xu -- Vp + gpk + VeV2U

The equation of continuity for incompressible flow is
(A-2) V*u = 0

and the density transport equation is
Dp(A-3) Dt - VeV2p

The kinematic surface boundary condition
D

(A-4) Dt 7(x,y,t) = w

The dynamic surface boundary conditions require more explanation. The

momentum across a surface with normal n is
(A-5) Momentum transport = (u,v,w)(ufluid - Usuf) * + T n

where ufluid is the velocity of the fluid, ur the velocity of the surface and T is the

stress tensor. At the wave surface usf = ufluid. This, however, means that over a

wave period

(A-6) u'w'= u at

which is not necessarily zero.

We will be considering cases with a wavy surface, so we must solve the

equation for continuity of stress. Outside the water the stress tensor is
-Pa 0 Tx

(A-7) Ta = -Pa ty
'x Ty -Pa

while inside the water

(A-8) Tij= Pe + + Pij

The normal vector is

A (--I/x , -- i/dy, 1)
(A-9) = 1+ (a,/)x)2+ (0a /y) 2

At the surface the normal stress must balance. This yields equations for the stress

and pressure in terms of the surface shears and pressure.

(A-10a) Pa = P + 2 dC du + 0 y -

1- -&
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Irx = e((A-10b)

2dwdt
2t~g + -& +-72 +2 - 2 d 1 72

(A-10c)

2dwdl + (I+ dyi~ 1q2) u dr7 d72
-2

Pie a2 (72
1-ax -

If the waves are propagating in the y direction only, these equations simplify

greatly. It is this simplified form that is used below. The equations can be

nondimensionalized as follows

(A-11a)

(A-11 b)

(A-11c) u=

t=o-1l =G-lt' +E- 2g-lt

(x,y,z)=k-1(x,y,z)
(uw) E2(u

(u,v,w) (ul,l,wl)+--u2,v2,w2)+ ...
E 2 e20 2

-k U1 +k 2 +...

pg
P=Pa - k Z(A- 11d)

(A-11e)

pg
+ k P1 "'

E E2
77=k~ 1 + k'12 + ...

(A-11f) P=p 1+ 2 -P2+...

The derivation below makes the following assumptions.

1. The flow of order e is a field of surface gravity waves. Consistency conditions

for this wave field are derived.

2. The mean flows associated with the cells are of order E2.

3. The cells are capable of replacing small-scale diffusion as the dominant

transport mechanism for velocity. This means that
,,E4 2  " O( V 2 z

(A-12) 2w2 = 20

But since the mean velocity shoud be at the right order of magnitude to be

balanced by the Coriolis force
E402 =p*kE20

(A-13) ,k azu 2w2) k v2

The cells should also be capable of being affected by density. Hence

312

dx

-2dv 0-at7 d72
-2aja W

T-=IV

-2 _8d72



E2N2 E4 G2 aw 2(A-14) g -2 2 - k at

Then the scaled Coriolis force F, Richardson number Ri, and Langmuir number La

can then be defined as
Vek 2

(A-15a) La- E20

(A-15b) F 2

N2
(A-15c) Ri- e4 2

So that the full nondimensional equations with boundary conditions are
Du

(A-16) Dr +2F x u =- Vp + 2Rip k + E2LaV2u

or expanding to various orders in E

(A-17, + e2a)( (E + 2 2+ ... )+ ((E U + 2 2+ ... )*V)( u+e 2 2+ ... )

+E 2 F x (E l + 2 u2+ ...) = - V(Ep +E2 P2 +...) + Ri k 4 (P2 + ... )

+ E2La V2 E U1 + E2 u2+ ...)

Because diffusion enters the equations as a perturbation, but is included in the

boundary conditions, an upper boundary layer must be defined. A coordinate

system is chosen in which the vertical coordinate is tied to the wave surface.
z - 4(x,y,)(A-18) z = (

Then defining u = uO(x,y,z,t)+ ui(x,y,,t).
au auo au i 1 n i ui

(A-19a) =at= v- + -E at
au auo aui 1 l aui

(A-19b) -= a + ax -ax
au uo 1 aui

(A-19c) a = U + - a

The last property means that one may separate the equations into outer and inner
equations, where the outer equations have no dependence on and the inner

equations contain at least one term which varies with t..

Lastly, the boundary conditions are applied at z=sl. This means (following

conventional practice with ocean surface gravity waves) that one may expand uo

and po in the boundary equations as follows
(uo

(A-20a) UOlz=e = UOIz--o + EqZ- +...
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POlz=-n = pOlz=o + Er z +...

Then the external momentum equation is

(A-21 U + E 2 ...u +

+FE2Fk x (E o 1 g2 *

+ e2La V2 ( S + 2 ... )

Defining VH = al+ J, the internal momentum equation isDefinin PX ; -Yj

S+ e a ( U ...) +

...)*V)(e Uz=o + (ut zo+ n Iz=o

U Iz=O + U + 2 z=0 + U + a1 0Ilz=O

W01z=0 + W1i + 2 2z=o +
w wo

2 +,1 Iz=O
+62F i + 2 U+...)
+= H i 82F x ( 1  +

i +C2 -- (pi +, i +...)+ Ri k -4 (p' + ..
=- p P2 ; PC1 2 2 ..

+ E2La VH2 ( Eu 1 + 2 U... + La a U1U +2 U +

The external and internal continuity equations at each order are

VwiH Wn+1
V ,Un + --

V*uo =0

+ (u*VH)rn + (u-I*VH)12 + ... =0

The kinematic surface boundary condition is

(A-24) + t) ( 1 + 2 2 +

UIz=O +CU1I--O+ 82 + i o + ) lz=O +l-=Wo+rliO +z- VII C + 1

1 =O + F2 Ol_ _O + w I aw 0o-E W1 z =0 - =0 2  0 + 2=0 +1I z = 0

Given waves propagating in the +y direction, the surface pressure and stress

conditions are:

(A-25a) Pa= PO+ E(Po+P1) --o0 + 2 22z=o+pI-0 + - z) + +
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( EuI 1 "+
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(A-23a)

(A-23b)

(A-20b)

( uo + 2 u 2 .0)( u 2 O )
po +2 pU +...*v) + Ri k l p

1 2 P .

i 2 Ui~ +...)

+ 82 112+ ... )

VH) () E il 2 2..)



- (sZ1 + Z22 + 37t3 + ...) +E2La(l1+(E +

aw aw2 2W 1 2 awi w 2

(A-25b)4rx = E2 La

1 aul
+1

zau
aw

+E ax

EZ- +
DU2

au'
+ E2-- +F2

( aw+ -

aw a2u?
x + E21 1 2 +g 2

aw
+ E2 +

ax

0 + D z=O+y =0

-r E a +... ) D

au~a _I~~t-

s2E + H.O.T.

(A-25c)c4ty = 2 La
aZ +E{ (av
[e--+

aw7 av aw
+ E2 2 'a

Dy -N-+E2Dy

a2v

+ £211 aZ2
a2O

2 ayaz I Z0
, DwDZ )

V,1 v av aw ax+ w 2+ _= + _+a I*_-o

a2 DW V'l av awi+ ...aE---- - y +- ...
iaw v i vo

+9" + E2 + ... + H.O.T.

Lastly, the density equation is given by

(A-26)t + E )( 2p2 + 3p3+ ...) + ( ( u + e2 .. )*V)(2p2 + S3P3+

= E2 La V22+ g3 p3+ ... )

The initial conditions is that u=EU1+EU2 where ul is a surface gravity wave field

and u2 is some small initial velocity perturbation. The problem is then to solve for
the evolution of the external flow field. In order to do this it is necessary to carry
the expansion to 4, though a full solution is only necessary through the E3 stage.

The solution procedure at each order is as follows.

1. Take the curl of the external momentum equation to obtain to.

2. Take the divergence of the external momentum equation. This gives us an

equation for po, the inhomogeneous part of p0.
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3. Solve the internal vertical momentum equation for pn.

4. Solve the internal continuity equation for wn.

5. Combine the vertical momentum, surface pressure, and kinematic surface
D2 oH oH

boundary condition into a surface condition +z = combinations of

other terms.

Solve for pOH

6. Substitute pO into the external momentum equation, use surface pressure

condition to get iln,U n.

7. Solve the horizontal internal momentum equations for un.

8. Solve for any density variation.

Solution to order E.

The equations at order E are

uo1 =IV 1(A-27a) at po

(A-27b) i, j)= -VH pi1 +La i, j)

(A-27c) V*uo = 0

awl
(A-27d) _=o

Opi1

(A-27e) =0

01 o i
(A-27f) at = w0 z=° +W -

(A-27g) Pl z=o + Pi z=0 - grI =0
ui

(A-27h) x = x =0

Proceeding as outlined above yields the following solution:

1. Taking the curl of the external momentum equations yields. D)o/Dt -0. The flow

has no order E vorticity with short-time variation.
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2.Taking the divergence of the external momentum equations yields. V2p-=0.

There is no inhomogenous pressure field forced by higher-order terms.

3. The internal vertical momentum equation yields p =0.

4. The internal continuity equation yields wl =0.

5. The vertical momentum, surface pressure, kinematic surface boundary condition

yield the dispersion relationship for surface gravity waves. In the present case, the

nondimensional form of the relationship is the nondimensionalized wavelength

X=f2 where f is the nondimensionalized frequency.
00 06. u1, vj, wl,and 11 are the velocities associated with irrotational surface gravity

waves. The equations are thus, to this order, consistent. A general form of the

solution is:

(A-28a) 11 = f a(f,t)f sin(f2y-ft' + O(f,t)) df
0

oo

(A-28b) vo= ja(f,t)f sin(f2y-ft' + (f,t)) ef2z df

00

(A-28c) wo= f a(f,t)f cos(f 2y-ft' + (f,t)) efz df

7. ul and vi are both zero.

Solution to order E2:

At order e2, the equations become

(A-29a) U uo 2

au a2u1
(A-29b) i, j)= -VH p1 +La 2 (i, j)

(A-29c) V*u = 0

(A-29d) 2 =0

(A-29e) =0
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(A-29f) t + (uoIz*VH)1 =  wz0 = + 1 z=0

(A-29g) P + Iz=o + 1=o -12 --0

(A-29h) P = - Iz=0 - 1 z=0 0

(A-29) =o= - ax Iz=o

2p2(A-29i) 21 1a1Z=0 1Z=0
(A-29j) Dt' =0

These may be solved as follows:

1. Taking the curl of the external momentum equation yields. -t =0 so that the

second-order outer flow has no fast-time variation in the vorticity.

2. The outer flow is given by the second-order solution of the irrotational

equations, resulting in Stokes waves, microseisms, etc. For purposes of this

analysis these corrections are essentially consistency conditions on the wave

field. A full analysis, however, could solve for these conditions directly.

3.-4.As at higher order the second-order vertical velocity and pressure are zero at

order E2.

5. The surface pressure condition has the potential to produce secular terms.

None, however, appear at this order.

6. The second-order velocities on the fast time scale, are, as stated earlier, given

merely by the classical second-order Stokes waves solution. For variation on the

slow time scale one needs to solve to higher orders.

7.Solving the internal momentum equation given the boundary conditions yields

the flow associated with a wave boundary layer. Given (A-28b), the solution for
i

v 2 . is
00

(A-30) vi= _-2a(f,t)f3-if sin(f2y-ft' + (f,t)+nr/4 -if/2La) ef/-La df

8. There is no fast-time variation in the second-order density field.

Solution at order E3:

At order E3, the equations become
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I+ + (u + U0*V)u (u*V)u1 +F x n - - VpO

au a2u

at, j)= -VH pl +La i, j)

- = - + X-jy
K =0

(A-3 1f + Uz= + UIz=o*VH)1 +(u Iz=O*V H)i 2 +la(1-Iolz=0*VH 1 +

w aw 2 2,o
=o + W z z=0+ 2 z2o

= W3z+ W3 +1 Iz -- O+ T2 Iz=+ 2 az2z=O

ap+ z=O+
+411-- +

ap a2P aw0
12- z -0+ a 2 z= + P3l=0O - 2 - 2La -az o=0

La -- z=+La -T = =

(av a2w0 av au aw7 av0v wo (A-31i)La 11 a 711 + az2 z=o+ 2 - )1z
(A-31i)L( z az=0 + (l +z 2 )I z=0+ 2 y - y z

+ =ava 0= iy
+ X _0 Y

(A-31j) (u *V)p2

The solution is as follows:

1. Taking the curl of the external momentum equation gives

(A-32) at + ( u *V)co- (o*V) Uo - (F *V) = 0

Since the first-order flow uo developed thus far is irrotational with only fast-time

variation, while the second-order flow has only slow time variation, it is entirely

amo
consistent to let -- =0, so that the order E flow remains irrotational to all times.

Letting 02 = (, 0,q2 ) and letting F=(Fx,Fy,Fz), the individual terms in equation

(A-32) can be solved for. Defining D(f,y,t',t)=f2y - ft' +4(f,t).
oo

(A-33a) 4 - a(ft)e sin(<(f,y,t',t) --cos(D(fy,tt)
0

) df
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(A-31e)
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00OO

(A-33b)O = a(ft)ez sin(b{ + f2 + f2Fy)OS(c) f + f2FJif
f=O

00

(A-33c); = a(f,t)ef2z sin( ,) - f20 _ f2Fz os(D) - f2 + f2Fy f

The quickly varying, order e waves tilt, compress, and stretch the slowly varying

order e2 vorticity, to create quickly varying, E3 vorticity.

2. Taking the divergence of the momentum equation gives a very complicated,

inhomogeneous pressure field. This field is only of subsidiary interest in this

derivation, insofar as it produces secular terms. In order to illustrate how this can
occur, suppose that the order E2 velocity field has a component with structure

O O O
(A-34) U2k =(0,V2k(Z)Sin(kx+my),w2k(z)cos(kx+my))

The interaction of this velocity field with the order e wave field leads to a

pressure field with the structure
00

(A-35) f (ft)

e ? k2 +(f2 _m) 2 z. z - mV2k a2k k ) dz sin(kx+my+4)

+ e- k2+(f2-m) 21z 'I - - m (V - W2k ) dz sin(kx+my-)
Z = 00 )

The second of these integrals generates secular terms when 4k2+(f2-m)2) = f2.

Essentially, this resonance condition corresponds to "Bragg scattering" of the

waves off of the Langmuir cells. If the cells are oriented precisely parallel to the

waves, m=0, and the scattering condition is never met. This condition is used for

all the integrations of the equations in the text, with the exception of some of

those with Coriolis force.

When the waves are not parallel with the cells the calculation of this

scattering is necessary for a completely rigorous integration of the equations. This

is not done in this work, for the cases where it potentially applicable. The neglect

of this term at this order can be justified by the same logic used by Hasselmann
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(1961) to reduce the strength of the three-wave resonant coupling interaction

from O(e3) to O(e4), namely the random nature of the waves and cells.
3

3. As before pi =0.

4. The E3 vertical velocity has a complicated dependence on . Integrating the

internal continuity equation given equation (A-30) gives

(A-36) w= 2a(f,t)f2La sin(f2y-ft' + O(f,t) -- Vf/2La) e f42 df

+ 2a(f,t)2f2La sin(2f2y-2ft' + 20(f,t)+ir4 --~f2iia) e f/Mi df

+ 2a(ft)2f2La sin(-f/2a - (ft)+r4 ) ef - df

The first of these terms gives rise to a secular term in the pressure equations which

corresponds to that derived by Longuet-Higgens (1953), who calculated the

effect of molecular viscosity on waves.

5. When the resonant coupling term outlined above is neglected, the equation for

the homogeneous pressure field becomes
o0

oH oH
(A-37) ft)+f (ft) df = af 2 Laf4(fVt) i(f2y - ft' + (ft)) df

OO

f+t 2 x + + <v(z')> 2z'dz os(f2y - ft' + (f,t)) df

where < > is used to denote averaging along the wave direction of propagation.

In order to avoid secularity either there must be an atmospheric component which
balances the terms on the right-hand side, or )a/t and 4/)t are nonzero. The first

of these corresponds to a damping term due to viscosity, the second to a

correction to the wave phase speed due to nonlinear dispersion, advection, and

any cross-wave horizontal component of the Coriolis force.

6. The third-order velocities associated with the irrotational portion of the flow

and third-order wave profile may be solved for here. However, as we are only

interested in the second-order flow (and these components do not affect it

directly) they are not presented here.

321



7. Solving the horizontal internal momentum equation yields the boundary

conditions for uO.

(A-38a) Iz-o= x

(A-38b) =Z=o + 2 f4 La a(f,t)2df =ty + -IZ0o

So that there is one term due to frictional stresses and a second term due to wave

decay.

8. The wave velocities result in an order e3 fluctuating density which is given by

(A-39) p = _a(f,t)f2ef sin(f2yft I(f,t)y _cos(f2yft+(f,t))a f

Solution at order E4

At this order, only the velocity and density equations are of interest. As a result,

only these equations, and their solutions are considered below. The relevant

equations are

w o o +(u *Vo u ( F x uo
(A-40a) + + u*V)u uV)u + u *V) +Fx2=

-Vp2 + Ri po k + La V2u

(A-40b) a + + (u*V)p3 + (u*V)p 2 La V2p 2

Taking the curl of the the momentum equation yields the following equation for

vorticity:
0O) a(DW

(A-41) +-j -+ uo*V)c - (&*V)ui+( *V)o - (*V) =

(F*V)u + Ri V x k p2+La V2o2

The terms of interest involve the interaction of the order e wave velocity with the

fluctuating order E3 vorticities. These interactions give rise to terms which have

no t' dependence and so must be balanced by the long-time variability in the

order E2 vorticity. Substituting the formulations in (A-33), and applying the

condition that only terms with no t' dependence be balanced by the long-time

variation in 02 yields the following equations:
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+( u*V)- (0*V)u2+

(F*V)u2+ Ri +La V2

00

+(U2*V) - (u22 *V)O2+
f5 e2f2z f=

0i

a(f,t)2f5e2 z ( + Fz)df +(F*V)vo + Ri -+La V2Q

OO

(A-42c) Ft + o*V)- 02 o+ a(f,t)2f3e2
f2z a4f

0

(F*V)w +La V2V

But since the Stokes drift and Stokes drift shear are

(A-43a)

(A-43b)

vs(z)= Ja(ft)2f3e2 f2z df

z)= a(f,t)2f5e2f2z df
z*S

In vector form (A-42) may be rewritten

(A-44)
ao)2

-w+ (us*V)W +( uo*V) - (0*)u2 = *V)US
(F*V)(u2+us)+ Ri V x k p2+La V2o2

If the coordinate system is now changed into one in which the y axis is parallel to

the cell axis and the variation of u2 in the alongcell direction is taken to be order E

in comparison with its variation in the crosscell direction then the vorticity may

be written

(A-45)
aw 0v

Jx-I -X
where the subscripts and superscripts have now been dropped. Letting Q=az-

aw
-x, equation (A-43) gives:
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__v av avau av u avau
(A-46a) -tz - ((u+us)*V)- -(u*V)F(av,az) + x- x az-ax az

0U _u av
Fx-+Fzz- +La V2

aQ avav a av aP2
(A-46b) -t + ((u+us)*V)fl = + Fz+vs)+F+La V2

aav av aw av w av aw
(A-46c) g +((u+us)*V) -(u*V)ax -+ -- a x--

aw aw av
Fx-+Fz-z +La V2

When Fx=O the second equation is just that for vorticity used throughout this
au aw

thesis. When the substitution x = --- is made in (A-46a) and (A-46c) they turn

out to be the z and x derivatives, respectively, of
av av av

(A-47) t + (U+us)- + Wz = Fxw - Fzu + LaV2v

which (when Fx=O) is just the equation for alongcell velocity used throughout

this work.

The density equation may also be solved for the long-term variation in

density. It turns out that if p=p2 the fluctuating order E3 density interacts with the

wave velocities to give a term of the form vsa so that the consistency condition

on density is:
ap ap ap

(A-48)t + (u+us) + w = LaV2p

This gives the full set of equations used in this work, with two heuristic
modifications. These are
1. The scattering of waves off of cells is not calculated.
2. The surface stress does not include a term which depends on the Stokes drift.

Additionally, the potential effects of the horizontal component of the Coriolis
force are neglected. This means that any dependence of cell dynamics on whether
the cells are oriented in the zonal or meridional direction is not included.
This work along with that of previous authors neglects these effects, in large part
because they impede comparison with data (where the Stokes drift and surface

stress are taken as given, and the surface stress includes topographic form drag).

It should be noted that the data presented in this work does not support the idea

that the surface Eulerian shear goes as Laaz (it is much smaller, and not well

correlated with the Eulerian shear). This highlights the importance of a better

parameterization of eddy viscosity near the surface.
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Appendix B: The Spectral Instability Code

The equations for linear instability are derived below following the

procedure outlined in Chapter 2. Let

(B-l a) v=VY(z)+v(x,z,t)= Tn sin (n(t) sin e ikx

(B-lb) v=V(z)+v(x,z,t)= Vn Cos ) + vn(t) sin eik
nD ) + n= el

oo

nicz
us=us(z) usn cos(t--)

nxz
vs=vs(z)= Vsn cos( D )

n=

Two different representations of the density field are

density is fixed on the upper and lower boundaries

(B-2)

used, one in which the

00=P(z (x(t) sin eix

p=P(z)+p(x,z,t)= Pn cos 7) pn(t) sin eikx
n= +n= 1D

and another for which the density is only fixed on the lower boundary while the

density flux is fixed on the upper boundary.

((2n-1)nz t( 2 n-1)7z
(B-3) p=P(z)+p(x,z,t)= Pn cos 2D Pn(t) sin D ei

n=l n=

Care needs to be taken to avoid singularites in the representation of the fields in

which vertical gradients are important (in particular, density, Stokes' drift and

alongcell velocity). In everything that follows, the horizontally varying series will

be considered the perturbation. These series are truncated at some number N for

the horizontally varying part (the second summation) and at 2N+1 for the

horizontal mean part. A matrix equation for the VNn,vn, Pn can then be defined.
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@n II
(B-4a) t = X(Uspnm + Ppnm + Dpnm)Vm+ Y( Evnm + Vsnm)vm + C RnmPm

m= 1 m=0 m= 1
N N

(B-4b) jt = ,(Usvnm + Pvnm + Dvnm)Vm+ ( Epnm+Vpnm)Vm
m- m=1

aPn N N
(B-4c) - = Y(Usrnm + Prnm + Drnm)Pm+ IRpnmNm

m= 1 m= 1

Pp represents the interaction of the streamfunction perturbation with the mean
crosstream shear corresponding to the Jacobian terms in the linearized vorticity

equation - - V2Nf. Pv and Pr represent the advection of the

alongcell velocity and density perturbations respectively by the crosstream flow,
___v )P ap

corresponding to - azx and - -T p. Vp and Rp represent the advection of the

mean alongcell velocity and density fields respectively by the perturbation flow
av a ap a

corresponding to the terms a ax and ;z ax. Usp,Usv, and Usr represent the

advection of the streamfunction, alongcell velocity, and density perturbations by
a av ap

the crosstream Stokes' drift, corresponding to the terms usax V 2 ,Usa , and usax.

Dp,Dv, and Dr represent the diffusive damping terms -La 2+ z2 - ,v,p). Ev

and Ep represent the effects of Coriolis force turning the perturbation velocities,
av a avs)v

Ekz and -Ekz . Vsp is the CL2 vortex force, corresponding to the term az Ox

and R is the density vortex force Ri Op. Each matrix is derived below.

The damping matrices are the easy to find. Substituting the modal expansions in
(B-1) and (B-2) yields

(B-5) Dvn= Dpnm= Drm = -La k2-

When the density flux is fixed on the upper boundary, the damping matrix for
density is

(B-6) Drm = -La (k2 (2 n-)2D2 }

The Ekman velocity forcing matrices are equally easy to find. Substituting the
summations for v and y yields

Ek n/D
(B-7a) Evnm -k2+n272/D2Onm
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nnEp= -Ek
Epnm= -Ek D 5nm

Note that these matrices will, left to themselves, produce an inertial oscillation

whose frequency asymptotes to a minimum of Ek at k=O.

The density forcing matrix is simple for the basis chosen in (B-2). The

equation

(B-8) = Riax

yields

(B-9)
ik Ri

Rnm= - k2+n22/D2

When however, the density flux is fixed on the upper surface, (B-8) becomes in

summation form
N

_( n2 2 n . tncn z
N

= ik Ri m cos(m-1/2)z
PM Cos D

Multiplying both sides by

(B-11)

sin D )and integrating yields.

ik=- Ri 2 z
Rn= - k2 +n42/D 2 D sin D z)

((n-1/2)rxz
cos( D z

ik Ri/ 1 1
k24in22/D2 n+m- 1/2n-m+1/2)

The vorticity advection matrix Pp is derived in a similar fashion. Substituting (B-

1) into the vorticity transport equation gives
-ilk/2D

(1-12) Pnm= k2+n2n 2/D2

(Im-nlk2+D
2 Im-nl272Im-n

D2 - D2 m-nI - (m+n) k2+n2ic2 (m+n)2 2 \T, m+
-m+n) - D2 m+n)

Similarly, the matrix Usp, respresenting vorticity advection due to crosstream

Stokes drift is given by:
m27C2

ik D2
(B-13) Uspnm=- i- 2 n2 2Us In-mi - Usn+m)

k24 D2

The remaining term in the vorticity equation is the Craik-Leibovich vortex force.

The truncated series representation yields the following expression for Vsnm.
ikx/2D

(B-14) Vs m-k2+nh2/D2( (n-m)vsinml + (n+m) VSn+m)
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Turning to the alongcell velocity advection terms, we first consider the cross
tream advection of perturbation velocity.

N

(B-15) cos = -
A=tsOL - W)=

2N+1

=15~T cos( ) cos(Z) m

To isolate single modes in this case it is necessary to multiply by 2 cos(D for

1
n>O and i for n=O. Integrating yields the following expression for Pv.

(B-16a) ikir
Pvnm= - 2D ( In-mln-ml+(n+m)'n+m) n>O

ikic
(B-16b) Pv0m= - 2D-Wm

Similarly, the advection of mean alongcell velocity by the perturbation flow is
given by:

(B-17a)

(B-17b)

ik
Vpnm= - 2D (-(n-m)Vn-m + (n+m)Vn+m)

Vp= - (-mV
Vpom - 2D (-mVm)

n>O

and the matrix representation of the advection of the alongcell velocity by cross-
stream Stokes drift is:

(B-18a)

(B-18b)

ik
Usvnm= - 2- ( u s I-mi + usn+m)

ik
Usvm - 2 (m usm)

Lastly, we turn to the density equation. The crosstream advection of the density
perturbation by the mean flow is (for the two different sets of boundary
conditions)

N 2P

(B-19a) n sin( = -

N
nlp1 tn  ((n-1/2)Tz )

(B-19b) tD cos( D )=-
n= , DD

+1

m=1ik
cos ) sin Pm)

2N+1
=1 Sik

m=1
cos(i)

which yields the following expressions for Pr.
ik(-

(B-20a) Prnm= - 2D ( In-mlYln-mt-(n+m)Tn+m)

ikn m
Prnm= - 2D (In-mlYm.-ml+(n+m-1)Yn+m)

cos(m - 1/2 )Zm)

p fixed @z=0

Opa fixed @ z=az
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The advection of the mean density field by the perturbation flow is the most
complicated of the expressions since it does not permit the neat separation into
kronecker delta functions

2N+1
(B-21a) . nlr(B_2a l a t SM 7D) - m=1

N
(2p

(B-21b) ap.
It0

2N+1

cos(n tz) = - cos(7 fm
m=1

Multiplying by the appropriate basis function and integrating yields
(B-22a) Rpnm=

2N+1

1 P1 ( 1+(- 1)n+1+m) n+-m 1 1 1 p
+ n-l+m - n+l+m - n-l--m) fixed @z=0

(B-22b) Rpnm=
2N+1

dDL
1 1

l+m+n-1 + l+m-n - -+n -1 1 x @p1n L fixed @ z=01-m+n 1-m-n+1) zxe z

Finally, we turn to the advection of the density by cross-stream Stokes drift.
Proceeding as done above gives the following expressions for Usr.

ik
(B-23a) Usrnm= - - ( USln-ml - USn+m) p fixeSd @ z=0

ik
Usrnm= - 2 ( USln-ml + usn+m-1)

p
z fixed @ z=0

If the density flux is fixed on both top and bottom boundaries, the density basis

functions will have the representation cos 7r In this case the advection

matrices for density Pr, Usr, and Rpassume the same form for as those for
downstream velocity. The density forcing matrix is now given by:

(B-24) Rnm= k D(1-(-1)n+m) +--
k24n272D2 (n+m n-m

The code was tested for a number of cases where analytic solutions were
available.
1. Viscous Rayleigh-Taylor instability
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2. Inviscid Craik-Leibovich instability with and without stratification.
For viscous Rayleigh-Taylor instability, the normal modes are

(B-25) (NP)(Vn sin -(~) Pn sin- ))

The growth rates for such modes are

(B-26) y=-La(k2+ )+ (k2+(n/D)2

For stratified Craik-Leibovich instability if the Eulerian and Stokes drift shears are
linear and La=0, the normal modes have the form

(B-27) (V,p,v)=(fn sin(n ) pn sin(n-- ) vnsin ))

and the growth rates are given by

(B-28) k -

Table B.1 shows the growth rates given k=1, D=ir for viscous Rayleigh-Taylor
and inviscid Craik Leibovich instability for different values of N. For relatively
small values of N (N=10), the code yields results within 0.01% of the correct
theoretical answer.

La Ri N Theoretical Error in Error in
ZZ Growth Rate Growth Rate Growth Rate

(p fixed) (ap/az fixed)

0 0 -1 10 0.7071 -2.4 x 10-16 -5.2 x 10-5

0 0 -1 20 0.7071 -2.3 x 10-16 -1.5 x 10-5

0 0 -1 40 0.7071 -2.2 x 10-16 -1.0 x 10-5

0.05 0 -1 10 0.6071 -1.9 x 10-16 ******

0.1 0 -1 10 0.5071 -5.5 x 10-16 ******

0 1 0 10 0.7071 -7.1 x 10-5  -7.1 x 10-5

0 1 0 20 0.7071 -1.0 x 10-5  -1.0 x 10-5

0 1 0 40 0.7071 -1.4 x 10-6  -1.4 x 10-6

Table B.1: Error introduced by the truncation in the growth rates of the most
unstable modes for some cases where analytic growth rates are available. Density

av
stratification and Eulerian velocity shear z are taken to be constant with depth.

*** mark two cases where an analytic solution is not available given the upper
boundary condition.
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Appendix C: The Finite-Difference Code

The finite-difference code was developed using techniques outlined in
Roache (1977). The various terms were handled as follows:
1. Partial time derivatives were handled using simple forward differencing.
2. The Jacobian terms were coded using the parameterization of Arakawa (1966)
which preserves the integrals of momentum, angular momentum, and density, as
well as the energy and enstrophy.

av av (p
3. The source terms for vorticity d v (Craik-Leibovich) and Ri -were

parameterized using simple centered differencing. (Note: this is more accurate than
using the calculated value of the gradient at the center of the box, since the

integrated force over the box is better represented, particular when the Stokes drift

profile has a high degree of curvature).
4. The Coriolis force term was handled by rotating the velocity and shear, thus

avoiding growth of inertial oscillations due to simple time-stepping.

5. The streamfunction was solved using a Poisson equation solver developed at

NCAR the results of which were compared to some results obtained using simple

Richardson relaxation. The two agreed extremely well.

A number of tests of the code were carried out using results from simple

linear theory. These were
1. Simple decay of an unforced vortex with different values of La. This test was

done to test whether or not the time-stepping scheme introduced significant

numerical viscosity. Even with decay rates of order 1, the finite-difference code

reproduced the predicted decay rates to within 1.5%.
2. Craik-Leibovich instability given linear Stokes drift and Eulerian shears.

Growth rates ranging from 1 to 4 were reproduced to within 3.6% (at least some of

the error is due to the fact that as the cells grow they reduce the velocity shear,

reducing the growth rate as shown in Chapter 5).

3. Rayleigh-Taylor instability given a linear density profile which was unstably

stratified. Growth rates ranging from 0.2-0.9 were reproduced to within 3.5%.

To summarize, the code reproduced both decay rates as well as unstable

growth rates which are within the range of interest for this work (order 1

nondimensional) to within a few percent. This is evidence that the fundamental

dynamics forcing the system are accurately represented (the numerical viscosity is

not too large and the forcing functions are correctly parameterized).
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Appendix D: Measurement Errors from Current Meters on
FLIP

Since the observational chapters of this thesis focus on current meter

measurements it is important at the outset to mention and quantify the error

introduced by surface gravity waves. As noted in the last section, the VMCMs

during MILDEX were set to average over periods of one minute. If the wave field
is given by a sinusoidal gravity wave with velocity amplitude VO and period Tw,
the error from averaging over a period Tav goes as

VOTw
(D-1) Verr - 2Tav

so that for V0 of order lm/s, aliased signals of order 2-4 cm/s could be seen given

Tav of 1 minute and Tw of 7-15 seconds. During SWAPP, the current meters

sampled at 0.5 Hz, so that wave aliasing over long averaging periods is less of a

problem.
The problem gets more complicated when the fact that current meters

hanging from a string are not fixed in space but may move and tilt in phase with

the waves and their associated currents is taken into account. Suppose a current
meter has a periodic trajectory (xc(t),zc(t)) and tilts with an angle q(t). Defining <>

as a time-averaging operator and letting
(D-2) <(xc(t),zc(t))> = (xO,z0)
then if um is the velocity measured by the current meter, if the current meter tilt is

small, the measured current is related to the actual current through the following

relationship.

(D-3)<um(xc,zc)> = <u(xo,zo)> cos(0(t))+ 1 (x-x0) au+(z-z0)) cos(e(t)) +

<w(xo,zo)sin(0(t))> + ...

If the motion of the current meter is in phase with the shears induced by the

waves a wave-induced bias appears. The size of this term is the same order of

magnitude as the Stokes drift, 5 cm/s. Likewise if the current meter tilts in phase

with the waves, there is a potential velocity bias.

In order to evaluate the size of these errors, a model of a current meter

string as a multiple pendulum was constructed. The model was forced with

pressure and velocity fields derived from the wave height time series. The
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resulting velocity fields had no mean velocity and no time-varying velocities with
period more than about 20 seconds. The model is derived below.

L (x z  Suppose that the current meter string is

represented as a multiple pendulum as at left,

(X,z I 1 with the N current meters being point masses

L2 with masses M1, M2, M3, ..., MN and
connected by rigid elements of length L 1, L2,

(x2,z L3, ... LN. The fulcrum of the pendulum has

L3 coordinates xo, zo and may be allowed to

, z  03 move. The equation of motion may be derived

x3,z3 using Lagrangian dynamics (Marion, 1965).

L4 The total potential energy of the system

4is

Figure D.1: Schematic of N i
the multiple pendulum (D-4) PE = IMigzi = Mig ILjcos9j
problem i=1 j=1

While the total kinetic energy is

(D-5) KE = x 2 2+i a =

S t Lj cos j + + -tLj sin Oj

The unforced equations of motion are derived by letting L=KE-PE, and pj= ot

so that:
d L L

(D-6) d DL = 0-6) dt apj - ej =0

The resulting equation is shown below

d L L N 2x"2
(D-7) d-j - W = Mk g L sin() + cos(0) + i sin(0) +

k=j
( D20i i2

iLj cos(Oi-0j)" - sin(Oi-=j = 0
1C
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N
This equation can be simplified by letting Mj= IMk and making the small angle

k=j
approximation so that all Ok are small. Then the equations can be linearized so

that

N
(D-8) Mj g Lj Lj Li t -

k=j

or in matrix form

(D-9) Aki e + M t2j =0

S / T The inclusion of forcing into the problem can be understood

by considering the diagram at left. Assuming that the system

Tk+is at rest,
(D-10a) Tjsin(0k)-Tj+lsin(0k+1) = Fj

(D-10b) Tjcos(Ok)-Tj+lcos(Ok+1) = Mjg

Applying the small angle approximation, this means that Tj = Mj g. Then at

equilibrium summing the first equation to the end of the string yields
N F

(D-11) j = Fj / Mjg Mjg
k=j

This means that the equation of motion is

(D-12) Aki + Mj + g Lje Fj
Sk=j

The external force on the current meters was defined as the sum of the frictional

and pressure forces

(D-13) Fj= A(pCdIU-uwlU-uw) +D )

where A is the cross-sectional area of the current meter, uc is the current meter

velocity, uw is the wave velocity, and Cd is a drag coefficient set to 0.75 (Tupper,

pers, comm.). The mass of the current meters is taken to be 78 kg. The model was

forced with a velocity field and fulcrum time series calculated from the wave

334



records measured from FLIP. The resulting trajectories of the current meters at

various depths could then be calculated.

During MILDEX, FLIP was taken to move very little with respect to the

waves so that the only errors were calculated as the result of the current meters

moving in response to wave forcing. The velocities "measured" by the model

current meters given the observed wave field were averaged over 1 minute and

mean and standard deviations computed for 15 minute periods. The results

provide an estimate of the biases in current and shear introduced by the waves, as

well as the contribution of wave aliasing to the velocity and shear variability.

Because the wave field used is nondirectional, the multiple pendulum model will

tend to overestimate the size of the error. The degree to which this is the case is a

function of the spread of the waves. If the waves have a cos2(0) spread in

direction for example, the method here will overestimate the wave velocities by a

factor of 2.

The output of the multiple pendulum model is considered for a period

which included the roughest wind and wave conditions seen over the course of

the experiment, the passage of the low pressure system on November 9th and

10th. Forty-one fifteen minute time series were taken and used to run the multiple

pendulum model. The results are shown in Figure D.2. The average velocities

produced by a wavefield in the absence of any mean Eulerian current are shown

for depths of 2, 6.5, and 12 meters. The velocity bias was quite small (less than 1

cm/s most of the time). Interestingly the velocity bias near the surface ran counter

to the wave propagation direction. The averaged shear produced between

"current meters" fixed at 2 and 6.5 meters (solid lines) and 6.5 and 12 meters

(dashed lines) are shown in Figures D.2b. The shear is "upwave" with a

magnitude of 0.0015 /s. This is an order of magnitude smaller than the observed

shear.
We now turn to the time-varying currents produced by the waves as a

result of aliasing. The standard deviation of the velocity "measured" by current

meters at 2, 6.5, and 12 meters in the presence of waves alone is shown in Figure

the fourth panel in Figure D.2. The standard deviations are quite a bit larger than

the mean, reaching 3.2 cm/s. The standard deviation of the shear is shown in

Figure D.2d. The time-varying shears are in general quite small, nowhere

exceeding 0.004 s- 1. They do not decrease with depth in the same way that the

mean shear does.

335



MILDEX:Significant Wave Height
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I .......

1800 0000 Nov 9 0600 1200
MILDEX:Mean Error in Shear

1800 0000 Nov 9 0600 1200 1800
MILDEX:Std. Dev. Error in Velocity

1800 0000 Nov 9 0600 1200 11
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Figure D.2: Errors introduced during MILDEX by current meter motion in phase
with the wave field. Period shown is one in which the Langmuir cells and waves
reach their maximum strength. From top to bottom: Significant wave height in m,
Error in mean velocity at 2, 6.5 and 12 meters depths, Error in mean shear
between 2 and 6.5, 6.5 and 12 meters, Error in the standard deviation of time-
varying (1-30cph) velocity, 2, 6.5 and 12 meters, Error in the standard devation of
the high-frequency (1-30cph) shear between 2 and 6.5 and 6.5 and 12 meters.
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SWAPP: 3/5 Error in Mean Velocity

0 0.01
Velocity Error in m/s

(a)

0.02
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3 4 5
Velocity Error in m/s

(c)

6

x 10-3

0

-20

-40

-60

-80

-100

-120
-1 0 1 2 3

Shear Error in /s x 103

(b)

SWAPP: 3/5 Error in HF (1 -36cph) Shear

2 4
Shear Error in I/s x 10

(d)

Figure D.3: Profiles of the velocity and shear error during SWAPP after the first
wind event near time of highest waves. (a) Time-mean velocity error in m/s. (b)
Time varying (1-36cph) velocity error in m/s. (c) Time-mean shear error in I/s.
Time varying (1-36) cph shear error in /s.
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The mean shear and time-varying shear associated with wave aliasing are

much smaller than the shears observed during MILDEX which were linked to the

presence of Langmuir cells. The mean upwind shears seen during MILDEX was

an order of magnitude larger than the error predicted here, while the high-

frequency shear had amplitudes at least 4 times as large as the predicted errors.

The story during SWAPP is similar, although the potential errors are

somewhat larger. During SWAPP the presence of a three-point mooring resulted

in FLIP's being closely coupled to the surface gravity wave field, tilting and

changing its heading at frequencies near those of the gravity waves. Although

the much heavier current meter strings deployed during SWAPP reduced this

effect somewhat the mean shears were affected by the presence of motions in the

vertical which were phase-locked to the surface waves. Figure D.3 shows profiles

of the error introduced by current meter motion into the mean current and shear,

and the time-varying current and shear in a frequency band from 1-36 cph. The

time period shown is early on March 6th, when the waves were still quite high,
but the winds were low. The errors are generally small in comparison to the

observed signals. The only exception is the mean shear error which is about half

the size of the observed mean shear (0.004 s- 1). Using a directional spread to

reduce the wave velocities results in the mean shear error being about one quarter

of the observed near-surface shear. The most important term in producing the

mean shear error is tilting of the platform in phase with the waves, which moves

the current meters up and down in phase with the wave velocity signal. The time-

varying shear error, however, is about one tenth of the observed high-frequency

shear amplitude of 0.004 s-1.
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Appendix E: Thruster Contamination during MILDEX

During MILDEX, a thruster at a nominal depth of 15 meters on FLIP's hull

was used to orient FLIP relative to the wind. A schematic of the orientation of the

thruster and the current meters used during the experiment is shown in Figure

E.1.

Planview of FLIP during MILDEX
showing schematic of the orientation
of FLIP and the thruster jet relative Wind
to the current meters

VMCMs VMCMs
2,6.5,1 20,35,50m FLIP

Thruster

Direction of thruster jet

Figure E.1: Planview of FLIP during MILDEX showing orientation of the
thruster relative to the wind and current meters.

When the thruster was on, it generated an intense jet, sometimes directed off the

port side of FLIP and sometimes off the starboard side. Unfortunately the current

meter string was placed in the path of this jet. As a result the current meter at 12

meters was strongly affected by the thruster. Figure E.2a and b show the hourly

averaged velocity from this current meter (solid lines) in the east and north

directions. These velocities were found to differ sharply from velocities measured

at 6.5m and 20m, which agreed relatively well with each other. The interpolated
velocity from these current meters is shown by the dashed lines in E.2a and b.

There were a number of bursts of thruster activity during the experiment, with

particularly strong velocities recorded during the passage of the low on
November 8-10.

The velocity signal due to the thruster needed to be removed in order for

the binned data to be useful in calculating the mixed layer response to surface

forcing. This was done by hand, taking times when the velocity at 12 meters was

grossly different from the velocities around it and interpolating across the

contaminated depth.

The mean velocity of the current meters at 6.5 and 20 meters does not

seem to have been greatly affected by the presence of the thruster. The current

339



MILDEX:East Velocity at 12m, Raw (Solid), Corrected (Dashed)

20-

10

0l I I I \L I I I

-10(

October November
(a)

MILDEX:North Velocity at 12m, Raw (Solid), Corrected (Dashed)

1 3
NovemberOctober

Figure E.2: Errors in velocity due to thruster contamination. Effect of the
thruster on the binned,averaged data is shown. Raw velocities are shown by the
solid lines, corrected velocities by the dashed lines. (a) East velocity at 12 meters.
(b) North velocity at 12 m.
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meter at 20 meters was not in a position where it could be contaminated as easily

by the thruster, since it was placed forward of the axis along which the thruster

acted rather than being in line. The velocities at 6.5 and 20 meters were in close
agreement, providing evidence that the current meter at 6.5m was not affected by

the thruster in the mean. Thruster contamination would have biased Ekman

response in the crosswind direction, increasing the overall transport significantly.

However, the total Ekman transport during MILDEX was close to the theoretical

value, so that it is unlikely that the thruster jet was picked up in the mean by

either of these two current meters.
In order to evaluate whether the thruster affected the high-frequency (up

to 30 cph, the Nyquist frequency for the VMCMs) variability in the current

meters above and below it Figure E.3 examines the high frequency velocity field

on November 9. During this day there are large differences between the velocity

measured at 12 meters and those above and below it. The wind on November 9

was largely to the north. Figure E.3a and E.3b show the coherence between the

east and north velocities, respectively, at 12 meters and those at 6.5 (solid) and 20

meters (dashed) for frequencies between 0.5 and 30 cph. The 95% confidence

level is 0.125 and is shown by a horizontal chain-dotted line. The coherence is in

general very low. Significant values are seen at around 2-5 cph, but even here the

coherence is only 0.3. Except for this frequency band, there is little evidence that

the thruster contaminates the high-frequency velocity at levels above and below

it. Within this frequency band, there is still a question of whether the thruster is

producing velocity perturbations in the VMCMs at 6.5 and 20 meters, or whether

the physical mechanisms producing variability in the current meters at 6.5 and 20
meters also affect the 12 meter VMCM.

Figure E.3c shows spectra of the north velocity on November 9 at 6.5 and

20 meters. There are strong signals at about 4 cph in both current meters. Figure

E.3d shows the coherence between the meridional velocities in these current

meters. The coherence is quite high, reaching 0.6 near the peak frequencies. The

coherence between the current meters at 6.5 and 20 meters is twice as large as the

coherence between these current meters and the one at 12 meters, presented in

E.3a.

There are two possibilities for explaining the significant coherence found

in the north velocity on November 9. The first is that the thruster contaminated

the current meters at 6.5 and 20 meters. The second is that Langmuir cells,
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1 2 4 6 10 20 30
Frequency in cph
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Figure E.3: Spectra and coherence of velocities at 6.5 and 20 meters during
MILDEX. November 9. (a) Coherence between 6.5m and 12m (solid is east-west
velocity, dashed is north-south velocity. (b) Same as (a) but between 12m and
20m. (c) Spectrum of north-south velocity, Nov. 9, 6.5m (solid) and 20m (dashed).
(d) Coherence between north-south velocity at 6.5m and that at 20m.
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perhaps associated with strong downwelling, interacted with the thruster jet and

produced the variability at all three depths. If the first hypothesis were true, the
coherence between the VMCMs flanking the thruster should have been lower

than the coherence between the either of the VMCMs flanking the thruster and

the VMCM within the thruster jet. Since this is not the case, it is argued that the

second hypothesis is in fact the correct one.
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