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ABSTRACT

Observations and theories of the solar differential rotation and
of large scale solar magnetic fields are reviewed, The fluid dynamo ap-
proach is emphasized for the maintenance of magnetic fields, A numerical,
hydromagnetic dynamo model is then formulated. It has two layers and is
baroclinically driven, 1Its principal new features for a model of this type
are thin shell spherical geometry, a Robert (equivalent  to a spherical har-
monic) spectral representation on spherical surfaces, and "primitive" hydro-
magnetic equations. Magnetic fields are allowed to penetrate across the
upper boundary. '

: A time averaged, zonally averaged angular momentum balance is
achieved locally, only if the angular momentum equations (A.M.E.) are
"correctly truncated", This is attributed to both the spectral represen-
tation and low model resolution, In contrast, the surface integral of the
AM.E. and thé energy integralc Jderived for the model are preserved by the
orthogonal truncation process,

Numerical integration of the low resolution model yields computa-
tionally stable solutions. The model is applied to the sun, For two of
five thermal forcing profiles examined in the nonmagnetic case, a horizon-
tal differential rotation of the required strength develops and is main-
tained by horizontal eddy transports., The streamline patterns are usually
tilted upstream away from the relative velocity jet. Fultz's dishpan exper-
ments and Ward's sunspot statistics lend credence to the above results.

For four of the thermal forcing profiles, analogous magnetic runs
are made to study, qualitatively, magnetic feedback upon the flow. In this
context, two magnetic production runs are discussed in detail for the case
of approximate equipartition of kinetic and magnetic energy. In neither run
do the magnetic fields reverse the sign of the horizontal eddy transport of
angular mom2ntum, Nevertheless, the strong magnetic feedback has several
consequences including weaker eddy transports and a somewhat stronger meri-
dional circulation., In addition, the horizontal shear of the vertically
averaged angular velocity profile is almost totally destroyed, The horizon-
tal axisymmetric Reynolds and Maxwell stresses play very important roles in
the vertically averaged angular momentum balance,

At the upper level, the horizontal differential rotation has the
correct sign in both magnetic production runs, Thus,'in P.R. 1, i.,e,, the
production run with warm equator-cold pole thermal forcing, the horizontal
shear has reversed sign there, but is too weak by a factor of ~6, when
strong magnetic fields have developed., The horizontal shear decreases, yet
remains of the correct order of magnitude in magnetic P.R, 2, i.e,, the
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production run with warm pole-cold equator forcing., A crude determination °
of the Rossby-Hadley regime boundary is mzde for P.R. 2.

Regarding magnetic induction, magnetic fields are generated and
then sustained by dynamo action, provided the magnetic Reynolds number ex-
ceeds a critical value. This value apparently varies with the type of
thermal forcing profile and with model resolution, Illustrations are given
of magnetic field patterns, mainly for both production runs., In a very
crude sense, the vertical magnetic eddies may be identified with solar mag-
netic active regions. But except during the first 12 years of P,R, 1, they
do not generally tilt persistently in the proper sense.

In the attempted simulation of the solar magnetic cycle, the re-
versals of axisymmetric poloidal (and toroidal) magnetic fields is an en-
couraging result. For the run having the less realistic angular velocity
profile at the upper level, i.e., P,R., 1, the mean reversal time of 11 to
12 years is in rather good agreement with the presumed solar value, But
the reversals are irregular. For P.R. 2, the mean reversal time of 1 to 2
years is about an order of magnitude too small.

The energetics of both magnetic runs and their 1molicatlons for
the maintenance of the dynamo are discussed., In its grossest aspects, the
reversal process appears to resemble Gilman's, except that poloidal fields
are stretched into toroidal fields by the vertical shear of the differential
rotation, Some other phenomena related.to the magnetic reversals are = =
briefly described for our model. It is found that the generalized Sporer's
law for the equatorward migration of the zone of maximum solar magnetic
activity is not obeyed,.

A critique of our results and suggestions for future numerical
research are given, '

Thesis Supervisor: Victor P, Starr
Title: Professor of Meteorology
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CHAPTER 1, THE EQUATORIAL JET AND MAGNETIC FI1ELDS

IN THE SOLAR ATMOSPHERE

1.1, Introduction,

The existence and maintenance of the solar equatorial jet
and the large scale solar magnetic fields will be a central theme of
this study. In Chapter I, the b;sic observational evidence relating to
the equatorial jet and to large scale magnetic fields will first be re- )
viewed, The discussion then turns to various possible physical mecha-
nisms for maintaining thé jet. As for the maintenance of the magnetic
fields, the self-sustaining fluid dynamo approach is emphasized. In
this connection, a survey of the literature on dynamo theory has reveal-
ed certain basic properties of fluid dynamos°

I@ﬂthe concluding part of Chapter 1, a self-consistent model
which contains various essential ingredients already enumerated, is pro-
posed. 1In principle, the model is capable of dynamo generation and main-
tenance, The chief departures from a recent numerical dynamo study by
Gilman (1968) include the adoption of the "primitive" hydromagnetic
equations and thin shell spherical geom;try. When these modifications
are coupled with suitab}y adjusted baroclinic thermal forciﬁg, an equa-
torial acceleration is possible,

1,2, Solar Observations,
1.2.1, A rough view of “the sun,
The basic solér data consists of continuum emission, absorp-

tion lines, and emission lines. This radiation reflects the local values

of wind, temperature, density, magnetic field strength, composition, and



state of ionization averaged alung the line of sight; The moust serious
observational limitation is due to the opacity of the solar disk. Even
in White light, only its uppermost few hundred kilometers are visible,

A rough picture of the solar interior has emerged, however,
from stellar model calculations of Schwarzschild (1958) and others.1 Thus
the sun probably has a'convective éﬁvelope, and a radiative core in which

a thermonuclear core is imbedded. Denoting the solar radius by R the

© ’
radiative core-convection zone interface lies befween 0.8 g@and'o.g Ro s
while the upper boundary of the convection zone lies just beneath the
visible sﬁrface. The observed photospheric "granulation”" would then
represent small scale convection which has penetrated this upper
boundary, Speculation on the more detailed temperature structure within
the' convection zone is deferred untii later,

The 5 x 103 OK phetosphere is separated from the overlying
1,5 x 106 °K corona by a sharp transition region known as the chromosphere,
The continuum emission originates mainly from the photosphere and lower
chromosphere, Absorption lines.are also formed there, while eﬁission
lines are formed predominantly in the corona and. upper chromosphere,

1.2.,2, Observational length and time scales,

Solar observaiions reveal hydrodynamic gnd magnetic phenomena

over a bro;d range of time and space scales., Neér the short end of the

spectrum is the granulation, An individual granule has a characteristic

size of 700 km and a lifetime ofls'minutes (Zirin, 19€6), These scales afe

1The.method is summarized by Zirin (19€5) on pp., 279-280,



s$mall compared to-the sun's radius (R02:6,95 X 105 km) - and observed megn‘
rotation period ( Tp 2 25.4 Qideral days). Phqtospheric cellular Lori-
zontal motion patterns, dubbed supergranules, have a diameter of about
3 x 104 km and a mean lifetime of 20 hours (Simon and Leighton, 1964).
Supersupergranulation, i.e,, convective cells with a characteristic
dimension of several hundred thcusand kilometers may have been observed
(Bumba, 1967). Horizontal eddy motions of similar size are implied by
Ward's (1964) and later studies,

A very large sunspot group may encompass 0.3% of the solar

disk area (Zirin 19€6), which is roughly supergranular size, But spots

5 -

are imbedded in active regions having lateral dimensions of up to 2 x 10
kn (Bumba and How;rd, 1965b). Comparably large scale magnetic fields
having intensities of several gauss are anofger manifestation of active
reéions (Bumba and Howard, 1965b). These magnetic fields as weli aé
‘active regions and large sunspots may persist for several rotations, A
polarity reveréal of the leader and follower spot magnetic fields is a
feature of the double sunspot cyclez. The large scale, axisymmetric
poloidél'field, i.e., the axisymmetric component in meridional planes,
also seems to undergo such a reversal, The average length of the déuble
sunspot cycle is 22 years. Finally, an equatorial jet is a quasi-per-.
manent feature, and not just a statistical remnaﬂt of the solar general
circulation, Of chief interest to us will be phenomena having lgrge'

length and time scales,

2The various characteristics of the sunspot cycle are conveniently
summarized by Babcock (1961).,
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1.2.3. Observational evidence for the existence and maintenance

of the equatorial jet,

"observations" of the Differential Rotation,

Three methods of observing motions in the solar atmosphere
are (1) tracing sunspot displacements, (2) tracing other definable fea-
tures suchAas filaments and (3) umeasuring Doppler line shifts, Sunspot
data is the most compréhensive. Since 1874, sunspot group positions
(in tenths of degrees of latitude gnd longitude) have been extracted and
tabulated once each day, from photographs taken principally at th;

Greenwich or Cape Observatories,

Newton and Nunn {1951) measured the time interval between
successive central meridian passages of longlived, generally large sun-
sﬁots from recurrent3 sunspot data for- -the period 1878-1944, By a least

squares'technique, they obtained the angular velocity proiiie
_ o o, 2
JL@ ZI14.3% — 2.77 4en @ 1longitude per day (1.1)

2  peing the latitude,

‘As an alternative to Newton and Nunn's procedure, Ward (1964)

computed displacements of shortlived and longlived spots., His angular

velocity profile agreed with equation (1.1) to within a few percent,
Ward (1966) noted that the daily motions of small spots predict an angu-

lar rotation rate slightly larger than equation (1,1) near the equator

and 2% larger at 30°, Moreover, elongated spots seemed to move up to 2%

3 .
Recurrent sunspeots reappear at least once on the east limb (look-
ing toward the sun) of the solar disk,



faster than circularly shaped ;pots.

An auto-correlation analysis of the local magnetic polarity
in active regions h;s recently been performed by Wilcox and Howard (1970)
based upon roughly seven years of data, A mean differential rotation
qualitatively similar to equation (l.l) may te inferred from the sharp
‘peaks at.26 to 29 synodic days in the auto~correlation curves for differ-
ent latitudes,

Filaments can~be found at more poleward latitudes than sun-
spots, tend to be elongated, and are of chromospherié rather than of
bhotospheric origin (Zirin, 1966), The augular velocity profile deter-
minéd from filament displacements by M., and L.'d’Azambuja (1948) agrees
qualitatively with (1,15 bﬂt the'angular velocities are slightly larger,

Since 1966, Dr, Howard has obtained Doppler shift measure-
ments at 11,000 points over nearly the whole disk on an almost daily
basis, Howard and ‘Warvey (1970) comment in fact that "the analys;s of

"the 1st day's observation combined more ihdividual measures of rotation
Doppler line shifts than were collected in all sugﬁ previous endeavors”,

Obtaining a least squares fit to their data, they found
- 0 o . 2 o . 4 !
Ny = 13.76 - 1,74 sin‘@ - 2,19 sin” & per day. (1.2)

Note that the equatorial value is some 4% less tﬁan in (1,1), It also
happens to be in fairly gopd agreement with other recent spectroscopic
determinations, Secondly, the shear is less pronounced in (1,2) thaﬁ in.
(1.1) at sunspot latitudes, The probable errors of the coefficients in
(1.2) were estimated to be of order 6.1%, 10%, and 10%, fespectively.

Rased upon a small sample of Doppler measurements, Plaskett (1962) found
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a maximum angular velocity at Lﬁ.=22°, although his eguatorial value
agreed with (1.25.

Unliké/sunspot heights, the heights of different spectral
line formation can be estimated. Thus, Doppler measurements could be use-
-ful to help dqtermine height variations in b/'(,‘9. In a review article,
Bumba (1967)'cites Aslanov's resulfs on the variation of (zonally-aver-
aged) solar equatorial zonal velocity, lla . From optical depth .11l to
,010, (a 210 km thick layer) W, increases montonically with height by
12%, whereas from optical depth 125 to .l111, L(q decreases with height.
Comparison of the filamentkand sunspot rotation laws suggests Jl,a in~
creases with height, but the primary effect could be the shépe of the
.filaments rather than their locafion in the chromosphere,

Mean Meridional Velocities

ward (1964) attempted to compute the space-time mean merid-

ional velocity {v} from daily displacemgnts of sunspots. But the 5% con~
fidence limits exceeded the magnitude of the computed {v}'s everywhere
except in the 0°-5°N 1atitude belt, Within the sunspot latitude belt, the
largest possibie magnitude fof {Y} consistent with the confidence limits
was slightly under 20 m/sec.

| Even earlier, Plaskett (1962) attempted to determine fv} from
iine of sight spectroscopic measurements, Unfor£unate1y, the sign of the
meridional velocity depended upon which wavelength standard was adopted.
Nevertheless'hé felt that thé'observed‘ meridional velocity was equator-
ward, No similar attempt has been made yet with Howard's 1966-1969 data,

In principle, coefficients.of a {v} profile and their probable erfors
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could be estimated from his spectroscopic data,

Horizontal Eddy Motions and Eddy Momentum Transports

Ward-(1964) has computed>the space~time covariance {u'v[} =
iﬁv} - {u}[b} and the associated correlation coefficients from the daily
sunspot displacements. The zonal velocity u and meridional velocity v
are measured in the Greenwich rcference frame whose rotation rate is
14.184o per day. Space-time averaging (denoted by { } ) weiéhts each
spot group equally and is appropriate coﬁsidering the nature of the data.
The u and v components are significantly correlated so that faster ro-
tating spots tznd to move towards the'equator. If streamlines could be
drawn, the trough and ridge lines would' probably tilt northwest-south-~
east (in the northern hemisphere). Thc eddy momentum transport is up
the angular velocity gradient. Ward (1964) estimated the decay time of'
the différential rotation at just a few ?otatioﬂs if the eddy mémentum
transport were cﬁt of £ apd not replaced., Starr and Gilman (1965a) show-
ed that Ward's results implied a systematic conversion by horizontal
eddies of eddy kinetic energy into kinetic energy of the mean zonal flow

at sunsﬁot latitudes, -

Hart (1956) demonstrated that observed fluctuations of fhe

Doppler line of sight velocity VL were above the noise level and coherent
for at least an hour. The fluctuations had a weak spectral peak near

2,6 x 104 km and an RMS value of (100 m/sec ), Howard and Harvey (1970)
thought they detected fluctuations with a comparable 1ength‘sca1e and a

time scale of several days, in addition to a much longer secular varia-

tion of JLQ' .



It may even be possible to construct a zeroth order.approxi-
mation of the large scale flow pattern froum Howard's VL data by rétriev—
ing the eddy motions from the residual velocities defined by Howard and
Harvey (1970). One would assume (1) the large scale veldcity field is
hoqizontal and nondivergent, i.e,, can be specified by a stream function
my1, , and (2) the equator is a streamline (at least as an initial guess),
Then a linear'first order partial differential equation in VVV'
relates HU‘, to the observedﬂvL values integrated (numerically).by the
method of characteristies. A necessary condition for assumption (1) to
be valid is that VL be small near the center of the disk, Hopefully, the
streamline patterns would be tilted in a manner consistent with Ward's

(1964) results,

Ambiguities in the Observational Data

The;e are certain ambiguities in the interpretation of thq
data mentioned thus far, A ¥éry crucial assumption is that sunspots are
good tracers of the large scale flow, An’interesting indirect chéck was
made by MacDonald (1966) who used migratory. cyclones and anticyclones as
tracers of the angular velocity and eddy motions in the terrestriai atmos~-
phere; The predicted eddy mbmentum transport was only 1/3 the obsérved
transport. Nevertheless, the predicted shapes of both the eddy momentum
transport and absolute aungular velocity prefiles agrée fairly well with
the(vertically averaged) observations, except near the equator wheré
cyclone an@ anticyclone data was scarce, MacDonald reasoned that if the

"migratory cyclones and anticyclones were satisfactory tracers, then by

analogy, sunspots could be too,



It has already been noted that size and shape and life ex-
pectancy of sunspots affect hoﬁ fast they move. Spots also move faster
in the incipient as compared to later stages of development (Ward, 1966).
In addition, the equivalgnt height of the circulation traced out by sun-
spots is not clear. Sunspots are thought to be manifestations of hydro-
magnetic disturbances in the convoction zone., Ward (1964) speculated
that spots of greatest vertical extent (wﬁich might include tihs large re-
current spots) move the slowest,
| Even assuming that sunspots (groups) are good tracers,
positional errors of sunspots (center of gravity of groups) might serious-
ly affect the results., For example, sunspot positions are least accur~
stely known near the edges of the disk due to foreshortening, Ward (1964)
counteracted this difficulty by Qiscarding sunspot data close to the disk
edges, Even worse, the birth of a new sunspot and death of an oid one
between observatiéns or change in structure of a sunspot group could be
misinterpreted as sunspot motion. Suspiciéns were advanced that Ward's
(1964) eddy cofrelations might be due largely to systematic errors in the
center 6f gravity position of sunspot groups along the spot group axis,
which was preferentially tilted NW-SE (NE-SW) in the northern (southérn)
hemisphere. But Ward (19€¢5b)refuted the brunt of this argument by ob-
taining significant correlations from displacemenfs of single spots,
Also, the correlations basically held up when sunspot displacemegts}e%—
ceeding critical longitude and/or latitﬁde values were screened out (Ward,
1964). |

Table 2 of Ward (1964) reproduced as Table 1,1 shows that the



Table 1,1, Latitude distribution of sunspots_as a function of time (from Ward (1964) ).

Table 2
Number of Observations
(Cutoff: 1.0° Lat., 1.5° Long.)

North’ South

Year > 30 30-25 25-20 20-15 15-10 10-5 5-0 0-5 5-10 10-15 15-20 20-25 25-30 > 30 Total
1935 16 76 115 40 25 0 5 2 4 23 102 03 78 47 626
1936 25 44 129 188 138 18 0 0 33" 149 229 160 89 74 1276
1937 58 52 179 225 367 179 9 1 106 226 204 141 6 . 24 1827
1938 3 69 128 142 255 137 50 29 251 220 188 120 63 12 1669
1939 2 59 74 158 178 167 41 41 241 2233 238 67 2 9 1510
1940 0 2 20 a0 176 168 26 33 239 233 90 22 1 0 1100
1941 0 1 5 46 204 113 68 68 137 78 27 0 ¢ 0 747
1942 0 0 4 21 98 132 12 36 101 ° 105 1 0 0 0 510
1943 0 0 0 9 47 86 38 26 22 12 1 8 2 1 252
1944 4 7 21 9 1 11 9 0 14 0 0. 50 17 7 150
1935-44 108 310 675 928 1489 1011 258 236 1148 1279 1080 661 310 174 9667
1935-44 282 620 1336 2008 2768 2159 494 (9667) North and South Total (Cutoff: 1.0°, 1.5°)

1935-44 335 753 1569 2361 3203 2519 574 (11 314) North and South Total (Cutoff: 2.0°, 3.0°)

1935-44 777 (11 750) North and South Total (np cutoff)

350

T 1635 2464 3333 2595 596
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latitude distribu?ion and total number of sunspots v;ries dramatically
over the sunspot cycle. Thus a formula like (1,1) might reflect a time
variétion as well as latitudinal variation of the solar rotation., The
reduction of spectroscopic data of Livingston (1969) énd of Howard and
Harvey (1970) suggests that whereas a éositive solar equatorial jet is
prezent on most days, tﬁe profile: dees vavy with time,

"It may be noted that the Doﬁpler line shift measurements con-
tain various systematic and random errors, The orbital motion and rota-
tion of the earth must be subtracted out as wel} as thé red shift at the
limb (~ 340 m/sec). Also, the arbitrary zero reference may shift from
day to day or even during the 90 minute scan of the disk, A pressure
fluctuation of only 0,13 mb will prodﬁce a 60 m/sec shift. These and
other sources of error including scattering by the terrestrial atmosphere
and optics involved are discussed by Howard and Harvey (1970).

As techniques are improved and more Doppler measurements made,
our knowledge of the large scale solar circulation will be refined, Never-
theless, the basic quantities meﬁtioned in this section are probably of

the correct order of magnitude and the differential rotation should be

accurate to within 20%. At this stage, it would be gratifying if tﬁe
numerical model we construct could reproduce the large scale solar circu-
lation even qualitatively,

1.,2,4, Observations of ;arge scale magnetic fields,

Methods of Observation

In the presence of a magnetic field, solar spectral lines

split approiimately into a classical Zeeman triplet, Two components, 67



and 6; are shifted iA?\ relative to the center of the undisturbed‘ﬂ'

' N I s
component, The formula for the wavelength splitting in A~ is (Zirin,1965)
-~13 2

ANS 4.7 x 10 %6 N, : (1.3)

Here the nondimensional Landé’factor G depends upon thé atomic transition,
A is the wavelength in Ao of the undisturbed line, and H is the mag-
netic field in gauss. Except in &ery strong magnetic fields, e.g. sun-
spot fields of over 1000 gaués, the splitting is foo small to measure
directly.7

. Line of sight magnetic field components in the photosphere
(or chromosphere) slightly weaker than 1 gauss can be detected, however,

" by- the seolar magnetograph, a sensitive photoelectric instrument devised
by Horace Babcock in 1952.4 The magnetograph actually measures the split-
ting A in eéuation (1.4). The observed splitting is usually so émall
that the shape ofithe liﬁe profile responds as a linear function of AN
(Bumba and Howard, 1965c), Secondly, the magnetograph subtracts out
almost all the instrumental errors which would otherwise be detrimental,
A magnetogram is produced by scanning the disk.5 Synoptic isogauss.
contour maps of the line of sight magnetic field can be constructed daily

from magnetogréms (Bumba and Howard, 1956b)., Then over each solar rota-

4 : '
A good description of the magnetograph may be found in Zirin (1966,
Pp.105~106 and pp, 357-370, or in Bumba and Howard (1965c),

5Utilizing the basic principles of the magnetograph, Leighton (1959)
devised a photographic subtraction technique for obtaining an instantan-
eous picture of solar magnetic fields, This method is quicker but less
sensitive than photoelectric scanning. Astronomers at the Crimean Obser-
vatory have measured strong magnetic fields transverse to iue line of
sight (Severny, 19€5).




tion, data rcar (if possible) the central meridian on successive daily
maps may be trénsfetred to a mean synoptic chart whose abscissa is time,
Assuming large scale features are longlived, the abscissa may be convert-
ed to longitude using the mean solar rotatiou rate., Bumba and Howard
(1956b) argue that such mean synoptic charts help facilitate the study of
large scale magnetic features, There is of course soﬁe tradeoff, The
final‘product is not a time mean (i.e., averaged‘over one rotation) map
in the usual sense, but a collage., Alternatively, significant inhomogen-
eities beﬁween central meridian vs, limﬁ data as well as foreshortening
éffects are avoided., In any event, rather coherent, large scale contour
patterns appear on many of Bumba and Howard's (1965b) mean éynoptic
‘charts, Secondly, features on one mean synoptic chart can often be iden-—
tified on the next,

Magnetograph Resolution

Babcock's original magnetograph had an angular resolution of
70" of arc while resolution close to 1" ﬁas since been achieved (Living-
ston, 1967).6 With the development of the higher resolution mﬁgnetographs,
increasingly fine'structure magnetic fields have been reported. Bumba
and Howard (1955b) noted that weaker features and finer structures could
be detected &ith a magnetograph having 23" compared to 70" resolution,
Severny (19€¢5) plotted H vs.‘position in an active region, at two resolu-
tions, Again, finer structure was revealed at the higher resolution. The
greatest magnitude of H was about 35 gauss at bofh resolutions however,

Livingston (1966) also reported little variation in range of intensity (as

6 : i
. -.The solar disk subtends 31'59" of arc while a characteristic
granule dimension is roughly 0,5" of are,



opposzd to fineness of structure) when his magnetogréph resolution was
improved thirtyfold: to 1.8" of arc.

( In contrast, Ssverny (19€5; did obser&e a marked variation
of maximum magnetic field intensity near latitude 60O a3 a function of
angular resolution. At 5" arc resolution, the meximum intensity was
‘nearly 30 gauss, about ten times the value at 50" resolution. Second,
Severny (1965) could identify oaly 50% of the magnetic elements on two
successive 5" resolution mégnetograms.of the polar region., Unfortunately,
he did not indicate how short the time interval was between successive
magnetograms., A rather short lifetime for features having a characteris-
tic angular dimension of approximately 5" could contribute to the obser-
'ved incoherency.

Bumba (1967) has attributed apparent discrepancies in re-
ported results to factors like differences in seeing conditions and dif-
ferences in sensitivity or resolution amongst magnetographs. In contrast,
the general validity of the magnetograph measurements has been challenged
by Alfven (1965). He postulated that numerous dark pores called micro-
spots, which are small comparéd to the magnetograph resolution, could be
imbedded in the background medium. Supposedly, magnetic fields wouid be
very strong inside microspots and weak elsewhere. Morecover, magnetographs
would fail to adequately compensate for saturatién effects due to the in-
tense field strength and reduced light emission within microspots. Thus,
magnetogfaph méasurements would bear litiie resemblance to large scale
magnetic field patterns if, in fact;tany even exist, At best, they could

indicate the level of microspot activity.



T T

Fio. 1.—Synoptic chart of solar magnetic fields for rotation No, 1417 (August, 1959). Solid lines and
hatching represent positive polarity, and dotted lines and shading represent negative polarity. Isogauss
lines are for 2, 6, 10, 15, 25 gauss. {)um are given below with marks representing 10° intervals of longi-
tude. The equator is drawn, and every 10° in latitude is marked at the sides. The numbers at the top g've

an indication of the quality of the magnetograms from which the synoptic chart was drawn, with 4 the
best. The hatching represents an area which had to be drawn more than 40° from the central meridian
2togram.

Synoptic chart of line of sight solar magnetic fields (f£rom Bumba and Howard



Of course, tiny microspots cannot be observed., There are
also some counter argumeﬁts to Alfvéh's. First of all, consider the
measurements of Bumba and Howard (1965b) taken with a 23" angular resolu-
tion instrument, The noticeable regularity of the c&ntour patterns on a
given chart and thé persistence of features (mostly active regions) from
one chart to the next lend plausibility to the memsurements., At higher
resolution; there is more fine structure as already mentioned., But
eyeball smoothing suggests qualitatively similar patterns to those ob-
sér&ed at lower resolution.

Second, a sector structure in the interplanetary magnetic
fieid has been measured by magnetometers aboard orbiting satellites
(wilcox, 1966), The predominant polarity of the interplanetéry magnetic
field varied from 4+ to - to + to - (correspon@ing to wave number_two) for
each solar rofation. This poiarity was correlated with that of the large
scale photospheric field, A subjective smoothing was applied to some
mean synoptic magnetic charts for this purpose, A cross correlation of
0.8 was achieved at a time lag of four to five days,‘a reasonable
transit time for solar wind plasma,

Observational Results

We will take the view that the magnetograph basically responds
to the line of sight magnetic field, The character of the magnetic obser-
vations is revealed in Fig. 1.1 which is a reproduction of a mean synoptic
magnetic chart of Bumba and Howard (1965b), The contour patterns are
typical for the more active phases of the sunspot cycle, when measurable

fields cover over 50% of the disk, Smoothing over the fine scale struc-
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ture, a dominant feature équatorward of 40° is extensive ragions (bi~-
polar magnetic regions) of'predominantly one magnetic polarity flanked
on either side by analogous regions of predominantly opposite polarity,
These regions are preferentialliy elongated as if stretched out by the
differential fotation. Thus the elongated axis is tilted NW-SE (NE-SW)
in the northern (southern) hemisphere7. Maximum field strengths of
25 gauss and large areas with field strengths between 2 and 6 gauss are
typical when active_regiohs are present, On a small magnetograph data
sample covering seven solar rotationé, Bumba, Howard, Kopecky, and
Kuklin (1969) performed an auto-correlation analysis, The significance
of various bumps in the auto—corrglation curve may be questionable, But
it is interesting perhaps, than there are peaks corresponding to longi-
tudinal wave numbers 6 and 2, The more extensive auto-correlation analy-
sis by Wilcox and Howard (1970) reveals peaks corresponding to wave num-
bers 1, 2, 3, 4, 6, and.othefs. The wave number one peak, which refleets
the persistence of active regions over a solar rotation, is sharpest,
most persistent, and most coherent,

The synoptic chart also reveals unipolar and ghost unipolar
magnetic regions, The leading portion of a unipolar region merges with
the bipolar field of the same polarity equatorward of 400° The tail por-
tion is poleward of 40o and is more spread out in longitude, usually over
1000. At times, these unipolar r;gions show up virtually as a wave

number one feature on the auto-correlation curves of Wilcox and Howard

(1970) poleward of 400. Typically, the tail portion is weaker than the

7 .
Reflect the chart about its left boundary and take longitude,
increasing to the right, as the abscissa, T
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1eading pertion, has the opponiie polarity as the nef polar field, and
migrates towards ghe nearest pole., Compared to unipolar tails, the ghost
unipolar tails have the reverse polérity and are weaker by at least a fac—{
tor of two, (Bumba and Howard, 1965b).

Bumba (1967) believes that all magnetic fields observed on the
sun rrobably originate in active regions during the first few days of
development, A field could evolve through the combined action of advec-
tion, stretching by differential motions, and magnetic diffusion. During
periods of strong activity, active regions overlap. Préferential longitude
zones of activity could be oniy partially explained by persistence.

Despite fine scale structure and nonuniformity, the concept
of a net space-averaged polar field is appérently valid, Severny (19¢%)
remarked  that the observed (line of sight) neét polar fieid was rather
;onstant with latitude instead ~f decaying as the pole is approached. The
implication is that even the net large scale polar magnetic field is not
like a pure dipole. The rapid oscillaiions in the fine structured fields
are not necessarily incompatible-with the slow secular changes in polarity
of the net field either. For the past two cycles, poiarity reversals have
been observed, not quite simultaneously, at the two poles, a;ound the time
of maximum sunspot activity. Also, a poleward migraﬁion of poloidal
magnetic flux has been noted by Bumba and Howard k1965b).

1.3, Theories of the Solar Diffe;ential Rotation,

A systematicvrevieﬁ of'theories on the differential rotation
was given by Gilman(1966). We plan to reiterate only a féw essentials of
the earlier work while emphasizing the more recent ideas., The various

theories could be categoriied as to mode (i.e,, axisymmetric or eddy) ,



ultimate driying mechanism (e.g., coavective, barociinic or unspecified
process), or dependence, if any, upon magnetic fields, Some physiéal
mechanisms seem more plausible thén.others. Bﬁt the question of which
mechanisms actually dominate is unresolved mainly because they tend to
apply to deep regions hidden from view. Often, one is forced to assume
the surface observatioﬁs are linked to conditions below the surféce in
"comparing" theory and observations., Moreover, even if a theory makes a
prediction for the visible surface layers, the nature of the data may
make direct comparisons difficult,
1.3.1, Axisymme€tric theories
The idea that an_axisymmetric circulation in meridional planes

might maihtain the differential rotation was put forth by Eddington (1925)
and Bjerknes (1926). In principle such a circulation CUﬁld transport
either (1) so-called S angulo>r momentum or (2) relative angular momentum
up the angular velocity gradient (Lorenz, 1967). The first typé could be
associated with either a significant mass transport or a variation of
radius within the fluid layer, 'Mass ejecti&n by the solar wind is itself
too slow to cause a significanf mass transport at photospheric or convec-
tion zone levels. The radius variation effect requires a dgep layér°
Roxburgh (1969) suggested that this effect might take place in the convec-
tion zone. The meridional cell would be chayacterized by rising motion
near the poles, a descending branch near the equator, equatorward trans-
port near the top, and poieward fransport near the bottom; A.mnet. horizon-
ital transport.of relative angular momentum by mean meridional.motions.
would require a vertical shear . of angular velocity, if the net mass trans-

port and variation of radiﬁs effecis were neglected. -
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There are a few general criticisms of axisymmetric theéries.
Observationally, large scale, time Qarying eddy patterps of photospheric
line of sight velocities appear on Howard®s recent dépplergrams. ~The
presence of large scale horizontal eddies may also be inferred from Ward?®s
(1964) sunspot statistics., Secondly, eddy motions are probably required
for dynamo maintenance of the magnetic fields, as discussed later, Third,
.mathematical solutions which are axisymmetric could possibly be unstable
to small perturbations,

Energy Sources for Axisymmetric Models

An energy source is an essential ingredient of any self-con-
sistant theory of the differential rotation which includes dissipation,
Also, it now seems quite plausible that small scele turbulent dissipation
predouinates by several orders of magnitude over molecular dissipation
(e.g. see Ward (1964) or Cocke (1967)), In the present context, the
question is then what drives a large scale axisymmetric meridional
circulation,

Baroclinic Energy Sources

Until roughly 20 years ago, the core had been regarded is
convective and the envelope as in radiative equilibrium, in opposition to
current thinking, Von Zeipel's theorem predicted-negative energy genera-
tion near the surface of a barotrppic star in radiative equilibrium, Re-
Jecting‘this conclusion, Eddingtoﬁ (1925) suggested the sun might be baro-
clinic, But as Gilman (1966) mentioned, the deduced Eddington meridional

currents were later shown to be only of order lo-gcm/sec, much too small
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to affect the anguiar momentum balance, Krogdahl (1944) showed that in
principle, a baroclinic star, but net a barotropic one, could have non-
uniform rotation in the equilibrium state despite isqtropic friction,

The verification of large scale meridional temperature grad-
jents would promote the cause of baroclinic theories, whether they be of
the axisymmetric or eddy mode tyﬁeo As noted by Gilman (1966), various

" measurements of pole to equator temperature gpadient are in disagregment,
Polar temperatures warmer, the same as, and colder than the equatorial
temperature have been reﬁorted. In one case the pole was found to be
warmer than the equator, with a temperature minimum at Qiddle latitudes,
Measurément uncertainties are such that temperature differences of a few
tens of degrees of either sign cannﬁt be precluded at the surface and
larger temperature differences could exist déeper down, Even if photo-. .
electric techniques increase the sensitivity of measurements, there is
still the problem of knowing iér.ceftain whether they are being made
along geopotential surfaces,

One early juétification'for the existence of baroclinicity was
given by Randers (1942), He suggested parcels wéuld rise preferentially
along the axis of rotatioa, movemeﬁts perpendicular to the axis being
constrained by centrifugal stability. The implication was that the poles
would be warmer than the equator, More receﬁt work by Chandrasekhar (1961)
and Busse (1970) indicates a teﬁdency at least for asymmetric convection

parallel to the rotation axis to be inhibited by rotation, More will be

said qualitatively on the plausiblility of the baroclinitic hypothesis, in
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connection with asymmetric baroclinic instability theories.

Anisotropic Viscosity as an Energy Source

Kippenhahn (1963) studied steady state, axisymmetric motions
in a spherical shell of incompressible, barotropic fiuid with anisotropic
viscosity and stress-free boundaries., The frictional force was derived
from Wasiutynski's (1946) anisotropic turbulent stress tensor. The
anisotropic viscosity was parameterized by the ratio S of the horizontal
to radial constant diffusivities, Kippehhahn thought the anisotropic
viscosity might help explain the solar differential r;tation. We shall
attempt to clarify the significance of his work,

. The following notation will be used: the absolute angular

(k)

velocity W , the stream function qﬁn)fpr axisymmetric motions in

(%
7

2

meridional planes, the velocity vector ){(*{ isofropic friction
. g . ‘t) (x) . . 2

the anisotropic correction F '™ to }- , the azimuthal unit vector A ,

the radial coordinate y , the latitude (¢ , and the integral Sd'r

. 17"t " 1naqn : (k) ‘k)
over the fluid volume, The o ©°r 1" subscript on W or yf denotes
a zeroth or first order correction, respectively.

Two equations, i.,e., the azimuthal components of (1) the
vector equation of motion and (2) ifs curl, contain only inertial and
frictional terms and hence constitute a closed set for W(k) and q;(k{

. N
Biermann (1958) had demonstrated that (nontrivial) solid body rotation

K)
w( )= constant, q,ﬂd= 0) is not a solution to the hydrodynamic

. - : ' (x 2(s -1
equations if S ;él. Kippenhahn assumed Wo )(y)c( r ¢ / and

(

(x) :
vﬁ =0 o« This zero order solution failed to satisfy the second

of the above two equations for the anisotropic case Sgl. First order



corrections were obtained by a method of successive approximations,
Kippenhahn felt this order of approximation would suffice qualitatively

but not quantitatively for the sun. The nonlinear self-interaction of

k)

¥o

in the second, i,e,, unbalanced equation gave a meridiomal circu-
. (K) %) (%) . 3
lation e« In turn Q{ interacted with W, in the first equa-
L .
. (¢) , . L
tioh to give a differential rotation Vf/, (hu)= VY/:DW+V%(W(I-3MQ),
For S >1, the meridional circulation was characterized‘by one
cell in each hemisphere with rising motiouns near the poles and descending

motions near the equator,' As W,ZOJ was positive so was the equatorial

acceleration, Finally, the meridional circulation even transported

(k)
wl

but down the gradient of Wo(k).

angular momentum up the gradient of
It'may be noted that a meridionai circulation with the same sign could re-
sult from heating the poles baroclinically (see Cﬁapter V). Also,
¢JM40(F)//d¢’< O , which is consistent with the thermal wind relation,
Whereas the meridional circulation, dWo“"//o(/‘ , and W, (v) all re-
verse sign if S <1, Kippenhahn (1963) argued that S> 1 could be reasonable
fpr the solar convection zone, |

The vertical shear of wd")rather than‘the anisotropic viscosity
is apparently the true energy source., The basic criticism of Kippenhahn's
(1963) model is that he ﬁas failed to show that anisotropic viscosity (or
any othe#.process for that matter) maintains Wo(k). The energy equation
for Kippenhahn's steady state modgal. should reduce to j(}“@j""") ._y“‘é(?‘:o
because the kinematic boundary condition prevents any flux of kinetic,

internal, or potential energy across the boundaries. Since isotropic

. . . (
friction is a well known energy sink, i.2,, since f} k). _\(“’0{7“4 O ,
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1 (K} () } o
there is an incensistency unless S_Sf -V dT >0 .we verified
/
K) (Kl
that f(} ¢ OX)("V, Vm@}d7’<0, so that anisotropic friction does not

e
“) V™edT<O probably holds for the

maintain Wo(k). The inequality 5_3'
deep atmosphere case, since it holds for the thin sphéfical shell case,
But even if anisotropic viscosity were an energy source, there would have
to ke a negative viscoué efféct which might be better understood by ex-
plicitly retaining turbulent eddies. What Kippenhahn has really shown is
that an axisymmetric meridional circulation which is driven by a rather

nebulously defined energy source could maintain a differential rotation,

Axisymmetric Magnetic Theories

Differential rotation in a (thin) spherical shell containing
magretic fields has been studied.by Nakagawa and Trehan (1968) and by
Nakagawa and Swarztrauber (1969). Neither model really explains the-ob-r'
served differential rotation however, because it is imposed as a conditiom
at the top boundary., 1In both, solid body rotation &/, is also imposed
at the lower boundary.

Nakagawa and Trehan é1968) seck steady stéte, axisymmetric,
foroidal velocity and poloidal magnetic field solutions in an inviscid,
perfectly conducting fluid. Thus Ferraro's law of rotation holds through-
out, i.e, the angular velocity J is a function of the poloidal magnetic
stream function g@wfn meridional planes, They chﬁose a simple relaticn-
ship of the form cuz:a”ygbi-b, where a, and b, are constants,

This formula is imposed as a constraint in the Nakagawa-

Swarztrauber (1969) model at both boundaries, However, such a constraint

may violate the physical boundary condition that currents be coufined to



the spherical shell, The axisymmetric téroidal magnetic field (which

does not identically vanish) is correctly set to zero at'both boundaries,
But judging by the kinks in their figures 3a, 4a, 5a, and 6a, ()S[/MP/Q)’
is discontinuous at the boundaries, Yet, as shown in Chapter II, all
magnetic field componeqts and hence b,w.mp /é}’ (as well as y/MP ) should
be continuous there, In any casé; the magnetic field plays a.strong

role even though the Maxwell stresses are insignificant. Thus, as in the
first model,w, equals the angular velocity of the pole at the top

boundary and b, =,

1
The Nakagawa-Trehan (1968) model is not relévant to the
question of maintenance of a differential rotation, since viscous dissi-
pation is absent, There are no Reynolds stresses nor Maxwell stresses,
and none are nceded., The méintenance of Nakagaw; and Swarztrauber's (1969)
differential fotaiion is of interest hovever, since their model includes
a meridional circulation, toroidal magnetic field, and viscous (as well as
ohmic) dissipation, The differeptial fotation within their spherical
shell is directly maintained against frictional dissipation mainly by
axisymmetric Reynolds stresses, which can be inférred from their figures
3b and 3d. Curiously enough, the cellular patterné and sense of the mer-
idional circulation agree qualitatively with Kippenhahn's for his S > 1
case, The ultimate energy source is of courée the imposed differential
rotation at the upper boundary,
The horizoﬁtal anéular velocity profile exhibits a smooth

transition with height between the profiles at the top and bottom bound-

aries, suggestive of frictional coupling, In contrast, in the first model,
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the angular veiocity profile depends upon an arbitrary constant surface
current at the uppef boundary. An intense positive jet just below the
surface or a negétive equatorial jet in the center of the shell are
possible,

1.3.2, Asymmetric Theories

A Modified Barotropic Model

Thus far the discussion has focused upon axisymmetric.“
theories of the solar differential rotation., But in Nickel's (1966)
modified barotropic modei, the differential rotation was maintained by

asymmetric processes., The flow was assumed to be two-dimensional and

1 {2 Ay,

' n
was characterized by a stream function w;ﬂ%%ﬂlm(ﬁ\/mm (A,e) ’

~r N ) v
where the Y . (X) are complex spectral coefficients and the )’m‘m
are spherical harmonics. The barotropic vorticity equation was modified
by including horizountal frictional coupling, parameterizing vertical

frictional coupling, and infusing energy into one or more source modes

~N

MmN at a constant rate, This rate wasigoverned by the decay time

‘7;° of the differential rotation., The model was integrated numerically

in time,

. ) ~€ ~
The following source modes were considered: Y; alone; gﬁg

~ -~y : Lo~
alone; %3‘ alone; Sﬂlz alone ;fi’;,f:‘,-"-lt equally weighted; and
w? s ﬁ:l,z,...... 8 equally weighted, With % very small initially,

a large amplitude quasi-steady differential rotation developed only for

~¢ . o~ 12 R .
the source modes }g or gos « The higher energy Igput required by

vy ~6€ .
source mode Yﬂs as compared to SP7 probably reflects the greater

o~ l2

frictional dissipation of y? 3 °
. {



Eddy-trénsport of relative angular momentum up the angular
velocity grgdient is.the only mechanism which can maintain the differ-
ential rotation against frictional dissipation. Thig is achieved through
energy flow from the source mode to lower modes, The best qualitative re-
sults were achieved with source mode g: and 7’:?{ /07 seconds, a
decay time comparable to Ward's (i964) estimate, While modes With n=1
and n=2 had.sizable amplitudes, the dominanf eddy momentum transpoit was
by source mode type waves (n=6). Angular momentum convergence occurred
equatorward of 250. In this region, the streamlines were tilted NW-SE
(SW-NE) in the northern (southern) hemisphere, The différential rota-
tion and eddy transports were only a factor of two'greater than indicated
by the observational data.

Unfortunately perhaps, a negative'differential rotation or
even an antisymmetric one could be maintained given different initial con-
ditions, Presumably, the quasi-barotropic model lacks sufﬁicient physical
constraints to insure independence of the average differeﬁtial rotation
frém the initial conditioﬁs. In a sense, the behavior of Lorenz's (19¢0a)
maximum simplification "dishpan" model'is analog&us,

' His unsuccessful attempts with other source modes led Nickel
to speculate that a smali upper bound on m could be a prerequisite of
suitable'éource modes, Such a result would Qe interesting in view of
recent findings by Busée (1970),',A1though Nickel's energy source lacks an

explicit physical mechanism, his energetics are self-consistent.

Magnetic Braking

Accordipg to Starr and Gi}man (1965b) , horizontal eddy Maxwell



(magnetic) stresses might oppose the action of the horizontal eddy
Reynolds stresses on the difféfential rotation, Such magnetic bréking .
could occur if the large scale horizontal magnetic streamline pattern
were tilted systematically in the same sense as Nickel's (1966).vélocity
streamline pattern, The Iine—of sight contours o mean synoptic magnetic
charts do tilt th;s way., Prom ihese charts, Starr and Gilman (1965b)
have inferred that the ﬁorizontél eddy Maxwell stresses could be about
25% as strong as the Reynolds stresses, An RMS value ol rbughly 7:géuss
for the horizontal eddy magnetic field would suffice at photospheric . .
levels (150 gauss ;t r=0,98 RC>)’ assuming similar correlation CoeffiCri .-
ients for the Maxwell and Reynolds streéges. 4
of course; there is no guarantee that charts of horizdntgl
magnetic field pattérns resemble the contours on mean synoptic magnetic
charts, After all, the functional relationship between the line of
sight component and the radial, meridional, and zonal m;gnetic field com-
ponents depends upon the disk coordinates of the original magnetogfaph
measurements,sm,But suppose the large scale photospheric field were
shown fo pass a known consistency\check for approximately ﬁorizontally
nondivergent vectors. Then the magnetic stream function Von (analégous
to Y., ) could probably be estimated by the method of characteristics.,
In this case, one could obtain a better estimate ;f'mégnetic brgking by

horizontal eddy Maxwell stresses,

8The line of sight magnetic field is approximately radial near the
disk center, zonal near the east and west limbs; ‘and meridional near the
poles, Inclination of the plane of the ecliptic to the solar equatorlal
plane adds complications,
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Convective Energy Source

As already implied, a convecﬁively unstable lapse rate in a
portion of the sun is predicted by stellar models and suggested from ob-
servations of cellular patterps of various sizes, It is capable of local-
ly generating couvective motions, some of which penetréte into the visible
pﬁotosphere. The effects of rotation and possibly spherical geometry
could be important in sélar con&ection. For a sphere of Boussinesq
fluid containing an axisymmetric distribution of heat sources, Robertg?
(1968) iinear theory predicts that asymmetyric ¢bnvective modes are the
most unstable except for the smallest Taylor numbers, Asymmetric motions
also tend to occur in rotating dishpan éxberiments or numerical simula;
tions of them. An implication is that asymmetric motions may be charac-
‘teristic of (rapidly) rotating fluids whether the motions are convectively
or barociinically driven,

Ver& recently, some important theoretical work relating to the‘
maintenance of the differential rotation by convective motions has.been
carried out by Busse (1970) and Davies-Jones (1969), Busse solved the
Bené;d convecfion problem with dissipation, heat conduction, and rotation
for a spherical shell of Boussinesq fluid. The nondimensional variables
and Rayleigh number were expanded in terms of two‘small parameters géx
and ‘Aé which are measures of convection amplitude éna rotation, respec-
tively, The mean temperature gradient was a linear function of radihé.

Unlike the nonrotating case, oscillatory convection set in at
the onset, when rotation was present, The convective waves propagafed in

the opposite direction. as the rotation,and the dispersion'relationship



was rather like the one for conventional Rossby waves on a sphere, The

. . l < 1
most unstable mode corresponded to the spherical harmonic '72 (?72a
was the most successful energy source mode in Nickel's modified barotro-
pic model} As in previous investigatioms, rotation inhibited the onset
of convection in Busse's model., The known solutions of C?(Ck) entered

2 .
into the nonlinear terms of the C?(Eé‘) equations, A very important

result was that the CT(C’) nonlinear terms generated a vertically

averaggg differential rotation, We do not know if the differential
rotation wasApositive at all heights, however,

Aithough Busse claimed his results should carry over for
large )\8 , corresponding to the solar case, he did not prgve_this. Also
he.did not give the ratio of horizontal to vertical scale of the unstable
modes for the spherical geometry, But he seemed to have in mind very
large scale modes corresponding to the postulated supersupergranulation,
As Busse recognized himself, compressibility should really be included
for such modes since the vertical scale is O’(/o"/?e ) . Despite the
above shortcomings, Busse's theory must bé considered as a plausible;
self-consistent explanation of thé differential rotation, If would be
interesting to see oi course, if large amplitude eddy angular momentum
transports by supersupergranules could establish4and maintain the sun's
differential rotation,

Davies~-Jones (1969) considered the effecté of linear horizon-
tal veloéity shear and uniform rofation separately and together upon con-
vection in an infinitely long channel. The treatment wasvsimpler mathema-

tically than Busse's, due largely to the cartesian geometry, The mean
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temperature structure was characterized by a constanﬁ unstable lapse rate,
Genefally speaking,.the fluid Qas assumed ideal, But for the case of
linear horizontal shear, a fluid with frictional dissipation and finite
thermal conductivity was also studied., In the ideal fluid case, attention
was focused on the lowest latitudinal modes because they interact most
strongly with the shear flow, although they had the lowest growth rates,
But the largest scale modes could be made fhe most unstable in a real
fluid,

The closest analogue to Busse's model was the case of rota-
tion with no shear., However the fluid was ideal,; had side boundaries,
and no (3 effect, Davies-Jones found that the eddy Reynoldé stress could
.have the same sign throughout the'channel. Moreover, among various un-
stable modes including those having the same latitudinal and longitudinal
wave numbers and growth rates not fast compared to the rotatiom period,
the Reynolds stress and rotation had opppsite signs. These modes do not
exactly correspond to the )22 modes of Busse, except forll =1,

With no rotation, the convection interacted with the sheaflin
an ideal fluid as follows: (a) For latitudinal mode O, disturbances with
all longitudinal wave numbers gave up energy to the mean flow, For'
latitudinal modes 1 and 2, the shorter wavelength disturbances also de-
livered energy to the mean flow while the longer Qavelengths extracted
energy from it,

Witﬁ rotation and sheér, up the gradient momentum transport
could still occur, For example, if the rotation and shear had opposite

signs, such a transport was.accomplished by waves whose ratios of longitu-
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dinal to latitudinalnwave number9 and rotation rate to growth rate were
not émall. Conversely, axisymmetric cells transported momentum down the
gradient, Increasing the rotation rate served to decrease the growth
rate of latitudinal mode 1 type disturbances and make.the horizontal
flow more parallel to the isobars, The latter effect is reminiscent of
geostrophic flow,

' The results of Davis-Jones indicate that the dynamical effects
of sphericity, more specifically the (3 effect is not crucial for up
gradient momentum transports, The validity of an extrapolation for con-
ditions in the sun is not fully established, Regarding'the channel as an
annﬁlus, the outer rim is a kinematically rigid side wall boundary. The
region adjacent to the outer rim would correspond to the solar equatorial
Fegion. But the latter presumably plays a role in the equatorial acceler-
ation and is ﬁot flanked by any side boundaries. On the other hand,
Davies-Jones work does lend plausibility to a convective theory of the
differential rotation,

Baroclinic Energy Source Reconsidered

Whether of symmetric or asymmetric ofigin, a baroclinic theory
in its simplest form requires the eoxistence of a large scale meridional
temperature gradient in a convectively stable layer, The only relevant
temperature measurements available are in the surface layers, But their
uncertaiﬁty is so great that at best they give an estimate of the upper

bound of horizontal temperature difrerences, Although the surface layers

9 . ) .
The result applies basically to latitudinal mode 1. Higher modes
were not discussed,




are convectively stable, the radiation reiaxation tiﬁe based upon photo-
spheric opacity estimates (Allen, 1962) is only of the order of minutes,
Radiation processes would attempt t§ destroy slowly varying large scale,
horizontal photospheric temperature differences,

No observations are available of course, inside the convection
zone say at r=0.QSRe .. Stellar evolution models now in use preclude hor-
izontal temperature différences anywhere, as all variables depend by
assumption only upon radius. They also do not permit subadiabatic lapse
rates to be imbedded in the middle of the convective ione, although the
positive departure from adiabatic can be made small there. On the other
hand, such models do provide estimates of the opacity in the convective
zone, From these, one may infer radiative relaxation times 2 (10 years)
at r= 0.93R, , a very tolerable value., This radiative rélaxation is less
of an obstacle'at that depth for baroclinic theories, But can a large
scale meridional temperature gradient be imbedded inside a "stable" layer
of the convective zone? Gilman (1967, 1969) was the first to argue that
this could be a plausible condifion based upon the work of Veronis (1966)
and Gille (1967)., We shall now elaborate on these arguments,

Veronis's (1966) numerical-spectral model of twq dimensional,
nonlinear, asymmetric Bené&d convection in a nonrotating fluid with
stress-free boundaries is relevant here. The initial lapse rate was
linear and unstable, and the system of equations ultimately approached a
steady state., The final lapse rété was slightly stable over much of the

region away from the top and bottom boundaries and very unstable near

* them in many instances, More specifically, this behavior occurred over




the wide range of Prandtl numbers tried, and for Rayle;gh numbers of.
order 10 times the critical value., The overshooting did not occur for

low supercritical Rayleigh nuwmbers and was confined to small boundary-
1nte¥ior transition regions for ver& high supercritical Rayleigh numbers.,
Temperature reversals in boundary-interior regions were also reported by
Herring (19€4). Likewise, Deardorff (1965) obtained a slight reversal for
a Rayleigh number of 6,75 x 105. For small Prandtl numbers, Veronis a?gu—
ed that a region of stable stratification for a fully turbulent fluid

with three dimensional motions should not exist, He was not sure:what

to expect for larger Prandtl numbers,

On the experimentfl end, tqmperature reversals had been ob-
served to be present prior to 1967, but were either not recognized as
significant or else were regarded as spurious, By means of an inter-
ferometric technique, Gille (1967) successfully measured in a laboratory
model the horizontally averaged 18iHse rate at 20 levels of air between'
two plates roughly 2 cm apart. The differential heating between the
plates corresponded to a superadiabatic lapse rate, As the ratiuv of
actual -to cr;tical Rayleigh number increased, the mean temperature pro-
file became steeper near the boundaries and more nearly adiabatic
away from them. Finally, at a ratio of 16, the mean temperature profile
was subadiabatic by roughly 1 parf in 100 in about Fhe middle third of
the air layer., Gille attributed Deafdoff's failure to observe a temper-
ature reversal experimentally to the Rayleigh number (1,5;x 106)‘being
slightly too high, i.e, being.characteristic of the fully turbulent
;egime. Estimates bf the Rayleigh number for solar convection could vary

7
over several orders of magnitude. But adopting 4 x /0 Cw1z/0uk> as the
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eddy viscosity and eddy thermal conductivity, 10-4 as the mean positive
departure from adiabatic of the lapse rates, and 1010.cm as the depth,
then the Rayleigh number is CKMf& Thus & region of subadiabatic lapse
rate in the solar éonvectiqn zone is plausibie. Buoyant convective
elements could penetrate into the overlying unstable layer thereby
transporting heat upwards through the stable layer, i.e., up the potential
temperature gradient (refrigerétor effect),

Secondly, would a meridional temperature gradient be possible
within the convection zone? Now in Weiss's (1964) cellular model of con-
vection, the superadiabatic lapse rate depends among other things upon
whether the rotation and gravity vector;.are (1) parallel or (2) mutually
perpendicular, If the respective vertical heat fluxes F(l)and F(Z) were
equal, then the lapse rate for case (1) would be steeper by 4 x,10-§ 0K/cm.
As noted.by Roxbgrgh (1967) this could imply a 3000 horizontal tempergf
ture difference near the top of the solar convection zone, the pole being

colder, If F were gradually increased from zero, this temper-

@ " Fw |
ature difference would first decrease and ultimately change sign. A
latitude-varéing heat flux at certain levels might be related to the in-
hibiting effects of rotatien upon convection noted by Chrandrasekhar (1953),
Busse (1970) and others, In particular, Busse's_most unstable mode (for
marginally unstable convection) is'proportional to éos%ﬂ and hence dies

off rapidly near the poles, Does this mean that the vertical heat flux
would be inhibited near the poles within the convection zone? If so, a
vertical convergeﬁcé of heat would occur in polar regions, assuming the
vertical heat flux at the radiative core-convection zone interface were

radially symmetric, Horizontal heat transports towards the equator and a
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relatively warm pole might then develop at certain levels. The warm pole
could radiate more strongly, Qithout complete compensation for the reduc-
ed vertical convective heat flux,

In the above scheme, energy generated in the thermonuclear
core and transported upwards would first be -transformed into convection
energy. A small fraction of thc iatter would then be converted to avail-
able. potential energy-which could be-released baroclinically,

Nickel (1966, 1969) estimated the rate of kinetic energy
released by grénulation and available potential energy released from
baroclinic processes, comparing them to his required source mode energy
input, Although the granulation released energy at a much more rapid -
rate than required, probably only a small fraction would cascade up and
be available to modes of source mode size, There was a marginally adequate
amount of available potential energy, for a horizontal temperatgre dif-
ference of 100° k.

Judging from results of Busse (1970) mentioned earlier} rota-
tion has similar dynamical effects upon large scale convective waves and
convenfional‘Rossby waves despite their different sources of energy,
These two types of waves could possibly even coexist, If so, an idtrigu~
ing question is whether both or just one type would deliver energy to the
solar differential rotation, Ward (1964) suggesfed that the solar atmos-
phere h=s a Rossby regime ( in the general'sense) as opposed to.a sym—
metric regime, Given the observed mean sélar rotation, a pole tn _oetuutor
,temperature difference of 100o K, and a Reynolds rumber of fﬁ(lO), a

. L

. . . ~
Rossby regime could exist in the solar atmoi;;e‘u (see Chapter VI).

~

s

Recently, Davies=Jones aL//ﬁilman_ (1970) have evaluated hor-
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izontal and vertical heat transports as well as othef second order quanti-
ties for Davies-Jones's (1969) model, The effect upon the Oth order
temperature structure was then computed., The upper (lower) half of the
fluid was warmed (cooled) by vertical heat transports, ét both high and
low Prandtl number. 1In contrast, a significant Oth order horizontal
temperature gradient waé set up by horizontal heat transports at low
Prandtl number only, ‘As the model was linear,these computations were
made at slightly supercritical Rayleigh number., A nonlinear numerical
study of large sqale convection in a rotating fluid hafing a moderately
high supercritical Rayleigh number would be valuable; It might answer
the question: Can a significant horizontal ﬁemperature gr;dient'exist
in a stably stratified layer within a convection zone?

If magnetic fields are present, baroclinic instability can
still occur (Gilman, 1967), provided the ratio of inertial to magnetic
forces is not small., But there are complications, In particular, the
question arisgs to what extent the magnetic fields would modify the
time-averaged differential rotation. ( s2e Chapter V]I;)

1.4, Theories of Magnetic Fields, ‘

A fundamental question is how the solar magnetic fields are
maintaiqed. According to Mestel (1967) the three mqst popular classes
of stellar magnetism theories are (a) primeval theories, (b) battery
theories, and (c) dynamo theories.

Cowling (1957a) gave'mblecular magnetic diffusivity estimates
of 108cm2/sec and lozcmz/sec for the photosphere and ;adiative core, re—
spectively. On the other hand, the magnetic diffusivity outside the

radiative core should probébly be characterized by a much larger eddy

-
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coefficient. (Sze Elsasser (1656) and Leighton (1964)). Eddy'deéay times
are just too shért for the obsérved solar magnetic field to be a remnant
of some pfimeval photospheric field., Moreover, polarity reversals are dif-
ficult to reconcile w%th a theory based upon primeval fields in the radi-
ative core.

The so-called batter& term, i.,e. the last term in equation
(2_22) could‘convert thermal'energy diréctly into magnetic energy. A
qualitative descripfion of a battery process was given in Mestel's (1967)
review articie. Consider a fluid in which axisymmetric conditions pre-
vail and the pressure gradient is balanced by gravitational and centri-
fugal forces. If the rotation rate is uniform or a function only- of
distance from the rotation axis,.no currents aré€ gemerdated, But for a
more complicated rotation, the fluid is baroclinic and the battery term
has a nonvanishing curl, This provides an EMF which generates an
axisymmetric toroidal (zonal) magnetic field associated ﬁith currents
in meridional planes., Neither asymmetries nor any fluid motions relative
to the basic rotationr: are required.

1.4.1., Fluid Dynamos |

Another possibility is that fluid motions could maintain
finite amplitude magnetic fields and associated currents indefinitely,
through induction, against ohmic dissipation, éuch a fluid system ﬁay be
loosely termed a (self-sustaining) fluid dynamo., Dynamo action could
generate large magnetic fields from a small, seed magnetic field origin-

ally created by the battery process.

Two subclasses of fluid dynamo problems are the kinematic and




hydromagnetic types. For a kinematic dynamo, the problem is to find a
magnetic field B giéen the velécity field V . The magnetic induction equa-
tion (3-36) is linear in B . For hydromagnetic dynamos, the feedback of
the Lorentz force upon the motion is taken into account. In addition, the
problem is nonlinear in t?oth VY and Q o If frictional dissipation is pre-
sent, the Lorentz force cannot indefinitely maintain motions seo that a new
energy source, e.g., thermal energy is required, But induction is still
assumed to be the only source of magngtic energy, In a homogeneous fluid
dynamo, the fluid has homogeneous density. The homogeneous kinematic

fluid dynamo is the simplest and most often ireated case, In a reversing
dynamo, the polarity of the magnetic field oscillates with time, Geophys-
'ical or astrophysical dynamo models usually have simply connected, e.g.
spherical, geometry and frequently contain exterior current free regions,
For a loﬁg time, there was copsiderable controversy whether a homogeneous
fluid dynamo could exist. In fact, several anti-dynamo theorems were
proved before any existence proofs were constructed, Historicaliy, the
idea of a steady state dynamo seemed rather intriguing.

The rotating diskudynamo is an example of a successful labora-
tory dynamo constructed from rigid moving parts, In contrast, theré are
no successful experimental fluid dynamos, to our knowledge, The dimen-
sions of electrically conduqting fluids in the léboratory are so small
that magnetic induction evidently cannot overcome ohmic dissipation.

Anti-Dynamo Théorms

Cowling (1934) showed that magnetic fields cannot be maintain-
ed under steady state, axisymmetric conditions with the mégnetic and vel-

ocity fields confined to meridional planes., Backus and Chrandrasekhar




(1956) proved that Cowling's tueorem still holds even if the magnetic and
and velocity fields are not confined to meridional planes, Braginskii
(1964) showed rather elegantly that no axisymmetric dynamo exists, even
if conditions are unsteady,

Another theorem states that dynamo maintenance is impossible
if the velocity field is toroidal, i.e. can be expressed in tefms of a
horizontal stream function alone, Utilizing a vector spherical harmonic
representation, Bullard and Gellman (}954) proved this for steady state
conditions, But the proof»holds even for unsteady conditions. The
crucial point is that there is no wéy to regenerate poloidal fram.tor§ida1
magnetic fields without poloidal motions. Thus, all magnefic fields
ultimately die out, even if poloidal fields are initially stretched out
into strong toroidal fields,

Finaily, a steady state dynamo in which the variables are
functions of only two cartesian coordinates cannot exist. Cowling
(1957b) devised a general technique to prove this anti-dynamo theorem and
the others in which steady state conditions were assumed,

Analytic Dynamos

The Backus (1958) existence proof applies to a spherical non-
steady, asymmetric, three dimensional, homogeneous fluid dynamo, Both
poloidal and toroidal fluiq motions and magnetié fields are allowed, The
energy source which drives the motions is apparently not specified, The
only restrictions on the velocity are that it be solemoidal, be bounded,
be continuously differentiable everywhere for all time, and vanish on the
outer surféce.

The actual motions which maintain the dynamo are somewhat
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peculiar in that there are time intervgls when stasis occurs; i.e. the
fluid is at rest, Backus's motions cannot be identified with convection
cells or Rossby waves, But Backus (1958) claims that "the mégnetic effect
of any motion can be approximated with arbitrary accuracy by replacing it
by a series of rapid jerks interspersed with periods of rest,” The
dynamo works as follows, Initally, a strong axisymmetric shear flow -
converts an axisymmetric poloidal (dipole) field of unit enmergy into a
strong axisymmetric toroidal field, .Some contamination fields are also
present.~ By shutting off the motion, the small contamination fields de-
cay more rapidly, leaving mostly the axisymmetric toroidal field. By
switching on asymmetric poloidal motions for a short time, the ax;sym—
metric toroidal field are converted to the original dipole field- plus
other unwanted components, The latter fields decay faster than the di-
prle field when the motion is switched off again, To the extent the
original starting point is reached, the process is periodic., Notice that
the desired main field is a pure dipole, |
The setup for the Herzenberg (1958) dynamo model consists of

two rapidly rotating electriéally conducting, rigid spheres of radius "a"
imbedded in a stationary conducting fluid medium, Their centers are sep-
arated by a distance R>a . While each sphere rotates at the same angu-
lar velocity, their respecﬁive rqtation'axes are oriented in different
"directions, The magnetié Reynolds number is R"'>>l and a steady state is
quickly attained,

The dynamo works on the following principle, A magnegic field

is created by mutual indqction in the first sphere. Thé rotation of the

second sphere acts upon this field to generate a second magnetic field
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component, Likewise, the rotation of the first sphere acts on £he latter

magnetic field to produce the original magnetic field, Epefgy must of
course be supplied externaliy to keep the spheres rotating at the desired
-~rate, For the dynamo to work, both spheres musf rotate in the same sense
about their respective axes,

Mathematically, a set of homogeneous equations are solved for
which the ﬁagnetic Reynolds number is an elgenvalue, There is the
possibility of‘R"\ seing small but imaginary,Awhich is unphysical, Vari-
ous remedies exist to guarantee thai;R;‘be positive, such as surrounding
the two spheres aé a large distance from them with an ihsulator. The
theéry predicts a value of Rm=24.5 if the rotation axes of the two spheres.
form a 90o angle and both axes are also inclined at‘45o to the line Jjain-
ing the centers of the two spheres.

Tﬁe Herzenberg (1958) dynamo model is not a good analogue to

'tﬁe sun of course, One of its virtues is th;txthe tﬂeory is mathematically
rigorous, Also, Lowes and Wilk;nson (1967) have‘démonst¥ated experimental-
ly that a ’Herzenberg-like‘ dynamo works even if ﬁ?m and R/, are not large,

A very important analytic study of hbmogeneous kinematic
dynamos has been carried out by Braginskii (1964), Some of his basic
ideas were foreshadowed‘by Parker (1985b), But Parker's dyngmo was par-
tially based upon heuristic arguments and lacked a completely self-con-
sistent éxpansion scheme (P,H, Roberts, 1967),

| In Braginskii's (1964)‘theory, the velocity is assumed to have

/
the form V =4V, >+ ¥, +<¥,). Here Y,> is the axisymmetric toroidal
' I/

I'd ’ -
(zonal) velocity, Y, 1is the total eddy velocity of VA LV,»> /?m
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. -1
and (yz) is the zonally averagcd poloidal velocity of O ( (y,),qm ).
The symbol R is the magnetic Reynolds number and <V{,)»is the magnitude of .

S m e, ‘
(Y,), etc, Similarly, E:<§>+<§;)+XQ" where {B) is the zonally
n=i X
/
averaged toroidal magnetic field, 8
(<8R,

-1 .
of 0'(<B.>Rm ) . The Braginskii theory is valid in the asymptotic

is the total eddy magnetic field of

n
-n/2

. ) , and (Q,} is the zonally averaged poloidal field
limit as Rm---)oo « Clearly, t'he axisymmetric toroidal velocity and-
magnetic fields are much larger than corfesponding poloidal fields and
asymmetric fields. in this limit, .

Braginskii considers the induction of poioidal magnetic fields

<§z>' using the ;\ component equation for the magnetic ve;ctor potential
A . ‘ A

(4‘.) , where curl((&)A):(E‘t), (Az):X°<,}_\z> , and A is a unit’

azimt\xthal vector, The induction equation for <B°'> is ret';ained. Secondly,

Braginskii introduces "effective quantities" <A2>e and <-\-/z>e into the

equations mentioned above, They reduce to {A,» and (yz) for the axisym-

metric case,

Following this proceaure, the zonally averaéed (E.) induction
equation has the same form in cylindrical coordinates for both the axisym-
metric and asymmetric cases, This is also true of the zonal}y averéged
<{Ae induction equation with one crucial exception, There is a new
term containing asymmetric effects, i,e, the generation term <£‘>:§ (£;,>

=2

which depends upon eddy correlations involving functions of _\('/ and _@”, .
Braginskii shows that <&,p= <€3>:O, while <£‘f>: f; <Bo> , Where
r; ”6(59)»‘2) does not vanish, This result is consistent with the
diffusive time scaling and the scaling for <Az>. Now f; can be expressed

) ?
as a funcj:ion of CMS‘ and Sm S of the spectral expansion
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/ ' /
y, = <V>Z(C CoS wA + _Sm $in m/\) for the poloidal part M‘P of the
P ;

ToimmNm p L
locit 7. This follows from the relation 8, = <8s2 v
asymetric velocity y' . ] i, = v Tip

for the first order asymmetric poloidal magnetic field and a more com-

plicated expression for Bz in terms of functions of (_\_/‘> and Y,P .
- : “%p
. -n/2
Carrying out the expansion to the next highest order in Rm , the

equations quite remarkably retain the same form (Tough and Gibson, 1969)%;

The only modifications are that I, is replaced by [, + f; and the "effec-
tive quantities”" are more complicated.

The generation ter;n (5,,) is crucial to the net production of
axisymmetric poloidal fields (@1). The following conditions must be met
in /'_‘L and <f‘r) are not to vanish, First, neither the zonally asymmetric

/

poloidal velocity yl nor the asymmetric poloidal magnetic field

/ 7/ P . /
B +8B may vanish., From the formulae for <£,) and [} (plus V
l’ -2P 4 2 fP >
; .
_@' and 5:, ), <B.,>#0 and £V, >#0 as well, Second, the phases of at
7/
least one Qm,g‘m pair in the spectral representation of _\_/, must be
P

nonuniform, i.e. £, x3,# O for some value of m.
In turn, the’ <Bz> fields are twisted into axisymmetric
‘toroidal fields <§o> . This link is vital to the dynamo process, due to
the explicit dependence of (é;} upon {8, . But twisting cannot occur
if a Ferraro's law type'of configuration is presgnt, i,e, if the surfaces
of constant (2'}(/42) and (Vo)/c'&' coincide, where C‘J is the cylindrical radius,
' The boundary layers -in the Braginskii kinematic dynamo theory

are passive, i.,e, the interior solution can be obtained without reference

1Théy even speculate that this could be true for expansions of
arbitrarily high order in Rm-n/z. .
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to the boundary layer solution, However the boundary layer is as impor-
tant a source of in&uction as the interior, ‘

Braginskii (1964) and Tough and Gibson'(1969) actually ob-
tained kinematic dynamo solutions. The geometry was cylindrical and fhe
specified velocity field steady, whereas the solution for the magnetic
field was time variable, This does not prove that a hydromagnetic fluid
dynamo with a steady veloc;ty field is p§ssib1e,

The Braginskii theory illustrates quite elegantly the nec-
essary condifions for dynamo maintenance, It is perhaps noteworthy that
poloidal velocity eddies and largé scale toroidal magnetic fields are
common to the Backus (1958) and Braginskii (1964) dynamos, Although the
lafter is probably more realistic‘for solar applications, since it re-
quires no jerky motions, if is not cbn&ucive to solar magnetic reversals,
as noted by P,H, Roberts (1967), He speculates that magnetic reversals
might be restricted to hydromagnetic type dynamos,

Irregular magnetic reversals are predicted by Rikitake's
(1958) relatively simple double disk (hydromagnetic) dynamo theory, fof
course, the conducting medium-is not a fluid, But the electfomagnetic
feedback upon the angular velocities of ‘the reotors is apparently cr;cial
to the reversal process,

As a final example of analytical dynéﬁo work, Childress (1969)
examines a general class of time-dependent hydromagnetic dynamos., He
expands variables in powers of a small parameter 5'/ (instead’ of I? /2

where J. is the ratio of the characterlstlc small to 1arge length scales.

Large scale effects and the. spacial average of small scale effects are in-
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cluded in. the magnetic induction equation, However the magnetic body
forces in the momentum equation are of only the latter type.

Numerical Dynamos

The numerical study of Bullard and Gellman (1954) is rather’
well known, Their model applies to a homogeneous, kinematic, steady state
(and hence nonre?ersingi dynamo, - The geometry is spherical and the fluidn
is surrounded by an exterior insulating region. A spherical harmonic
spectral representation with radially dependent spectral coefficients is
employed,

Bullard and Gellman's velocity is specified by the toroidal
harmbnicl2 T,o’ c: - EV3 or -Efl(ﬂl—r) and a poloidal harmonic such as

€ 3 2
52 =r (l"r) for the nondimensional radius f , 0 £}/ £ ! .
The 77Qﬁ harmonic represents an axisymmetric anguldr velécity which varies
- with radius only and whose mean is /2 or Effo. Also, the 5;T’c harmonic
simﬁlates convective eddies and E measures fhe ratio of the toroidal flow
to the poloidal eddies,

Equations in the speétral domain are obtained from the ortho-
gonality relations on the sphere of ordinary spherical harmonics, toroidal
vectop‘spherical harmonics, and poloidal vector spherical harmonics;lz
Having computed the required Gaunt and Elsasser interaction integrals,
Bullard and Gellman (1954) evaluate various nonlinear products, if Au,Bﬁ,
and (:X are spectral coefficients and T, py is an interaction integral,
then a typical nonlinear product has the form C :gé:I“QJ’A“BG .

Fortunately most of the Ikﬂl § vanish according to the "selection rules",

2 .
Poloidal vectors, toroidal vectors, and vector spherical harmonics
are all defined in Appendix A,




These include low order orthogonal truncation, in which only a small
number of harmonics are retained,

In the computations, the radial dqpendence of spectral coef-
ficients is approximated numerically., The problem is‘then to determine
the eigenvalue R; for which solutions can exist, A dynamo solution
appears to be physically plausible because positive real valugs of Rﬁ can
be found, For a particular level of truncation, i.e, M+N%£2Z the following
interactions in the dynamo are most important; (i) An axisymmetric dipole
magnetic field Ezciswtwisted by the axisymmetric toroidal velocity field
7-;, into an axisymmetric toroidal magnetic field 720 antisymmetric about
the équator. (ii) The 7:0 magnetic field interacts with the eddy convection
mode S:"cto produce an eddy toroidal magnetic field TQZ’C. (iii) In .turn,
the T;z’cmagnetic field and the Zk)motion interact to produce another
eddy toroidal ﬁagnetic field 7;279. (iv) To complete the cycle, the T;I's

: 2,C ' o
magnetic field and 5} motion interact to produce Sﬁ magnetic fields,
This closed cycle has the schem#tic representdtion
,C
(GRS G EA.

The double arrow between.an indicates sufficient back coupllng

occurs to reduce dynamo action unless Rm is increased significantly, With

mMt+n £ 3, more closed loops are possible including the chain

) Sltc 0 2,¢ .
. LA a. 2 B@La@ S, 3 . Also the external magnetic

field has opposite signg for the-two cases m+n =2 vs§. mt+nrn<3
(Bullard and Gellman, 1954),

A controversial question is whether they obtained a true numer-
ical dynamo.solution. To a purist; a dynamo solution is convincing only

if it remains essentially unchanged, beyond some level of truncatioy, ~ﬁbw
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Bullard and Gellman (1954) retained the first q intéractions starting
with 7,'0 and S:,c harmonics for V and an S;oharmonic for B . The.y

' : ' T X
let q= 4, 7, and 12, ie, retained all spherical harmonics up to 7; ,);)
and )gt respectively, The dynamo seemed convincing to many peop}e at
first beqause Rm did not vary much,

However, a.more systematic investigation.by Gibson, Roberts,
and Scott (1969) of the effect of gﬁe level of truncation upon Rm-proved
more discouraging. They let q= 4,5,7,8,10,12,13,15, and 17 so that
spherical harmonics of degree up to m+n=3§ were rétained'for the
cases Q=15 and g=17, Unfortunately, whereas Rm(q) was~bopnded by
63< '?m £75 for the cases q=4,5,7,8,10,12 and 13, R (a=15)~ 112
énd Rm(q=17)~139, suggesting np convergence., Now perhaps Rm(q) would
begin to converge at highé&r values of q. But if the above trend continu-
ed, then with an infinite number of harmonics, dynamo action might not be
possiblé for a finite vglue.of Rm. They also found incidentally that
convergence to tbé model solution Rm(q) required greater vertical resolu-
tion as q and hence the.horizoﬁtal resélution increased,

The Bullard and Gellman (1954) dynamo has been criticized on
other grounds also. Their dynamo may be compared to the Braginskii
dynamo for the asymptotic limits E 60, f,, —» % and RM— i E"._..)
finite limit (P,H.Roberts, 1967), Although ‘the ﬁullard and Gellman dynamo
violates the hypotheses of the so-called anti-~dynamos and even has an
asymmetric poloidal velocity y,;", the phase of y,; is uniform (;f,n_—o).
Hence ["‘ =0 and in fact, J! =0 .

3

Another steady state numerical spherical dynamo investigation

was carried out by Stevenson and Wolfso: (1966). The levels of horizon-




tal and vertical.low order resolution were comparable. Spheficai harmon-
ics and Bessel func£ions wersa ﬁhe expansion functions for the spectral
represéntafions taﬁgent to and normal to tﬁe sphere, respectively. The
most significant departures from the Bullard and‘Gellman study are (1)

the dynamo was of the hydromagnetic type (2) a thermodynamics equation was

added, and (3)'the ultimate energy source for the system was a volume
distribution of heat sources: Unfortunateiy their only physically mean-
ingful\soluéions, i.e. with positive joule heating, were axisymmetric and
thus incapable of dynamo action. This result has obvious implications for |
the Bullard and Gellman (1954) dynamo too. In the final analysis, some
physicdl mechanism is needed to generate and hence justify large scale
éteady, but a;ymmetric ﬁotions.
1.4.2. Maintenance of the observed solar magnetic field

Several theories ha&e been proposed to explain the maintenance
of largé scale solar magnetic fields anq/or éSpects of the sunspot cycle.
Generally speaking, they borrow elements from dynamo theories described
heretofore, but are less rigorous.

A classic example‘is Babcock's (1961) tizory. Initially the
large scale magnetic field Q is axisymmetric and poloidal and is confined
to the 'fegion r2 0(0.9), In fact B is a pure dipole, although thé large .
scale poloidal magnetic field on the sun is moreﬂcomplexj as noted pre-
viously.

: o
Now the "Babcock term' <—[";--> 5’@(<"ja>}’€0$€y in the magnetic

_ : . <@
induction equation twists the poloidal field (B Jinto an axisymmetric

. Ay 13 ' '
toroidal field (B,>. From the shape of the observed differential rota-
13

RN

cf. with Bullard and Gellman (1954) and Braginskii (1964),
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tion <C,U’°)) (B> is antisymmetric about the equator, with (BA>>O in
the Aorthern hemiséﬁere. The toroidal field amplifies linearly with
“time and with g;’e(S"ﬂtQ) for IL?IS. 30° , extracting energy from the ‘
differential rotaéion. Also, the stronger the differential rotation, |
the more rapidly the amplification process proceeds.

Néxt, strands of ;mplifying toroidal magnetic field afe
twisted locally into ropes, enhancing the local field intensity by up to
a factor of 10. If the lafge scale toroidal field reaches the critical
intensity of Bc~26‘f gauss at a given latitude @, ‘) || = 30° s
then the flux ropes can form loops. These lcops are supposed to rise due
to magnetic buoyancy14,emerging at the surface as bipolar'mégnetic
‘regions (BMR's) or as sunspots (imbedded inside BMR's). The convective-
motions which carry flux loops upward are asymmetric and poloidadl.
Babcock's formula for the critical latitude as a function of time agrees
rather §e11 with the observed.equatorward migration of sunspot activity
zones, Sunspots and BMR's form randomlyvfor somé time after the c?itical
field intensity is attained. The net toroidal field intensity begins
to decay after enough magnetic flux Toops rise to the surface, and decay

even more when toroida! fields of opposite signs are produced somewhat
later.

A rising loop of magnefic flux has a positive and a negative

polarity branch which may be identified with two sunspots of opposite

14Parker (195%a) considered a local parcel of ideal gas containing
magnetic flux. If t.e parcel had the same temperature and total (i.e. gas
. plus magnetic) pressure as its flux-free surroundings, its density was less,
On the other hand, if such & parcel were cooler than its surroundings, its
buoyancy vwould be less positive or perhaps even negative,
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polarity. By definitjon, the 7 spot of a group is closer fo'the equator
while the £ spoﬁ is farther awéy. In the northern hemisphere, a loop is
tilted ;elative to a meridian such that the 7 spot has the same polarity
and the f spot the opposite polarity as the original poloidal field., As
noted b& Leighton (1964), the observed tilté of sunspot group axes are
much larger however, than predicted by Babcock's theory, In any case,
p spots or f spots have opposige polarities in the two hemispheres, be-
cause the corresponding tilts of flux loops are mirror images about a
meridian;

In the final phase of the cycle, axisymmetric, meridional
currents at middle latitudes could transport f spot fields'(or follower
. portions of BMR's) poleward to first neutralize and then reverse the
poloidal field, Similarly, equatorward currents at low latitudes could
help prqmote cancelatiqn of p spots (or corresponding leader portions
of'BMR's) from the two hemispheres, The amount of ohmic dissipation
would govern the time interval for achiéving a polarity reversal.: Since
much more flux is available than required, considerable dissipation is
evidently present. Of course, axisymmetric meridional motions have not
been conclusively observed.

After another cycle, the original dipole field is retrieved,
During the double cyéle, the direqtion of the horizontal magnetic field
rotates counterclockwise (clockwise) in the northern (southern) hemisphere,

Although Babcock's (1961) arguments are quite heuristic, he
stimulated considerable further~research.~ His ideas on the role of the
differential rotation in cpnverting éoloidal into toroidal magnetic fields

and on the meridional traﬁsport of magnetic fields have been incorporated,



generallzed or modified in more scphlsticated models.

For example Leighton (1964) accepts Babcock’s idea that the
reversal of the dipole field results from migrations of f spot magnetic
fields towards the poleé and f9 spot fields towards the equator, But he
proposes a new mechanism to achieve this, In effect, he solves the ver-
tical component magneti; induction equation (3-38c), retaining onlﬁ the
horizontal dissipation term "Z VH‘LB? for a thin spherical shell, In
this expression, 8 ¥ is the vertical magnetic field and V,," the Laplacian
operator on a spherical surface. Also, ”2'—»«0(5"[.5(,;%) is an eddy coef-
ficient of ohmic dissipation, where L gz 1is the radius and 7&;’the re-
ciprocal life time of a supergranule. The characteristic decay time is
To = /?: /’2 ~ (20 years). |

Leighton (1964) argues heurisfically that supergranules are
géod dispersing agents assuming their quasi-horizontal motions are well
coupled with the magnetic fields in the heart of the convection zone., He
cites the preferred location of stréng magnetic fields at supergranular
cell boundaries found by Simon,énd Leighton (1964) as evidence of such
coupling, |

As his most complicated example, Leighton considers thé dis-
persal of a time-latitude dependent distribution of ring doublet magnetic
field sources, These are supposed to simulate tge longitudinally averaged
sunspot distribution. At timg t=3 years, the polarity reverses within the
25o to 40o latitude belt of both'hémispheres, creating an octopole mégnetic
field configuration, The region of reversed polarity. expands towards both
the equator and the pole., This occurs even if only an instantaneous, lo-

calized doublet source is specified, suggesting that the tilt of a sunspot
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group axis or doublet source.plays a key role here, In the contiﬁuous
source distribution éase, the eéuatorward expansion of the reversed polar-
ity region is also aided by the equatorward movemént of the soﬁrces. In
any case, the ratio of decay times 6f the octapole over Qipole moments is
only 1 /¢ and by time t=11 years, a new dipole field of{reversed pqlarity
is established. The neutral line closer to the pole progresses poleward
at a rate comparable to the observed migration of quiescent prominenceé
(filaments) which are thought to lie along the neutral line. Advection of
magnetic fields by the average differential rotation does not affect their
northward or southward migration, The differential rotation does deform.
expanding regions however, The fields at high latitudes woﬁld be elongated
;nﬁ hence weakened the most, »

In a more elaborate model, Leighton (1969) tries to simulate the
entire sunspot cycle., Poloidal magnetic fields are twisted into toreidal
fields by an angular velocity prﬁfile that varies with latitude and depth,
When the toroidal field BA reaches a preassigned critical value 8. , a
source eruption term for a ring doublet vertical magnetic field is switched
on, No twisting of toroidal fields into magnetic ropes is réduired. Two
important parameters in the source term are the time constant T fér
eruptions of toroidal flux tubes and a parameter F which measures the tilt
of the doublet moment, There is a.corresponding gink term in the equation
for toroidal fields, As in Leighton's &arlier model, ohmic dissipation
on the supergraﬁule scale leads to a polarity reversal of the B} fields
formed by eruptions. The meiidional‘magnetic field component B" is ob-

tained from magnetic continuity,
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Besides T,, and F, the model eflectively contains three other
parameters, i.e, &, (3 and f) . These permit various angular velocity
profiles of the form </l—’<we)+(oc+/3 Cos"@)(ﬁ‘e— I")/H to be tested. In
this formula, (&QQ is the observed surface differential rotation relative

to the polar rate, H is the depth of the layer, and the radial coordinate

Y satisfies the inequality R.-HSF £ /A, . As n is increased, flux
eruptions occur closer to the equator, Therefore it takes more time for
the pplarity reversdl to reach the pole, For fixed <, K3, and »N ’
Leighton could usually adjust F 'and T, to obtain zaszyearQOUble c;cle.
Large values of F are undesirable as they would impiy too great a tilt.
Conversely, if F does not exceed a minimum value, an oscillatory solution
is not possible,

The most realistic results are achieved for the case «= 0,
(3: /0, and n= g , .corresponding to a: aJZ/ar< o) type profile ‘with the
sharpest drop off near the equator, With o =/000, /3 :—/%and. n=z, corrés—
ponding to a core-convection zone ihterface in very rapid solid body rota-
tion, the results are unrealistic, Perhaps the most interestiﬁg result is
that the radial variation of Wl is moreAcrucial than its latitudinal vari-
ation, In particular, the BA and hence [33’magnetic field maximum drifts
towards the equator in agreement with the Maunder Butterfly diagram ogly
it dJN/or<o. .

The following comments may be made about Leighyon’s kingmatic
model, The conversion of BA into Ba.fields is parameterized by.anveruptiqn
term, The frue induction equation for Ba-is not utilized for this crucial.

link, Also, the parameterization is such that no asymmetric magnetic fields

or poloidal velocity fields explicitly appear. Thus the anti-dynamo

’
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‘theorems show that Leighton's model is not a true dynamo, While the ohmic
diffusion mechanism can cause a polarity reversal, other mechanism are

" available, These include meridional transports by supgrsupergranule
(ba;oclinic) scale eddy motions (Gilman, 1968), and by axisymmetric motions
(N;kagawa and Swarztrauber, 1969), Furthermore, thefe is no feedback on
the motion,

On the good side, many of Leighton's results agree qualitative-
ly with various known facts concerning magnétic activity on the sun,’
whether or not by coincidence; Finally, his work could have impliéations
for the variation of solar angular velocity with depth,

The work of Nakagawa and Swarztrauber (1969) previously
discussed in a different context is relevant here, Their model has
essengially no feedback on the motion and is incapable of dynamo action
since all variables are axisymmetric, However their stated purpbse is
to investigate oﬁly how a toroidal field would evolve from an initial
poloidal magnetic field. In contrast to Leighton's (1969) model, the
Nakagawa-Swarztrauber (1969) model utilizes the true magnetic induction
equation and has a meridional circulation., We recall thut the meridional
cell congists of rising branches at the poles and a descending equatorial
branch,

As the law of isorotation holds initially, the meridional
motions must first distort the field lines so that the differential_rota-
tion-can twist them.into toroidal fields, Adopting thg Newton aﬁd kunn
(1951) profile for the surface angular velocity, toroidal fields form
initially at‘(£=38°. Near the surface, the toroidal field_is negative as

desired and is transported towards the equator by the meridional cell.
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The stronger the ohmic.dissipation, the deeper the negative toroidal field
penetrates, Its maximum intensity of 300 gauss ( compared to Leighton's
value of several thousand gauss).occurs at L2=25°. Farther down, the
toraidal field is positive and is t;ansported poleward,

Now M,_and L, d'Azambuja's profile is only slightly different
from Newton and Nunn®s., Yet for the former, the first negative foroidal
fields appear at 430, the maximum toroidal field intensity is under 150
gauss, and after a short equatorward drift, the toroidal fields drift
poleﬁard.

Nzskagawa and Swarztrauber (1969) suggest that these divergent
reéults ma& correspond to thg Maunder butterfly diagram for sunspot migra-
tion and to the law of filaments, respectively, But that seems too much
to expect., Also, they are in errér in claiming that their meridional

circulation with a maximum of 200 cm/sec at (£ =3bb is in close agreement

with Ward's values, Actually at 300, Ward could not obtain a statistically

significant estimate of the axisymmetric meridional velocity. Finally,
we note that their angular velocity is greater at the top than at the
bottom'b&undary in contrast to Leigaton's most successful profi;es.

The extension of Pedlosky®s (1964) linearized baroclinic in-
stability analysis to the magnetic case by Gilman (1967) lays the ground-
work for the development of nonlinear baroclinically dfiven, hydromagnetic
dynamo models, His linearized model is quasi—heliostrophiqls, utilizes
cartesian geometry, and has two layers, But in addition to a lgtitude—

height dependent zonal wind profile, the basic (axisymmetric) state has

15 '
This term is the solar equivalent of quasi-geostrophic,
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a toroidal magnetic field. Gilman shows how the présence of magnetic
fields modifies Pedlosky's growth rates and phase speeds of éddy distur-
bances and his necessary conditions for instability (integral theorems).

Although tﬁe fluid is a perfect conductof (as well as invis-
cid), the model lacks two crucial ingredients for sustaining dynamo action,
as recognized by GilmaA. These ané (1) a generation term for mean square'
poloidal magnetic flux and (2) a feedback of the poloidal field upon the
toroidal magnetic field, These deficiencies are a consequence of the
scaling of the first order terms in a Rossby number.e%pansion. In partic-
ular, the velocity and magnetic fields are both assumed‘tp be horizontally
nondivergent, i.e. to depend upon (toroidal) velocit& and magnetic stream
functions alone, to first order,

More recently, Gilman (1968, 1969) has inco?porated the two
crucial ingredients for dynamo acti@n.mentioned ahove into a nonlinear,
quasi-heliostrophic two layer hydromagnetic model with baroclinic forcing.,
The geometry is cartesian, a low order spectral representation is adopted,
and the spectral equations are integrated numerically in fime. The large
amplitude magnetic field reversals are particularly encouraging even
though only 18 (or 36) degrees of freedom are retained,

The first link in the induction process is a Babcock type
twisting term. It appears because the horizontél poloidal magnetic field
is now formally scaled as large,as the toroidal magnetic field. Basically,
the ﬁorizontal shear of the axis&mmetric zonal wind twists axisymmetric
poléidal into axisymﬁetric toroidal magnetic fields, Vertical mbtioné
then twist‘téroidal into poloidal magnetic fields, The dominant inter-

1

action involves axisymmetric toroidal magnetic fields plus asymmetric
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vertical motions .and poloidal fields, Finally, asymmetric poloidal
magnetic fields are systematically transported towards the northernmost

wdll by meridional eddy motions of toroidal as opposed to poloidal type.

" Eventually a polarity reversal occurs, Meanwhile, ahmic dissipation acts
to reducg the amplitude of the axisymmetric poloidal magnetic field
harmonic,

For horizontal velocity shears comparable to the observed
differential rotation, the éeriod for a douﬁle reversal is (2 years).
The observed double sunspot cycle and double reversal of the polar field

takes about 22 years. A longer reversal period can be‘attained by
decreasing the Rossby number, but then the differential rotation is too
weak, Dynamo action is sustained only above a criticalvmagnetic Reynolds
number R .~ 100, Whereas the "'reversal period"-is apparentl& insensitive
to the-value‘of Rm-Rmc, the amplitude of suceeasivé-peaks begin¢ to fluc~
tuate as Rm—Rmc is increased,

As various toroi@al harmdnics and asymmetric poloidal harmon-
ics are reaching peak field strengths, the dominant'axisymmetric poloidal
magnetic field harmonic is just changing sign. "The peak axisymmetric
vertical magnetic field of roughly 40 gauss exceeds the "observedﬁ solar
value by somewhat over a factor of fen. This discrepancy can be reduced
by choosing the ratio § of the vertical to ho%izontal length scale to
be 5(9(0-1) instead of §=/ . The ratio of magnetic to kinetic energy
remains ratﬁer small; in»agreem;ﬂt with Gilman's (1967) linear study,

Dynamo maintenance within a quasi-heliostrophic framework is

‘possible only by sacrificing some mathematical rigor, This is at least



partially justifiable a posteriori, The generation term for vertical
. 24 '
magnetic fields involving vertical motions is formally of C?(R; ), but in
the actual computations is of (9(5&). Other terms in the same induction
- 1 . .
equation formally of O(Ro ) vanish anyway in the two layer model due to
the boundary cdnditions on the vertical velocity and vertical magnetic

field,

‘In the absence of thermal forcing and viscous and ohmic dissi-
pation, an invariant "total” energy integral cén be obtained, but at a /
price, Imposing different potential temperatures at the two lateral
boundaries, Gilman (1969) must discard all terms which ekplicitly involve
both'vertical differentiation and the vertical magnetic field component ,
'in the horizontal momentum and horizontal induction equations, Meanwhile
terms of the same order in Rossby number involviné‘ﬁorizontal differentia-
" tion and horizontal poloidal magnetic field components are retained,

Gilman (1969) argues heuristically that the neglected terms would probably
not affect the results too much, However, the twisting of vertical magnetic
fields by the vertieal wind shea? could interfere either constructively or
destructively, depending upon the selected thermal forcing profile. Also,
the vertical shear twisting term was more important in Leighton's (1969).
model,

The "totalf energy mentioned above is—defined as the available’
potentiai plus toroidal kinetic plus toroidal mégnetic energy., The formal
scaling suggests that the energy 0£Athe horizontal poloidal magnetic field
should not be éxcluded. A posteriori, the ratio of peak poloidal to 2535
toroidal eneig& is only 6%. But thé instantaneous rafio is highey since

the energy peaks are roughly 900 out of phase,
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There are three shortcomings oi the model which are ESpecially relevant
to the sun, Two of these were discussed by Gilman (1969), First of all,
his‘axisymmetric zonal velocity profile'<“3) at the upper level corres-
ponds more to the terrestrial midlatitude jet than to the observed solar
equatorial jet., More specifically, <ag>~cn) siny where c(t) re-
mains positive and y ié the nondimensional cartesian coordinate trans-
verse to the channel O£Y <7r . If the lateral wall y=0 corresponded to
the equator, an easterly jet (c <0) would be a better analogue to the
solar case, Unfortunately, Qilman's Rossby number exbansion is not-valid,
strictly speaking, too close to the equator, Besides, an artificial
lateral wall at the equator is not very realistic, -

Second, Gilman's magnetic field harmonics do not really
correspond to the lowest order harmonics of interest on.the sphere, For
example, his only axisymmetric roloidal magnetic field harmonic is pro-
portional to cos y. A£ first glance, this harmonic is analogous to the
dipole poloidal magnetic field harmonic Y, oo(. Sin @ where -W/2 <@ <T/z2,
However, the channel O£y < 'is confined to a latitude band in the

northern hemisphere,

Third, the magnetic fields are confined between thé top and
bottom boundaries in Gilman's model because both boundaries are perfect
conductors, Yet coronal observations suggest that magnetic flux does
leak out of the photosphere,

i.5 Characteristics of Our ﬁynémb Model,

We have formulated another numerical dynamo model, The basic

physical processes of the Gilman (1968, 1969) model are retained, Thus

ours has various essential ingredients for the generation and maintenance



of a fluid dynamo., These include (1) suitably large fluid dimensions,
(2) an energy source, and (3) three.dimensional, asymmetric mbtiops. (See
Elsasser, 1956),

The dimensions of the sun are inherentlyllarge enough so that
magnetic induction can, in prihciple, compete with ohmic dissipation,
Despite its possible shortcomings, baroclinic heating does serve as an
energy soufce. Under suitable condition e.g., sufficiently rapid rotation,
asymmetric baroclinic disturbances can develob. Also, the conversion of -
eddy available potential energy into eddy kinetic energy is accomplished

through asymmetric, poloidal (vertical) motions, Finally! the model

apparently passes the various anti-dynamo theorm tests and in principle
satisfies the conditions for a nonvanishing Braginskii type of generation
'term. |

Tﬁe chief modifications we have introduced are:
(i) a set of ?primitive" hydromagnetic equations
(ii) more degrees of freedom (126 in all)
(iii) spherical geometry-

(iv) a Robert spectral representation

(v) irrotational magnetic fields in a nonconducting region above tﬁe
fluid region of main interest,

In principle, our modei has the'cap;bility of making:predic-
tions néar the equator which Gilman's (1969) model lacks, This feature is
desirable because most of the relevant solar ébservations including thﬁse ' 1

of the equatorial Jjet are confined to the 30°S-30°N latitude band, Also,

the lowest order odd harmonics of the axisymmetric poloidal magnetic field

i.e, the dipole and octapole harmonics are included, These contribute to
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the mean hemispherip‘magnefic polarity,
In formulating the "primitive" equation hydromagnetic model,

vertical hydrostatic balance is replaced by vertical‘magnetohydrqstatic
balance, i.e, the magnetic pressure is taken into account. In addition,
the vertical magnetic field induction equation is discarded and the ver-
tical field is obtained from the magneyic contiﬁuity equation, This
procedure is dictated by scaiing and energetic consistency arguments, Our
scaling is more rigorous than Gilman's, Finally, in the absence of
dissipation and thermal forcing, an integral invariant can still be found
for the 'total" energy.

We retain considerably.more degrees of freedom than in

Gilman (1969). Nevertheless, Qe would have preferred many more harmonics
and more levels for representing even fairly large scale processes ‘within

a thin spherical shell, Due to computational limitations, there is only a
single positive zonal wave number though, as in Gilman's (1969) model,
'Zonal wave number n=6 seemed suitable‘because it is baroclinically unstable.
Its presence in the solar atmosphere is suggested by Wilcox and Howa*d’s
k1970)1auto—corre1ation curves, AThe Robert functions R;: (cgrresponding

to spheriéal harmonics Ym+2 ) wi#h n=0, m=1,2,3,4; and n=6, m=0,1,2,3,4 are
retained for stream functions, potentials and thg temperature,

For a reaiistic dynamé model, the critical magnetic Reynolds
number Rmc for dynamo maintenance should not increase without bound as the
resolution is increased. This does not mean that the time histofies for
solutions of two models which were identical except for slight di}ferences

"in resolution should coinqide for all time, Unfortunately, the computa-

tions required for testing the convergence of Rmc cannot be handled by
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present day computers.

We note that the potential field in the Qonconducting region is
not maintained by any external sources at infinity. The nonconducting
region and the underlying atmosphere are cgupled by the potential field
through equations (3-5b), (3-5c), (3-5d), (3-24c), (3;20b), and (3-20d).

The increased complexity of our model is due mainly to the first
three improvements., The effect of more degrees of freedom is obvious, In
adopting the fprimi?ive" hydfomagnetic equations, the time step must be
considerably reduced to prevent compufational instability. These equations
are also inherently more complicated than Gilman;s. But fortunately, the
number of distinct bilinear terms T can be substantially reduced by applying
- the linear Lundquist (1952) transformations16 to our “"primitive'equations.
(See Chapter III). In fact, the Lundquist and quési—heliostrOphic equations
have comparabié values of T in the space domain, Despite the additional
linear operations associated‘with the Lundquist transformations, they give
rise to increased computational efficienc&.

Spherical geometry introduces complications also, because ﬁhe
equations contain curvature correction terms, and the a}gor;ihms for
evaluating bilinear products in the spectral domain are more complex. On
the other hand, simpler geometry is probably not as physically realistic,
For example, an equatorial (3—plane primitive equation model would not be
valid at "sﬁfficiently high“ latifudes. Artificial walls could be inserted
at latitudes 30o N and 30° S say. But hydromagnetic disturbances at higher
latitudes on the sun might affect the dynamo process or help maintain ‘

the equatorial jet, Another approach would be to scale the equations

16 )
Elsasser actually deserves the credit for independently discovering
these transformations earlier, See Elsasser, W, M., The Hydromagnetic -
Equations, Phys. Rev. 79, 1950, p. 183, - ' ' '
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differently at low and high latitudes, However, a rigorous ﬁatching of
solutions at some intermediaté latitude might be difficult to achieve,

Beyond a certain resolution limit, a grid-point representa-
tion would be more efficient than a spectral fepresentation. But a soph=
isticated grid would be‘required on the sphere in order to prevent linear
and nonlinear instabilities, Two possibilities are the Kurihara-
Holloway (1967) box grid or- the Williaﬁson (1969) spherical geodesic grid,
Experience with these grids is limited to‘nonmagnetic models and we pre-
ferred to avoid working with them if possible.

In any case, we felt that a spectral representation would be
well suited to a low order resoiutioﬁ model like ours, N& nonlinear
aliasing instability of the typé illustrated by Phillips (1959) should
occur, provided that the truncation is orthogonal, All discarded com-
ponents are then uncorrelated, in the integrai sense, with the retained
components (Robert, 1966) ., Whereas nonorthogonal truncation might lead
to instability, orthogonal truncation is simple enough to perform, It

.turns out that there is some difficulty associated with the truncatibn
process (hopefully for only'low order systems) as described in Chapter 1V,
The spectral representation itself utilizgs a set of Robert functions.
This representation should be equivalent to a spherical harmonic repre-

.seﬁtatiOn, but is more convenient, as explained in Chapter III,

1.6, Summary of the Other Chapters,
The-model assumptions are spelled out in Chapter II. The prog-.
nostic and diagnostic equations plus the boundary conditions are then for-

mulated fér a model with pontinuous-vertical resolution; In Chapter III,

the equations are reformulated for a model with two layers in the vertical,



Following that, the Robert (15€5, 1966) spectral method is explained in
considerabie detail and is applied to these equation$, Finally, the
sequenee of steps for solving the équations is summarized,

The angulér momentum balance is formulated in Chapter IV in the
space domain, for the two layer model. Usiﬁg the Robert spectral repre-
sentation, the truncation process preserves the integrated angular momen-
tum balance on each spherical surface.' But a localized angular momentum
balance exists for only "correctly truncated” terms, Chapter V contains
a formulation of the energetics for the model.

Model solutions are described in Chapter VI while conclusions
and suggestions for future research are given in Chapter-VII. Angular
" velocity profiles are obtained for different thermal forcing profiles both
in the mégnetic and nonmagnetic case., Two angular veloéity profiles are
in qualitative agreement with solar observations. The "correctly trun-
cated"” anguiar momentum balance is discussed for two production rums,

Magnetic fields may be genérated and sustained by dynamo action
if the magnetic Reynolds,numbef exceeds a critical value, Irregular mag-
netic reversals'occur for both runs, The energetics help elucidate the
reversal process, The characteristic reversal time is of ;he correct
order of magnitude for the run having the less rea;istic angular velocity
profile -and too fast for the other run, While our vertical magnetic eddies
may be loosely interpreted as active regions, they fail to obey certgin
laws (such as the generalized SﬁBrer's law) of the solar magnetic cycle,
This lack of agreement may be due however to the crude resolution, rather
than to the basic thermal drive, ~When computationally feasible, runs
should be méde haéing (lj more horizontal resolution (and possibly more

layers), (2) a larger aspect ratio § , and (3) less magnetic induction,
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i.e.,, a smaller Yalue of R;-—RQL . This would provide ﬁ mérg definitive
test of the baroclinic hypothesis, Other modifications include (4) choos-
ing a dipole as tﬁe initial'seed magnetic field,(S) testing the response
of the model to different conditions on the velocity at the lower boundary,

and (6) explicitly solving for large scale convective modes.



CHAPTER 11. FORMULATION OF THE SPHERICAL HYDROMAGNETIC DYNAMO
MODEL WITH BAROCLINIC HEATING
A

. 2,1, Introduction,

It is now appropriate to state_explicitly the model assump-
tions and develop the mathematical formalism. A rather general set of
equations govérning magnetohydrodynamic flow is simplified by making the
"MHD approximatiop”. In éffect, this filters out relativistic electro-
magnetic phenomena, A rather detailed account of the "MHD approxima-
tion" has been included for the benefit of readers unfamiliar with it,
But the real starting point is the equations for a thin spherical shell

. of rotating, Boussinesq, conducting, nonrelativistic fluid, heated
baroclinically. Some simplification is achieved through scaling
arguments and energetic consistency arguments of the sort familiar to
meteorologists, Lastiy, the boundary conditions are discussed with
emphasis placed upon the electromagnetic boundary conditions, Incident-
ally, cgs electromagnetic units (cgs emu) are adhered to almost exclu-
sively.1
2,2, Basic assumptions,

At the outset, several basic assumptions are made which are
either justifiable for the suﬁ or at least self consistent, The first
seven lead to the standard MHD'equations. The others or their nonmagne-

tic analogues should be familiar to meteorologists,

1In these units, the magnetic permeability 4, of free space is
unity and the dielectric constant £, of free space equals the inverse
square of the speed of light., The magnetic induction B is measured in
gauss, Solar magnetic observations are generally reported in gauss, .
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(i) The fluid is a single compongnt, fully ionized gas, i.e., éontains
free electrous and ;nly one spécies of bare nuclei,

(ii) The fﬁlly ionized gas is ;\plasma, i,e, is essentially electrically
neutral, |

(iii) The fluidrmay be treated as a continuum,

(iv) The electron gas is in thermal equilibrium and is nondegéneraté—.2
(v) The plasma is of the "pigh density" fype°

(vi) The gas motions are nonrelativistic,

(vii) The magnetic permeability and dielectric constant take on the con-
stant values of free space.

(viii) The dynamo region is a thin spherical shell of rotating fluid about
2400 km thick and centered‘rough1§ 0,02 solar radii (14000 km) beneath the
surfacg.

(ix) The fluid in this shell is approximately Boussinesq,

(x) The plasma is in magnetohydrostatic balance in the vertical direction,
In this generalization of ordinary hydrostatic balance, the relevant
pressure is the sum of the hydrodynamic plus "magnetic" pressure,

(x1i) The plasma motions are therumally driven by an externall& imposed
meridional (potential) temperature gradient,

(xii) Relaxation towards the imposed gradient predominates over other non-
adiabatic heating processes such as Joule or viséous heating in the thermo-

dynamic equation,

2Degeneracy occurs in very dense stars as a codsequence of the Pauli
exclusion principle, Electrons (and possibly even ions) with low momenta
are forced into higher momentum regions of phase space, sduaring off the
Maxwell-Boltzmann profile. See Sciuwarzschild (1958),
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Let us elaborate further on these assumptions, For the postu-
lated model depth, hydrogen is roughly 95% ionized and its relative abun-
dance ig & (0.9) by mass.3 Thus, as a first approximation, assumption (i)
is fairly reasonable,

The potential due to a charged particle is essentially neutra-
lized outside a sphere of radius )\d (the Debye shielding distance} by the
distribution of oppositely charged particles, Roughly speaking,

A ~ 4, 7( /h ) , where r7° is the average number density of electrons
and ions and 7o 1s a characteristic temperature, For the postulated

’8 3 4 -6
dynamo region, My~ /0  particles/cm”, To~8xi0 ), and so Ag~F¥xl0 cnm,
Estimating the characteristic length scale of the large scale flow as

10
Ao~/.5%x 10 cm, then /!ol << /l.o . Equivalently, the relaxation time
for cha?ge neutralization is extremely rapid, Therefore the solar gas is
regarded as a plasma,

In a highly\ioni;e& plasma, the dominant collision process is
weak interactions at a distance between electrons.and ions, Based ﬁpon the
above values of N, and T, , Jeffrey (1966) offers the crude estimate
A 5”5X/O‘¢Cm for the effective mean free path of electrons. Clearly,
the plasma is collision dominated and can be described by continuum fluid
properties,

The condition of thermal equilibrium is adopted as a first
approximation, i,e, thermal reiaxation processes on the atomic scale are

filtered out, A simplification of the thermodynamics is thereby achieved,

3Helium is mostly singly ionized and has a relative abundance oi ((0.1)
at r ~0,98Rg . The heavier elements are not stripped of many electrons, but
their abundance is relatively small, The ionization estimates were calculat-
ed from a stellar model of Iben (1966), -
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In any case, there are noé 22322 electrons to excite o; ionize and no chem-
ical reactions in a fully ionized, single component gaé. From.stellar
modél calculations by Schwarzschild (1958), electron degeneracy may also

be neglected in the suA._ Then, following Schwarzschiid, we can ﬁr;te an
ideal gas law as the equation 6f state for the fully ionized gas,
| = : Suppose the.centripetal acceleration and the magnetic part

of the Lorentz force acting on an individual electron were in balance, The
electron would then circle about the local magnetic lines of force, However,'
through an aggregate of weak interactions with other}cﬁarged'particles, the
test electron would in reality be significantly deflected gfter travers-
ing a distance of O( AC), ﬁenoting the spiral or gyro radius by /\3, the
gyro frequency tw'Q@_and the effective collision time by 77 , electron
spiraling is inhibitgd if A, << A;, , or 603_72' << /. 1In this case, the
plasma is a "high density" plasma, The characteristic 1argé scale magnetic
field B° is most likely bounded by 2.5 x 103 gauss while the characteristic
electron density is n e Then from Jeffrey's discussion (1966, p.6) comes
the estilmate Ac//i} < 0'(10_7 for the solar plasma in the postulated
dynamo region,

The characteristic speed v0 of large scale relative motions in
the solar plasma ~0'(104'cm/sec). As voz/c2<<1, ¢ being the speed of light,
the nonrelavivistic approximation is valid for ouf model.4

The thgrmodynamics'oi an electrically conducting medium is
simplified if the magnetic,permeagiiity M and dielectric "constant”" £

are constants, A plasma is called nonmagnetic if AL = g4, . Its effect

4
Also, the flow is definitely subsonic,
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upon magnetic fields is descrited solely in terms of electric currents,
While a conductiﬁg fluid could be a dielectric, the bound charges (as well
aé the free ones) have no dynamic éffect in a nonrelativistic plasmg,
as shown later, Conqequently, the actual value of £ is not too important,
As a first approximation, the free space values ¥, and £, are adopted her_e.,.
They should not fundaményally alter the physics of the dynamo,

T - According to the measurements of Dicke and Goléenberg.(1967L
the surface solar oblateness is only 50 ppm, The ratio of rotational to
gravitational potential is very small at the surface énd should remain
small in the postulated dynamo region centered at r;’O.SSR‘D. The rapid-
ly rotating interior postulated by Dicke (1964) would pregumably be con-
fined to the radiative core, i.e, to r'<0.9Rc,. Finally, the convection
zZone contains only a tiny fraction of the/solar mass (Séhwarzschild, 1958),
Therefore, apparent gravity is apﬁroximately a uniform vector directed
radially inward within a shallow layer of the convection zone centered
at r~d.98 Rg o .

The convection zone is a likely seat of dynamo action, as it

has the important ingredient of relative motions. (on various scales), The

current speculation islthat the magnetic fields do not penetrate much into
the radiative core, But the actual thickness 2D of the dynamo region is
really quite speculative., If the solar horizontal eddy motions were asso-
ciated with giant convection cells, 2D would be comparable to the thickness
R _ of the convection zone, Since R__~0.l1R. to 0,2R s the thin shell

cz . cz (o] (0] .
approximation would be marginal for 2D/RCZA»GK1). But it is very good for

our choice of 2D<<Rcz.
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The Boussinesq approximation makes the model computations more
tractable while filtering out magnetoacoustic waves, In addition, compres-
sfbility is not a necessary ingrediént éf a fluid dynamo, Consistency
requires the characteristic vertical scale to be smaller than thé local
scale height SH° Although D could be large in the lower convection zone
where SH is large, we chose to consider a region closer to the photosphere,

- The assumption of baroclinic thermal forcing is probably the
most ad hoc, but is at least internally consistent, We argued heuristic-
ally in Chapter I that perhaps the convection could set up and maintain a
meridional temperature gradient within a stable layer of the convection
zone, To a certain extent, the model results can be used.as a further
check on the plausibility (as 6pposed to thé validity) of the baroclinic
hypothesis. Other possibilities were also mentioned in Chapter I,

The dynamo region is several optical depths benexth the solar
sﬁrface, where the radiative relaxation time is (10 yrs). Thus, direct
radiative heating is small compared to the tlhermal forcing which is ex-
pressed as a Newtonian copling law, 1If reliable observations of a merid-
ionél temperature gradient afe ever made, a model forcing—pr&file and
thermal coefficient could Ee fit to them. The magnetohydrostatic assump-
tion (x) as well as assumption (xii) will follow from scaling arguments
presented in section 2,5.,2, To summarize, assumptions (i) through (vii)
are probably the most Justifiable for the sun. Assumptions (viii) and (xi)
tend to be ad hoc but internally consistent, while (ix), (x), and (xii)
are reasonable to thé extent that (viii) and (xi) are,

2,3, The equations,

In analogy to ordinary fluid dynamics, the behavior of an elec-

-
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trically conducting fluid is described by a set of paftial differential

equations, identities and boundary conditions,

In an inertial coordinate

system, the relevant partial differential equations and identities are:

\
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In,
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V-5

= Qt+Q, +{Q‘,+62;}:Q tQ., +{Qa,}

"”"’) “-EUnT5) - £ e £5)

(2-1)

(2-2)
(2-3)
(2-4)
(2-5)
(2-6)
(2-7)
(2-8)
(2;9)

(2-10)
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.{_Dj:foé- +lf77‘£z£oE} | _(2-11)

{ H=B/u,-4rM = B/,ao} . (2-12)

The terms in curly brackets are of electromagnetic origin, In order of

appearance, the variables and parameters in these equations are:

575 , the ion mass density of the resting equilibrium atmosphere -

f; , the ion mass density

¥ , the ion velocity )

pi , the ion gas partial pressure

pe ', the electron gas partial pressure

G ’ tgtal gravity

L' , the eddy kinematic viscosity

Z* , the number of elementary charges in each ion ( gfl for protpns)
e , the elementary charge of an electron (1,6 x lo-zoemu)

n, , - the 19n number density

n, , the electron number density

E , the electric field

Yo , the electron vglocity

B , the magnetic induction (often referred to as-the magnetic field)
T; , the effective mean collision time for electron-ion interactions
me‘ , the mass of an electron

i , the velocity of the mass as a,whole (essentially Xi)

f , the total mass density




cp ,
T ’
c
Q ’
Qy ’
Qc, ’
Qi ’
Poo ’
P ’
R ’
0; ,
T, ,
£
&

H ’
D )
q ,.
£° ,
P ’
XU, N
M ’

the

the

the

the

the

the

the
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specific heat capacity at constant pressure

temperature

potential temperature

Newtonian cooling associated with baroclinic forcing
viscous heating
Jjoule heating

latent heating due to ionization

a reference pressure

the

the

the

the

the

the

the

the

the

the

the

the

gas pressure
individual gas constant based upon the mean molecular weight
potential temperature of thé équilibrium atmosphere
temperature of the equilibrium atmosphere

mass density of the equilibrium atmosphere

ythe total current density (charge per unit area per unit time)

magnetic field

displacément

charge density (charge per unit volume)

d&electric constant of free spape -
electric polarization (v#nishes by assumption (vii))
magnetic permeability of free space

magnetization (vanishes by assumption (Qii))

The differential operators are the total time derivative d/dt, the partial

time derivative 9/jf, the gradient V , the divergence Ve , and the curl

VY x

Equation (2-1) is the momentum equation for the mass motion,
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i.e, electrons plusAions. ‘Equation (2~2) is the momentum equation for
electrons alone, The viscous, gravitational, and inertial terms are

neglected in (2-2), and v X Vi s since the electron to ion mass ratio me/mi

is very small, Similgrly, 4 -.“"P,- :ff}‘ x S; . The ion drag on the electrons
in (2-2) represents the rate of momentum excﬁange through (weak) interactions
between ions and electrons, Assuming the electron drag on the ions is'equal
and opposite, there is no net ion-electron drag in (2-1).

It is cohvenient to introduce the following standard defini-

tions for the charge density q, the total current density J} the conduction

%

current ﬂ and the convection current J‘.
F-zen.-e Ne (2-13)
= +
2, —I Jc (2-14)

T =-€ne(Ve-V) (2-15)

.Zc - 3’1[ - (2-16)
The law of partial pressures is .
P=F + % ‘ (2-17)

?

The electrical conducfivity is given by
¢ 7
=Nee 7, /me (2-18)
and the gyro frequency by

U)} = e BO /me (2-19)



'( 1)
E = E+VUxB | (2-20)

-~

is the electric'field measured by an observer moving at the local velocity

v. The momentum equations now simplify to

s

_ S 1 |
dU = - g VPo(f)G +VV Y+ g Ix8 + [7(3E+ §xB)] @m)
J

’ '(yef) . o .
=0 E « [ w}’fé Jx 8 ~ e \77'3,1 (2-22)

The terms in square brackets will be discarded shortly.

| The usual mass continuity equation (2-3) still holds., TWwo
new terms in the thermodynamic equation (2-4)_are joule heating Qo, and
latent heating Qi of ionization.5 The quanfity Qi vanishes in a fully
ionized gas, but could be significant in the weakly ionized photosphere.6

Equation (2-5) is the equation of state, where CZS, T;, |

and f§ ére the thermodynaﬁic variables in a resting atmosphere, Edué—
tions (2-6) through (2-9) are the Maxwell equations. Equation (2-10) ex-
presses 6harge conservation and follows from (2-7) and (2-8). Sinée f

and M vanish in the constitutive relations (2-11) and (2-12), D and H may

be eliminated.

5If the magnetic permeability or electric permittivity were temper-
ature or density dependent, a magnetization or polarization term would be
needed =-~Chu (1959) '

?As an added complication in a-partially ionized gas, additional
equations relate T to‘ne and to the ratio of number densities in adjacent
stages of ionization for each element, The Saha equations would be
appropriate for local thermodynamic equilibrium,
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2.4, The MHD approximation.

MHD thegry is iealiy a fusion of ordinary fluid dynamics and
preMéiwellian (ponrelativistic) electromagnetic theory, In analogy to
meteorological filtering approximations for eliminating sound waves and
" external gravity waves, the MHD apbroximation filters out high frequency

electromagnetic phenomena.

Let us denote the characteristic magnitude$ of YV ,E, B, q,

J, 35’ and jL by a zero subscript, the characteristic time scale by 7
and the characteristic length scale by A, . Observing that 4, =1 and
80 - 1/02 in our system of units, the following scaling estimates are

made in MHD theory:

7; ~ Aa /U; (2~23).

E,~ VL8, . (2-24)
;o ~ E,B, /41T T, (2-25)
Qo~ T, ~ B, SemtA, (2-26)

CART R ' (2-27)

Therefore 2/:3_{ , while all bracketed terms in (2-21), —;—';. 00 /94 in
(2-7), and 9%/9% in (2-10) vanish to O(ve®/c*) << | . To this

order of approximation, equation (2-7) simplifies to

— ! .
J = V" B . (2-28)
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while equation (2-8) may be rewritten as
3’ et V' E . (2-29)

Equations (2—65, (2-9), (2-28) and k2—29) are the preMaxwell equations,
The charge eontinuity equation reduces to . gfﬂg =0 ‘

Now in equation (2-22), }B "a]g_ 77 }’x’_@ /IINQJ’T&‘(‘
while I Ne e o’Vf’e/J'l /VP/J'xBI . The latter rat»io
should be small even before s1gn1f1cagt dynamo action occurs in our
model, since _{ x B #£ 0 initially, Therefore the traditional approximation

of replacing (2-22) by Ohm's law is made,7 i.e.

J=0(E+YxB)

(2-30)

Suppose a primed coordinate system moves at uniform velocity
- 2
y_ o with respect to an unprimed system, where Vo /Cz << [/ . Then

according to electromagnetic theory, the‘equafions

zﬂv
- (Y, x8)/c*z8B (2-31)
,‘v -~
JRJI-gU =J . (2-32)
{
EZTE + gox/_.? (2-33)

relate the primed to the unprimed field variables., For the more compli-

(rel) bat)
If We Te 2 2 OC1) , (2-22) is equivalent to J, = o’(f " +5,, Y

and J,=zo(rwprt) By crel) e“‘*’)-t Wy T (4w r“)"(e cren) s“"’) x}

--Cowlmg (1957a). b is a unit vector parallel to B, E‘b""’ --;‘Fevfe and
a d E bWare split up into vectors parallel and transverse to B. Note

the reduction of currents perpendicular to magnetic field lines and the

emergence of Hall currents, These effects are associated with electron
spiraling, : ,



-9 -

cated case in which £ or A are functions of £ or T , see Chu

(1959), The invariance of the preMaxwell equations (2-6), (2-9), and

(2-28) under the Galilean transformation
3/t =3/ox + U -V  (2-34)

is fairly simple to demhnstrate Sze Shercliff, 1965). However, in order

for equation (2-29) to remain invariant,
/ .2
F=¢-U-JIc . (2-35)

In contrast, the charge q would be invariant under Lorentz transformation
in the nonielativistic limit,

In MHD theory, the magnetic field B may be regarded as the
fundamental quantity. The other electromagnetic'variablés may be elimin-
atqd by substituting (2-6) and (2-28) into the curl of (2-30), using the
identity V. X¥ Vx B = - Vt_@ + V’( V+8) . We thereby obtain the

magnetic induction equation

38/5%= Vx(UxB)+ 1V B 2-36
\
where U =(4Tu, 0”)—'~ is ‘the eddy magnetic diffusivity or resistivity,
Equation (2-9) is still retained.
The current density J can be computed from (2-28), then E
from (2-30). Although equation (2;29) defines q, this equation is not
essential to MHD because q is associated with purely ;frotational E

fields and hence has no dynamic effect upon (2-36),




The magnetic induction equation (as well.as the preMaxwellian
equations) is invariant under a nonrelativistic uniform rotation transfor-
mation. This may be proved by analogy of equation (2-36) to the absolute
vorticity equation, noting that B is virtually the same vector iq both the
rotating and nonrotating coordinate systems, But as noted by Backus (1958;;
the boundary conditioné for B in .a finite domain are different from those |

of curl ¥V

Corresponding to the conventional Reynolds number is the magne-..

tic Reynolds number &, =4oVs/7 . We then have Rm>>l‘ in the postulated
dynamo region of the sun, since A, and 0 are large, If Rm were too
small, the induction term VX(}[X§) coulq not compete with the dissi-
pation term,

2,5, Further refinements and simplifications,

We have already mad2 use of assumptions (i) through (vii), and
to some extent (ix)., The others will now be incorporated into the equa-
tions.8
2.,5,1, The "primitive" equatioﬁs.

In a rotating coordinate system, the - component equations of

motion for a thin spherical shell of Boussinesq fluid are

|

8Simplificafion of (2-4) and. (2-5) hinges in part on the Boussinesgq
approximation, '
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The square brackets in (2¥37) and (2-38) indicate that the terms inside
will be discarded in the magnetohydrostatic appréximation.
" The new symbols are
A , the longitude
Q , the latitud-e
z » the height relative to the ;ower boundary
r , the radius measured from the center of the sun
= r'3, ~¢.8x10"cm ~ Ro

a
x A . ‘ ' .
, , and z, the unit vectors in the A N (@ ,and z directions
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the time coordinate

the uniform fotationa~2;86 x 10‘6 radians/sec (Greenwich convention)

4 2
the uniform apparent solar gravity ~ 2.73 x 10 cm/sec

‘ p'=p—ps, the perturbation (i.e. dynamically active) pressure

u ’

v ?

w ?
A

B ,
N

B ,

B>,

1

the eastward velocity component
the northward velocity component
the vértical velocity component
the eastward magnetic field component
the northward magnetic field component
the vertical magnetic field component

the thin shell horizontal Laplacian operator defined below

A ,A A o .
A=A A +@ A., the operation of the horizontal thin shell Laplacian

on a horizontal vector in terms of the vector components, : 1

A A
A i UA + V@ , the horizontal velocity
Aa @ A . ’
B 0 BAFrR @ , the horizontal magnetic field
Pr - P fs , the perturbation density
! .
T = T - 7} , the perturbation temperature
C?' - & - ng , the perturbation potential temperature

oM

Also, for future reference, we introduce

the velocity stream function
the velocity potential
the magnetic stream function -

the magnetic potential

and the thin shell differential operators

V=2 __

Ta cosd N

L)

A

+3 % , the gradient

-'-

“é\m
o

Y

A
w
a
A
A
Vu .—:q.Acm% +@ o . , the hcrizontal gradient
@
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23’

V'_\_’=eL c”a(%‘i— + %)—kéﬁl the divergence (applied to V)
(32\ Y] ’

the horizontal divergence (applied to X)

A
3.Vxy=; “‘Q(-a-%— 3_'_4_5.5!!) , the horizontal curl (applied to v)
Yy 5 y

The V, , é’ ﬁ‘V" A , and Vu'é operators are defined as follows:

2 2 " :
— / { oY, 3 (cosw 3V . (2-39a
W‘ ‘//,,—- at cosw(cosw I At + 523( ow ( ‘

A &) s 2 A @ A Ar 2 A @
4(8 B)ZA(V B_zsmnwdB B\ w( B.,zsnwdB_ B Y (2-39b)
-( ) “UT & asa 9 Festy) T V. 5+ atcostt OA Icosiy

y.) . | (2-39¢)
%.é(u,v) ER A VHZ¢V) (2-39d)

In accordance with the thin shell approximation (Phillips,
1967), we substituted "a" for r and 3/33' for 8/ in the various dif-
ferential operatofs. Phi;lips (1966) has remarked that the angularv
momentum principle is preserved,

The equilibrium étmOSphere is defined by the equations

/33 + 5§ =0 | (2-40a)

f; = fg R T; | (2-40b)
R .
G, = 75 (f:o/ﬁ.) & (2-40c)

where f;, T,, P . and (¢ are all functions of z only. But in the
Boussinesq approximation,'variations in f} are neglected. 1In (2-37c),

the equilibrium atmosphere contribution was separated out., In (2-37a),
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(2-37b) and (2-37c), J was expressed in terms of B through (2;28), and
the bracketed termé of (2-21) ﬁere discarded. Observe that the curvature
correction terms take a somewhat different form in (2-38) than in (2-37).

-1
Yet, when the scalar energy equation V. 31;/3; +(‘f_7f/(.,f¢) B- ag/df

is formed, the relevant curvature terms cancel each other .
Writing the thin s.hell vector Laplacian V‘z as -YxVY for tl;e solen-
oidal vectors v and B gave rise to the dissipation terﬁs which appear

in (2-37) and (2-38).

The details of quasi—geostraphic scaling in a baroclinic
atmosphere are by now quite familiar and have been reiterated by Gilman
(1967) . Suppréssing the magnetic body force terms, equatiéns (2-37a)
and (2-37b) are the standard horizontal momentum equations. For the
motions of intefest, thé Reynolds number for verticél eddy diffusion,
tk2 aspect ratio, the ratio pf'horizqntal lenéth scale to the radius, and

the (thermal) Rossby number are given respectively by
Re = DQAC( yZRY 3 / - (2-41a)
$=b/4, ~ 1./ 50 - - . (2-41b)
L= Ao/a— ~ 1 /4 ' ‘(2-41c)

R,= 4 l{/fo/\o 21/ (2-41d)

In (2-41d), AU 1is a characteristic (thermal) wind and z& is a charac-
teristic coriolis parameter., Thus, the coriolis term should still provide
a good order of magnitude estimate of the perturbation pressure except

near the equator., The constraint of strict geostrophic balance to lowest
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order is of coursé relaxed, Numerical results suggest that the divergent
part of the motion tends to be rather small, The basic phenomenon of
# baroclinic instability remains .intact, The external thermal forcing
sets up & meridional temperature gradient of comparable magnitude, For
Ro sufficiently small, a wavelike (Rossby) regime is established,
Restoring the magnetic terms again, the only direct source
of magnetic energy is the velocity field, which links the various stages
of the dynamo process, Tﬁe toroidal magnetic field, for example, extracts
its energ& from the horizontal .or vertical shear of u. ' The magnetic
fields could also inhibit baroélinic instability. .Then induction would
becornie weaker and the magnetic energy Qould decay, allowing‘the kinetic
.energy of shearing motions to build up again throﬁgh thermal processes,
At times the J x B term could even deliver magnetic energy to the shear

flow, Introducing the Alfvéa number (7, , the formula

a‘= v,/ (8 fra,s) (2-110)

gives the ratio of inertial to magnetic terms in (2-37) or theAratiO'of
kinetic to magnetic energy, The case &Li=/ corresponds to exact equi-
partition-of magnetic and kinetic energy. Both B0 and Klt are functions
of time, sfrictly speaking’since they are not external parameters, But _
defining Bo and hence (Lz' gs timq averaged values, xLz<< 1 would seem
unreasonable for a taroclinically driven dynamo, The gist of the above
heuristic arguments is that the geostrophic scale factor 1’0’/‘-',@% 'U;Xo

. ]
is still a good order of magnitude estimate for po in the magnetic case,

To justify the magnetohydrostatic approximatibn, consider the
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. .
ratios of terms in (2-37c) for §~1/50, Ro £, @~ 1, and R_2 1. The

scale factors for w &nd Bz are wogjvo and bo.ffBo, respectively,

. ‘ ) 2
Lar' | v, a2 SR << .
3 |- [ T o
. 3 : 2 -2
’B“'Z'%i“%%) £IRa << (2-420)
s
. . ‘2 -1
’VVZW‘ ! 2P l < Jﬁoke << | (2-42¢)
s 9% '
| /\2 B&z / ¢ o -

o8B +8B L3 ~ R A f (2-424d)

’ }§~33. FTl, /) f: éf;z) 2 < -

.Each ratio except the last is ext.remely small, But even Rola‘ 2/2 4,0(/0"),
so the buoyancy term should still be significant in the balance of forces,
Thus pog'/gD is a good order of magnitude estin;ate for fol « All
bracketed terms in (2-37) are hence discarded, giving the law of magneto-

hydrostatic balance

a_%.( f’/f; + (BAI-,L Baz)/g 7T 4o ﬁ) + (F,/fs)} =0 (2-43)

: 2
Since !B} /(3“* sz)/'v Sz<< | , the last term of both (2-37a) and
(2—37~b) is neglected as well, ‘.
To preserve energetic consistency in the sense of Lorenz (1960b),
the terus -_\{0783.-# @-vuf in (2-38c) must be omitted also, Forming
an equation for kinetic plus magnetic energy density, the omitted coupled

2
% .
hydromagnetic terms are "ZH Vi (B /3” Mo f‘- ) from (2-37a) and
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-’ % R %
(2-370) , (W) (414o83) B,; VuBs from (2-37¢) and (B)CV-VB

-!-§’-\?'Mf)'/‘ﬂl'a,,fc

from (2-38c¢). These terms add ub to the divergence expression .' ’ '
Vir {;—%}' (W@H - B"y;)} , after differentiation by parts. This

-simple result also depends upon the ‘equations of mass continuity gnd

magnetic continuity in the form

VeV, + 'auf/Q}: o, (2-44)

"

Vu'gu + 333'/8320 | : (2-45)

Equations (2-38a) and (2-38b) implicitl& contain the expres-
sions (VyYu +9W/1)3)BA and (VY +3w/23) B@ , respectivélj.r. According
to (2-44), both terms vanish, as we héve assumed for the magnetohydrbstatic
case, Curiously enough, in the ordinary hydrostatic casé, the terms
@W/&})BA" and (QW/93%) B‘e would have to be discarded alone in
order to preserve energetic consistency. A scaling inconsistency is then
uﬁavoidable. To minimize its effect, one could explicitly impose the
constraint that the motion be hérizontally nondivergent to 1owést order
as Gilman (1969) did., In the horizontal ﬁagnetic induction equation,
poloidal motions would still twist toroidal magnetic fields.to compiete
the dynamo process and the magnetic energy would st;ll include a contri-
bution from horizontal poloidal magnetic fields.r

Noting that Rm>> 1 for the dynamo, the dissipation terms
should also be dropped frqm (2-38c). In fact, equation (2-38c) may be
digcarded altogéther, provided Ezz/(sﬂxég) is excluded_frOﬁ.the definition
of magnetic energy density. The justification is that 33//@:/55?2( l.

Likewise, w2/2 is excluded from the definition of kinetic energy demnsity,
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Thus, in the magnetohydrostatic approximation, the two redundant.prog-
nostic equations.(2-37c) and (2-38¢c) are replaced by the diagnostic equa-
_ tion (2-43). The redundancies steﬁ from (2-44) and (2-45), i.e., the
solenoidal vector fields v ana B are.each uniquely determined from two
scalars, In terms of the velocity and magnetic étream functions and

potentials,

v, 23xV, ¢+ ¢, (2-46a)
3 . . |
W= "J: V, &, d5% + w(3=0) . (2-46b)
B =
H

3=V, v, +V, ®,, (2-47a)

.

3 ‘pd 2, 3, i
B f*j; ¥ ,.d3 +B(3=0) (2-47b)

2.5.2, The thermodynamics
' . ’ ' %
Quasi-geostrophic theory predicts 7 /7'3;- , T /72' 5 P /f;-
/ .

and (g /(95‘ < < / . VWe again argue heuristically that these results
should carry over to our primitive equation magnetic model. An empir-
ical upper bound of T'/Ts based upoﬂ the strength of the external

. . 2 o 5 o -3 - .
thermal forcing is 10 K/10 K~10 °, Hence we retain the linear-

ized equation of state

07@5: (/-A’/C‘p)ﬁl/f.?"f,/)z = TI/7}. + (/?/C;)P,/% (2_4;)
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Substituting equation (2-48) into the law of magnetohydrostatic balance

and applying the Boussinesq approximation, we obtain

y A2 2
? (9l = _3__ f -+ 3 +/3w ) (2-49)
K2 2%\ f FI72,
‘I» ’ /
r -_£2£ -0 (2-50)

T TR T |
Observing that R/Cp = 2/5 for the sslar atmoshhere, the Boussinesq
approximation is valid provided (3/5')(0/5'”) << | , where S =P /gf
is the local scale height. Equations (2-49) and (2-56) are only margin-

’

ally valid for our model since we chose D/SH = 0,5, Equation (2-50) could

be interpre‘ted as the equation of_state of a liqﬁid whose coefficient of
thérmal expansion is Tsnl.

The nonadiabétic terms in equétion (2-4) are the external
thermal forcing Q = K (e ‘. Cue ! )/@5 ,viscous heating @v=—V(lf-Vz_ﬂ/(;"T,
and Joule heating Q , = -n(By 3)/(‘”’/43-0 7) . Here  is a thérmal ,
forc1ng coefficient in sec -1 and C? (CP, 3) is the specified thermal
forcing, Now Qv /Q 0(1;0 g’f-; ﬁ{) . Guessing that the eddy
magnetic Prandtl number 09 ‘V/(HD) for vertical dlfqu1on—v0(/)
and taking Vo /CP7} V@(lo'f) anda O /Ql'v 3(/0.'- ) ., then
Q« /& ~ 0(/0_2-) . Similarly, Q_
/a/t 2 O( l) and the._e_g_d_}: magnetic Pra‘ndtlt number C{er: V/’Z 30(/).

may be neglected if

Thus the thermodynami¢ equation for the perturbation potential tempera-
ture is

2(0/0,) — _3.7 /5)-wd _ o
£070:) = - 3.7, x %(0/5) wolnd: - K (6-0.)

W)

NN ARACTIN w2 (0/G)]
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The terms in square brackets will vanish in the fwo layer model,’

To summarize, the governing equations for the continuous
theory are the momentum equations (2-37a) and (2-37b). with terms in
square brackets discarded, the magﬂetic induction equations.(2—3£a) and
(2-38b), the mass continuity equation (2-44), the magnetic continuity
equation (2-45), the equation of state (2-49) for vertical magnetohydro-
static balance:, and thé thermodynamic equation (2-51) ., The equation of
state (2-50) merely defines f’,and T( in terms of variables already
computed, |
2,6, Boundary conditions

The boundary conditions complete the formulation of the con-v
tinuous model, With spherical geometry, there are no artificial lateral
boundaries, ¥For-a spherieal ha;ﬁonic type refresentation, no singular-

ities arise at the poles, as explained in section 3.4, .

The true boundary conditions on w at the top and bottom of

the solar dynamo regionnare speculative, The small scale vertical
oscillétions of the photosphere originate in the convection zone, Judg-
ing from recent unpublished dopplergrams of Howard's, lérge scale ver;
tical motions may be weak compared to large scale horizontal motidns,

In any case, we choose the simplest corfditions. The top and bottom .

boundaries wili be regarded as rigid lids, i.e,,

' (2-52)

w=o0 at 30,3,

where z4 is the height of the top boundary, If time dependent oscilla-

tions were specified for w at the top boundary, the behavior below might
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be largely a response to ‘timt forcing. However, we wanted to seé how
the model responds to time-independent baroclinic thermal forcing,

Finally, since such boundary conditions would not filter out external

gravity waves, the time step required for computational stability would

be prohibitively small,

The boundary conditions on u and v are also somewhat ad hoc,

-

We shall assume a no-slip bottom boundary and a free stress top boundary,

Hence
Wz Vvz-0 ot 2%-0 (2-53a)
ad_ _ v _ o i
--;—_5-3'_0./ at 3= 3, (2-53b)

The magnetic boundary conditions are somewhat more complica-
ted, Three electromagnetic Jjump conditions must be satisfied at the
interface between two fluids, irrespective of the electrical conduc-

tivities, These are
l nrj
B - O (2-54)

Lim I = MX.@‘J V(2-55a)

y20 " tan YITU, ¥ _ _
A : .
nX(L[_E+_1_fXB[J):O . (2-56)

LA '
‘Here n is the local normal to the interface, and ¥ 1is the thickness of
" a slab straddling the interface. Also, the superscript n denotes the

vector component parallel to ﬁ and H rJ is the jump of the enclosed
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quantity across the slab., Equation (2-55a) may be regarded as the defin-
ition of the current flow )’g;nn per unit slab length in terms of B.
Proof of the above jump conditions may be found in Jeffrey (1966).

In a perfectly conducting medium ( ¢’= 0 ),

E+VUxB=-0 (2-57)

so that J is finite., Suppose the fluid region of primary interest

lies above n=zO while the region n._<_,,zo is’ a perfect conductor,

Combining (2-56) and (2-57),

Lim, 71 x(

YL)L:

I

where N1, (n-#zg ) signifies the limit is approached from above
(below), ‘Moreover, taking the fluid region n>»z°' as finitely conduct-~

ing (i.e. 0< 0 <c0 ), lim*ﬁxJ= o“limnx (E+VvxB) =0,
: : n- 1, - nazt - - =

by Ohm's law, Invoking (2-28), the correct boundary conditions on the
magnetic field at the perfectly conduéting boundary n = zo are eqﬁation
(2-54).and

/Z'/m/,,(ﬁ X VX .B.) =0 (2-59)

N7,

2]

At the intefface between two finitely conducting fluids
(regions 1 and 2) or a finitely conducting fluid<(l) énd an inéulatér
(2), the boundary condi£ions on the magnetic field are (2-54) and -

| LM"QIJZO ' (2-55b)

o A
Thus B is continuous across the interface, As necurl B involves only

+VxB)=0 (2-58) -
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n .
tangential derivatives, (2-55b) implies that LIJ fl = 0, But if
. ' . ‘
region 2 is an insulator, Jn = 0 there, In particular, #12+J =0,
>
.

taking n—_-z4 at the interface., An immediate consequence is the familiar

condition at an insulating boundary
&m'u_ Jn = O (2-60)
n-y .
If
The perfectly conducting boundary is the only type that
shields the fluid from external electromagnetic fields. Otherwise
one must solve for B both inside and outside the fluid region of inter-
-est, and then match the two solutions at the boundary, i.e. apply (2-54)
and (2-55b),
For the special case in which the exterior region acts like
an insulator ( J=0, O’ finite, and E+ vx B = 0; or J = 0,6"=0, and
E +Vvx Evfinite), the exterior problem and matching problem are relative-

ly simple, Since B is then irrotational as well as solenoidal, the ex-

terior problem consists of the diagnostic equations and boundary conditions
2 :
Vv @m @) (2-61a)
B=V9, (2-61b)

(9__@& ~ Lim Bz N . (2-6lc)

or r:a,-fz*— 237,

e QS L ocr ) _ (2-61d)

Foe “m
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Equation (2-6lc) follows from (2-61b) and the jump condition (2-54),

while (2-61d) guaranteeé that there are no external sources of magnetic ‘
field, The above Neumann boundary value problem has an analytic solution,

If (2—610) has the spherical harmonic expansion Z s & 6m+n mn

-~ 0

(where bo - 0 ), then

@m(h,lﬂ,}",i) Z Z (3:3:’.)(“39 (Zf)y (A t?) (2-62)

Here Y”H_” ( /\ LOJ is the complex spherical harmonic of degree m + n

and rank n defined by equations (3-30c) ai;d (3-36) while Zm:n(t) is

a corresponding spectral coefficient.9 " The feedback into the interior
region completes the matching problem, -‘Applying the jump condition €2-55b),
B (4,93,,2): V, bm , ® (4 w,r,;e) @63

P—)Q‘*}*

In this manner, fhere is no overspecification of variables, Aiso, the

only way to regenerate magnetic fields is ihrough the interior induétion

process,

Finally, what electromagnetic boundary conditions should be
chosen for the solar model? Qualitatively, a perfectly conducting iower
boundary and a- nonconducting upper boundary of the above type are not too
unreasonable, Cowling (1957a) estimates the moléculér resistivity is
several orders of magnitude smaller in the coré than in the photosphére.
Likewise,.the eddy reststivity could be height~dependent, The transition

of conductivity could be fairly sharp corresponding to the rapid increase

9
We note that m corresponds to the number of nodes from pole to pole
while n is the longitudinal wave number,
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of 1onlzed particles with depth.10 We crudely parametérize such a varia-

tion of °2, with depth by subdividing the model into five zones:

(i) an underlying perfectly conducting region in solid body rotat1on

( _\( =9V/2%=0 for }(0) . Since induction is absent from this
region, gyvanishes;for all time ifzgvfzo;initialyy;:i o=y

In particular, B'= 0 for z £ 0. .. , . _ -

(ii) An interface between region (i) and the interior fluid region,

Applying the jump condition (2-54) and noting that lim B =0,

Z>0"
¥
B =0 at %=0 (2-64)
fhen expanding (2-58) ,
A ©
38/33"-“&8/3}-‘-'0. at 3-o (2-65)

These conditioﬁs are analogous to the conditions (2-53b) and (2-52) on %%é
and W at a free stress, -rigid lid boundary,

(iii) The interior region in which 77, is.a finite constant. The,
partial differential equations and identities discussed previously are
‘'solved here,

(iv) A nonconducting interface separating the finitely conducting in-
terior region from the insulator or current free exterior region (v).

The appropriate boundary conditions are given by equations (2-61c) and
(2-63)° The matching conditions (2-54) and (2-55b) are analogous to the
conditions (2-53a) and (2-52) on v ata no-slip, rigid lid; The adéed

complication is the coupling between the interior and exterior regions,

1o, - '
The atoms are also highly ionized in the corona. In the rarified

chromosphere and corona, 7], is a molecular resistivity and %, decreases
upward through the chromosphere and lower corona due to the sharp in-
crease in ionization, :




(v). The exterior region ih which dzﬂ is determined from (2-62),:then B
from (2-61b) if desired. As far as the interior is concerned thodgh,
(2—62) need be evaluateq only at r=atz .

| No boundary‘conditions are required for'C?, since the potential
temperature is to be predicted at a siﬁgle level, Thus the formulation
of the paftial differential equations, identities, and boundary conditions
for the continuous modei is now comBlete. Obviously, analytic solutions
(assuming they exist) to the nonlinear model are unknown, Yet as
suggested earlier, nonlinearity is probably aﬁ important feature of a

reversing dynamo. We simulate it by constructing a numerical model in

Chapter III,
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CHAPTER I1I, THE NUMERICAL TWO LAYER SPECTRAL MODEL

3.1 Introductory Remarks,

| The numerical model combines a two layer vertical representa-
tion with a truncated spectral represeﬂtation on (horizontal) spherical
surfaces, In addition to these aspects, the time differencing scheme
and the sequence of equations to be intggrated are now to be discussed,
In view of the available computer time, the model is chosen to contain
relatively few deérées of freedom, Névertheless, it is hoped a crude
simulation of physical processes is achieved,
3.2, Representation of Vertical Variation by Two Layers,

The continuous z depeﬁdence of interior variables is replaced

by a generalized two‘layer meteorological model, This type of procedure

was used by Gilman (1968), A one layer model would lack three dimensional,

horizontally divergent motions required for dynamo maintenance,

The interior region is represented by five equispaced levels,
Level O corresponds to the lower boundary and level 4 to the upper boun-
dary.‘ Level 2 subdivides‘the interior into a lower and upper layer of
thickness D, whose midpoints are respectively at levels 1 and 3,

Henceforth, a numerical subscript on a variable denotes its
level, The prognostic variables are qzv‘ , ¢:r,, IP,,,I, (Pm.’ ij, cp,,a’ qln,’ q),,s,
(ana heace ¥,, = ui+y@, B, = 83+, Yo, = u,A+v; &, ana B,,= B)4+8'3),
and E&l. The diagnostic variables uq,qg;and B;} are computed from the
mass and magnetic continuity equations, The only other active diagnostici

/ ’
variables are the pressures 1? and 1% . A variable at an intermediate

level is taken as the iinear average of that variable at adjacent levels,
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For example,

u, = (U, + u;)/z | (3-12)
- B::: (B,w-r B:)/Z . (3-1b)
W, =(w +w;),/2 '\ ) | BERCED)
83}: ( B: + B:')/z ' o (3-1d)

Let A denote any variable and (aA/a}), its vertical
[]
derivative evaluated at level i, An off-centered difference scheme is

always employed at the boundaries so that

(aA/&ZlL = (A‘—* Ao)/(’ ;D) | (3-2a)

(04/93), =(A,-A)/(-5D) | (3-2b)

In most circumstances, the following difference schemes are applied to

the interior?
(aA/ag)‘. = (Ag" A, )/D b 1=152,3 (3-2¢)

(agA/a}z); = (#/0*°) A+ A.,-24),i=1,3 (3-2d)

However, to avoid spurious sources of vertically averaged
angular momentum or mean square kinetic and magnetic energy, for our

"boundary conditions on [ , we require that

( B}BA/ay)s = %A -n)/p + %;15 (n-D 5D @9

Here A= _[g." or y“ , although _\{H '~y will vanish due to (3-4b).
H
i 3 .
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No nonlinear instabilities should develop due to the vertical differencing
scheme, i.e., formulae (3-2) and (3-3).

The boundary conditions for the two layer model are
(u,sv;5w;) = (0,0,0) - @-4a)
(uqsu;s Wq) = (u3‘> I/'3 3 O ) (3-4b)
( B, Boa) 3:) = ( 8'850) (3-52)

(9@,,/'3}’)":0:1_} ot .B:' ' (3-5b)

A

- fi -
B, = wepyare &y .) (3-50)

@ . . |
B - I m, (D -
4 - (0-*'}.‘.) BLQ r-»a.+; ) ‘(3 5d)

The conditions (3-4a) through (3-5a) are substituted directly
into the two layer model prognostic and diagnostic equations at levels 1,
2, and 3. The exterior magnetic potential @m is the solution to (2-62),
Zv n o 8 ¥ , A ¢
in which the N are spectral coefficients of ¥ while B* and B.‘
are obtained from (3-5¢) and (3-5d). Ih the perfectly conducting region
below level O, Y:Q = 0. The two layer model is obviously too crude
to resolve boundary layers. In a continuous model, the vertical currents.
at z=z3 would form loops to satisfy (2-60) i.e. lim Jz =0,
: : 3,
L 4

The nonmagnetic case corresponds to the conventional two layer

model of meteorology. The basic features of the generalizéd two layer -
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hydromagnetic model are summarized in Fig, 3.1l.

f TO r = &0
current free region
k3
v $,:= O
Level 4 p LIl b LAl L LLLLLLLLL
‘ a,,:u; V.}:‘U; w',,.-.-o CQ*J:O

Level 3  w, V, B, 8, 7

K

Level 2 ~ W, 8, o,
A o

Level 1 &, V, B " 7’

A A V] o Yy
Level 0 Up=V,zWoz0 B B B,=8 B, =0
77 7 7727 77/ 77 77777/

y=8=0

perfect conducting region

Fig. 3.1. Schematic diagram of the two layer model.

3.3. Interior Equations for the Two Layer Model,

In the interest of efficiency, the Lﬁndquist (1952) linear
transformations of hydromagnetic variables and equations are adopted here.
While apparently providing no new physical insights, these transformations
reduce the number of distinct bilinear produbts in a Boussinesq model., A
net savings of CPU (céntral processing unit) computer time is thereby
achieved, Even with the transformations, roughly 50% of the CPU time was
devoted ‘to bilinear multiplication,

Following Lundquist (1952), the variable transformations are




-Q* = (‘“T'aof;) E ' (3-6)
+ t A

ViV +w 3=VY1*B, (3-7a)

. -1/2

Yy~ =z ¢ 2 (‘f”%ﬁ.) @, (3-7b)
+ 1/2

¢ = ¢vi(¥”‘”0g)— ¢m (3-7c)

Each of equations (3-7a), (3-7b), and (3-7c) is really two equations in

- + - A
5 LP"; ¢ ~; and ¢, @ respectively. Thus

+
one for the variables ¥,V

- + -
Y- =z VB, means Y =V +8B, and ¥ =¥-B, , etc. This

1

notation is used throughout this section, The inverse transformations

are

V =.5(y"+v’) (3-82)

(3-8b)

——

B = .5(#maf) (Y-

¢, = 5P e
/o + _

T LS(uT ) (v -y ) (3-8d)

o, :..‘5((])’".} o) (3-8e)

¢m =. 5(?772/&)?)'/2(4)*— o) (3-81)
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The Lundquist transformaticu of tihe A and ¢ componént hydromagnetic

equations may be written symbolically =as
{C -37a);(2 380,)} {(a 37a) *(4mU AR )}
2-37a);(2- —](2- s o5) o (2-38c (3-9a)

~ (3-9Db)

{(2-378);(2-380)} = { (2-378) 2 Comuy )% o (2-388)]

-t
In particular, (3-9) gives us prognostic equations for u,.r’u ’U_, and v

at levels 1 and 3,
Applying (3-8) and (3-9) to the time derivative terms of (2-37a), (2-37b),

(2-38a) and (2-38b), we have

A 12 A *
3%; %g—} —-)ng—;— + (4T, L) 'Zé%é_} = {g% _} (3-10a)

{ } { V" + (yru, £ l/ :2.@_} zf } (3-10b.)

The corresponding transformations for the curvature correction terms are

[ tas (v g82) s e (us®-veh] —

[ia™ v ouv) gineg, 4 vy’ i%%ﬁ (3-112)

{"gnﬁe(czéaaif’ “4)3‘22} — {' 2(¢ ‘"f'/&§55?+!g}§g§gg} (3-11b)



M .
The symbols Ek'and. € denotoe the kinetic and magnetic energy density

respectively, i.e.
' 2 2
E - (u+v')/2 . (3-12a)
M At @?
E = (B +8 )/(8Tu, £) (3-12b)
Introducing the variable
/
P = 7”/}'; | ‘ (3-13)

the horizontal gradient of total pressure has the transformation

TT4os;

EACE (B‘z+8f"z))50}‘4’I[-%(@EM)} a0

A considerable simplification is achieved by transforming the remaining

nonlinear terms:

Taking into account (3-2¢) and (3-3), we can evaluate the last terms on
the right hand side of equation (3-15) at levels 1 and 3 of the two layer

model, Thus,

— -

T, s ’
—(w "a:‘{,,_)' = ..yr;( _\_/,;3~ - .\(m )/2 D (3-162)

b3

e Ty ¥ 3 '
W) = ) BB, 8, )/ o



From equations (3711) and (3-15),

viav. . oyl c st
- - d - 8 ny _ cos

/Ty Sindg _ V't efy )
o T o cosw - acoswaw( " l-?) (3-17)

Decomposing the coefficients of eddy viscosity and eddy

resistivity into vertical and horizontal coefficients,

-2 :
Vi =40 V (3-182)
-2 .
}Z(%) =4D 7 (3-18D)
Viy =V : (3-18¢)
77(4:) =% (3-18d)
‘Qié and ’qu are the vertical eddy coefficients in units of inverse
time, vhereas the horizontal coefficients 560 and 70” have the same units

as 4 and 7. . The latter two equations are valid under isotropic
conditions, implicitly assumed to exist up to now.1 It is also convenient

to introduce

1 :
Yoy = 5 (Mt 2,,,) . (3119)

Utilizing the above formulas, the hydromagnetic equations for the two

layer model are written as

1

“Later on, Q(”, and 14“, are enhanced to promote selective damping
of the higher harmonics of v and B. Otherwise the horizontal dissipation
terms are negligible since D2/a2<<1. .
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t E

+ -
U, — _ Y _ou _ U’ A, o5 @)  sina
£ acosw%(%' G0 DY -:—(u Ll,‘lf  sina
Wit | 2(p fM N
— e (us-u;) c i 26 +£,) r2A 5nQ Y,
A
+V (U- ) +7Z (B -B*‘) +1{H) 4(u )
Nl ) -
Ty 4 (L : (3-20a)
Ddr uF aui U F a(dicosw) St e
= ]
8;1:3 — & cos® 3'/\3 .-a,cOgsar a(; :-"(UB 3 — 2N

VA —54“-33 (Bo-Bs,) - o 2B +£2)

Y 3 P X % gcxe on\ Vs * 3
A A A

+2Asina V) + ’\g’)(uﬂ-— u—3) .,.?(})(B*,‘ -35’,‘3 +28,‘4)

+ a

+ Y, 4 ( ) ¥ (u,+A (u,”,V;) (3-200)



‘..11 -

o . ;
- ...,J.——u - ..-._J- V (V COS‘?) 2 k__ sin @
5% - ~asm 5K - 2% @5 0 &€ -¢)%=

L
(Y V) - L2 (R E)) — 2 sineu
‘3)(%"3”) (?)(Bx "'B )+ A (L(I J )
F @ —- -
+1€0 4 (u, ,V.‘) . (3-20c)
+ .
- V. QU} CDSUL 2 Sind
%—X:‘!a = - Ei'?%'s'??’é'f‘ a,cosc? 8(69 (f £ )C"I‘?“

w, -
+ %0 tAw(“;: V;) + Y ‘4 (aa Y, ) (3-200)

Each of the above is really two equations in one. The notation was pre-

viously explained in the discussion of equation (3-7a),
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. From equations {2-44), (2-46a), (3-2c), and (3-4), conservation

of mass in the two layer model requires that

Z-YH' + ‘ig?-- = V, Y, -W. -0 (3-21a)

2 .
U‘/z; = - DV, CD’;; (3-21Db)
These equations then imply

Vuz(d),;' + ¢,§) =0 . (3-22a)

We may express 4%f and d%- in terms of a finite number of spherical
| 3 .
n

harmonics )Qnm defined by eqdation (3-30c). Since

2y (mn)mensd v 7 ) .
Va )’m,, - - ks )o;{m ym.m, then CP,,. -+ CP,,s is an arbitrary

unphysical constant. Therefore,

@\;3 - (Dv-' ' (3-22b)
- + ~

(pg - - (@, + @a + @ ) (3-22c)

¢, =0 © (3-238)

y“z = 3xV, %, | (3-23b)

The continuity of magnetic fields in the two-layer model is described by

¥ 4 7 ¥
V,,°B,.'+%& :_’V.,-QHJ-;- (&f____g,__ﬁ__@.) =0 (3-24a)

2 s s .
4 For our purposes, it is convenient not to work exclusively with

the V~ wvariables,
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2 ' :
B2 - D V.. ) . (3-24b)
? 3 2 2 :
B‘f = BZ -— DV” ¢m3 =z - DVH (q)M, + ¢m3) (3-240)

According to (3-23), only the nordivergent part of the motion advects

, .
potential temperature '671 at level 2, in the thermodynamic equation,

/
To be energetically consistent, the vertical advection of sz should be

suppressed, Fortunately the wa} term vanishes anyway, if potAential

temperature is predicted at only one level. Consequently, the

thermodynamics is governed by the prognostic equation

302, = I ?‘_9_2_:3‘/’% - a(?z a%)
X3 , atcose\ IA Z© 20 DA

-(2% 557 3‘” - K (e, 1—0}; ) (3-25)

The diagnostic equation of vertical magnetohydrostatic balance is

' ‘ M M
- D
(%.. F = ._?’s_..@z + Efl - 53 (3-26)

From the nondivergence condition, i.,e,, (3-23b), one can compute

2 _ .
ﬁ7H (6?4-6; ). Inverting this expression and using. (3-26), 6? and 6%

, - l
and hence 72° and ‘13 are determined, The perturbation density and

temperature play a passive role in the model, i.e,,

!

I.?'._ -'.0'2.' -— fz

-

T Xe. T e_E 3-27)
Ts T G 3 (3-20)

/



In the special case B =0,

+ ‘.-
=V -V (3-28a)

<

B, -0 , (3-28b)
Y Z Y =Y, . (3-28¢)
+ - —
¢ = ¢ = ¢\,— (3-284)
at all levels, while
@ = 0 , (3-29)

.Also the set of equations (3-20) wéuld reduce <o fouf (nonmagnetic)
primitive equations.
3.4, The Spectral Representation.

Based upon their mathematical properties on the sphere,
spherical harmonics are a logical class of orthogonal spectral functions
for our spherical model. However we have chosen to work with an equiva-.
lent set of nonorthogonal functions called Robert i“unctions.3 One advan-
tage is that the interaction coefiicients are much simpler, .Computation—
al efficiéncy is an even more important consideration,

Unfortunately, the spherical harmonic spectral method of
Bullard and Gellman (1954) stuitable for their kinematic dynamo model
cannot be extended in an efficient manner to our hydromggnetic equations.

Some of their spectral equations are derived directly from the vertical

3The following references contain useful background material on pro-
perties of spherical harmonics or Robert spectral functions, nonlinear
spectral multiplication (interactions), and/or applications to fluids
problems: Bullard and Gellman (1954), Platzman (1960), and Robert (1965,
196G6), .
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component of the magnefic induction equation, which.we do not retain.

In our model, explicit scalar equations for the horizontal divergence of
magnetic field (and velocity) would play a corresponding role. The num-
ber of nonlinear terms would clearly increase due td_the term by term
differentiation required to obtain these equations.4 Tﬁe spherical harmon-
ic expansion of the meteorological vorticity and horizontal divergence
equations by Kubota (1959) is inéfficient a priori.

The spectral method of Robert (1966) may be applied to the
horizontal projections of the primitive hydromagnetic vector equations.
Since the curl and horizgntal divergence operate on the sum of terms in
the horizontal primitive hydromagnetic equations, addiéiOnal nonlinear
terms are not explicitly generated. Orthogonal truncation is a relatively
efficient linear operation., Roundoff errors are_potentially more
serious for the Robert representation as the resolution is increased.
However, they were very menagable thanks to the relatively low order
spectral resolution and the 60 bit CDC—GéOO word length.

3.4.1. The correspondence between spherical harmonics and Robert
functions,

Ordinary spherical harmonics may be expressed as a series of

trigonometric functions:

m-2x - .n
Ym (A,uw) = (w jﬁm 2tm Sin )cos w cosnA = Qnm cos nA (3-30a)
(@), - n,m 20
.2T n
(’\ @)= ( Z ;i sin w)cos @ SinnA = Pmm SinnA (3-30b)

m=-2I,m

4In a convective model, the magnetohydrostatic approximation should
be dropped But the gas pressure still has to be eliminated by applying
the F-curl curl operator to the vector angular momentum equation, for
example,



(%'J , .
n m-21 I AnA n inh
),’Mn( @) = 2 G Sn & cos" e = P..,€ >mM20 (3-300)

me

Here = J=71 , m and n are integers,(ﬁVQ)7- is the integer part of
n
2, Jsh*n is the associated Legendre polynomial of degree m+n and
n
rank m, and the j&rﬁ:ﬂ" are (normalized) constants. In many studies,

. n.
the name spherical harmonic is reserved for the )4n*n . In analogy, the

n,c n,s :
)ﬁﬂ+’7 and z;fn could be called cosine and sine spherical harmonics,
respectively. But collectively, all three functions will be referred to

as spherical harmonics. These functions are related to the nonorthogonal

"Robert" harmonic functions

n,c . . A
Rm = §in (¢ Cos U COS nA (3-31a)
n,m20
n,§ ™ n
Rm = Sin @ Cos @ Sin nA (3-31b)
n m il inA
Rm = $in @ Cos w € > mZ O (3-31c)

There is in fact a one-tb—one correspondénce between the Y's and R’s,
provided m takes on all values in the range 0,2;4,..o°.°,M and/or
1,3,5,,...°..M—1;Wher? M is even, Equation (3-30) expresses spherical
harmonic functions in ferms of Robert functions, The inverse transfor-
mation.is

O o

L. m n :
§in @ coste =" S Ay o dnsgeny 720 G
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or since the summation is over J only,

c :
”,(5) (-Z”l)'r b4 . n,cg)

— >
m - %:o Am.m-z«f Xn—zJ‘m y N,M20, (-33)

"
If the formula for the jb coefficients is known, the A
m-zr,m mm-2J
can be generated from the y&biz i e
- From (3-32) and (3-30),
(D) ~g (M)~
ffzu" Sp A
0 J0 m,m m-2(z+T), ~2T
. M=-2(I+J) :
*Sin - sin"w cos " = 0 (3-34)

: m
'The only combination of I and J contributing to §/n @ is I=J=0, Hence

n -
Am,m = I/#m"m (3-35a)
(1%57 ( n n

In addition &>
! ;:o =0 MM-ZV m-2(x+T),m-27

summation over all I,J pairs such that I+J = K‘constant and 1= K“(m/2)

zo, where Ze Z denotes

In general, the recursion formula

n

n
: v 3-35b
Am, m-2k = ( %ﬂ-zl( m-27 Am m—zJ’)/;;_z,, m-2K ¢ ‘
J

is valid for K=1,2,3...400 (m/2). For K=1,

g (3-35¢
: A’”>’””' m -2,m J;n, -z m-2 ).

<
The ¢5 notation here is analogous to the "X notation of section 3.




Oonly (3-35a) is ngeded if m=0 or m=l, To obtain the y coefficients of

(3-30), express f} as the product of the normallzatlon factor
[2(2[*’)(1‘")’/4{*")‘] and Rodrigues's formula (2 [’)(—l} (- 2)¥d ("31/ bn

Expanding ("3u) in a b1nom1a1 series,

£ y:
Lfen " A ) Z / 2& £-n
d (-7) %} - ﬁ%ZL:*{—*—%[Z'( R ] (gzz%l—n)’

Finally, setting l=m +n, 2=sin®@, and I=£—k,

I/2 I
y/" — Je[etmrmy+iIm! (-1) Laomen-x)]/!

%5 (3-36)
+m)1 n+ m-2Z}i(men-0)t T}
m-21,m (2nt+m) 2 ( ) (me

where n,m,I > O, The A and y coefficients play an importanﬁ role in the
orthogongl truncation of the Robert representation.
3.4,2, Details of the Kobert spectral method,
Let us now consider the details of the Robert (1965, 1966)
spectral method, All potentialé, stream functions and thermodynamic

scalars are represented by a Robert'polynomial of the type

M Anc “m ”
Z = X 22 (2, cosnn + z *sin nA ) sin™w cos”a (3-37)
n m:o0
AnC ANnS
The Robert spectral harmonics Z and %m are functions of t only,
Ao,s

In our model, M=4 and n=0 or 6, Since Z”:‘ has no physical meaning,

- AO0,8 A0,C
we take Zm = O for all m, Also, Zo =0 for stream functions and po-
tentials, Thus fourteen nontrivial harmonics are left., For convenience,

- - n
we introduce the variable Zm , Where

M —n m n ' : '
Z= 35 Z. §in W €coS @ (3-38)
n =0 m
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— ] _ ANC AN S
z (A, 2) = Z,, €oSnA +Z 7 Sin nA (3-39)

Each vector field, i,e, B, V, V+, and X_ is derivable from
a potential and a stream function, Equation (3-37) is also valid for

vertical vector components, But horizontal vector components have ex-

pansions like

MH Anc
) , m
§ = BT nZ,,,Z(Sm cosnA "'5 5'7’ 7A)S$in @ cos'to (3-40)

Robert (1965) designated Z type variables as true scalars and S type
variables as pseudoscalars,. At certain stages of the calculations,

Robert series of the form

U—.

((] AN,S m n ’
cos @ n m=o CosnA + Uy Sin ’7")5’" & Cos @ (3-41)

may appear, with M‘> M. U can be transformed to a Z type polynomial
however in which m is summed from O to Mg >M. Also, S type polynomials
in which m is summed up to M3)>M are generated, Ultimately, truncation
of m harmonics leads to a new series of the form (3-37),

Keeping track of cos‘QP factors, each Robert séries may be
described by a spectral coefficient matrix, Most of these matrices are
stored in the éomputer as 3x40x2 arrays and a few as 3x10x2 arfays. The
first index corresponds to n, the.second to m, and the third distinguishes
the "c" from the "s" superscript. Schematically, one can think of a

typical 3x40x2 coefficient matrix as a 6x40 matrixg



N
(e}

[/ 225 0 o #5 0
goc gt 0 o0 E¥ O
n 6 . . 26,5 .
) : z, . . zZ, :
ki foc £ 110
o . . L
© 0 0o o o0 ©
AO,S

The fourth column contains the trivial coefficients Z m . The third

and sixth columns may be ignored unless an additional longitudinal wave

. . . A0, Ao0,c AD.C A6,C AEC A6,C
number is permitted., In.practice ’ LU Rt P g A TP
P ! Z?-'i 4 zzs 3 237 ) 152)2’13, z 39
46,5 46,8 46,8

and Z 6 i3 Y Z, remain dormant too., These locations were kept to

“e

allow enhanced resolution with a bare minimgm of program modifications,

The effect of each mathematiéal operation is to transform
one array of spectral coefficients into another array, 'The notation
Z-37Z' will denote a tfansformatien from the spectral coefficient array
{2} of Z to the array {2'} of 2'. Z-Z'/cos® would indicate the new
Robert polynomial Z' is to be formally divided by cos @ .,

Armed with the follbwing transformation algorithms for the
various operators, one can solve the model equations. These algorithms
are equivalent to the ones given by Robert (1966) excebt for ( x ). We
discuss them here for the sake of completeness, . .
(i) addition: Like array elements are added as in ordinary matrix addi- .
tion.

(ii) scalar multiplication: Each element of the spectral coefficient

array is multiplied by the scalar,

I 2
(iii) Qcos@ aA differentiation: The transformation is of the type




-129-

Z->%'/cos (2 . Clearly,

A< ANS - ' )

(), = 2z, . t (3-43a)
Al n;s 4 c ’

(7 )m = -2Z, (3-43b)

! o .
(iv) & P& differentiation: The transformation is also of the type

Z->7Z'/cos <« . After applying. -é:-é—a@ to (3-38), rearranging terms,

. . =" =N _ =N __ .
and noting tnat Z_, = ZMH = E,, = O , we obtain

Al )(S) , . An, c
( ) = (- mM)( MM-H)(M"‘)Z @ - é;,,},,)(m+n.—l);_~’n‘ ) (3-44)

- J O, mlimz. .
m=0 to M+l. m, m, = 1,m=nm, is the Kronecker delta.

(v) Vertical differentiation: >Using the finite difference operators,

this is just a combination of matrix addition and scalar multiplication,

‘(vi) The Laplacian V,,,z: Applying (2-39a) to a particular term of the

Robert polynomial (3-38), we obtain

Zn m-2 : l m n
Zm m(m-1) Sin w(l—j.S‘inzdz)-]_'n?'+(n+2)m+(m+l)n]5:'n W )cos @.

at

After all contributions are added,a new Robert polynomial zZ!is defined by

(7 /),(;, = —-»—(mm)(mmﬂ)f 5

(m+l)(m+2)(/ S ,,,)(I M_,)Z "6 (3-45)

-2 ' )
The factor cos " (@ in the Laplacian operator is effectively removable,

- -]
(vii) The inverse Laplacian (VHZ) : Interchanging the role of the

primed and unpriméd coefficients in (3-45) yields the recursion formula




c

n r?(ﬂ
A1 (S) )
(Z) - (m+l)()r'+2)(l- m M/\/ J‘m M-J) (7.1,)
m - . . (m+n)(m+n+l) m+2
2 c
a AN
(min){(m+n+1) Zm (3-46)
C -
2 -’ A n;(s)
m=0 to M m+n7{0 tor (V, ) (z') is calculated first and m is
= ] ’ H ° M .
successively decremented by one, Since Z' is either a stream function or
A 0,C
potential, (Z°' ) is an unphysical, arbitrary constant. To avoid a
A 0,C
singularity in (3-46) for myn = 0, (Z°' ) is set equal to zero,

(viii) Bilinear nultiplication of two Robert series: Let the two poly-

nomials be X and Z, and the product Z?',

A nS

2= Ze X - xx3( A"Ccosm + Z  Sin nA)
—oJé-on—a»ro m
A A[,S' m_'_& ek
()(’4é cos Pr + X,& smfr) sin @ cos” W (3-47)

For generality, no restrictions are placed upon the upper summation limits,

From well-known trigonometric identities,
an,C

N : WA . als .
(Z Cos N\ + z:’~g smnz\)-(Xﬁ cos Ix + X, sin ZA)

"*ft: +12$ -
[:W cosS ()N + W §in.(nth)A

+ V{m. cos(n-DA  + W ,.& Sin In-£I A ] (3-48)

where we have introduced
anl’c A nc [;C an,S ALS
mh T

(3-49a)

W
%5:
|

N
w
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n+l,S A Z ) ANns A [’C .
ik = Z, "X £ T 2, X, (3-49b)
77"[3‘ n,c “l, AnS 24 4,5 .
Wm~£ = ?m .X% X& : (3-49c¢)
n-£2,5 4 A ¢
W;m& = S9n (n,Z) (“ Z k :’ Xﬁ ) (3-49d)
' {1, n>t |
Sgnn, £) = o, n=4 | (3-50)
‘ -1 5, N« :

In order to obtain a Robert series of the correct form, the power of

cos®® nust equal the longitudinal wave number for each term. Fortunately,

et ﬂ _ In-21 mintnd) . mm(n,f) 2i :
cos’ @ = cos @ > b, Sin"u (3-51)
;=0
min(n, £)
where bz' are coefficients of the binomial expansion of
2 mm(n,l) '
(l1-sin @) and
4 n=/t |
min(mt) = ) _
) n, n<lt (3-52)

Hence the product is

' f,éc.
= %% 220 W cosen oA

n=0 f=0 m=0
n+f,$’ -I-% n+l
+ MZm% S'I'ﬂ(nf'Z)/\] 5/-nm c.e_ cos &
min(n, L) : ‘
..,Z c
D IPIP: 5 (-
n [ S min(nf) oy In-£|

4 W% sin|n-LIA f: Sin. & of W (353

The new coefficients of the transformation ZeX-»Z' are
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2 D =g w i wiP e i

zm-m m=o g=n:n N=0
4 £=n

,( min(n )
S Wb

A
. T 2 f=m' m=o izo f£=nin"n=o0
-(m+2i) o%£f<n -

min(n,{)

If either Z or X has any factor of cos(f in the denominator, Z' will be
divided by the product of such factors.

Bilinear multiplication is the most time consuming computér
operation. Certain simplifications are possible. Each product in (3-49)

appears twice but need be computed only on¢e, and any product involving

;‘ O,S . A D,
Zm or XJ& may be discarded. Then too, it is more efficient to
n+f,c nedc n-£,c
compute just W than - ? ? when n = 0. I
P J mife = (I":;_, 2 T T/V:m % ) +.E The

factor 0.5 can be incorporated into the binomial coefficients to save more
'time. Finally, truncation over ﬂ can be imposed as a selection rule since
the Robert . harmonics are orthogonal with respect to n over the spﬁere.
More specifically, if n® = n-fﬂ cn-xﬁ=:]n—l”ié not in the system, terms
which would contriﬁute to these harmonic; are discarded.

In our model, n=0 and n=6 are the only longitudinal wave num-
bers. The self-interaction of two longitudinally symmetric modes (n=f¥0)
generates another symmetric mdde. Similarly, the self-interaction of
two n=6 harmonics modifies the symmefric modes. The contribution n~|:2=12
.is discarded in accordance with the truncation selectioﬂ rule. Finally,
the interaction of an n=0 harmonic with an n=6 hafmonic affects wave num-
ber .6.

2 .
{1X) Division by cos ¢ in nonlinear products: Consider the generalized

horizontal advection terus (eg O.COSG%')_\L‘P.‘T@M and curvature correction
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terms in (3-20) plus the horizontal advection of potential temperature
in (3-25). These nonlinear terms can be decomposed into a combination

of Jacobians and scalar products multiplied by a constant or by sin & .

' K eink = culrvit) g
& (’) 0 .{ n - + Vi 7]
v “:‘“( o> p) end & F a7

For examples, _z

[V V@u- 14 2@ \AS +J;&(____,<p‘r)]5m&

Symbolically, each member of the decomposition has the form Z"/COSZLQ s

where
/1 n,cC RU)
ZZ B 7 CoS N\ + (é‘ ')m Sin nA] sinmce COsn(,e (3-55)

is a true scalar, Robert (1966) proved that
" 2 / : .
cosw = Z (3-56)
Z' being another true scalar, Since (3~56) holds for each Jacobian or
scalar product, it also holds for a sum of them., It is more efficient to
group nonlinear terms as an implicit suﬁ of scalar products and Jaéobians,

k]
i.e,, a sum of Z'' s, Denoting such a sum by Z,

2 ' / : ’
Z/cos & —> Z . (3-57)
Whenever (3-57) holds for a variable Z, Z is said to be
“ .
"exactly divisible by coszLQ . Division by 0032(2 is equivalent to
multiplication by the infinite binomial series (1+sin%m +sinth + eo0se)a
The transformation algorithm is

A @ oan,d
(Z = ZZZ : y | - (3-58)

i:o m-2i

Ja@ is the Jacobian operator in ﬁfherical coordinates, not to
be confused with the current vector J = (J° , B , 3%,
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m=0 to MAX. A necessary and sufficient condition for exact divisibility

by cos zuz is

MAX —1
(%), c @E) . |
A Ny(S) Z A V(s

) Z = Z . = O ‘ (3-59)

1=0 ":o 27+

c
. . e A,”"S) . .

Otherwise, an infinite number of (Z %n coefficients would be genera-

ted, Program checks cqnfirmed the validity of (3-59) to 12 decimal places
on the CDC-6600 computer, when transformation (3-58) was applied.

(X) Orthogonal truncation of Robert harmonics: Due to the mutual :ortho-

gonality of spherical harmonic functions over the sphere, truncation
over m and n is automatically orthogonal. For Robert functions, this is

true for truncation over n only. Whereas

¢umrqhm@

j;? Rn CRigdS Z O for all n, £, m, and % we have

L4 l +4€ +E
f Rn (S) mdS ¢ OCp,B L—l':/z sin” @ cos @ d@ £O

if n#l and m+k is even., The only operator to generate new n harmonics is
bilinear multiplication. These are discarded. To make the truncation
orthogonal o;er m:

(a) Evaluate the right side of (3-25) and the set (3-20), retaining the
generated array elements for n=0, 6 and all m.

(b) Apply the g-vzx and V- operators7to the sef £3-20). This pro-

2 + 2, -
duces equations for the true scalars kP,*, Vuz ‘}’3 R v, 4)3 .

7 . .
The transformations for these operators are a combination of (3-43)
(3-44) and (3-58). Exact divisibility by cos®w@ was verified,
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(c) Truansform the Robert reprcsentation o the right side of these equa-~
tions and of (3-25) to a sphefical harmonic representation,‘using'(3~32)
and (3-35). The projection of Robert functions onto Y:l’c or Y':'g are
retained only for 0 m<M, invoking the mutual orthogonality of the Y's,
(d) Transform the truncated spherical harmonic series back to a Robert
series using (3-30) and (3-36).

The above truncation requires relatively little CPU time be-
cause it is carried out only at the very end. The actual procedure was to
compute fhe y coefficients from (3-36) and then the A's from (3—35) once
and for all,and/read them into the computer as data, The computations were
performed on the CDC-6600- computer in double precision to guarantee.accur4
acy of the first 60 bits, As a check on these coefficients, an arbitrary
set of Robert coefficients was transformed without truncation to a set
of spherical harmonic coefficients. Then the inverse transfoxmétion was
takeq. The resuit was the original set of coefficients, Some of the'
lower order transformations were hand calculated as a second check-.8
Thirdly, the global mean of an arbitrary true scalar in the Robert repre--
sentation proved to be invariant under orthogonal truncation as it siaould,
In particular, this is true for the mean square magnetic eunergy, . ,
vorticity or for each term in the vorticity equation.

Incidentally, checks éf the various othér operators. were made
also, Sample arrays along with their transformations were suppiied by
André Robert, although for somewhat different values of m and ﬁ. Some

“hand-calculations and the identity transformation (v;1)"{vmz} were

likewise performed,

g J—’ (yn,C)?.
Inadvertently, &% "\ fmen dS =87 rather the 4T , for n=0,
But this does not affect the validity of the truncation technique.
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Despite the cos—lué factor, the Robert. series (3-40) for
horizontal vector éomponents has no gingularities at the poles. Due to
the cosv1L2 factor in the numerator, only the n=0 harmonics could pos-
sibl& be singular, Now the vector components are obtained by differen-
tiation of stream functions and potentials with respect to A and (2 .,

!

' o
Observing from (3-43) that the & Cosd oA oOperator generates no con-

tribution to the zonal average ¢S of S,

<S> = abady| (=) i-F) Omr 1) 20

A0,C,

m
- (= )m-E | sme e

according to (3—-44)° At the poles, sin@®@ = ¥1 for all m. The series
(3-60) can be decomposed into a summation over'even m and over odd m
there, It could be showvn that each of these summations and hence the
wﬁole series for {S) cos (g vanishes. Then by application of LaHospitale's
rule, 8> =0 at =*90°, Likewise <'a."§%> is finite and the n=1
component of 7£7€§5% -vanishes at the poles, More generally, no explicit
boundary conditions are needed there, for either the Robert or spherical
harmonic representations., Taking stream functions and potentials as the
fundamental variables, the vectors derived from them behave properly at
the poles, |

To summarize the Robert procedure, the evaluation of the equa-
tions éonsists of a sequence of transformations on spectral coeff;cients.

‘The operators are applied directly to the equations of section 3, Before

time differentiation, each equation takes the form i
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(©) an,c ¢V A‘nC () ,\n g (:}A 7,8
g (72 - )cosn/\ + ( )5177)7/9

” m :
® cos W Sn @ = O (3-61)

The symbol (0) corresponds to either the time de;ivative of a prognostic
spectral coefficient or-a diagnostic spectral coefficient on the left side
of an eqﬁation. The synbol (1) denotes sumniation over all terms on -the
right side of the equation., By the linear independence of RobertAfunctions,

the spectral equation analogue of (3-61) drops out effortlessly, i.e.,

C
(O)é\ n, (s) UWamn, (g)

- = Zm , OLmLi; n=0,6 (3-62)

InQparticular, each ordinary differential equation contains the time
derivative-of but a-single speetral coefficient,
3.5, The Time ﬁifferencing Scheme,

There are 9 prognostic variables and 15 spectral coéfficients
per variable (including the n=0, m=0 coefficient), Hence a set of 135
coupled ordinary differential equations are to be solved simul taneously,
The equations are integrated in time numerically.

Lilly (1965) tested various explicit finite time differencing
schemes on a four component set of nonlinear hydrodynamic. spectral egua—
tions, The expansion functions were elementary sines and cosines, appro-
priate to cartesian geometry. As to stability characteris&ics,'tﬁé
.Adams;Bashforth two-step procedure ranked high, being decidedly superior
" to the centered difference scheme, Furtﬁermore, of the leading contenders,

it was the simplest. Incidentally, Gilman (1969) had good success with
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the Adams-Bashforth scheme for a hydromagnetic dynamo problem., On these
grounds, it is employed in this investigation,

The Adams-Bashforth algorithm for integrating the ordinary

differential equation dXAjt:F is

_ / _
Xjﬂ = Xz’ + .?:_AZ‘(3/-;. I;.'_I) (3-63)

Here j=1,2,3,.c..04.0.. 5, At is the time step, and the subscript j de-
notes evaluation at time t=j At, For j=0, the single step Euler ;orward

differencing scheme

X oy X + AZF (3-64)

/ o o

is used, The storage requirements of the integration procedure are not

very demanding, and (3-63) uses relatively little computer time compared
; ‘o)‘\”a(f')

to nonlinear multiplication, In practice, X is an array of Z  ,,  coef-

ficients,

The actual choice of At wés governed by the phase speed of the’
fastest propagating wave, Of all the wave types not filtered out, inter-
nal gravity waves apparently have the edge. An estimate of their phase

i An6;_ ¥ Y isti 7
speed is c}~ 306)57945}~L6ﬂ0cm/sec. Heuristic arguments based upon the
I'd
magnitude of GQ and anticipated magnitude of the Alfvén number suggest

) L2y
hydromagnetic waves propagate slower, A,t':{';( z) was rather close to
the cutoff between computationally stable and unstable solutions,. -There-
fore, we set At = -L(?.E) , corresponding to 50 time steps per rotation,

so\ .
- 3.,6. Sequence of Equations to be Solved,

To conclude this chapter, we outline in effect how the problem

was posed,
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A, Noumagnetic case
(i) Set B = 0 to let a wnonmagnetic flow to develop.
(ii) Prior to t=0, ‘["‘,'_ = LP‘G = Q)‘,' = 4)“3 = z’=o
(iii) At t=0, specify various required constants and pondimensional
parameters, Then injéct small (random) perturbations (n=6) into 0’2, .
(iv) Solve (3-22b), i.e. set ¢"3: - d,u; :
(v) Evaluate Q',U: ,us,v;,qz, and V;_ from (2-46a). ﬂ‘hey are initially zero,

P
. and~f3 from (3-12a), Initially f”:o,,

(vi) Compute e
(vii) Soive (3-21b) for ufi . IU; =0 at t=0,
(viii) Solve (3-26) with E:AE E:E 0 for the (truncated) true scalar
6% -(ﬁ . Initially,ﬁﬁléa will be the only non-vanishing term in (3-20).
After time t= At, rotational motions will be generated also,
(ix) Apply the V: operator to 6’3-6,’
(¥x) Solve the 'ﬁonmagnetic version of the equétion set (3-20), making the
substitutions (3-28a) through (3-28d).

a, Compute each term on thé right except the horizontél pres-
sure gradient term and the horizontal viscous dissipation term,

| b, For each equation, add all the computed terms,

c.~Apply the 3- V’x and V,* operators to (3-20), incorpora-

ting V,V, (Vu wu') oy Vi (V V’:r), o Vi (V 4>~J‘) and V¥, (Vu ) .

d, Orthogonally truncate the spectral coefficients, Analogous

to (3-62) is a set of spectral equations

. o
((O)é\n,(;)) _ (‘0)271’(3)

m g+ m j

(1) A n,(s) (ran
{ ( ) ( m :(S)) ; j_?. / (3-62)*

+ .'_Ar

j_
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e, The condition Vn‘.ya —~0O is equivalent to the initial
) 2 .

value problem
2 4 .
w = VH (Q,;'I' d),s) ' | (3-65a)
2 ’ .
aw/&,t:O’:VH(qjv‘dj)+““ (3-65b)

W =0 at t=0 . (3-65¢)

Equation (3-65c) is satisfied by our initial conditions, Equation (3-65b)
is obtained by adding the divergence equations at levels 1 and 3, and is
solved for %2(634.@) . With the aid of step (i#), truncated expres-
sions for szé? and szdg are obtained, '

f. The spectral differential equations for f;zqg;,vazqu and
sz4kc are marched ahead one time step., For each of the three equations
in the space domain, -arrays of truncated spectral coefficients mz::,’(g)
of (3-62) are needed for time steps j and j-1. The redundant equation
for VL2¢%3 is discarded,

(xi) Solve the thermédynamic eqﬁatibn (3-25), Since (9{ is a true scalar,
the terms on the right are first evaluated, then added, andifinally
truncated,
(xii) Invert the Laplacians to obtain L'UV'.‘S (/’,,.3, and tpt,; ;t t=(j+1) At,
13’ and fglcould also be retrieved, if desired., Return to step (iv) and
recycle,

B, ﬂagnetic case’

(i) After baroclinic disturbances and self-consistent mean flow patterns

The numbering of steps in the magnetic and nonmagnetic cases
corresponds as much as possible,
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for specified thermal forcing profiles have developed,.small magnetic
‘ . + - + -

perturbations are introduced into Y¥,, ¥ , W, , and ‘Ps . These per-

turbations should affect UQ" but not (Pv,. Alternatively, a small

zonally symmetric magnetic field may be introduced.,. Resume integration,

. - + . - +
(iv) Solve the equation ¢3 =-() +0, +O,).
+ ,,t .-,
(v) From (2-46a), (2-47a), (3-1) and (3—-8)) evaluate W, , Lla s u, R Lli s
+ - + - A A w (7
V,, Vi, V:n Vs 3 Uy Ug, Us, Vi Va, Véa B, By, B 333 ’
A A @ N
By Bx,y Bu,yand By -
. K )
(vi) Compute £ and €& from (3-12) at levels 1 and 3,
(vii) With assistance from the inverse Lundquist transformations (3-8),
% ' % _
solve (3-21b) for W, , (3-24b) for B,° , and (3-24c) for B,' . Initially
F_opd. . . ¥ 3 .
Bz - B,i_ = 0 since tb,.,.: ¢m3 -0. W;,Bz’and B,‘_ are all truncated true
scalars, Next; convert BJ? to a spherical harmonic representation, In
terms of spherical harmonics, the solution to the Neumann boundary value
problem for the exterior region, i.e, to equations (2-6la), (3-5b) , and
(2-61d) is

§,= 5557, (s, )(%2)

n=06 m=0 4 M7

C
ntl n,(s)

m+n (3-66)

Log
~

3.7 (5) . . . -
Here, (B,) . is the cosine (sine) spherical harmonic spectral coef-

ficient of degree m4n and rank n, After transforming 1‘”1_* gjyﬁ to a
r+a+3
A @ ¥
Robert representation,l3? and B“ may be computed fromn (3-5c) and (3-5d),
(viii) Solve (3-26) with the magnetic terms left in for §3 - 6:: .

(ix) Compute Vuz (63 -G ).
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(x) Use the same basic .procedure as in the nonmagnetic case on.the
eight Lundquist equations of (3-20). In step (x)-a., there are now two

horizdntal dissipation terms. In step (x)-c., add the horizontal dissi-

-,.

- 2 2, -
pation terms 4 V, (V.2 ¢, 7)., «ceeeeieiio and Vi,V (V0 ) .

In step (x)-e., W= VH"(Q++([?3"+¢’-+ ¢3—) . Equation (3-65b) is now the sum

of four equations. In step (x)-%f., the spectral differential equations

+

2 2~ 2, t 2 - 2 4+ 2,- 2,4
for\(,([ﬂ,%q{,quJa)Vn%,V“(n , Va @, andVH4>3 are marched
2 - .
ahead one time step. The redundant equation for v; ¢2 is discarded.
. , .
(xi) Solve (3-25) for GQ_ exactly as in the nonmagnetic case,

. . LAY S L +
(xii) Ilixvert the above Laplacians. U{ R l/'/ ) t/é , %’ (D, , 4)‘ and 4’3 are

then known at the new time (j+1)At.. Return to step (iv) and recycle,
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CHAPTER IV. FORMULATION OF A "CORRECTLY TRUNCATED" ANGULAR

MOMENTUM BALANCE.

4.1, Intfoductian.

An "angular momentum balance" is useful for describing
the maintenance of model angular velocity profiles. With thisl
motivation, we formulate the zonally averaged angular momentum
equations (A.M.E.). When the truncated spectral representation
is rntroéuced, the time averaged A.M.E. do not balance prior to
truncation. Also, if these equations are truncated directly, implicit
boundary conditions at the poles could be violated. This effect is
related to the recursion relatiorships for the derivativesiof LeGendre
functions (spherical harmonics).A In practice, inadequate resolution
is a necessary condition for imbalance here. The implicit boundary:
conditions and hence a self-consistent 12331 angular momentum
balance are restored by 'correct truncation". This is in accord
with the method of truncation at each time step. It consists of
differentiating the A.M.E., orthogonally truncating the resulting
vorticity equation, and then.iptegrating. The surface inteérals of
the time éveraged A.M.E. do balance and the balance is invariant uﬁder
"correct truncation" as shown by Robert (1570). In our low resolution
model, local phase distortion due tb truncation can be severe, for |
some terms.
4.2, The Angﬁlar Momentum Equations.

The instantaneous zonally averaged angulaf momentum‘equations

at level 1 and 3 of our spherical, thin shell, two layer model are
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2. (<8, )(B “Sa cose

9772 = (zasine)(a COSUY D)+

a.cswaw 7
(IQ) (24) Ll.’r F
l 8" B Da coste 0. CoS &
+ g 3§ wa)f + 7#5“ <87

(3a)

a cos & | / 2
M b7, 550 <B > - mgg?‘(<“,>(’¢[>a COSC?).
s0) . (6a)

I o
Hmaw(< "U;>Q COS(,y.. aéosco<u w > a.éosw “z><“”z>
(ra) SRS (3)

V(( ) - 3<y, ))acosw .,cv A(<u > 0)a cose  (y.1)

+
(3.) (100 (/ 1a)

| 3%2 ~ B ) «@
a;t.? (2(/[ SIHCP)(G. 6‘056?(?)'})4. TnT 5% << 3><B Da Cog

§ 7T L,

(16) (24) 5

1 2(<B; B, Q o520 Q cos @ A %
+ a cosw ace( q_ﬂ";[>)o lfﬂ'l{ogD <Bz><Bz >
(26) .
»* *®

Q. cos @ BA Ba> + QCOSCI <8 B >
YT Uy D say " . w4, D

/
—- a;cos«’a“’ ((“3)(?/')(1.@569 ~ TS B ((d U}a cosm)

(6b)
+ Q.%Qigi(uz uf2 > + a.go:ce <?‘:><Nf£>
- (3) . ()

+ G)((u 3 - u ))a cosy + ’V A ({(13) o)a cos@ (4-2)
: (108) (18)

an
Here the symbol { » denotes the zonal average 5",;‘~f ( YdA
- (]

vhile the asterisk ¥ denotes & departure from the zonal average.
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%Z,, = <u‘.>a-cosw. is the zonally averaged ,a.ng’ula?r-momentum at level i.
To obtain equations (4-1) and (4-2), we first multiply the two layer
model Anélogue of gquation (2-37a) by a.cos® and take the zonal average..
We then differentiate by parts,' utilizing the toi) a.nd bottom boundary
eonditions in the usual manner,
All terms in equations (4-1) and (L4-2) have been labeled.

The sé.me label was assigned‘to terms which appear in both equations, but
with opposite signs. Those terms cancel out in the vertically averaged

angular momentum talance

LA |2 RV SR INEY
b

a cosw are 874, S

o B/\* @™ B >

T _y [ < "' B a_cos (0:}
Q coswaw $TI‘A 55

+gair2{os&<g 13 ) zacwwawK<“><V>+<u ><zf>)acoscé’]
* x x ‘
—W%{( U, v, + cz,*u; ) a coszce] - 1{”04,)@ cosdp
‘\{:”[le(«lz)a cos®) — 2 sin VH'2< ‘l’.;;):’ (4=3)

for ')?22 = (""2,4— ", )2 .

The various terms in equations (%) and (L-2) are summarized
in Table k,1, Most of the nonmagnetic terms are quite familiar to
meterorologists., For example, at midlatitudes in the terrestrial

atmosphere, a sizable peréentage of the net angular momentum transport
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Table h,1 éatalogue of Terms in the Angular Momentum Balance Equations

Category ‘Subelass : " Label
A, Coriolis Torque ' , (1a), (1b)

B. Maxwell stresses

horizontal, axisymmetric (2a), (2v)

N ﬁorizon‘bé.l, eddyl (3a), (3}?)‘
vertical, axisymmetric (%)
vertical, eddy (5a), (5b)

c. Reynplas_stresses
o horizontal, axisymmetric (6a), (6v)
horizontal, eddy (7a), (Tb)
vertical, eddy (8)
vertical, axisymmetric (9)
D. Frictional torque

. vertical coupling (10a), (10Db)

horizontal coupling ‘ (11a), (lib)

Lme notation "eddy" indicates that the zonal average is taken of
a product of asymmetric factors,



across latitude circles is accomplished by horizontal éddy motion, i.e.
by term (7Tb). Incidentally, the vertically averaged coriolis torque
venishes because <V, Y= - <V; ).

There are two possible sources or sinks of angular momentum
for the fluid region 0<3<3,. The first is a net frictional torque T;
per unit ‘ma.ss equal to 1/2 'the' sum of terms (10a), (10v), (1la), and

(11v). Thus

”.f [‘,,(<“a>~3<a.>)+ VANCCATRURY

A A . ]
+ “(7”) A ((Q.>’0) 1 ‘\{;‘) A (<(L3>’0)}Q,3COSZCP d‘? (4=1)

“where ‘({,, has .the same units as ‘V-‘-‘ 0216 4, With the help of equation

y
(3-39),

o
Ay 0) = A () = g'fa'%[amaw(@wW)] (4-5)

Then substituting equation (4-5) into (4-4) and integrating the last two

terms by parts,

w2

T = ﬁ( U yacosw)cos @ de — mﬁ((tl )a.cosw)coswdcé’
F - -1/ a:* -1T/2
2
71"‘/1 . »
— 1 «((t( Ya cos & ) oS ¢ @ . ~ (4-6)
=743

The first term on the right side of (4-6) is usually associated with the

net external torque (per unit mass) exerted by the rigidly rotating lower
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boundary at z=0 upon the fluid rggion z >0, The last fwo terms ére due
to the spherical (thin shell) geométry and resemble the first in iorm.
They vanish only if the horizontal dissipation is neglected; of céurse
for the isotropic case (&ZD::1C); the second term is clearly negligible
compared to fhe first, whereas the third term is small prdvided
’ f <u3>coséw dw / f(u!‘}coszw o/col << a,z/Dz_ For either the highly
anigotropic case ('V;H) >>4), or the deep atmosphere case (Dz,v 2),‘7;
could conceivably be the small difference of lérger terms, The long
term mean of 7; should be small unless the fluid layer is systematically
slowing down or speeding up.

The second possible source o£ éink of angular momentum for the

fluid region O < '3, < 3, is the eddy Maxwell stress term (5b), i.e.
I ¢ . ,
i : x *
m A -1 A 3 .
F(3) = (yru,£) <B" B’ >a cosew (4-7)
By 4w :
Formally, this magnetic braking term is not spurious since an analogous
term would occur in a model with continuous vertical variation, If the
vertical integration were extended to the nonconducting region z >z4,
then Jim T’ =0 due to boundary condition (2-61d).
3-;00 R ,
The axisymmetric counterpart to (4-7) vanishes because
A .
<B :>:: O . We also discovered that ’T; was negligible in the numer-
‘f . *C

: . A 3*
ical computations even though neither J3 nor 33 vanhished, It
*.

, X . AL 3

turns out that Btf} <L<L B} in the production runs, Also, B ~ (9(8 )
A

in the region 3;?3;_ which causes another reduction by a factor of

‘at least d ~ D/ L. Furthermore, we notes that no ma‘gnet:lc braking
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' g
in the nonconducting region 237‘., is not affected by local magnetic

% .
ifr B, =0 as at a perfectly conducting boundary. Finally, the motion

fields there, since J = 0,
4,3, Inconsistencies in the Untruncatéd Angular Momentum Balénce.

To reiterate, in the course of the original numerical
integrations of the Lundquist equations, various hydromagnetic vari-
ables were written on: a history tape once every rotation, i.e, every
50th time step. From this info'rma;tion, we could reconstruct equgtions
(4-1) end (k-2) at time t=t +j&t, j=0,1,2,,.J-1, The arithmetic
average of these equations formally yields the time averaged , zonally
averaged angular momentum balance,

According to the’Ada.'ms-Ba.shforbh finite difference scheme,
A

(m) ¢
the arithmetic average of the differential equation dX /th - AZ:' F

over the time interval 1,22 £ £, +(7-1)ALt is approximated by

on) i ~’—,‘g.:- k) _(R
X I Xg +J’At§ Fe +.5Ar£‘_1,(F 7 FA™) (8a)

J J-1

‘ (k,m) ' J=1
where F- = is the arithmetic time average -j.L 3. F .(&,m) « The

. g=0 ¢
quantity X(M) could represent the mth spectral coefficient of the angu-
k,m)

( .
lar momentum %Z - Luyo.rcosw o Similarly, F could represent the

mth spectral coefficient of the kth term on the right hand side of
equations (4-1) or (h-2).
For a typical "production run", J~35000, Thus. the :edge'

effects in (4-8a) can be neglected, i.e,

G m) —(&,m) - "
XJ = X, -rJAtgF | (4-8b)



Generally speaking, no drastic long term trend would be expected‘ for ?72
~Direct computations confirmed that 77”~ 0(7? o)' Consistency requireg

that

N

;4 F(&'m/ N F;dw << | (4-9)

%=

(kym)

for. a typical value of .FJ « But our computations failed to satisfy
this inequality for-the untruncated equations. In the present usqgé,
untruncated means that the forbidden harrx;onics generated by products
like A3<VU) o <m were not discarded, Of course the history
tape data, i.e. <u> ,<v>, e": B"*, etc. that went into the above pro-
ducts were of truncated form.
Programming errors and roundoff err;)rs were quickly ruled
out as c.auses of the inconsistency., Also, our estimations of the
(k) :
F coefficients were probably not very biased because J is large
. and the relevant characteristic periods are longer than one rotation.
" b.b, Analysis of the ';Correctly Pruncated” Angular Momentum Balence.
h 'The above inconsistency disappeared when the truncation
procedure<used for the original numerical integrations was in effeét
adopted here. F;irst, the ﬁEIsT? 5%' differential operator was applied
to an angular momentﬁm equation, bﬁt term by teﬁ.‘ .Second, the re-~
gulting vorticity equation was orthogonally truncated term by t,erm‘.
Third, the L 1?) tosw d?® operator was applied to the truncated vor-

" ticity equation to obtain a "correctly truncated" angular momentum

balance. Our computations for the "correctly truncated" angular
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momentum balance provided an indirect check on the Lundquist trans-
formations.2 Further numericél and analytical investigation revealed
that the '5—"-;,—,; 5% and orthogonal truncation operators are not com-
" mutative on the sphere.

We shall now analyze the truncation process. The various
terms in the time averaged balance at levels 1 or 3 were evaluated in
the Robert representation, - Symbolically, the het angular momentum bal-

ance is given by

MeR)

| — T ,
7, - My = X (2;’ FO s mw) J>>1 (i)
JAL £=1 A m=0 ’

Here M(k) < 21 for all k, while’?.is the angular momentum in the space
i
domain at time t = t_ + JAt.
For the present analysis, the right hand side of equation

(L-10) is rewritten in equivalent spherical harmonic representation.

(k,m)

Accordingly, each array F s M =0,1,,000e0e..Mk) of Robert spectral
coefficients is transformed into an-array érij;a, m=0,1, ... M(k) of
.spherical harmonic coefficiehts. Without loss of generality, we sel the
radius a=1, M(k)=21 for all k, and S(kk’m)=Sm for one of the values

kR of k. Sim?larly, the orthogonal but unnormalized LeGendre polyno-

mials P found in Abramowitz and Stegun (1965) may be used. These
m

2ye also numerically integrated the standard hydromagnetic equa-
tions for a few rotations. The results agreed to several decimal
places with those obtained by the Lundquist transformation method,
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et
3]
N

!

have the desirable property of being +1 or -1 at the poles, just like

‘m
sin ¢¢ . In the spherical harmonic representation,

' ' : 2]
my -7, = 208, L) - (T2 e

JAL

(k,m)

Now there are two constrints on the F and on the Sm ..
coefficients as noted by Robert (1970), which hold even in the instan-

taneous case J=1, More specifically,

s R ——

(ARezm)
mz:o F = 0 (L-12a)
< (R 2m+l) ‘ 4 |
2. F™ - O (4-12b)
m=0

for all k, since each term in equations (4-1) and (4-2) vanishes to-
gether with U, <V, <8A> , and <B®> at the poles. In turn,

the éonstraints

AV

So t Sz +5q t Sg o +$20 =0 (k-13a)
‘;‘ ’ -
S, +S, +S8 +5 +0t5, = O (4-13b)

may be inferred from (4-12). Incidentally, if the Pm‘are normalized
LeGendre functions, Pm(‘“’f/ﬂ'sm replaces S, in equations (k-13a) and
(4-13b). The actual numerical computations satisfied the contraints
(b-12). | -

Differentiating equation (4-11) yields the net rate of

change of zonally averaged vorticity, i.e.
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L-% - __i 6(7’21,:_?20_)'

JAt T~ acwsase\ Traz
2/ ‘ 20
=- LdBa) ... = 5T :
== Sim )+ = 2T L+ NOERDAUSTY

The Eaézafﬁgi pblynomials have been expressed in ferms of the Pm
polynomials in Table 4,2, With the aid of this table, the first set'of
equalities in (4-15) are obtained below. Robert (1970) obtained the
second set of equalities byvinvcking the constraints (4-13a) and
(4-13b). They help to further clarify the effects of truncation upon
the angular momentum balance. Also, equation (4-16) below represents

the orthogonal truncation of equation (4~14), So

I

T0.= -(s) + 83+ 85 ¥ sevenes * Sél)ﬁf 0 (4-15a)
T - -3(s2 +8 +85 ¢ .;..;. + szo)‘=v3s0 ‘ (ﬁ-lsb)
T, = =5(5,+ 85+ ceennes *+8,) =58 (k=15c)
: T3 = -7(_Sh FE et 520) = 7(S0 + sé) (4-154)
T¥ = -9(s5 + eees * Sal) =.9(Sl f 83) - (k-15e)
T = 0\,'5ﬁm£2l . (4-16) |



..1504..

Table 4.2 Useful Properties of Some Low Order LeGendre Polynomiéls3

PO = ]
Pl.é sin @
2
P2 =( 3sin&® -1 )/2
3
P3 = ( 5sin ¢ -3sin®)/2

P, = ( 35810 @ -30sin%p +3 )/8

P5 = ( 6351:15(? -70sin3c? +15sin®? ) /8

6 }
P6 = ( 231lsin ¢ -3158111(!"’105811126? -5 )/16

in@ = P
$in 1

2
sinw = (P +2P_ )/3
: o) 2

3 _ .
i = P +2P 5
sin @ (3 1 3 )/

RN
sinw@ = (8P, +20P +7P )/35

L 2 (o)

5 - )
sin = ( 8P5 +281f>3 +27P1 )/63

6 | ‘ 6P, )/2
sin @ = ( 33P +110P, +72P, +16P, 31

3Based upon material in Abramowitz and Stegun (1965), p. 798




~155-~

| dE
éose Ju = 0O
EB!?ce 9L v
de o
I dP _
w5 gz~ -~
) db
c'é's"cb"&'f‘ =P P,
L _dP
Gse ga— = 3B ¥R,
| dfs .
&z gg- = F, PPt
 dE
E‘o's'@‘qu‘ = 3P, TP +11P
cosd’ gf: - c‘og"@ C‘!‘f’)"‘“(z’”‘l) ?m-l , B22
w
,_};IPCOS{.?d(Q = Pl +P°
.[rchamdw =(Pp,-P )/3
fwP dw = (p_-P_)/5
/.. G coswd® = (B, =B, |
@
.f F, cosad = (B B, /T

=(P ~P }/9
Qcoswdw s s

‘? .
f &comdw = ( P6 -P, )/11

( PnH!

/e 2 m‘c
f[’coswdw [ mz!

1&_5

t.b
o

S

S
o,
S

n
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We can integrate (%4-15) and (4-16) to obtain the net rate of
change ( ‘T)”?J- m‘b?o ) /J‘Ax' ‘of the "correctly truncated" angular mo-
mentum balance., A boundary'condition is needed to determine the constant
of integration. We require that no term in the truncated angular momen-
tum balance generates any angular momentum at @ = ~T/2 (or «&=+w/2),
In effect, this restoreg a constraint previously satisfied by the trun-

cated a.ngula.r momentum equations, Mathematically,

(1) (r) ' @
1y - " PUh-f) :
L <] - — 0 -
AT s cos @ dw= mo?; Pmcoswa’w +
-/2
5 (T)
= 32 5,8, +-,(I>s1) gan
/2 .
Obteining the J P cosudw integrals from Table 4.2 and utilizing

-2 ™
: T)
cquations (4-15) and (4-16), the "correctly truncated" ( §,, coeffi-

cients are given by

(T)

8 =85 ,0sme3 , (4-18a)
m n : _
(1) _
= -( : 4-.18b
Su ( sQ +32 ) » ( )
(1) ' ' : ‘
s5 = -( 8, +s3 ) | (4-18c)
iy
( )s =0, 6<m <21 o (4-184)
- , .

In contrast, if the angular momentum equations are truncated directly,

the resulting ",S ' coefficients are
: m

T
( )S ''=85, 04dms5 ‘ (4-19a)
m m . ,
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(T) : _
g =0, 6£m<2) ' (k-19v)

Clearly (T)Sh # (T)Sh' and (T)S5 # (T)S5' in general,

This means that the linear operations of differentiation

and orthogonal truncation on spherical harmonics (LeGendre polynomials)

are not necessarily commutative. The recursion relationship

|_dBa _ _1_dP,. : . .
E5a@ g~ - ave gt temDE, o m22 of Table 4.2 is responsible,

Conversely, differentiation and nonorthogonal truncation of the zonally

averaged angular momentum equations would be commutative, since co_._flc?da%;“
is & function of only Rz-l and m, for m21, However nénorthogonal trun-
cation is undesirable on other grounds as suggested in Chapter III,
Equatioﬁs (4-18b) and (k-18c) have an interesting interpre-
tation. Now each nonlinear term in equations (ﬁ-l) and (4-2) involves
a factor which venishes at the poles, Hence the untruncated nonlinear
products also vanish there, as is reflected by the consiraints (L-13a)
and (4-13b). In essence, equations (4-18b) and (4-18c) are the anal-
ogous constraints for the "correctly truncated" angﬁlar momentum balance.,
Physicall&, they enable the "correctly’truncated" nonlinear products ;o
vanish at the poles. In return, up to two of the retained harmonics
are modified. Converseiy, the directly truncated nonlinear products do
not autdmatically satisfy the correct boundéry conditions at the poles.

The sbove results could be ‘generalized of course for higher

resolution models. For example, if all harmonics are discarded for

m>H,
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(1) A 4
S =8 , 0fm<M-2 (4~20a)
m m . ’
(T)s (s s ), ( | ) A Y
= - + 4100 45 M odd -
=1 M3 M5 0’* 1 ° (-200)
(T)s = -(8 +S +'~~ - 48_), (M odd) | b
M M2 M-b 17y e : (h-20¢)
(1) : _
SM =0, n>M : (k-204d)

The constraints (4-20b) and (4-20c) do not uniquely determine the re-

(T)

tained S harmonics unless M<3, and if M= 0 or M = 1, only trivial
m

solutions are possible,
For our model, there is considerable distortion of the Sh

m)

and S harmomcs. This affects all the Robert harmonics F(&“’ for
m 45 but mZ_,' F ; rézo F( ER‘ZMH) — O, 1i.e. they satisfy the
correct boundary conditions at the poles.

As an exa.n;;ple, consider the distortion of the time averaged
coriolis torque f&_.'—i;’ s opposed to 5;;) itself, caused By the "correct

truncation" process. This term appears in equation (4-2) because the

motions are not strictly horizontally nondivergent., Multiplicastion of

(v3) by £ = 2J/lsin® generates an 36‘ harmonic. Thus truncation is

necessary for only the even harmonics, But in addition to discarding

Sg» Sh is replaced by -f(SO +Sz)'.' The constraint Sl +83 +S5 = 0 remains

thuivalen’cly, in the vorticity equaizuon the terms
2N A tosw '6(1)‘, /o and 2 Sine v, <Pv- would require
truncation unlike ?_JZO, a%, /oA -
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in tact.

Both the untruncated and "correctly truncated" forms of
f ZJ;} are plotted vs. latitude for the two long product_ion runs in
figures 4,1, and 4.2, respectively. The discrepancies between the two
forms could arise from the low order spectral resolution. The phase
distortion in latitude caused by truncation is worse in Fig. 4.2 than in
Fig. L.1. Observe that iNZ?E;$ attains & relative minimum (zero) in Fig.
4,2 at the equator if untrunéated, but a relative maximum there if trun-

cated, That the P, harmonic contributes to the thermal forcing profile

l
for Fig. 4.2 is not particularly desir?ble since Ph is the highest re-~
tained even parity mode. In contrast, éhe highest degree harmonic, i;e.
P2.in the thermal forcing profile for Fig. 4.1 is at only half the reso-
lution limit. Now the run corresponding to Fig. 4.2 has a positive
equatorial jet at level Y (or 3) as depicted in Fig. 6.4a. However, it
is apparentl& being maintained by a spurioﬁs equatorial convergence of

engular momentum associated with the truncated f~<v3>'term in Fig. 4.2b,

The situation is better for the other rum, Incidentally, the coriolis
torque does not affect the vertically averaged angular momentum €b22 .

Although the "correctly truncated" angular momentum balance
is locally distorted, the surface integral of the angular momentum

balance at any level is not affected by orthogonal truncation. More

specifically, application of the last integral formula in Table L2

yields the result

77

. allle /2 .
f oM /o1 coswdw,:fa[‘"ﬁz]/azcoswdw = 28§+ (b21)

-T/2 e
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Figure 4,1, Effect of truncation on coriolis torque for P R, 2,
A-"correctly truncated" coriolis torque, ’

B-untruncated coriolis torque,
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‘Fig, 4.2, Effect of truncation on coriolis torque for P,R, 1.

- A-"correctly truncated" coriolis torque,

B-untruncated coriolis torque.



obtained by Robert (1970), Equation (4-21) states the.f; the untruncated
ag well as the "correctly truncated" integrated angular momentum balances
should be self-éonsistent‘ and our numerical computations have confirmed
this, |

But a self-consistent untruncated angular momentum balance

for each spectral harmonic would exist and coincide with the "correctly

zk,ms

truncated” and directly truncated balances, only if each F or .
(k,n
g ) coefficient vanished for m>»M (M = 5 for our model)., It would

certainly be desirable to show that the truncation has no significant
time averaged effect upon the model's large scale angular momentum bal-
ance, Our model resolution was too low fo expect this. A consistenc&
check of the untruncated angular momentum balance for higher resolution
sphericql harmonic models would be worthwhile, |

Another constraint might be more easily satisfied by higher
resolution models, This is that the sums of even and odd discarded co=-

efficients, e.g. S 4++2¢ and S %+ ++-» would be smaller

+
w1 w3 M2 TS

than typical individual discarded coefficients, Then S and SM would

M-1
approximately satisfy the same constraints, i.e, equations (L-20b) and

(T)SM-l and (T)SM.

and differentiation would be quasi-commutative. _Physically, direct

(b-20c) respectively, as Mathematically, truncation
truncation would not significantly upset the boundary conditions at the
poles, and "correct trurcation" would not significantly distort the re-
tained harmonics,

‘Ii is interesting to consider the consequeances of setting

M = 6 instead of M = 5, on the "correctly truncated" coriolis torque.
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One would discard S7, set §5 = -(S, +S3) and leave the other modes alone,
But since f<v3> is approximately an even function of latitude, trunca-
tion would barely distort the f <v'3) profile, Meanwhile, f <u3> is
approximately an odd function. Consequently, f<u3) and hence <v3)

itself could be as distorted i7 not somewhat more so than previously.

We did not conduct such an experiment however,
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CHAPTER V. FORMULATION OF THE ENERGY BALANCE

It is cﬁstomary to formulate energy balaﬁces for general
circulation models. An energy balance serves two useful functions,
First its forﬁ reveals whether energetic consistency has been achieved
in the sense of Lorenz (196019. Energetic consistency is a desirable
property. If the model contains spurious energy sources or ;inks,.modi—
fications should perhaps be made to eliminate them, Second, an energy
balance is another tool for interpreting the model results. In fact,
numerous observational studies of the"energetics of the earth's atmo-
phere have been carried out,. | |

An energy balance can also be formulated for an hydro-
magneticlmodei. This was done, for example, by Starr and Gilman (1966)
in cartesian geometry for a very general set of nonhydrostatic primi-
tive hydromagnetic equations. The energetics for Gilman's (1967}
linearized, magnetic model were much simpler, Finally, as previously
mentioned, Gilman (1968,1969) verified that his nonlinear numerical
dynamo model was energetically consistent, provided the kinetic and
magnetic energy were suitably defined. The energy balance for our
model most closely resembles that of Starr and Gilman (1966) in form,
One simplification is that we assume a vertical ﬁagnetohydrostatic bal-
ance instead of nonhydrostatic conditions., Conversely, ﬁhe spherical
geometry of our model introduces complicationg.

. - The two layer model contains several forms of energy. The

kinetic energy is split up into the contributions (k2> from the
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axisymmetric zonal flow, < KM) from the axisymmetric meridional flow, and

{EKE> from the eddy horizontel flow. Thus

k2% = f(<u> 2Ch3 )a’S | ~ (5-1a)
' 2 ' .
{kmp = f’D fS’U *O‘r)) ds = 250D -<-§.32c/3 (5-1b)
%
x? U'* * +1r*2
<EKE> = ED{&(@. — )+-z<u3 2 >)dS (5-1c)

2T
The bracket < > still denotes the longitudinal average (2ﬂf{f€ JdA
o

of a quantity and * the departufe from that average. Since the ine
tegrands are all independent of latitude, the surface integral f ds

/2 5‘
is equivalent to (2m) f coswdw . Note that an integral over
. /2
height has been replaced by a summetion over levels 1 and 3., The total

zonal kinetic energy is

(ZKED> = <KkZ> + <kM> (5-1d)

Likewise, the magnetic energy of the axisymmetric zonal field, the
axisymmetric meridional field, and the eddy horizontal field are re-

spectively

' A2 2
<MZ> = Df(<8‘g, ?,B’ >Ja’5" (5-2a)

“

w. 2

<MmM)> = )'}D/ ((88?7‘;; 3 2 )JS' . (5-2b)
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<EM.E> -~ }’}Df(<32\* *‘B:o*)+<32*+35 >)CI§ (5-2¢) |
. o

gnu,

whereaé the total zonal magnetic energy is
CEMEY = AMZ) + MM )

Both {K7z) and <MZp are pureiy toroidal, while KM} and{M) are purely
poloidal,l But {EKE) , <ZKE> , {EME) and{ZME} are combinations of
poloidal and toroidal components., The electrical energy has been
filtered out by the MHD approximation.

Meanwhilé, the zonal available potential energy is
2
<zPEY = fof <2 ds (5-3)
6;, .
and the eddy available potential energy is
2 2 : .
%
{EPE> — f_gpj <@ > ds (5-3b)
o’ 2 A
S . .
In these equations, the thermodynamic variable @ is defined as
_ N -
® = [g(ra/035 ] o /5 (5w

The usual approach for deriving the energy balance is

adopted here. The ‘horizontal pr.imitive hydromagnetic equation$

lThe -vertical components of motion and magnetic field do not
enter into <KMD or {MM)> , as discussed in Chapter 2,
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(rather than the Lundquist equations) at levels 1 and 3 are first de-
composed into zonally é.vera.ged and eddy equations., The next step is to

form the energy density eguations

oK\, '
<> —a<-2_——>- + <Lt3>%<£~3->~ = .- . (5-5a)
{ura VS 1V SRAEY PN 1/ AN (5-5¢)
" 3% | PE 2SEEtV g T >
) ,
<B'> a¢sly (B a<Bi> - ... (5-5a)
$TULE Ot 4 £ 2 -
8y o> |, <8°> 3< By> _ |
St s + S ars - ... (5-5e)
A* A% o* W A% ¥
B: 93, B: an + Q? §§.3_+_@3.——- Q_..Bi_- — e e (S-Sf)

WS O£ * Yrd,© o wnd,£ X T 4§ O -

Note that the magnetic energy density equations are derived directly
from tﬁe magnetic induction equations in which the electric_field E and
the current density J have been eliminated, Thus, quantities such as
the Poynting vector E x B will not appear in the final energy equations.

Also, the energy density equations involving available potential energy

-1 ’ ‘
90:) K0 Ko — ... | |
#( 539 & o£ T (>-5¢)

93 6'<o > = o
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The energy density equations are now multiplied by.gij and intégraéed
over a sphere of radius "a". The integrands of the various eneréy
transformation integrals are not unique, but the integrals over the
entire fluid region are., Integrating by parts and using the results
of Starr and Gilman (1966) as s guide, we obtained a set of energy
intégrals. The following equations and boundary conditions were re-~
quired for this step: The eqﬁations of mass and magnetic continuity,
i.e, (3-21a) and (3-2ha), the identity (2-43) governing magnetohy-
drostatic balance, the boundary condition that there are no singulari-
ties at the poles, and the boundery conditions (3-4) and (3-5) at
z=0,zh. Our results are consistent with the kinetic energy balance in
spherical geometry for the nonmagnetic case which .is: given in Saltzman
(1957).

The energy integrals appear on the right hand side of the

- energy balance equations (5-6a) through (5-8b):

'%ng_—) -_— {(l(M>-a (kzD} + {(E.KE)-—»(KZ)} - {<KZ> —}(Mz>}

- {<k2->-><EME>} +<{F_ >+ <I(z‘> (5-6a)

aa {tKM > = - { kM > -><)(z>} + {(E/(E}a(}m)} ;- {{kM)——) <M z}_}

= [<um> > <mmdt - [ <aem> > EMEN + [<2PES > Chmyf

+ <E{M> .+<I(M‘l'w> ' (5-6b)



HKEKES - _ f ety »<ie>) - [<eke>><umd] - [<enes>mz)

- { <EKED— <MM>} - {(EA’E) SSEMED } + {< EPED+LE KE>}
+ <E~E > + <EKE "’> (5-6¢)

aaiMZ> — {<K;r:>,.:,<ME>} + {(kM>—»<M z~'>} + {(Ekf>+<Mé>}

+<0 > +<mz’> (>-1e)
g%if.‘i} = s +{\’E/\'E>*><MM>}+<0MM> +<MM S )
| EME> - [ <ve>aceme) + {(kM)-é‘(EME>} +J<EwE -><EME>}
.+<Q,45> + eme *} 5t |

%S_.__;P E> - _ {<2p5> -><KM>} - [<ZPE>-><EPE>} +<Gm; > (5-8a)
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gngEZ : - {<Ep£> 4(5/«5%] +Zr <ZPE>_’<EPE>} +<Geps > (5-8b)

These energy balance equations give the time rate of change of the
various types of energy in the model.
Terms with curly brackets are energy transformation inte-

grals, In order of appearance,

{(m)a(f(v} = f D‘[ EZJL + %)( U>V >
; ‘

+(2na+ ;ggQ <u3><v;>J sing d§ (5-9)
{(Ekij»%(k??} £D Q,cos&l;wl T>a.aw ‘%;g}-+<d 541%6105 :Lig
5'
+ f;Df QU w'><haz> g (5-10)
6; D
fasan] = £0f el L eSS
%
<B, B, ><(.l -U> - -.
+)§D6; Wz%; d5 N (5-11)
J>ef = izz‘-ff £ ka5, é‘é?) w0 B> -] ds
B, *E’ u,-u, -12]
.'f‘gD <s¢7ra,? 2< 7 2 dS ‘ (5-22)

W\
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{(EKE)‘*(I(M)} - D mw[ﬁ_,_z_g V> +<;_— > f’ém, ) ds

W \cos &,
$‘

fan @ x2 *7- %2 42
~ D) B UKW + V7 3 +<YdUS + Y > dS

&
+ £ [rfuT> 550> dS (5-13)
/ .
{<m>-><Mz>} = -£D j;w Tangt [<3 ><V>+<B < >]d5 (5-11;).
o,

S

{(}(M} -a»{MM)} - );D 477‘%5:;’ [((1;; )‘-‘0){32}} _<u€><02¢p,q [__ <8 B‘W>]ds :

s

V<82 | <8, - B, >
o+ £D %%"2'[ = >]C/5 - (5-15)
: o; g
fansscon} = -olegela e Segiemn g Sl os
g .

| *p ¥y ¥ ﬂ
B BEN<U;-V, 8" +B' > <f3 +B {u; -
+go W : >JS‘ f’?ff ...anS(s 16)

{(Z”E)—*<W>} z fo}O QW ><e, >ds (5-17)

—!:D anu,"[(“ B%> <WB >}<"3‘"""“B —8.2 ds

-5'

{(EI(E>+(M2>}
- §ib %‘%7.%_2<B <8, -8;> S + PDJ(’ALM(F)Q“',WEM’E@!,{@Q%

'»s%(<a,">wsw)_ " <v;'a: EACPYICCR wsw)] dS  (5-8)
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" 3 X, @_ @
{(sxs)-»(mm)} = ﬁDJ;—,;;:.'gk v, B2 >-<¢ B: >J [“ Q‘T)"B_"é ds

% w_Bw
f wm.B >[ Bo—i’é_]d‘g (5-19)
%
™ ot
o+ el
o’ :

3 NN
+82uy ), 3(803)J>o'3

D

| 2 ¥, ¥ A w0 2 X x A ® _@
- 50, Jmigpie, (78 - B + %, (48 - 4] Nds

(3

‘ * > ‘l’* (0*
[ 2(8;-8,) p%(8,-8")
+{.’D{,ﬁ,§:§@ {32 _.3..5_-'—-4-82-&9-0—»——— dS (5-20)
: .

{(EPE)»{EI(E}_} =) Jj }q"< w;*ae"} ds (5-21)
()
-1 _ . g.
{(ZPE}-’(EP;)} = -f DJ: 3(%5'-‘;0‘) AT >é;‘%<£ 2ds  (5-22)
£ .

The arrows denote the sign convention. Thus ikz?£)4<epz)} would indicate

a transformation of zonal into eddy available poteﬁtial energy rather

than vice versa. The energy transformetion terms are named as such be-

cause they each appear with opposite signs in two energy balance equa-

tions,

For low Rossby number flows, the work done by the two



coriolis terms dominates in equation (5-9). Their sum, i.e.

f‘:DL 2L Sin LV»<U,;4,>dS  does not vanish, unlike the net
corioiis torque in’the angular momentum balance, According to equation
(5-10), the transport of angular momentum up the gradient of angular
velocity results in a conversion 2f<EKED> into <KZ)}. The last integral
of (5-10) which contains the product of the vertical eddy Reynolds
stress and the vertical shear of angular velocity cannot be neglected,
The first and third integrals in (5-13) are analogous to the first two
integrals iq (5-10) with u replaced by v. Meanwhile, the second inte-
gral is associated with a curvature correction term introduced by the
spherical geometry.

A given form of magnetic energy cannot be transformed
directly into any other form of magnetic energy or into availéble
potential eneréy, and conversely, But kinetic (magnetic) energy can be
‘transformed into magnetic (kinetic) energy. In equation (5-11), the
first integral is the previously mentioned Babcock term. The horizon-
tal shear of the differential rotation stretches axisymmetric poloidal
into axisymmetric toroidal magnetic fields. The second integral is
analogous, but involves the vertical as opposed to the horizontal shear
of angular velocity. Equation (5-12) resembles (5-11) except that eddy
Maxwell stresses replace the axisymmetric Maxwell stresses. This equa-
tion may be also be corpared to (5-10) which has eddy Reynoldé stresses
and opposite sign. Suppose thaﬁ {kEKE>*(k12} were positive and that
the Reynoids and Maxwell atresses had the same sign. The Maxwell

stresses would then act as a magnetic brake upon the differential



rotation as noted by Starr and Gilman (1965b).

Equation (5-1k) is similar in form to (5-2), neglecting the
corioiis te;‘ms in the latter, Also, applying the mé.ss continuity equa-
tion, (5-16) could be reduced to an integrel expression analogous to
(5-13).

The integrands of. equations (5=18) and (5-19) invoive
<_\__/*o,{<_._7>x 5?) while that of (5-20) involves (_\./t J *x.@*). These terms
may be interpreted as the work done by eddy fluid motions against the
magnetic body force. Note that the integrals in (5-20) implicitly con-
tain both double and triple eddy correlations., However, the triple
- correlations vanish, because our model ;:ontains only the two zonal wave
numbers n=0 and n=6,

Available potential energy is converi';ed to kinetic energy
in (5-17) and (5-21) if fluid parcels systematically rise and cold par-
c.els sink, Likewise,(ZPE> is transformed into{EPE) in (5-22) if heat
is transported down the meridional temperature gradient,

The terms

kz¥> =
<km'> =

yir.

[< 8 a7 +<B) BY >] ds  (5-230)

T

{Ua
A,

ﬁrlﬁ;’ [<B: *Bf > <U.; >} ds (5-23b)

;.,°\Q-——3 \

Leke> = O (5-23c)

L

<Me'> = JaeB <o Yds o

%
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e

<mMM*tS = L["i?r"xz[<‘€><’3:>+<1€*‘33*>]<3f>49 " (5-24p)

£
A* . » , A* . », A
<EM e > - j[(u;Bq +V; BY 3B +<(4, B, +Y B, )8} %ds (5-2kc)
/ YIT L, \
S

represent energy fluxes of < KZ>, <KMD, <EKED, <MZD, {MM), and EMED re- |
spectively, measured ﬁositive' downwards, across the upper boundary z=zh.
All flux terms at the upper boundary which contain wh, as well as all
fluxes at the lower boundary z=0, have been excluded due to the ‘;)oundary
conditions. Equations (5-23a) and (5-23b) represent the work done on
the fluid at the upper boundary by the Maxwell stresses, Now <BI:\>=.O, '
' and from the discussion in section 4.2, <B:*B3*>£<B:* Bq?*}::O,
suggesting that only <MM‘> and <EMEb need be retained. But in the
lactual'numerical computations, all the energy fluxes were negiigible,
although OM*> and <BMEY> vere slightly larger than the others. Clearly,
the dynamo is not maintained by a magnetic energy source in the non=-
conducting region z;zh.

+ Zonal available potential energy is locally generated wher-

ever l<631>/0;,,l<l by

' ! - S‘K / ‘l ’ '
<Gzre > -~ "QDJJ:(;% q/53) 0% \oé »<G; -6, >}d§ (5-25a)
s

In contrast, the "generation" term

<GEPE> = -f:D(ﬁaﬁmgsg})qz [<o;_'* >]d$ (5-25b)

G
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for eddy available potential energy is negative definite and hence re-

presents an energy sink,
The frictional dissipation of <KZ), <KM)>, and <EKE> are

given respectively by

2
< —{,’DJ%[@—%»«%;]O’S
s

+£D/¥, [<“.>A (<u>, o)+<a >A (<u >0)Jd5 (5-262)

)

%
<E,> = ,fgbf%ég-t,f S r2< >]d5
7
K}
+ D ‘\50[<U'>A (o <U‘>)+<\1’>A(O<U’>)st (5-260b)
%
<E, > Df 3,) <y, u)>+<(u V*)>+z<u FTAY ]dS
z

+ 507,
4
and the ohmic dissipation of <MZ> , <mM>, and <EME > by
0,.> = Wwf? <B ><B -8, >+<B "><B*-38, +2B >}d5
+ g f 72(,,, <B*>4 (<a >0) +<B, *S 4 (</3 >0)Jd$ (5-27a)
5'
Cu?> = sz’erZ 2 [<B,“’><Bf-8,"’> +<B;"><B,"— 38 zsf’>}ds

+ L 7, [<B,“’>A"( 0,<8%>) +<8,">A {0 <8¢ >)Jd5 (5-270)



. _ D T LA A¥, A% T 0 o
<O£ME v = Wff’?@[(& (8/-8')+8 (B -38"+25, ) +8 (8 -87)
' s

X *«.P*

o o* | & _ o D A5 A A
+8'(8 —333 +213,; >‘]d5+m—l’?‘”)[<3, 4 (Q >B,
J

3

* « * X A X
+8%4°(8",87)+8 4'(8],87)+8"

273

* x
48" .8 Hdﬁ (5-27c)

Adding up the energy balasnce equations (5-6a) through (5-8b),
the energy transformation integrals (5-9) through (5-22) cancel in pairs,
Thus ,neglecting the energy flux terms, we have the energy balance equa-

' tion
$E7 = <G > <G, > r<E><E > +<E, >
t <G> +<0u > +<0ue> (5-20
for the tota]T energy

<E > = <Kz> +<KM> + <EKE> + <Mz > MM >

+ <EME> + <ZPE> + <EPE> (5-29)

The energy processes in our model are summarized in the
energy diagrams of Fig. 5.la and Fig. 5.1b, for the magnetic and non-
magnetic cases respectively. In both figures the insignificant energy-

fluxes and the brackets < > are discarded to improve legibility.



Energy transformations are symbolized by arcs or straight line segments
connecting-any two dots (forms of energy). Arrows are drawn to indicate
the sign of terms in the energy balance, (mostly dissipation and/genera-
tion terms) if known a priori. All arrows'are included in the diagrams
' constructea later for the two "production runs". Note how much more
complicated Fig. 5.la is of the two diagrams.

We were.unable io prove any of the anti-dynamo theorems
using the enérgy integrals as a starting point, However, it is still
interesting to compare the energy diagrams in Fig. 5.2a and Fig. 5.2b
for the toroidal motion2 and axisymmetric anti~dynamo cases with Fig.
5.la, It is perhaps more than coincidental that only Fig. 5.la has

closed, nonoverlapping paths (circuits) linking <MZ) and <MMD, Such

patlis could exist in Fig. 5.2a and Fig. 5.2b if {2KZ>4<MM}}'were a
_ valid energy fransformﬁtion. But the kinefic energy of the axisymmetric
toroidal motion is never delivered directly to the axisymmetric poloidal
magnetic field,

© An energy balance was also formulated for a model with~con-
tinuous vertical variation. The appropriate integrals for.the various
energy forms, energy transformations, and boundary value fluxes are
contained in Appendix C., There is an excellent correspondencevbetween
the two layer and continous models, Thus the finite differencing

scheme apparently introduces no spurious energy sources or sinks, On

zAvailable potential energy cannot be released in this case any-
wvay, since w=0, :
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Fig. 5.la. Energy diagram for the
- generalized magnetic case, The
symbols are defined in the text.
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the basis -of equation (5-28) and the correspondence between the two
layer end continuous modeis, our model should bé energetically'COn-
sistent,

A numerical check of energetic consistenc& was also made
over a short time interval for one of the "production runs". The in-
stantaneous rates of change of the various forms of energy were computed
(a) directly from equations (5-1la) through (5-3b) and then (b) from
equations (5-6a) through (5-8b). As in all energy computations, tri-
linear terms were truncated only after the third factor was multiplied
by the product of the first two fgctors. The integrals were conserved
by the orthogonal truncation process. In any case, the percent differ-
ence between the results of method (a) and methodr(b) above was negli-
givle, ’

‘We are now ready to discuss some numerical experiments with

our model.



CHAPTER VI, NUMERICAL RESULTS

6.1, Introduction.

Computationally stable numerical solutions have been found.
Only a limited number of "test" rums and two lengthy;production runs
could be made, however, due to the model's complexity and to the tiﬁe.
scale of the solar magﬁetic cycle.

A model simulation of the earth's atmosphere is discussed in
section 6.2, whereas section 6.3 lists parameters used in various solar
test and production runs. Qualitative results on the.relationship between
angular velocity profiles and type of thermal forcing profile are presented
in section 6.4, It is found that an equatorial jet can develop for certain
simple Cz: profiles. Magnetic fields can significantly alter the.jet.

In section 6.5, general circulation statisticé are presented,
mainly for both production runs. Magngtic fields greatly affect the angu-
lar momentum balance and nearly destroy the horizontal shear of the verti-
cally averaged angular velocity profile. A crude determination is made of
the Rossby-Hadley regimevbounda¥y for production run 2 (P.R. 2).

‘The dynamo maintenance aspects of the model are focused upon in
sections 6,6 through 6.8. Magnetic fields apparently can be sustained by
dynamo action if the magnetic Reynolds number Rnw exceeds a certain criti-
cal value an.° We estimate that Rmc is soméwheré around 250 for pro-
duction run 2, The structure and evolution of magnetic field patterns are
described, principally for the t@d production runs, Inferences about the
irregular magnetic reversals are made from a stu&y of the energetics,

Ouf attempt to reproduce the solar equatorial jet and features ;u
of _the magnetic cyéle simﬁltaneously'has been only partiall& successful, |

In P.R. 1 (P.R. 2), the equatorial acceleration at even the upper
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1evel is much too weak (fairly realistic) while the characteristic time
scale for magnetié rgversalg is reasonable (too rapid). The dimensions
andﬁamplitudes of our vertical magnétic eddies correspond roughly to those
of the observed magnetic active regions of Bumba and Howard (1965b). At

low latitudes, the magnetic eddies of production run 1 generally filt in

the same sense as the active regions for the first 12 years, Furthermofe,
the poleward transport of vertical.eddy magnetic flux apparently }eads~to.at
least the first few poloidal magnetic field.reversals., The model does not
resolve sunspot scale phenomena. '
6.2. Simulation of the Terresirial Atmosphere — Test Run 1.

The nonmagnetic version of our model differs-in many respects
from Robert's (1966) more sophisticated priﬁitive equation atmospheric
model, Thus we did n9t attempt to reproduce his.solutions, A simulation
of ‘the e;rth's atmosphere was still carried out though., The values of rel-
evant dimensional and nondimensional parameters are given in Table 6.1.
Moét have been defined previously, We recall that f:‘: ‘{?)/K:b}iv/lf
is the Prandtl number anq AL ihe time step. Two new parameters are the

ratio- Y of specific heats and the stability parameter KS': D a»&’lq/()}'

The precise definitioﬂ of our thermal Rossby number is

»* 4 Y -l
Ryr = 6};_:/_(2_)2_% % (22 sinuy, L,) (6-1)
where a*l((.g‘):o, AG’* is the difference between (9‘*1((_9:0) and the
nearest relative extremum-of é;"and L?% is the corresponding meridiﬁnal
distance., Given Ro: and Re , the eddy viscosity is then V:JD,AHJR;’,
where AU.*: 2N 'S'I')'IL(?,‘L’l Ro:" is the externally i.mposéd thermal wind,

Small random temperature eddies introduced initially were

baroclinically unstable, i.e., Rossby-regime type flow developed. The
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Table 6.1 Specified Parameters for the Earth and Sun

Parameter

53 (en/cnd)
T, B

g o

?‘ (cm/s;cz)
A (sec™h)
R  (ergs/gm deg)
a (cw)

S, (em

A, (cm)

D (em)y

At (sec)

X (en’/sec)
v, (em?/sec)
6 (cu’/sec)
5, (en’/sec)
K (sec™h
o, B

J

P,

Ks

¥

Re

RM

R’

Earth Value

6.70 x 102

2

2.60 x 10

2.84

" 9.81

7.27

2.87

6.36

7.60

1,00

3.80°x 10

2.70

1,56

X

X

X

X

X

X

X

0

102

102

1072

106

108

105

108

5

103

105

1.08 x 1070

20(l—3sin2ul )

0.0038

1.00
0.10

7/5

6.67

0.099

Solar'Value

3.88 x 1074

8.60 x 10"

1.03 x 105

2,73 x 104

2.86 x 10°°

1.50 x 108

6.80 x 1010

4,72 x 108

1,50 x 1010

2.36 x 108

4.39 x 104
variable
variable
variable
variable

variable

variable

0.016
1.00
0.0001
5/3
variable
variable

variable
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numerical integrations were terminated after 72 rotﬁtiohs. The flow was
fhen perhaps marginally quasi—Steady,\although rather noticeable fluctua-
tions were still present., As the model appeared to simulate the earth's
atmosphere in its gross aspects, we refocused our attention on the solar
A atmosphere, Later, a program was written for evaluating general circula-
tion statistics of the two production runs stored on a history tape. A
decision was then made to evgluate such statisticé for some of the test
runs, However, as they had not been permanently stored on tape, the data
from the felevant computer printout h;d to be punched onto cards, Under
these circumstances, data were punched for only a small number of rotations.
But the computed statistics st:ll should be fairly representative for test
‘run 1.
. .
The results for the earth's atmosphere case are illustrated in
Fig. 6.1; The symmetry of the flow about the equator seems reasonable,
The zonal wind cross section~(Fig. 6.1a) shows a band of equatorial easter-
lies, a mid-latitude upper ievel Jjet, a.positive vertical wind shéar, and
a very slight equatorward tilt with height of the jet axis, On the other
hand, the jet is too far pocleward and its strength is too weak by at least
a factor of two. Lack of resolution is perhaps distorting the iécation and
strength of. the jet. Also, a flow at level 3 with energy density %-ﬁ?ﬁg%
might be roughly 20% stronger if the Boussinesq approximation were relaxed
and pressure coordinates adopted,

- In Fig. G.fb, the actual equafor to pole potential temperature
difference is ~34°K and the 0'*{-—; <0',:> profile introduces no net heating of
the model atmosphere, The meridional eddy heat transport in Fig. 6.lc has
the correct sign, but again, the extrema are displaced-too far poleward,

Figure 6.,1d implies a direct meridional cell in each hemisphere
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from the equator to about 40°and an indirect pell poleward, Perhaps tpe

'model is trying unéuccessfully to establish a three cell structure which
requires 0 £ M<£6 minimum resolution, From figures 6.1d and 6.le, one
can infer the phase distortion of the coriolis torque term (— 2/ Sin«@

. (L{)COSLP) due to truncation., Fortunately, this term does not affect the
"correctly truncated”" angular momentum balance illustrated in'Figure 6.1f,
At e¢ach latitude, the frictional torque éh the model atmosphere is almost
completely balanced by thé EESX horizpntal angular momentum transport. The
latitudiﬁally integrated frictional torque is negligible,

'Integrating'the curves of Fig, 6.1f yields the "correetly‘
truncated" eddy and axisymmetric angular momentum transporfs, which are
everywhere poleward, But iﬁ the untruncated balance, the indirect meridi~
onal cell would produce a small equatorward axisymmetric transport, More
resolution is evidently needéd.

‘ Eig., 6.lg contains the zonal and eddy vertical heat ifransports
which have zero vertical convergence. But as they are directly proportional
to the integrands of {{zP&}»(kM}_} and {(EPE)—» <EKE>} , these
transports do help elucidate the energetics, Thus, the conversion of eddy
available potential ento eddy kinetic energy, i.e., [(EPE>-—» (EKE>}>O
is the more important process and occurs mainly in the 300—600 latitude
belt, From figures 6,1b and 6,1c, one can infer that {(ZPE>—-><EPE>}>O s
while figures 6.la and 6.'1d suggest {(EKE}—-?(Z/(58>O- Finally, since
ka;r}, < ,<0*1>, in Fig. 6.1b, GzPE> 5> at virtually all latitudes,
6.3{ Summary of Runs aﬁd Parameters for the Solar Model,

‘A number of relatively éhort numerical integrations designgted

as test runs were made fof various purposes together with two long magnetic

production runs. The values of relevant dimensional and nondimensional
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parameters held fixed throughout this study are given in Table 6,1, The
values for 51 an& 7; are based on a numerical stellar evolution model of
Iben (19665. The ratio )’ = -5/3.is appropriate to a fully ionized gas.
The presence of helium (mass fraction ~ 0.,1) is parameterized only by its
contribution to the mean molecular weight. The rotation rate u&i of the
lower boun&ary is the Greenwich convention value, 14,184 deg long/day,
while 3L is very close to the currently accepted surface value of solar
gravity.

Some test runs plus the two production runs are listed in
Table 6.2, along with the values of the respective éxternally imposed
variable parameters, Future reference is made to this taﬁle.
6.4, The Effects of Thermal Forcing Profilé Type and Magnetic Fields upon

the Angular Velocity Profile,
| One objecti§e was to find one or .more time independent thermal

forcing profiles cz;?&ﬁo gssociated with an equatorial jet., Five basic
types of profiles were considered:

@ 0 (/’f3$inZLQ) G >0

(b) (1—3 Sin w)) %, < O

(e) 0’0(1—105mco+3.5'/3 sin‘e), %, >0

(d) g, (l 10 sin w+35Z2 Sin d?)) G;f

(e) (/ § sin’w +10/3 Sin a*) (7 >0

With the exception of (d), these profiles are 111ustrated in Fig. 6,2 for
the quasi-normalized case IC? I 1 Profiles (a) and (b) are directly
proportional to the LeGendre polynomial f’ ; (¢) and (d) to -fi; « They
are all even functions of 2atitude and contribute no net hemispheric heating.
Profile (a) corresponds to the warm\equator-cbld pole, i,e,,

terrestrial atmosphere case and (b) to the warm pole-cold equator case,



,

Catalogue of Test Runs and Production Runs for §olar Model.

* 7 [>) 2 2 )
Name Ro'r‘ e Rm Q, (°k) 7 (em'/sec) %‘)(cm/:e:) 0‘:,(5"'/@‘)
o 2 35 . 4 )
test.run 2 -0.,143 6.67 - -10,23(1-10sin (@ + -—é-sux @ ) 3.42x10 0 0
5 4 10
test run 3 0.157 2 - 24(1-1Osin2“l_p + i-:-3-sin @ ) 3.91x10 0 0
. 2 35 . 4 .
test runs 4 variable variable - @,’v(l-IOsin @ + —sin (@ ) variable 0 (¢
: °with ¢ >0 , variable
. [-]
' . 2 10 . 4 9-
test run 5 0.077 20 -,100 20(1- 5sin(p + —381n w ). 2.85x10 0 0
. 10 .
test run 6 0.116 5 -,100 -1—392(1— 3Sin2(_9 ) 3.04x10 0 0
) 2 35 4 9
test run 7 0.157 20 -,100 24(1-19sin 2 + ——3-sin @ ) 3.91x10 0 0
' ' 9 2 . 12
P.R. 1 0.116 30 —,150  30(l-.5sin’(@ + l—gsin"‘(g ) 2.85x10° 6.52x10%% 6.52x10
test run 8 0.116 30 150 30(1- 5sin’(q + “gsin®C? ) 2.85x107 6.52x10'2 6.52x1012
M L]
test run 9 0.116 . 25 - 3'%-{-)-(1- 3sin2(_Q ) 6.07::1(‘)9 6.52::1012 6.52x1012
2 ' 9 12 12
test run 10 -0.052 10 200 -15(1- 3sin (¢ ) 6.84x10 6.52x10 6.52x10
2 9 12 12
test run 11 -0,087 20 -,100 -25(1- 3sin" @@ ) 5.70x10 6.52x10 6.52x10"
2 9 12 12
test run 12 -0.121 25 variable -35(1- 3sin" (@ ) 6.38x10 6.52x10 6.52x10
2 9 12 11
test runs 13-0.121 25 -,500 -35(1- 3sin“@ ) 6.38x10 6.52x10 3.26x10
test runs 14 variable variable — O*(l- 331n2(9 ) variable 9.78x1012 -
°with (9;‘ < O ,variable ‘
e
. 2
‘:P.R. 2 - -0,121 20 -,375 -35(1- 3sin"¢p ) 7.66x109 9.78x1012 4.89x1012
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Thermal profiles (c) and (e) are intermediate betwéen (a) and (b).

Extrapoiation of Fultz's (1959) experimental results fqr a ro-
tating dishéan would suggest that profiles (b) and (c) afe the‘most pro-
mising, 1In fact, Fultz (1959) recognized a possible analogy between his
experiments and certain aspecis of the solar equatorial acceleration
problem. Of course, the sun and our model have spherical geometry and
lack sidewall boundaries, unlike the dishpan,

The chief difference between profiles (a) and (e) is that (e)
bggins to flatten at a lower latitude., Since (a) gave a‘mid—latigude jet
in section 6.2, neitﬁer (a) nor (e) would seem too realistic for the sun,
at least in the nonmagnetic case. Profile (d) represents a mid-latitude
heat source. Higher resolution profiles would be more 32.323 and could
.not be resolveq by our model anyway,

Table 6.3 summarizes our findings, Included is a quaiitative

description of the horizontal and vertical gradients of the time-zonal

averaged absolute angular velocity

: N+ A sina

abs M=o = m (6-2)

—_—

" and zonal wind
. > = (JLabg~ﬂ)q cos @ o (6:3)

’ . ’
for each Ca profile. Secondly, the nonmagnetic (nm) and magnetic (m)

I'4

cases may be compared in Table 6.3 for each (9 profile exeept (d).

*

_Thirdly, figures 6.8a, 6,3a, and 6.4a illustrate. Jl,a“ profiles in the mag-
.- ’
netic and nonmagnetic cases for CZ profiles (b), (c), and (e), respec-
3 3 ) , ’
tively, Corresponding potential temperature and C& profiles appear in

figures 6.8b, 6.3b, and 6,4b,




Table 6;3 Qualitative Effects of the cns Profile on Velocity Shear for Nonmagnetic and Magnetic Cases._‘
(l~35nzw) o, U 3sin’w) -U(hM&hw+qb&nw) uqom1;+ (l;mna+@é9nw)
35-/3 sin®a
o,,o >0 (a) ‘e*°<o b) o°>o © 18728 ) a,,°>o (e)
- nm )
Mo /3y | _ __F__ __ L _ . __ . x| _ R PR,
lower lat.m still + - + +
N, /%% + - - + +
higher latﬁ still + - - +
nm -, strength compar- |-, strength compar- + +
dN, /¢ | _ _ _ F_ _ _ _ |able to solar _?bi-._ able to solar obs. | - | __ __ T _ _
abs Lv.2: mostly -, but |Lv.2: -, statisti. Lv.2: & very weak |
levels generally +, but ‘weak, Lv.3: -, weak— residyal, Lv.3: -, statis, residual,
2 and 3 er, but still agrees|but weak Lv.3:

m

weaker

qualitat, with obs,

mostly -,
but rather weak

nm

upper level
relative
winds

m

westerlies at all
lat.,jet at 50°-55°

f . e . peme  etee aee — ]

westerlies at all
lat, ,mid=latitude
Jet usually

easterlies at all
lat. For data sample
of 5, jet at 50°-55°

P e mtey ettt eme  Gwme e

easterlies at all
lat., jet at ~ 44°

quasi-steady
westerly jet at
equator, weaker
jeasterly jet at 65
these jets are no
longer permanent
features

o

~jerly jet at

eésterly Jet
at equator,
weaker west-

60°-65°

westerlies at all
lat., For data sam-
ple of 5, Jet at
40%-4s5°

westerlies at all
lat,,max.at equat.

nm

weak westerlies at

weak westerlies

easter, at low lat.

weak easter.

westerlies at
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In equation (6-2), the spectrasl coefficient Ji; is 'a measure
of the horizontal shear averaged over both hemispheres, while./z*'ua; is
the rotation rate at the equator. From Newton and Nunn's formu}a, i.e.,
eqﬁation (1-1), ,4L-+¢]Z, = 14.38 whereas c)f; = -2,77 degrees longitude
per sideral day, for the sun.. In comparisons with solar observations, level
3 may be more appropriate, being closer to the visible surface, but level 2

is more representative of conditions in the model fluid as a whole,

d 2
Case (a): 6'# =. &fn(""& sin“«) S 6'*¢> o .

The latitude distribution of relative winds and the signs of
the horizontal and vertical gradients of absolute angular velocity are simi-

lar to those for the earth's atmosphere.test run, i.e., there is no equator-

——

ial jet. Apparently, the horizontal shear of UQabS decreases, but remains

positive for the magnetic case. A shear reversal for a considerably larger

value of'[?"’ cannot be ruled out though,

case (0): Ok = Ou (1-38Sin°w) 0, <O ..

This case is one of the two most successful. The horizontal
shear oafz is negative, From the nonmagnetic angular velocity profiles for
production run 2 (P.R. 2), i.e., curves B and D in Fig. 6.8a, the ratios of
computed to observed negative shears at levels 2 and 3 are respectively 1,1
and 1,7, The asymmetry of curve B bétween hemispheres might disappear with
more data, .The rates of rotation.at the equator at levels 2 and 3 are 14,26
and 14,03 deg/day,

Other features for the nonmagnetic case which cannof Se com-
pared with éolar observations include the following,. First the vertical
sBhear of L}Z;LS is everywhere negative, but strongest at h;gh latitudes,

Second, in the rotating reference frame, easterlies prevail except for a low

latitude band of westerlies at Ievels 1:and 2 . The upper level easterly
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Jjet is centered at latitude 50°~55°.
One indirect check of our model is Fultz's (1959) rotating
dishpan experiments previously mentioned, Heating the center of the
dishban and cooling the rim produced an easterly regiﬁe at the top surface
*

and a predominance of anticyclones over cyclones for ﬁ;? = =-0,10, An
(ruity)

easterly jet was located between the rim and center. In a laboratory

——

coordinate system, ‘/zabs‘would.decrease from the rim to the easterly jet
maximum rathér: than all the way to the center, This discrepancy bgtween
our model and the dishpan could be due to the different geometries and/or
to the absence of an UQQ* harmonic in our model, Westerlies prevailed near
the rim adjacent to the bottom of the dishpan,

When we introduce magnetic fgéids, the horizontal shear at béth
levels remains negative but decreases., In P,R, 2, the vertical shear re-
mains negative and grows ~20% stronger, This is>consistent with the
strengthening of the potential temperature gradient. Energetically, thé
generation of {ZPE> also increases. The growth of strong magnetic fields
characterized by Ala‘v Cr(i), rather than premature termination of the non;
magnetic runs, is apparently responsible. In general’the magnetic model

solutions are not quasi-steady as discussed later. The asymmetry in the

magnetic curves in Fig, 6.8a is also probably a real model effect,

d . 2 .4
case (c): G = O (I-10Sinw + 35/3 s:nc.e),@o>o )
. L+ 7
This is another successful run, QQuasi-steady solutions were ob-

tained for the nonmagnetic case. As for case (b), the horizontal shear of

¢/bes is negative from equator to pole. From the nonmagnetic angular vel-
ocity profiles for test run 7 in Fig. 6.3a, the ratios of computed to ob-
served negative shears at levels 2 and 3 are respectively.0.89 and 1,98,

Meanwhile,the equatorial rotation rates at these levels are 15,43 and 16.79
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deg/day. 1In contrast to case (b), the vertical shear of .ﬂgbs' is positive
‘at low latitudes, as expectéd.' An upper level westerly jet is now centered
at the equator and easterlies are found at high lafitudes. The streamlines
‘of the relati&e velocity field at level 2 are illustrated in Fig, 6.21,
Their tilt implies an equatorward angular momentum transport by eddy mo-
tions, which, with a little help from the surface frictional torque, com-
pletely balances the poleward transport by axisymmetric motions.

Fultz (1959) accidentally introduced heating in between profiles
(b) and (é), This occurred when the cénter of thé dishpan was heated and
the rim not simultaneously cooled, because some heat was conducted along
the bottom to the rim, At the topisurface, the observed flow patterns and
‘eddy transports were similar to the center heating-rim cooling case except
for a narrow band of westerlies near the rim, These observations lend
credence to ourifindings above,

For test run 7, JZz' is weaker at level 3 but usually negative,
in the magnetic as.compared to the nonmégnetic cése. In contrast, at level
2, UQZ is a small negative statistical remnant., In fact, curve A of Fig.
6.3a shows an excursion into the .j22.>C) regime, The profiles in Fig., 6.3
for the magnetic case are not very representative, being based on a data
sequence covering 10 rotations at intervals of two rotations, The qualita-

tive difference in aﬂabs/a} between the magnetic and nonmagnetic cases

is again consistent with the change in <:éZﬁ>in.Fig. 6.3b. A magnetic pro-
duction run for case (c) would be highly desirable, particularly if more

resolution could be added to the model,

/
. 2 .
Case (d): O, — Oy (l —10 Sin @ +35/3 S/n4(,(?)L0;¢ <0.
- ° ) 7T
The results are nearly oppos;te to those for case (c) according to

Table 6.3. Profile (d) seems incapable of reproducing the solar equator-
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case (e): O = O (|-5sin’we +10/3 5in' w) Cp>O0 .

The nonmagnetic solutions are rather similar to those for

—

case (a), with the following exceptions, At level 3, ;/l2 is now weaker .
than at level 2, but still positive, This is consistent with thermal wind
considérations and the kinematic constraints upon the spectral coefficients
of anbs in equation (6-2). In any case, the westerly jet maximum is still
at level 3, and its nore equatorward position coincides with a similar dis-
- : ' ’ — /
placement of the maximum gradient of 0’* and <6;> in Fig. 6.4b,

The introduction of dynamo-maintained magnetic fields signifi-

canily alters the situation in P.R, 1. The horizontal shear ,;i; becomes

“negative at level 3, but is small by a factor of six compared to observa-

tions, Meanwhile at level 2, ‘/Li is only a very weak statistical

residual, as seen in Fig., 6.4a, A:t_-.leve;:l 3, the ﬁus profile is about 20%

—

asyﬁmetricxabout the equator, Meanwhile, the vertical shear of Jqéwvremains

*
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positive, (increasing a bit at the pole) along with the equator to pole
temperature difference. This increase seems to be associated with the

. 1
development of strong magnetic fields characterized by 2 ~ ).

' Comparisons between Model Results and Solar Observations

, .
In the nonmagnetic case, C;, profiles (b) and (c) give results

in best qualitative agreement with observations of the solar differential

—

rotation, With the addition of magnetic fields, the value of JQ“Z is still

of the correct order of magnitude at level 3, e.g.,g/Lz = -2,08 deg/day
for P,R. 2. But at level 2, gjiz is only 23% of the observed value for
P.R. 2 and <10% for test run 7, Case (e) gives intéresting results for the
magnetic case, but the negative shear is weak by a factof of nearly six at
level 3 where Jiz = =-0.49 and negligible at level 2, The horizontal angu-~
lar velocity profiles for magnetic production runs 1 aﬁd 2 may be compared
visually with Newton and Nunn"s (1951) observed profile in figures 6.5 and

—

6.9. By varying and O, respectively, N
*, ’

—

288 (@=0) for cases (a)

through (e) and /], for nonmagnetic cases (b) and (c) probably could be

2
tuned at either level 2 or level 3 to the observed solar valueé.

If the baroclinic hypothesis is to be plausible, fhe model'hori—
zontal temperature difference should not exceed 'v40°K. But the maximum
differences in <;EE7> are respectively 90°K and 45°K for caée (b) and case
(c), while both gradients are about equal, due tq the finer structure of
(Z?l profile (c). From equation (2-50) and Table 6,1, the temperature
range is about 85% of the poténtial temperature range. Thus the temﬁer-
ature differences are too large by a factor F) I<F<2.

There are however some mitigating circumstances. First, for the
nonmagnetic case, 6&0 could be conditionally decreased by nearly a facgor

of two for either profile (b) or (c). The condition is that JU

2 at level
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3 (as opposed to level 2) be used in computing the ratio,'of model to
observed shear, Second, the thicker the baroclinic layer, the smaller
the required horizontal (potential) temperature difference, e.g.,

) Ae'*_ < IOOK if 20~O'(R z)~o'/5,?o . The baroclinic layer could be
c
considerably thicker than we have assumed, Third, it is not perfectly
clear that the observations of temperature on "horizontal surfaces" are
really surfaces of constant geopotential, or that horizontal temperature
differences are not larger beneath the solar surface. Of course, the
latter two arguments for not discarding the baroclinic approach a£e based
on our ignorance rather than knowledge of the sun,

In the magnetic case, the value of,ﬁ;at level 3 is weaker by a
factor of two, but still agrees qualtitatively with observations for
C}%‘ profile' (b). Also, the thermal forcing appears to maintain the
vertieal'shea£ of Ji;bs . However Va; at level 2 is too weak; By de-
creasing Ein , fhe Alfvé% number woiild possiﬁly increase, Magnetic fields
would theﬁ have less impact upon the Ji;hs profile and thus cao ‘could be .
decreased,

In:principle, one could infer characteristics of the horizontal
temperature structure from observations of a'ﬂ'a.bs/a% . For our baro-
clinic model at least, a thermal wind relation is clearly operative. The
auaébs/dagl data cited by.Bumba (1967) is for a fluid layer only 200 km
thick located near the equator, Although case (c) fits this data bgtter
than case (b) within the context of the baroclinic hypothesas, the data

“sample is probably too small to conclude that (c) is the better profile,

Reliability of the Results,

In the experimeﬁts, RL:F and l?e were not held exactly fixed
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while 6;, was varied, as cer be seen from Table 6,2, Some of the test
runs involved ser?ed dual purposes and our main objectiYe was to make one or
more production runs, before using ﬁp our alloted computer time. However,

. the qualitative angular‘velocity results of Teble 6.3 appeared to hold up
over the ranges {if any) of R‘:_ and/or Re encountered f;)r gi;/en Oq‘*/ .
(Magnetic runs were restricted to the Rossby regime.}

| An error was discovered in magnetic test runs 5,6, and 7 and lafer
corrected in run 7, but the qualitative magnetic results for (3;, profile
(c) in Table 6,3 remained intact. The effect of the error upon test run 6
was not assessed, but the magnetic results for Ggl profile (a) seem
plausible,

The sample size used to compute the time averaged curves of
figures 6.3, 6.4, and 6.3 were small except for the magnetic case curves 6f
Fig. 6.4 (P.R: 1) and Fig, 6.8 éP.R. 2). Thus the first group of curves
dep;rt soﬁewhat from the long term time average, They should still be
gualitatively correct, though, Of the nonmagnetic curves, those of figure
6.3 are the most accurate due to the quasi-steady nature of the solutions

.for nonmagnetic test run 7, Subjective scrutiny.of the computer printout
of the angular velocity, confirmed the qualitative results of Table 6.3.

Increased resolution would probably cause some modifications of
the résults, especially for the magnetic case.‘ Therefore runs with more
resolution would clearly be des;rable. But at least the indirect qualita;
tive confirmation of our ponmggnétic solutions for é&f profiles (b) and
(c) by Fultz's (1959) dishpan experiments is encouraging,

6.5, General Circulation Stat;gtics for Production Runs 1 and 2,
Enouéh computer time was available for two extended magnetic pro-

duction runs, Thermal forcing profiles (b) and (e) were selected for P.R, 1
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and P,R, 2, respectively. The other promising profiie, i.e.;(c), is an
intermediate case. Since the fourth order harmonic is considerably more
dominant in this profile than in (ej, the resolution difficulties could be
more acute; The angular velocity and potential temperature profiles for
P.R. 1 and PR, 2 already have been discussed, The other statistics inf
clude the éGFs and <u£$»velocity.fie1ds in meridional planes, the horizon;
tal eddy heat transport, the vertical eddy and axisymmétric heat transports,
the vertically'averaged angular momentum balance, and the Reynolds and
Maxwell stresses.

The time averaged statistics are based on many values (700 at
intgrvals of one solar rotation) for the magnetic case, bﬁt on..only 5 for
the nonmagnetic case. From Fhis standpoint, more confidence could be
placed in statistics for the magnetic case, while comparisons between the
magnetic and nonmagnetic casem should bé'regarded as qualitative, Of
céurse, in a broader sense, all the results are crude, since the model
resolution is so low,

6.5.1., Production Run 1, .((9;6,: 30(I- 5‘5:’7)2(,0 + 10/3$in4c?) ok)

The statistics for P.R, 1 are illustrated in figures 6.4, 6.5, -
6.6, and 6,7, Tables 6.1 and 6.2 may be consulted for the:values of the
relevant parameters, Figures 6.4c and 6,4d imply that the mean meridional
ciréulation consists of a direct cell at low 1a£itudes»and an indirect cell
at higﬁ latitudes1 (poleward ofA45°). The circulation pattern is very sim-
izar to the one discussed in seétion 6,2 for the terrestrial atmosphere

case, For the magnetic case, the direct cell is somewhat stronger and the

1Perhéps the term quasi-indirect is more appropriate in view of the

(weak) relative minimum in <02"> at latitude 700, for the nonmagnetic case,
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indirect cell somewhat weaker than for the nonmagnetic case. The maximum
value of <—1_f—.-> is y»oyghly 9 m/sec at (€ = 250, whiéh does not contra-
dict Ward's (1964) results. (i.e., his confidence limits are larger).,

.The horizontal eddy heat transport depicted in Fig. 6.4g is com-
puted by truncating the trwe scalar a—"!c_o‘s‘a .5%(< 1/;_*0;_'*7@5’-2), integrating,
dividing by coszca , and finglly mgltiplying by cos (@ . Meanwhile, <1d:*¢§‘f>
and 2;Z$€EE> are tnugcated directly, For the nonmagnetic case, the three
heat transport curves resemble'those of figures 6.1lg and 6.1h, The-curve
remains positive (negative) above latitude 70°N (70°S), due perhaps to the
low model resolution,

There is a fairly dramatic change in heat transports for the mag-
netic case, The horizontal eddy heat ;fansport and verticalredd& heaf
transport are greatly reduced at mid-latitudes, while the vertical axisym-
metric heat transport is somewhat enhanced at low latitudes. Thqs the
energy conversions {<2P5>~><£PE>} 2 and [<EPE>-—><EKE>j are smaller,
whereas [(ZPE>-><I(M>_} is larger. According to Gilman's (1967)
linearized normal mode gnalysis of a éuasi-heliostrophic model, baroclinic.
instability is totally suppressed if (Za<‘4'. The critical value AZi%rr
is apparentiy somewhat lower in our primitive equation model, But usually,
d ¢ >'dE:rrSince significant but not total suppression of baroclinic insta-

bility occurs. Plots of )0: and EL suggest that vertical motion eddies

* 2 . A
Nbfl are strongest where the axisymmetric toroidal magnetic field <:Bz >
is locally weak, (See later discussion,)

The nonmagnetic "correctly truncated" angular momentum balance

(per unit mass) for P.R, 1 is illustrated in Fig, 6.4e, Curves A and B

represent the convergences of the horizontal eddy transpdrt and meridional

2 -
This conversion would be weaker except for the stronger meridional
gradient of <O’ > .,
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transport of angular momentum, respectively. Integraxipn qf these curves
leads to the actual angular momentum transports of Fié. 6.4f, Both the
eddies aﬂd the ;xisymmetric meridional cells transport angular momentum
from low to high latitudes, The equator@ard transport by the indireét
meridional cell has been Smoothed out by trunﬁation. The eddy transport
is stronger by a factor of 2.5 -and reaches a maximum at 300-350 latitude,
The two transports are approximately balanced by the total frictional
torque.(Fig. 6.4e, curve C). The slight imbalance (curve D) ié a mani-
festation of the small data sample,

Concerning the total frictional torque,an anisotropic eddy vis-
cosity has been included to help selectiyely damp the higher harmonics,
The horizontal eddy viscosity has a characteristic decay time of the lowest
order mod2 of vaDZzo years), As the horizontal viscous dissipation term
cont?ibutes only ~ 10% to the total frictional torque, the latter is
essentially the forque exerted on the fluid by the rigidiy rotating lower
boundary,

'Figure 6.6 contains the "correctly truncated" angular momentum
balance for the magnetic case. The convergence of eddy and axisymmetric
transports of angular momentum are still negative at low latitudes and
positive poleward of 250-300 latitude.,. However, with the partial sup-
pression of.baroclinic.instability by the magnetic'fields, the horizoﬁtal
eddy transport is reduced by nearly a factor of five as seen from figures
6.4f and'6.7. Moreover, the eddies still transport angular moménf&m away

.from the eduator. Thus with or without magnetic fields, the horizontall
eddy transpoft for P,R, 1 is completely contrary to Ward's (1964) observa-

tional findings, The horizontal axisymmetric transport is little changed
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(only ~20% larger) f?om the nonmagnetic case but is now the domipant trans;
port mechanism. The frictional torque term in the anguiar momentgm balance
(curwe C) is much smaller in the magnetic case. But it is similar in shape
to its nonmagnetic caée counterpart except for a 50 pﬁase shift,

Two new terms are the divergence of the horizontal eddy Maxwell
stress (curve F) and the divergence of the horizontal axisymmetric Maxwell
stress (curve E). The latter is the second largest term in the angular mo-
mentum bglance and almost balances the convergence of the axisymmetric
transport. This is not inconsistent with the drastic change, i.e., almost
total destruction of uE; at level 2. The eddy magnetic term ;s half the
size of the corresponding eddy transport term but of opposite sign. It
gives almost an identical coﬁtribution aé thé‘frictional torque term,

The Maxwell stresses are obtained by integrating the two terms
above. They have the same sign as the Reynolds sfresses3, as indicated in
Fig. 6.7, Here, the axisymmetric stresses have each been split up into two
parts, i.e., (1) a product of time-zonal means and (2) a time averaged pro-
duct of two time eddies of zonalvduantities. Note that the steady axisym-
metric. Reynolds stress (curve Bl) is much larger than its unsteady counter-
part (curve Bz). Conversely, the steady axisymmetric Maxwell stress (curve
Ey) is negligible compared to the unsteady axisymmetric Maxwell stress
(curve E2), which is pot unreasonable for a reversing dynamo.

Typical propagation speeds of disturbancés are roughly +15° lon~-
gitude (i.e., 1/4 wavelength) per rotation, in both the noﬁmagnetid and
magnetic cases. This value is comparable in order of magnitude to the

westerly zonal current. The{3 effect is evidently weak since 7”1 = 6 and

3At level 2, the total hor1zonta1 Maxwell and Reynolds stresses are re--
spectively +2(4rw 5.y ‘(8" B +8, *8, {)a-cosw and +4(U,V, UV, )a:cosy, according to
our sign convention,- The factor a-cos is really the torque arm length,
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M > 2, generally speaking, for the wave disturbances., ‘ .
. / 2 o
6.5.2. Production Run 2, ( O;(_: - 3.5_(/" 3S§in (0) K- )

General circulation stat;stics are summarized in figures 6.8,
6.9; 6.10, and 6,11, See tables 6.1 and 6.2 for values of parameters for
production run 2, Again the axisymmetric circulation in meridional planes
depictéd in Fig, 6.8c and Fig, 6.8d contains both a direct and an indirect
cell, But the indirect cell is relatively weaker and is confined closer to
the pole for this run, The circulation of the northern hemisphere extends
about 50 into the southern hemisphére in the magnetic case, But khe main
change which occurs after the magnetic fields have been introduced is an
increase in strength of the circulation. This is not inconsistent with the
increased temperature gradient in Fig. 6.8b, Once more, the development of
stroné magnetic fields, and not the premature termination of the nonmagne-
tic-runs probably is the cause, At any raté, the direct cell is about 50%
stronger in the‘magnetic case, and both the direct and indirect cells.are
in phase with their nonmagnetic counterpafts. The maximum values- of ‘877f>
for the nonmagnetic and magnetic case are respectively 14 and 21 m/sec, at
about 25°-30° latitude. The latter value just falls outside of Ward's
(1964) confidence limits on <U > .

Baroclinic instability is rather noticeably suppressed at mid-
latitudes by magnetic fields, as'was found to occur in production run 1,
One change though in P.R. 2 is that the axisyﬁmetric vertical heat trans-
port becomes positive at all latitudes in the magnetic case, Fig, 6.8h
_indicates i:hat {( ZF’E)-—-»{.KM)} will be A as large as {<EPE>—><EKE>}
Another change from P,R. 1 for both the nonmagnetic and magnefic cases is
that the horizontal eddy heat transport is now equatorward, which is no

surprise,



In P.R. 2, tﬁe decay time for horizontal vigcous dissipation (of
the lowest order mode) is 15 years, As in P,R, 1, the horizontal dissipa-
tion contributes onl& }»’10% to the total frictional torque,

The "correctly truncated"” angular momentum balance for nonmagne-
tic P.R. 2 is illustrated in Fig. 6.8e and the horizontal transports
(Reynolds stresses) in Fig. 6.8f, In the rotating coordinate system, the
winds are Qasterly except for a iow latitude band of ﬁesterlies at level 1
ﬁnd.leﬁela?. Hence, according to figures 6.8e gnd 6.8f, the horizontal
eddies are maintaining the mid-latitude easterly jet whereas the total
frictional torque and axisymmetric meridional circulation work to destroy
it., . The poleward transport of easterly (i.e., negative) angular momentum
by the horizontal eddies is equivalent to an equatorward transport of
westerly (i.e., positive) anéular momentum, The "correctly truncated” eddy
Reynolds stress reaches maximum values.at t250, is roughly three timeg
larger than the axisymmetric Reynolds stress, and is of opposite sign.
Figure 6.8 was constructed from a small amount of data, as indicated pre-
viously, This may explain the imbalance (curve D).

Incidentally, Fﬁltz (1959) observed horizontal eddies between
the rim and the center of his upper level easterly jet (discussed earlier),
which were tilted in thg same sense as ours, Moreover, the.required angu-
lar momentum transport was accomplished predpminantiy by these eddies,

The horizontal axisymmetric transport overshadows the horizontal
eddy transport of angular moméntﬁm in magnetic P,R. 2, But the phaseé of
both terﬁs are not change& much from the nonmagnetic case, The reduction
of the eddy Reynolds stress by a factor of five is agéin attributed to the
partial suppression of baroclinic instability by magnetic fields, Thq‘q

axisymmetric Reynolds stress increaseérby about a factor of two which is
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~somewhat more than the increasc in.strength of the axisyﬁmetfic meridional
circulation, This extra increase may reflect the greater relative domi-
aance of the direct cell in the magnetic case;

A peculiar phenomenon: in the magnetic case is the reversal of the
regions’df easterlies and westerlies at level 1, This may be analogous to

—

the reversal of the shear of JQ . in P,R. 1 after large am:plitude mag-
abs

netic fields were generated.. (No programming errors were found,) Due to
the wind reversal, the frictional torque ﬂ;lps maintain rather than destroy
the mid-iatitude easterly jet, as if éhe differential rotation were partly
friction-driven, The torque is considerably weaker in magnitude though
than in the nonmagnetic case. 'The_phenomenon is apparently a reaction to

" a magnetic drive, Kippénhahn's (1963) analysis is probably inapplicable
even though we have ‘CR)‘> 4 , because his circulation is frictionally-
driven in the nonmagnetic case and is not characterized by Re > o It
remains to be seen if the above result would hold up in a model with
greater horizontal (and vertical) resolﬁtion.

The convergence Qf the horizontal axisymmetric transﬁort is now
the largest sink of westerly (easterly) angular momentum near (far from)
the equator., It i1s opposed by three terms: (1) the frictional torque, (2)
the convergence of the horizontal eddy transport, and (3) the divergence of
the eddy Maxwell stress, Of thesg, term (1) is a bit larger than (2) which
in turn is roughly three times larger than (3). The divergence of the axi-
symmetric Max&ell stress is rather nonsymmetric about the equator. Second-
ly, it is smaller here relative to the convergence of the axisymmetric Rey-

nolds stress, than in P,R. 1, These4two terms tend to oppose each other,

but they work together at some latitudes. The sum of terms displayed in Fig. .



o o & @

LONG. /DAY

D EG.
o
I

/ ~
0

\

Cwiil MRV NN IS W)
-90¢°

.60° -30° 0° 30° 60° 90°
LATITUDE

(a) Absolute angular velocity Ji
al

A-level 2,
B-level 2,
C-level 3,
D-level 3,

magnetic,
nonmagnetic,
magnetic,
nonmagnetic,

3
- 3
2
- E
o 'E
xo:
o F
woor
L1
z
(&) -
-2
N =TS KE I AT N
-90° -60° -30° 0° 30° 60° 90°
LATITUDE

(c) Meridional velocity ZV?> .
A-magnetic; B-nonmagnetic,

Fig. 6.8,

2] 2=

bs

7Y

]llllllll'll

-25

A

yal el 1;.i} v v b

T

-50
-90° -60° -30° 0° 30° 60° 90°

LATITUDE

(b) Perturb, potential temp, and
thermal forcing proiiles,

A- <6)/> |, magnetic,
B- <&/> , nomiasguetic,
C- ) <e*' > .

30

20

QL Illlllllllll T

CM/SEC
o

o~
-
-
-
[

-20F
-

IAREEEEENEE RN NN
-60° -30° 0° 30° 60° 90°
LATITUDE

(d) Vertical velocity <wW,> o
A-magnetic; B-nonmagnetic,

-30
-90°

Some general circulation statistics for PR, 2.



cm? /sec? x10*7

6

4

2

(o]
-2

-4
-6
ce gl b | LLJ 1o b
-90°.60°-30° 0° 30° 60° 90°
' LATITUDE '

(e) Nonmagnetic angular momentum
balance (vertical average),

CM-DEG /SEC X 10%4

L]
N O N >

'
£

-6

A-converg, horiz, eddy
transport,

B-converg, horiz, axisym,
transport. ’

C-frictional torque,

D-sum of A4+B+4C.

~213~

© 2 A
+ o
o [
- =
x C
o F
[$) -
w O
v
< E
m . E
s 'F
o e
-25_
SN ITEEENANE FNE NN
-900 .60° -30° 0° 30° 60° 90°

LATITUDE

(£) Horiz,., Reynolds stresses

(vertical average),.
A-eddy stress,
B-axisyu, sStress,

.
8 - 8
/ - N g |°E_ / - ~
‘ \ SE 0 Y
* oE a D ‘o
o S [/ c
S E
» o
~ ofF—
S E )
o B/ \
© .5, \
= ¥4
N ’ s F N
-7 -|0:—
b de b bl aales A NTEENE IR T Y
-90° -60° -30° 0° 30° 60° 90° -90° -60° -30° 0° 30° 60° 90°
LATITUDE LATITUDE
(g) Horiz, eddy heat tramsport, (h) Vert, eddy and axisym, heat transp,
A- <y*e/™> , wagnetic, A- <w*0,'"> |, magnetic,
B- <QV*g'*S , nonmagretic, B- <w.6,’*> , nonmaguetic,
S ' c- W, ><6,> , magnetic,
D- <W,><@,> , notuagnetic.

Fig. 6,8, continued,



-214-

16

15—

'DEG /DAY
o

12

ol I+ L b e b e b b b 1y
- 80° -60° -40° -20° 0° 20° 40° 60° 80°
LATITUDE

Fig., 6.9. Comparison of absolute angular velocity profiles of

magnetic P,R. 2 with observations,

A—‘.i'l‘us at level 2.

B- ./l“s at level 3,

C-Newton and Nunn's (1951) observed profile,



-215-~

llllllle["l!le’l[llll

llrlllllTllTYlIIll‘I[Illl

T T A I [ I TR DU N N
-80° -60P -40° -20° Q° 20° 40° 60°. 80°
LATITUDE

Fig,., 6,10, Vertically averaged angular momentum balance of magnetic P,R. 2,

A—convefgence of horizontal eddy transport (Reynolds stress).

B-convergence of horizontal axisymmetric transport (Reynolds
stress), : '

C-total frictional torque. .

E~-divergence of horizontal axisymmetric Maxwell stress,

F-divergence of horizontal eddy Maxwell stress,



-216~-

10.0
8.0

6.0

b
o

o
o

llllllf[llllilll]llll

o
o

'
o
@)

II ll' T lll T T ||| r[ T 17

cm? /sec? x 10*"7

'
H
O

o
o

-80

B‘
T N M T IO A SN BN RN N N N |

-10.0

~-80° -60° -40° -20° 0° . 20° 40° 60° 80°
LATITUDE

Fig, 6,11, Vertically averaged horizontal Reynolds stresses and
Maxwell stresses of magnetic P.R. 2.

A -eddy Reynolds stress,

B;-stationary axisymmetric Reynolds stress,
Bz—fluctUating axisymmetric Reynolds stress,
E,-stationary axisymmetric Maxwell stress,
‘E,~fluctuating axisymmetric Maxwell stress,
- F -eddy Maxwell stress,



-217-

6.10 is pegligible compared to the magnitude of the.individual terms, and
thus a long term "c&rrectly truncated" angular momentum balance exists
for P.R. 2. A similar balance is aéhieved'in Fig. 6.6 for P.,R, 1.

| ‘The Reynolds.stre9ses and Maxwell stresses themselves are il-
lustrated in Fig, 6.11 for magnetic P.R, 2, The nonfluctuating axisym-
metric Maxwell stress énd the oscillating axisymmetric Reynolds stress are
again smallest., The two largest terms are the nonfluctuating axisymmetric
Reynolds stress and the eddy Re&nolds stress, respectively. The horizontal
eddy Reynolds and Maxwell stresses now have opposite éigns (cf. Fig. 6.7),

Typical propagation speeds of disturbances are about —30o longi-

tude €(i.e., 1/2 wavelength) per rotation, Ihis value is ~~ twice as large
as for.P.R. 1 and is comparablé to the magnitude of the easterly zonal
current., .

Comparison with Observations,

Ward's (1964) covariances in units of (deg/day)2 from his Table

7 may be compared to our horizontal\eddy transports by multiplying his

values by —(%%——g'— (_2_77?:6_%0-5—‘3)(8. 6.4x104)-2(a_ cosw@) . Of interest here is
the north-south averagé‘for the 200f30° latitude belt for 1935-1944, For
Ward's cases with no cutoff, moderate cutoff and severe cutoff, the'con—
verted values are -2,1 x 1018, ~-1.3 x 1018, and -3.2 x 1017 cms/secz,
respectively., At latitude 250, where the maximuﬁ eddy transport of the

2
18 and -3,6 x 1017 cma/sec , respectively,

model occurs, we obtain -1,6 x 10

for nonmagnetic P,R. 2 and magnetié P.R. 2, Thus our values fall within
o

the range of Ward's at 25, and agreement is attained to within an order

of magnitude. From the standpoint of horizontal shears and horizontal eddy

transports of anguiar momentum, P,R., 2 is more realistic than P.R, 1. The
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reversal of the horizonial shcur of uﬂL in P.R. i by magnetic effects is
. abs

interesting however,

The Rossby-Hadley Regime Boundary for P.R. 2.

By varying 6&0 and R; , and keeping all other pagameters
.the same as for PLR. 2, a crude determination of the Rossby-Hadley regime
boundary can be made for that run. The results for the nonmagnetic case
are presented in Fig, 6.12, The relevant group of experiments comprises
test run 14 in Table 6.2.

- ' 2/ 2 : . .

In Fig. 6.12, /ogm (Re/@*’o) and 6;0 .are logical dimensional
coordinates, since CZ% andRe were the quantities act?ally varied.
However, they may be converted to the more standard nondimensional coordi-

nates pg T  and. R',* , respectively where
- 9 [- 9 t O

] | | .
T, = f (33)4/1/'?‘ (6-42)

defines the Taylor number.
Now «f= DaL—'lA(IJR: » where AU, = 2, S8nd, L, Ro:'
= 16 9D AL, /(4TaNE;) from equation (6-1), and f;_' 24 sind, .
But for P.R. 2, AG, = 3@;% and  Sin®@ =1/J/3 . Making t};e necessary
substitutuions, T, = C (R:/é:) where €z (4/3)TT(a ﬂz/j)z § (&’; 7 ‘%)2‘9:

4.

During the above experiments, (C ~ 2.6 x 10 (OK)2 is held fixed.

Hence the abscissa in Fig. 6.12 may be transiorméd to

. 2 2 .
Jo z o [C & J (6-4b)
3"07: . ’ glo : (Re/ xo)
Similarly, in the definition (6-1) of ﬁ;;% , all parameters are held

fixed except AO; = 3@;P , 8o that RO: is linearly proportional
o

to d . ; e
-G -
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In Fig. 6.12, a dashed line separates the Rossby and Hadley
regimes, This boundary is obviously only speculative, especially near the
top of the diagram, considering that it is based upon only ll.points. A
similar diagram for the profile O;o( [ —10 5‘;/)2(0 +35/3 s:‘n4c2) is not
included because only 6 points were obtained from tesf runs 2, 3, and 7
(see Table 6.2). However, as in Fig. 6.12, the Rossby and Hadley regjmes
seem to be-separated.

In Fig. 6ﬂ12, the éddies are quite weak for the solution symbol-
ized by the black circle closest to tﬁe dashed line (this circle is also
the lowest black circles. The solutions corresponding to.the white dot
inside. the Hadley regime and situated farthest from the dashed line con-

- verge to axisymmetric-steady state the most rapidly. There is one point
on the dashed line. Here, the solutions show little tendency, to converge
to a steady sfate configuration after ~ 50 rotations; the initial eddy
perturbations neither seém t6 grow nor die out, Finally we note that
within a particular regime (Rossby or Hadley) the solutions at the various
points differ from each other,

Not enough computer time remained to determine how magnetic fields
would affect the Rossby-Hadley regime boundary, We would not expect dynamo
solutions in the Hadley regime of Fig, 6,12 however, since magnetic fields
seem to>$uppress baroclinic instability and since axisymmetric dynamos are
impossiblg.

6,6, The Search for.Dynamo Solutions,. .

We recall from Chapter III that each magnetic run was preceded

by an analogous nonmagnetic run in the Rossby regime, The latter was te£—

. minated after large amplitude eddy disturbances and self-consistent (but

not necessarily quasi-steady) axisymmetric flow patterns appeared, e.g.,
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after ~ 2000 time steps,

Small, random toroidal magnetic field eddies were then inserted,

such that /ﬂ,z—v 0(/05). Typically ,a,z remained of 0’(/05} or increased
slightly during the next iO rotations (thezadjustment phase) irrespective
of whether Rm was supercritic-al. Now if Rm< Rmc’ then ,ﬂ,z continued
to increase, i.e,, the magnetic fields decayed to zero. Based on a sniall

number of runs, the rate of decay seemed slower for the smaller values
of - .
Rmc. Rm.. .
In contrast, if R >R , the magnetic fields grew (,d,2
m mc
decreased) after the initial adjustment phase for all runs with resolution
o0<m< 4- s, N = 0)6 ¢ A typical generation phase lasted for -~ 40

to 60 rotations before giving way to the dynamo maintenance phase, Here

c—

2 ' ) z
,@ oscillated about its time-averaged value AL . Approximate equipar-

tition of kinetic and magnetic energy occurred for both production rums,

—

but ,C—Z?: had somewhat diffex.'en't values for each, For example, ,a,z was

slightly less than unity for P.R. 2, bﬁt between 2,0 and 2,5 forAP.R. 1.
According to Table 6,2, Rm = 150 and l?e = 30, giving a value

of 5 for the magnetic Prandtl number F;m , While Ro: =.0,116 for P,,B._..l_.. The

horizontal Reynolds and magnetic Reynolds numbers may be defined by

2 2
= AT/ and = R (a 0, . For P.R. 1
R,..,= R.(a/D) (V/¥,) R = R,(2¢/D) (@) ,
- =~ 1090, which is large compared to {  and K .
€CH) m(H) - : e m
Dynamo action occurred for this run; but not for another run in which
*
= 125 = 25 = -0,121 = ~~ 907, and
Rm ’ Re r Ror ’ Recu) R et ?

’
6'*_ ==-35(| - 3 Sinzw) . The most significant difference in

parameters between th_e two runs wasi the (9'

e profile. ‘Setting R’;,=250,

2
A first grew from 0'(105) to 0’(106), then decreased, loveling off
5

at (10 ). Thus R is close to 250 for a run similar to BP.R, 2, Two
mc N
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other attempts with Rm = 375 and Rm = 500 (and other parameters
similar to those in P,R, 2) succeeded in generating largé amplitude mag-
'netic fields., The above runs plus another with higher resolution are
.summarized in Table 6.4, .

We speculate from the data of Table 6.4 that FQ”, could be
affected. by the structure of thervelocity field (in the nonmagnetic case)
associated with 6* d . (V{e are implicitly assuming here that Rmc is not
a rapidly varying function of Re or Ro: .) It is not unreasonable that

certain velocity profiles could be more favorable than others to the induc-

tion of magnetic fields,

Table 6.4, Dynamo Behavior for Different Runs,

»* © e
Profile R R R R R . Resol. | Dynamo at
or e ew ™ mae Action
(e), G; = 30 0.116 30 1090 150 1090 |0 < m<x 4 yes 2 4

(), & = 30 0.116 30 1090 150 1090 |0 <€ m < 6 |yes, butj~1x10
weak

(b), = -35 |-0.121 25 907 125 907 [0€£ m £ 4 no | — co

(b),
(b),

*o

%,
(b), 6;°= -35 |~-0.121 25 907 250 907 |0 € m <4 ma:f'ginal ~2x105
G:‘; = -35 |-0,121 25 605 375 1360 |0 <m <4 yes ‘0.9_+
0;9

= =356 |-0,121 25 907 500 18140 |0 £ m < 4 yes 0.7 -

Secondly, Table 6.4 suggests that /@2 decreases és,Rn;- ‘R,c .and
‘flm .

R increase over the ranges of values considered. Perhaps Rmc~ 250
miH) T

would increase if R " were decreased, The strong induction of poloidal
m(

magnetic fields for Rm = 500 is illustrated in Fig. ‘6.23. Note the

large vertical eddy magnétic fields and the prominent regions of inflow
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and outflow in the horizontal magnetic field, Had we been able to vary

—

}27n from 250 to 375, it is bossible that AZZ could have been tuned to.
' (10) or to (J(100) for example.

In test run 8, all the parameters were identical to the ones in-
P.R, 1 except thai; the resolution was increased to 0 m <¢g , n=o, 6 .
The computer time per numerical integration was twice that for the old
resolution, The run w;s terminated 114 rotations after insertion of the
magnetic eddies, But LLZ had decreased only from C?(los) to C¥%104),,
8 x 103 being the minimum value. ‘ :

Although convergence is an important-question, we lacked the
computer resources to investigate it properly, and can only speculate on '
.the interpretation of the above result. One possibility is that f?nmc
and even Ai?: }ncrease with resolution overa finite range éf resolution,

Of course if f\’m and 16-2-:2- increased without bound, our model w‘ould not
act as a true dyﬁamo..
6.7, Basic Structure of the Magnetic Field Solutions,

The structure of the magnetic field solutions is deséribed below,
mainly for P.R, 1 and P,R, 2, Magnitudes of the vertical magnetic fields
are approximately of the correct order of magnitude, The toroidal magnetic
field is not persistently either an odd orieven function of 1atitude.‘ If
the solar magnetic cycle is (partially) controlled, by large scale processes,
then our model results should corréspond somewhat to the cycle's lqrge
scale asbects. Obviously, our model resolution is much too crude to simu-
'late sunspét or smaller scale motions,

Loosely interpreting our vertical magnetic eddies as active re-

gions, the generalized Hale polarity laws for leading (following) regions

in opposing hemispheres are sometimes obeyed, But the following regions
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are more intense than ghe leading regions, The tilt of the bipolar magnetic
regions tends to Se in the correct sense for only the first 12 years of P.R.
1 (éspecially at level 2) and not for P.R. 2, The level of magnetic activ-
ity differs between the two hemispheres, as is observed on the sun, The
géneralized SpErer law governing the equatorward migratidn of the'mean lati—
tude position of active region formation does not hold,

The most substantive result is that magnetic field reveysals oc;
cur for both production runs, In P,R, 1, the time scale for the reversals.
is of the correct order of magnitude. Conversely, it 'is too short in P,R. 2.
A detailed discussion of the reversal process is deférrqd until section 6.8,

- 6,7,1, Solutions for Production Run 1.

The evolution of the horizontal mégnetic field £?u is illus-

" trated in Fig, 6.13 for P.R.'l. This figure, like most of Q;e others of
this section, ﬁas originally plotted on the NCAR DD80 device. Arrows

point in the direction of the local horizontal magnetic field, at 5° incre-
ments of latitude and longitude, Also, they are subdivided into several
standardized length-thickness categories to indicate .the local horizontal
field strength. The maximum field strength and the time reiative to the
introduction of the inital magnetic perturbations, are written at the
bottom of each plot.

The sequence in Fig, 6,13 is for a 7,7 yeér epoch at intervals of
0.70 years (10 rotations). It begins at time ¥ = 4,73 years, not long
after the completion of the géne;ation phasé. At first, toroidal (rofa-
tional) magnetic eddies are prominent, We recall that the initial magnetic
field was of pure toroidal eddy type. Both the axisymmetric and eddy tor-
oidal fields are gntisymmetric about the equator for most of the sequence,

After & = 5.42 years, the eddy toroidal field is not too prominent, The
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' o
axisymmetric ‘toroidal field at first contains a mixture of a);‘/CQCQ and
3‘/:/8& toro'idal vector spherical harmonics, Later, a);_a/a& is
dominant, At 11,68 years an eddy disturbance affects only the northern
hemispheric fields, Th;reafter, the antisymmetry.of ‘the axisymmetric tor-
oldal field basicglly disappears except for some short-lived rec&rrences.

At t = 26,96 years, for examplel_gu is symmetric about the equator as
shoﬁn in Fig. 6.,14b, We do not know fﬁe cause of the pronounced asymmetry
§f.<f§ﬁ> between the two hemispheres. No solar observations of <E2A>' are
available as a guide, either, It would be interesting to investigate wheth-
er or not this asymmetry is related to either thé sfrong magnetic feedback
upon the flow or to the low model resolution,

The characteristic instantaneous BEEE strength of the axisymmetric
toroidal field <Bz)‘> varies from under 500 to over 1500 gauss, Although
these values are about half an order .of magnitude larger than Babcock (1961)
has suggested, no observations are available to substantiate Babcock's esti-
mate, However, the local twisting of Babcock's flux ropes is supposed to
generate small scale fie;ds of sunspot amplitude, e.g., ~ (7(2000 gauss).
The magnitude of our toroidal fields could be reduced by over a factor of
2, if,q.,? were ~ 10, A similar reduction would occur if P were set to

§.
~ 4 x 10—5 gm/cms, which is closer to the photospheric density.

Figures 6.17a-6.17d show the Y. , W , B ¢ , and B

. STy 2 4 2.
fields, respectively, at Z = 8,20 years, for P.R. 1. The horizontal wind
field is zonal and axisymmetric in character and the horizontal.shear is
very small, The vertical motion field has a little more character but
basically‘reflects a dominant meridional circulation with two cells in each

hemisphere. Occasionally, the eddy structure of Ld;‘ is more prominent,

3 -
The 34 field reflects a nonvanishing horizontal divergence of
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B8 and is perhaps more anaiogous than 8 & to the surface vertiical
- H . - 2

2
magnetic fields. We recall that the observed line of sight fields are a

composite, over one solar rotation,'of fields detected near the central
meridian of the solar disk. The most direct comparison between our 34
(or BE} ) fields apd the observed line of sight fields can be ﬂade at
low latitudes. Tyi)icai strengths.of bthe BZ} and 343' magnetic fields in
P.R: 1 are both of (J(5 gauss) in agreement with measurements made with
modgrate resolution magnetographs, Bi being somewhat stronger than B:‘ o«
In Fig. 6.17c, the 84? contours equatorward of the closed con-
tours tilt in the same sense although not so steeply as Bumba and Howard's
(1965b) observed field patterns. However, 34} is quasi—éxisymmetric, i.e.
no regions of alternating polarity are found. In contrast, ihe eddies of
Bz are more pronounced and there are adjacent regions of opposite polar-
ity between latitudes -60° and +60°. But disturbances of one polarity
" still dominate the regions of the opposite polarity in each hemisphere.
At I = 8.20 years, the dominant polarity of the 133' eddies is positive
in the southern hemisphere and hegative in the northern hemisphere. Inci-
dentally, the eddy structure of B? differs in .the two hem-iSpheres. The
dominant eddies of each hemisphere could be characterized as being of
following polarity (i.e., opposite to the polarity at the pgle).
The configurations of the EL% and E;}- fields in Fig. 6.17
are not persistent, bpt are amopg the more typical ones, The magnetic
eddies tend to tilt towayds the equator as shown, especially at levei 2,
until T~ 12 years, Bét Fig. 6.15 illustrates an example of magnetic
eddies having an opposite and more pronounced tilt. There is still a
prgdominance of one eddy polarity (i.e., of following type) over the o“her

in each hemisphére. Also, the zonally averaged part of 33' has an octa-
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pole configuration at X% 2.6‘12 and 8.20 years., Sometimes the configura—'
tion is more dipole-like and at other times, is either an even function ef
latitude of a mixture §f.even and odd modes,

As stated in Chapter I, observed active magnetic regions of lead-
ing polarity tend to be located at lower latitudes and have stronger fields
than regions of following polarity. However, the latter are more spread
out in longitude. In addition, the leading (and following) polarity‘are
opposite for the two hemispheres. Thus the <133'> pattern for the model :
should probably have five nodes between the two poles. But the highest odd
number permitted by our resolution is three. Interpreting Fig. 6.15 and
6.17d, for example, in this light, a region of leading polarity is repre-’
sented by the penetration of a region. of following polarity into the op-
posite hemisphere., But the regions of following polarity are stronger., 1In
this manner, the following regions could neutralize the polar fietd despite
the constraints imposed by the resolution, We also note that our 1on§itu-
dinal resolution cannot simulate the "unipolar" and "ghost unipolar regions”
characterized by n ~ 1 and n ~ 2,

6.7.2. . Solutions for Production Run 2,

A 7.7 year evolutionary sequence of § at ~ 0.70 year (10

Ha

rotation) intervals is illustrated in Fig. 6.18 for P.R. 2. The antisym-
metric character of 8 present>at first in P.R. 1 seemed éﬁ be lacking
in P.R. 2. The beginnizg of the time sequence is at 22.52.years. “Note
that the fluctuations are much more rapid in Fig, 6.18 than in fié. 6.13.
.Nevertheleés, some coherency is still present from one plot to the next in.
the eequencé; wa reversals in the hemispheric average s;gn of <fﬁgk:>

occur in the northern hemisphere and one in the southern hemisphere between

: A
A .= 22.52 and 30.16 years. The configuration of <B > basically changes
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from odd to even symmetfy with respect to the equator. But more often than

not, the hemisphei‘ic a\;erage <B:> fields for the two hemispheres are op-
posite in éign, Another feature is that for P.,R., 2, the toroidal magnetic
eddies are more prominent than for P,R. 1. But when and where the magnetic
energy is large, it is predominantly in the <B:> field.

fhe peak magnitude of the instantaneous'<52~> field is typically’
A~ 1000 gauss but occas;onally may reach 2000 gauss,

Figures 6.19a-d contain the V y W , 81( ,and B}‘ fields,.

Hq 2 4 2
respectively, at % = 24,60 years, In Fig. 6,19a, note the mid-latitude
easterly jet., Although the flow is predominantly zonal, the eddies are =
somewhat stronger than the arrow representation is capable of showing. The
darker areas indicate that the eddies tilt NW-SE in the northern hemisphere,
The vertical motion field has more eddy structure than in Fig. 6.17b. For
example, vertical motions of oppoéite sign are juxtaposed at mid-latitudes.

The characteristic magnitudes of the vertical magnetic fields are
~~ 10 to 20 gauss for 3;} and ~1 to 2 gauss for 34} . Thus there is
frequently an order of magnitude difference between _B2 and 3 3 in P.R.
2, in contrast to the situation in P.R. 1. The yalues for Eg} and 6;3‘L
are in best agreement with observations taken during the active and inac-
tive phases of the sunspot cycle, respectively.

The B: and especially the -343’ ' config;xrations in PR, 2 often
tilt in.the incorrect sense, However at £ = 24.60 years, the tilt of the
B;} fie}d in Fig. 6.,19d is saéistactory. Even 84 manages to tilt in
the correct sense at =.28.10 years, but Fig, 6,20a is not really typical,

Magnetic eddies of opposite polarity are somewhat more readily juxtaposed

at level 4 in P.R,-2 than in P,R. 1. Regions of opposite polarity are still
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juxtaposed at level 2, The eddy activity can be stronger inAone hemisphere
than in the other, ‘as indicated in Fig. 6.139d, Also, regions of leading and
following polarity may be identified in figures 6 19c, 6. 19d and 6.20a, In
the first two cases, the leader (or followey) regions in each hemisphere
have the same polarity, in disagreement with one of the phenomenological
laws of the sunspot cycle, .There are three nodes for (B:) but four for <3:).
Meanwhile, in Fig. 6,20a, the leader ¢or [follower) regions of each ﬁeﬁis—
phere have opposite polarit& and there are three nodes in the'<ﬁ;%? field.
6.8. Magﬁetic Fiela Reversals and Dyhamo Maintenance,

6.8,1, Observations and\Other Theories of Solar Magnetic Reversals,

The net polarity of the line of sjight field was observed by,

. Babcock to reverse sign near the sun's north pole during 1959 at sunspot
maximum and possibly near the south pole about one year later, Babcock
suggested that polar reversals were another manifestation of the solar
magnetic sunspot cycle and that they shéuld occur every l1ll years on the
average4. Using a low resolution ﬁagnetograph, Babcock did not find a zo-
nally averaged line of sight field <13€> in polar regions as strong as 1.
gauss, In contrast, Severny (1964) reported field strengths ranging from
~ 2 gauss at (I~ +60° to >5 gauss at W~ +78°, but again under 1 gauss in the
south polar cap. These observations were based on 1963 and 1964 data ob-
tained with a 9" arc resolution magnetograph and suggest that the solar
revérsais could be rather irreguiar.

Both the Babcock and Leighton models of the solar cycle, discussed

4Measurements of the sun's polar magnetic field made somewhat prior to
the invention of the magnetograph around 1952 are of questionable validity
but they indicate reversals around 1929, 1938, and 1948 which were gxmn&matﬂy
years of maximum sunspot activity.
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in Chapter I, include quasi-regular reversals of the poloidal magnetic
field., Similarly, Gilman(19§9) obtains quasi-periodic reversals; His
successive peaks have the same amplitude, provided Rm / Rmc:£4/3. Ig
cqntrast,-ifregular reversals of the poloidal (as well as of the toroidal)
magnetic field occur in our model. Considering the similarities between
our dynamo model and Gilman's, one may wonder why our magnetic reversals
are not quasi-periodic, Although we do not have the answer, it'may be
pointed out that our model is more compiex. For example’ it has 127 deg-
rees as opposed to 15, includes both even and odd harmonics in the represen-
tation of each variable, and permits internal gravify waves, In fact, prior
to the generation of magnetic fields, the flow had not yet'(and might never
.have) reached a true quasi-steady state, especially in P,R. 2, Of course,
iﬂ the final analysis, a good model should not necessarily yield if- -
regular magnetic reversals,unless these are found to occur on the sun.
6.8.2, Simulation of Magnetic Reversals by our Model.

To illustrate our irregular magnetic reversals, a time history of
the <’q’y> magnetic field at both the north and south poles is displayed in
Fig. 6.24 for P,R. 1 and in Fig, 6.25 for P,R, 2. Level 4 correspon&s mos¢
nearly to the solar surface. On the other hand, a direc% coﬁparison with
solar observations cannot be made, For example, the true radial field
component near the pole could be stronger than the observed line of sight
field <B[>. We note,however, that the larger weighting factor for <B"> in«
" the formula for <5’z> is partly offset by the fact that lim <8Y> = 0.

: W27/,
Furthermore, if we assume that the magnetic fields are more intense beneath

the surface, then a polarity reversal near the pole should affect both (83>

and <Bw> , and hence {BI>.

In P,R. 1, the first finite émplitude peak is very antisymméffic
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about the equator. This 1s not true in P.R. 2. For both runs, we see that
not all oscillations in (f&?} are large enough to produce a polarity rever-
sal. According to Fig; 6.24, six reversals at (@ =90°_occur between t=2
years and t=76 years, in PR, 1 ét the pole. Another reversal also takes
place at t=79 years, whilg the run was terminated at t=84 years, This gives
an estimate for the mean reversal time of between 11 and 12 years, which
agrees favorably with the postulated solar value, The pure dipole harmonic
of (B:) gxperiences only five reve.rsals, the minireversals at t~25 and at
t~ 31 years in Fig. 6.24 being absent., There is a general ;endenéy for the
vertical field at the two poles to have opposite polarity5 and for their
smoothed oscillations to be negatively correlated, In P.R. 1,~<E§?> is
often, but not always unipolar at low latitudes, as previously mentioned.
As the following polarity is predominant there, the hemispheric averaged
<B;}>> field can be opposite in sign to the polar value, Alth&ugh the
reversals at thé two poles are not synchronous, they usually occur wiéhin
about one year of each other, The main exceptions are the 4 year ‘lags as-—
sociated with the two minireversals cited above., The strength‘of the peak
<B4?>V fields near the pole is ~ 4-5 gauss, which is not inconsistent with
Severny's values, Also the fields reach peak strength at the poles as in
Fig. 6.28, and a peak at one pole can be stronger than the (corresponding)
peak at the other pole, At leve1.2, the oscillations would be a bit more -
irregular, the reversals would occur between 1/2 and 1 year earlier, and
the peaks would be about twice as strong,

fhe situation for P.R. 2 is somewhat different. We estimate the..
mean reversal time to be between 1 and 2 years, i.e.,.presumably abéut a

factor of 8 too small, The more rapid oscillations here as compared to

) . .
- The hemispheric averages of <& 3) must be equal and opposite for the
two hemispheres, 4
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P.R. 1 may reflect the greater .hermal forcing (vertical wind shear), We
recall that the s?rength of the horizontal differential rotation at the
upper boundary is more realistic in ?.R. 2. while ther is less tendency
than in P.R, 1 for the sign of<<f%%> to be opposite at the two poles, the
polar field is in general confined to a smaller polar cap. Finally, the
' peaks are much stronger'and the oscillations noisier at level 2,
6.8.3. The Energetics of the Model and its Implications for
Dynamo Maintenance,

An analysis of the energy integrals and enefgy transformation
integrals of Chapter V helps clarify the physical processes of the model,
including the maintenance of the dynamo. The Robert specfral method is
applied in computing the above integrals, which are invariant under oxrthog-

onal truncation,

Some General Characteristies of the Bnergetics.

Energy diagrams corresponding to Fié. 5.,1a are presented for P.R.
1 and P,R. 2 in Fig. 6.26'ana Fig. 6.27, respectively, The time averaged
values are based on roughly 35 years of data for P.,R., 1 and on about 21
‘years of data for P.R. 2, time variations being more rapid for P.R. 2.

The energetics of both runs have many similarities, First,Athe
energy input <GzPE> is over three orders of magnituc}e smaller than the solar
luminosity - L0253“9 X 1033 ergs/sec, Thus only a small fraction of the out-
ward going (convective plus radiative) energy flux would be required to
drive the model, Second, the frénéformation {(?Pf>-+<KWD} is not small
compared to {<EPE>-'><EKE>} in the magnetic case, We recall that the
vertical heat transport curves of Fig. 6.4h and 6.8h implied {2EFE)»—><ENE?}
was dominant in the nonmagnetic case, Third, (KM) ,.4,'0([0‘2' <I(Z>) in P.R.

1 and (KM> is about 1.5 orders of magnitude smaller than (KZ» in P.R. 2,
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whereas <MM) is O(IO—'-<MZ}) in both runs., Thus, the (éxisymmetric)
magnetic field is 1e§s horizontally nondivergent than the (axisyﬁmetric)
velocity f;eld. In.Fig. 6.26, only ~ 1% of the energy input to <KM) is
dissipated by friction, and most of the remainder is given up to axisym-
metric toroidal motions, In contrast, a much greate? fraction of the
inputs to <KZ> , <MZ> ,{MM ) , LEKEY , and {EME) are dissipated.
Fourth, (ENE> which might have been transformed into < k#» in the nonmag-
netic case, is transformed primarily into <EME) instead, Corresponding
energy fransformations in P.,R. 1 and'P.R. 2 have the same sign except for
{ <EkED>>NZ>] |, [<EKESS aem> !, and {<E,&(E>~—><Mz>_}

which are not dominant anyway.

One difference between P.R. 1 and P,R, 2 is that the energy levels,

and rates of generation, transformation, and dissipation are about four
times greater in the latter, We note that the thermal forcing wasvgreater
in P.R. 2,

Decomposing {(E/(E}—)()(Z}} , we find that the vertical shear.

term f’Df <u, u)’*><d3 %S is somewhat more important than the hori-

zontal shear term, especially in P.R, 1, This can perhaps be attributed to

wS <ﬂ1>
é__ag cfcosée)’ ]a} T Cose l . In magnetic P.R. 1

{P.R. 2), the horizontal eddies transport angular momentum down (up) the

the inequality I

angular velocity gradient, the vertical eddies transport angular momentum
up (down) the gradient, and {(E/(E)-#(}(Z)} is positive (mnegative). Recall
_“that the equatorial jet in magnetic P,R. 2 appeared to be partly friction-

driven, In both rums, {<EKE>—><kZ>}+{<E’(F>—)<VM>}>O Also, the

coriolis term gives the largest contribution to {<ﬂﬂ”>-’<ﬂ(?)i} , Which

may reflect the low model resolution, This term might have been smaller if

an indirect cell had existed at mid-latitudes instead of at high latitudes,
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Finally, the contribution to [<)(M>-) <kZ >} which involves axisymmetric

Reynolds stresses is still iarger than {(EI(E)—»(KE->3 .

Production of Axisymmetric Toroidal Magnetic Fields

‘The transformation {{KZ)-—)(MZ)} represents the main source of
energy for the axisymmetric toroida} field. It is related to the stretchiné
of poloida; magnétic.fields, by the differential rotation, into toroidél
magnetic fields, -All variables in this interaction are axisymmetric,
Further analysis of this transformation reveals that the vertical shear
term ‘[; ,ﬁ%;<3:><3:>{_3u£_u'.>0/5' is largest and is nearly always positive.,
This ressult is consistent with Leighton's (1969) .results, In cpntrast,
Babcock's (1961) scheme relied upon the horizontal shear térm. Although
" that term: was also important in Gilman's (1969) model, he expressiy ex-
cluded the vertical shear term. We attribute the dominance of the vertical
shear term in our model to the weakness of the‘ average. horizontally differ-
entia'.l rotation, .

In P.R., 1, the <B:> field ai: time ,t—;Z'/ is strongly ;;ositively
cor;'elated with the ()33) poloidal field at time Z and with <B4}> at
approximately time ,Z'-,t' R wixere /ffv 10 rotations, The strong correlation
between (B:) and <B43> at roughly zérc; time lag in P.R. 1 can be seen in
Fig. 6.28, 1In P,R. 2, ,t' is even smaller and as shown in Fig. 6.29, the
correlation- between <82A> and <>B43> is negatiize. These differences are
consistent with the more rapid time scale and the negative vertical shear
‘'of <U?, respectively, But in both runs, the stretchi.ng of (B:') fields
into <B:> fields proceeds very rapidly, )
Incidentally, oscillations .'in <MZ) lag behind those in <MM) by

somewhat less than 900 on Athe average,. This corresponds to a‘ time lag
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'~ ©ao) rotations/ in P.R. 1 (shorter im P.R. 2).

We empﬂasize, however, that not 511 oscil}ations in <%4ﬁ1) are
associated with a reversal of the pblar poloidal magnetic field. Meanwhile;
<}(2> lags a‘ few rotations behind <ZPE)> and between 900 and 180o
(rather than 1800) behind <MZ> . Although <MM> is generally-larger
than <WM D ’ <ﬁ4ﬁ4> experiences considerably greateg fluctuations,

The transformation {(EKE}-—) <M'z>} has a time averaged value
only 10% as large as that of {<k2>*><"4?>} in P.R, 2. The cérresponding
value in P,R. 1 is even xelativeiy weaker and is negative., In both rums,
£Z<Ew4£>~><qu)j' oscillates between positive and negative values,

Lastly, {(}(M}-—) <MZ>} has a negligible effect upon {M z7.
_ The leading term. of {(E_KE>—-><MZ>} is
f’f_ffj <V'* —N*B;*> cclr.flea@( <3 }co.sca)dg Those terms associated
with the vertical shear of <B >'are smaller. In this connection, the
ratio of instantaneous horizontal to vertical shear of <1?§> is not small,
unlike the case for Y ) . Aithough the decomposition
»* * . ’
<UBI-UTB D= < (U b+ [ 4, A %4, s M@ 6]
was not carried out, we speculate that’-?<J' w(('ul’ )(‘V )> should be
important since the toroidal components of 13” and especia}ly of .y" are
largest, This term has. been referred to as a mixed stress by Gilman (1966)
and may be interpreted as the advection of eddy toroidal magnetic flux by
eddy toroidal motions. The nonvanishing of .];‘1((Kr* %%*) implies that
. . . 2 3) 3 .
the magnetic and velocity.streamiines are 222 in bhase. This term contains
no inferaction with eddy poloidal fields, The last ?wo'terms inside the.

brackets do, but these interactions are evidently not very important in our

model,
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Maintenance and Reversals of Axisymmetric Poloidal Magnetic Fields,

According to Fig. 6.26 and Fig. 6.27, the energy transformation
{( EI(E)-—)(MM)} is the primary source of axisymmetric poloidal magnetic
energy. Axisymmetric poloidal magnetic fields may be directly regenerated

via the transport of toroidal magnetic eddies by poloidal eddy motions.

. > @ ¢
This involves the toroidal part of Bzw in J‘: g4, <L¢r B ><%___L_)C/_f .
The total integral oscillateo between positive and negative values, its
time averaged value ,be.ing Apositive for P.R. 1 and negative for P.R, 2,

' | A more important term than the above integ}al, and hence than
direct regenerative feedback, is the horizontal transport at level 2, i,e,,
..f 1/77'// <1f 33 ><B —B >J5’ . The positive time averaged value
" of this integral is about a factor of five 1arger than that of the first
and roughly 75% of its values are positive in P,R. 1. Meanwhile, the.
horizontal transport term involving <1}' 83' > is small in comparison,
Finally, {(/(M}%(Mﬁ’f?f J\Wﬂ( <“f><3 >(._6.)3.._4_>d5' is of comparable magni-
tude to its eddy counterpart in {(EI(E)-§<MM>3 » but is not coupled to
the toroidal magnetic field,

In the horizontal transport integral at level 2, <Uz'*}323'*> may
be interpreted as the meridional transport of vertical magnetic eddies by

toroidal eddy motions, since }./H is purely toroidal, Gilman (1969) showed
2

that the dominant term affecting his axisymmetric vertical magnetic field
<B$> (represented by a sinél.e harmonic) was a (z/*33*> eddy toroidal type
transport term. Moreover, the quasi-x;eriodic oscillation of < 83} lagged
that of '<U*83'*> by ~ 90°. In contrast, Leighton (1964, 1969) invoked
a diffusion mechanism to account for.polarity reversals of (B}> at high
latitudes, Finally, Babcock (1961), and Nakagawa and Swarztrauber (1969)

invoked an axisymmetric poloidal transport term o <V <B}> .
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Analysis of the energetics, including the time variation of the
energy transformations affecting <M4A4)', does not revegl which term (or
terms) is responsible for the actual reversals of the polar <132 > or <[;%>.

magnetic fields, This information could be obtained-with the aid of the

equations
/3}
-'-9——?-——:—DV ___;_;a( V.8 +uff3)+ zw;+3g (6-52)
ot Hy )
3 CIQ) (zb) ¢
g_’:%. = -DY- [9-‘-";+ ]—- VH«"%B‘,} //) ARG

Here j&; and .2{; repreéent ohmic dissipétion, CY) ~- purely toroidal
horizontal advection, CE) ~— horizontal twisting, and.CEZ) —- horizontal
advection, Also,(fk)::Z'CﬂJ is best interpretea as a vertical twisting
term. Note that no meridional transport 4\}' ><B}> is possible at level
2, because <f1r )::C) One could evaluate (6-5a) and (6-5b) from history
tape data, once every rotation, .say. This could be done in either the
space domain (using the Robert method) or the spectral domain (using a
spherical harmonic expansion), .In this manner, the details of fhe rever-
sals of (Bj) and <B43r> could be ascertained, Considering the lack of
quasi-regularity and the greater number of intefactions, the details of the
reversals are apt to be more complex than in Gilman's model.

Regenerative Feedback of Poloidal Eddy Magnetic Fields,

If the direct regeneration of axisymmetric poloidal magnetic

fields is relatively small on the average, as already implied, then eddy
poloidal fields must ﬁe regenerated from toroidal fields, Energeticaliy,
the relevant transformations to be analyzed are 2?({59?23>.; <{%4£>;?,
{(KZ>~><EME>}_ » and {</\/M>——)(EME>} . Of these,
[{E/(E)-;(E_ME)} is largest. Further analysis reveals that




w“wZ5]l=

“J 4“77(< V>8> + <V, V) ><B, >)d§ - and
f %A) (Bg *"‘B.A )>d5 are respectlvely the first and second
D

largest terms of [<E/(E>—><EME>_f Both termé are generally posifive in
P.R. 1 and their ratio is~ 5, The remaining terms are individually 10% as
large, but their sum virtually cancels, In P.R. 2, the second terﬁpis ~ 50%
as 1arée as the first, however, the first terms is negative ~ 30% of the
time, Meanwhile, the other terms are negligible, Incidentally, oscillations
in {EME) and {EKE> are highly correlated in time, and <EME> lags behind

{EKE , but by only one or two rotations,

From Fig. 6,26 and Fig, 6.27, {(kZM(EM@f ~ 25% of {<EK£>—><EMD}

and {(/(M)—)(EME} ~ 10% of [(EI(E>—><FME>} . The weak horizontal differen-
tial rotation is probably responsible,

O0f course, what really interests us here is the.eddy poloidal mag-

netic energy (EME) fg?f# (/ V¢ / ylz) dS = CEMED — CEME?>,
where‘_~<5/4£>_r :‘{,’3'7[11 (, / l ) 6/_5' is the eddy toroidal

magnetic energy. We speculate that the twisting of axisymmetrlc toreidal

magnetic fields by eddy vertical motions could be an important if not the
dominant regenerative feed;oack of eddy poloidal magnetic fielas. It is
analogous to the mechanism found by Gilman (1969). Somé heuristic arguments
are given below in support of this view,

. .From the previous discussion, the threewlargest terms which build
up (EME) are, in order of size,
.-Jo: w7, (<V°¥ **<BA>*< v'><8>) dS
J’ wﬁ/{ <B S <w, (8] "Bz )>ds and JW,< "2 >{_‘,’gﬁ‘_2ds
Now the third integral ev1dently -builds up only (EME) since it lacks
_poloidal motions., Bullard and Gellman (1954) proved (for a somewhat differ-

ent model) that such motions are required to regenerate poloidal magnetic
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‘energy. In fact, the third iuncgral represents the mégnetic «ddy analogue of
the stretching of'axisymmetric poloidal into toroidal fields by the vertical
shear,

The second integral is probably smaller than the first, because

the former contains only a poloidal velocity component whereas the latter

. ‘ » .
involves a larger toroidal velocity v; as well. However, the part of the

first integral associated with V;* should affect only <rEM4EQ;. We also
note that the first integral contains no poloidal magnetic field harmonics
and that the poloidal magnetic field eddies in the second integral are
presumably not much smaller than their toroidal counterparts, Hence the
second integral could make at least a significant contribﬁtion to<<Eﬁ4E€;.

* A
In this integral, 10; and <ﬂ21) can be traced back to the hordizontal

A* A\* v
induction equations, while 83 - B is related to the factors _L_?H
]
and Q"* in the energy balanze =guation 2;3 3 * 3 > for CEMED .
3 ) o .

6.8.4, Further Discussion of Dynamo Malntenance.

It was previously suggested that the development of strong mag-
netic fields characterized by @2<U(10) partially suppressed baraclinic
instability. This couldrcome about, for example, by a reducfion oflug*. In
this connection, the vertical eddy motions are generally weakest in regions
of strong axisymmetric toroidal magnetic fields in P R. 1 and in P.,R. 2, as
illustrated in Fig, 6.30. There, the instantaneous untruncated standard
| deviation 6; (W, z))_:\/'(_z}ffzsof W, at latitude (¢ exceeds a specified

valué CE; inside the Shaqed regions, Although the vaiues adopted for a;c
are somewhat arbitrary, G;(ulz'(&;t)) usually would be. greater than G:c_ in
‘the nonmagnetic case, within the mid-latitude zones of maximum baroclini-

city. The truncated values would be somewhat weaker due to smoothing

effects. Another property (not illustrated) is the tendency for strong
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centers of q(%(w’t-x”)) and Cs/( 823’(w)t)> to overlap, wﬁere. ‘the lag t" is
small, e.g., 3 solar rotations or less,

"The above ;esults, like the energetics analysis, suggest that
the ternm <BA> ")w: in equation (6-5a) could be important for the regen-

R A '
erative feedback of eddy (vertical) poloidal magnetic fields. The product
is small ;f either <f§?>>is locally small or very large. In the latter
case,tdzf'is small, The reduction of regenerative feedback ultimately
imposes an upper bound onj(B:sﬁ. However, for a while, advection and verti-
cal twis£ing of vertical magnetic fields can cause a local buildup of<(%3>
fields and hence of<ﬂ%?>fields. There is no regenerative feedback term A
in eduation (6-5b) involving toroidal fields,

Babcock (1961) cited two regenerative feedback mechanisms for the
formation of sunspots, which apparently have a r;ther different physical
basis than our feedback mechanism, More specifically, these are Parker's
magnetic buoyancy of loca11§ intense toroidal magnetic fields and Lundquist's
magnetic loop instabilities in very strong toroidal flux ropes. ‘

Recently, Leighton (1969) devised an axisymmetric mégnetO*
kinematic model of the solar cycle (see Chapter I) in which. the zonally
averaged effects of sunspots are parameterized, Wherever the axisymmetric

toroidal magnetic field exceeded a critical strength, he assumed that sun-

—

. ?
spots extracted magnetic flux from this field at a specified rate. If a

could have been larger in our model, the vertical eddy motions would not

~ . . A

.be_drastically suppressed when <Bz>reached peak strength, Thus, in prin-
. L]

ciple, maximum regenerative feedback could occur at that time even in a

baroclinic hydromagnetic dynamo modél.

6.8.5. Sporer's Law and Possibly Related Phenomena.

-

According to Sporer's law for’sunspots, the zone of maximum
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sunspot activity drifts equatorward during the course of each 1l year
segment of the 22 year (double) sunspot cycle, The well known Maunder
butterfly diagrams reflect this behavior. Sporer's law may also be gener-
alized to include active regions in which the sunspots are imbedded,
The most logical indices for magnetic activity in our model are
‘*2 1’ 3*2 }
the variance {B* > of B and {B‘, D of 34 . These variances are found to be
2 -2 v .
considerably greater in one or the other hemisphere, at different times.

2

On.the other hand, maxima of <B° > do not systematically drift equator-

2

ward or poleward in either run, just as is the case for maxima ofﬁ<uc?2>>.
An equatorward drift in the maxima of<q:>cou1d possibly lead to such a

2
drift in the maxima of'<%:*)5 tf<u¥é§.which‘is inherently weaker at
low latitudes, were not fur@her weakened there by strong<ﬁ§>~fields.
Meanwhile, whereas <Ei?*f> does not systematically drift either poleward or
equatorward in P.k. 1, there is a vague suggestion of an equatorward drift
in P.R. 2.‘ But the variénce is too small by an order of magnitude in both
runs,

Leighton effpctively takes the strength of'<83> as an index of
magnetic activity in his axisymmetric magneto-kinematic model of the solar
cycle. Despite the predominance of the leading polarity in bipolar magnetic

¥
regions, it is not entirely clear thatkﬁqas opposed to <B})shou1d be much
larger there than at high latitudes, or is a'good’index of magnetic ;ctiv—
ity. At any rate, ’<B%>Lnax drifts equatorward, followed‘by’<BA)Lﬁxin
Leighton's model for the following two important cases: (a) observed
horizontal differential -rotation and zero vertical differential rotation;
(b) observed horizontal differential rotation and a negative differential
rotation proportional to r-cosqw . But for his choice of amplitude qugkﬁg
a8 positive vertical shear leads to a poleward drift. Note that auz/ﬂar
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drops off very shaxpl& with latitude,

Irrespéctive of the validity of Leighton's interpretation of his
results, it is interesting to compare our migrationé of <B:> and <B4}>
with his, We reéall that these variables are well correlated in our model
at close to zero time lag. Referring again to Fig. 6.28, we seevthat there
is a tendency for poleward drifﬁs in P,R, 1, especially during the first
13 years or so, Perhaps it is not a coincidence that the verticgl differ-
ential rotation has a positive sign for this run, In other words, this
may be an important detqrmining factor in.Leighton's’model runs, and even
more so in ours, since our horizontal differential rotation at level 2 is
so weak, Fig. 6.29 depicts the situation for P.R, 2 in which the vertical
shear of <U) is negative, Probably the mést realistic interpretation is
that magnetic regions of<Ii:$ in the two hemispheres drift simulﬁaneously,
either northward or southward, and similarly for <Q3>. However, there is
some suggestion of an eqﬁatorward drift of <f;i>, especially in the northem
hemisphere, Making such an interpretation, some drifts overshoot the equa-
tor and some wings of the butterfly configuration are out of phase, More’
definitive equatorward drifts might occur in a higher resolﬁtion model with
a stronger vertically averaged horizontal differential rotation. Inciden-
tally, the magnetic related destabilization of the horizonfal shear of (u2>
is illustrated in Fig, 6.31 for P,R, 2. An.analogéus destabilization occur-
red in P,R, 1, except that the <u2> contours and the 253 curve were much
smoother for this mid-latitude Qesterly jet case, »

Another featuré worthy of note in Fig. 6.28b is the drift of
a zero line of <B:'> towards  each pole during the fifst reversal and

towards the south pole during a minireversal in P.R. 1. Most drifts assoc-

iated with reversals beyond t=30 yeafs in P.R. 1 were also of this type,
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Fig. 6.28. Meridional-time cross section of axisymetric toroidal and
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vertical magnetic fields for P.R. 1. Contours are in gauss.

Regions of positive field are shaded.
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Fig. 6.29., Meridional-time cross section of axisymmetric toroidal and ver-
tical magnetic fields for P,R, 2, 8Solid contours interval = 1 gauss,'

dashed contours = 0,4 gauss, Regions of positive field are shaded,
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LATITUDE

TIME (yrs)

Fig. 6,30a, Superposition of regions of strong vertical eddy motions upon
the meridional-~time cross section of <B ) of Fig. 6.28a for P.,R% 1,
The untruncated variance (uf; )ﬂﬁt) exceeds 20 cm/sec and 40 cm/sec
respectively, in lightly and darkly shaded regions,
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Fig. 6.30b, Superposition of regions of strong vertical eddy motions upon
the meridional-time cross section of <8, * of Fig. 6.29a for P.R, 2.
The untruncated variance<0J* )Géij exceeds 100 cm/sec in shaded
regions,
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LATITUDE

TIME (yrs)

Fig. 6.31a, Meridional-time cross section of the vertically averaged
zonal wind <U.,» in P.R. 2, Contours are in m/sec., Hatched regions
denote (weak) relative westerlies. Dotted regions denote relative

easterlies stronger than 100 m/sec.
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Fig. 6.3)h, ' fime evolution of the square of the Alfven numbef. The
horizontal shear of £, > in Fig. 6.30(a) breaks down to a large
extent about the time that 4% becomes smaller than ¢(10).
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In Fig. 6.29b, there is evidence of slight recurving, but nét enough, of
the zero line of<3:51n polar regions, On the sun, the zero line of <B£>
usually delineates a solar quiescent prominence and both move poleward.
Finally, our zonally averaged vertical magnetic fields reach
peak strength at the poles, not at lower latitudes, fhis is true for both
runs. In contrast, the variance of qz(and of what there is of q:5 is
generally confined to latitudes equatorward of ¢60° in P.R. 1 and 150o in
P.R. 2. The magnetic eddie; decay, of course, as cosscg s Since n=6 is

the only positive zonal wave number rétained.
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CHAPTER VII, CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Although a primary objective was to test whether our baroclinic
model is plausible for the sun, a definitive test would require consider-

[i

ably more model resolution than was currently feasible.' Nevertheless, the
results are encox;raging in some respects, and indicate how to proceed
numerically when faster computers are available, |

In applying the mddel to the sun, we have attempted to (1) gener-
ate and sustain magﬁetic fields by dynamo action, (2) simulate the observed
solar horizontal differential rotation and its maintenance, and (3) simu-
late the large scale features of the solar magnetic sunspot cycle including
_‘r.eversals of the polar poloidal mégnetic field and phenomenological laws
governing magngtic a'ctive regions .

We have demonstrated that magnetic f‘iyelds can be generated and
sustained by dynamo action. Whereas either /d,z 2 @(104) or ,a.:é< 3 in
our magnetic runs, intermediate values hopefully could be attained, This
should be verified numerically, e.g., by inserting more resolution and/or
by selecting a few values of Rm for P.,R. 2 such that 250 < Rm< 325 and
estimating the steepness of the slope -—a/&_i/aﬁm. Cur experiments did
suggest that Rmc varies with the pre-estabilshed (nonmagnetic) flow pat-
tern. The apparent increase of }?mc_ in the one run with higher resolution
does npt necessarily imply that Rmc would be unbounded in the limit of
infinite resolution,

Modest success is claimed in the simulation of the solar equato.r-
ial jet in the nonmagnetic case, For two different thermal forcing profiles

(i.e.; (b) and (c) ), a horizontal differential rotation of the required

strength developed and was maintained by.hordizontal eddy transports,
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Fultz's dishpan experimeats -and Ward's suuspot statistics lend credence to
the above results,'despite the low hodel resolution,

| ‘Future systematic Doppler measurements on diffefent spectral lines
could reveal information on aoﬁ;bs/Qz} (in the photosphere) which could
favér one thermal forcing profile of (b) ahd (c) over the other.‘ The large
equator to pole temperature difference for profiie (b) in P.R, 2 does not
'necessarily imply that the baroclinic hypothésis should be rejected. Thus,
_ a smaller horizontal température difference which extended over a deeper
layer coﬁld produce a vertical wind shear of the required magnditude.

One limitation of the model is thet the highest permitted harmonic
of Jz&bs was ¢/Z3 (cf, formulas 1-1) and (1-2) ). Another possible limita-
tion is that only two meridional'cells per hemisphere could be resolved,
Hence a qualitative confirmation of the above results with a higher resolu~
tion model would be recommended.

As a further improvement, the higher regolution Egggggggiii runs
should be integrated for (up to)'severél hundred rotations .before introduc-
ing the seed magnetic field. This would give the solutions a better oppor-
tunity to approach a quasirsfeady state, if so inclined, Also, the general
circulation statistics for the nonmagnetic case would be more représentative.

In the magnetic rungwith ‘iza < 3 , the magnetic fields did not
reverse the tilt of the streamline patterns or the sign of the eddy trans-
port of angular momentum, Nevertheless, the magnetic feedback was very
large and was;associated with a somewhat stronger meridional circulation,
partial suppression of baroclinic instability, reduced eddy transports, and

a rapid conversion of eddy kinetic into eddy magnetic energy. Consequently,

the pre-established zonal flow (barotropic mode) was also destabilized. It
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remains toibe seen whether the shear reversai at level 3 in P.R. 1 or at
level 1 in é.R. 2 are real effgcts or are due to the low resolution., We
also caution that the above results cannot be generalized throughout the
range C?(i0~1);5£i?f£ﬂ103). For AEFECR104), we verified that the magnetic
feedback was negligible,

In Gilman’s quasi—ﬁeliostropic dynamo model,Ai? remained of (9" (10)
and the zonal velocity profile (barotropic_mode) was not destabilized;
Curiously eﬂough, his toroidal magnetic fields could be produced from po-
léidal magnetic fielas only by horizontal and not by vertical stretching,
Thus, his model may have a built-in mechanism which our model lacks for
increasing the lower bound on éii In addition, his quasi—heliostroﬁhic

- model excludes dynamically active éxisymmetric Reynolds stresses, which
were very important in our magnetic production runs,

Concerning the simulation of the solar magnetic cycle, the
reversals in the poloidal magnetic field <1%?>’Were encouraging, For P.R. 1,
fhe mean reversal time was certainly of the correct order of magnitude,
although the reversals were more irregular than is presumed to occur on
the sun. The reversal time in P.R. 2 was much shorter. One possiblé cause
is the stronger vertical wind shear, hence more rapid stretcﬁing of poloidal
into toroidal field lines, Another is the more irregular character of the
solutions in P,R. 2 as compared to P.R. 1 (or test run 7) in theinonmag~
netic caée. This could be related to fﬁe presence of a relative easterly

mid latitude jet in P.R. 2., With less magnetic feedback Q£Z>>l), the
motiOn field should rgmain relatively quasi-steady, at least for thermal
forcing profile (c) and probébly for (e). The result cou}d be less

irregular reversals with a proper time scale, Profile (c) is probably the

more realistic since it yields a relative westerly equatorial jet in the
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[

nonmagnetic case, which should persist in the magnetic case with.4Z2>)'1.
One question mark is ﬁhetﬁer or not the positive vertical shear of;dl) at
low latitudes would bé unfavorable to the equatorward migration of the
zone of maximum magnetic activity,

From energetics considerations, some aspecté of the dynamo main-
teneance were inferred. However, a more detailed anaiysis of the vertical
magnetic induction equations (6-5a) and (6-5b) could further clarify the
reversal progess. .

"The model vertical magnetic.fields were comparable in strength to.
the observed line of sight fields, except for the variance of 34 e« The in-
tense magnetic feedback upon the flow could be reduced without weakening the
- vertical magnetic field strength by simultaneously increasing the vertical
length scale D and, if possible,éii: Even with D‘five times larger,cf< 0.20.

Our vertical magnetic field patterné'could be loosely interpreted
as magnetic active regioﬁs. Also, asymmetry in mégnetic activity between
hemispheres was found. In other respecfs though, the simulation of the
solar magnetic cycle was not too good. This may reflect deficiencies in
the model other than tﬁe baroclinic drive, We speculate that the tilts of
the 53’edqy magnetic fields would be better in a run with 2EE>>‘1. In that
case, the motions would essentially push the magnetic fields around and the
maénetic field patterns could be stretched out by a differential rotation
with more realistic horizontal shegr.

The proper simulation of unipolar and gho§t unipolar magnetic
regioné at highef latitudes requires the n=1 and n=2 harmpnics. Also, to
capture the detail of moderate resolution magnetbgrams (as’in Fig. 1.1),

much more resolution is a minimum requirement., Thirdly, with more resolu-

tion, e.g., 04n<8 and 0< m<8, a meaningful comparison could be made
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between our potential magnetic field above level 4 and the "observed"
coronal magnetic fiel&. The latter may be inferred from the observed
cq?onal density structure since material flows along the magnetic field
lines in the corona, Finally, a sector structure in the line of sight
component of the model potential magnetic field, characterize@ by zonal
wave number n~2 could be looked for,

in_short, when computationally feasible, runs shpuld be made
having (1) more horizontal resolution, e.g., 0£n<8, 0<m< 8 and possibly
more layers, (2) a larger vertical 1eﬁgth scale D (holding\@ﬂigg fixed),
and (3) a smaller value of Rm—Rmc . This would provide a more definitive
test of the applicability of a barpclinic model to thé sun, However, with

- 0<£n<8 and 0<m<8 as the horizontal resolution, the number of harmonics
would increase 10 fold and the computation time per time step~100 fold,
The other modifications would cause no loss of éfficiency,

One could also try-different initial conditions on the magnetic
vfield. For example, a small axisymmetric dipolé poloidal magnetié field
could be specified instead of toroidal field perturbations at t=0, to see
if the growth of antisymme;tric harmonics of <i33'> and <B") were favored, |
Since the boundary conditions on Xﬁ were rather ad hoc, a comparison of
results for various boundary conditions would also be useful. In particular,
the condition at the top boundary that %‘:}/_u.:o could be applied to the
bottom boundary as well,

Kinematic dynamos (pseudo.-dymamos)have been:studied nunerically as a
steady state (and/or axisymmetric) problem with the velocity field specified
in a rather - ad hoc manner, A somewhat new twist would be to choose a

.quasi-steady pgrtigular,numériCal solution of the nonmagnetic baroclinic

modél (if one could be found) as the known velocity field in the magnetic
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inductiqn equations, Physically, the magnetic solutions to the kinematic )
dynamo problem might beAregarded as a sort of 1imiting'case of hy§romag-
netic solutions with large ZEE: assuming these exist, Computationélly, of
course, the kinematié dynamo problem is more tractablé. Approximately a 30%
.savings of compﬁter time would be gained for lengthy runs, reflecting a

30% reduction in the number 6f nonlinear terms to be evaluated, Even more
importantly, a substant;ally longer time step could probably be used with-
out the solﬁtions becoming computationally unstable. Of physical interest
is whether magnetic reversals would still be present, and if so, whether
their character would remain basically unaltered from the hydromagnetic
case, Although reversals occurred in Leighton's(1969) magneto-~-kinematic
model, that model was not a true dynam; énd the various phases of theAcycle
were helped along. We also note that P.H. Roberts(1967) speculated that

in general, magnetic reversals might exist in onlf hydromagnetic type
dynamos,

Future work may demonstrate the need for treating the motions

and/or magnetic fields three-dimensionally, In principle, our Boussinesq

m?del could be modified to treat large scale convection explicitly. The
vertical hydromagnetic (or Lundquist) equations would have to be retained,
As in the Rayleigh convection problem, the bottom boundary would be heated
and the top boundary cooled, To eliminate the pressure, the 3 vx and

3 VxV x operators could be applied to the equat1ons of motion (after first
evaluating the right hand side), following Busse(1970), Computatibnally,
the number of nonlinear multiplications in each equation would not be
Aincreased. However, at each level, there would be two more equations,and

many more levels would be required., Thus, the convection version of the

model is much more complicated than..the original baroclinic version,
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Finally, the question arises: What are the prospects for numerical predic-
tion of the evolution of sﬁlar magnetic disturbances? As background, we
recall that line of sight velocities and magnetic fields can be determined
for photospheric (or chromospherlc) lines at dlfferent levels, Thus, some
vertical resolution is even possible. Also, the line of sight velocity or
magnetic fields could be reduced to purely horizontal toroidal vectér fields
as a first approximation, In fact,; a scpeme (the method of characteristics)
is being te;ted by H, Fischer on meteorological data. If the procedure
worked on line of sight velocity as well as on line o6f sight magnetic field

data (which is not as obvious)l, then the magnetic flux equation

oY, /2% = T, (¥ Y¥) (7-1)

given by Gilman(1966) could be solved, in principle, for the magnetic : :
stream function Vin' Finally, oﬁe could invert #;1 to obtain & predicted
line of sight field B‘e. Since the characteristic time scale of (O'(1)
solar rotation is considerably larger than a day, magnetic features might
be predictable one solar rotation‘(~f25 days) lgter. One drawback even
here is tha§ (for the present) data can be collected from only the visible

: 9,
solar disk, Over longer time intervals, the twisting terms ﬁ)ag%?#-(B’)‘%%»Z
@

* which equation (7-1) lacks, could be important on the sun,

It is doubtful that our model would be of much predictive Qalue
in the forseeable futureﬂ First, it was designed for a subphotospheric
layer., In applying it to a photospheric layer of fluid, éome ﬁodéi assump-
tions would bé violated, Second, the divergent parts of velocity and

magnetic fields would have to be accurately known or balanced initially,

L .
The magnetic fields were significantly less horizontally nondivergent
than the velocity fields in our model and this might be true on the sun,
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This is a formidable obstacle as neither of those fields is given by the
above method of characteristics. Third, temperature measurements on

horizontal (geopotential) surfaces have not yet been sufficiently perfected.



APPENDIX A, POLOIDAL AND TOROIDAL VECTOR

SPHERICAL HARMONICS

An arbitrary solenoidal, i.e. divergence-free, vector

4 r
(A ,A ,A ) has the spectral decomposition

A n, lg) y s (8) n,s) »>(S)
= |l _ 98
A - i: Tr;nn 9 min 4 m+n y A-la
€,§ n=o m=o ¥ F17) fr cos @ SF ﬁi’l- ( )
; S s n |
A = Z, {Tmnt 2), i+ = a__s_mm 9 Yimen (A-1b)
es nromo Fete AT X Dr e
[
r M08 PG
A= 51 Qmin)imine1) § Ty (A-1c)
c,S 20 m=0 F m+n - “men .
[ 4
", & 1) ",$

In these formulae, T ﬂ(P’), Smm(") , and Y n (\W) are respectively a

m +
cosine (or sine) toroidal spectral coefficient, poloidal spectral co-
efficient and ordinary spherical harmonic of degree m+n and rank (i.e,
zonal wave number) n, The é) notation is the same as in Chapter III,

n,C n,S . . .
section 4, Also, Y and Ym+" are defined in equation (3-30).
As usual Agﬂ) and r denote the longitude, latitude and radius,

The contribution to é that involves toroidal coefficients can
be expressed in terms of a horizontal stream function ¢/, . Similarly
the contribution involving poloidal coefficients is related to a horizon-
tal potential ¢u . We shall adhere to this usage of "toroidal" and
"poloidal" throughout the text, as in equations (2-46) and (2-47), for
example, We note that both V and B are solenoidal vectors in our model,

In the.speciél case that é is axisymmetric, the poloidal part of A is con-

fined to meridional planes while the toroidal part of A is purely zonal,
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An arbitrary solenoidal cosine (or sine) toroidal vector spheriéal har-

monic has the representation

/

[4
( i ay"m) T 7,65 "acs.»
= Imen, Tlmin (A-2a)
r ouw ? r costa %

v

An arbitrary solenoidal cosine (or sine) poloidal vector spherical har-

nomic has the representation

c : c
mts) & ;m nes _n S Cwes)
Npin 1 X,,;,, 0S,n L ay ; W’n"" Cmamimins)Y ) (a-2b)
3)" " F cos 8/\ or r

We may decompose the vector é into a toroidal ﬁart éTgnd a
poloidal part Ap by summing equaf;ons (A-2a) and (A-2b) respectively,
over n, m, and over both the cosine and sine harmonics. Finally, the
thin spherical shell épprox1mat10n can be made by replacing r by "a"

dr by dz, and A" by Az in the above equations, as in chapter III,
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APPENDIX B, PROGRAMMING THE NUMERICAL INTEGRATION

To simplify the debugging procedure, the basic program was split
up into a driver program (program MAIN) and several subroutines, There is
one version of MAIN for the nonmagnetic case and one for the magnetic case,
Addition, scalar multiplication and i - '%K differenti;tion are per-

! Q cos«e o
formed in program MAIN, Each of the other basic transformation algorithms
is written as a subroutine, - The transformed array of spectral coefficients

is returned to the main program. -If needed, the input array is also re-

turned intacf. Another group of subroutines carries out various other tasks,
To make our main program and subroutines as compatible as possible
with a variety of computers, incremented indexing was empléyed exclusivelyl.
Fér example, given the variable | LH'" :‘Zs‘g ;(q\)‘*):”(g) R:, the spectral
coefficient (4}\‘-.—);,«: is stored in 1ocati<;n CYP1(n+l,m+1,1) of the 3x40x2

+ ’ A+NS
array CYP1l for q1 while <q1 zﬂ’ is stored in location CYPl(n+l,m+1,2),
n-j
m=1-2(T~1) [ M-I
(where n,m,I 21,k21), are stored respec-

Likewise, the values of the transformation coefficients y

-l n-I '
/q , and /\

m_’,m_’ m-l’m—l—Z(N*l)
tively in locations y(n,m-2(I-1) ,m), A(n,m,m) and in A(n,m,m-2k+2)., Final-
: - I-1
AN N ) €]

ly the binomial coefficient -~
Y 2 % T 2 @-DNF)]

is stored in
BINOM(I,J), where 12J2>1. | |
Nonlinear multiplications originally required nearly 80% of the
computation time, Tﬁis value was: reduced to aboﬁt 50% by writing a
specialized, more efficient subroutine MLTPLY, It is applicable provided

the zonal wave number n has only two values, one of which is zero,

i .
The computers we have used thus far accept the "zero" subscript.
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APPENDIX C, ENERGY INTEGRALS FOR A CONTINUOUS, QUASI-BOUSSINESQ MODEL,

This appendix contains integrals of the various forms of
énergy, of'energy transformations, and of energy fluxes, In the fluxes,
-all terms are formally retained even if they would vanish identically
due to our choice of boundary conditions, These terms formall& appear
in the two layer model as well, but were omitted in Chapter V, Therﬁal
forcing, frictionalvdissipafion, and ohmic dissipation integrals are
not included. .

As in the text, the fluid is in vertical magnetohydrostatic
velance and In0 = In0; ""(91/0’5 . Also ZL@’/J} is still constant
end the advection of potential temperature by poloidal motions is still
neglectedl. Following Lorenz (l966i9’our model could be extended to the
case in which C?lis predicted at two levels, i.e, levels 1 and 3,
Although the static stability would then be variable, the available
potential energy could be defined in an energetically consistent manner. -

The integrals in this appendix are valid for the quasif |
Boussinesq case in which f}~varies with z, as well as for ;he
Boussinesq case., Likewise, the integrals in Chapter V are also valid
in the quasi-Boussinesq case exéept for (5-1k), (ef. with (c.5-14)).

The labeling of equations corresponds to that in Chapter V.

the sun,

10n physical grounds, ,(307&}) /(dq, /33)[5! ] is pc;ssit;le for
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Finally,‘ﬁif denotes a volume integral over the spherical shell bounded
by 0= zszh.

The various energies are defined as follows:

<Kkz> = ff;sgi d7 | (C.5-1a)
<KM> = f!}%’—’zd?’ (C.5-1b)
<EKE> = fﬁ%#@ d7 (C.5-1c)
<MZ> = 5%?_2: dT | 3 (C.5-2a)
<MM> = f %’-}i—-—fo’r B (C.5-2b)
gme> = | < ,§;3°3**z> d7 (c.5-2¢)
<FPE> = j f; S.fg;fdr | | (C.5-3a)
<EPE> = jf; SQ;ZcIT | (6.5-3b)

where

/

&

(v}
- - — (C.5-h)
® = \/(6%5,/&;) [ >

The energy transformation integrals are:
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{(KM>»<K2>} = ff’ (2,/1 +a‘ é‘of.@)@ YXvdsine dT (C.5-9)
: iZEK(:‘)-*(I(z)} ot ff‘ < *V>acose - <c(;s>w
+ jf’ <Ww*da cosco——-(<é‘o?w) d7 (C.5-10)

{(kz}—»@z)} = f%,ﬁff‘” <B8"><8" > a ‘f"a‘;@)d’r

+ f,f_;,j“<l3 ><8 >33(Q<(;‘2@)d7“ | (c.5-11)
| {<kz>—><ms>} fg,;fj 05 8y L L2 (<L2n)dT

+ f ot > 2 b <> T (€.5-12)
{ <EKE)-><kM>} ﬁa< "W a<1f>d'r + J} [<v e §f,">—<u*’><v>mw]df

= [rorosigear + fplee dsnyos

~ Isg—i<v><u*z+v*z >] dv | (€.5-13)

{<x&>-’<Mz>} jéfi_)_{Cosa L 2(<ry ., 3<W>]dr

= —f.f;‘r’}f; [ S rdT + [F4E4ZAT .50
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{<KM>-><MM>} - j;—;’,;;[wxs ~<W<B >H <8 >Jd7‘ (C.5-15)
| {<KM}»<EME>} = j‘ s (o S a,g-(o,c'f.?a)dT

* 2 2 "
_,,j(B" B 9<v> g7 ,j@;;z B> gs__}u» dT (c.5-16)

YW, 0%
{GPE) KKM)} - f L ‘75“0",} <&'>d7 (C.5-17)
{<Eke>~><Mz>} - - éﬂ*ﬁ;ﬂo > g;s» d7

urahu*e> 1 2 (.o
“"f Yy, cwsasr (<o >eose)d T (c.5-18)

| . . .
{(EKE)"(MM}} - f<v*e3-w*8* 2 (-'.éaig.f?_ d7 (C.5-19)

Tl
{(EKE)-KWE)} J;,w (_ +wf 3) [ngu*)>x<§“.,.,33a>]c{7'
...f”uo<y +W 3) [(VXB )X(B +B? 3)>dT(C 5-20)

{(EPE)—*(EKI:')} - fg}z-'<w*@z*>d7’ | (c.5-21)
{<ZPE>~><EPE>} o -:J’;:of*@”)-al‘— agzg_f’% d7’ + (C.5-22)

The boundary value integrals for energy flux into the region 04 z2< 2

are:
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o ‘ | 3
<:<z > = f[wm(<8><8> +<8 B’>)<u> ds
%
ds (C.5-23a)

S’ <—2<w> {ds f<a w ><u>]

-&L_.j

zr .
o> = [1gEis -]l i)
o 3, : ©

Y4
X*

[(<’P)+ B> +<‘§77’7(—"2)<W>JI ds (C.5-23b‘)' '

.s&—-,

}'f

<eEke*> = f[(?” w )}ldi /'Z;If; {f_‘t;%lf_..?(ur)] loc/§

f f<(—“——-'—*—‘-’———)w> i ds (C.5-23¢)

"E o ' ¥,
> "> [haereacrtofs

I %22_040 } | (C.5-2ka)

s : . . }’
<Mt> = j[qﬂu,(<*’><f3?>~<W><9w>)<!3"% / ds
o, 3 o ‘

£

[‘HI{II, <V'*/31,*> _ <w*;3w* >) <Bw >] / ds | (C.5-2Lb)

+

g

‘ ¥
CeMEY> = j ,W, ((u*e*+v*:3"'><s”>+<(u*e**+v’s"')B‘*)))) dsS
3 o

-——-(<w 8" ><3">+<u/*8 3G >>J / ds

L
f,

3, .
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