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ABSTRACT

The g~owth of errors in a dish-pan model of the atmosphere was
studied by means of analogues. Two states which resemble each other
closely Lre termed analogues. Either state may be regarded as being
equal to the other plus a small error. The rate of growth of this
error may be determined by the subsequent behavior of the states.

One hundred streak photographs of the free surface velocity field
were analyzed and fitted by least-squares to a truncated Fourier-Bessel
series. The root-mean-square difference between the series representa-
tions was used as the difference between states, or the error.

An attempt was made to effectively increase the number of pairs
by rotating the frame of reference of photographs and then computing
the error. This procedure was not successful in increasing the number
of "good" analogues and was not pursued.

There were numerous mediocre analogues but no truly good ones.
The smallest errors encountered had an initial doubling time of 6.6
"days". Extrapolation with the aid of a quadratic hypothesis indicated
that small errors would double in 1.7 "days". This is not statistic-
ally different from the doubling time of 2.5 "days" found similarly
in studies of the atmosphere.
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1. INTRODUCTION

The reliability of weather forecasts has increased significantly

during the past twenty years. In large part, this has been due to the

application of digital computers in producing aids for the forecaster.

The primary success has been in the prediction of the location and

intensity of systems such as extratropical cyclones a day or two in

advance. This success has fallen off sharply for longer prediction

periods. Qualitatively the reasons for this decay of predictability

with time are easily understood.

The atmosphere can be described by a system of dynamic equations.

The forecasting process is an attempt to find a solution to that system

of equations. The success we have had in forecasting has been primarily

by techniques which extrapolate the current observed state of the atmos-

phere to find future states. Errors are introduced into such a forecast

at the outset by our inability to observe the state of the atmosphere

exactly at any time. We are limited in our observations to a discrete

set of measuring sites which make up our observation network. The

dynamics of the atmosphere on the other hand, are characterized by a

continuous spectrum of scales. By measuring with a discrete observation

network, we find the sub-grid scale energy appearing under an alias as

energy of the large scale flow. This is an observational error in addi-

tion to the actual error in measurement. In order to eliminate this

error in initial conditions, it would be necessary to measure the

motions of the atmosphere down to the scale of the viscous dissipations -

an impossible task. The success of the current short-range prediction



schemes is due to our ability to filter out these observational errors

by "analysis" of the data. For longer prediction intervals, the errors

produced by the extrapolation techniques themselves become dominant.

Essentially a 48 hour forecast is a 24 hour forecast using as its

initial state a previous 24 hour forecast. Likewise for 72 hours and

so on. Thus, even assuming that the initial state of the atmosphere is

perfectly known, the inaccuracies of the forecasting technique produce

errors in the predictions which are used as initial conditions for

further forecasts. Lorenz (1963) has demonstrated that the atmosphere

is an unstable system such that the initial errors will grow until they

are the size of the errors for randomly chosen initial conditions.

In as much as perfect forecasting of the weather is not possible,

we would like to know how far in advance we can reliably predict. To

date most of this quantitative work has been done by determining and

comparing solutions of systems of dynamic equations which have character-

istics similar to those of the atmosphere. Thompson (1957) considered

a quasi-geostrophic model and concluded that errors in the initial data

limited useful prediction to one week. Charney et al. (1966) considered

the growth of errors in several primitive equation models of the general

circulation, concluding that the limit of predictability in the atmos-

phere was two weeks. Lorenz (1969a) studied the predictability of

various scales of motion using a barotropic model. He showed the

doubling time of errors in the model to be a function of the scale of

the motion in which the error is imbedded. Thus for example, errors in

the specification of thunderstorms double in minutes while errors in the



specification of extra-tropical cyclones double in days. Note however

that errors below the scale of our observation network are already as

large as random errors. The appropriate errors to consider are those

corresponding to the scale of the grid. Flemming (1971) has extended

this work by applying stochastic dynamic methods to Lorenz' 28 variable

model. Recently Leith (1971) has considered the growth of errors in

a model of two-dimensional turbulence. Lorenz (1972) has studied analy-

tically the growth of errors in a barotropic model of the atmosphere.

Thii; study of mathematical models of the atmosphere is not com-

pletely satisfactory for there is the feeling, as Robinson (1967) points

out, that they tell more about the predictability of the model than

about the real atmosphere. Such models are based on approximations to

the true governing equations of the atmosphere. In general they deal

explicitly with only the larger scales of motions. It is not certain

whether the effects of smaller scale motions are adequately represented.

In particular, we have to question whether such models can adequately

describe the influence of errors in the small scales of motion on the

larger scales. As an alternative to the numerical modelling approach,

Lorenz (1969) analyzed the growth of errors based upon actual atmospheric

data. In principle, if we wait long enough we would expect to encounter

a state which closely resembles some previous state, an analogue. Either

state may be treated as equivalent to the other plus a small error.

The growth of this error can then be studied by the subsequent behavior

of the pair.



In his study of the atmosphere Lorenz considered five years of

atmospheric data at three pressure levels for the years 1963-1967.

States of the atmosphere within one month of each other, but in a

different year, were compared. A total of over 400,000 pairs of states

were considered. No truly good analogues were found. The smallest

error encountered was more than half as great as the average error in

the sample. The smallest errors encountered amplified by nearly ten

percent per day which implies that small errors double in not more than

eight days. From the distribution of the data it was estimated that it

would require 140 years of data to find an error only half as large as

the average.

Our current record of atmospheric observations up to only 500 mb

extends back little more than twenty five years. Therefore, the addi-

tional information to be gained by studying the complete record of these

observations seems small. However, because of the uniqueness of this

approach in treating a real fluid system, including the influences of

the smallest scales of motion, a study of the possibility of finding

analogues in a laboratory model of the atmosphere was undertaken. Of

course the objection that any conclusions we could draw from such a

study are more applicable to the model than to the real atmosphere is

equally valid as with the case of numerical models. However, we felt

that this approach potentially would yield results not obtainable by

numerical methods.

The laboratory model which most closely duplicates the atmosphere

is the dish-pan experiment. Essentially it consists of a cylindrical



container, usually containing water, which is mounted on a rotating

turntable. A heat source is provided at the rim with a cold source

at the center. Although flows qualitatively similar to those of the

atmosphere are easily obtained, quantitative investigations require

extreme care (see Fultz et al. 1959). The flow in the dish-pan is

known to be governed by equations very similar to those of the atmos-

phere. Here lies one significant difference between laboratory and

numerical modelling. The dish-pan expe:riment is governed by equations

of exactly the same form as those of the atmosphere. Thus the statistics

of the dish-pan will reflect the influenp of the sub-grid scales better

than those of a numerical approximation of these equations. On the

other hand, certain simplifications are made which differentiate the

dish-pan from the atmosphere. The condensation of water vapor is not

modelled in any way. Although there are indications of its importance

in the tropics, from empirical studies in the dish-pan. it appears to

be a minor influence in mid-latitudes. Because we are considering a

cylindrical rather than spherical container, the A-effect, i.e. the

tendency for relative vorticity to decrease in northward flow and

increase in southward flow because of the variation of the Coriolis

parameter, is not modelled. Although the p-effect is required for

realistic results in numerical models, empirical studies in the dish-

pan show it is not required for the development of flows similar to

those of the atmosphere. Fix.ally, the dish-pan is free of topography.

As we shall see, this symmetry was an important consideration in the

selection of this model.



Fultz et al. (1959) have studied the character of the flow in the

dish-pan in detail. They found two qualitatively different regimes of

flow, a zonally symmetric flow type known as the Hadley regime and a

zonally asymmetric flow type known as the Rossby regime. The transition

between these regimes is governed by the externally adjustable parameters

of the experiment - the depth of the working fluid, the rotation rate,

and the temperature contrast between the hot and cold sources. The

Hadley type flow develops over a considerable range of these parameters

and is characterized by an apparently perfectly symmetric flow about the

axis of rotation. Under other condition:, however, the Rossby type flow

develops. It is characterized by a strcng "circumpolar" jet about the

axis of rotation with wave-like disturbances superposed. The motion,

like that of the atmosphere, is aperiodic. The free surface flow is

very similar to that near the tropopause in the atmosphere. Furthermore,

Faller (1956) has demonstrated, by placing dye crystals at the bottom

of the pan, the existence of fronts and migratory cyclones whose struc-

ture and development closely resemble those at mid-latitudes in the

atmosphere. As further evidence of the similarity of the dish-pan to

the atmosphere, Starr and Long (1953) have demonstrated that eddies in

the dish-pan play the same role as eddies in the atmosphere in the

maintenance of the angular momentum balance. Measuring velocities at

the free surface of a rotating dish-pan experiment, they calculated the

angular momentum transports. They found that the average transport was

northward at all latitudes with a maximum near the latitude of the maxi-

mum westerly "wind", as is the case near the tropopause in the atmosphere.



Secondly, also as in the atmosphere, nearly all of the transport was by

means of the eddies.

Thus a dish-pan experiment was conducted with special emphasis on

obtaining a long record of the flow in the Rossby regime under conditions

as constant as possible. The free surface velocity fields of a subset

of this record were measured and statistics of the growth of errors

calculated. The following sections describe the experiment itself, the

analysis of the data. the computational procedure and our numerical

results. In brief, we found a much broader distribution of analogues

in the free surface velocity field of the dish-pan than Lorenz (1969)

found in the three dimensional atmosphere. The smallest errors encountered

doubled initially in 6.6 "days". Applying Lorenz' (1969) hypothesis of

quadratic growth of small errors we found that the smallest errors should

double in 1.7 "days". Although this value differs from Lorenz' value

of 2.5 days for the atmosphere they are not statistically different.



2. PROCEDURE

The first task is to obtain a data-set of measurements of the

circulation over an extended number of revolutions in a rotating dish-

pan experiment. Lorenz (1969) noted that ideally for two states of

the atmosphere to be considered analogues the three-dimensional dis-

tributions of wind, pressure, temperature. water vapor and clouds should

be similar as well as the geographical distribution of sea-surface

temperatu:-e, snow cover and so on. Likewise in the dish-pan we should

require analogues to have similar distributions of rotation, depth of

the working fluid, and heating and cooling rates and their distribu-

tions - all of which we can measure and control. In addition the three-

dimensional distributions of pressure, fluid velocity, and temperature

should be similar. In practice the measurement of all these parameters

is impossible. In fact, the only synoptic data which we have is the

velocity field obtained from streak photographs of tracers on the sur-

face. Is this in any way representative of the flow through the depth

of the pan? Is it representative even of the flow at the upper levels

of the fluid? Although a shear stress exists between the fluid and

the air above, we also know that the magnitude of this force makes it

negligible with respect to the pressure gradient and Coriolis forces.

Thus we can say that there is no stress across the upper surface and

therefore the 7elocity field at the c;urface is representative of the

upper layer. Secondly, since in the atmosphere the tropopause similar-

ly acts as a zero-stress boundary, we can identify this layer with the



upper troposphere. Thus the surface flow in the dish-pan can be con-

sidered analogously to the 250 mb flow in the atmosphere. In fact under

the proper adjustment of the dish-pan parameters, the surface flow

exhibits many characteristics of the 250 mb flow in the atmosphere, most

notable a strong circumpolar jet. We make this analogy only to draw on

our synoptic experience. The 250 mb flow, although characteristic in

some sense of the large-scale flow of the atmosphere, contains little

information on the smaller scale flow fields below. For example, it

tells us nothing about the frontal zones of the lower atmosphere. Like-

wise the surface flow of the dish-pan does not reveal the frontal zones

which have been shown to exist below (Faller, 1956). Therefore, in

studying surface flow of the dish-pan we should expect to derive statis-

tics of the large scale circulation only.

Bearing this in mind, two general circulation dish-pan experi-

ments were conducted at the University of Maryland's Institute for

Fluid Dynamics and Applied Mathematics. Professor Allan J. Faller

directed the experiments and provided streak photographs of the surface.

The primary objectives were:

1) To adjust the external parameters to produce a surface

flow similar to the 250 mb flow in the atmosphere.

2) To obtain as long a record as possible in the hope of

finding good analogues.

As we will see in the description of the experiments, we were unable



to control the character of the flow as might be desired which resulted

in a much smaller number of revolutions in the desired flow regime.

Velocity measurements were made from one series of photographs.

This turned out to be a difficult process, and further shortened the

record which was analyzed. Finally a data-set of approximately one

hundred velocity fields was obtained.

A preliminary study had been conducted using a series of 21 photo-

graphs (supplied by Professor Faller) of an earlier general circulation

experiment. Velocities were measured by hand at eighteen points at mid-

radius on the photographs. Westward angular momentum transports were

calculated for each case and ranked by size. This statistic provides

information on the flow field which is invariant under rotation of the

picture. A subjective comparison of the photographs with the closest

momentum transports showed a reasonable correlation in the flow fields

under the proper roLation. On the other hand, this statistic does not

give any measure of the quantitative difference between the flows.

A better criteria for finding analogues was needed. In his

study of atmospheric analogues, Lorenz (1969) defined a statistic which

was a function of the Root Mean Square difference in the height fields

at grid-points averaged over the three pressure levels considered.

Height was chosen as the parameter of interest out of expediency.

Wind or temperature would have been an equally good choice as they are

related to heights geostrophically or hydrostatically on the scales of

the grid used. Good analogues were defined as those cases in which



this statistic was small in comparison to its values for .two randomly

chosen states. In an earlier study (Lorenz 1968) of analogues in the

solution of a pair of first-order difference equations, the statistic

used was defined as the RMS difference of two successive solutions.

We will define our criteria similarly as the RMS difference in velocity

fields.

The dish-pan model of the atmosphere is unique in its symmetry.

Thus we can compare states not only in a one to one manner as in Lorenz'

experiments, but also with a rotation of the frame of reference. If

velocitie were measured in a polar grid, this could simply be accom-

plished bT calculating the RMS difference while iteratively rotating

the field by one grid element. This is not very satisfactory as we

should like to rotate the fields arbitrarily for the best correlation

between them. Although interpolation between grid points would enable

arbitrary rotations, the alternative of writing the velocity filed as

an ortho-normal set of functions offers many advantages.

Formally, a variable G which is constant on the circumference

of a circle of radius " cL" can be expanded in the normalized Fourier-

Bessel series (c.f. Lorenz, 1962)

o as

0G,* 0 (2.1)

where

F J ( J( r) (2.2)
o(n o ev



-I

) 1  "; , 92. O (2.4)

Here r /z , t and 9 are polar coordinates, ~ is the

Bessel function of order rt , and is the /ath positive root

of the equation J = 0

In tlis case, G is determined by a finite set of velocity

measurements. If the series is truncated such that the number of terms

is equal to the number of data points, then the series will give an exact

representation of the data at the discrete observation points (c.f. Dixon,

et al., 1972). However, as we noted, we are concerned with the statistics

of the large-scale flow. Secondly, there are errors in the measurements

which we would like to filter out. Thus we will truncate the series to

a number of terms smaller than the number of discrete data points and

solve for the coefficients of the series by minimizing the residual error

between the series representation and the data, i.e. by least squares.

Furthermore, it is unreasonable to expect to find velocity traces at a

set of discrete grid positions. This approach allows us to solve for

the coefficients using the actual position of the velocity trace to

calculate the Fourier-Bessel functions. Finally it significantly reduces

the statistical analysis.



If G denotes one velocity field, G a different field and

and C) implies an average over the entire field than the squared differ-

ence between them,

L ( (G -C )L - (G' - ). (2.5)

In actuality we are dealing with a vector field. We may represent

the vector velocity as a complex number

where U and V are scalar fields written as Fourier-Bessel series as

in (2.1). We will define the mean squared difference of two velocity

fields f= +X / V and f U as mean of the

difference of the fields times its complex complement. That is, the

mean squared difference

9:, R r( U)(V V, (2.6)

where ( ) implies complex conjugate. Therefore, the mean squared

difference of the vector fields is equal to the sum of the mean squared

differences of the scalar fields. Thus we can continue oiur analysis

considering only scalar quantities.

Let us consider the effect of rotating the frame of reference of



one photograph with respect to another. Substituting V z U - b

where 6 is a constant angle of rotation into (2.3) and applying a tri-

gonometric identity and (2.4)

F (ro S-f

(2.7)
u,~nF~(r~B]~ L1- ^6 F(5~!

Similarly

F '(r &-) = L-Sf F.F (r 9) - ,l F (r oJ
*" An 0) 01 AIJWI 41 .0

Therefore, substituting into (2.1)

Gr~-). p 4
002

C, F

i-~r (G, c~c~b c;: ~, /

O+ftA
:7FIf

Rewriting (2.5)

(oco)-c(-]))"= (Go

-'
U7

i-21 (6jqu *
AWW%6 6,' +6

*L (~ -t

IA

-<;) jsl

f+

* ,,, - G '

~A -6

(2.8)

F (e e)'0" 0.-% 64

CY )} (2.9)

(6 -G t )
PAWO_

"- Ln /

(2.10)
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If we minimize this with respect to 9 we find:

ji4 ~

('_GrW-w ,,- ~

,-. (6 6*
Aft em Mtl"%

I t .-+6MA 604% 4--

This can be rewritten

w- ere) 0

where

G% G f
An VI #% *W

2. . G

6 6 d G1 G

G~ G~

G A _

,I i
8 1&

t G' 6'4
1dm Al IW'

(2.11b)

(2. llc)

is non-zero, then

(2.12)

Thus we have an equation for the angle of rotation which minimizes the

difference between two fields as a function of ,' and z, . For per-

fect analogues which differ only by rotatior of the reference frame,

these 6 's would all be equal. However when this is not the case,

we would expect different 6 's for each A" and /- . The particular

value of & used was that which minimized the combination of /in and

-G Gv 1 ) ),, 0,O (2.11)

2.

T7

(2.11a)

If rova dw



for which the quantity ( was

a maximum. Empirical analysis showed the best results to occur when

this algorithm was applied to the zonal velocity component.

Having defined an angle of rotation for two fields, A and ,

we then calculate ( ) by (2.6). Following Lorenz (1969)

we define

AC/7 j2 , .& - -e oT) (2.13)A-

where ) is the average of over all , and .C consid-

ered. The constant C = 16/log 2, such that an increase of 1. by

16 units represents an increase in A by a factor of 2. We also

define an average root-mean square velocity difference X by

letting

X P (2.14)

Note that for randomly chosen states O and X4 _t

We will exclude from consideration those states which are less

than or equal to 20 rotations apart to exclude possible analogues which

are close together in time.



3. THE DISH-PAN EXPERIMENTS

The dish-pan experiments were conducted at the Institute of Fluid

Dynamics at the University of Maryland by Professor A. J. Faller and his

staff. This particular facility was selected since the dish-pan apparatus

is being developed for use as a long term general circulation model. It

was hoped that this would permit long records, increasing the possibility

of finding good analogues. The first experiment, hereafter referred to

as GC-1l, was started at 11:15 on 2 February 1971 and ran continuou;sly

for 1,533 revolutions (almost 51 hours). During this time the circula-

tion failed to reach a steady-state condition, i.e. a condition of

constant heat flux between the hot and cold baths. Modifications were

made on the bath controls and a second experiment, hereafter referred to

as GC-12, was conducted beginning at 18:00 on 30 March 1971. This ran

successfully for 2,504 revolutions (68 hours) before being terminated

because of difficulties with the camera system.

3.1 Experimental Set-Up

A schematic representation of the dish-pan and support equipment

is shown in Fig. I. The pan is one meter in radius and was filled with

water to a depth of 10 cm. A glass cover prevents excessive evaporation

and the accumulation of dust on the working fluid. Heating and cooling

is by means of water circulated under the lower surfaces of the pan.

The cold bath is maintained at a constant temperature by pumping water

from a temperature controlled reservoir through the bath. Warm water



photo-flood
- lamps

/\

turntable variable speed and direction
motor

Fig. I. Schematic drawing of the dish-pan apparatus showing the location of the warm and cold baths,
the warn, and cold bath circulation pipes, the rotating equipment below, and the recording camera
above.



is circulated through the warm bath in a closed system. The circulating

water is heated at a constant rate. The resultant circulation in the

pan will eventually reach an equilibrium condition in which a constant

heat flux is maintained between the two baths. The entire pan is

rotated on a turntable driven by a variable speed and direction motor.

A synchronous motor linked to the turntable drives a similar synchronous

motor mounted above the center of the pan, which rotates a camera for

recording the surface flow. The camera is a 35 mm SLR with auxilliary

film holder and electric drive. This allows up to 250 exposures to be

taken between film changes. Lighting is provided by banks of fluore:.ent

lights and also photo-flood lights described in the next section. Also

mounted above the pan are infrared heaters to control condensation on

the cover glass. Fig. II shows the dish-pan in operation with the

cover glass.removed. The positions of the warm and cold bath circula-

tion pipes are shown.

3.2 Data Recording

Streak photographs were taken of tracers on the surface in order

to measure the velocities from the displacements. The working fluid

(water) was dyed a dark purple using permanganate crystals. In the

first experiment the tracers were plastic cylinders approximately 3 cm

long which were weighted to float vertically in the water. Two problem,

arose with these during the experiment which led to their replacement.

The first was that bubbles would adhere to them causing them to float

semi-horizontally. Secondly, surface tension effects made them tend



FIGURE II. The Dish-pan in operation
position of the warm and cold bath
pipes.
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to stick together leading to a poor distribution of tracers. Thus these

tracers were replaced by paper dots. The dots were wetted so that they

floated immediately below the surface layer. The only problem encountered

was their tendency to absorb water after several hours and sink. Thus

more tracers were added at regular intervals.

The pan was photographed once per revolution by the camera

rotating synchronously overhead on the axis of rotation. The fluores-

cent tubes illuminated the surface of the pan continuously. As the pan

rotated, it tripped a switch opening the shutter of the camera. After

a short delay the photo-flood lights were flashed. After another delay

the photo-flood lights were again flashed and the shutter closed. The

net effect is to produce a streak with two dots imposed. The dots allow

accurate measurement of the displacement of the tracer. The streak's

tail allows unambiguous determination of the direction of motion.

Fig. III is an example of the photographs with the measuring grid super-

posed. The two pipes carrying water to the cold bath are seen in the

lower right quadrant. Although it appears that they obscure a portion

of the tracers, it is possible by careful analysis to retrieve most of

the information in this area.

In addition, measurements were made of the parameters of the

heat flux in the model. These were automatically recorded on magnetic

tape as well as being manually measured and recorded every 30 minutes.



FIGURE III. Streak photograph of the surface tracers
with the measurement grid superimposed for revolution
863 of experiment GC-11.
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3.3 The First Experiment (GC-11)

The first attempt at obtaining a long term record of the flow in

the dish-pan was begun on 2 February 1971. The experiment was run

without the glass cover plate in order to keep the plastic tracers

separate and free of bubbles. The infrared heaters were used to warm

the surface slightly. The room was kept closed in the hopes that an

evaporative equilibrium condition would be reached at the surface of

the working fluid. The pan was rotated with a relatively uniform

period of 120 seconds per revolution. There was a 0.5% increase in

the rotat.4on rate during the experiment. The heating of the warm

source wa3 adjusted to produce the desired circulation regime.

Lorenz (1967) says that the Taylor number, 7 , and the thermal

Rossby, R , seem to be the most important dimensionless parameters

in determining the flow regime.

The Taylor number is defined as

(3.1)

where 1 is angular velocity of the dish-pan, A/ the depth of the

fluid and 2/ the kinematic viscosity. It is equal to the square of

the ratio of Coriolis to viscous forces.

The thermal Rossby number is defined as

Ro Ai 2~ 6T 7(3.2)

where . is the acceleration of gravity, E the coefficient of



thermal expansion, 0. the radius of the pan, and 6 T- the rim to center

temperature difference averaged over the depth of the fluid. As Lorenz

notes, the thermal Rossby number is defined to reduce to the familiar

Rossby number if the thermal wind relation is valid and the flow near

the bottom of the fluid is negligibly small.

As we noted before, in this experiment, GC-11i the character of

the flow field was altered by changing the heating of the warm bath.

Significant changes also occurred in some of the other important para-

meters, fo:r example, in the depth of the fluid. In addition there were

changes in the kinematic viscosity and the coefficient of thermal expan-

sion because of changes in the temperature of the working fluid, and

the increase in the rotation rate. Fig. IV is a plot of oT and

as a function of the revolutions. In as much as these values were

calculated from the externally measured temperatures of the warm and

cold bath and not those of the fluid itself, only the relative magnitudes

of these parameters should be considered and not their absolute values.

In the plot of T we see the dominant influence of the decrease

in depth of the working fluid. Water was lost by evaporation during

the entire experiment at approximately 850 ml per hour. Starting with

revolution 750, small amounts of water at the temperature of the warm

bath were slowly added at the rim at regular intervals. This stabilized

the depth of the working fluid leading to a slight increase in 7

reflecting the increase in . . The plot of IZ is a littlemore complex. It is dominated by the

more complex. It is dominated by the L-T term. While the cold bath
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temperature was kept nearly constant, the temperature of the warm bath

increased until revolution 500 at which point it stabilized for approx-

imately the next 400 revolutions. This behavior is clearly seen in the

plot. The region from revolution 600 to 900 is again dominated by the

decrease in the depth of the fluid. From this point on, the temperature

of the warm bath continued to increase until it again stabilized during

the last 100 revolutions. This is also seen in the behavior of R
4vTr

During the entire experiment the flow was in the so-called

Rossby regime. The heating was adjusted to produce the desired surface

flow characteristics, i.e. subjectively similar to the 250 mb flow of

the atmosphere. Initially the surface flow was dominated by three

closed cyclonic circulations. As the temperature difference increased

this gave way to two and finally one closed center. This was judged to

be the closest to atmospheric as it exhibited a "circumpolar" jet with

smaller wavelength perturbations superposed. This is the flow shown

in Fig. III.

The experiment was finally termined because of dust accumulating

on the surface of the working fluid. This produced a film which

retarded the surface flow. Such a retarding force produces an Ekman

layer in the upper layer making the velocities measured from the

tracers unrepresentative. Nevertheless, before this problem became

significant, a series of usable photographs of the desired flow type

were obtained starting at revolution 867 and continuing through revo-

lution 1109. As seen in Fig. IV, this series was characterized by

relatively stable values of A o



3.4 Second Experiment, GC-12

The short record deemed usable from GC-11 did not seem sufficient

for any reasonable analogue search. Therefore a second experiment was

attempted. In this case, a glass cover plate protected the surface of

the fluid from settling dust. This experiment was very successful in

maintaining the desired flow type over long periods. Improvements had

been made in the warm bath control system by Professor Faller and his

staff so that a relatively constant temperature difference could be

maintained. The bath temperatures were set to the values which were

found to produce the desired flow field in GC-12 and adjustments of the

flow type were made by varying the rotation rate. A plot of Ro and

7-, is given in Fig. V. The initial values of these parameters is

seen to be close to those in GC-11.

However, the flow at the surface was characteristic of the

"Hadley"regime that is, the surface flow was highly symmetric showing

westerlies everywhere with no perturbing flows superposed. The differ-

ence between the two experiments can only be attributed to the presence

of the glass cover, as all the other parameters were essentially

unchanged. Note that without the glass cover there was a significant

loss of water in the pan through evaporation. A simple calculation

shows the evaporative cooling to be of the order of one half the

heating of t'e warm bath. Cooling the upper surfacc would decrease

the static stability of the working fluid. Low static stabilities are

conducive to convection and, more importantly, to baroclinic instability.
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By covering the pan and retarding the evaporative cooling of the surface,

the static and baroclinic stabilities were increased. Therefore the

stabile circulation found in GC-12 is not surprising.

In this experiment, the character of the flow was modified by

changing the rotation rate, as this parameter is easier to control than

the temperature difference and produces a faster response. The change

in T and 7 is seen in Fig. V. During revolution 688, the

period of rotation was changed from approximately 120 seconds to 100

seconds. The flow remained essentially symmetric with only small pe.r-

turbations superposed on the westerly flow. A slightly less stable

pattern was desired so that at revolution 1,474 the period was decreased

again to approximately 82 seconds. The flow produced was dominated by

wave number 3 in the jet, although there were not any significant

closed circulations. Although this seemed to be a good analogue to the

real atmosphere and this circulation pattern was maintained for over

one thousand revolutions, it was not possible to obtain a photographic

record of any significant length. Starting around revolution 800,

problems began to develop in the film advance mechanism such that

successive pictures occasionally overlapped. By revolution 1800 a

majority of the photographs were unusuable because of this overlapping.

At revolution 2500 the experiment was terminated although the desired

circulation vras still present because of the problems in the camera

system.



4. DATA ANALYSIS

The tracer displacements were measured using an X-Y digital con-

vertor. The streak photographs were projected onto the grid shown in

Fig. III. The grid was merely intended as a guide to insure an even

distribution of velocity measurements. Thus the grid spaces are only

relatively of the same areas, and the tracers measured were those judged

most representative of the grid space. There are 172 grid spaces. In

the sample considered there were an average 163 velocity measurements

per photograph.

The position of the beginning and end point was located manuElly

for each tracer streak. The Cartesian coordinates of these positions

were automatically punched onto paper tape. In certain test cases in

which a relatively small number of photographs were considered, these

paper tapes were converted into cards for input into the MIT IBM 370/155

computer. However, when large amounts of data had to be analyzed, as

in the sample considered, the paper tape data was read by highspeed

reader and recorded directly onto magnetic tape by means of a Mohawk

6405 computer. In the case of the paper tape to card conversion a

control board was wired to translate from paper tape coding to EBCDIC

on the IBM 46 Tape-To-Card Punch. The Mohawk computer however wrote

the paper tape code onto the magnetic tape without conversion. In

addition, there were errors in the data from erroneous !', asurements,

mispunching of the paper tape and erroneous readings by the Mohawk

system. Thus a PL/l program was written to:



1. Translate the data from the paper tape code to the standard

EBCDIC for use on the IBM 370/155 computer.

2. Recognize the various data fields. Specifically to recognize

a change in photographs, the initialization procedure and

the beginning and end positions for each data point.

3. Recognize punching and reading errors.

4. Filter out all data with such errors.

5. Calculate the mid-point of the streak, the zonal and merid-

ional velocity at each data po.lnt, and sort and store these

according to their position in the grid.

6. Check the consistency of the data for each photograph and

between succeeding photographs.

Thus a data set was created containing the velocities and their positions

filtered of the errors in reading and data handling. The measurement

error still remained.

This error was estimated in two ways. In order to determine the

error in the velocities directly, the velocity field of one photograph

(revolution 891) was measured ten times. This data was processed exact-

ly as the sample data except that the means and variances for each grid

space were calculated. This calculation showed a standard deviation in

the velocity measurements ovfr the entire field of + 0.00507 in non-

dimensional units, with a non-dimensional average speed of 0.02357.

We have non-dimensionalized the length by the radius of the pan and time



by the time between flashes of the photo-lights producing the dots on

the streak. Thus we have an error on the order of twenty per cent in

the velocity measurements. The source of this large error was invest-

igated. The position of an individual spot could be measured within

+ 0.00074 if located carefully. In dimensional units this corresponds

to + 0.15 mm. Careful velocity measurements were accurate to + 0.00134.

This is an error on the order of five percent in the velocity, explain-

ing approximately one quarter of the actual error in the velocities.

The remainder presumably results from the failure to position the pointer

on the X-Y convertor precisely enough. Note that the average photograph

required the measurement of three hundred thirty positions. Working at

a comfortable rate it required approximately thirty minutes to analyze

one photograph, or five and one half seconds to locate and recor each

position. More precise positioning would have increased the number of

man-hours necessary for analysis significantly. This was judged not to

be warranted in this preliminary study.

A Fortran IV program was written to fit the measured velocities to

a truncated Fourier-Bessel series. In order to determine the number of

zonal and meridional components which were necessary for an adequate

fit, a set of experiments was conducted to calculate the Fourier-Bessel

coefficients for one velocity field (again revolution 891) truncating

the series at various levels for Fourier-Bessel functions calculated at

the measured data points and also for functions calculated at the

centroid of the appropriate grid element. The series representations

were compared by the correlation between the measured data and that

calculated from the series representation and also the amount of



computer time required to produce the coefficients of the series. The

first conclusion reached was that the use of the grid centroid as the

position in the Fourier-Bessel function calculation produced only a

3-5% reduction in the correlation while significantly reducing the amount

of computer time required. Thus it was decided to assign each measured

velocity to the center of the grid element in which it was found.

Recall that one reason for choosing the least-squares fit method was

that the actual mid-point of the tracer streak could be used in the

calculaticns as the position of the velocity measurement. In a more

precise study this is still a desirable goal. However, the difference

in the coirelations is small. This is partially due to the fact that

the streaks chosen were in most cases those nearest the centroid. The

size of the measurement error implies that the accuracy gained by cal-

culating the Fourier-Bessel functions for each data point is not

warranted.

In addition, it was also possible to determine the most efficient

number of meridional and zonal components in the series. The grid used

has eight elements in the radial direction and varies between four ele-

ments in the innermost circle to thirty-two in the outer circles in the

zonal direction as seen in Fig. III. To avoid aliasing in the coeffi-

cients in a Fourier analysis the maximum wavQ number must not be more

than half the ,iinimum number of elements. App.lying this rule of thumb

requires no more than wave number four in the radial direction. In the

zonal direction, we should expand to no more than wave number two, in



as much as there are only four zonal elements near the center of the pan.

However, the major circulations occur at mid-radius where the minimum

number of zonal elements is sixteen, this implies an expansion to wave-

number eight. The experiment conducted to evaluate the effect of

truncating the series at various levels confirmed this hypothesis. The

correlation between the fitted and measured velocity fields increased

up to the case of four radial and eight zonal components, with correla-

tions of 0.944 for the zonal velocity and 0.930 for the radial. Beyond

this ther3, was only a small increase in correlation with the number of

elements .n the series and a significant increase in computing time.



5. RESULTS

Let us consider first the distribution of the values of

For convenience they were classed by truncating '-E to a digit.

In addition a character was assigned to each of these classes. Table 1

shows the number of occurrences of each class, its associated character

and the number of occurrences 1V in that class for the case of compari-

son without rotation. We can compare this with Lorenz (1969) by means

of the frequency distributions in Fig. VI (a & b). The most striking

difference is the spread of the current data with respect to that frow

the atmosphere. While Lorenz' sample has a standard deviation of 2.11,

the data for the dish-pan has a much larger standard deviation of 5.46.

In part, we would expect the twenty per cent measurement error to prcduce

a wider distribution. But it also appears that by considering only the

free surface velocity field of the model, or analogously only the 250 mb

level of the atmosphere, we have significantly increased the possibilities

of finding good analogues.

Upon applying the rotation algorithm and computing new values

of A , we obtain the frequency distribution shown in Fig. VIc.

The number distribution of pairs in each class is also given in Table 1.

Comparing this with the distribution with no rotation, we see that the

net effect has been to shift the distribution towards lower values of

as expected. We have also decreased the number of extreme

values of F . Thus we have changed a portion of the average

analogues to fair analogues as we had desired. However, instead of

also producing more good analogues, we had likewise changed a portion



TABLE 1. Number of occurrences N of each

observed value oC of for straight comparison,

A , and comparison with rotation, /V ( ) .

Characters used to represent each value in printed output

are included.

M character ,,/j )

-19
-18
-17
-16
-15
-14
-13
-12
-11
-10

-9
-8
-7
-6
-5
-4
-3
-2
-1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0
1

4
14

16
41

59
80
54

131
152
177
196
198
215
344
158
134
92
96
76
79
72
60
61
44
35
20

7
2
2
0
0
0
0

0
0
1

1

2
4
4
9
24
40
61

102
117
143
184
221
212
214
175
329
139
125
94
96
99

79
74
51
30
23
11

5
5
2
0
0
3
2
3
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of the good analogues to fair.

Although it is not possible to definitely state the reason for

this result, we can make several hypotheses. We can argue that the

rotation algorithm does not generate the correct rotation angle. How-

ever, before applying this algorithm to the sample data, this procedure

was verified using a set of test data. This data consisted of a series

of six velocity field measurements of the same photograph, in which the

photograph was rotated by 90 degrees between each measurement of the

field. When the rotation algorithm was applied to this data set, it

produced the correct angle of rotation with an error of + 10.2 degrees.

This was considered to be reasonable in light of the measurement errors.

The other possibility is that the dish-pan was not symmetric as assumed.

Standing waves in the flow, set up by topography of the pan could produce

such an asymmetry. This effect however, is thought to be insignificant

in this experiment because of the care in construction of the dish-pan

apparatus. Of more concern is the symmetry of the heating of the lower

surface of the pan. As we noted before, this heating was applied by

circulating warm water underneath the outer radii and outer walls of the

pan. During the second experiment it was noted that the temperature of

the warm bath near the bottom of the bath varied by as much as 5 degrees

centigrade around the circumference of the pan. It was suggested that

this variatior might result from air bubbles trapped in the:warm bath

under the pan. If this were the case, it would lead to significant

stationary asymmetries in the heating of the working fluid. The effect

would be to generate standing waves in the flow similar to the standing



waves produced in the atmosphere by the asymmetric heating of land and

water. In order to evaluate the magnitude of asymmetric flow, the mean

velocity field was calculated for the entire sample. The Fourier coeffi-

cients of the average velocity field were calculated at mid-radius. The

zonal component of the velocity showed a strong wavenumber seven compo-

nent with the secondary maximum wavenumber one. The meridional component

showed a strong wavenumber one component with secondary maxima at wave-

numbers thrr e and seven. This seems to indicate some asymmetry in the

dish-pan which generates standing perturbations of wavenumbers one and

seven. In rddition we feel that the errors in the measurement of the

velocity field produced errors in the rotation algorithm sufficient to

make the results unreliable. The possibility of rotating the reference

frame between pairs was not pursued further, and the rest of the analysis

was performed with the statistics generated without rotation.

In order to study the growth of errors in the data, we will

consider the growth of the values of Z for /,.w = 1,2,...

In as much as the smallest value of jE in the sample is -18 with

a corresponding XA of 0.453, that is slightly less than half as

large as the difference between randomly chosen states, we will retrieve

what information we can from the analogues available. Fig. VII shows

a portion of the computer printout of values of represented by

the character3 given in Table 1. We are ccncerned with the variation

of these values along the diagonals.

Rather than analyse this display in detail, we have calculated

£E (~ , the average value of for each category
A ~ ~ ~?



QLLLH=LHHJMPNNJJLNLKLUUPUNT rKQNNL
,SQ NNN =KL L MLMQP U HPP- M MRT T SPUMLONM
.:RPNLM=LKLLPiMMN MPuI4PPUUOS T LMNMP

LHFFF=87AB HHLhGFOHDKNKJHUAFm GE
LGEH=ACCE7DFLKHF CLKMNGFKEAEHt-M
LEECF=BCEEHC99JKJHCHJSLGFGGUGH
LF9Lb=B7BAGMGBCGEHF0ALRMLJUCJuGF
LHCCH=9699EHGFt1EF EE AJPLLJ AF JGE
KGCBF=878CA8FEKKGECJGLNKKJRCBHHG
LED(BE=BC8EJEBDJKGHCGHUSMKFRGEF JJ
LGDCD=8BBAKLKFtjDFh- DENRMLKPE.JDOF
,LKHHF=DADBBGKKFFHiJKFLQLKJRDKJGE
MKGHJ=ECCGECGJLLJKHLHLUMLLSFGLLK
'LHDAH=BCAF BDAJL JHEKHN.LLKSEE G-tIJ
MJODDF=DAEBHJHF J MK 0FMSNNL CLKKK
LHFED=B977F JJHFEEJ ECLRMLK3DKGFF
LKJHH=FCFDsELLLKKJJKFKPLLLSF KLJ
,LHGEJ=GFOGHBCHtMLKJGLKPOKJLTKF HLL
LHEOD=CDFBHFFBJLHJEJHNSMLKF HEHJ
LJGFG=DCFFFF HFJJKLGJJNNLKJQF JEF
MKJHH=GFGHFFGJLKLLJKJL LJKSMJGHJ
KJGEH=HGHJJDCUJLLLKLKMOLLL KKJLL
JGB98=GCEEJKHEAFGKJhFMkNMLTHLLLL
LJEED=DCBCFJKJOFDKJGCLONMLSGLLKK
LKHHG=ECDODFKLKGGJrLGJNLLLSGKLKJ

Fig. VII. Selected values of corresponding to

characters given in Table 1, printed out by computer.
An "= " denotes missing data. Successive rows cor-
respond to values of A for revolution number 881
to 906. Successive columns correspond to values of I
from 918 to 949.



in which Fd . Analogously to (2.1.4) we let

E0 ~ (5.1)

The values of E for /.' equal to 0 to 8 are given in Table 2.

We notice in general that as /, increases E ( I approaches zero.

Since the number of occurrences in each case decreases with /svvr , the

values of C- (n.) for larger values of Ar, vary irratically because

of the small sample size.

Loienz (1969) argues that the growth of an arbitrary error is the

superposition of "normal modes". Initially some ot the normal modes will

grow quasi-exponentially while others will decay quasi-exponentially.

For an error initially of random shape, these growing and decaying modes

should tend to cancel when " =O0. As ',m increases the decaying modes

become insignificant, and the amplifying modes dominate. When ^ becomes

sufficiently large, <,( ) approaches 1, the value for randomly

chosen states, and the amplification decays because of nonlinear effects.

To study the growth rate of errors once the decaying modes are

small, we have plotted in Fig. VIII the values of s +/I) against

( calculated from the values of -f, (,) in Table 2. Values

for /tm= O have not been included since the decaying modes are impor-

tant for those cases. Further those cases in which A was less
FA A

than or equal ,o -14 have not been included because the number of cases

was too small. Also following Lorenz (1969) we have not included values

for which ( ,m.) > 0.95. The distance of the dots above the dia-

gonal indicate the amplification of X during one "day".



TABLE 2. Average values E~A) of E
A 44iU, + - P

for those instances E
Ali

m = 0 m = m=2 m = 3 m=4 m=5 m=6 m=7 m=8

-18
-17
-16
-15

-14
-13
-12
-11
-10

-9
-8
-7
-6

-5
-4
-3
-2
-1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

-18.26
ND
ND

-15.67
-14.63
-13.46
-12.55
-11.47
-10.41
-9.46
-8.42
-7.45
-6.47
-5.50
-4.48
-3.48
-2.46
-1.51
-0.00

1..51
2.48
3.50
4.47
5.47
6.48
7.49
8.47
9.38

10.46
11.45
12.46
13.62
14.49
15.95

-13.58
ND
ND

-9.90
-11.57
-11.93
-9.92
-8.83
-8.45
-6.93
-6.36
-5.47
-3.64

-3.57
-2.58
-1.60
-0.60
-0.32

0.96
1.72
1.82
0.22

-0.81
-1.11
-1.05
-1.42
-0.23
-0.09

1.83
2.63
2.17

2.28
-2.61
5.03

-12.21
ND

ND
-0.28
-4.54
-8.23
-7.54
-5.85
-6.33

-5.61
-3.88
-2.78
-3.80

-3.71
-2.44
-2.08
-1.27
-0.98
-0.56
-0.39
0.73

-0.98
0.59
0.37
0.86

2.12
4.17
4.05
4.60
4.69
5.43

7.81
3.18
5.45

-11.10
ND
ND

-5.24
-1.82

-5.49
-4.40
-4.85
-4.72
-5.15
-3.03

-2.06
-2.87

-3.24
-1.16
-1.85
-0.56
-0.76
-0.19
0.69
0.42

-1.45
0.39
0.15
0.95

-0.09
-0.62
-1.53

0.58

2.83
5.58

-0.70
2.81
2.93

ND
ND
ND
5.45

-3.54
-2.50
-2.68
-2.89
-4.30
-2.77
-2.27
-1.22
-0.87

-1.39
-1.39
-0.04
-0.38
0.08

-0.50
0.10

-0.28
-1.66
-0.65
0.56
1.02
3.05
3.05
2.97
3.55
3.44
3.94
6.26
ND
ND

ND
ND

ND
6.23

-3.82
-3.14
-2.57
-2.35
-2.66
-2.63
-2.73
-2.69
-1.82
-1.30
-0.16
-0.95
0.11

-0.12
0.80
0.51
0.71

-0.44
0.69

1.14
-0.09

0.07
1.12
1.36

2.66
-0.59

-1.93
6.08
ND
ND

ND
ND
ND
0,13

-6.16

-1.02
-1.62
-2.29
-1.66
-1.79
-2.40
-0.21
-0.56

-0.83

0.31
0.31
0.48
0.50

-0.33

-1.26
-1.02
-1.10
0.18

-1.14
-0.17
-1.20
-1.20
-1.97

0.48
-2.38
-4.54

0.54
ND
ND

* ND = No Data

=o(.

ND
ND

ND
11.50
1,02

-3.92
-1.31
0.28

-0.90

-2.05
-1.37
-0.54
-0.15

0.03
0.55
0.03
1.12
0.88
0.14

-0.39
-0.46
-1.19
-1.88
-2.52
-1.53
-0.70
-0.44

1.49
1.11

-1.65
-2.66

-0.68
ND
ND

ND
ND

ND
8.31

-3.59
-1.33

1.06
-0.52

-1.23
-0.42
-0.15
0.48
0.54

-0.50
0,33

-0.32
1.29
0.78
0.20

-0.31
-1.73
-1.66
-1.50
-0.87
-0.27
0.62

-0.36
1.04
1.82

-3.62
-2.18
0.86
ND
ND
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This plot can be compared directly with Lorenz' (1969) plot for

the atmosphere. Lorenz' data did not deviate greatly from the dashed

straight line shown in Fig. VIII. This line passes through the point

(1,1) with a slope of 0.78. A least squares fit of the dish-pan data

produces the upper solid line, which also passes through (1,1) but with

a slope of 0.666. The deviation of the data points about this line is

much greater than Lorenz' data because of the smaller sample size and

measuring error. The smaller slope indicates a faster amplification

rate for errors.

The left-most point in Fig. VIII corresponds to an amplification

rate of 1.11 per revolution. Continued growth at this rate would imply

that errors of this magnitude would double in 6.6 revolutions. This

value corresponds to an error of .650 times that for randomly chosen

states. As we noted before this cannot be considered a small error.

However, since Lorenz (1965) has shown that small errors amplify faster

than large errors, we may conclude that the typical doubling time for

small random errors in our experiment is not greater than 6.6 revolutions

(days). In his study of the atmosphere Lorenz found an upper bound of

8 days for the doubling time of small random errors.

In order to obtain specific estimates of the doubling time of

small random errors we make use of a quadratic hypothesis of error

growth introduced by Lorenz (1969). Our model of the growth of errors

calls for the quasi-exponential growth of small errors to cease as the

errors become large because of the nonlinear terms in the governing



equations. Lorenz assumes that the principle nonlinearities are the

quadratic terms representing the advection of temperature and velocity

fields. It then follows that the principle nonlinear terms in the

governing equations of the field of errors will also be quadratic.

Lorenz then argues that for arbitrary values of c< , and for values

of m i, the quantity X/ (4n) defined by (5.1) is governed by

the quadratic equation

SX - X (5.2)

Since X-- 1 as ,n o, the constants pA and / must be equal.

The general solution of (5.2) is then

X 4-C dL " (5.3)

Thus for any positive lag

-I

X (,m-) X(l)Leb (1. -e )K 'AhJJ (5.4)

The curve of X (/ 1 /' against ( (A) is a rectangular hyper-

bola passing through the point (1,1) with a slope of e and through

(0,0) with a slope of . . The slope of the curve through the

origin represents the amplification factor for small errors during

days.

For our data we know thiat the slope of the least-squares regres-

sion line through the point (1.1) is 0.666. Assume that the curve of

> ( m , ) against )( ) for m =- 1 passes through (1.1)
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with approximately the same slope. Then e = 0.666 which implies

cx = 0.406. The doubling time for small errors, obtained by setting

e = 2 is approximately 1.7 revolutions (days). Lorenz' best

estimate of the doubling time of small errors in the atmosphere was

2.5 days. We would like to know how well these values correspond?

As we noted earlier, the scatter of points used in determining

this value of the amplification rate of errors in the dish-pan was

significantly larger than that of Lorenz' atmospheric data because of

the smaller sample size. The standard deviation of the least squares

regression line for our data was found t. be 0.056. The 95% confidence

limits on the slope are therefore .554 and .778 corresponding to doubling

times of 1.2 and 2.8 revolutions. In particular the slope of Lorenz'

fitted data lies within 1.6 standard deviations of our calculated value

for the dish-pan. Therefore, we are not justified in saying that there

is any statistical difference in the values. This supports our original

assumption that the flow in the dish-pan is a good analogue of the flow

in the atmosphere.



6. SUMMARY AND CONCLUSIONS

A data set of one hundred measurements of the free surface velo-

city field of a dish-pan model of the atmosphere was assembled. This

data included a relatively large (20%) measurement error. The root-mear-

square difference of the velocity fields was calculated as a measure of

the difference between two fields for those pairs greater than twenty

revolutions apart. This difference was then treated as an error super-

posed on one of the two states and its subsequent growth was analyzed.

No truly small errors were found although the distribution of

the errors showed a much wider distribution then found for the atmosphere

by Lorenz. The smallest error encountered indicated small random errors

would double in not more than 6.6 revolutions or days. Extrapolating

the growth rate for moderate errors back by assuming that the growth of

errors is governed by a quadratic relationship, we estimated that truly

small random errors would double initially in 1.7 revolutions or days.

This may be compared with Lorenz' similarly derived value of 2.5 days

for the atmosphere. Because of the smaller sample size and the measure-

ment error, we cannot say that these values are statistically different.

Our value does differ significantly however from the value of

5 days estimated by Charney et al. (1966) based upon numerical general

circulation nodels. But as Lorenz (1969) notes, only the statistics

of the small-scale motions influence the larger scales in these models,

and at any particular instance these statistical properties are deter-

mined by the large-scale motions themselves. Thus the influence of
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the small-scales upon the large scales is not adequately modelled. In

the current method of analyzing the growth by the study of analogues in

the flow, we implicitly have included the influences of these small-

scale motions, We would therefore argue that actual value of the

initial doubling time of small random errors is on the order of two

to three days.
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