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ABSTRACT

The growth of errors in a dish-pan model of the atmosphere was
studied by means of analogues. Two states which resemble each other
closely are termed analogues, Either state may be regarded as being
equal to the other plus a small error., The rate of growth of this
error may be determined by the subsequent behavior of the states.

One hundred streak photographs of the free surface velocity field
were analyzed and fitted by least-squares to a truncated Fourier-Bessel
series., The root-mean-square difference between the series representa-
tions was used as the difference between states, or the error,

An attempt was made to effectively increase the number of pairs
by rotating the frame of reference of photographs and then computing
the error, This procedure was not successful in increasing the number
of "good" analogues and was not pursued.

There were numerous mediocre analogues but no truly good ones,
The smallest errors encountered had an initial doubling time of 6,6
"days'. Extrapolation with the aid of a quadratic hypothesis indicated
that small errors would double in 1.7 ''days'. This is not statistic-
ally different from the doubling time of 2.5 "days" found similarly
in studies of the atmosphere.
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1. INTRODUCTION

The reliability of weather forecasts has increased significantly
during the past twenty years. In large part, this has been due to the
application of digital computers in producing aids for the forecaster.
The primary success has been in the prediction of the location and
intensity of systems such as extratropical cyclones a day or two in
advance, This success has fallen off sharply for loﬁger prediction
periods; Qualitatively the reasons for this decay of predictability

with time are easily understood.

The atmosphere can be described by a system of dynamic equations.
The forecasting process is an attempt to find a solution to that system
of equations., The success we have had in forecasting has been primarily
by techniques which extrapolate the current observed state of the atmos-
phere to find future states. Errors are introduced into such a forecast
at the outset by our inability to observe the state of the atmosﬁhere
exactly at any time. We are limited in our observations to a discrete
set of measuring sites which make up our observation network. The
dynamics of the atmosphere on the other hand, are characterized by a
continuous spectrum of scales, By measuring with a discrete observation
network, we find the sub-grid scale energy appearing under an alias as
enérgy of the large scale flow, This is an observational error in addi-~
tion to the actual error in measurement, In order to eliminate this
error in initial conditions, it would be necessary to measure the
motions of the atmosphere down to the scale of the viscous dissipations -

an impossible task. The success of the current short-range prediction



schemes is due to our ability to filter out these observational errors
by "analysis" of the data. For longer prediction intervals, the errors
produced by the extrapolation techniques themselves become dominant.
Essentially a 48 hour forecast is a 24 hour forecast using as its
initial state a previous 24 hour forecast. Likewise for 72 hours and
so on. Thus, even assuming that the initial state of the atmosphere is
perfectly known, the inaccuracies of the forecasting technique produce
errors in the predictions which are used as initial conditions for
further forecasts, Lorenz (1963) has demonstrated that the atmosphere
is an unstable system such that the initial errors will grow until they

are the size of the errors for randomly chosen initial conditions.

In as much as perfect forecasting of the weather is not possible,
we would like to know how far in advance we can reliably predict. To
date most of this quantitative work has been done by determining and
comparing solutions of systems of dynamic equations which have character-
istics similar to those of the atmosphere. Thompson (1957) considered
a quasi-geostrophic model and concluded that errors in the initial data
limited useful prediction to one week, Charney et al. (1966) considered
the growth of errors in several primitive equation models of the general
circulation, concluding that the limit of predictability in the atmos-
phere was two weeks. Lorenz (1969a) studied the predictability of
various scales of wmoticn using a barotropic model., He showed the
doubling time of errors in the model to be a function of the scale of
the motion in which the error is imbedded. Thus for example, errors in

the specification of thunderstorms double in minutes while errors in the



specification of extra-tropical cyclones double in days. Note however
that errors below the scale of our observation network are already as
large as random errors, The appropriate errors to consider are those
corresponding to the scale of the grid. Flemming (1971) has extended
this work by applying stochastic dynamic methods to Lorenz' 28 variable
model, Recently Leith‘(1971) has considered the growth of errors in

a model of two-dimensional turbulence, Lorenz (1972) has studied analy-

tically the growth of errors in a barotropic model of the atmosphere,

Thii study of mathematical models of the atmosphere is not com-
pletely satisfactory for there is the feeling, as Robinson (1967) points
out, that they tell more about the predictability of the model than
about the real atmosphere., Such models are based on.apprOXimations to
the true governing equations of the atmosphere. In general they deal
explicitly with only the larger scales of motions. It is not certain
whether the effects of smaller scale motions are adequately represented,
In particular, we have to question whether such models can adequately
describe the influence of errors in the small scales of motion on the
larger scales. As an alternative to the numerical modelling approach,
Lorenz (1969) analyzed the growth of errors based upon actual atmospheric
data, In principle, if we wait long enough we would expect to encounter
a state which closely resembles some previous state, an analogue. Either
state may be treated as equivalent to the otger plus a small error,

The growth of this error can then be studied by the subsequent behavior

of the pair,



In his study of the atmosphere Lorenz considered five years of
atmospheric data at three pressure levels for the years 1963-1967.
States of the atmosphere within one month of each other, but in a
different year, were compared. A total of over 400,000 pairs of states
were considered. No truly good analogues were found, The smallest
error encountered was more than half as great as the average error in
the sample. The smallest errors encountered amplified by nearly ten
percent per day which implies that small errors double in not more than
eightrdays. From the distribution of the data it was estimated that it
would require 140 years of data to find az error only half as large as

the average.

Our current record of atmospheric cbservations up to only 500 mb
extends back little more than twenty five years. Therefore, the addi-~
tional information to be gained by studying the complete record of these
observations seems small. However, because of the uniqueness of this
approach in treating a real fluid system, including the influences of
the smallest scales of motion, a study of the possibility of finding
analogues in a laboratory model of the atmosphere was undertaken, Of
course the objection that any conclusions we could draw from such a
study are more applicable to the model than to the real atmosphere is
equally valid as with the case of numerical models. However, we felt
that this approach potentially would yield r<¢sults not obtainable Ly

numerical methods,

The laboratory model which most closely duplicates the atmosphere

is the dish-pan experiment, Essentially it consists of a cylindrical



container, usually containing water, which is mounted on a rotating
turntable. A heat source is provided at the rim with a cold source

at the center, Although flows qualitatively similar to those of the
atmosphere are easily obtained, quantitative investigations require
extreﬁe care (see Fultz et al. 1959). The flow in the dish~pan is
known to be governed by equations very similar to those of the atmos-
phere. Here lies one significant difference between laboratory and
numerical modelling, The dish-pan experiment is governed by equations
of exactly the same form as those of the atmosphere, Thus the statistics
of the dish-pan will reflect the influen:s of the sub-grid scales better
thaﬁ those of a numerical approximation of these equations. On the
other hand, certain simplifications are made which differentiate the
dish-pan from the atmosphere, The condensation of water vapor is not
modelled in any way. Although there are indications of its importance
in the tropics, from empirical studies in the dish-pan, it appears to
be a minor influence in mid-latitudes, Because we are considering a
cylindrical rather than spherical container, the /9—effect, i.e. the
tendency for relative vorticity to decrease in northward flow and
increase in southward flow because of the variation of the Coriolis
parameter, is not modelled, Although the /9—effect is required for
realistic results in numerical models, empirical studies in the dish-
pan show it is not required for the development of flows similar to
those of the atmosphere. Firally, the dish-pan is free of topography.
As we shall see, this symmetry was an important consideration in the

selection of this model,



Fultz et al. (1959) have studied the character of the flow in the
dish-pan in detail. They‘found two qualitatively different regimes of
flow, a zonally symmetric flow type known as the Hadley régime and a
zonally asymmetric flow type known as the Rossby régime. The transition
between these rééimes is governed by the externally adjustable parameters
of the experiment - the depth of the working fluid, the rotation rate,
and the temperature contrast between the hot and cold sources. The
Hadley type flow develops over a considercble range of these parameters
and is characterized by an apparently perfectly symmetric flow about the
axis of rotation. Under other condition:, however, the Rossby type flow
develops. It is characterized by a strcng "circumpolar"” jet about the
axis of rotation with wave-like disturbances superposed. The motion,
like that of the atmosphere, is aperiodic. The free surface flow is
very similar to that near the tropopause in the atmosphere. Furthermore,
Faller (1956) has demonstrated, by placing dye crystals at the bottom
of the pan, the existence of fronts and migratory cyclones whose struc-
ture and development closely resemble those at mid-latitudes in the
atmosphere. As further evidence of the similarity of the dish-pan to
the atmosphere, Starr and Long (1953) have demonstrated that eddies in
the dish-pan play the same role as eddies in the atmosphere in the
maintenance of the angular momentum balance., Measuring velocities at
the free surface of a rotating dish-pan experiment, they calculated the
angular momentum transports. They found that the average transport was
northward at all latitudes with a maximum near the latitude of the maxi-

mum westerly "wind", as is the case near the tropopause in the atmosphere,
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Secondly, also as in the atmosphere, nearly all of the transport was by

means of the eddies,

Thus a dish-pan experiment was conducted with special emphasis on
obtaining a long record of the flow in the Rossby regime under conditions
as constant as possible. The free surface velocity fields of a subset.
of this record were measured and statistics of the growth of errors
calculated, The following sections describe the experiment itself, the
analysis of the data, the computational procedure and our numerical
results. In brief, we found a much broader distribution of analogues
in the frec surface velocity field of the dish-pan than Lorenz (1969)
found in the three dimensional atmosphere. The smallest errors encountered
doubled initially in 6.6 "days'. Applying Lorenz' (1969) hypothesis of
quadratic growth of small errors we found that the smallest errors should
double in 1.7 "days'"., Although this value differs from Lorenz' value

of 2,5 days for the atmosphere they are not statistically different.
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2, PROCEDURE

The first task is to obtain a data-set of measurements of the
circulation over an extended number of revolutions in a rotating dish-
pan experiment. Lorenz (1969) noted that ideally for two states of
the atmosphere to be considered analogues the three-dimensional dis-
tributions of wind, pressure, temperature, water vapor ané clouds should
be similar as well as the geographical distribution of sea-surface
temperatur-e, snow cover and so on., Likewise in the dish-pan we should
require analogues to have similar distributions of rotation, depth of
the working fluid, and heating and cooling rates and their distribu-
tions - all of which we can measure and control, In addition the three-
dimensional distributions of pressure, fluid velodity, and temperature
should be similar. In practice the measurement of all these parameters
is impossible. In fact, the only synoptic data which we have is the
velocity field obteined from streak photographs of tracers on the sur-
face., 1Is this in any way representative of the flow through the depth
of the pan? Is it representative even of the flow at the upper levels
of the fluid? Although a shear stress exists between the fluid and
the air above, we also know that the magnitude of this force makes it
negligible with respect to the pressure gradient and Coriolis forces.
Thus we can say that there is no stress across the upper surface and
therefore the velocity field at the surface is representative of the
upper layer. Secondly, since in the atmosphere the tropopause similar-

ly acts as a zero-stress boundary, we can identify this layer with the
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upper troposphere. Thus the surface flow in the dish-pan can be con-
sidered analogously to the 250 mb flow in the atmosphere. In fact under
the proper adjustment of the dish-pan parameters, the surface flow
exhibits many characteristics of the 250 mb flow in the atmosphere, most
notable a strong circumpolar jet, We make this analogy only to draw on
our synoptic experience. The 250 mb flow, although characteristic in
some sense of the large-scale flow of the atmosphere, contains little
information on the smaller scale flow fields below, For example, it
tells us nothing about the frontal zones of the lower atmosphere., Like-
wise the surface flow of the dish-pan does not'reveal the frontal zones
which have been shown to exist below (Faller, 1956). Therefore, in
studying surface flow of the dish-pan we should expéct to derive statis-

tics of the large scale circulation only.

Bearing this in mind, two general circulation dish-pan experi-
ments were conducted at the University of Maryland's Institute for
Fluid Dynamics and Applied Mathematics., Professor Allan J. Faller
directed the experiments and provided streak photographs of the surface.

The primary objectives were:

1) To adjust the external parameters to produce a surface

flow similar to the 250 mb flow in the atmosphere.

2) To obtain as long a record as possible in the hope of

finding good analogues.

As we will see in the description of the experiments, we were unable
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to control the character of the flow as might be desired which resulted

in a much smaller number of revolutions in the desired flow rééime,

Velocity measurements were made from one series of photographs,
This turned out to be a difficult process, and further shortened the
record which was analyzed., Finally a data-set of approximately one

hundred velocity fields was obtained.

A preliminary study had been conducted using a series of 21 photo-
graphs (supplied by Professor Faller) of an earlier general circulation
experiment. Velocities were measured by hand at eighteen points at mid-
radius on the photographs. Westward angular momentum transports were
calculated for each case and ranked by size. This statistic provides
information on the flow field which is invariant under rotation of the
picture. A subjective comparison of the photographs with the closest
momentum transports showed a reasonable correlation in the flow fields
under the proper roiation, On the other hand, this statistic does not

give any measure of the quantitative difference between the flows.

A better criteria for finding analogues was needed. In his
study of atmospheric analogues, Lorenz (1969) defined a statistic which
was a function of the Root Mean Square difference in the height fields
at grid-points averaged over the three pressure levels considered,
Height was chosen as the parameter of interest out of expediency.

Wind or temperature would have been an equally good choice as they are
related to heights geostrophically or hydrostatically on the scales of

the grid used. Good analogues were defined as those cases in which
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this statistic was small in comparison to its values for two randomly
chosen states. In an earlier study (Lorenz 1968) of analogues in the
solution of a pair of first-order difference equations, the statistic
used was defined as the RMS difference of two successive solutions.

We will define our criteria similarly as the RMS difference in velocity

fields.

The dish-pan model of the atmosphere is unique in its symmetry,
Thus we can compare states not only in a one to one manner as in Lorenz'
experimen”s, but also with a rotation of the frame of reference., If
velocities were measured in a polar grid, this could simply be accom-
plished by calculating the RMS difference while iteratively rotating
the field by one grid element. This is not very safisfactory as we
should like to rotate the fields arbitrarily for the best correlation
between them. Although interpolation between grid points would enable
arbitrary rotations, the alternative of writing the velocity filed as
an ortho-normal set of functions offers many advantages.

Formally, a variable & which is constant on the circumference

1" "

of a circle of radius a can be expanded in the normalized Fourier-

Bessel series (c.f. Lorenz, 1962)

20 e0
’ y
G= GOB + 2 GomFom *MZ (,Gnm L c’mm F:nm) (2.1)
-l I

where

om

o = 9 Gund (G ) (2.2)
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Frm™ (2 G Tl ) G

Here p, = ¢ - , r and 9? are polar coordinates, J;m is the
Bessel function of order m , and ﬁmm is the ,mfh positive root

of the equation Jm = 0 .

In this case, G is determined by a finite set of velocity
measurements, If the series is truncated such that the number of terms
is equal to the number of data points, then the series will give an exact
representation of the data at the discrete observation points (c.f. Dixon,
et al., 1972)., However, as we noted, we are concerned with the statistics
of the large-scale flow. Secondly, there are errors in the measurements
which we would like to filter out., Thus we will truncate the series to
a number of terms smaller than the number of discrete data points and
solve for the coefficients of the series by minimizing the residual error
between the series representation and the data, i.e. by least squares.
Furthermore, it is unreasonable to expect to find velocity traces at a
set of discrete grid positions. This approach allows us to solve for
the coefficients using the actual position of‘the velocity trace to
calculate the Fourier-Bessel functions. Finally it significantly reduces

the statistical analysis.
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?
1f G denotes one velocity field, G a different field and
and () implies an average over the entire field than the squared differ-

ence between them,

—————— ————

MM
, 2 +
(G“:"r)z = (Goa - G:o) " 4-.2-.-1 (GOM - GOM)

KX

M N + 2 M,V , e 1 i 5)
+3 (G -G ) +2 (6, ~6. ). :
momr a~,m st

In actuality we are dealing with a vector field, We may represent

the vector velocity as a complex number

}? = U+, V/

where l} and &/ are scalar fields written as Fourier-Bessel series as

in (2.1). We will define the mean squared difference of two velocity

fields f/;..: U/:.. A VA_ and 7'{ = Uj + 4 V( as mean of the

difference of the fields times its complex complement, That is, the

mean squared difference

D/ég ) (YA'7;}(54'71)*"(%-%)2(1//&~|4) (2.6)

*
where ( ) implies complex conjugate. Therefore, the mean squared

difference of the vector fields is equal to the sum of the mean squared
differences of the scalar fields, Thus we can continue our analysis

considering only scalar quantities.

lLet us consider the effect of rotating the frame of reference of
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one photograph with respect to another. Substituting Qﬂ c @ - S
where 5 is a constant angle of rotation into (2.3) and applying a tri-

gonometric identity and (2.4)

-1 .
o (12, 08022 5 ) (0] (o s
; 2.7)
s commf [, (1,0) ¢ w8 £y (7,0)

.

Similarly

4

F (v 9-~§)-= co’a—m‘f:;:m (r.,a‘g) ~ e m b me(cae-’. (2.8)

mm:*: 0,

Therefore, substituting into (2.1)

M
G(r‘,'9~$) = Goo ¥ Z Gom F-;.m
mz= |
M,V .
m,m Naidand

~, N . ,
+ 2 (Gmm conmf - GMMM\:”‘ {) Fnﬂ(V;JQ). (2.9)

M mTt
Rewriting (2.5)
SN t T PRI + |2
(Ge1-6"(o-5) = (¢, -¢') +2 (6,6, )
. ~mz=
“,V 2
1 ) . -
"Z (G,,.,‘*G ‘ﬁ’m{—()’r mmb)
m ot wm -
MY + + 2
¢ . ’
t 2 (C'nm + QMMMM[ ~ G"m oz m$) (2.10)

mm
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If we minimize this with respect to 6' we find:
“ v + ) -
/ .
Z 306,60 46 67T ) s
mmsi Mo M me o mm

-t T - (2.11)

”pn

* (6':‘""‘ G:M—G

This can be rewritten

M,V
2 me M (mgmn: gmm) = O (2‘118)

mmymo=
where
b2
T 2 i 2 iy 2 : l*t "& '
+ ’ +

" =6 G +t6 67 +G G +G 6 (2.11b)

mmm M ~m o~ Mman  mpe MAN e Man

t + v+
GMM GMM = GMM Gmm\.

= (2.11c)
/Zvvw gmm 6 Gf + G/ Gc-n.
”m e ~ AT A

If Tﬂ is non-zero, then
o

§ =

M

(2.12)
Vaa"

Thus we have an equation for the angle of rotation which minimizes the
difference between two fields as a function of m and ~. . For per-
fect analogues which differ only by rotatiur of the reference frame,
these 6"s would all be equal. However when this is not the case,
we would expect different 6.'3 for each s»m and 4L ., The particular

value of 5' used was that which minimized the combination of ,»»m and
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T
+ f R Y
. for which the quantity (G”M Gmm) + (Gmmﬁé,mm) was
a maximum, Empirical analysis showed the best results to occur when

this algorithm was applied to the zonal velocity component,

Having defired an angle of rotation for two fields, A and L p
2
we then calculate DAJ ( gﬁj) by (2.6), Following Lorenz (1969)

we define

E;/‘ = </ (,@orD:u*,&f;.b—{) (2.13)

— T

where ' is the average of
) g D Az

ered. The constant € = 16/log 2, such that an increase of [::A)¢ by

over all A and /f consid-

16 units represents an increase in Dﬁ/e by a factor of 2, We also
define an average root-mean square velocity difference XA/{ by

letting

‘:u“‘C/‘WXA,e (2.14)

1.

Note that for randomly chosen states /& = O and X, =
Y 44 44

We will exclude from consideration those states which are less
than or equal to 20 rotations apart to exclude possible analogues which

are close together in time,
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3. THE DISH-PAN EXPERIMENTS

The dish-pan experiments were conducted at the Institute of Fluid
Dynamics at the University of Maryland by Professor A, J, Faller and his
staff, This particular facility was selected since the dish-pan apparatus
is being developed for use as a long term general circulation model. It
was hoped that this would permit long records, increasing the possibility
of finding good analogues. The first experiment, hereafter referred to
as GC~-1l, was started at 11:15 on 2 February 1971 and ran continuously
for 1,533 revolutions (almost 51 hours)., During this time the circulz-
tion failed to reach a steady-state condition, i.e., a condition of
constant heat flux between the hot and cold baths, Modifications were
made on the bath controls and a second experiment, hereafter referred to
as GC-12, was conducted beginning at 18:00 on 30 March 1971. This ran
successfully for 2,504 revolutions (68 hours) before being terminated

because of difficulties with the camera system,

3.1 Experimental Set-Up

A schematic representation of the dish-pan and support equipment
is shown in Fig. I. The pan is one meter in radius and was filled with
water to a depth of 10 cm., A glass cover prevents excessive evaporation
and the accumulation of dust on the working fluid. Heating and cooling
is by means of water circulated under the lower surfacez of the pan,

The cold bath is maintained at a constant temperature by pumping water

from a temperature controlled reservoir through the bath., Warm water
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Fig. I. Schematic drawing of the dish-pan apparatus showing the location of the warm and cold baths,
the warr and cold bath circulation pipes, the rotating equipment below, and the recording camera
above,
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is circulated through the warm bath in a closed system, The circulating
water is heated at a constant rate, The resultant circulation in the
pan will eventually reach an equilibrium condition in which a constant
heat flux is maintained between the two baths, The entire pan is
rotated on a turntable driven by a variable speed and direction motor,

A synchronous motor linked to the turntable drives a similar synchronous
motor mounted above the center of the pan, which rotates a camera for
recording the surface flow. The camera is a 35 mm SLR with auxilliary
film holder and electric drive., This allows up to 250 exposures to be
taken between film changes. Lighting is provided by banks of fluore:c-ent
lights and also photo-flood lights described in the next section. Ailso
mounted above the pan are infrared heaters to control condensation on
the cover glass, Fig. II shows the dish-pan in operation with the

cover glass.removed. The positions of the warm and cold bath circula-

tion pipes are shown,

3.2 Data Recording

Streak photographs were taken of tracefs on the surface in order
to measure the velocities from the displacements. The working fluid
(water) was dyed a dark purple using permanganate crystals. In the
first experiment the tracers were plastic cylinders approximately 3 cm
long which were weighted to float vertically in the water. Two problerms
arose with these during the experiment which led to their replacement,
The first was that bubbles would adhere to them causing them to float

semi-horizontally. Secondly, surface tension effects made them tend
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to stick together leading to a poor distribution of tracers. Thus these
tracers were replaced by paper dots. The dots were wetted so that they
floated immediately below the surface layer. The only problem encountered
was their terdency to absorb water after several hours and sink. Thus

more tracers were added at regular intervals,

The pan was photographed once per revolution by the camera
rotating synchronously overhead on the axis of rotation, The fluores-
cent tubes illuminated the surface of the pan continuously. As the pan
rotated, it tripped a switch opening the shutter of the camera, After
a short delay the photo-flood lights were flashed. After another delay
the photo-flood lights were again flashed and the shutter ciosed. The
net effect is to produce a streak with two dots impésed. The dots allow
accurate measurement of the displacement of the tracer, The streak's
tail allows unambiguous determination of the direction of motion,

Fig., III is an example of the photographs with the measuring grid super-
posed. The two pipes carrying water to the cold bath are seen in the
lower right quadrant, Although it appears that they obscure a portion
of the tracers, it is possible by careful analysis to retrieve most of

the information in this area,

In addition, measurements were made of the parameters of the
heat flux in the model. These were automatically recorded on magnetic

tape as well us being manually measured and recorded every 30 minutes,



Streak photograph of the surface tracers
with the measurement grid superimposed for revolution

863 of experiment GC-11.
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3.3 The First Experiment (GC-11)

The first attempt at obtaining a long term record of the flow in
the dish-pan was begun on 2 February 1971, The experiment was run
without the glass cover plate in order to keep the plastic tracers
separate and free of bubbles. The infrared heaters were used to warm
the surface slightly. The room was kept closed in the hopes that an
evaporative equilibrium condition would be reached at the surface of
the working fluid. The pan was rotated with a relatively uniform
period of 120 seconds per revolution, There was a 0.5% increase in
the rotation rate during the experiment. The heating of the warm

source was adjusted to produce the desired circulation regime,

Lorenz (1967) says that the Taylor number, [ and the thermal
J) au 3
Rossby, ﬁ: , seem to be the most important dimensionless parameters

or

in determining the flow regime,

The Taylor number is defined as
- L
T.= 404" v 3.1)
a,
where /) is angular velocity of the dish-pan, /4 the depth of the
fluid and 2/ the kinematic viscosity. It is equal to the square of

the ratio of Coriolis to viscous forces,

The thermal Rossby number is defined as

R =% ¢4 e4N AT (3.2)

or

where 5r is the acceleration of gravity, & the coefficient of
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thermal expansion, & the radius of the pan, and A& T the rim to center
temperature difference averaged over the depth of the fluid. As Lorenz
notes, the thermal Rossby number is defined to reduce to the familiar
Rossby number if the thermal wind relation is valid and the fléw near

the bottom of the fluid is negligibly small,

As we noted before, in this experiment, GC-11, the character of
the flow field was altered by changing the heating of the warm bath.
Significant changes also occurred in some of the other important para-
meters, for example, in the depth of the fluid, In addition there were
changes in the kinematic viscosity and the coefficient of thermal expan-
sion because of changes in the temperature of the working fluid, and

the increase in the rotation rate. Fig, IV is a plot of f2 and <I;

oT
as a function of the revolutions. In as much as these values were
calculated from the externally measured temperatures of the warm and

cold bath and not those of the fluid itself, only the relative magnitudes

of these parameters should be considered and not their absolute values.

In the plot of 7:’ we see the dominant influence of the decrease
in depth of the working fluid, Water was lost by evaporation during

the entire experiment at approximately 850 ml per hour, Starting with
revolution 750, small amounts of water at the temperature of the warm
bath were slowly added at the rim at regular .intervals, This stabilized
the depth of tne working fluid leading to a slight increase in 7~

a

reflecting the increase in ] . The plot of /207_ is a little

more complex, It is dominated by the A7 term. While the cold bath
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temperature was kept nearly constant, the temperature of the warm bath
increased until revolution 500 at which point it stabilized for approx-
imately the next 400 revolutions. This behavior is clearly seen in the
plot. The region from revolution 600 to 900 is again dominated by the
decrease in the depth of the fluid., From this point on, the temperature
of the warm bath continued to increase until it again stabilized during

the last 100 revolutions. This is also seen in the behavior of ﬁzar‘ .

During the entire experiment the flow was in the so-called
Rossby régime. The heating was adjusted to produce the desired suriace
flow characteristics, i.,e. subjectively similar to the 250 mb flow of
the atmosphere. Initially the surface flow was dominated by three
closed cyclonic circulations. As the temperature difference increased
this gave way to two and finally one closed center. This was Judged to
be the closest to atmospheric as it exhibited a "circumpolar” jet with
smaller wavelength perturbations superposed. This is the flow shown

in Fig, III.

The experiment was finally termined because of dust accunmulating
on the surface of the working fluid. This préduced a film which |
retarded the surface flow, Such a retarding force produces an Ekman
layer in the upper layer making the velocities measured from the
tracers unrepresentative., Nevertheless, before this problem became
significant, a series of usahle photographs c¢f the desired flow type
were obtained starting at revolution 867 and continuing through revo-
lution 1109. As seen in Fig, IV, this series was characterized by

relatively stable values of R or -
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3.4 Second Experiment, GC-12

The short record deemed usable from GC-11 did not seem sufficient
for any reasonable analogue search. Therefore a second experiment was
é.ttempted° In this case, a glass cover plate protected the surface of
the fluid from settling dust., This experiment was very successful in
maintaining the desired flow type over long periods. Improvements had
been made in the warm bath control system by Professor Faller and his
staff so that a relatively constant temperature difference could be
maintained. The bath temperatures were set to the values which were
found to produce the desired flow field in GC-12 and adjustments of the
flow type were made by varying the rotation rate. A plot of %2°T and

7‘ is given in Fig. V. The initial values of these parameters is

a.

seen to be c¢lose to those in GC-11,.

However, the flow at the surface was characteristic of the
"Hadley' regime  that is, the surface flow was highly symmetric showing
westerlies everywhere with no perturbing flows superposed., The differ-
ence between the two experiments can only be attributed to the presence
of the glass cover, as all the other parameteré were essentially
unchanged. Note that without the glass cover there was a significant
loss of water in the pan through evaporation. A simple calculation
shows the evaporative cooling to be of the order of one half the
heating of tae warm bath, Cooling the upper surfacc would decrease
the static stability of the working fluid, Low static stabilities are

conducive to convection and, more importantly, to baroclinic instability,
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By covering the pan and retarding the evaporative cooling of the surface,
the static and baroclinic stabilities were increased. Therefore the

stabile circulation found in GC-12 is not surprising.

In this experiment, the character of the flow was modified by
changing the rotation rate, as this parameter is easier to control than
the temperature difference and produces a faster response. The change
in Fla?‘ and 7;; is seen in Fig., V. During revolution 688, the
period of rotation was changed from approximately 120 seconds to 1(C0
seconds. The flow remained essentially symmetric with only small pe.r-
turbations superposed on the westerly flow, A slightly less stable
pattern was desired so that at revolution 1,474 the period was decreased
again to approximately 82 seconds, The flow produced was dominated by
wave number 3 in the jet, although there were not any significant
closed circulations. Although this seemed to be a good analogue to the
real atmosphere and this circulation pattern was maintained for over
one thousand revolutions, it was not possible to obtain a photographic
record of any significant length. Starting around revolution 800,
problems began to develop in the film advance hechanism such that
successive pictures occasionally overlapped. By revolution 1800 a
majority of the photographs were unusuable because of this overlapping.
At revolution 2500 the experiment was terminated although the desired
circulation was still present because of the problems in the camera

system,
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4. DATA ANALYSIS

The tracer displacements were measured using an X-Y digital con-
vertor, The streak photographs were projected onto the grid shown in
Fig, II1I. The grid was merely intended as a guide to insure an even
distribution of velocity measurements. Thus the grid spaces are only
relatively of the same areas, and the tracers measured were those judged
most representative of the grid space. There are 172 grid spaces. In
the sample considered there were an average 163 velocity measurements

per photograph.

The position of the beginning and end point was located manuszlly
for each tracer streak, The Cartesian coordinates of these positions
were automatically punched onto paper tape., In certain test cases in
which a relatively small number of photographs were considered, these
paper tapes were converted into cards for input into the MIT IBM 370,155
computer., However, when large amounts of data had to be analyzed, as
in the sample considered, the paper tape data was read by highspeed
reader and recorded directly onto magnetic tape by means of a Mohawk
6405 computer., In the case of the paper tape to card conversion a
control board was wired to translate from paper tape coding to EBCDIC
on the IBM 46 Tape-To-Card Punch, The Mohawk computer however wrote
the paper tape code onto the magnetic tape without conversion. In
addition, there were errors in the data from erroneous neasurements,
mispunching of the paper tape and erroneous readings by the Mohawk

system. Thus a PL/1 program was written to:
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1. Translate the data from the paper tape code to the standard

EBCDIC for use on the IBM 370/155 computer,

2, Recognize the various data fields., Specifically to recognize

a change in photographs, the iritialization procedure and

the beginning and end positions for each data point,
3. Recognize punching and reading errors,
4, Filter out all data with such errors,

5. Calculate the mid-point of thre streak, the zonal and merid-
ional velocity at each data pcint, and sort and store these

according to their position in the grid,

6. Check the consistency of the data for each photograph and

between succeeding photographs,

Thus a data set was created containing the velocities and their positions
filtered of the errors in reading and data handling, The measurement

error still remained,

This error was estimated in two ways. In order to determine the
error in the velocities directly, the velocity field of one photograph
(revolution 891) was measured ten times. This data was processed exact-
ly as the sample data except that the means and variances for each grid
space were calculafedu This calculation showed a standard deviation in
the velocity measurements over the entire field of + 0.00507 in non-
dimensional units, with a non-dimensional average speed of 0.02357.

We have non~dimensionalized the length by the radius of the ran and time
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by the time between flashes of the photo-lights producing the dots on
the streak, Thus we have an error on the order of twenty per cent in
the velocity measurements. The source of this large error was invest-
igated, The position of an individual spot could be measured within

+ 0.,00074 if located carefully. In dimensional units this corresponds
to + 0.15 mm, Careful velocity measurements were accurate to + 0.00134.
This is an error on the order of five percent in the velocity, explain-
ing approximately one quarter of the actual error in the velocities,

The remainder presumably results from the failure to position the pointer
on the X-Y convertor precisely enough. Note that the average photograph
required the measurement of three hundred thirty positions. Working at
a comfortaoble rate it required approximately thirty minutes to analyze
one photograph, or five and one half seconds to loca;e and recor each
position. More precise positioning would have increased the number of

man-hours necessary for analysis significantly. This was judged not to

be warranted in this preliminary study.

A Fortran IV program was written to fit the measured velocities to
a truncated Fourier-Bessel series., In order to determine the number of
zonal and meridional components which were necessary for an adequate
fit, a set of experiments was conducted to calculate the Fourier-Bessel
coefficients for one velocity field (again revolution 891) truncating
the series at varioﬁs levels for Fourier-Bessel functions calculated at
the measured data points and also for functions calculated at the
centroidAof the gppropriate grid element, The series representations
were compared by the correlation between the measured data and that

calculated from the series representation and also the amount of
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computer time required to produce the coefficients of the series, The
first conclusion reached was that the use of the grid centroid as the
position in the Fourier-Bessel function calculation produced only a
3-5% reduction in the correlation while significantly reducing the amount
of computer time required. Thus it was decided to assign each measured
velocity to the center of the grid element in which it was found.
Recall that one reason for choosing the least-squares fit method was
that the actual mid-point of the tracer streak could be used in the
calculaticns as the position of the velocity measurement. In a more
precise study this is still a desirable goal. However, the difference
in the correlations is small. This is partially due to the fact that
the streaks chosen were in most cases those nearest ;he centroid. The
size of the measurement error implies that the accuracy gained by cal-
culating the Fourier-Bessel functions for each data point is not

warranted,

In addition, it was also possible to determine the most efficient
number of meridional and zonal components in the series. The grid used
has eight elements in the radial direction and varies between four ele-
ments in the innermost circle to thirty-two in the outer circles in the
zonal direction as seen in Fig, III. To avoid aliasing in the coeffi-
cients in a Fourier analysis the maximum wave number must not be more
than half the .inimum number of elements, Applying this rule of thumb
requires no more than wave number four in the radial direction, In the

zonal direction, we should expand to no more than wave number two, in
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as much as there are dnly four zonal elements near the center of the pan.
However, the major circulations occur at mid-radius where the minimum
number of zonal elements is sixteen, this implies an expansion to wave-
number eight. The experiment conducted to evaluate the effect of
truncating the series at various levels confirmed this hypothesis. The
correlation between the fitted and measured velocity fields increased

up to the case of four radial and eight zonal components, with correla-
tions of 0.944 for the zonal velocity and 0.930 for the radial. Beyond
this ther: was only a small increase in correlation with the number of

elements n the series and a significant increase in computing time.



38

5. RESULTS

—

Let us consider first the distribution of the values of tié,l o
For convenience they were classed by truncating E:;,Z to a digit.
In addition a character was assigned to each of these classes. Table 1
shows the number of occurrences of each class, its associated character
and the number of occurrences /%; in that class for the case of compari-
son without rotation. We can compare this with Lorenz (1969) by means
of the frequency distributions in Fig. VI (a & b). The most strikiag
difference is the spread of the current data with respect to that from
the atmosphere. While Lorenz' sample has a standard deviation of 2,1il,
the data for the dish-pan has a much larger standard deviation of 5.46€.
In part, we would expect the twenty per cent measurement error to prcduce
a wider distribution., But it also appears that by considering only the
free surface velocity field of the model, or analogously only the 250 mb
level of the atmosphere, we have significantly increased the possibilities

of finding good analogues.

Upon applying the rotation algorithm and computing new values

of é;;‘

B we obtain the frequency distribution shown in Fig, Vic,
The number distribution of pairs in each class is alsc given in Table 1.

Comparing this with the distribution with no rotation, we see that the

net effect has been to shift the distribution towards lower values of
f;:"( as expected. We have also decreased the numbe1r of extreme
. Thus we have changed a portion of the average

AL

analogues to fair analogues as we had desired, However, instead of

values of EA

also producing more good analogues, we had likewise changed a portion



TABLE 1, Number of occurrences N,( of each
observed value ot of EAA for straight comparison,
NA , and comparison with rotation, /V‘,( ( S ) .
Characters used to represent each value in printed output

are included,

o d character _ ',\/o( M{ (5)
-19 1 0 0
-18 2 1 0
-17 3 0 1
-16 4 D 1
-15 5 2 2
-14 6 4 4
-13 7 14 4
-12 8 L 9
-11 9 16 24
-10 A 41 40

-9 B 59 61

-8 C 80 102

-7 D 54 117

-6 E 131 143

-5 F 152 184

-4 G 177 221

-3 H 196 212

-2 J 198 214

-1 K 215 175

0 L 344 329
1 M 158 139
2 N 134 125
3 P 92 94
4 Q 96 96
5 R 76 99
6 S 79 79
7 T 72 74
8 U 60 51
9 A 61 30

10 w 44 23

11 X 35 11

12 Y 20 5

13 z 7 5

14 * 2 2

15 ? 2 0

16 - 0 0

17 $ 0 3

18 & 0 2

19 + 0 3
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Fig. VI. Frequency distribution of the number of occurrences, Aﬂ‘
against o{ , for a) Lorenz atmospheric data, b) dish-pan data
without rotation of the frame of reference, and c¢) dish-pan data
with rotation of the frame of reference between pairs of states.
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of the good analogues to fair,

Although it is not possible to definitely state the reason for
this result, we can make several hypotheses. We can argue that the
rotation algorithm‘does not generate the correct rotation angle, How-
ever, before applying this algorithm to the sample data, this procedure
was verified using & set of test data. This data consisted of a series
of six velocity field measurements of the same photograph, in which the
photograph was rotated by 90 degrees between each measurement of the
field. When the rotation algorithm was applied to this data set, it
produced the correct angle of rotation with an error of + 10.2 degrees.
This was considered to be reasonable in light of the measurement errors,
The other possibility is that the dish-pan was not sfmmetric as assumed,
Stand ing waves in the flow, set up by topography of the pan could produce
such an asymmetry. This effect however, is thought to be insignificant
in this experiment because of the care in construction of the dish-pan
apparatus, Of more concern is the symmetry of the heating of the lower
surface of the pan. As we noted before, this heating was applied by
circulating warm water underneath the outer radii and outer walls of the
pan., During the second experiment it was noted that the temperature of
the warm bath near the bottom of the bath varied by as much as 5 degrees
centigrade around the circumference of the pan. It was suggested that
this variatior might result from air bubbles ;rapped in the:warm bath
under the pan., If this were the case, it would lead to significant
stationary asymmetries in the heating of the working fluid., The effect

would be to generate standing waves in the flow similar to the standing



42

‘waves produced in the atmosphere by the asymmetric heating of land and
water, In order to evaluate the magnitude of asymmetric flow, the mean
velocity field was calculated for the entire sample. The Fourier coeffi-
cients of the average velocity field were calculated at mid-radius. The
zonal component of the velocity showed a strong wavenumber seven compo-
nent with the secondary maximum wavenumber one, The meridional component
showed a strong wavenumber one component with secondary maxima at wave-
numbers thrce and seven. This seems to indicate some asymmetry in the
dish-pan which generates standing perturbations of wavenumbers one and
seven. In rddition we feel that the errors in the measurement of the
velocity field produced errors in the rotation algorithm sufficient to
make the results unreliable., The possibility of rotating the reference
frame between pairs was not pursued further, and the rest of the analysis

was performed with the statistics generated without rotation,

In order to study the growth of errors in the data, we will

-

consider the growth of the values of £ for =1,2,...
& f At e ? 1"’“ o ?

t
|

In as much as the smallest value @f ézé_L in the sample is -18 with

a corresponding ><.4,£ of 0.453, that is slightly less than half as
large as the difference between randomly chosen states, we will retrieve
what information we can from the analogues available, Fig. VII shows

a portion of the computer printout of values of E;;J( represented by

the characters given in Table 1, We are ccn;erned with the variation

of these values along the diagonals.

Rather than analyse this display in detail, we have calculated

é; ) the average value of é? for eact t
& (m 3 g 4t L+ ch category



QLLLH=LHHJIMPNMJJULNLKL QURUN TKUNNL
SANNN=KLLMLMAPQEPENMMRT TSPUMLQNM

LHFFF=B7ABBRHHLHGF DHOKNK JHUAF HGE
LGEDH=ABCCE 7DFLKHF CLKMNGF KRE AL HA
LEECF=BCEEHCY99UKIHCHIQSLGFRGGDGH
LF945=87BAGHOGBCGERF DALRMLJVCJGGF
LHCCH=96699E HGHF EF EEAJPLL JQAF JGE
KGCRF =878CABF EXKGECUGLNKKJRCBHHG
LEDRE=BCBEJEBDIKGHCGHUSMKF RGEF JJ
'LGDCO=8KBAKLKF sDF it DENRMLKPE JDDF
{LKHHF =DADBBGKKKF FHIKFLALKJRDK JGE
'MKGHJ=ECCGECGJILLIKHLHLOMLLSF GLLK
‘LHDAH=BBCAFBODAJLJIHEKHNGLLKSEEGHJ
MJUDDF =DAEBHJIHF GUHKGDFMSNNLRCLKKK
LHFED=RB977F JUHF EEUF ECLRMLKIDKGFF
LKJHH=FCFDBELLLKKJIJIKFKPLLLSFKLJH
(LHGE J=GF DGHBCHMLKJGLKPUKJLTKF HLL
LHEOH=COFBHFFBJLHJBEJHANSMLKRFHERJ
LJIGFG=DCFFFFHF JUKLGJINRLKJIQF UEF H
MK JHH=GF GHF F GULKLL JK JLAL JKSHIGHJ
KJGEH=HGHJJDCDILLLKLKMGLLLUKKULL
 JGBI9B=GCEEJKHE AF GKJIRFMKNML THLLLL:
LJEED=DCBCF JKJOF DKJGCLANMLSGLLKK
LKHHG=ECDUDFKLKGGIRLGINLLLSGKLKY

:Fig. VII. Selected values of E corresponding to

# X
characters given in Table 1, printed out by computer.
An " =" denotes missing data. Successive rows cor-

respond to values of A for revolution number 881
to 906, Successive columns correspond to values of 1

from 918 to 949,

43
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in which EA,(. = & . Analogously to (2.14) we let

Eo-\ () = /207 XA(M.]‘ 5.1

The values of Eii(nm) for m equal to 0 to 8 are given in Table 2.
We notice in general that as s» increases E;kﬁow7 approaches zero.

Since the number of occurrences in each case decreases with v the

)
values of £§;k(nn) for larger values of 4w vary irratically because

of the small sample size,

Loxrenz (1969) argues that the growth of an arbitrary error is the

superposition of "normal modes', Initially some ot the normal modes will
grow quasi-exponentially while others will decay quasi-exponentially,
For an error initially of random shape, these growin.g and decaying modes
should tend to cancel when am =0. As . increases the decaying modes
become insignificant, and the amplifying modes dominate., When ,m becomes
sufficiently large, xo((’”‘) approaches 1, the value for randomly

chosen states, and the amplification decays because of nonlinear effects.

To study the growth rate of errors once the decaying modes are
Small, we have plotted in Fig, VIII t‘he values of XK (1) against
XA(M) calculated from the values of b—a( (M) in Table 2, Values
for pm =¢ have not been included since the decaying modes are impor-
tant for those cases., Further those cases in which E/:,C was less
than or equal .c -14 have not been includeq becauge the number of cases
was too small, Also following Lorenz (1969) we have not included values

for which X’((m) > 0.95. The distance of the dots above the dia-

gonal indicate the amplification of Xo( during one ''day",



Average values Eﬂ(m) of E/;

TABLE 2. for those instances & = ok,
P
ot m=20 m=1 m= 2 m= 3 m=4 m=95 m = 6 m="7 m =8
~-18 -18.26 -13.58 -12,21 -11,10 ND ND ND ND ND
-17 ND ND ND ND ND ND ND ND ND
-16 ND ND ND ND ND ND ND ND ND
-15 -15.67 -9.90 -0.28 -5.24 5.45 6.23 0.13 11,50 8.31
-14 -14.63 -11,57 -4,54 -1.82 ~-3.54 -3.82 -6.16 1,02 -3.59
-13 ~13.46 ~11,93 -8.23 ~5.49 -2.50 -3.14 -1.02 -3.92 -1.33
=12 -12.55 -9.92 ~-7.54 -4.40 -2,68 ~2,57 ~1.62 -1.31 1.06
-11 ~11.47 -8.83 -5.85 -4.85 -2.89 -2.35 -2.29 0.28 -0.52
~-10 -10.41 -8.45 -6.33 ~-4,72 ~-4,30 -2,66 -1.66 -0.90 -1.,23
-9 -9.,46 -6.23 -5.61 -5.15 -2.77 -2,63 -1.79 -2,05 -0.42
-8 -8.42 ~6.36 -3.88 ~-3.03 -2.27 -2.73 ~-2,40 -1.37 -0.15
-7 ~-7.45 -5.47 -2.78 -2.06 -1.22 -2.69 -0.21 -0.54 0.48
-6 -6.47 -3.64 ~-3.80 -2.87 -0.87 -1,82 -0.56 ~-0,15 0.54
-5 -5.50 -3.57 -3.71 -3.24 -1,39 -1.30 -0.83 0.03 ~0.50
-4 -4.48 -2.58 -2,44 -1.16 -1.39 -0.16 0.31 0.55 0.33
-3 -3.48 -1,60 ~-2,08 -1.85 -0.04 -0.95 0.31 0.03 -0.32
-2 -2,46 -0.60 -1,27 -0.56 -0.38 0.11 0.48 1.12 1.29
-1 -1.51 ~0.32 -0.98 -0.76 0.08 -0.12 0.50 0.88 0,78
0 -0.00 0.96 -0.56 -0.19 -0.50 0,80 -0.33 0.14 0.20
1 1.51 1.72 —"-0.39 0.69 0.10 0.51 -1.26 -0.39 -0.31
2 2.48 1.82 0.73 0.42 -0.28 0.71 -1.02 ~-0.46 -1.73
3 3.50 0.22 -0.98 -1.45 -1,66 -0.44 -1.10 -1.19 -1.66
4 4.47 -0.81 0.59 0.39 -0.65 0.69 0.18 -1.88 -1.50
5 5,47 -1.11 0.37 0.15 * 0,56 1.14 ~1,14 -2,52 -0.87
6 6,48 -1.05 0.86 0.95 1,02 -0.09 -0.17 -1.53 -0.27
7 7.49 -1.42 2,12 -0,09 3.05 0.07 ~1,20 -0.70 0,62
8 8.47 -0.23 4.17 -0.62 3.05 1,12 -1.20 -0.44 -0.36
9 9.38 -0.09 4.05 ~-1.53 2.97 1.36 -1.97 1.49 1.04
10 10.46 1.83 4.60 0.58 3.55 2,66 0.48 1.11 1.82
11 11.45 2,63 4.69 2.83 3.44 ~0.59 -2.38 -1.65 -3.62
12 12.46 2,17 5.43 5.58 3.94 -1.93 -4.54 -2,66 -2.18
13 13.62 2,28 7.81 -0.70 6.26 6.08 0.54 -0.68 0.86
14 14.49 -2,61 3.18 2.81 ND ND ND ND ND
15 15,95 5.03 5.45 2.93 ND ND ND ND ND
* ND = No Data

141 4
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Fig. VIII. Observed values of Y = X/(m+]) against X-‘J«m)

for all instances where l-‘:(l?-!‘w‘. m>1and X & 0,95,
Line Y =X is included for reference. The dashed
line, ¥ = 0,78X+0.22, is the best fit line to
Lorenz' sample of atmospheric data., The upper solid
line, Y = 0,67X+0,32, is the least squares regression
line for the data presented.
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This plot can be compared directly with Lorenz' (1969) plot for
the atmosphere. Lorenz' data did not deviate greatly from the dashed
straight line shown in Fig. VIII. This line passes through the point
(1,1) with a slope of 0.78, A least squares fit of the dish-pan data
produces the upper solid line, which also passes through (1,1) but with
a slope of 0.666. The deviation of the data points about this line is
much greater than Lorenz' data because of the smaller sample size and
measuring error, The smaller slope indicates a faster amplification

rate for errors.

The left-most point in Fig., VIII corresponds to an amplification
rate of 1,11 per revolution., Continued growth at this rate would imply
that errors of this magnitude would double in 6,6 revolutions, This
value corresponds to an error of ,650 times that for randomly chosen
states. As we noted before this cannot be considered a small error.
However, since Lorenz (1965) has shown that small errors amplify faster
than large errors, we may conclude that the typical doubling time for
small random errors in our experiment is not greater than 6.6 revolutions
(days). 1In his study of the atmosphere Lorenz-found an upper bound of

8 days for the doubling time of small random errors,

In order to obtain specific estimates of the doubling time of
small random errors we make use of a quadratic hypothesis of error
growth introduced by Lorenz (1569). Our model of the grovth of errors
calls for the quasi-exponential growth of small errors to cease as the

errors become large because of the nonlinear terms in the governing
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equations. Lorenz assumes that the principle nonlinearities are the
quadratic terms representing the advection of temperature and velocity
fields, It then follows that the principle nonlinear terms in the
governing equations of the field of errors will &lso be quadratic,
Lorenz then argues that for arbitrary values of X , and for values
of m 2 1, the quantity Xo(('"') defined by (5.1) is governed by

the quadratic equation

A X

= aX-4X (5.2)
o m ‘

Since X~+ 1 as ,m -»o0, the concs’ants ‘"o and /ﬁ must be equal,

The general solution of (5.2) is then

- -1
X =(1+ce ™™) (5.3)

Thus for any positive lag

1
X (mem) 2 Xim) [T (4~ 77 xtn)] .0

The curve of X (/"' "'M) against X(M) is a rectangular hyper-

- B A
bola passing through the point (1,1) with a slope of & and through
* a, v
(0,0) with a slope of & . The slope of the curve through the

origin represents the amplification factor for small errors during

days.

For our data we know tiiat the slope of the least-squares regres-
sion line through the point (1.1) is 0,666, Assume that the curve of

>< (/”1*/“) against X{(/h ) ~for m = 1 passes through (1l.1)
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-a
with approximately the same slope. Then (&4 = 0,666 which implies

o = 0,406, The doubling time for small errors, obtained by setting
XM N
e = 2 is approximately 1.7 revolutions (days). Lorenz' best

estimate of the doubling time of small errors in the atmosphere was

2.5 days. We would like to know how well these values correspond?

As we noted earlier, the scatter of points used in determining
this value of the amplification rate of érrors in the dish-pan was
signifiéantly larger than that of Lorenz' atmospheric data because of
the smaller sample size. The standard deviation of the least squares
regression line for our data was found to be 0.656. The 95% confidence
limits on the slope are therefore ,554 snd .778 corresponding to doubling
times of 1.2 and 2.8 revolutions., In particular the slope of Lorenz'
fitted data lies within 1.6 standard deviations of our calculated value
for the dish-pan. Therefore, we are not justified in saying that there
is any statistical difference in the values. This supports our original
assumption that the flow in the dish-pan is a good analogue of the flow

in the atmosphere.
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6. SUMMARY AND CONCLUSIONS

A data set of one hundred measurements of the free surface velo-
city field of a dish-pan model of the atmosphere was assembled. This
data included a relatively large (20%) measurement error, The root-mear.-
square difference of the velocity fields was calculated as a measure of
the difference between two fields for those pairs greater than twenty
revolutions apart. This difference was then treated as an error super-

posed on one of the two states and its subsequent growth was analyzed,

No truly small errors were found although the distribution of

the errors showed a much wider distribution then found for the atmosphere
by Lorenz. The smallest error encountered indicated small random errors
would double in not more than 6.6 revolutions or days. Extrapolating
the growth rate for moderate errors back by assuming that the growth of
errors is governed by a quadratic relationship, we estimated that truly
small random errors would double initially in 1.7 revolutions or days,
This may be compared with Lorenz' similarly derived value of 2.5 days

for the atmosphere, Because of the smaller sample size and the measure-

ment error, we cannot say that these values are statistically different.

Our value does differ significantly however from the value of
5 days estimated by Charney et al, (1966) based upon numerical general
circulation nodels. But as Lorenz (1969) notes, only the statistics
of the small-scale motions influence the larger scales in these models,
and at any particular instance tﬁese statistical properties are deter-

mined by the large-scale motions themselves. Thus the influence of
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the small-scales upon the large scales is not adequately modelled. In
tﬁe current method of analyzing the growth by the study of analogues in
the flow, we implicitly have included the influences of these small-
scale motions, We would therefore argue that actual value of the
initial doubling time of small random errors is on the order of two

to three days.
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