The Horizontal Velocity Field in Southern California from a COMBINATION OF TERRESTRIAL AND SPACE-GEODETIC DATA

by
DANAN DONG
Submitted to the Department of Earth, Atmospheric and
Planetary Sciences in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September, 1993
© Massachusetts Institute of Technology 1993. All rights reserved.

Signature of author \qquad
July 23, 1993

Certified by \qquad
Professor Bradford H. Hager Thesis supervisor

Certified by \qquad Thesis supervisor

Certified by \qquad
Principal Research Scjentist Robert W. King Thesis supervisor

Accepted by
Professor Thomas H. Jordan, Department Head

The Horizontal Velocity Field in Southern California from a COMBINATION OF TERRESTRIAL AND SPACE-GEODETIC DATA

by

DANAN DONG

Abstract

Submitted to the Department of Earth, Atmospheric and Planetary Sciences on June 24, 1993 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Abstract

The rapid development of space-geodesy has given an impetus to research on regional deformation, as well as to advancement in the methodology of geodetic analysis. Taking advantage of the 3-D vector measurement and the high accuracy of space-geodetic surveying over a large area, we develop the methodology to realize the combination of space-geodetic and terrestrial survey data. Our methodology has several important advantages: (1) We adopt as our mathematical framework four-dimensional integrated geodesy, which embodies the intrinsic relation between Earth's shape and its gravity field. All formulations are expressed in a geocentric frame. Hence this methodology is rigorous and easy to connect with space-geodetic data. (2) The methodology can handle various types of geodetic data. (3) Our methodology uses quasi-observations obtained from loosely constrained intermediate solutions from subsets of the data, to which we apply general constraints at the final step. Hence it is efficient and flexible. (4) We do not assume a spatially uniform velocity gradient. Hence this method is easy to apply to large areas. (5) With our method, all three elements of a time-dependent reference frame site coordinates, velocities, and episodic displacements - are estimated simultaneously. (6) We establish the criteria to check the compatibility of data entering the solution. The criteria consider the correlation between the solutions before and after combination.

The second objective of our research is to combine VLBI, GPS, and terrestrial survey data to obtain the horizontal velocity field in southern California. Using this combination, in the region of the Big Bend, we can trace the transition from compression in the Santa Barbara Channel and the Ventura Basin to simple shear near the San Andreas fault. During the transition, about $5 \mathrm{~mm} / \mathrm{yr}$ of fault-normal velocity is absorbed in the off-shore area, and another $5 \mathrm{~mm} / \mathrm{yr}$ within a wedge-shaped area of the Ventura basin. Our residual velocity field indicates that the current multi-dislocation model needs to be refined in its transition between the creeping zone and the locking zone in Parkfield area.

Our analysis also reveals several unsolved problems. First, there is some incompatibility between USGS trilateration data and part of the VLBI/GPS solution, mainly in the Salton Trough area. The physical reason is still unknown and should be further investigated. Second, the current VLBI/GPS solution is still weak in the southern part of our network and east of the San Andreas fault. Third, in the San Luis trilateration network, the data from observations performed in 1970's by the California Division of Mines and Geology are not compatible with the USGS data after 1980. Using both data sets, the observed fault-normal velocity in the Southern Coast Ranges between Parkfield and the coast is not significantly different from zero.

Finally, two important byproducts stem from our analysis:
(1) Updated coordinates for the trilateration sites.
(2) Estimates of coseismic site displacements from 7 earthquakes: Superstition Hills $\left(11 / 24 / 87, \mathrm{M}_{\mathrm{S}}=6.2,6.6\right)$, Westmoreland $\left(04 / 26 / 81, \mathrm{M}_{\mathrm{L}}=5.7\right)$, Mexicali $(10 / 14 / 79$, $\mathrm{M}_{\mathrm{L}}=6.6$) and Victoria ($06 / 09 / 80, \mathrm{M}_{\mathrm{L}}=6.2$), Homestead Valley ($03 / 15 / 79, \mathrm{M}_{\mathrm{L}}=5.6$), North Palm Springs $\left(07 / 08 / 86, M_{S}=6.0\right)$, Joshua Tree $\left(04 / 22 / 92, M_{S}=6.2\right)$, and Landers and Big Bear ($06 / 28 / 92, \mathrm{M}_{\mathrm{S}}=7.5,6.6$).

Thesis Committe
Bradford H. Hager, Cecil and Ida Green Professor of Earth Sciences, wif I
Thomas A. Herring, Associate Professor of Geophysics, MIT
Thomas H. Jordan, Robert B. Shrock Professor of Earth, Atmospheric, and Planetary Sciences, MIT
Robert W. King, Principal Research Scientist, MIT
Michael Lisowski, Geophysicist, U. S. Geological Survey

ACKNOWLEDGMENTS

When I got the admission notice from MIT five years ago, I could not believe it: "Is it real?" Now I can convince myself: "Yes, it is." Study should be an equal right of human beings. To get such equal rights, however, I had to struggle for more than twenty years.

When I was a freshman at Beijing University in 1964, I was internally labeled as a "white specialist" (in China, "white" was the synonym for capitalist, compared to "red"-the synonym for communist) and was expelled from the University without being allowed to ask why. During the following Pandemonium period, deprived of all rights as a human being, my only dream was to survive. Finally, after fifteen years exiled in a remote desert area, I returned to the University and restarted my study. In 1985, when thousands of Chinese students went abroad to study advanced science and technology, I expressed the same desire. The response from my agency, however, was surprisingly negative: "Everybody can pursue his Ph.D. degree, but you cannot. We need you to work here." This time it was not political persecution. I had to struggle for another three years, just for the equal right to study. Then Tom Jordan and Bob King, resisting all kinds of pressure from China, accepted me as their graduate student.

Tom Jordan and his graduate students have been like a big family. It was at one of Tom's parties that I learned the difference between the hotness of cactus wine and red peppers. I sincerely thank Tom for his continuous concern, and for bringing Brad Hager and Tom Herring to our Department.

Bob King and Yehuda Bock led me in climbing the mountain of GPS techniques and the GAMIT software. I am deeply grateful to Bob and Yehuda for their generous support and help. It was surprising that my volley of questions never irritated them. Bob taught me not only the science, but also the morals and ethics. Unfortunately, I have exhausted all my English vocabulary and cannot find an appropriate word to express my special thanks to Bob.

Brad Hager, Tom Herring, and Bob King guided me in accomplishing this thesis. Brad taught me the tectonics. When I opened a can of worms, his keen instinct saved me from going astray. Tom taught me the rigor of science. His comments always sharpened my mind and enlarged my horizon. I am grateful for their grants from the National Science Foundation (EAR-86-18513 and EAR-89-05560), National Aeronautics and Space Administration (NAS-5-538 and NAS-5-737), Air Force Office of Scientific Research (AFOSR-90-0339), National Oceanic and Atmospheric

Administration (NA90AA-D-AC481), and Southern California Earthquake Center, which supported my research.

As companions, Mark Murray, Kurt Feigl and I learned GPS and started GPS field survey together. Whenever they showed up, fun showed up, either in the office or in the field. I was deeply impressed by Mark's patience. Kurt's magic functions made my computer work much more efficiently.

Special thanks to Mike Lisowski, Zhengkang Shen, Mark Murray, Dave Jackson, Richard Snay, Michael Cline, Will Prescott, Duncan Agnew, and Rob Reilinger for their generous support. Without their data, my velocity field would be a runaway horse. I am greatly indebted to Mike Lisowski for his e-mail lessons on the EDM technique. While I was wrestling with the range busts, Mike sacrificed several days to help me to track down these ruffians.

Thanks to Burch Oral for his magic sh family of shell scripts, to Rick Bennett for his results unearthed from the Imperial Valley, to Bob Ge for his story about the rupture at Landers, and to Don Grant and Hadley Johnson, who sent me their theses to provide detailed information. The maps and the figures of the thesis were generated using the Generic Mapping Tools (GMT) software, generously made public domain by Paul Wessel and Walter Smith [EOS, Trans. Amer. Geophys. Un., 72, 441, 1991].

I thank all of my English teachers: Bob King, Kurt Feigl, Mark Murray, Tonie vanDam, Andrea Donnellan, and Steve Shapiro. Without their help, it would be very hard to understand what I am saying.

Thanks to my officemates Steve Shapiro and Lana Panasyuk. They bring harmony into our office life. Steve (and his extremely nice father) showed me American humor. Lana never forgot to say "Dobroy vecherom" (Good night). I thank all of my student peers including my volleyball teammates. It is they who make my life colorful and joyful.

Thanks to Ben Chao, Ming Fang, and Zhengkang Shen for long discussions on the broad scope of sciences. I also thank Dawei Zheng, my former advisor, for his overall concern, and Madam Ye for her understanding my desire to study.

I sincerely thank my mother Yihui Dong. She was sent to labor camp for several months, just for her pleading justice for me. I hope my work will reward her. Thanks to my sister and brothers: Jin Wang, Damu Wang, Daxin Wang, and Dazhou Wang. It was they who encouraged me against decadence during my hardest time.

My wife Daxin Wu deserves all of my praises. She sacrificed herself to support my study. She tolerated my 12 -hour work per day and 7 -day work per week for 5 years. Please accept my promise: I will never do it again.

Curriculum Vitae

EXPERIENCE

Research Assistant, MIT Dept. of Earth, Atmospheric and Planetary Sciences, 1988-1993
Visiting scientist, Ashtech Incorporated, summer 1992
Visiting Scientist, MIT Dept. of Earth, Atmospheric and Planetary Sciences, 1987-1988

Research Associate, Shanghai Observatory, 1984-1987
M. S., Shanghai Observatory, 1982-1984
B. S., Dept. of Geophysics, Beijing University, 1979-1982

Teacher of Mathematics in high school, 1973-1979
HONORS
The second Excellent Essays for the young, Shanghai, 1984
The fourth Science and Technique Award, Seismology Bureau of China, 1984
The second Science and Technique Award, Academia Sinica, 1989

PUBLICATIONS

B. F. Chao, D. N. Dong, and T. A. Herring, Libration of the Earth's rotation, Geophys. Res. Lett., 18, 11, 2007-2010, 1991
T. A. Herring, D. Dong, and R. W. King, Sub-milliarcsecond determination of pole position using Global Positioning System data, Geophys. Res. Lett., 18, 10, 1893-1896, 1991
T. A. Herring and D. Dong, Current and future accuracy of Earth orientation measurements, Proceedings of the AGU Chapman Conference on Geodetic VLBI: Monitoring Global Change, NOAA Technical Report NOS 137 NGS 49, 306-324, 1991
Danan Dong and Yehuda Bock, Global Positioning System Network Analysis with Phase Ambiguity Resolution applied to Crustal Deformation Studies in California, J. Geophys. Res., 94, 3949-3966,1989
Lin Banghui, Dong Danan, Lin Jizeng, Hu Xiaoxing, A study on the inversion of rupture process using the compound model method, Acta Seismologica Sinica, 10, No.4, 337-351, 1988

Zheng Dawei, Dong Danan, Marple Algorithm of Autoregressive Spectrum Estimate and its Application to Analyzing Astrometrical Data, Acta Astronomica Sinica, 28, No.4, 364-373, 1987

Dong Danan, Measurement of the Quality Factor Q of the Chandler Wobble, Acta Astronomica Sinica, 27, No.1, 16-22, 1986

Zhao Ming, Dong Danan, Chen Youfen, A new research for the secular drift of the Earth's pole, Acta Astronomica Sinica, 27, No.4, 352-359, 1986

Zhao Ming, Dong Danan, Chen Youfen, On the 30-year Scale Libration of the Earth's Pole, Annals of Shanghai Observatory Academia Sinica, 1986

Zheng Dawei, Dong Danan, Realization of Narrow-band Filtering of the Polar Motion Data with Multi-stage Filter, Acta Astronomica Sinica, 27, No.4, 368-376, 1986

Zheng Dawei, Dong Danan, research on the fine structure in polar motion with multi stage filter, Proceedings of the International Conference on Earth Rotation and the Terrestrial Reference Frame, Columbus, Ohio, 55-63, 1985

Dong Danan, Zheng Dawei, End Effects of the Vondrak Filter, Annals of ShanghaiObservatory Academia sinica, 7, 13-25, 1985

Yang Zhigen, Dong Danan, Computation of Displacement of Station Position caused by Tides using Spherical Harmonic Method, Annals of Shanghai Observatory Academia Sinica, 7, 41-50, 1985

Dong Danan, Simulation Test and Discussion on Q estimation of the Chandler Wobble by Spectral Analyses, Annals of Shanghai Observatory Academia Sinica, 6, 50-62, 1984

Lin Banghui, Dong Danan, A study of orthogonal and oblique rupture process with application to the 1966 Xingtai earthquakes, A Collection of Papers of International Symposium on Continental Seismisity and Earthquake Prediction, 736-750, 1984

TABLE OF CONTENTS

Abstract 3
Acknowledgments 5
Curriculum Vitae 7
Table of Contents 9
CHAPTER 1: INTRODUCTION
Introduction 13
CHAPTER 2: METHODOLOGY
Introduction 15
Brief review of the methods currently available 16
General observation equations in geocentric Cartesian frame 17
Quasi-observation approach 19
Estimation procedure 20
First step: get a loosely constrained solution 20
Second step: obtain the combined solution under a uniform frame 20
Third step: impose general constraints to obtain robust soiution 21
Checking compatibility of the data sets 23
Dealing with a large number of stations 24
Conclusions 26
References 28
CHAPTER 3: RESULTS
Introduction 31
Geodetic observation in southern California 32
Terrestrial survey data 32
VLBI/GPS data 33
Analysis of the trilateration data 34
Choosing the observables 34
Outer coordinate solutions for each trilateration subnetwork 36
Minimum-constraint soluiton 36
Combination of the VG and EDM data 37
Description of the derived velocity field 39
Big Bend region 39
Southern Coast Ranges 41
East of the SAF 41
Southerm section 42
Conclusions 42
References 45
APPENDICES
Appendix 1: Coordinate frames 49
Appendix 2: Specific linearized observation equations 50
Site displacement and velocity 50
Baseline and baseline rate vectors 51
Astronomical longitude Λ, latitude Φ and gravity g 51
Horizontal and vertical angles and mark-to-mark distance 51
Episodic site displacement vector 52
Appendix 3: Reparameterization 53
Appendix 4: Comparison between Gauss-Markov model and other approaches 56
Appendix 5: Solution changes in the case of adding new data and new parameters 56
Appendix 6: Procedures for updating poorly known coordinates in a terrestrial network 57
Appendix 7: Contribution of nominal lengths to the estimate of velocity 58
Appendix 8: Sensitivity testing 59
Appendix 9: Error model 61
Appendix 10: Procedures of updating coordinates. 62
Appendix 11: Parkfield dilemma 63
Appendix 12: Coseismic site displacements 64
Appendix 13: List of all baseline length observations 67
Figures
Figure 1: VG and EDM networks in southern California 68
Figure 2: Outer coordinate solutions 69
Figure 3: Scatters
3a: San Luis subnetwork 70
3b: Carrizo subnetwork 71
3c: Los Padres - Tehachapi subnetwork 72
3d: San Gabriel - Tehachapi subnetwork 73
3e: Anza - Joshua subnetwork 74
3f: Salton - Mexicali subnetwork 75
Figure 4: Minimum constrained solution for EDM data 76
Figure 5: Residuals of the minimum constrained solution 77
Figure 6: Combined solution using constraints in all common sites 78
Figure 7: Tests of combined solution in southern section
7a: Remove constraint at Niguel 79
7b: Remove constraint at Monu_res 80
7c: Remove constraint at Asbestos. 81
Figure 8a: Combined solution relative to North American Plate 82
Figure 8b: Combined solution relative to SAF 83
Figure 9a: Residuals of the combined solution relative to Pacific plate 84
Figure 9b: Residuals of the combined solution relative to MPNS 85
Figure 10a: Velocity of the combined solution relative to MPNS 86

Figure 10b: Residuals of the combined solution relative to MPNS 87
Figure 11: Residuals of the combined solution relative to Red Hill 88
Figure 12: Strain rates and rotation rates in southern section
12a: Strain rates (Delaunay triangle representation) 89
12b: Rotation rates (Delaunay triangle representation) 90
Figure 13 Comparison of outer coordinate solutions in San Luis network
13a: Using USGS data 1980-1991 91
13b: Using CDMG data 1971-1979 and USGS data 1980-1984.............. 92
Figure 14: Coseismic site displacements
14a: $11 / 24 / 87$ Superstition Hills earthquake $(\mathrm{Ms}=6.2,6.6) \ldots \ldots \ldots \ldots \ldots . .93$
14b: 04/26/81 Westmoreland earthquake ($\mathrm{Ml}=5.7$) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.

14d: 03/15/79 Homestead Valley earthquake (Ms = 5.6)..................... 96
14e: 07/08/86 North Palm Springs earthquake ($\mathrm{Ms}=6.0$) 97
14f: 04/22/92 Joshua Tree earthquake (Ms = 6.1)............................... 98
14g: 06/28/92 Landers/Big Bear earthquakes (Ms = 7.5, 6.6)................. 99
Figure 15: Aftershock, steam well extraction, and blunders in eastern part
of the Mexicali subnetwork 1981-1991 .. 100
Figure 16: Time series of the EDM observations.. 101
Figure 17: VLBI/GPS and EDM network updated... 145
Table 1: Accuracies of terrestrial measurements... 146
Table 2: Accuracies of VLBI/GPS measurements.. 146
Table 3: USGS EDM sites used in this analysis.. 147
Table 4: VLBI/GPS sites used in this analysis... 152
Table 5: USGS EDM subnetworks .. 153
Table 6: Constraints on the northern and southern sections................................ 153
Table 7: Velocity constraints on the combined solution................................... 154
Table 8: Compatibility test using constraints at all effective common sites
8a: formal uncertainties of VG solution scaled by a factor of $2 \ldots \ldots155$

8c: add constraint on site SNP2 with scaling factor of 3........................ 157

$$
12
$$

Chapter 1

Introduction

Temporal deformations of the Earth's crust are induced by various sources. Some, such as solid tides, axial rotation, polar motion, ocean loading, and rigid plate motion, are comparatively well-understood. The deformations caused by the other sources, such as ice loading, tectonically induced stresses, thermal convection, fault interactions, volcanic eruptions, magma intrusions and earthquakes, are not as well constrained. In actively deforming regions, mostly located at plate boundaries, crustal movement demonstrates more complicated patterns than simply rigid-plate motion. These regions serve as the windows through which we gain insight into how the crust responds to various tectonic forces. Although the crustal movements no longer obey simple rigid motion in these regions, the deformation appears to be constant, except for short intervals around catastrophic events, such as earthquakes. Hence, recovering the interseismic velocity field would characterize the main features of regional deformation. Another important application of a regional velocity field is that it establishes the base for a dynamic geodetic reference system, which provides a powerful tool for predicting position as a function of time, documenting historical motion, detecting abnormal temporal deformation, and monitoring disasters [Snay and Holdahl, 1991].

In recent years, there have been increasing efforts to recover the horizontal velocity field in California, using either terrestrial survey data [Lisowski et al., 1991; Snay et al.,1987] or space-geodetic data [Clark et al.,1984; Ward, 1990]. Combining Global Positioning System (GPS) data from 1986-1992 with Very Long Baseline Interferometry (VLBI) data from 1984-1991, investigators from Scripps, Caltech, UCLA and MIT have derived the horizontal velocity field of central and southern California with a precision of better than $2 \mathrm{~mm} / \mathrm{yr}$ [Feigl et al. 1993]. In this thesis I further combine VLBI and GPS results with terrestrial survey data for this region. The aims of this work are to take advantage of more of the geodetic information currently available, to derive a more homogeneous solution with better spatial resolution, and to develop a methodology of combining different geodetic data in a way that optimally extracts the information appropriate for modeling deformation.

Chapter 2 will focus on the methodology. Chapter 3 will demonstrate the derived velocity field and its geophysical implications. Appendices will describe the details in specified areas.

Chapter 2

Methodology

We adopt four-dimensional integrated geodesy as our mathematical framework. This approach is powerful because it recognizes that most geodetic observations are functions of both position and gravity. The Earth's external gravity field is sensitive to crustal deformation, especially to vertical deformation. A general mathematical model of deformation analysis should embody the intrinsic correlation between the Earth's shape and its gravitational potential. Our formalization is based on the work of Hein [1986] and Collier et al. [1988], with some modifications. Site coordinate adjustments, site velocities, as well as episodic site displacements are expressed explicitly as the estimated parameters.

We perform our analysis in three steps. First, we obtain loosely constrained estimates of geodetic parameters from space-geodetic or terrestrial observations. Second, we combine the individual loosely constrained estimates into a uniform solution. Third, we impose general constraints to get a more robust estimate. This methodology allows us to 1) perform simultaneous reduction with various types of geodetic data, 2) estimate velocity directly without the assumption of a spatially uniform velocity gradient, 3) process efficiently and flexibly through general constraints and reparameterizations, and 4) obtain simultaneously two important byproducts - updated terrestrial network coordinates from the original poorly defined coordinates and earthquake-induced coseismic site displacements. We have implemented our analysis scheme using three preexisting software packages and a new one to incorporate terrestrial observations. The VLBI group delay observations were analyzed using the CALC/SOLVK software developed at the Goddard Space Flight Center (GSFC) and the Harvard Smithsonian Center for Astrophysics (CfA) [Ma et al., 1992; Herring et al., 1990]. The GPS phase observations were analyzed using the GAMIT software [King and Bock, 1993]. The combination of VLBI and GPS estimates is accomplished using the GLOBK software developed at CfA and MIT [Herring, 1993]. A new software package, designated FONDA (FOward modeling Network Deformation Analysis), was developed to process terrestrial survey data and to combine terrestrial and VLBI/GPS results.

Brief review of the methods currently available

A new methodology usually develops in response to new measurement techniques. Frank's method [Frank, 1966] of calculating angular shear strain γ_{1} and γ_{2} was applied to repeated triangulation observations, assuming strain is uniform in space. This method requires homogeneous data and an identically repeated network configurations; it is now rarely used. When repeated triangulation data with different networks became available, Prescott [1976] extended Frank's method to estimate angular shear strain rate $\dot{\gamma}_{1}$ and $\dot{\gamma}_{2}$, assuming that the strain is uniform in both space and time. The extended Frank's method permits multiple observation epochs and no longer requires identical networks. But this method still cannot handle directly heterogeneous data. In the new era of coexisting multiple geodetic techniques, Bibby [1982] developed the simultaneous reduction method, which estimates the velocity gradient with the assumption that the gradient is constant over the area network occupied. The DYNAP program developed at NGS [Drew and Snay, 1987] is the most widely used implementation of the simultaneous reduction algorithm. The advantage of these methods is that the estimated parameters are uniquely determined. For noisy data, these methods provide spatially averaged results to enhance the signal-to-noise ratio. But it is still not possible to derive the velocity field directly. Even by integrating the velocity gradient from a site with a well-constrained velocity, we only get the spatially averaged velocity field. Therefore, all these methods are most suitable for a small area, where the assumption of a spatially uniform velocity gradient is valid. A large or tectonically complicated area must be divided into smaller districts, based on a priori knowledge, in order to apply these methods. Snay et al. [1987] recognized the limitation of this approach and suggested that future improvements should "adjust California to a single nodel" ance eplace current expressions for secular motion with individual station velocity parameters".

An alternative approach is to remove the assumption of a spatially uniform velocity gradient and to estimate station velocity directly. If only trilateration or triangulation data are used, the translation and rotation of the entire network cannot be resolved. Thus, external constraints are required to eliminate the rank deficiency of such terrestrial survey data. The "inner coordinate solution" [Brunner, 1979] represents the minimum-norm generalized inverse of a singular normal matrix, and assumes no prior model. The "outer coordinate solution" [Prescott, 1981] adds a network rotation that minimizes velocities along a specified direction; the "model coordinate solution" [Segall and Mathews, 1988] applies the velocity field derived
from a geophysical model to constrain the solution. Hence, both of these solutions usually match well the known local tectonic features. They are especially useful when we want to calibrate or quantify the model parameters. Nevertheless, in a large or tectonically complicated area, it is very difficult to specify a single dominant direction to apply outer coordinate constraints or to construct a model velocity field. As a result, these methods are still applied to small areas. Furthermore, the solution is not unique and depends strongly on the model adopted. It is also difficult to judge the model accuracy directly.

Space geodesy has now arrived in the geodetic arena and can estimate 3dimensional positions with unprecedented accuracy. Space-geodetic observations still have their own rank deficiency. For example, a globally distributed GPS network solution cannot resolve the longitudinal rotation of the whole network. However, the ambiguity of space geodesy is on a continental or global scale. If accompanied by a global network, the space-geodetic solution can be considered unambiguous on a regional scale. Combining terrestrial survey data with space geodetic data makes it possible not only to derive an unambiguous velocity field, but also to link observations of separated terrestrial networks to get a uniform solution. Several studies [Snay and Drew 1989; Grant 1990] have shown that such a combinational technique is feasible. Building on the previous studies, our work attempts to develop a theoretically rigorous, practically efficient, and usefully flexible methodology for combining heterogeneous data sets.

General observation equations in a geocentric Cartesian frame

The observations from different techniques are conventionally expressed in one of several possible frames: geocentric Cartesian, ellipsoidal geodetic, or topocentric planimetric. Considering the potential of space geodesy, we adopt the geocentric Cartesian frame as the internal coordinate system in which to construct the observation equations. The transformation between the Cartesian and the geodetic or topocentric frames, used conveniently for terrestrial observations, is given in Appendix 1. The geodetic measurement $l(t)$ can be expressed as

$$
\begin{equation*}
l(\mathrm{t})=\mathrm{F}\{\mathbf{X}(\mathbf{a}, \mathrm{t}), \mathbf{W}(\mathbf{X}(\mathbf{a}, \mathrm{t}), \mathbf{b}, \mathrm{t}), \mathbf{h}(\mathrm{t})\} \tag{1}
\end{equation*}
$$

where
$\mathbf{X}(\mathbf{a}, \mathbf{t})$ is the position vector, whose time-dependence is described by the parameters a.
$\mathbf{W}(\mathbf{X}(\mathbf{a}, \mathbf{t}), \mathbf{b}, \mathbf{t})$ is the gravitational potential, which can be decomposed into a reference potential U and a time-dependent disturbing potential π. The parameters \mathbf{b} describe the temporal variation of the disturbing potential.
$\mathbf{h}(\mathrm{t})$ are the auxiliary parameters, such as rotation, translation, and satellite orbits.
F denotes a non-linear functional which operates upon \mathbf{X}, \mathbf{W}, and \mathbf{h} to produce the scalar value of $l(\mathrm{t})$.
The linearized observation equation is

$$
\begin{equation*}
\delta l=\mathrm{A}\left(\Delta \mathbf{X}_{0}+\Delta \mathbf{u}\left(\mathbf{a}_{0}, \mathrm{t}\right)\right)+\mathrm{B}\left(\Delta \mathrm{U}\left(\mathbf{X}_{0}\right)+\pi\left(\mathbf{X}_{0}, \mathbf{b}_{0}, \mathrm{t}\right)\right)+\mathrm{P} \Delta \mathbf{a}+\mathrm{Q} \Delta \mathbf{b}+\mathrm{C} \Delta \mathbf{h}+\varepsilon \tag{2}
\end{equation*}
$$

where
δ represents the residual of observed minus calculated, based on the a priori model,
ΔX_{0} is the adjustment of a priori position,
$\Delta \mathrm{U}\left(\mathbf{X}_{0}\right)$ is the correction to the reference potential at a priori position \mathbf{X}_{0},
$\pi\left(\mathbf{X}_{0}, \mathbf{b}_{0}, t\right)$ is the disturbing potential defined by a priori parameters,
$\Delta \mathbf{u}\left(\mathbf{a}_{0}, t\right)$ is the correction of displacement with a priori model parameter \mathbf{a}_{0},
$\Delta \mathbf{a}, \Delta \mathbf{b}$ are corrections of the a priori model parameters \mathbf{a}_{0} and \mathbf{b}_{0},
Δh is the correction of the a priori auxiliary parameter h_{0}, and
ε is the noise term.

$$
\begin{array}{ll}
A=\frac{\partial F}{\partial \mathbf{X}}+\frac{\partial F}{\partial W} \frac{\partial U}{\partial \mathbf{X}} & B=\frac{\partial F}{\partial W} \\
P=\frac{\partial F}{\partial \mathbf{X}} \frac{\partial \Delta \mathbf{X}}{\partial a}+\frac{\partial F}{\partial W} \frac{\partial U}{\partial \mathbf{X}} \frac{\partial \Delta \mathbf{X}}{\partial a} & Q=\frac{\partial F}{\partial W} \frac{\partial \pi}{\partial b} \tag{3}\\
C=\frac{\partial F}{\partial h} &
\end{array}
$$

In the absence of an episodic event, we usually assume that crustal movement is uniform in time to the first order, so that a is simply the site velocity V. Site acceleration and high-order time-derivative terms are neglected. Additional parameters can be added when significant time-dependent signals are detected in the residuals. Time-dependent disturbing potentials π are not needed to estimate a horizontal velocity field. Thus the potential terms are used only to correct the raw observations. Readers interested in using 4-dimensional integrated geodesy to estimate potential parameters together with other parameters simultaneously are referred to Milbert and Dewhurst [1992]. Based on these simplifications, (2) becomes

$$
\begin{equation*}
\delta l=A\left(\Delta \mathbf{X}_{0}+\left(t-t_{0}\right) \Delta V\right)+B \Delta U\left(\mathbf{X}_{0}\right)+P \Delta V+C \Delta h_{0}+\varepsilon \tag{4}
\end{equation*}
$$

Appendix 2 lists the linearized observation equations for various measurements.

Quasi-observation approach

Before introducing the trilogy of our analysis, we address the importance of using quasi-observations, employed by both GLOBK and FONDA. There are two approaches to estimating $\Delta \mathbf{X}_{0}$ and $\Delta \mathrm{V}$: i) estimate the position and velocity directly from the raw observations; ii) estimate intermediate solutions from the raw observations and use these intermediate solutions as quasi-observations to estimate ΔX_{0} and ΔV. The final estimates of the parameters from the two approaches are equivalent (see Appendix 3). In data combination, the quasi-observation approach is more efficient and flexible. Here the term "combination" represents not only the combination of data from different techniques, but also the combination of measurements from different sessions using the same technique.

Computation time and memory space savings are the primary advantages of the quasi-observation approach. For example, data from a single GPS observation session consist typically of phase measurements of 6 satellites from 20 stations at 1000 epochs. The files required to store the residuals and the partial derivatives with respect to site coordinates and satellite parameters occupy about 20 Mb of storage. In the quasi-observation approach, we need to keep only the estimated station coordinates, satellite orbits, and their covariance matrix, easily stored in about 0.5 Mb . Computation time for the combination is typically reduced by about two orders of magnitude.

If we use the GLOBK output as quasi-observations to combine with the terrestrial survey data, only the parameters related to the sites in southern California and their covariance matrix are necessary. The parameters of the satellite orbits, VLBI radio-source positions, Earth rotation parameters, and the parameters relating to sites outside southern California need not be used directly to obtain a rigorous combination solution (see Appendix 3). This advantage of the quasi-observation approach cannot be easily realized by processing the raw data directly.

When the a priori coordinates for trilateration sites are poorly determined, we can compress the data into baseline length rates and baseline lengths at weighted mid epochs, at which the nominal baseline lengths and baseline length rates are uncorrelated. Then using only the resultant baseline length rates as quasiobservations, we can obtain reliable site velocity estimates. Such an approach is
insensitive to the poorly determined a priori coordinates and hence has been widely used to derive the velocity estimates in previous studies [Lisowski et al. 1991].

Estimation procedures

First step: the loosely constrained solutions
For each daily observation, we use GAMIT to analyze GPS phase data to obtain loosely constrained estimates of site coordinates and satellite orbits. Similarly, we use CALC/SOLVK to analyze the VLBI group delay data to obtain loosely constrained estimates of site coordinates and source positions. GLOBK treats these solutions as quasi-observations to obtain a homogeneous estimate of site coordinates at a reference epoch, site velocities, multi-session satellite orbits, and earth rotation parameters.

Using loose constraints is necessary to obtain a homogeneous solution in the combination. Directly using tightly constrained single-session solutions degrades the long-term repeatability, due mostly to the inconsistency of fiducial stations and insufficient orbital modeling [Murray, 1991; Larson and Agnew, 1991]. Loose constraints are necessary to prevent the normal matrix from becoming singular. On the other hand, these constraints should be loose enough that they do not bias the parameter estimates derived in later steps of the analysis. Our philosophy is to keep the loose constraints during most of the analysis, and to impose tight constraints at the final stage. Such an approach maintains a uniform frare and minimizes the effects from overconstraining [Feigl et al, 1993].

Second step: combining the data under a uniform reference frame

Suppose the observation equations for two subsets of the data are $\delta l_{1}=A_{1} \delta \mathbf{X}+\varepsilon_{1}$, with covariance matrix C_{1} $\delta l_{2}=A_{2} \delta X+\varepsilon_{2}, \quad$ with covariance matrix C_{2}
Here \mathbf{X} represents all parameters, not just the position adjustments. We assume that the observations in the two subsets are uncorrelated, and all observation uncertainties are purely Gaussian. Then the least squares solution of the combined system is given by

$$
\begin{equation*}
\delta \hat{\mathbf{X}}_{1+2}=\mathrm{C}_{1+2}\left(\mathrm{~A}_{1}^{\mathrm{T}} \mathrm{C}_{1}^{-1} \delta l_{1}+\mathrm{A}_{2}^{\mathrm{T}} \mathrm{C}_{2}^{-1} \delta l_{2}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1+2}=\left(A_{1}^{T} C_{1}^{1} A_{1}+A_{2}^{T} C_{2}^{-1} A_{2}+C_{X}\right)^{-1} \tag{8}
\end{equation*}
$$

is the covariance matrix of the combined solution $\widehat{\mathbf{X}}_{1+2}$ and C_{X} is the covariance matrix of the a priori values of the parameters \mathbf{X}. The misfit is measured by "the weighted sum of squared residuals" $\left(\chi^{2}\right)$

$$
\begin{equation*}
\chi_{1+2}^{2}=\left(\delta l_{1}-\mathrm{A}_{1} \delta \hat{\mathbf{X}}_{1+2}\right)^{\mathrm{T}} \mathrm{C}_{1}^{-1}\left(\delta l_{1}-\mathrm{A}_{1} \delta \widehat{\mathbf{X}}_{1+2}\right)+\left(\delta l_{2}-\mathrm{A}_{2} \delta \hat{\mathbf{X}}_{1+2}\right)^{\mathrm{T}} \mathrm{C}_{2}^{-1}\left(\delta l_{2}-\mathrm{A}_{2} \delta \widehat{\mathbf{X}}_{1+2}\right) \tag{9}
\end{equation*}
$$

The above model is usually referred to as a Gauss-Markov model. In Appendix 4, we compare this formulation with the "model coordinate" approach.

In general, the reference frames implied by different techniques do not coincide. A uniform terrestrial reference frame is necessary for combining solutions. Since the original coordinates of terrestrial survey networks are very poor, we update the site coordinates of these networks to align them with the uniform frame (see Appendix 6).

In GLOBK, we solve only the rotation angles explicitly. For VLBI, which has almost no sensitivity to translation because of the nearly infinite distant quasar observation, the translation is constrained initially by the weak constraints. The translation of the frame can be specified later by fixing one site position and velocity or forcing the sum of the adjustments to the coordinates and velocities of several sites be zero. This latter procedure is used in GLOBK and is analogous to an inner coordinate solution. For GPS, there is no translational rank deficiency since the orbital dynamics is sensitive to the position and velocity of the Earth's center of mass, and no explicit translation is allowed. When the GPS network is not strong enough, we might adjust the velocity translation of the whole network at the final stage to stabilize the solution.

Third step: impose general constraints to obtain a robust solution

In the final step, we impose general constraints on the solution through conditional equations. Suppose that the original adjustments are $\mathbf{X}_{\mathbf{L}}$ with covariance C_{XL} and misfit χ_{L}^{2}. The constraint observation equation is

$$
\begin{equation*}
l_{c}=A_{c} X \quad \text { with covariance } C_{c} \tag{10}
\end{equation*}
$$

Sequential least squares gives the updated solution:

$$
\begin{align*}
& \mathbf{X}_{c}=X_{L}+C_{X L} A_{c}^{T}\left(C_{c}+A_{c} C_{X L} A_{c}^{T}\right)^{-1} \Delta l_{c} \tag{11}\\
& C_{X c}=C_{X L}-C_{X L} A_{c}^{T}\left(C_{c}+A_{c} C_{X L} A_{c}^{T}\right)^{-1} A_{c} C_{X L} \tag{12}\\
& \chi_{c}^{2}=\chi_{L}^{2}+\Delta X^{T} C_{X L}^{1} \Delta X+\Delta l_{c}^{T} C_{c}^{-1} \Delta l_{c} \tag{13}
\end{align*}
$$

where $\Delta l_{c}=l_{c}-A_{c} X_{L}$

$$
\begin{equation*}
\Delta \mathbf{X}=\mathbf{X}_{\mathrm{c}}-\mathbf{X}_{\mathrm{L}} \tag{14}
\end{equation*}
$$

There are several advantages in using a sequential least squares approach to impose the constraint. First, we can manipulate various constraints without reprocessing the original observation data. The savings in time and space are obvious. Second, the reasonableness of the constraints can be easily assessed by the increments of χ^{2} from (13). Unrealistic constraints can be identified through abnormal χ^{2} increments.

We have incorporated a variety of constraint equations in both GLOBK and FONDA. In order to provide flexibility in the analysis, most of these constraints are applied in a geodetic or topocentric frame. In the following equations, $\mathbf{x}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathbf{v}(u, v, w)$ denote the coordinate and velocity respectively.

1) Assign specified values to the coordinate adjustment or velocity for one or more sites:

$$
\begin{equation*}
\delta \mathbf{x}_{i}=\mathbf{x}_{\text {spec }}, \quad \delta \mathbf{v}_{\mathrm{i}}=\mathbf{v}_{\text {spec }} \tag{15}
\end{equation*}
$$

Although we have written the equations in the form of a vector, the constraint can be imposed separately for each component. The same will be true for other constraint equations. Specifying values to zero is equivalent to fixing the a priori coordinate or velocity for this site.
2) Tie the adjustments or total values of the coordinates or velocities:

$$
\begin{equation*}
\delta \mathbf{x}_{\mathrm{i}}=\delta \mathbf{x}_{\mathrm{j}}=\delta \mathbf{x}_{\mathrm{k}}=\ldots, \quad \delta \mathbf{v}_{\mathrm{i}}=\delta \mathbf{v}_{\mathrm{j}}=\delta \mathbf{v}_{\mathrm{k}}=\ldots \tag{16}
\end{equation*}
$$

When the a priori coordinates of several sites have common errors, the coordinate tie may be used. The velocity tie is the most useful one. We can bind velocities of several closely located sites, for example a "main" mark and several "reference" marks, so that they move together, as if they were on the same rigid block. We can also bind the velocities at terrestrial survey sites to the velocities at the nearby GPS/VLBI sites, thereby resolving the translation and rotation of the whole network.
3) Assign the orientation of the velocity vector:

$$
\begin{equation*}
v_{i}+\delta v_{i}=k_{v}\left(u_{i}+\delta u_{i}\right) \tag{17}
\end{equation*}
$$

where k_{v} is a specified constant.
4) Assign baseline or baseline-velocity orientation:

$$
\begin{align*}
& \left(y_{j}+\delta y_{j}\right)-\left(y_{i}+\delta y_{i}\right)=k_{x}\left(\left(x_{j}+\delta x_{j}\right)-\left(x_{i}+\delta x_{i}\right)\right) \tag{18}\\
& \left(v_{j}+\delta v_{j}\right)-\left(v_{i}+\delta v_{i}\right)=k_{v}\left(\left(u_{j}+\delta u_{j}\right)-\left(u_{i}+\delta u_{i}\right)\right)
\end{align*}
$$

where k_{x}, k_{v} are constants.
5) Freeze the baseline length:

$$
\begin{equation*}
\sum_{x, y, z}\left(d x_{i j}+\delta d x_{i j}+\left(d v_{i j}+\delta d v_{i j}\right)\left(t-t_{0}\right)\right)^{2}=\sum_{x, y, z}\left(d x_{i j}+d v_{i j}\left(t-t_{0}\right)\right)^{2} \tag{19}
\end{equation*}
$$

6) Fix the center of a sub-network or fix the motion of the sub-network center:

$$
\begin{equation*}
\sum_{i=1}^{k} \delta x_{i}=0, \quad \sum_{i=1}^{k}\left(v_{i}+\delta v_{i}\right)=0 \tag{20}
\end{equation*}
$$

7) Fix horizontal or vertical rotation of a sub-network to zero:

$$
\begin{align*}
& \sum_{\substack{i=1}}^{k}\left(d x_{i}\left(v_{i}+\delta v_{i}\right)-d y_{i}\left(u_{i}+\delta u_{i}\right)\right)=0 \\
& \sum_{i=1}^{k}\left(d y_{i}\left(w_{i}+\delta w_{i}\right)-d z_{i}\left(v_{i}+\delta v_{i}\right)\right)=0 \\
& \sum_{i=1}^{k}\left(d z_{i}\left(u_{i}+\delta u_{i}\right)-d x_{i}\left(w_{i}+\delta w_{i}\right)\right)=0 \tag{21}
\end{align*}
$$

Here $\mathrm{dx}, \mathrm{dy}, \mathrm{dz}$ denote the distance from site i to the center of the sub-network. It should be noted that these constrained solutions of no-network-translation and no-network-rotation are different from the inner or outer coordinate solutions. In the inner coordinate solution, every parameter has the same weight, and the geometrical distance to the center is the dominant factor. A site with large uncertainty will affect the solutions and the covariance matrix of all other sites in the inner coordinate solution and hence should be eliminated in advance. In the constraints of (20) and (21), the parameter uncertainties affect the constrained solution, and the parameters with smaller uncertainties will be less changed. If the original solution is derived from only trilateration or triangulation data, the uncertainties depend on which site is chosen to be fixed.
8) Link velocity gradient:

Rotating the coordinate frame by a specified angle, in this frame

$$
\begin{equation*}
\frac{\mathbf{v}_{j}+\delta \mathbf{v}_{j}-\mathbf{v}_{i}-\delta \mathbf{v}_{i}}{\mathbf{x}_{j}-\mathbf{x}_{i}}=\frac{\mathbf{v}_{k}+\delta \mathbf{v}_{k}-\mathbf{v}_{i}-\delta \mathbf{v}_{i}}{\mathbf{x}_{k}-\mathbf{x}_{i}} \tag{22}
\end{equation*}
$$

Formula (22) actually includes 4 independent constraints for horizontal velocities.
9) Inner, outer, and model coordinate constraints. The details of these constraints can be found in Segall and Mathews [1988].

Checking compatibility of the data sets

During the combination, compatibility checking is necessary to avoid misleading results due to systematic errors and blunders. Here our discussion focuses on the compatibility of velocity solutions.

For the same data but estimating additional parameters, the covariance matrix of the differences of the common parameters is given by Equation 15 of Appendix 3. Davis et al. [1985] have proved that for the same parameters with the addition of new data, the covariance matrix of differences of the parameter estimates has the relation:

$$
\begin{equation*}
C_{x}-\hat{x}=C_{x}-C_{\tilde{x}} \tag{23}
\end{equation*}
$$

Here $\tilde{\mathbf{x}}$ and $\widehat{\mathrm{x}}$ denote the estimated parameters with and without new data added respectively. The comparison between (23) and (3.15) shows that adding additional parameters enlarges the covariance of common parameters for the same data, whereas for the same parameters, adding new data reduces the estimated covariance. Equation (23) is often used to check the compatibility of new data with the original data or to test the sensitivity of parameter estimates to subsets of data.

In combining terrestrial survey data with space geodetic data, not only are new data added, but additional parameters are also added. In this extended case, we give the proof (see Appendix 5) that formula (23) is still valid provided that the new data are uncorrelated with the previous data. Our methodology uses (23) to check the compatibility between terrestrial survey data and space geodetic data. If the solution difference $\tilde{x}-\widehat{x}$ exceeds the 95% confidence level, the terrestrial survey data are not compatible with the space geodetic data.

Terrestrial survey data have no sensitivity to the translation and rotation of the whole network. Hence the above compatibility test is unable to detect errors of network translation and rotation even though these errors exist in the space geodetic solution. If the common sites are concentrated in a small area of the terrestrial survey network, small errors of rotation in the space geodetic solution will be propagated and enlarged in the far sites of the terrestrial survey network. Therefore external compatibility checking based on prior geophysical information is also useful.

In the case of incompatible data, we have attempted to identify the sites with significant incompatibility and to avoid using them to impose constraints. If the first step does not improve the solution enough, we rescale the original covariance matrix to incorporate unknown systematic deviations.

Dealing with a large number of stations

The main shortcoming of our methodology is the computer resources necessary to store and use the large matrix required. Our methodology requires 6 parameters for each site plus episodic parameters and auxiliary parameters. In a typical solution for southern California involving 400 stations, this requires 30 megabytes of memory. For
our ambition of processing up to 10,000 sites, even a supercomputer is not large enough. A Helmert blocking approach [Schwarz and Wade, 1990] would reduce the size of space, allowing a large network to be handled with a sparse normal matrix. To perform Helmert blocking, all data should be arranged into multi-level blocks in advance. Each higher level block compresses the data from several lower level blocks. In combining the data from several lower blocks, this method implicitly estimates all the parameters, which then appear in only one block. The remaining common parameters are estimated explicitly and form the data at the higher level. Such a procedure is repeated until the last data set at the top of the block pyramid is used. Then this method backwards estimates explicitly all parameters of each block, which are previously solved implicitly. The Helmert blocking method is rigorous but requires complicated indexing and bookkeeping. We have not yet fully realized this method in our software since we have not yet experienced the pressure of processing a large number of sites.

Our philosophy is to realize the processing using a simpler method. We use the Helmert blocking approach to combine the VLBI/GPS quasi-observations with the USGS EDM trilateration data, which are the most accurate terrestrial surveys. Since that EDM data are observed in separated networks, we combine the VLBI/GPS solution with the trilateration data in each network sequentially. In each step, the parameters that are related to the EDM sites are estimated implicitly except at the sites collocated with VLBI/GPS sites. Thus, our block pyramid has only two levels. At the bottom level, the EDM data in each network form a block, and the VLBI/GPS quasi-observations are distributed in all blocks and are considered as common parameters. At the top level is the combined solution with only the parameters related to VLBI/GPS sites estimated explicitly. Thus we do not need additional indexing and bookkeeping. The shortcoming of this simplified Helmert blocking approach is that it does not work where the EDM network inclodes no VLBI/GPS sites.

We use the back solution approach described byHerring, [1983] to recover the parameters of the EDM network. At the last step the estimated parameters related to GPS/VLBI sites are $\hat{\mathrm{x}}_{1}$ and their covariance matrix is $\mathrm{C}_{\mathrm{x}_{1}}$, derived from the normal equations:

$$
\left(\begin{array}{cc}
\mathrm{N}_{11}+\mathrm{C}_{\tilde{\mathrm{x}}_{1}}^{-1} & \mathrm{~N}_{12} \tag{24}\\
\mathrm{~N}_{21} & \mathrm{~N}_{22}
\end{array}\right)\binom{\hat{\mathrm{x}}_{1}}{\hat{\mathrm{x}}_{2}}=\binom{\mathrm{B}_{1}+\mathrm{C}_{\tilde{\mathrm{x}}_{1}}^{-1} \Delta \widetilde{\mathrm{x}}_{1}}{\mathrm{~B}_{2}}
$$

where
$\tilde{\mathrm{x}}_{1}$ and $\mathrm{C}_{\mathrm{x}_{1}}$ denote the estimates and covariance matrix of x_{1} from the previous step, used as quasi-observations, and
x_{2} represent the parameters related to the sites of one EDM subnetwork.
The coefficients of the normal sub-matrices $\mathrm{N}_{11}, \mathrm{~N}_{12}, \mathrm{~N}_{21}, \mathrm{~N}_{22}$ and the righthand terms B_{1}, B_{2} are constructed from the data of the EDM subnetwork.

The back solutions are then
$\widehat{x}_{2}=N_{22}^{-1} B_{2}-E \hat{x}_{1}$ and $C_{x_{2}}=N_{22}^{-1}+E C_{x_{1}} E^{T}$
where $E=N_{22}^{-1} N_{21}$.
Using formula (25) repeatedly, we can obtain the estimates and covariance matrices related to the sites of each EDM subnetwork.

For the less accurate triangulation data, our basic assumption is that these data cannot change the combined GPS/VLBI/EDM results significantly. Thus we can divide a whole region into several blocks. Within each block there are enough GPS/VLBI/EDM sites to control the movement of the whole block. We try only to obtain the velocities of triangulation sites relative to GPS/VLBI/EDM sites. As long as the velocities estimated from the entire GPS/VLBI/EDM network are selfconsistant, the velocities at triangulation sites should be self-consistant also.

Conclusions

The developments of modern space geodesy have motivated the development of a rigorous and flexible methodology for combining terrestrial survey data with space geodetic data. The method presented in this chapter provides a useful tool for estimating the horizontal velocity field from a combination of terrestrial and spacegeodetic survey data. Our methodology offers several important features: (1) The theoretical frame is rigorous and can easily incorporate leveling and gravity observations. (2) All three elements of a time-dependent reference frame - site coordinate, velocity, and episodic displacement - are estimated simultaneously. (3) Constraints can be applied in a general and flexible manner. (4) The compatibility criteria are relatively rigorous, taking into account the correlation between the solutions before and after combination.

Within a few years, space-geodetic data will be available for California and other regions with great spatial and temporal resolution. Given this rich data set, our methodology should be further developed to incorporate a large number of sites. How to handle time-dependent deformations in an optimal way will be an important extension of our current methodology. Although our current simplifications do not
inhibit our determination of a horizontal velocity field for southern California, the rapid development of space-geodesy will spur us to remove these simplifications in the near future.

REFERENCES

Bibby, H. M., Unbiased estimate of strain from triangulation data using the method of simultaneous reduction, Tectonophysics, 82, 161-174, 1982
Clark, M. M., K. K. Harms, J. J. Lienkaemper, D. S. Harwood, K. R. Lajoie, J. C. Matti, J. A. Perkins, M. J. Rymer, A. M. Sarna-Wojicki, R. V. Sharp, J. D. Sims, J. C. Tinsley III, and J. I. Ziony, Preliminary slip-rate table and map of late Quaternary faults of California, U.S. Geol. Surv., Open file report 84-106, 1984
Collier,P. A., B. Eissfeller, G. W. Hein and H. Landau, On a four-dimensional integrated geodesy, Bull. Geod., 62, 71-91, 1988
Davis, J. L. et al., Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20, 1593-1607, 1985
Drew, A. R. and R. A. Snay, DYNAP: software for estimating crustal deformation from geodetic data, Tectonophysics, 162, 331-343, 1989
Feigl, K. L., D. C. Agnew, Y. Bock, D. Dong, A. Donnellan, B. H. Hager, T. A. Herring, D. D. Jackson, T. H. Jordan, R. W. King, S. Larsen, K. M. Larson, M. Murray, Z. Shen, and F. H. Webb, Measurement of the velocity field of central and southern California, 1984-1992, submitted to J. Geophys. Res., 1993
Frank, F. C., Deduction of earth strains from survey data, Bull. Seismol. Soc. Am., 56, 35-42, 1966
Grant, D. B., Combination of terrestrial and GPS data for Earth deformation studies, Ph. D. Theses, Unisurv report S-32, 1990
Gu, G. H. and W. Prescott, Discussion on displacement analysis: detection of crustal deformation, J. Geophys. Res., 91, 7439-7446, 1986
Hein, G. W., Integrated geodesy state-of-the-arc 1986 reference text, Lecture Notes in Earth Sciences, Vol. 7, 505-548, Edited by H. Sunkel, Springer-Verlag, 1986
Herring, T. A., Precision and accuracy of intercontinental distance determinations using radio interferometry, Ph. D. Thesis, Massachusetts Institute of Technology, 1983
Herring, T. A., J. L. Davis, and I. I. Shapiro, Geodesy by radio astronomy: the application of kalman filtering to very long baseline interferometry, J. Geophys. Res., 95, 12561-12581, 1990
Herring, T. A., GLOBK: Global Kalman filter VLBI and GPS analysis program, unpublished documentation, MIT, 1993
King, R. W., and Y. Bock, Documentation for the MIT GPS analysis software: GAMIT, Massachusetts Institute of Technology, 1992

King, R. W., E. G. Masters, C. Rizos, A. Stolz, and J. Collins, Surveying with GPS, Monogr. Ser. , vol. 9, School of Surveying, University of New South Wales, New South Wales, Australia, 1985
Larson, K. M., and D. C. Agnew, Application of the Global Positioning System to crustal deformation measurement 1. precision and accuracy, J. Geophys. Res., 96, 16547-16565, 1991
Lisowski, M., Recent Plate Motions and Crustal Deformation, Reviews of Geophysics, supplement, 162-171, 1991
Lisowski, M., J. C. Savage and W. H. Prescott, The velocity field along the San Andreas fault in central and Southern California, J. Geophys. Res., 96, 83698389, 1991
Ma, C., J. W. Ruan, and D. S. Caprette, Crustal Dynamics Project Data Analysis-1991 VLBI geodetic results, NASA Tech. Mem. 104552, 1992
Milbert, D. G. and W. T. Dewhurst, The Yellowstone-Hebgen lake geoid obtained through the integrated geodesy approach, J. Geophys. Res., 97, 545-558, 1992
Murray, M. H., Global Positioning System measurement of crustal deformation in Central California, Ph. D. Theses, MIT, 1991
Prescott, W. H., An extension of Frank's method for obtaining crustal shear strains from survey data, Bull. Seismol. Soc. Am., 66, 1847-1853, 1976
Prescott, W. H., The determination of displacement field from geodetic data along a strike slip fault, J. Geophys. Res., 86, 6067-6072, 1981
Savage, J. C. and W. H. Prescott, Precision of geodolite distance measurements for determining fault movements, J. Geophys. Res., 78, 6001-6008 1973
Schwarz, C. R. and E. B. Wade, The North American Datum of 1983: project methodology and execution, Bull. Geod., 64, 28-62, 1990
Segall, P. and M. V. Mattews, Displacement calculation from geodetic data and the testing of geophysical deformation models, J. Geophys. Res., 93, 14954-14966, 1988
Snay, R. A. and Holdahl, S. R., The emergence of dynamical geodetic reference systems, AGU Chapman Conference on Time Dependent Positioning: Modeling Crustal Deformation., Annapolis, Maryland, 1-1, 1991
Snay, R. A. and A. R. Drew, Combining GPS and classical geodetic surveys for crustal deformation in the Imperial Valley, California, High Precision Navigation -Integration of Navigational and Geodetic Methods, Springer-Verlag, New York, 225-236, 1989

Snay, R. A., M. W. Cline and E. L. Timmerman, Project REDEAM: Models for Historical Horizontal Deformation, NOAA Technical Report NOS 125 NGS 42, 1987
Ward, S. N., Pacific-North America plate motions: New results from very long baseline interferometry, J. Geophys. Res., 95, 21965-21982, 1990

Chapter 3

Results

Introduction

Southern California is located in the boundary zone between the North American and Pacific plates, where the crust shows more complicated behavior than simple rigid plate motion. Geological and geodetic evidence indicates that the slip rate of the San Andreas fault (SAF) accounts for less than three quarters of the velocity predicted by the NUVEL-1 model [Demets et al., 1990]. The remaining motion, termed the "San Andreas discrepancy" [Minster and Jordan, 1984], is attributed to extension in the Basin and Range province and to the integrated rate of deformation in California [Minster and Jordan, 1987]. Quantifying the distribution of deformation in Southern California will provide important constraints on the geodynamical processes in this region. In Southern California, the main patterns of deformation are characterized by the horizontal velocity field, caused predominantly by strike-slip faults. Mapping this field directly from geodetic data has become feasible only in recent years [Snay et al., 1987; Lisowski et al., 1991; Feigl et al., 1993].

Trilateration observations show that the deformation in a 100 km wide band near the main segments of the San Andreas fault is dominated by right-lateral shear, and can be modeled successfully by fault-slip motion on multiple dislocations [Lisowski et al., 1991]. Recent results, however, based on a combination of VLBI and GPS (hereafter VG) data, find significant fault-normal velocities, which cannot be explained by a multi-fault dislocation model [Feigl et al., 1993] (hereafter F93). Several questions arise: (1) Is the velocity field from terrestrial survey data compatible with the field derived from space geodetic data? (2) What is the distribution of the fault-normal velocity? (3) Can the deformation in the inland region of southern California absorb all of the San Andreas discrepancy? The trilateration networks have narrow apertures spanning short distances across the SAF, and hence cannot "see" the deformation far from the SAF. Most VG sites used by F93 are concentrated in the southern California borderland, with only a few sites across the SAF. Thus the current VG solution cannot "see" clearly the deformation transition from coastal areas to the SAF. The combination of terrestrial survey data with space geodetic data not only enhances the temporal and spatial coverage of the velocity
solution, but also provides the ability to preserve a homogeneous solution in a large area and to find the locations of the missing fault-normal velocity. Furthermore, the vector measurements of space-geodesy can resolve the rotation rate, to which terrestrial survey data are insensitive. The rotational tectonic features, such as block rotation [Jackson and Molnar, 1990], can therefore be determined directly.

Motivated by the benefits of combination, we attempt to derive the horizontal velocity field in southern California from both VG and terrestrial survey data, using the methodology developed in Chapter 2. Our results indicate that (1) deformation in the off-shore region contributes to the San Andreas fault discrepancy; (2) the fault-normal velocities are absorbed partly in the off-shore region, partly in the Ventura basin area, and partly east of the SAF; (3) some incompatibility between space-geodetic data and terrestrial survey data still exists. The causes of this incompatibility are not yet clear and can be resolved only with additional data.

Geodetic observations in southern California

Terrestrial survey data

The history of terrestrial survey data in southern California can be traced from 1850 [Snay et al., 1987; Hager et al., 1991]. Most nineteenth-century surveys were performed along the coast to support navigation. After 1930, survey networks were extended into the interior of California. Direction were the dominant measurements until the 1950's, when they were largely supplanted by electronic distance measurements (EDM). Regularly repeated length observations along * . . . fault segments in California were performed by the California Department or Water Resources (CDWR) from 1959 to 1969, the California Division of Mines and Geolc. (CDMG) from 1969 to 1979, and the U. S. Geological Survey (USGS) since 1970. Nearly an order of magnitude improvement in accuracy was achieved in 1969 when the CDMG and USGS began using aircraft to measure the temperature and humidity along the line of sight, providing better calibration of atmospheric refractivity. Table 1 lists the accuracies of the terrestrial survey data.

Most of the trilateration data used in this chapter were obtained by the USGS between 1971 and 1991 (Table 1 and Figure 1). We also include data from USGS surveys in the Joshua network made just after the Joshua Tree earthquake (April 22,1992; $M_{s}=6.1$) and again after the Landers and Big Bear earthquakes (June 28, 1992; $\mathrm{M}_{\mathrm{s}}=7.5 ; \mathrm{M}_{\mathrm{s}}=6.6$). For the San Luis network, we added trilateration data surveyed by the California Division of Mines and Geology (CDMG) prior to 1979.

The earlier trilateration and triangulation measurements are also useful because of their long time span and dense spatial coverage. In order to reduce the computational burden, however, we have not yet included these data in our analysis. Among the 30 USGS trilateration networks in southern California, we have omitted from our analysis the Garlock, Coso, and Barstow networks because they are isolated from other networks and because there is no VG site within these three networks to provide control. We have also omitted the Mojave network because it was surveyed only once, in 1982. Finally, we have omitted 16 small-aperture networks, such as the Landers and Palmdale networks, since our current analysis is focused solely on broadscale features of the velocity field. We group the remaining 10 networks into two separate sections. The northern section of 179 sites spans the SAF from Parkfield to Pearblossom and includes the San Luis, Carrizo, Los Padres, Tehachapi, San Gabriel networks, and most of the Monitor network. The southern section straddles the SA, San Jacinto and Elsinore faults from the southern end of the Big Bend to the Mexicali area, including total 144 sites of the Anza, Joshua, Salton, Mexicali networks, and a small part of Monitor network. Table 3 lists all of the trilateration sites used in this analysis.

VLBI/GPS data

In 1982, the first VLBI experiments were performed using both dual-frequency observations and the Mark III recording system. A regular program of observations at about 15 sites began in 1984. The first extensive GPS survey in southern California was made in 1986 [Dixon et al., 1990]. During the first few years, the satellite constellation and the network of global tracking stations were limited. The permanent GPS Geodetic Array (PGGA) in southern California began operating in 1990 to continuously monitor the deformation and to provide a homogeneous reference series [Bock \& Leppard, 1990]. The accuracies of the VG data in southern California are listed in Table 2. The location of the sites are shown in Figure 1.

Our VG data include VLBI experiments from 1984 to 1991, California GPS experiments from 1986 to 1992, and the global GPS experiments from 1991 to 1992. There are 94 VLBI sites and 147 GPS sites represented, with most of the California sites concentrated in the western Transverse Ranges and the southern California borderlands (Figure 1). East of the SAF, the distribution of sites is sparse. Only one site (FIBR_GPS) is in the Great Valley, three sites (MOJA, GOLDVENU, DEAD7267) are in the Mojave region, and one site (BLKB7269) is in the Salton Trough. Three VG sites share the same benchmarks as the USGS trilateration sites:

DEAD7267 with Sand Hill, SNP2_GPS with Santapau, and MPNS_GPS with Mt_pinos. All of the details concerning the data distribution, data analysis, and solution quality are described in F93. The software used for our analysis is described in Chapter 2. We take the VG solution and its covariance matrix as quasiobservations and make the following modifications:

1) We remove three subsets of sites: i) the sites outside of southern California because they are beyond the scope of our research; ii) the sites with fully correlated velocity solutions since they are redundant; and iii) the sites with poorly determined velocities because they cannot provide reliable constraints. In the end, 43 sites in southern California (including OVRO) enter our analysis (Table 4).
2) After conducting statistical tests and comparing different solutions, F93 concluded that the formal standard deviations should be doubled to reflect the realistic uncertainties in the solution. Therefore, we use the scaled covariance matrix, as did F93.

Analysis of the trilateration data

Choosing the observables

Previous analyses of the trilateration data have used baseline length rates as quasi-observables to derive the velocity field [Lisowski et al., 1991]. The main advantage of this approach is that the baseline length rates are insensitive to site coordinates and contain most of the velocity information. But this approach discards two types of data: (1) baseline length with observations at only one yoch; and (2) compressed nominal baseline lengths at weighted mid epochs (See Appendix 5). These two types of data can provide meaningful velocity information, however, if the the site coordinates are well constrained. In Appendix 7, we give a quantitativ assessment of the condition required for compressed nominal baseline lengths to make a significant contribution to the velocity solution. The length-observable approach utilizes all data, but requires external knowledge of the coordinates, e.g., from VG, when the original coordinates are poor. Although we were able to update the coordinates and to estimate the velocities simultaneously (Appendix 10), the few sites collocated by VG in our current data limit the accuracies of updated horizontal coordinates to the 1-3 meter level, which is not sufficient to provide a significant contribution to the velocity estimates.

Outer coordinate solutions for each trilateration subnetwork

Prioro to combining terrestrial and space-geodetic data, we divided the USGS trilateration data into 6 subnetworks (Table 5) and applied outer coordinate constraints [Prescott, 1981] to get the velocity field relative to the center of each subnetwork. The purpose of this analysis is threefold: (1) to scrutinize the local deformation pattern and its relation to local faults; (2) to compare the data quality of each subnetwork; (3) to diagnose outliers. The minimum-velocity directions for the outer coordinate solutions were chosen to be perpendicular to the local segment of the SAF. Based on our tests, the velocity solutions had no significant changes if the minimum-velocity direction changes were within $\pm 5^{\circ}$. We assessed the data quality of each subnetwork by the scatter in the length observations (Appendix 9). In order to avoid contamination from coseismic displacements, we estimated episodic displacement parameters for 7 recent earthquakes (Appendix 12). We have not, however, evaluated offsets due to errors in the eccentric ties at some of the sites [M. Lisowski, personal communication, 1993]. Our future research should examine the records of the local eccentric ties and correct the errors.

Our outer coordinate solutions of subnetworks are very similar to the results of Lisowski et al. [1991], so elaborating the solutions and their tectonic implications appears redundant. Figures 2 and 3 show the velocity fields and scatters corresponding to each subnetwork. We draw the following general conclusions:
(1) Simple shear is the dominant feature in all 6 subnetworks.
(2) No fault-normal velocities were found that are significantly different from zero. However, this conclusion should be further investigated for two reasons: i) Since the outer coordinate solution eliminates the translation and constrains the rotation of whole subnetwork, it is impossible to detect a common fault-normal velocity of an entire subnetwork. ii) For many sites far from the SAF the velocity uncertainties are large, so we cannot rule out the possibility that a fault-normal component of velocity exists at these sites.
(3) In the San Luis - Parkfield subnetwork, the USGS trilateration data from 1980 show different trends from the earlier CDMG data (Appendix 11). Thus the more recent data do not support Harris and Segall 's [1987] model of uniform fault-normal compression, which was based mostly on the CDMG data. Since neither the CDMG nor USGS data sets can be rejected, a conclusive statement awaits the analysis of recent GPS measurements in this region.
(4) Our scatter analysis indicates that the length measurements are not very homogeneous. The divergences from the scatter model curves are large. Using

Equation (9.1) in Appendix 9, we estimate the coefficients of the error model for the six subnetworks. Our estimated constant terms ($3-6 \mathrm{~mm}$) are larger than the term (3 mm) of Savage and Prescott [1973], while our estimated length-dependent terms are consistent with theirs (0.2 ppm). Recently, Johnson [1993] also rechecked the errors of the USGS trilateration data in the Anza, Joshua, and Salton networks, using a different approach. He reached the same conclusion as we did. Since the difference between our estimate and the estimate of Savage and Prescott is not too great and since most of the difference can be eliminated if we downweight a few apparent abnormal scatters with normalized rms larger than 1.0 (Figure 3), in this analysis we have adopted the error model of Savage and Prescott without modification.

Minimum-constraint solution

Two questions cannot be resolved by the outer coordinate solution: 1) What is the motion of the whole subnetwork? 2) Is there any inconsistency between the outer coordinate solutions of adjacent subnetworks? In a second analysis of the trilateration data alone, we attempted to obtain the velocity solution for the entire northern and southern sections using minimum constraints to control the rigid-body movement of a whole section. Our purpose is twofold: 1) to look at the relative movement between subnetworks, and 2) to explore the maximum capability of the current USGS trilateration data set to provide a homogeneous velocity solution. For a large network, there is usually no single dominant velocity direction for all sites. Hence the outer coordinate constraint is difficult to impose. In our analysis we fixed the velocity at one site and constrained one velocity orientation at another site. We chose sites to be close to the SAF since the near-fault sites most likely move parallel to the fault.

In the current USGS trilateration network, the connections between subnetworks are much weaker than the connections within subnetworks. In the southern section, the Anza-Joshua subnetwork and the Salton-Mexicali suhno rk are connected through only two sites, Mecca and Laquinta. The connections in the northern section are even weaker than those in the southern section. Two quadrilateral structures exist in the Los Padres - Tehachapi subnetwork. Further north, the Los Padres - Tehachapi subnetwork and the Carrizo subnetwork are connected by the nearly collinear sites Mckttrck, Crocker, and Caliente, making the Carrizo subnetwork very vulnerable to small rotational perturbations. The far northern San Luis - Parkfield subnetwork is connected to the southern part of the northern section only through site Simmler. In order to strengthen the connections between the northern networks, we added to the trilateration data the baseline rate vectors
between five sites (Black Hill, Almond, Red Hill, Gould, and FIBR) whose relative positions were measured in 1989 and 1992 by GPS (Z. Shen, Southern California Earthquake Center (SCEC), personal communication, 1993). For these GPS-derived baseline rates, we used uncertainties of about $7 \mathrm{~mm} / \mathrm{yr}$, over 10 times the uncertainties of the EDM baseline length rates in this region. Our constraints are listed in Table 6 and the solutions are plotted in Figure 4.

In order to examine the fine structures of the velocity field, which are hidden by the dominant feature of the simple shear, we remove a model velocity field, created from a multi-fault dislocation model [F93]. This model consists of the SAF, the San Jacinto fault, the Elsinore fault and the Garlock fault. The SAF is divided into seven segments The details of the model are described by F93. The residual velocity field is shown in Figure 5.

From the minimum constraint solution for the EDM data, we conclude the following:
(1) Simple shear is still the dominant pattern over both the northern and southern sections.
(2) The sizes of the error ellipses increase rapidly from the center to the edge of a section, due to the weak connections between subnetworks. At the edge sites, the error ellipses are so large that all information for these sites is obscured by the errors. Therefore the possibility of using trilateration data only to obtain a homogeneous solution for a large network is very limited.
(3) There is differential motion between subnetworks. The apparent west-east velocity divergence between the San Gabriel and the Los Padres subnetworks could be explained by the north-south compression in the Ventura basin region [Donnellan et al., 1993].

Combination of the VG and EDM data

Besides the three VG sites that are collocated with EDM sites, there are six VG sites located less than 500 meters, and three VG sites located less than 2 km from nearby EDM sites. Assuming that the velocity varies little over a distance of 2 km , we can set the velocities at these EDM sites to match the velocities at the nearby VG sites. For an area with a strain rate of $10^{-7} / \mathrm{yr}$, such an assumption introduces $0.2 \mathrm{~mm} / \mathrm{yr}$ error for each velocity component in a $2-\mathrm{km}$ distance. With more GPS sites in Southern California being measured in recent years, we will eventually discard the velocity ties between sites more than 500 m apart. All of the constraints
that we tested in the combination are listed in Table 7, and the resultant velocity field using the velocity ties from the 12 VG sites is shown in Figure 6. In Figure 6, a common velocity is subtracted from all velocities. We find that after subtracting this common velocity from the F93 solution, the velocities of the VG sites in the northern section (except the VG sites in the Ventura basin and the off-shore islands) are almost parallel to the local SAF and close to a symmetric distribution across the SAF. Therefore Figure 6 can be considered as the velocity relative to the SAF.

This combined velocity solution fails to pass the compatibility criteria at the 95% confidence level (see Eqn. (23) of Chapter 2). We have tried to reduce the incompatibility by (1) identifying those velocity-constrained sites with the greatest apparent incompatibility and removing the velocity links from these sites, and (2) rescaling the covariance matrix of the VG solution and the EDM observation to account for the unmodeled systematic deviation. In the northern section, we remove the velocity links between JPLM_GPS and Jpl1_rml and between WHIT_GPS and Whitaker because the velocities at Jpl1_rm1 and WHIT_GPS are poorly determined and seem inconsistent with the velocities at nearby sites. The velocity link between SNP2_GPS and Santapau has also been removed because there are GPS observations for only three epochs, and the east velocity component of the combined solution at Santapau cannot pass our compatibility criterion.

In the southern section, there is a significant incompatibility between the velocities at VG sites NIGU_GPS, PINY_GPS and MONP7274. To single out which site is most responsible for the incompatibility, we tested three options: (1) Remove the constraint from the site NIGU_GPS (Figure 7a). The resultant apparent vortex (Figure 7a) is hard to interpret by the current dislocation model. (2) Remove the constraint from the site MONP7274 (Figure 7b). The resultant velocity field is similar to the EDM only solution (Figure 4). The velocity at the site DEAD7267 is changed by $0.6 \pm 2.7 \mathrm{~mm} / \mathrm{yr}$ in west and $14.5 \pm 7.3 \mathrm{~mm} / \mathrm{yr}$ in nc compatible range. (3) Remove the constraint from the site PINY_urS (Figure 7c). The resultant relative velocity field is also similar to the EDM-only solution (Figure 4). The velocity at the site DEAD7267 is changed by $2.1 \pm 3.2 \mathrm{~mm} / \mathrm{yr}$ in west and $6.6 \pm 7.2 \mathrm{~mm} / \mathrm{yr}$ in north. It seems that option (3) gives the least change in the velocities of the VG sites in the southern section between the solutions before and after combination. However, both Figures 7 b and 7 c are the velocities relative to site Asbestos (close to PINY_GPS). If we use the common velocity (see Figure 6) as a reference, Figure 7 b needs to have added about $1 \mathrm{~mm} / \mathrm{yr}$ east velocity component to the velocity field of the whole southern section, and Figure 7c needs to have added
about $1 \mathrm{~mm} / \mathrm{yr}$ west and $8 \mathrm{~mm} / \mathrm{yr}$ south. This means that the velocity at MONP7274 is less in harmony with the velocities in the northern section than the velocity at PINY_GPS. For now, we choose to remove the velocity link between MONP7274 and Monu_res. How to judge the two cases (Figures 7b, 7c) is still an open question. Since removing these velocity links still does not help enough, we rescale the formal uncertainties of the VG solution by a factor of three instead of the factor of two suggested by F93 (see Table 8). The resultant velocity field and residuals are shown in Figures 8 and 9. It is clear that removing the velocity link at Monu_res leads to a poorly determined velocity field in the Salton-Mexicali subnetwork. Adding GPS data from the Salton Trough and Riverside County (STRC) surveys into the VG solution is critical to overcoming the poorly determined velocity field in Salton-Mexicali subnetwork, and to resolving the conflict of the velocity constraints at PINY_GPS and MONP7274.

Description of the derived velocity field

The most striking feature of the VG-derived velocity field is the fault-normal velocities. One could ask why such an obvious pattern has not been seen in the results obtained using USGS trilateration data? To answer this question, we must remove the dominant feature, i.e. a model velocity field describing the simple shear associated with the SAF system, from the observed velocity field. Where to put the reference point for the velocity residuals should also be considered. If the reference point is chosen in the stable interior of the North American plate, the velocity residuals will include contributions both east and west of the SAF. Since our data cover primarily the regions west of the SAF and the vicinity of the SAF, it is easier to discern the origins for the velocity residuals if we put the reference point at the stable interior of the Pacific plate. This approach requires us to transfer the observed velocity field from the North American frame to the Pacific frame using the NUVEL-1 model. Thus, using the Pacific frame introduces two error sources: the error from the multi-dislocation model and the error from the NUVEL-1 model. Nevertheless, we adopt the Pacific frame, as did F93, to analyze the residual velocity field.

Big Bend region

Viewed relative to the Pacific Plate (Figure 9a), the residuals at three offshore island sites (TWIN, BLUF, and BRSH) are nearly zero. Thus we consider the movements at these three islands to be predominantly Pacific Plate motion. The
residuals at all coastal sites cannot be removed by simply modifying the parameters of the multi-dislocation model. Therefore, some deformation in the off-shore region must be incorporated to account for the velocity residuals at coastal sites. Modifying the parameters of the multi-dislocation model will change the fault-parallel velocities but will have little impact on the fault-normal velocities. Note that the velocity residuals at four coastal sites (PVER, CATO, SOLI, and LACU) are very similar (Figure 9a). Averaging the velocity residuals at these four sites and projecting this velocity vector onto the direction $\mathrm{N} 17^{\circ} \mathrm{E}$ (perpendicular to the strike of the SAF in the Big Bend as given by Eberhardt-Phillips et al. [1990]), we obtain an estimate of $5 \pm 1 \mathrm{~mm} / \mathrm{yr}$ for the fault-normal velocity, which is mostly attributed to the off-shore deformation. The faults most likely to contribute to the off-shore deformation are the Santa Cruz island fault in the Santa Barbara channel, and the Palos Verdes fault and the NewportInglewood fault near the coast from the Los Angeles basin to the border.

In order to better understand the residual velocities onshore, we replot the field relative to a site (MPNS) near the SAF at the northern end of the Big Bend (Figure 9 b). For the western Transverse Ranges and Ventura basin region, we further zoom the velocity field and residual field relative to the site MPNS (Figure 10a, 10b). We find that the velocities at the sites near the SAF in the Big Bend area are basically parallel to the fault (Figure 10a). Thus we still use the average velocity at the four coastal sites (PVER, CATO, SOLI, and LACU) to estimate the rate of crustal shortening in the $\mathrm{N} 17^{\circ} \mathrm{E}$ direction. The resultant rate of $5 \pm 1 \mathrm{~mm} / \mathrm{yr}$ is very close to the estimate of Donnellan et al. [1993] for the shortening rate in the Ventura basin. But our estimate represents the crustal shortening rate from the coast to the SAF. Thus the area north of the Ventura basin makes nearly zero contribution to the crustal shortening (see Figure 10a). In the VG-alone solution, the velocity at MPNS is determined by observation at only two epochs and seems inc..ngri.tn velocity at nearby site MUNS [Donnellan et al.,1993]. When we add the EDM data, the velocity at MPNS changes by $2.1 \mathrm{~mm} / \mathrm{yr}$ in north with the uncertainty reduced by $1.5 \mathrm{~mm} / \mathrm{yr}$, and $0.6 \mathrm{~mm} / \mathrm{yr}$ in the east with the uncertainty reduced by $1.7 \mathrm{~mm} / \mathrm{yr}$. The resultant velocity at MPNS appears more consistent with the velocities at other nearfault sites (Figure 10a). Also, nearly all of the velocity difference between MPNS and MUNS can be explained by the multi-dislocation model (Figure 10b). Figure 10a shows that the fault-normal velocities are confined to a wedge-shaped area, bounded to the northeast by the San Gabriel fault and to the northwest by the Santa Ynez fault.

West of the Ventura basin, the fault-normal velocities can be explained by the multi-dislocation model. In the Ventura basin itself, the significant fault-normal
residuals indicate that there must be other mechanisms to account for the crustal shortening [Donnellan et al.,1993]. The apparent east-west extension in the San Gabriel mountains and the region north of the Santa Ynez fault indicates that the vertical movement beneath the Ventura basin area does not absorb all of the extra material from the north-south compression. Hence the material in the San Gabriel mountains is pushed eastward, and the material in the region north of the Santa Ynez fault is pushed westward. A similar wedge-shaped region is the Los Angeles basin area, southeast of the Ventura basin area, which also undergoes north-south compression [Shen, 1991; Davis et al., 1992]. Can we also see the east-west extension along both flanks of the wedge? We cannot answer this question without incorporating additional space-geodetic data and terrestrial survey data.

Southern Coast Ranges

In the Parkfield segment (north from $35^{\circ} 45^{\prime} \mathrm{N}$), the cluster of large residuals indicates that our multi-dislocation model suffers from oversimplification (Figure 11). The current model uses a step-increase in locking depth from 1 km to 25 km at $35^{\circ} 58^{\prime} \mathrm{N}$ to approximate the transition from a locked to a creeping zone (see F93). In order to better represent the near-fault field deformation, a more realistic model, such as the "smooth transitional" model or "locked" model, should be used, as discussed by Harris and Segall [1987], Sung and Jackson [1988], Segall and Harris [1989], and Sung and Jackson [1989]. In the segment of the SAF from the northern end of the Big Bend to Parkfield, the residuals are basically fault-parallel. There is some indication that the locking depth may be shallower, as F93 inferred by comparing the velocity residuals at MADC and FIBR. At the current stage, we do not attempt to modify the multi-dislocation model for two reasons: 1) The residual uncertainties in the Parkfield region are too large. 2) As described in Appendix 11, the Parkfield dilemma has not yet resolved.

East of the SAF

Information about the deformation between the SAF and the East California Shear Zone (ECSZ) [Travis and Dokka, 1990; Savage et al., 1990] is very limited. Comparing the velocity residual of MOJA with the velocity residuals of the sites east of SAF in the Big Bend area, the difference represents the accumulated deformation from east of the SAF to MOJA. Due to insufficient data coverage between east of SAF and ECSZ, we cannot discern if the deformation is uniformly distributed in this region or is concentrated in the ECSZ area.

Southern section

For the southern section, the VG data are insufficient to provide a useful constraint. The minimum constraint solution (Figure 4) shows that significant deformation occurs in a narrow corridor from the SAF to the San Jacinto fault, and probably extends to the Imperial fault. Such a "deformation corridor" is clearly seen in strain rate and rotation rate figures (Figure 12). Larsen and Reilinger [1992] also noticed a narrow deformation zone in the Imperial Valley. To explain the observed 1988-1989 GPS station displacements in the valley, they proposed a right-lateral shear plane at $\mathrm{N} 40^{\circ} \mathrm{W}$ and a locking depth of 10 km across this area. Lisowski et al. [1991] interpreted the steep velocity gradient at the San Jacinto fault by a shallow locking depth of $5-6 \mathrm{~km}$ near Anza or by a broad fault zone with low rigidity. Johnson [1993] found the deformation corridor is dominated by the San Jacinto fault instead of the SAF. In this area, a series of parallel left-lateral faults trend northeast, nearly orthogonal to the main right-lateral faults [see Figure 1 of Hudnut et al., 1989]. The seismicity time sequences indicate active interaction between the cross-faults and the main faults. Abnormal uplift in this area had been reported [Reilinger, 1985] but not resolved. In such a tectonically active area, a denser GPS network is likely to allow us to observe directly any block rotation.

Conclusions

We have taken advantage of the high accuracy -geodetic measurements over a large area and the spatial density of trilateration measurements to derive the horizontal velocity field for southern California. The strength of the combination for most of the region can be seen by comparing Figure $9 b$ with the minimum constraint solution shown in Figure 5. The combination field allows us to explore the crustal deformation at the transition zone of the plate boundary from a wide-angle view. Our results can be described from three perspectives.

First, the combination solution reveals several important mblems with the current data sets.
(1) The current VG site distribution cannot adequately constrain the trilateration data. Most sites which provide the velocity constraints are west of the SAF. Therefore our combined velocity solution is poorly constrained east of the SAF. The Joshua, Salton, Mexicali subnetworks in the southern section and the San Luis subnetwork in the northern section are also not well constrained.
(2) Our combination shows a significant conflict between the velocity solutions at PINY_GPS and MONP7274, both of which are very strong sites in the VG solution. There are also conflicts between the EDM and VG solution for some sites whose velocities are less reliably determined. These problems indicate that there are still some unsolved systematic differences between terrestrial and space-geodetic data, and between GPS and VLBI.

Second, in spite of the weakness in the current combination, we can still reach some useful conclusions about deformation in southern California.
(1) Through removing a model velocity field from a buried multi-dislocation [F93], we explore the distribution of the fault-normal velocities relative to the Big Bend segment of the SAF. We find that the narrow aperture of the EDM network may be the reason why the trilateration data cannot see the fault-normal velocity.
(2) Our current multi-dislocation model should be modified. In the Parkfield area, the step-function transition model should be replaced by the smooth transition model or more sophisticated model. In the southern end, the SAF probably changes its orientation and joins the Imperial fault along the Brawley seismic zone.
(3) In the San Luis subnetwork, The CDMG data from 1970 to 1979 are inconsistent with the USGS data from 1980 to 1990 . The observed fault-normal velocity from the combined data set in this region is not significantly different from zero. Furthermore, the configuration of the San Luis subnetwork is weak for deriving a velocity solution (see Appendix 8). Hence inverting for fault slip parameters using the trilateration data in this region should be done with great caution.

Third, our approach also produces two important byproducts:
(1) Updated coordinates for the USGS trilateration sites (Table 2). The updated coordinates are not yet good enough to directly improve the velocity estimates, but they facilitate further research in combining the trilateration data and the space-geodetic data.
(2) Estimated coseismic site displacements (Appendix 12), which can be used to compare with the site displacements predicted by the seismic slip model.

Although the weakness of our current data set impedes us from deriving a strong horizontal velocity field in southern California, we are in a good position to realize such a dream for four reasons:
(1) We have developed a rigorous and flexible methodology to handle the combination.
(2) All software to perform the combination is ready and eager to work.
(3) We have acquired experience in combining terrestrial and space-geodetic data.
(4) Within a few years, data from a much denser network of GPS sites will be available (Figure 17).

REFERENCES:

Bock, Y. \& Leppard, N. (eds), Global Positioning System An Overview, 40-56, Springer, New York, 40-56, 1990
Davis, J. L., W. E. Himwich, and W. H. Prescott, Space-geodetic determination of crustal deformation in the Los Angeles Basin, Science, submitted, 1992
Demets, C. R., R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions, Geophys. J. Intnl, 101, 425-478, 1990
Dixon, T. H., G. Blewitt, K. Larson, D. Agnew, B. Hager, P. Kroker, L. Skrumeda, and W. Strange, GPS measurements of regional deformation in California: some constraints on performance, Eos Trans. Amer. Geophys. Un., 71, 1051-1056, 1990

Dokka, R. K., and C. J. Travis, Role of Eastern California Shear Zone in accommodating Pacific-North America plate motion, Geophys. Res. Lett., 17, 1323-1326, 1990
Donnellan, A., B. H. Hager, R. W. King, and T. A. Herring, Geodetic measurement of shortening across the Ventura basin, southern California, submitted to J. Geophys. Res., 1993
Eberhardt-Phillips, D., M. Lisowski, and M. D. Zoback, Crustal strain near the Big Bend of the San Andreas fault: analysis of the Los Padres-Tehachapi trilateration networks, California, J. Geophys. Res., 95, 1139-1153, 1990
Feigl, K. L., D. C. Agnew, Y. Bock, D. Dong, A. Donnellan, B. H. Hager, T. A. Herring, D. D. Jackson, T. H. Jordan, R. W. King, S. Larsen, K. M. Larson, M. Murray, Z. Shen, and F. H. Webb, Measurement of the velocity field of central and southern California, 1984-1992, submitted to J. Geophys. Res., 1993
Hager, B. H., R. W. King, and M. H. Murray, Measurement of crustal deformation using the Global Positioning System, Annu. Rev. Earth Planet. Sci., 19, 351382, 1991
Harris, R. A. and P. Segall, Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas faul, J. Geophys. Res., 92, 7945-7962, 1987
Herring, T. A., J. L. Davis, and I. I. Shapiro, Geodesy by radio astronomy: the application of kalman filtering to very long baseline interferometry, J. Geophys. Res., 95, 12561-12581, 1990
Herring, T. A., GLOBK: Global Kalman filter VLBI and GPS analysis program, unpublished documentation, MIT, 1993

Hudnut, K. W., L. Seeber, and J. Pacheco, Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California, Geophys. Res. Lett., 16, 199-202, 1989
Hutton, L. K., and C. E. Johnson, Preliminary study of the Westmorland, California, earthquake swarm (abstract), EOS Trans. AGU, 62, 957, 1981
Jackson, J., and P. Molnar, Active faulting and block rotations in the western Transverse Ranges, California, J. Geophys. Res., 95, 22073-22087, 1990
Johnson, H. O., Techniques and studies in crustal deformation, Ph.D. Thesis, Scripps Institution of Oceanography, University of California, San Diago, 1993
King, N. E., P. Segall, and W. Prescott, Geodetic Measurements near Parkfield, California, 1959-1984, J. Geophys. Res., 92, 2747-2766, 1987
King, R. W., and Y. Bock, Documentation for the MIT GPS analysis software: GAMIT, Massachusetts Institute of Technology, 1992
Larsen, S., R. Reilinger, H. Neugebauer, and W. Strange, Global Positioning System Measurements of deformations associated with the 1987 Superstition Hills earthquake: evidence for conjugate faulting, J. Geophys. Res., 97, 4885-4902, 1992

Larsen, S., and R. Reilinger, Global Positioning System Measurements of strain accumulation across the Imperial Valley, California: 1986-1989, J. Geophys. Res., 97, 8865-8876, 1992
Larsen, S., D. C. Agnew, and B. H. Hager, Strain accumulation in the Santa Barbara channel: 1970-1988, J. Geophys. Res., 98, 2119-2133, 1993
Li, V. C., and J. R. Rice, Crustal deformation in great California earthquake cycles, J. G. R., 92, 11533-11551, 1987

Lisowski, M. and W. H. Prescott, Deformation near the epicenter of the 9 June 1980 $M_{L}=6.2$ Victoria, Mexico, earthquake, Proceedings of the Fourth Symposium of the Cerro Prieto geothermal field, Baja California, Mexico, Guadalajora, Jalisco, Mexico, August 10-12, 1982
Lisowski, M., J. C. Savage and W. H. Prescott, The velocity field along the San Andreas fault in central and Southern California, J. Geophys. Res., 96, 83698389, 1991
Minster, J. B., and T. H. Jordan, Vector constraints on quantenary deformation of the western United States east and west of the san Andreas fault, Tectonics and Sedimentation along California Margin, edited by J. K. Crouch and S. B. Bachman, Pac. Sect. Soc. Econ. Paleontol. Mineral., 38, 1-16, 1984

Minster, J. B., and T. H. Jordan, Vector constraints on western U. S. deformation from space geodesy, neotectonics, and plate motions, J. Geophys. Res., 92 47984804, 1987
Murray, M. H., J. C. Savage, M. Lisowski, and W. K. Gross, Coseismic displacements: 1992 Landers, California, earthquake, Geophys. Res. Lett., 20, 623-626, 1993
Prescott, W. H., The determination of displacement field from geodetic data along a strike slip fault, J. Geophys. Res., 86, 6067-6072, 1981
Reilinger, R., A strain anomaly near the southern end of the San Andreas fault, Imperial Valley, California, Geophys. Res. Lett., 12, 561-564, 1985
Savage, J. C. and W. H. Prescott, Precision of geodolite distance measurements for determining fault movements, J. Geophys. Res., 78, 6001-6008, 1973
Savage, J. C., W. H. Prescott and G. Gu, Strain accumulation in southern California, 1973-1984, J. Geophys. Res., 91, 7455-7473, 1986
Savage, J. C., W. H. Prescott and M. Lisowski, Deformation along the San Andreas fault in 1982-1986 as indicated by frequent Geodolite measurements, J. Geophys. Res., 92, 4785-4797, 1987
Savage, J. C., M. Lisowski, and W. H. Prescott , An apparent shear zone trending north-northwest across the Mojave desert into Owens Valley, eastern California, Geophys. Res. Lett., 17, 2113-2116, 1990
Savage, J. C., M. Lisowski, and M. H. Murray, Deformation from 1973 through 1991 in the epicentral area of the 1992 Landers, California, earthquake ($\mathrm{M}_{\mathrm{s}}=7.5$), submitted to J. Geophys. Res., 1993
Schwarz, C. R. and E. B. Wade, The North American Datum of 1983: project methodology and execution, Bull. Geod., 64, 28-62, 1990
Segall, P. and R. A. Harris, Comment on: 'Geodetic evidence for seismic potential at Parkfield, California' by L.-Y. Sung and D. D. Jackson, Geophys. Res. Lett., 16, 101-104, 1989
Shen, Z. K, Regional tectonic deformation in southern California, inferred from terrestrial geodesy and the Global Positioning System, Ph. D. thesis, University of California, Los Angeles, 1991
Snay, R. A. and A. R. Drew, Combining GPS and classical geodetic surveys for crustal deformation in the Imperial Valley, California, High Precision Navigation -Integration of Navigational and Geodetic Methods, Springer-Verlag, New York, 225-236, 1989

Snay, R. A., M. W. Cline and E. L. Timmerman, Project REDEAM: Models for Historical Horizontal Deformation, NOAA Technical Report NOS 125 NGS 42, 1987
Sung, L. Y., and D. D. Jackson, Geodetic evidence of the seismic potential at Parkfield, California, Geophys. Res. Lett., 15, 820-823, 1988
Sung, L. Y., and D. D. Jackson, Reply, Geophys. Res. Lett., 16, 105-107, 1989
Ward, S. N., Pacific-North America plate motions: New results from very long baseline interferometry, J. Geophys. Res., 95, 21965-21982, 1990
Weldon, R., and E. Humphreys, A kinematic model of southern California, Tectonics, 5, 33-48, 1986

Appendices

Appendix 1: Coordinate frames

(a) Geocentric Cartesian coordinate (X, Y, Z)

We use the IERS Terrestrial Reference System (ITRS). The Z-axis is aligned with the pole of the ITRS, the X-axis is towards mean Greenwich zero meridian, and the Y-axis points east 90°.
(b) Geodetic coordinates ($\phi, \lambda, \mathrm{h}$)

This coordinate system includes geodetic latitude $\phi(t)$ with positive north, geodetic longitude $\lambda(t)$ with positive east, and geodetic height $h(t)$ as its components.
(c) Local topocentric coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)

The x -axis is directed to local astronomical east, the y -axis is directed to local astronomical north, and the z-axis coincides with local zenith. Such a definition leads to a right-hand system which is the same that used by DYNAP [Drew and Snay, 1989] and different from that of Collier et al. [1988].

The conversion of (φ, λ, h) to ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) is:

$$
\begin{align*}
& X(t)=(N+h(t)) \cos \varphi(t) \cos \lambda(t) \\
& Y(t)=(N+h(t)) \cos \varphi(t) \sin \lambda(t) \tag{1.1}\\
& Z(t)=\left(N\left(1-e^{2}\right)+h(t)\right) \sin \varphi(t)
\end{align*}
$$

where N is the radius of curvature in the prime vertical and e is the first eccentricity of the ellipsoid.
The vector in a local topocentric coordinate frame is transformed to a geocentric Cartesian frame via a time-variable rotation matrix $R(t)$:

$$
\begin{equation*}
d \mathbf{x}_{1 \mathrm{j}}(\mathrm{t})=\mathrm{R}(\mathrm{t}) \mathrm{d} \mathbf{X}_{1 \mathrm{j}}(\mathrm{t}) \tag{1.2}
\end{equation*}
$$

where the bold character represents vector.
$\mathrm{dXij}(\mathrm{t})=\mathrm{Xj}(\mathrm{t})-\mathrm{Xi}(\mathrm{t})$
$d \mathbf{x}_{\mathbf{j}}(\mathrm{t})=\mathbf{x}_{\mathrm{j}}(\mathrm{t})-\mathbf{x}_{\mathbf{i}}(\mathrm{t})$ is defined in a local topocentric frame at site i.
$R(t)=\left[\begin{array}{ccc}-\sin \Lambda(t) & \cos \Lambda(t) & 0 \\ -\sin \Phi(t) \cos \Lambda(t) & -\sin \Phi(t) \sin \Lambda(t) & \cos \Phi(t) \\ \cos \Phi(t) \cos \Lambda(t) & \cos \Phi(t) \sin \Lambda(t) & \sin \Phi(t)\end{array}\right]$
where
$\Phi(\mathrm{t})$ is astronomic latitude at site i .
$\Lambda(t)$ is astronomic longitude at site i.
The differences between astronomic (Φ, Λ) and geodetic (φ, λ) coordinates

$$
\begin{equation*}
\Phi-\varphi=\xi, \quad \Lambda-\lambda=\frac{\eta}{\cos \varphi} \tag{1.4}
\end{equation*}
$$

are called deflections of the vertical. ξ is the north-south component of deflection, with the downward vertical deviation towards the south being positive. η is the east-west component of deflection, with the downward vertical deviation towards the west being positive.

Appendix 2: Specific linearized observation equations

In this section, we present the linearized observation equations for the quasiobservations (site position and velocity) and for terrestrial observations. Observation equations for carrier beat phase and group delay can be found in King et al. [1985] and Herring [1983] respectively. Derivations of the terrestrial observation equations are similar to the work by Collier et al. [1988].

1) Site displacement and velocity

If the observables are in a geocentric Cartesian frame, the equations are
$\delta \mathbf{X}=\mathrm{L}_{\mathrm{x}}\binom{\delta \mathbf{X}_{0}}{\delta \mathbf{V}_{0}}+\mathrm{L}_{\mathrm{x}}\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu\end{array}\right)\binom{\omega_{\mathrm{x}}}{\omega_{\mathrm{v}}}+\mathrm{L}_{\mathrm{x}}\binom{\tau_{\mathbf{x}}}{\tau_{\mathrm{v}}}$
$\delta \mathbf{V}=\mathrm{L}_{\mathrm{v}}\binom{\delta \mathbf{X}_{0}}{\delta \mathbf{V}_{0}}+\mathrm{L}_{\mathrm{v}}\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu\end{array}\right)\binom{\omega_{\mathrm{x}}}{\omega_{\mathrm{v}}}+\mathrm{L}_{\mathrm{v}}\binom{\tau_{\mathbf{x}}}{\tau_{\mathbf{v}}}$
where
$\mathrm{L}_{\mathrm{x}}=\left(\begin{array}{ll}\mathrm{I}_{3}+\frac{\partial \mathrm{V}_{0}}{\partial \mathrm{X}_{0}}\left(\mathrm{t}-\mathrm{t}_{0}\right) & \mathrm{I}_{3}\left(\mathrm{t}-\mathrm{t}_{0}\right)\end{array}\right), \quad \mathrm{L}_{\mathrm{v}}=\left(\begin{array}{ll}\frac{\partial \mathrm{V}_{0}}{\partial \mathrm{X}_{0}} & \mathrm{I}_{3}\end{array}\right)$
I_{3} is the (3×3) identity matrix.
ω_{x} is the rotation angle, ω_{v} is the rotation angle rate.
τ_{x} is the translation, τ_{v} is the translation rate.
$\omega_{\mathrm{x}}, \omega_{\mathrm{y}}, \tau_{\mathrm{x}}, \tau_{\mathrm{y}}$ are common for all sites.
$\mu=\left(\begin{array}{ccc}0 & -\mathrm{z}_{0} & \mathrm{y}_{0} \\ \mathrm{z}_{0} & 0 & -\mathrm{x}_{0} \\ -\mathrm{y}_{0} & \mathrm{x}_{0} & 0\end{array}\right)$
$\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$ are the a priori coordinates.
Currently, the term representing the velocity gradient is not used. One reason is that there is no detailed velocity contour of southern California at present. Another reason is that the value of this term is usually very small if the coordinate adjustments are at meter level or less.

If the observables are in a local topocentric frame, I_{3} is replaced by the rotation matrix R_{0}, defined in Appendix 1 (1.3) as a function of the astronomic latitude Φ_{0} and longitude Λ_{0}.

2) Baseline and baseline rate vectors:

If the observed vector is in a geocentric Cartesian frame,

$$
\begin{equation*}
\delta\left(\mathrm{d} \mathbf{X}_{1 \mathrm{j}}\right)=\mathrm{L}_{\mathrm{x}}\binom{\delta \mathbf{X}_{0_{1}}-\delta \mathbf{X}_{0_{1}}}{\delta \mathbf{V}_{0_{\mathrm{j}}}-\delta \mathbf{V}_{0_{1}}}, \quad \delta\left(\mathrm{~d} \mathbf{V}_{\mathrm{ij}}\right)=\mathrm{L}_{\mathrm{v}}\binom{\delta \mathbf{X}_{0_{\mathrm{j}}}-\delta \mathbf{X}_{0_{1}}}{\delta \mathbf{V}_{0_{1}}-\delta \mathbf{V}_{0_{1}}} \tag{2.4}
\end{equation*}
$$

If the observed vector is in local frame, I_{3} is again replaced by R_{0} in L_{x} and L_{v}.
3) Astronomic longitude Λ, latitude Φ, and gravity g:

$$
\left(\begin{array}{c}
\delta \Lambda \tag{2.5}\\
\delta \Phi \\
\delta \mathrm{g}
\end{array}\right)=-\left(\begin{array}{ccc}
\left(\mathrm{g} 0 \cos \phi_{0}\right)^{-1} & 0 & 0 \\
0 & \mathrm{~g}_{0}{ }^{-1} & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{R}_{0}\left(\mathrm{ML}_{x}\binom{\delta \mathbf{X}_{0}}{\delta \mathbf{V}_{0}}+\frac{\partial\left(\Delta \mathrm{U}_{0}\left(\mathbf{X}_{0}\right)\right)}{\partial \mathbf{X}}\right)
$$

where
g_{0} is the apriori gravity, ϕ_{0} is the apriori geodetic latitude, and

$$
M=\frac{\partial^{2} U}{\partial \mathbf{X}^{2}}
$$

is the Marussi tensor of second-order derivatives of U [Hein, 1986].
If the disturbing potential $\Delta \mathrm{U}_{0}$ is dominated by known mass anomalies, then the $\Delta \mathrm{U}_{0}$ term in (2.5) represents the deflections of the vertical for Λ and Φ, (Appendix 1), and the topographic gravity anomaly for g [Hein, 1986]. We prefer to absorb the deflections of the vertical and the topographic gravity anomaly correction into the residuals, so that (2.5) becomes

$$
\left(\begin{array}{c}
\delta \Lambda \tag{2.6}\\
\delta \Phi \\
\delta \mathrm{g}
\end{array}\right)=-\left(\begin{array}{ccc}
\left(\mathrm{g}_{0} \cos \phi_{0}\right)^{-1} & 0 & 0 \\
0 & g_{0}{ }^{-1} & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{R}_{0} M \mathrm{~L}_{\mathrm{x}}\binom{\delta \mathbf{X}_{0}}{\delta \mathbf{V}_{0}}
$$

If the quasi-observable rates of Λ, Φ and g are used, L_{x} is replaced by L_{v} in (2.6).

4) Horizontal and vertical angles and mark-to-mark distances

From local site i to site j, the distance is $l(t)$, the azimuth is $\alpha(t)$, and the vertical angle is $\beta(\mathrm{t})$. The linearized observation equations of triangulation, leveling, and trilateration are expressed as:

$$
\left(\begin{array}{c}
\delta \alpha \tag{2.7}\\
\delta \beta \\
\delta l
\end{array}\right)=\left(\begin{array}{ccc}
\left(l_{0} \cos \beta_{0}\right)^{-1} & 0 & 0 \\
0 & l_{0}^{-1} & 0 \\
0 & 0 & 1
\end{array}\right)\left(S^{\mathrm{T}} \mathrm{R}_{0} \mathrm{~L}_{\mathrm{x}}\binom{\delta \mathbf{X}_{0_{j}}-\delta \mathbf{X}_{0_{1}}}{\delta \mathbf{V}_{0_{j}}-\delta \mathbf{V}_{0_{1}}}-\frac{\mathrm{K} \mathrm{R}_{0} \mathrm{ML}_{\mathrm{x}}}{\mathrm{~g}_{0}}\binom{\delta \mathbf{X}_{0_{1}}}{\delta \mathbf{V}_{0_{1}}}\right)
$$

where

$$
\begin{align*}
& S=\left(\begin{array}{ccc}
\cos \alpha_{0} & -\sin \alpha_{0} \sin \beta_{0} & \sin \alpha_{0} \cos \beta_{0} \\
-\sin \alpha_{0} & -\cos \alpha_{0} \sin \beta_{0} & \cos \alpha_{0} \cos \beta_{0} \\
0 & \cos \beta_{0} & \sin \beta_{0}
\end{array}\right) \tag{2.8}\\
& K=\left(\begin{array}{cccc}
l_{0}\left(\tan \phi_{0} \cos \beta_{0}-\cos \alpha_{0} \sin \beta_{0}\right) & l_{0} \sin \alpha_{0} \sin \beta_{0} & 0 \\
l_{0} \sin \alpha_{0} & l_{0} \cos \alpha_{0} & 0 \\
0 & 0 & 0
\end{array}\right) \tag{2.9}
\end{align*}
$$

and the zero subscript indicates values calculated from a priori coordinates and velocities.

As mentioned before, the residual terms of (2.7) include the terms for the deflection of the vertical. For direction observations, FONDA adopts auxiliary parameters to account for the unknown arbitrary azimuth of the first "pointing" in each "zero". This approach is equivalent to the angle difference method, but the latter must construct a full instead of a diagonal covariance matrix to describe the correlations among observations [Prescott, 1976].

The observation equations of quasi-observable rates of α, β and l are similar to (2.7), with L_{x} replaced by L_{v}.

5) Episodic site displacement vector

Episodic deformations, such as coseismic displacements, are estimated as step functions in site position. If the displacements occupy only a limited area of the whole network, it is possible to resolve them simultaneously with other parameters. The time-dependent positions can then be expressed as

$$
\begin{align*}
& \delta \mathbf{X}(t)=L_{x}\binom{\delta X_{0}}{\delta V_{0}}+\sum_{k}^{\sum_{k} r_{k}\left(t, t_{k}\right) \delta \xi_{k}} \tag{2.10}\\
& r_{k}\left(t, t_{k}\right)=\begin{array}{ll}
-1 & \text { if } t<t_{k}<t_{0} \\
0 & \text { if } t>t_{k}, t_{k}<t_{0} \\
1 & \text { or } t<t_{k}, t_{k}>t_{0} \\
\text { if } t>t_{k}>t_{0}
\end{array} \tag{2.11}
\end{align*}
$$

Where t_{k} is the occurrence epoch of the k-th event, and $\delta \xi_{k}$ is the site displacement vector from the k-th event.

In the case of known episodic events, all the above equations should be modified by adding the episodic site displacement terms. We note that the estimated
episodic site displacement vector does not always represent the actual displacement of the benchmark. For example, in trilateration observations if one site has only one distance observation around the earthquake epoch, the estimated ξ_{k} is the projection of the benchmark displacement vector onto the baseline vector. If a whole network is shifted by an earthquake, the estimated site displacements from trilateration or triangulation data will contain the ambiguities of network translation and rotation.

We choose not to estimate fault-slip parameters directly in order to avoid biasing our velocity estimates through an inadequacy in the fault-slip model. Our estimated episodic displacement field is independent of the fault model. Therefore the geodetically estimated coseismic displacement field provides a useful comparison to the seismically derived fault-slip model. Another advantage is that this approach can estimate the site displacement caused by other sources, such as benchmark instability.

Appendix 3: Reparameterization

Let $x\left(m_{x}\right)$ and $y\left(m_{y}\right)$ be two different parameterizations of the same observations, $l(n)$

$$
\begin{array}{ll}
l=\mathrm{A}_{\mathrm{x}} \mathrm{x}+\varepsilon_{\mathrm{x}} & \text { with covariance } \mathrm{C}_{l} \\
l=\mathrm{A}_{\mathrm{y}} \mathrm{y}+\varepsilon_{\mathrm{y}} & \text { with covariance } \mathrm{C}_{l} \tag{3.2}
\end{array}
$$

The least square estimates are well-known:

$$
\begin{align*}
& \widehat{\mathrm{x}}=\left(\mathrm{A}_{\mathrm{x}}^{\mathrm{T}} \mathrm{C}_{l}^{-1} \mathrm{~A}_{\mathrm{x}}\right)^{-1} \mathrm{~A}_{\mathrm{x}}^{\mathrm{T}} \mathrm{C}_{l}^{-1} l \tag{3.3}\\
& \mathrm{C}_{\mathrm{x}}^{\mathrm{x}}=\left(\mathrm{A}_{\mathrm{x}}^{\mathrm{T}} \mathrm{C}_{l}^{-1} \mathrm{~A}_{\mathrm{x}}\right)^{-1} \tag{3.4}\\
& \widehat{\mathrm{y}}=\left(\mathrm{A}_{\mathrm{y}}^{\mathrm{T}} \mathrm{C}_{l}^{-1} \mathrm{~A}_{\mathrm{y}}\right)^{-1} \mathrm{~A}_{\mathrm{y}}^{\mathrm{T}} \mathrm{C}_{l}^{-1} l \tag{3.5}\\
& \mathrm{C}_{\mathrm{y}}=\left(\mathrm{A}_{\mathrm{y}}^{\mathrm{T}} \mathrm{C}_{l}^{-1} \mathrm{~A}_{\mathrm{y}}^{-1}\right)^{-1} \tag{3.6}
\end{align*}
$$

Research on the general relations between the two solutions is beyond the scope of this thesis. Here we discuss only the applications of reparameterization related to our methodology.

1) Use $\hat{\mathrm{y}}$ and C_{y} as quasi-observations to obtain the final solution (3.3) and (3.4)

It is easy to prove that if we construct a quasi-observation equation $\widehat{y}=B x \quad$ with covariance matrix C_{y}
The solution is:

$$
\begin{align*}
& \widehat{x}=\left(B^{T} C_{\hat{y}}^{-1} B\right)^{-1} B^{T} C_{\hat{y}}^{-1} \hat{y}=(3.3) \tag{3.8}\\
& C_{x}^{n}=\left(B^{T} C_{\hat{y}}^{-1} B\right)^{-1}=(3.4) \tag{3.9}
\end{align*}
$$

The great benefit is that we do not need to keep and reprocess the original observation data. We keep only the intermediate solution (3.5) and its covariance matrix (3.6). Furthermore, we can choose to test different final parameter sets x , adding stochastic parameters, for example, to get the optimal solution.
2) Use \hat{y} and C_{y} as quasi-observations and add extra parameters x_{a} to x

The quasi-observation equation is

$$
y=\left(\begin{array}{ll}
\mathrm{B}_{\mathrm{x}} & \mathrm{~B}_{\mathrm{x}_{\mathrm{a}}} \tag{3.10}
\end{array}\right)\binom{\mathrm{x}}{\mathrm{x}_{\mathrm{a}}}
$$

To distinguish from (3.8) and (3.9), we use $\tilde{\mathrm{x}}$ and C_{x} to denote the estimated subsolutions of (3.10). After some manipulations, we obtain the relations

$$
\begin{align*}
& \tilde{x}=\widehat{x}+Q_{12} Q_{22}^{-1} \tilde{x}_{a} \tag{3.11}\\
& C_{x}=C_{x}^{n}+Q_{12} Q_{22}^{-1} Q_{21} \tag{3.12}
\end{align*}
$$

where

$$
\begin{align*}
& C_{x}^{h}=N_{11}^{-1}, \quad C_{x}=Q_{11}, \quad Q_{12}=-N_{11}^{-1} N_{12} Q_{22}=Q_{21}^{T} \\
& N_{12}=A_{x}^{T} C_{1}^{-1} A_{x_{\mathbf{a}}}, \quad N_{22}=A_{x_{\mathbf{k}}}^{T} C_{l}^{-1} A_{x_{\mathbf{t}}}, \quad A_{x_{\mathbf{2}}}=A_{y} B_{x_{\mathbf{k}}} \tag{3.13}\\
& Q_{22}=\left(N_{22}-N_{21} N_{11}^{-1} N_{12}\right)^{-1}=C_{x_{\mathbf{t}}}
\end{align*}
$$

From (3.11), it is straightforward to get

$$
\begin{equation*}
C_{x-\hat{x}}=Q_{12} Q_{22}^{-1} Q_{21} \tag{3.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
C_{\tilde{x}}=C_{x}+C_{\tilde{x}-\hat{x}}^{\sim} \tag{3.15}
\end{equation*}
$$

If the parameters x_{a} actually do not exist, the expectation of the observation is

$$
\begin{equation*}
\mathrm{E}\{1\}=\mathrm{A}_{\mathrm{x}} \overline{\mathrm{x}} \tag{3.16}
\end{equation*}
$$

From (3.11) and using (3.16)

$$
\begin{align*}
\mathrm{E}\{\tilde{\mathrm{x}}) & =\mathrm{E}\{\hat{\mathrm{x}}\}+\mathrm{Q}_{12} \mathrm{Q}_{22}^{-1}\left(\mathrm{Q}_{21} A_{\mathrm{x}}^{\mathrm{T}} \mathrm{C}_{1}^{-1}+\mathrm{Q}_{22} A_{\mathrm{x}_{2}}^{\mathrm{T}} \mathrm{C}_{1}^{-1}\right) \mathrm{E}\{1\} \\
& =\overline{\mathrm{x}}+\mathrm{Q}_{12} \mathrm{Q}_{22}^{-1}\left(\mathrm{Q}_{21} N_{11}+\mathrm{Q}_{22} N_{21}\right) \overline{\mathrm{x}}=\overline{\mathrm{x}} \tag{3.17}
\end{align*}
$$

That means that even if the additional parameters x_{a} do not exist, \tilde{x} is still an unbiased estimate of x. But its covariance is enlarged (see (315)). On the other hand, if the additional parameters x_{a} do exist, the omission of x_{a} will undere.. ..ate the variance of x and lead to a biased estimate \tilde{x} unless the expectation of x_{a} is zero.
3) Two data sets related to two sets of parameters with only part of the parameters in common

Assume the first data set is related to parameters x_{1} and x_{2} and the second data set is related to parameters x_{2} and x_{3}. The typical example is to consider spacegeodetic data as the first data set, with x_{1} satellite orbit, polar motion, UT1, quasar position, etc., and x_{2} station coordinates and velocities; and terrestrial survey data as
the second data set with x_{3} new station coordinates and velocities. We still treat the solution of space-geodetic data as quasi-observations. In this case the quasiobservation equations are

$$
\binom{\hat{\mathrm{x}}_{1}}{\hat{\mathrm{x}}_{2}}=\left(\begin{array}{cc}
I & 0 \tag{3.18}\\
0 & E_{2}
\end{array}\right)\binom{\mathrm{x}_{1}}{\mathrm{x}_{2}} \quad \text { with covariance matrix } \quad \mathrm{C}=\left(\begin{array}{ll}
\mathrm{C}_{11} & \mathrm{C}_{12} \\
\mathrm{C}_{21} & C_{22}
\end{array}\right)
$$

The combined normal equations are

$$
\left(\begin{array}{ccc}
N_{11} & N_{12} E_{2} & 0 \tag{3.19}\\
E_{2}^{T} N_{21} & E_{2}^{T} N_{22} E_{2}+A_{22} & A_{23} \\
0 & A_{32} & A_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
N_{11} \hat{x}_{1}+N_{12} \widehat{x}_{2} \\
B_{2}+E_{2}^{T} N_{21} \widehat{x}_{1}+E_{2}^{T} N_{22} \widehat{x}_{2} \\
B_{3}
\end{array}\right)
$$

Here $\mathrm{N}=\mathrm{C}^{-1}$.
Solving x_{1} implicitly and using the matrix partition formula, we obtain

$$
\left(\begin{array}{cc}
\mathrm{E}_{2}^{\mathrm{T}} \mathrm{C}_{22}^{-1} \mathrm{E}_{2}+\mathrm{A}_{22} & \mathrm{~A}_{23} \tag{3.20}\\
\mathrm{~A}_{32} & \mathrm{~A}_{33}
\end{array}\right)\binom{\mathrm{x}_{2}}{\mathrm{x}_{3}}=\binom{\mathrm{B}_{2}+\mathrm{E}_{2}^{\mathrm{T}} \mathrm{C}_{22}^{-1} \hat{\mathrm{x}}_{2}}{\mathrm{~B}_{3}}
$$

This important result shows that if we do not care about the estimate of x_{1}, we can use only the common parameters x_{2} and their covariance submatrix C_{22} as the quasiobservations. The result is as rigorous as using all parameters.
4) Use part of the solutions to estimate another set of parameters

Assuming the solutions include parameters x_{1} and x_{2}, we attempt to use x_{2} to estimate another parameter set u_{2}. A typical example is to estimate fault slips from episodic site displacement solutions.

$$
\binom{\hat{\mathrm{x}}_{1}}{\hat{\mathrm{x}}_{2}}=\left(\begin{array}{cc}
I & 0 \tag{3.21}\\
0 & \mathrm{E}_{2}
\end{array}\right)\binom{\mathrm{x}_{1}}{\mathrm{u}_{2}} \quad \text { with covariance matrix } \quad \mathrm{C}=\left(\begin{array}{ll}
\mathrm{C}_{11} & \mathrm{C}_{12} \\
\mathrm{C}_{21} & \mathrm{C}_{22}
\end{array}\right)
$$

As has been proved above, if we use x_{2} and its covariance submatrix C_{22} as the quasi-observations, we can obtain the same estimates by directly estimating x_{1} and u_{2} from the raw data. But this time we do not update the solutions of x_{1}, since we know that the episodic site displacements more accurately describe the real episodic deformation field than the fault slip parameters. We want to leave the model errors in the residuals instead of distorting the estimate of x_{1}. Here the quasi-observation approach gives us the flexibility to obtain the optimal choice.

Appendix 4: Comparison between the Gauss-Markov model and other approaches

If we consider the velocity derived from space geodesy as a model velocity, both the Gauss-Markov model and model coordinate method can be summarized as minimizing

$$
\begin{equation*}
\lambda\left(\delta l_{1}-\mathrm{A}_{1} \delta \mathrm{X}\right)^{\mathrm{T}} \mathrm{C}_{1}^{-1}\left(\delta l_{1}-\mathrm{A}_{1} \delta \mathrm{X}\right)+\left(\delta l_{2}-\mathrm{A}_{2} \delta \mathrm{X}\right)^{\mathrm{T}} \mathrm{C}_{2}^{-1}\left(\delta l_{2}-\mathrm{A}_{2} \delta \mathrm{X}\right) \tag{4.1}
\end{equation*}
$$

where l_{1} represents the terrestrial observation with covariance C_{1} and design matrix A_{1}, and l_{2} represents the space-geodetic solution with covariance C_{2} and design matrix A_{2}.

The Lagranian multiplier λ is equivalent to an externally imposed relative weighting factor between l_{1} and l_{2}. The choice of λ is rather philosophical, and reflects the balance between believing the formal uncertainties of the estimated velocities and imposing the prior model on the final solution. The Gauss-Markov model represents the case of $\lambda=1$, which means the estimated formal covariance matrices are accepted. The model coordinate method corresponds to the case of $\lambda=\infty$, placing maximum weight on fitting the terrestrial survey data. Finally $\lambda=0$ represents the case of fixing the velocities to the model i.e., space-geodetically derived velocities. For our analysis, we choose the Gauss-Markov model to perform the combination. Because the space-geodetically derived velocities are from the real data, not from a "pure" model, neither $\lambda=\infty$ nor $\lambda=0$ correctly represents the statistical character of the space-geodetically derived velocities.

Appendix 5: Solution changes in the case of adding new data and new parameters

Assume the original data l_{1} relate to the parameters x, and the new data l_{2} relate to parameters x and y. \widehat{x}_{1} are the original estimate and $\widehat{x}_{1+2}, \widehat{y}_{1+2}$ are estimates from data $l_{1}+l_{2}$.

$$
\begin{align*}
& l_{1}=A_{1} x+\varepsilon_{1} \text { with covariance } C_{11} \tag{5.1}\\
& l_{2}=B_{1} x+B_{2} y+\varepsilon_{2} \text { with covariance } C_{12} \tag{5.2}
\end{align*}
$$

The covariance matrices are

$$
\begin{gather*}
\mathrm{C}_{\mathrm{x}_{1}}=\left(\mathrm{A}_{1}^{\mathrm{T}} \mathrm{C}_{11}^{-1} \mathrm{~A}_{1}\right)^{-1} \tag{5.3}\\
\mathrm{C}\binom{\hat{\mathrm{x}}_{1+2}}{\hat{\mathrm{y}}_{1+2}}=\left(\begin{array}{cc}
\mathrm{A}_{1}^{\mathrm{T}} \mathrm{C}_{11}^{-1} \mathrm{~A}_{1}+\mathrm{B}_{1}^{\mathrm{T}} \mathrm{C}_{12}^{-1} \mathrm{~B}_{1} & \mathrm{~B}_{1}^{T} \mathrm{C}_{12}^{-1} \mathrm{~B}_{2} \\
\mathrm{~B}_{2}^{T} \mathrm{C}_{12}^{-1} \mathrm{~B}_{1} & \mathrm{~B}_{2}^{\mathrm{T}} \mathrm{C}_{12}^{-1} \mathrm{~B}_{2}
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\mathrm{N}_{11} & \mathrm{~N}_{12} \\
\mathrm{~N}_{21} & \mathrm{~N}_{22}
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\mathrm{Q}_{11} & \mathrm{Q}_{12} \\
\mathrm{Q}_{21} & \mathrm{Q}_{22}
\end{array}\right) \tag{5.4}\\
\mathrm{C}_{\mathrm{x}_{1+2}}=\mathrm{Q}_{11} \tag{5.5}
\end{gather*}
$$

The solution change of parameters x can be derived as

$$
\begin{equation*}
\widehat{x}_{1+2}-\hat{x}_{1}=\left(Q_{11}-\left(A_{1}^{T} C_{11}^{-1} A_{1}\right)^{-1}\right) A_{1}^{T} C_{11}^{-1} l_{1}+\left(Q_{11} B_{1}^{T}+Q_{12} B_{2}^{T}\right) C_{12}^{-1} l_{2} \tag{5.6}
\end{equation*}
$$

Since the two data sets are uncorrelated,

$$
\begin{aligned}
\mathrm{C}_{\mathrm{x}_{122}-\hat{\mathrm{x}}_{1}} & =\left(\mathrm{Q}_{11}-\left(\mathrm{A}_{1}^{\mathrm{T}} \mathrm{C}_{11}^{-1} \mathrm{~A}_{1}\right)^{-1}\right) \mathrm{A}_{1}^{\mathrm{T}} \mathrm{C}_{11}^{-1} \mathrm{~A}_{1}\left(\mathrm{Q}_{11}-\left(\mathrm{A}_{1}^{\mathrm{T}} \mathrm{C}_{11}^{-1} \mathrm{~A}_{1}\right)^{-1}\right)+\left(\mathrm{Q}_{11} \mathrm{~B}_{1}^{\mathrm{T}}+\mathrm{Q}_{12} \mathrm{~B}_{2}^{\mathrm{T}}\right) \mathrm{C}_{12}^{-1}\left(\mathrm{~B}_{1} \mathrm{Q}_{11}+\mathrm{B}_{2} \mathrm{Q}_{21}\right) \\
& =\left(\mathrm{Q}_{11} \mathrm{~N}_{11}+\mathrm{Q}_{12} \mathrm{~N}_{21}-\mathrm{I}\right) \mathrm{Q}_{11}-\mathrm{Q}_{11}+\mathrm{C}_{\mathrm{x}_{1}}+\left(\mathrm{Q}_{11} \mathrm{~N}_{12}+\mathrm{Q}_{12} \mathrm{~N}_{22}\right) \mathrm{Q}_{21}
\end{aligned}
$$

From the well-known relations,

$$
\mathrm{Q}_{11} \mathrm{~N}_{11}+\mathrm{Q}_{12} \mathrm{~N}_{21}=\mathrm{I} \quad \text { and } \quad \mathrm{Q}_{11} \mathrm{~N}_{12}+\mathrm{Q}_{12} \mathrm{~N}_{22}=0
$$

We derive the very simple result

$$
\begin{equation*}
C_{x_{1+2}-\hat{x}_{1}}=C_{x_{1}}-C_{x_{1+2}} \tag{5.7}
\end{equation*}
$$

Appendix 6: Procedures for updating poorly known coordinates in a terrestrial network

In order to update the coordinates of a terrestrial survey network, there must be at least three non-collinear sites that have also been observed by space-geodetic techniques. Theoretically, two space-geodetic sites can control the translation and rotation of the network provided there is no figure defect. The third site is necessary to avoid divergence during the iteration. If this condition is satisfied, then a bootstrapping strategy may be applied to update the poorly known terrestrial coordinate system. For simplicity, we use a trilateration network as an example. We adopt the following procedures:

1) Perform a transformation to align the original trilateration coordinate system to the space-geodetic reference frame. The parameters are estimated from the coordinate differences of the common sites. Currently, we estimate only the translation and rotation, and neglect the scale factor. Due to an error in the velocity of light used to convert the EDM measurements to ranges, they are too long by 0.14 ppm [M. Lisowski, personal communication, 1993], causing about 4 mm error for a 30 km baseline. We have not applied this (relatively small) correction to our estimates of site coordinates.
2) Compress the trilateration data into baseline lengths related to weighted mid epochs and baseline length rates. Use baseline length rates as quasi-observations to estimate site velocities.
3) Using the compressed data, tight outlier identification criteria, and tightly constrained coordinates at the common sites, estimate and update the remaining site coordinates.
4) Repeat step 3) with updated coordinates, gradually loosening the outlier identification criteria. This procedure continues until no more data fail to pass the criteria.
5) Using the initial raw data and realistic constraints on the coordinates and velocities of all sites, estimate coordinates and velocities simultaneously.

There are limits on the ability of terrestrial survey data to update coordinates. For example, trilateration data is not sensitive to height change. In this case, the heights should be tightly constrained in steps 3) and 4) and estimated only in the last step to get limited improvement.

In the final step, the estimated coordinates and velocities are in general correlated. We prefer to obtain updated coordinates that are approximately uncorrelated with velocities. To realize this, we modify the reference epoch for each site coordinate.

Assume that the estimated coordinates and velocities for one site are \mathbf{X} and V. Their covariance matrix is C and the reference epoch is t_{0}.

$$
\mathrm{C}=\left(\begin{array}{ll}
\mathrm{C}_{\mathrm{xx}} & \mathrm{C}_{\mathrm{xv}} \tag{6.1}\\
\mathrm{C}_{\mathrm{vx}} & \mathrm{C}_{\mathrm{vv}}
\end{array}\right)
$$

The uncorrelated coordinate is \mathbf{X}^{\prime} and the modified reference epoch is t_{0}^{\prime}.

$$
\binom{\mathbf{X}^{\prime}}{\mathbf{V}}=\left(\begin{array}{cc}
1 & \Delta t \tag{6.2}\\
0 & 1
\end{array}\right)\binom{\mathbf{X}}{\mathbf{V}}=\mathrm{J}\binom{\mathbf{X}}{\mathbf{V}}
$$

The epoch offset Δt is selected so that the off-diagonal terms of C^{\prime} are close to zero. Where $\mathbf{C}^{\prime}=\mathrm{J} \mathrm{C}^{\mathrm{T}}$. We use the weighted average estimate

$$
\begin{equation*}
\Delta t=-\frac{\frac{C_{x_{x} v_{x}}}{C_{x_{x} x_{x}} C_{v_{x} v_{x}}}+\frac{C_{x_{y_{y}} v_{y}}}{C_{x_{y} x_{y}} C_{v_{y} v_{y}}}+\frac{C_{x_{z} v_{z}}}{C_{x_{z} x_{z}} C_{v_{z} v_{z}}}}{\frac{1}{C_{x_{x} x_{x}}}+\frac{1}{C_{x_{y} x_{y}}}+\frac{1}{C_{x_{z} x_{z}}}} \tag{6.3}
\end{equation*}
$$

Then

$$
\begin{align*}
& \mathbf{t}_{0}^{\prime}=\mathrm{t}_{0}+\Delta \mathrm{t} \tag{6.4}\\
& \mathbf{X}^{\prime}=\mathbf{X}+\mathbf{V} \Delta \mathrm{t}, \quad \mathbf{C}^{\prime}=\mathrm{J} \mathbf{C} \mathrm{~J}^{\mathrm{T}} \tag{6.5}
\end{align*}
$$

Appendix 7: Contribution of nominal lengths to the estimate of velocity

A time series of distance measurements can be compressed into one baseline length rate and one length at a weighted mid epoch, for which the length and its rate are uncorrelated. Using all nominal lengths and their rates to estimate site coordinate adjustments and site velocities, the linearized observation equations are

$$
\binom{\Delta \mathrm{L}}{\Delta \dot{\mathrm{~L}}}=\left(\begin{array}{cc}
\mathrm{A}_{11} & \mathrm{~A}_{12} \tag{7.1}\\
0 & \mathrm{~A}_{22}
\end{array}\right)\binom{\delta \mathrm{X}}{\delta \mathrm{~V}} \quad \text { with } \mathrm{C}=\left(\begin{array}{cc}
\mathrm{C}_{\mathrm{L}} & 0 \\
0 & \mathrm{C}_{\dot{\mathrm{L}}}
\end{array}\right)
$$

The normal equations are:
$\left(\begin{array}{cc}\mathrm{A}_{11}^{\mathrm{T}} \mathrm{C}_{\mathrm{L}}^{-1} \mathrm{~A}_{11}+\sigma_{\mathrm{X}}^{-2} & \mathrm{~A}_{11}^{\mathrm{T}} \mathrm{C}_{\mathrm{L}}^{-1} \mathrm{~A}_{12} \\ \mathrm{~A}_{12}^{\mathrm{T}} \mathrm{C}_{\mathrm{L}}^{-1} \mathrm{~A}_{11} & \mathrm{~A}_{12}^{\mathrm{T}} \mathrm{C}_{\mathrm{L}}^{-1} \mathrm{~A}_{12}+\mathrm{A}_{22}^{\mathrm{T}} \mathrm{C}_{\mathrm{L}}^{-1} \mathrm{~A}_{22}+\sigma_{\mathrm{v}}^{2}\end{array}\right)\binom{\delta \mathrm{X}}{\delta \mathrm{V}}=\binom{\mathrm{A}_{11}^{\mathrm{T}} \mathrm{C}_{\mathrm{L}}^{-1} \Delta \mathrm{~L}}{\mathrm{~A}_{12}^{\mathrm{T}} \mathrm{C}_{\mathrm{L}}^{-1} \Delta \mathrm{~L}+\mathrm{A}_{22}^{\mathrm{T}} \mathrm{C}_{\dot{L}}^{-1} \Delta \dot{\mathrm{~L}}}$
where
σ_{X} is the apriori uncertainty on X .
σ_{V} is the apriori uncertainty on V .
L and $\dot{\mathrm{L}}$ are the compressed baseline length and baseline length rate respectively. Solving for $\delta \mathrm{X}$ implicitly, (7.2) becomes:

$$
\begin{equation*}
\left[\mathrm{A}_{22}^{\mathrm{T}} \mathrm{C}_{\dot{\mathrm{L}}}^{-1} \mathrm{~A}_{22}+\sigma_{\mathrm{V}}^{-2}+\mathrm{A}_{12}^{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}+\mathrm{A}_{11}^{\mathrm{T}} \sigma_{\mathrm{X}}^{2} \mathrm{~A}_{11}\right)^{-1} \mathrm{~A}_{12}\right] \delta \mathrm{V}=\mathrm{A}_{22}^{\mathrm{T}} \mathrm{C}_{\dot{L}}^{-1} \Delta \dot{\mathrm{~L}}+\mathrm{A}_{12}^{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}+\mathrm{A}_{11}^{\mathrm{T}} \sigma_{\mathrm{X}}^{2} \mathrm{~A}_{11}\right)^{-1} \tag{7.3}
\end{equation*}
$$

Equation (7.3) reveals the following:

1. Using only rates is equivalent to the case of $\sigma_{\mathrm{X}} \rightarrow \infty$.
2. The maximum contribution of L to V is the case of $\sigma_{\mathrm{X}} \rightarrow 0$.
3. If the misfit of $L(\Delta L)$ is too large, it can bias significantly the velocity estimate. Hence poor a priori coordinates should be updated before estimating velocities.
4. Consider the simplest case of 1-d. Given the scalar values:
$A_{11}, A_{22} \approx 1, A_{12} \approx \Delta t, C_{L} \approx(4 \mathrm{~mm})^{2}, C_{\dot{L}} \approx(1 \mathrm{~mm} / \text { year })^{2}, \sigma_{V} \approx 200 \mathrm{~mm} /$ year
Δt is the difference between the reference epoch and the weighted mid epoch.
The maximum contribution of L to $V\left(\sigma_{X} \rightarrow 0\right)$ can be determined by
$\delta \hat{\mathrm{V}} \approx \frac{16 \Delta \dot{\mathrm{~L}}+\Delta \mathrm{t} \Delta \mathrm{L}}{16+(\Delta \mathrm{t})^{2}}$. The formal uncertainty of the estimated velocity from original 1
(considering only the length rates) to $1-\frac{(\Delta t)^{2}}{\left(16+(\Delta t)^{2}\right)}$.
5. The current updated USGS trilateration site coordinates (σ_{X}) are considered as accurate as 1 to 10 meters. For most baselines, $\Delta t<5$ years. Therefore the contribution of L to V is very small. To get a meaningful contribution to V from L , the accuracies of a priori coordinates should reach the centimeter level. Using the above example with $\sigma_{\mathrm{x}}=1 \mathrm{~cm}$ and $\Delta \mathrm{t}=5$ year, the compressed baseline lengths L can reduce the formal uncertainty by about 30%.

Appendix 8: Sensitivity testing

Network configuration affects the sensitivity of the adjustments to the signal to be detected. In this Appendix, we do not discuss the theory of optimal network design. Rather, we use a simplified methodology to estimate the sensitivity of a given network.

Let the signal be the velocity field induced by a dislocation model of an infinitely long strike-slip fault in a half-space. Take the fault orientation to be along the y-axis in a local 2-D reference frame. The baseline makes an angle of θ to the y axis. The observable is the baseline length rate $\mathrm{dL} / \mathrm{dt}$. The linearized observation equation can be simplified to

$$
\begin{align*}
\frac{d L}{d t} & =\frac{\partial L}{\partial x_{1}}\left(t-t_{0}\right) \delta v_{x 1}+\frac{\partial L}{\partial x_{2}}\left(t-t_{0}\right) \delta v_{x 2}+\frac{\partial L}{\partial y_{1}}\left(t-t_{0}\right) \delta v_{y 1}+\frac{\partial L}{\partial y_{2}}\left(t-t_{0}\right) \delta v_{y 2} \\
& =\sin \theta\left(t-t_{0}\right)\left(\delta v_{x 1}-\delta v_{x 2}\right)+\cos \theta\left(t-t_{0}\right)\left(\delta v_{y 1}-\delta v_{y 2}\right) \tag{8.1}
\end{align*}
$$

In this special case, all velocities are expected to be parallel to the y-axis. If the baselines are parallel to the fault orientation $\left(\theta=0^{\circ}\right)$, there is no sensitivity since all measurements are always zero. If the baselines are perpendicular to the fault $(\theta=$ 90°), there is also no sensitivity, because $\cos \theta=0$, and all measurements are still zero to first order. However, if the baselines are nearly perpendicular to the fault, the solution is sensitive to small perturbations. If v_{y} has a constant gradient in the x direction, the optimal baseline orientation is $\theta=45^{\circ}$. For a narrow network nearly perpendicular to a strike-slip fault, the solution is sensitive to small changes in the observations even if some diagonal baselines in the network have the optimal angle of $\theta=45^{\circ}$.

To quantify the above statement, the observable L is described as $L=L(\mathbf{x}, \mathbf{s})$. where \mathbf{x} and \mathbf{s} are adjusted and unadjusted parameters respectively. The difference δs between the true value of s and the a priori value, s_{0}, represents the systematic error.

$$
\begin{equation*}
\delta s=s-s_{0} \tag{8.2}
\end{equation*}
$$

The computed linearized observation equation is

$$
\begin{equation*}
l(t)=L(x, s, t)-L\left(x_{0}, s_{0}, t_{0}\right)=A_{x}(t) \delta x+\varepsilon_{x}(t) \tag{8.3}
\end{equation*}
$$

with observation covariance C_{l} and model covariance $C_{x 0}$.
The estimated adjustments are

$$
\begin{align*}
\delta \widehat{x} & =C_{x}\left(A_{x}^{T} C_{l}^{-1} l+C_{x 0}^{-1}\left(x_{m}-x_{0}\right)\right) \tag{8.4}\\
\text { with } \quad C_{x}^{h} & =\left(\mathrm{A}_{\mathrm{x}}^{\mathrm{T}} \mathrm{C}_{\mathrm{l}}^{-1} \mathrm{~A}_{\mathrm{x}}+\mathrm{C}_{\mathrm{x} 0}^{-1}\right)^{-1} \tag{8.5}
\end{align*}
$$

Usually we choose the parameter model as its a priori value $\mathbf{x}_{\mathrm{m}}=\mathbf{x}_{0}$; equation (8.4) then becomes

$$
\begin{equation*}
\delta \widehat{\mathbf{x}}=\mathrm{C}_{\mathrm{x}} \mathrm{~A}_{\mathrm{x}}^{\mathrm{T}} \mathrm{C}_{1}^{-1} \mathrm{l} \tag{8.6}
\end{equation*}
$$

Due to the systematic error, the estimate (8.6) is biased. The true linearized observation equation should be

$$
\begin{equation*}
\mathrm{l}_{\mathrm{t}}(\mathrm{t})=\mathrm{L}(\mathbf{x}, \mathbf{s}, \mathrm{t})-\mathrm{L}\left(\mathbf{x}_{0}, \mathbf{s}, \mathrm{t}_{0}\right)=\mathrm{l}(\mathrm{t})+\mathrm{A}_{\mathbf{s}}(\mathrm{t}) \delta \mathrm{s} \tag{8.7}
\end{equation*}
$$

Therefore, the true solution should be

$$
\begin{equation*}
\delta \widehat{x}_{t}=C_{x}\left(A_{x}^{T} C_{l}^{-1} l+A_{x}^{T} C_{l}^{-1} A_{s} \delta s\right) \tag{8.8}
\end{equation*}
$$

The perturbation from systematic error can be written

$$
\begin{equation*}
\mathrm{p}_{\mathrm{x}}=\delta \widehat{\mathbf{x}}-\delta \widehat{\mathbf{x}}_{\mathrm{t}}=\mathrm{S} \delta \mathbf{s} \tag{8.9}
\end{equation*}
$$

where

$$
\begin{equation*}
S=-C_{x} A_{x}^{T} C_{l}^{-1} A_{s} \tag{8.10}
\end{equation*}
$$

is known as the sensitivity matrix.
In this chapter, we use (8.9) and (8.10) to test the perturbation from each isolated systematic change of baseline length rate.

Appendix 9: Error model

The commonly accepted model for the errors in EDM observations has the form $\sigma=\sqrt{a^{2}+b^{2} L^{2}}$
where L is the baseline length. For USGS EDM data with line-of-sight atmospheric calibration, $a=3 \mathrm{~mm}$ and $b=0.2 \mathrm{ppm}$ [Savage and Prescott 1973], which includes the systematic errors with $a=0.5 \mathrm{~mm}$ and $b=0.14 \mathrm{ppm}$ [Savage et al., 1986]. Systematic errors occur in individual surveys due to improper calibration of the meteorological probes. This kind of systematic errors affects all measurements in a particular survey but is related randomly to the systematic errors of other surveys due to frequent recalibrations. Therefore the systematic component of errors can be treated as random errors in the analysis of multiple survey data. Since our analysis attempts to estimate the velocity field from multiple trilateration networks simultaneously, it is important to check whether the different networks have different data quality due to different topography, instrumentation, or operators. The data quality of each network is assessed by the scatters about the best-fit linear trend of the baseline length observations. For each baseline, the scatter is defined as

where
$\mathrm{L}_{\mathrm{i}}(\mathrm{t})$ is the observed baseline length.
$\mathrm{L}_{\mathrm{i}}\left(\mathrm{t}_{0}\right), \dot{\mathrm{L}}_{\mathrm{i}}$ are the estimated length at epoch t_{0} and the length rate, respectively.
i is the baseline index.
j is the observation index for this baseline.
$\mathrm{w}_{\mathrm{j}}=\frac{1}{\sigma_{\mathrm{j}}^{2}}$
The squares of the residuals obey the χ^{2} distribution with degrees of freedom $n-2$, providing that all residuals are independent and follow a normal distribution. Therefore the upper and lower bounds of each scatter are obtained from the $\chi 2$ distribution with a specified confidence level α. Choosing $\alpha=0.68$ and averaging the distances from the upper and lower bounds, the result is assigned as the uncertainty for the scatter. Thus for each network, we obtain a series of scatters from the baselines with three or more observations. Performing a least squares adjustment to these scatters by fitting the error model (9.1), we get the estimated values of a and b for each network. Note that these scatters reflect not only the quality of the observations, but also the appropriateness of the linear trend. Therefore, any timevarying deformation will be treated as noise.

The systematic differences between VG and EDM data should be discussed. Based on the GPS and EDM measurements performed at Loma Prieta, California, and Hebgen Lake, Montana, Davis et al. [1989] modeled the differences of baseline lengths between the two techniques using the equation

$$
\begin{equation*}
\Delta \mathrm{L}=a+b \mathrm{~L} \tag{9,3}
\end{equation*}
$$

where L is the baseline length. Their results show that both $a(0.6 \pm 0.5 \mathrm{~mm})$ and b $(0.1 \pm 0.1 \mathrm{ppm})$ do not significantly differ from zero. Thus we neglect the effects of the systematic differences between VG and EDM data in this analysis.

Appendix 10: Procedures for updating coordinates

To update the coordinates of the USGS trilateration sites, we used several collocated VG site coordinates from the solution of F93. The relative horizontal positions of these VG sites have accuracies better than 2 cm . We also used coordinates determined for several collocated GPS sites from GPS observations made by USGS in the Parkfield area and by SCEC in the Gorman region. Analysis of these coordinates gives an accuracy of about a decimeter. While updating coordinates, we
also encountered the problem with errors in the integer-wavelength ambiguities in EDM measurements. These errors are known as "coarse range busts" and it is possible, although uncommon, to have $10-\mathrm{ft}, 100-\mathrm{ft}$, and $1000-\mathrm{ft}$ range busts. After checking part of the original survey log sheets, we identified and corrected 12 range busts, as small as 10 feet and as large as 1100 feet. However, we are still suspicious of hidden range busts in the corrected data set, because we have not performed an exhaustive search. Assuming that there are no undiscovered range busts, the updated horizontal coordinates can reach 1-3 meter accuracy for the sites with observations of multiple baselines. The vertical coordinates keep their original accuracy because baseline length observables have little sensitivity to vertical changes.

Appendix 11: Parkfield dilemma

In the San Luis network, using the CDWR measurements from 1959 to 1969, the CDMG observations in the 1970's, and the USGS Geodolite data from 1980 to 1984, Harris and Segall [1987] (hereafter as HS) found that there was a normal strain perpendicular to the SAF, representing about $6.1 \pm 1.7 \mathrm{~mm} / \mathrm{yr}$ of shortening for the 80 km wide network. Including such a normal strain, the derived site velocity field fit their model velocity field better, decreasing χ^{2} by 25%. It is surprising that such a convergent pattern does not show up in the same network when using the USGS data from 1980 to 1991 (Figure 13a). Instead, Figure 13a implies that some dilation occurs along both sides of the SAF, although the error ellipses indicate that such a dilation is not significantly different from zero. This discrepancy between our solution and HS's needs to be explored. Because this discrepancy exists not only in the fault-normal velocity component, but also in the fault-parallel velocity component, both aspects affect an inversion for a fault slip model.

We use the Geodolite data from 1980 to 1984 and the CDMG survey data between 1971 and 1979 to derive an outer coordinate velocity solution with a minimum velocity direction of $550^{\circ} \mathrm{E}$ (Figure 13b). Omitting the CDWR data from 1959 to 1969 does not change the solution significantly, since we nearly reproduce the HS solution (Figure 9 of HS). It is the different data sets that cause the discrepancy. This conclusion can be further confirmed by looking at the observation data series directly (see Appendix 13). The baselines Almond-Bench, Kenger-Mason, Bench-Bonnie, and Bonnie-Cotton are the main sources for the divergence. All four baselines show different trends before and after 1980.

Which data set should be adopted in this analysis, the CDMG data set, the USGS data set, both, or neither? Both the CDMG data set and the USGS data set are strong and self-consistent, and neither can be rejected on the basis of its internal statistics. We also cannot attribute the discrepancy to the change of measuring instruments or survey agency since not all observations show such a dramatic change. Furthermore, the change of instruments could introduce a discontinuity in the measured baseline lengths, but not their rate of change. Is it time-dependent deformation? Other groups have also noticed this discrepancy. Shen [1991] estimated $-0.08 \pm 0.02 \mu \mathrm{rad} / \mathrm{yr}$ compression from the HS trilateration data set, but 0.03 $\pm 0.02 \mu \mathrm{rad} / \mathrm{yr}$ strain normal to the SAF from the combination of GPS observations with much earlier triangulation data. Time-dependent deformation is a possible interpretation. However, it is premature to reach this conclusion just based on these data. For now, we adopt both data sets with a constant-velocity model in our analysis. Additional GPS data for this area are critical to resolving the dilemma.

Appendix 12: Coseismic site displacements

We estimated the coseismic site displacements simultaneously with site coordinate adjustments and site velocities (Chapter 2). From this analysis, we obtained estimates of displacements induced by 7 earthquakes (Figure 14). In addition, we also estimated episodic site displacements related to other origins: aftershocks and steam well extractions from 1981 to 1991 in the eastern part of the Mexicali network (Figure 14); and apparent offsets from the eccentric tie deductions at the site Hopper of the San Luis network in 1981 and 1986.

The 1987 Superstition Hills earthquake consisted of two rain shocks: an $M_{s}=6.2$ event occurred along the northeast-trending Elmore Rar , :..... : :weiv hours later, an $M_{s}=6.6$ event was triggered along the northwest-trending Superstition Hills fault. Larsen et al. [1992] estimated coseismic displacements using GPS measurements made in 1986 and 1988. In Figure14a, we present our estimates using the USGS trilateration data, and we also compare ours with their GPS estimates at three collocated sites (Kane, Dixie, and Alamo). For the three common sites, there are differences of $5-10 \mathrm{~cm}$, suggesting a rotational or translational offset. There are four possibilities to account for this offset: (i) We missed some sites which had significant coseismic displacements. (ii) All EDM sites have been rotated or translated by the Superstition Hills earthquake. (iii) Site OCTI, which was used as the reference site by Larsen et al., has coseismic displacement. (iv) The estimate of

Larsen et al. has some systematic errors. It is unlikely that we missed any significantly affected site since the EDM measurements in the Salton subnetwork were strong, and the survey after the Superstition Hills earthquake covered a large area. We do not see any other significant discontinuities in the length series (see Appendix 12). Possibilities (ii) and (iii) do not help since if all of the EDM sites had common coseismic displacements, so did the site OCTI. Therefore both the estimates will shift, and the offset between them will remain. We suspect that systematic errors from Larsen et al.'s estimate are the main source for the offset. There were several differences between their analysis of the 1986 and 1988 GPS data sets, each one of which could cause systematic errors. For the 1986 data, they adopted satellite orbits calculated by broadcast ephemerides, which had an accuracy of about 1 ppm . For the 1988 data, they adjusted the orbits of satellites using tracking data from three CIGNET fiducial sites in North America. For the 1986 data, several California sites were fixed to adjust coordinates at other sites, but for the 1988 data, the coordinates of one site in California (Mojave) and two sites in eastern North America (Westford, Massachusetts, and Richmond, Florida) were fixed. Finally, for the 1986 data, all ambiguities were fixed to their nearest integers, but for the 1988 data, all ambiguities were estimated. It may worthwhile to reprocess these GPS data with a uniform scheme (see Chapter 2), in order to discern the origin of the offset.

The Westmoreland earthquake ($M_{L}=5.7$; April 26,1981) was nucleated by a left-lateral slip along a northeast-trending fault [Hutton and Johnson, 1981]. This earthquake induced baseline discontinuities related to site Alamo [Savage et al., 1986]. Lisowski et al. [1991] presumed that the anomalous velocity at Alamo in their map was associated with the Westmoreland earthquake. We estimate the coseismic displacement at Alamo (Figure 14b) and our results (Figure 4) confirm their statement.

The Mexicali earthquake ($M_{L}=6.6$; October 14,1979) ruptured in the eastern vicinity of the Mexicali network. The Victoria earthquake ($M_{L}=6.2$; June 9, 1980) occurred along the Cerro Prieto fault southeast of the Mexicali subnetwork. Because no survey was conducted in this area between these two earthquakes, the trilateration data recorded the superimposed effects of the two strike-slip earthquakes (Figure 14c). Sites Puerta, Prieto, Bnp 10065, 24, 8, 9, and 10 were most affected by the Mexicali earthquake, and sites 17 and 3 were most affected by the Victoria earthquake and its aftershocks [Lisowski and Prescott, 1982].

All of the remaining four earthquakes (Homestead Valley, March 15, 1979, $\mathrm{M}_{\mathbf{s}}$ $=5.6$; North Palm Springs, July 8, 1986, $M_{s}=6.0$; Joshua Tree, April 22, 1992, $M_{s}=$
6.1; Landers and Big Bear, June 28, 1992, $\mathrm{M}_{\mathrm{s}}=7.5, \mathrm{M}_{\mathrm{s}}=6.6$) occurred in the Joshua network. Because the northern part of the Joshua network was not established before the Homestead Valley earthquake, only at site Sandhill do we obtain a significant estimate of coseismic displacements for the Homestead Valley earthquake (Figure 14d). The coseismic site displacements from the North Palm Springs earthquake are the most poorly determined. Only four sites (Edom, Dome, Beacon, and Stubbe) are significantly affected by this earthquake. Except Edom, these sites have only one or two baseline observation. The large error ellipses (Figure 14e) reflect the weakness. The estimated coseismic site displacements from the Joshua Tree earthquake are poorly constrained (Figure 14f). The estimated coseismic displacements are significant at the 95% confidence level at only four sites (Edom 2, Inspncer, Pax_ncer, and Warren). The Landers earthquake displored the entire Joshua subnetwork. We use the USGS GPS survey results from before and after the Landers earthquake to set up an external control on the movement of the entire network. All GPS-derived site discontinuities are relative to the site Resort. Hence the estimated coseismic displacements may have a common offset from the coseismic displacement at the site Resort. We nearly reproduce the result of Murray et al. [1993] (see our Figure 14 g and Fig. 2 of Murray et al., 1993). This is not surprising because we use most of their data and impose the same external constraints. However, there is one exception: we triple the formal errors of the GPS results. Therefore our error ellipses of estimated coseimic site displacements are larger. We find that if we impose the GPS constraints with their formal errors, the velocity field of the Joshua network is distorted significantly. It is not yet clear whether this inconsistency comes from the two-epoch GPS surveys, or from the outliers of the trilateration survey made after the Landers earthquake, or both.

After 1981, there was only one survey in 1991 in the Mexicali network. The 10 -year interval seems too long to identify the geophysical events in a tectonically active region. Significant discontinuities in the baseline lengths are seen in the eastern part of the Mexicali subnetwork between the 1981 and 1991 surveys (Figure 15). Thus the estimated site displacements are a mixture of secular motion. aftershock effects, possible survey blunders, and steam extraction in this geothermal area. We leave the interpretation of these displacements for future study.

The estimated coseismic site displacements show that if the data cover a large area both before and after the earthquake, our approach obtains satisfactory results (see the coseismic site displacements induced by Superstition Hills earthquake (Figure 14a) and Landers earthquake (Figure 14 g). In the case of poor data coverage,
our estimated site displacements do not fully reflect the coseismic displacements. In this case, the better way is probably to combine our approach and with an a priori rupture model to remove the coseismic offsets induced by small earthquakes [Savage et al., 1993].

Appendix 13: List of all baseline length observations

In this Appendix, we present the plots of all baseline length data used in this analysis (Figure 16). Outliers have been identified and removed from the measurement series based on a three-sigma (standard deviation off the linear trend) criterion [Savage et al., 1986]. However, if the anomalies are associated with a known earthquake, we leave these data and estimate episodic site displacements, together with other unknowns to absorb the coseismic positional offsets. The solid lines in the plots represent the least squares fits for all of the data from each line independently. The dashed lines are the postfit from our analysis. The statistics of the fit are printed at the top of each plot. When there is coseismic displacement, the fit statistics do not reflect the real quality of the baseline observations.

For several series of measurements, we downweight the data:
(1) In the Carrizo subnetwork, we double the formal errors of all 1977 observations.
(2) In the Salton subnetwork, we double the formal errors of the measurements in 1983 and 1984 related to site Dixie (Carri_sa to Dixie, Dixie to Sup, Dixie to Fish, Dixie to Off_225, and Dixie to Off_229). There were apparent jumps in these baseline data series at 1983. But we cannot attribute the jumps to an episodic site displacement at Dixie.
(3) In the Joshua subnetwork, we double the formal error of the Keys-Sandhill baseline observation in 1988. It seems inconsistent with previous observations.

Savage et al. [1987] reported a systematic error in the measurements of the Monitor subnetwork from 1984 due to the change of survey group. We do not find a significant difference between these series and others, so we did not treat it in a special way.

Figure. 1. Map of southern California showing the VLBI/GPS (VG) stations (triangles) and USGS trilateration networks (named with italics and linked with solid lines). The names of the main VG sites are labeled with four-character codes. The sites of the Permanent GPS Geodetic Array (PGGA) are marked with circles. The main tectonic domains are labeled with italics: the eastern California shear zone (ECSZ), the southern Coast Ranges (SCR), the Santa Maria Fold and Trust Belt (SMFTB), the western Transverse Ranges (WTR), the Ventura Basin (VB), the Santa Barbara Channel (SBC), and the southern Borderlands (SBL). Major faults include the San Andreas (SAF), San Jacinto (SJC), the Elsinore (ELS), and the Garlock (GAR).

Figure 2. Outer coordinate solutions of the six USGS trilateration subnetworks (from north to south: San Luis - Parkfield, Carrizo - San Luis, Los Padres - Tehachapi, San Gabriel - Tehachapi, Anza - Joshua, Salton - Mexicali). The subnetworks and their minimum velocity directions to constrain the outer coordinate solutions are listed in Table 5. The six outer coordinate solutions are independent and are separated by heavy dashed lines. The ellipses represent one-sigma errors (i.e. 39% confidence in two-dimension). All tectonic features shown in this figure are the same as in Figure 1.

Figure 3a. `Scatters of the trilateration data of the USGS San Luis - Parkfield trilateration network. The formal errors are calculated from the model $\sigma^{2}=a^{2}+b^{2} L^{2}$ with $a=3 \mathrm{~mm}$, $\mathrm{b}=0.2 \mathrm{ppm}$ [Savage and Prescott, 1973]. The scatters are estimated by the procedures described in Appendix 9. The estimated coefficients of a and b are printed at the top of the figure. The straight line of unity slope represents agreement with assumed model.

Figure 3b. Scatters of the trilateration data of the USGS Carrizo - San Luis trilateration network. The formal errors and best-fit coefficients are as described in Figure 3a.

Figure 3c. Scatters of the trilateration data of the USGS Los Padres - Tehachapi trilateration network. The formal errors and best-fit coefficients are as described in Figure 3a.

Figure 3d. Scatters of the trilateration data of the USGS San Gabriel - Tehachapi trilateration network. The formal errors and best-fit coefficients are as described in Figure 3a.

Figure 3e. Scatters of the trilateration data of the USGS Anza - Joshua trilateration network. The formal errors and best-fit coefficients are as described in Figure 3a.

Figure 3f. Scatters of the trilateration data of the USGS Salton - Mexicali trilateration network. The formal errors and best-fit coefficients are as described in Figure 3a.

Figure 4. Constrained velocity solutions of the northern and southern sections. All imposed constraints are listed in Table 6. The two solutions are independent, and are separated by a heavy dashed line in this plot. The error ellipses represent 39% confidence level. In the northern section, the velocities are relative to the site Pattiway ($\mathrm{N} 37^{\circ} 58^{\prime}$, W119 ${ }^{\circ} 26^{\prime}$). In the southern section, the velocities are relative to site Asbestos ($\mathrm{N} 33^{\circ} 38^{\prime}$, W116 ${ }^{\circ} 28^{\prime}$).

Figure 5. \quad Same as Figure 4 but with the multi-dislocation model of Feigl et al. [1993] subtracted from the velocities for all sites.

Figure 6. Velocity field of the combined solution with the velocity constraints on common sites listed in Table 7. The estimated velocity field is relative to the North America plate. In this plot, a common velocity ($\mathrm{Ve}=-18.2 \mathrm{~mm} / \mathrm{yr}, \mathrm{Vn}=20.8 \mathrm{~mm} / \mathrm{yr}$) is subtracted from the velocities at all sites. This commonly subtracted velocity is plotted with a gray arrow at the northeastern corner of the figure. The error ellipses represent 39% confidence level.

Figure 7a. Velocity fields of the combined solution in the southern section with the velocity constraint between Niguel and NIGU_GPS removed. The velocities are relative to site Asbestos (N33 ${ }^{\circ} 388^{\prime}$, W116 ${ }^{\circ} 28^{\prime}$).

Figure 7b. Velocity fields of the combined solution in the southern section with the velocity constraint between Monu_res and MONP7274 removed. The velocities are relative to site Asbestos ($\mathrm{N} 33^{\circ} 38^{\prime}$, W116 ${ }^{\circ} 28^{\prime}$).

Figure 7c. Velocity fields of the combined solution in the southern section with the velocity constraint between Asbestos and PINY_GPS removed. The velocities are relative to site Asbestos ($\mathrm{N} 33^{\circ}{ }^{\circ} 8^{\prime}$, W116 ${ }^{\circ} 28^{\prime}$).

Figure 8a. Velocity field relative to the North American plate of the combined solution with the velocity constraints listed in Table 7 (final status: used). The error ellipses represent 39% confidence level.

Figure 8b. Same as Figure 8a but with a common velocity ($\mathrm{Ve}=-18.2 \mathrm{~mm} / \mathrm{yr}, \mathrm{Vn}=20.8$ $\mathrm{mm} / \mathrm{yr}$) subtracted from the velocities at all sites. This commonly subtracted velocity is plotted with gray arrow at the northeastern corner of the figure.

Figure 9a. Velocity residuals with respect to the Pacific Plate of the combined solution with the multi-dislocation model of Feigl et al [1993] removed. The error ellipses represent 39\% confidence.

Figure 9b. Same as Figure 9a but with a common velocity residual relative to Pacific plate ($\mathrm{Ve}=0.5 \mathrm{~mm} / \mathrm{yr}, \mathrm{Vn}=-7.1 \mathrm{~mm} / \mathrm{yr}$) subtracted from the velocities at all sites. This commonly subtracted velocity residual is plotted with a gray arrow at the northeastern corner of the figure. The velocity residuals are shown relative to site MPNS_GPS near the SAF.

Figure 10a. Enlargement of the combined velocity field for the Big Bend area. relative to site MPNS. The error ellipses represent 39\% confidence level.

Figure 10b. Same as Figure 10a but with the dislocation model of Feigl et al. [1993] removed.

Figure 11. Residual velocities relative to site Red Hill in the San Luis network.

Figure 12a. Principal axes of the horizontal strain rate tensors in each Delaunay triangle of the southern section, calculated from the constrained velocity solution of Figure 4. The inward pointing arrows represent compression, outward pointing arrows represent extension. In each Delaunay triangle, if both principal strain rates are smaller in magnitude than their uncertainties, or if the sum of the magnitudes of the two principal strain rates is larger than 2×10^{-6}, the axes are not plotted.

Figure 12b. Rotation rates in each Delaunay triangle of the southern section, calculated from the constrained velocity solution of Figure 4. The fans display clockwise or anticlockwise rotations from north. In each Delaunay triangle, if the uncertainty on the rotation rate exceeds $10^{\circ} / \mathrm{Ma}$, the rotation rate is not plotted.

Figure 13a. Outer coordinate solution for the San Luis subnetwork using the USGS EDM data from 1980 to 1991. The sites are the same as used by Harris and Segall [1987]. The error ellipses represent 39% confidence level.

Figure 13b. Same as Figure 13a but using the CDMG data from the 1970's and the USGS from only 1980 to 1984.

Figure 14a. Estimated coseismic site displacements from the combined solution (Figure 8) for the $11 / 24 / 87$ Superstition Hills earthquake sequence $\left(M_{s}=6.2,6.6\right)$. The gray arrows at three sites (Kane, Dixie, and Alamo) represent the 1986-1988 displacements estimated by Larsen et al. [1992] but with the secular motion from our velocity solution removed. The error ellipses represent 95% confidence. The scaling arrows are shown in the lower left corner of the plot.

Figure 14b. Estimated coseismic site displacements from the combined zuation (Figure :". for the 04/26/81 Westmoreland earthquake ($\mathrm{M}_{\mathrm{L}}=5.7$). The error ellipses represent 95% confidence. The scaling arrows are shown in the lower left corner of the plot.

Figure 14c. Estimated coseismic site displacements from the combined solution (Figure 8) for the $10 / 14 / 79$ Mexicali earthquake ($\mathrm{M}_{\mathrm{L}}=6.6$) and 06/09/80 Victoria earthquake ($\mathrm{M}_{\mathrm{L}}=$ 6.2). The error ellipses represent 95% confidence. The scaling arrows are shown in the lower left corner of the plot.

Figure 14d. Estimated coseismic site displacements from the combined solution (Figure 8) for the $03 / 15 / 79$ Homestead Valley earthquake ($\mathrm{M}_{\mathrm{s}}=5.6$). The error ellipses represent 95% confidence. The scaling arrows are shown in the lower left corner of the plot.

Figure 14e. Estimated coseismic site displacements from the combined solution (Figure 8) for the 07/08/86 North Palm Springs earthquake ($\mathrm{M}_{\mathrm{s}}=6.0$). The error ellipses represent 95% confidence. The scaling arrows are shown in the lower left corner of the plot.

Figure 14f. Estimated coseismic site displacements from the combined solution (Figure 8) for the $04 / 22 / 92$ Joshua Tree earthquake $\left(M_{s}=6.1\right)$. The star symbol represents the epicenter. The error ellipses represent 95% confidence. The scaling arrows are shown in the lower left corner of the plot.

Figure 14g. Estimated coseismic site displacements from the combined solution (Figure 8) for the 06/28/92 Landers ($M_{s}=7.5$) and Big Bear ($M_{s}=6.6$) earthquakes. The surface trace of the rupture (heavy dash line) is from Bock et al., [1993].04/22/92. The error ellipses represent the 95% confidence The scaling arrows are shown in the lower left corner of the plot.

Figure 15. Estimated site displacements in the Mexicali network from 1981 to 1991. The error ellipses represent 95%.confidence.

Figures 16. Time series of the EDM observations. The error bars represent one-sigma formal uncertainties. The solid lines represent the best weighted-least-squares fit to each time series, considered independently; the dashed lines represent the estimated values from our combined (VG+EDM) analysis. The first group of plots, shown 15 per page, are for those lines experiencing no co-seismic displacements. Any discontinuities in the dashed lines represent our attempt to account for breaks due to destruction of sites or changes in instrumentation. The second group of sites, shown 6 per page, are for those lines with coseismic displacements, shown by discontinuities in the dashed lines. Note the change of scale.

直

50

Figure 17. Map of southern California showing the VLBI/GPS (VG) stations (triangles) and USGS trilateration network (linked with solid lines). All the tectonic features and plotting conventions are the same as in Figure 1. The gray triangles represent the recent GPS sites. Most of the new GPS sites are from SCEC and Caltrans GPS experiments. The gray sites at the southeast corner are part of the Salton Trough and Riverside County (STRC) network (R. Reilinger, personal communication, 1993, and those in the northeast corner are part of the Death Valley network (B. Wernicke, personal communication, 1993).

Table 1:

measurement	span	accuracy	reference
1-st order direction 2-nd order direction 3-rd order direction 4-th order direction 1-st order azimuth Taped distances $E D M^{\text {a }}$ (NGS ${ }^{\mathrm{b}}$) EDM (USGS ${ }^{\text {c }}$) EDM (CDWR $\left.{ }^{\mathrm{d}}\right)^{\mathrm{g}}$ EDM (CDMG ${ }^{\text {e }}$) HP ${ }^{\text {f }}$ (USGS)	$\begin{aligned} & 1972-1992 \\ & 1959-1969 \\ & 1970-1979 \end{aligned}$	$\begin{gathered} 0.6 \mathrm{arc} \text { seconds } \\ 0.7 \mathrm{arc} \text { seconds } \\ 1.2 \mathrm{arc} \text { seconds } \\ 3.0 \mathrm{arc} \text { seconds } \\ 1.4 \mathrm{arc} \text { seconds } \\ 10 \mathrm{~mm}+1.0 \mathrm{ppm} \\ 15 \mathrm{~mm}+1.0 \mathrm{ppm} \\ 3 \mathrm{~mm}+0.2 \mathrm{ppm} \\ 10 \mathrm{~mm}+1.0 \mathrm{ppm} \\ 6 \mathrm{~mm}+0.7 \mathrm{ppm} \\ 3 \mathrm{~mm}+2.0 \mathrm{ppm} \end{gathered}$	Snay [1990] Snay [1990] Snay [1990] Snay [1990] Snay [1990] Snay [1990] Snay et al. [1987] Savage, Prescott [1973] King et al. [1987] King et al. [1987] Lisowski [personal communication, 1993]

a. Electronic Distance Measurement
b. National Geodetic Survey
c. United States Geological Survey
d. California Department of Water Resources
e. California Division of Mines and Geology
f. Hewlett-Packard
g. There are offsets between CDWR and CDMG measurements due to the changes of instrument and the procedures for correcting atmospheric refraction effects [King et al.. 1987].

Table 2:

data	span	north	east		up	reference
GPS	$1986-1992$	$3.4 \mathrm{~mm}+0 \mathrm{ppb}$	$6.9 \mathrm{~mm}+15 \mathrm{ppb}$	21.6 r		-12 ppb
Veigı ét al.,1993						
VLBI	$1984-1991$	$7.1 \mathrm{~mm}-1 \mathrm{ppb}$	$5.5 \mathrm{~mm}+2 \mathrm{ppb}$	38.4 mr	ppb	Feigl et al.,1993

Table 3: USGS EDM site used in this analysis

	ame		atıt	tude	longatude				u	v	w	ch	Sn	Se	S:
e 10	10	N34 4		25.61230 W	W119	19	0.30178	1451.1121	-0.0241	0.0236	0.0000	1983.00	0.2219	0.1099	8380
$\mathrm{fraz}_{\text {min }} 10$	lospa_net	N34 4		30.72961 W	W118	58	8.53902	2410.7462	-0.0241	0.0222	0.00001	1992.90018	18.9788	4.9456	0.0000
1er 10	lospa_net	N34 4	46	29.89344 W	W118	58	8.83236	2411.8389	-0.0224	0.0202	0.0000	1983.000	0.1560	0.0449	0.1000
hen-10	lospa_net	N34		16.76401 W1	W119	9	4.43015	1523.8605	0.0000	0.0000	0.0000	1983.00019.	19.6105	0.1466	4.9937
madulce ${ }^{\text {2 }}$ 10	lospa_net	N34	412	27.51573 W	W119	352	28.04845	1958.3607	-0.0290	0.0330	0.0000	1983.000	0.3673	0.2002	4.9937
monte 10	lospa_n	N34	322	21.75213 W	W119	28	0.48607	1792.9904	-0.0315	0.0291	0.0000	1983.000	0.1730	0.1225	3.8502
mt_pinos 10	lospa_net	N34 4	484	46.17056 W	W119	-	43.47847	2662.5981	-0.0217	0.0219	0.0290	1983.000	0.0199	0.0198	00
nordhoff lo	lospa_net	N34	295	53.92406 W	W119	14	31.53176	1332.7173	-0.0303	0.0252	0.00001	1983.000	0.3203	0.1156	4.7558
paa-1_10	lospa_net	N34	22	20.86752 W	W119	25	13.30220	624.3609	0.0000	. 0000	0.00001	1983.0001	14.9109	2.7279	4.9936
tt1-10 10	lospa_ne	N34	57	35.04883 W	W119	25	56.43958	983.8125	-0.0180	0.0231	0.0000	1983.000	0.1965	0.1316	0.9201
lat_10 10	lospa	N34	55	12.63994 W	W119	24	19.57132	1334.4679	-0.0201	0.0234	0.0000	1983.000	0.1761	0.1135	16
10	lospa	34	48	43.62711 W	W119	8	54.89266	2655.0005	-0.0222	0.0215	0.0290	1983.000	16.5692	10.495	32
1	lospa	34	24	35.84206 W	W119	12	14.09952	797.3545	0.0000	0.0000	0.0000	1983.000	6.6098	18.454	4.9933
lice-1	lospa_net	34	54	10.92070	W118	54	16.16366	1441.4478	-0.0177	0.0187	0.0000	1983.000	0.1939	0.091	2.5719
reyes - 1	lospa_net	N34	37	51.01883 W	W119	16	53.79341	2260.4178	-0.0280	0.0245	0.0000	1983.000	0.0939	0.1546	2.8245
santapau 1	lospa_net	N34	26	25.26217	W119	-	34.72667	1476.6904	-0.0242	0.0231	-0.0009	1983.000	0.0200	0.0200	0.0:c0
seco 1	lospa_net	N34	37	31.69263	W119	26	29.78824	1642.9545	-0.0302	0.0282	0.0000	1983.000	0.2018	0.2319	3.6
sulpher-1	lospa_net	N34	24	35.61772	W119	12	13.70619	797.3679	0.0000	0.0000	0.0000	1983.000	6.6176	18.4488	4.9933
sulphrmi ${ }^{\text {a }}$	lospa_net	34	24	35.44595	W119	12	13.83852	797.3600	0.0000	0.0000	0.0000	1983.000	6.6153	18.464	4.9933
cuy_10 1	lospa_net	34	50	32.95040	W118	58	53.78244	2144.7793	-0.0204	0.0198	0.0000	1983.000	0.1912	0.083	. 0297
ejon-41 1	lospa_net	N34	48	13.08161	W118	48	56.01569	1450.3935	-0.0181	0.0206	0.	1983.000	0.2006	0.0822	2.6484
temb_10 1	lospa_net	N35		45.42802	W119	33	17.31278	1050.2923	-0.0144	0.0231	0.0000	1983.000	1.8919	2.8944	3.4225
tembI_10	lospa_net	N35	6	46.02261	W119	33	18.03093	1052.6130	-0.0143	0.0223	0.0000	1983.000	0.1392	0.1204	0.1000
thorn ${ }^{-1}$	lospa_net	34	36	23.01770	W119	7	39.74730	2076.4345	-0.0294	0.0244	0.0000	1983.000	0.1089	0.2177	4.4957
wh2 r-10	lospa_net	N35	0	38.48728	W119	0	51.44161	619.1405	-0.0162	0.017	0.000	1983.000	9.4144	17.2087	4.9927
$\mathrm{yam}^{-1} 10$	lospa_net	34	45	14.66608	W119	28	30.84604	1759.1000	-0.0260	0.0282	0.0000	1983.000	0.2259	0.0607	0.9705
enve	hac	N34	46	36.41672	W118	13	12.45679	686.6644	-0.0101	0.0175	0.0000	1983.000	0.1188	0.095	078
ald	tehac_net	N35	16	20.87108	W118	5	42.62243	1497.0305	0.0000	000	. 0000	1983.00	5.0412	18.9525	937
black	tehac_net	N34	31	42.81593	W117	45	45.84838	909.4605	0.0000	0.0	0.000	19	19.5600	13.9402	38
bull		N34	49	6.07655	W118	33	12.04428	840.0742	-0.0133	0.0186	0.0000	1983.000	0.4324	0.2672	89
denis		N34	37	52.47653	W118	8	36.28931	757.2185	0.0000	0.0000	0.0000	1983.000	19.6101	0.4339	4.9938
diorit		4	56	4.30280	W118	36	54.77835	2003.3791	-0.0117	0.0167	0.0000	1983.000	0.1534	0.1097	1.6498
doub_mi	teb	35	1	59.95584	W118	29	12.39881	2403.7848	0.0000	0.0000	0.0000	1983.000	0.1974	0.1246	0.1000
farmont	teha	34	44	56.77672	W118	24	26.66490	932.1150	-0.0140	0.0196	0.0000	1983.000	0.1095	0.0926	0.0991
gnerss	tehac_net	N34	57	33.31202	W118	42	11.38772	1765.8394	-0.0135	0.0165	0.0000	1983.000	0.1546	0.1915	4.3808
leona		N34	38	39.26642	118	19	27.53673	1181.5605	0.0000	0.0000	0.0000	1983.000	10.6684	16.4519	4.9936
1ıt_rock	ter	N34	30	48.36311	W117	56	18.82555	896.6805	0.0000	. 0000	000	1983.000	19.5583	13.9426	4.99
pajuel	tebac_net	N35	7	14.69928	W118	17	40.45406	1705.4005	0.0000	00	0.0000	1983.000	10	16	36
pelona		N34	33	39.51892	W118	21	21.81899	1446.7732	-0.0201	0.0215	0.0000	1983.000	0.1089	0.1349	0.0998
police		34	54	10.92070	W118	54	16.16366	1441.4478	-0.0177	0.0187	0.0000	1983.000	0.1939	0.0917	2.5719
rit_rid	tehac_	N34	36	23.85883	118	12	52.93049	991.6605	0.0000	0.0000	0.0000	1983.000	0.5370	9.604	37
saw_ecc	tehac_n	N3	41	35.33391	W118	33	41.25343	1648.1312	-0.0183	0.0208	0.0000	1983.000	0.1349	0.1000	33
sammill	tebac	N34	41	35.35890	W118	33	41.08149	1646.6612	-0.0182	0.0234	0.0000	1983.000	0.2391	0.1118	4.9335
soledad	teha	N34	58	57.04194	W118	11	19.83701	1245.7883	-0.0083	0.0160	0.0000	1983.000	0.1231	0.1149	0.0339
tecuyrmi	teha	N34	50	32.95040	W118	58	53.78244	2144.7793	-0.0204	. 0198	0.0000	1983.000	0.1912	0.0833	3.6297
te 32 rm 2	teha	N35		25.28572	W118	49	20.82011	291.9585	-0.0148	0.0136	. 0000	1983.000	10.0647	16.8372	4.9230
tejon_ 32	teha	N35	7	25.62617	W118	49	21.33954	293.2910	-0.0148	0.0136	0.0000	1983.000	0.177	0.1530	0.1200
tejon-41	teha	N34	48	13.08161	W118	48	56.01569	1450.3935	-0.0181	0.0206	0.0000	1983.000	0.2006	0.0822	2.6i34
thumb		34	51	45.72622	W118	25	8.68421	807.1821	-0.0089	0.0152	0.0000	1983.000	0.1106	0.0955	0.7215
tom		N34	37	51.79210	W117	53	55.05163	960.0292	-0.0111	0.0162	0.0000	1983.000	0.8730	0.4292	3.4533
tom_m3	tehac_net	N34	37	52.23434	W117	53	54.76137	960.1605	-0.0097	0.0162	0.0000	1983.000	19.6113	0.4371	4.9:37
weod_rmi	tehac_net	N35	13	22.37498	W118	55	56.43419	74.8279	0.0000	0.0000	0.0000	1992.900	13.1967	14.5082	0.6200
wheeler2	tehac_ne	N35	5	O 38.11203	W119	0	51.49925	619.6983	-0.0162	0.0175	0.0000	1983.000	0.1248	0.1161	0.1000
alderaux	sanga_net	N34	22	58.49014	W118	2	2.56892	2137.3552	-0.0202	0.0201	0.0000	1983.00	29.078	64.4598	9.9532
ant_aux	sanga_net	N34	14	454.64678	W117	40	30.66125	2042.5188	-0.0179	0.0208	0.0000	1983.000	1.3289	0.6792	4.9871
bad-pow	sanga_ne	N34	21	29.93964	W117	45	52.91081	2831.4394	-0.0182	0.0184	0.0000	1983.000	1.0799	0.4721	3.3392
buli	nga_net	N34	49	96.07655	W118	33	12.04428	840.0742	-0.0133	0.0186	0.0000	1983.000	0.4324	0.2672	3.3789
camp_9	ga	334	21	111.55058	W118	25	5.05922	1190.4235	-0.0238	0.0226	0.0000	1983.000	0.1512	0.4579	2.7286
daspoint	sanga_net	N34	14	447.60739	W118		18.62599	1789.1679	-0.0224	0.0205	0.0000	1983.000	0.4629	0.6812	4.9935
dugo	sanga_net	N34	12	255.29996	W118	16	36.51791	898.3405	-0.0214	0.0223	0.0000	1983.000	0.6347	0.7781	4.9912
flunt	sanga_net	N34		948.84302	W118	11	48.55053	542.3022	-0.0223	0.0219	0.0000	1983.000	0.6588	0.9350	4.9931
gla_ncer	r sanga_net	N34	423	312.73038	W118	11	5.58283	1895.4488	-0.0214	0.0213	0.0000	1983.000	0.3234	0.4115	3.4159
handle	sanga_n	N34	414	449.29782	W118	6	23.03838	1789.0705	50.0000	0.0000	0.0000	1983.000	13.1413	14.5781	4.9321
hau_ecel	sanga_net	N34	32	251.18533	3 W118	12	55.91141	1547.6790	-0.0182	0.0210	0.0000	1983.000	0.2868	0.3129	4.4738
hauser	sanga_net	N34	432	251.79688	W118	12	55.98116	1546.7605	5-0.0182	0.0210	0.0000	1983.000	19.4837	2.2398	4.9937
jpll_mi	1 sanga_net	N34	412	217.06896	6 W118	10	15.45801	441.2933	$3-0.0190$	0.0161	0.0123	1983.000	0.7752	0.9002	4.9933
11tteejon	sanga_net	N34	448	82.27059	W118	48	9.63516	1412.5494	4-0.0192	0.0214	0.000	1983.00	0.6118	0.3279	0.0350
	sanga_net	N34	421	18.13934	4 W218	825	46.71126	1169.6830	-0.0238	0.0226	0.0000	1983.000	0.1651	0.4595	2.7561
mtgleasn	n sanga_net	N34	423	312.55435	W118	111	5.29922	1896.5622	2-0.0214	0.0213	0.0000	01983.000	0.3235	0.4114	3.3341
nbaldaux	x eanga_net	N34	421	130.73482	$2 \mathrm{wl17}$	745	52.87044	2830.3239	9-0.0197	0.0173	0.0000	01983.000	1.0799	0.4718	3.4241
pac_unk	sanga_net	N34	422	254.87700	W118	82	24.76932	2140.3605	5-0.0224	0.0216	0.0000	01983.000	0.6683	0.4205	4.9937
pacincer	r sanga_net	N34	422	258.29141	1 W118	82	22.67636	2137.3611	$1-0.0202$	0.0201	0.0000	O 1983.000	0.6194	1.0624	4.9038
pac2ncer	r sanga_net	N34	422	$2{ }^{5} 1.31056$	6 W118	82	24.72927	2137.2076	6-0.0202	0.0201	0.0000	11983.000	0.5896	0.4381	4.9538
pacıfico	osanga_net	N34	422	254.46355	5 W118	82	24.77896	2141.0542	$2-0.0202$	0.0201	0.0000	1983.000	0.6678	0.4207	4.9312
parkaux 2	2 sanga_net	N34	427	2735.01351	1 W118	813	37.64696	1225.3305	5-0.0196	0.0215	0.0000	1983.000	- 7.0756	18.2978	4.9328
park_rm3	3 eanga_net	N34	427	735.04242	2 W118	813	37.66270	1225.0005	5-0.0196	0.0215	0.0000	1983.000	7.0757	18.2977	4.9928
parker	sanga_net	N34	427	735.21521	1 W118	813	37.81361	1224.8970	-0.0196	0.0215	0.0000	1983.000	0 0.3275	0.3492	2.3477
pelon_a	a eanga_net	N34		339.51892	2 W118	821	121.81899	1446.7732	$32-0.0201$	0.0215	0.0000	11983.000	00.1089	0.1349	0.0938
piconcer	r sanga_net	N34		950.44537	7 W118	836	64.84526	1101.2861	-0.0256	0.0253	0.0137	11983.000	00.4244	0.5010	4.9:33
por	ga_net	N34		310.86265	5 W118		47.36705	1446.8605	-0.0226	0.0226	0.00	1983.000	10.59	6.50	4.99

port_rml sanga_net saw_esa sanga_net sawmi_sa sanga net siselsie sanga_net tank
\qquad sanga ne tom \qquad sanga net allen carri net berros_carri_net biddle_carri_net calle_ca carri_net carrizo_ carri_net cauvel- carri_net crock $\overline{88}$ carri_net crocker_ carri_net glo_13_- carrı_net gould_carri_net hath_2_carri_net kittncer carri_net madre_80 carri_net madreecc carri_net moktt_ca carri_net painted_ carrı_net saltos_ carri_net stanley2 carrı_net sycamore carri net turkey carrinet welport carri net alrway_- sanlu_net almondbarren sanlu_net bench sanlu_net sanlu_net blackhll sanlu_net blhllres sanlu_net bonnie_sanlu net break_ sanlu_net buck_ecc sanlu_net buckদ̄ıll sanlu_net callente sanlu_net car car Im - sanlu_net car_rm1_sanlu_net castle_sanlu_net chi2_nol sanlu_net chiches2 sanlu_net cholame_sanlu_net cobra cotton_ sanlu_net davis flattop_ flattop gastro glfford sanlu_net gold \qquad sanlu_net hat hatchrm1 sanlu_net hearst sanlu_net hopp_rm3 sanlu_net hopper_ sanlu_net kenger_ sanlu_net kerr sanlu_net kerr sanlu_net kltchen sanlu_net
lyeguas sanlu_net mason__ sanlu_net mcconmi2 sanlu_net mokttrck sanlu_net mel_ecc_sanlu_net melville sanlu_net mid_e_sa sanlu_net mid f sanlu net mine mi_ sanlu_net mine_rm2 sanlu_net mith- sanlu_net montosa_ canlu_net moose sanlu net napoleon sanlu_net park pelato sanlu_net pfl_-sanlu_net pitt__sanlu_net prospect sanlu net ranchito sanlu_net red_hill sanlu_net shade_sanlu_net sumier_sanlu_net smsthecc sanlu_net table sanlu_net temb_ml anlu_net temblor_sanlu_net tese sanlu_net
342311.59581 W118 1947.43639 N34 $41 \quad 35.32136$ W118 3341.23451 N34 $41 \quad 35.36000$ W118 3341.08153 N34 $16 \quad 8.33520$ W118 $14 \quad 20.7685$ N34 $30 \quad 0.21537$ W117 $55 \quad 20.70144$ N34 3751.79210 W117 5355.05163 $\begin{array}{llllll}\mathrm{N} 35 & 11 & 6.88854 & \text { W120 } & 5 & 6.02339\end{array}$ N35 3 37.54265 W120 $26 \quad 12.16836$ N35 940.45222 W120 $28 \quad 29.9135$ N35 210.93662 W119 $45 \quad 37.08083$ N35 $15 \quad 0.07093$ W119 5052.24985 N35 2128.98992 W119 $51 \quad 3.30419$ $N 351431.84919$ W119 4328.72277 N35 1431.65193 W119 4328.68514 N35 2628.36477 W119 3914.21136 N35 2449.05892 พ119 4558.51299 N35 $10 \quad 56.17290$ W120 $14 \quad 8.94614$ N35 1727.67382 W119 4547.99317 N35 432.23361 W120 41.66672 N35 432.24268 W120 41.65634 N35 1726.52770 W119 $45 \quad 50.37258$ N35 912.78211 W119 4829.59607 $\begin{array}{llllll}\mathrm{N} 35 & 8 & 0.17236 & \text { W119 } & 54 & 7.04544\end{array}$ $\begin{array}{llllll}\text { N35 } & 4 & 22.60360 & \text { W120 } & 15 & 4.74334\end{array}$ N35 731.89316 W119 5955.77911 N35 1540.46411 W119 5719.19469 N35 2131.69290 W119 $40 \quad 53.80225$ N35 1930.36093 W120 3617.88046 N35 $33 \quad 6.36975$ W120 2711.12835 N35 2720.45438 W120 3423.40613 N35 4444.32084 W12O 214.70466 N35 $21 \quad 31.35894$ W120 4954.22538 N35 $21 \quad 30.83391$ W120 4954.07629 N35 5239.51765 W120 1549.83476 N35 5315.87064 W120 2744.90664 N35 5529.89134 W120 3214.76649 N35 $5529.96787 \quad$ W120 3214.09124 N35 210.93662 W119 4537.08083 N35 5317.24149 W120 2550.06793 N35 5318.70575 W120 2547.98076 N35 5316.95060 W120 $25 \quad 50.19710$ N35 $56 \quad 20.73621 \quad$ W120 $20 \quad 25.03502$ N35 $23 \quad 33.10078$ W120 $21 \quad 7.71435$ N35 $23 \quad 33.32111$ W120 $21 \quad 7.27410$ N35 $58 \quad 16.41121$ W120 3454.79608 N35 $50 \quad 6.84484$ W120 2616.45064 N35 4715.90678 W120 1320.85269 N35 1358.42541 W120 $47 \quad 3.99956$ N35 5151.73209 W120 2825.17848 $\begin{array}{lllllll}\text { N36 } & 0 & 2.91211 & W 120 & 28 & 39.94246\end{array}$ N35 $8 \quad 57.80267 \quad W 120 \quad 315.40070$ N35 $49 \quad 50.62846 \quad$ W120 $21 \quad 0.58404$ N35 $41 \quad 9.29999 \quad$ W120 $10 \quad 40.85461$ N35 419.75507 W120 1041.01843 N35 4520.21852 W120 $16 \quad 3.81932$ N35 $40 \quad 26.69809$ W120 $22 \quad 53.36402$ N35 $40 \quad 26.59321$ W120 2253.74809 N35 5449.46123 W120 2049.99094 N35 45 57.71263 W120 2127.53516 N34 5516.76401 W119 94.43015 N35 2627.90522 W119 $57 \quad 24.37811$ N35 $49 \quad 57.32600$ W120 $26 \quad 34.73120$ N35 $21 \quad 29.87968$ W120 541.37832 N35 1726.52770 W119 4550.37258 N35 $52 \quad 12.78806$ W120 $22 \quad 29.39129$ N35 5212.44325 W120 $22 \quad 29.25871$ N35 5658.72126 W120 $29 \quad 53.81628$ N35 5512.58428 W120 3114.85516 $\begin{array}{llll}\mathrm{N} 35 & 58 & 9.81038 & \mathrm{~N} 120 \quad 26 \quad 5.60180\end{array}$ N35 $58 \quad 9.79433$ W120 $26 \quad 5.35476$ N36 443.99012 W120 3545.61473 N35 5656.15735 W120 4227.22983 N35 4856.57241 W120 1725.13828 N35 3012.55765 W119 $57 \quad 33.53796$ N35 5343.97654 W120 1821.82772 N34 5512.63994 W119 2419.57132 N35 5317.06149 W120 2549.79463 N35 5528.69651 W120 2836.01730 N35 2820.30440 W120 $45 \quad 1.83441$ N35 $54 \quad 0.78050 \quad W 120 \quad 31 \quad 29.93330$ N35 $36 \quad 17.82784 \quad W 120 \quad 15 \quad 38.13719$ N36 $146.93962 \quad W 120 \quad 40 \quad 56.90183$ N35 21 5.49087 W120 018.56551 N36 443.42821 W120 3545.22760 N35 5610.77188 W120 2432.01459 $\begin{array}{llllll}\text { N35 } & 6 & 45.42802 & \text { W119 } & 33 & 17.31278\end{array}$ N35 646.02261 W119 3318.03093 N35 $23 \quad 8.69911$ W120 4151.47182
 $1647.9615-0.0182$ 1646.6605-0.0182 $1515.2357-0.0242$
974.7580 $960.0292-0.0111$ $1115.2046-0.0252$ 516.1257-0.0278 525.5343-0.0273 561.4921-0.0226 $1164.9491-0.0192$ $1171.5273-0.0192$ $1172.1354-0.0192$
$93.2105-0.0118$ $93.2105-0.0118$ 393.6905-0.0143 797.0462-0.0262 $1285.5180-0.0183$ $958.0797-0.0250$
$958.4841-0.0250$ $1287.0524-0.0183$ $584.5460-0.0219$
$1070.6750-0.0233$ $724.9126-0.0267$ $856.8253-0.0238$ $825.8122-0.0236$ 252.5701-0.0099 $751.7595-0.0278$ 487.2419-0.0239 556.5579 -0.0254 617.5007-0.0198 $166.4238-0.0267$ $\begin{array}{ll}166.1144 & -0.0264 \\ 756.1034 & -0.0095\end{array}$
562.7113-0.0194
$793.4792-0.0192$
$789.5408-0.0192$ $1522.1080-0.0225$
$479.7071-0.0187$
$479.3405-0.0269$
$479.3405-0.0187$ $1291.5605 \quad 0.0000$ $1070.5015-0.0247$
$1070.2821-0.0247$ $762.2697-0.0199$
$701.8680-0.0203$
$735.9345-0.0121$
$513.2179-0.0285$
$758.3563-0.0214$ 1164.6301-0.0036 $1007.3954-0.0252$
$472.5891-0.0129$
$732.3205-0.0161$
732.0159-0.0161 $371.8614-0.0133$
$471.7205-0.0339$
$471.4363-0.0195$
$951.3886-0.0089$ $552.8520-0.0198$ $1523.8605 \quad 0.0000$ $985.3105 \quad 0.0000$
$711.9869-0.0201$
$708.9005-0.0137$
1287.0524-0.0183 $517.5957-0.0162$ $518.1186-0.0162$
$749.3444-0.0160$
$661.3114-0.0181$ $1069.4826-0.0049$
1065.7059-0.0049
$1169.9022-0.0027$
587.9599-0.0197 $534.6937-0.0126$ 854.55050 .0000 786.0270-0.0088 $1334.4679-0.0201$ $480.0138-0.0187$ 668.8587-0.0216 $632.3530-0.0262$ $838.3905 \quad 0.0000$ $751.3333-0.0211$
$706.7221-0.0195$
578.1675-0.0244
$1173.2348-0.0027$
$838.0615-0.0084$
$1050.2923-0.0143$
$1052.6130-0.0144$
$807.3516-0.0268$
0.0226
0.0234

2.8351 0.0000 0.0000 4.7917
2.0108 3.4393 2.9426 2.9426
4.9904 4.9917
0.9573
2.1534
4.7372 2.5056 2.4999
4.9936 4.9924 3.6243 4.9919
0.0100 0.1684 2.2969 3.9418
4.0695 4.1218
3.2045 4.6663 4.9913 4.4303
0.4961
4.9929 0.3015 0.0100
4.3400 0.2836 0.4907
4.9935 4.9935
0.4994 0.9573
0.4942 4.9938 4.9932 4.9937
4.9937 4.9292 0.5369
3.7228 3.7228
0.3513 4.8070 4.8440 1.1118
4.0033 4.0033
0.1961
4.9937
0.96.
9.9500
9.9500
9.9504 0.3295 0.3015
0.3325 4.9937 4.9937
0.3690 0.3690
4.9622 2.2969 0.4500
9.9502 0.0000 4.9934 0.4342 4.9614
0.0298 4. 2632 4.9938 0.2547 1.
1 1 4. 3928 4.9937 0.4267
2.1497 3.4178 3.3403 4.9932
3.4225 0.1000 3.6375
towers_ sanlu_net twis_rm2 sanlu_net twissel_sanlu_net two oaks sanlu net vili 2 rm 2 sanlu_net villa_2_ sanlu_net wild \qquad sanlu_net almon_mo monit_net beacon_2 monit_net bm603_39 monit_net bolt \qquad monit net
bull \qquad monit_net cajon monit_net calle mo monit net car_mo monit_net cotto mo monit_net edom_ $\overline{2}$ monit_net gap gap gastr_mo monit_net gastr_mo monit_net
lgo_70__monit_net littemo monit net mad ecc monat net mine_mo monit_net park_mo monst_net pattiway monit_net red_h_mo monst_net resort monat_net salısbur monit_net sal_rm_ monit_net saw_e_mo monst_net sawmi_mo monst_net tejon 41 monit net tram

\qquad monit net vaew 2 monit_net 17 | 24 |
| :--- |
| 3 |

\qquad mexic net mexic net mexic net mexic_net
mexic net mexic_net
mexıc_net mexic_net bnplons mexic_net carrı_me mexic_net centinel mexic net cila_6__ mexic_net david - mexic_net diablo mexic net dixie_me mexic_net flerro mexic net Jacum_me mexic_net mayor- mexic_net off 225 m mexic_net off_2me mexic net prieto mexic_net puerta $7-8-28$
arling arling 0 anza net anza_net asbesrml anza net asbestos anza_net bachelor anza_net bee berdo_an black__net brink_an anza-net brınkīma anza_net coahulla anza_net david_an anza_net davis double clasle eve eve_rml anza_net gander- anza-net hay_mi_ anza_net haystack anza_net ida
\qquad Jurup_an anza_net kitching anza net kitchrm2 anza_net laqui_an anza_net lomancer anza_net lomas_ anza_net

N35 $47 \quad 20.49570 \quad$ W120 $25 \quad 13.27121$ N35 $29 \quad 15.72047$ W120 $\quad 5.31412$ N35 2915.24037 W120 15.30391 N35 $51 \quad 31.56240$ W120 $19 \quad 9.91966$ N35 $28 \quad 3.03001$ W121 022.44634 N35 $28 \quad 3 \quad 37969$ W121 022.69944 N35 4547.84540 W120 $28 \quad 8.97252$ N35 $33 \quad 6.36975$ W120 2711.12835 N33 $55 \quad 25.57708$ W116 $37 \quad 0.79903$ N33 $46 \quad 53.43491$ W116 1717.10492 N33 4656.01886 W116 1715.24092 N34 $49 \quad 6.06813$ W118 3312.05145 N34 2049.94303 W117 $27 \quad 3.91896$ N35 210.93662 W119 4537.08083 N35 5317.24149 W120 $25 \quad 50.06793$ N35 $58 \quad 16.41121$ W120 3454.79608 N35 4715.90678 W120 13120.85269 N33 5213.51980 W116 2551.98386 N33 4456.36615 W116 1016.17828 N36 $0 \quad 2.91211$ W120 $28 \quad 39.94246$ N'35 210.73410 W119 $45 \quad 37.43825$ $\begin{array}{llllll}\text { N34 } & 48 & 2.26770 & \text { W118 } & 48 & 9.63656\end{array}$ N35 5658.71502 W120 2953.81744 N35 $58 \quad 9.81038$ W120 $26 \quad 5.60180$ N35 5343.97654 W120 1821.82772 N34 $57 \quad 35.04883$ W119 $25 \quad 56.43958$ N35 $3617.82784 \quad W 120 \quad 15 \quad 38.13719$ N33 4116.22738 W116 2329.48837 N34 4922.49898 W119 4248.46660 N34 4923.36478 W119 4247.12138 N34 4135.33391 W118 3341.25343 N34 4135.36000 W118 3341.08153 N34 $48 \quad 13.08161$ W118 $48 \quad 56.01569$ N33 5212.03733 W116 3352.94809 N33 5535.05737 W116 1115.56683 N34 $34 \quad 3.37897$ W118 $44 \quad 34.16316$ N32 $19 \quad 7.36525$ W115 1128.78539 N32 $20 \quad 3.83206$ W115 1821.95877 N32 2321.13506 W115 1144.04538 N32 2756.68392 W115 621.30806 N32 2614.33475 W115 $16 \quad 28.36779$ N32 2846.44733 W115 1514.82809 N32 2713.48933 W115 1133.56743 N32 1215.88267 W115 3949.84410 N32 2545.21290 W115 $15 \quad 54.97659$ N32 $49 \quad 30.77047$ W116 $0 \quad 54.49878$ N32 3717.40960 W115 4236.08916 N32 $27 \quad 2.90914$ W115 551.00690 N32 1320.12606 W115 2538.00354 N32 $18 \quad 31.27523$ W115 $52 \quad 23.16826$ N32 $47 \quad 27.55835$ W115 4745.57767 N32 2714.35180 W115 3336.69983 N32 4152.07728 W116 952.05495 N32 $5 \quad 26.23844 \quad$ W115 $18 \quad 33.70314$ N32 $38 \quad 53.18203$ W115 $43 \quad 31.64183$ N32 3756.67688 W115 $55 \quad 57.24961$ N32 $25 \quad 5.76364$ W115 $18 \quad 26.95583$ N32 2239.03035 W115 2722.81971 N33 $32 \quad 1.14609$ W117 4348.85747 N33 $52 \quad 15.91418$ W117 $28 \quad 17.10731$ N33 5215.67492 W117 2817.33416 N33 $37 \quad 39.67516$ W116 $27 \quad 32.87475$ N33 $37 \quad 39.42444$ W116 2733.04111 N33 3619.61120 W117 344.38534 N33 4344.39257 W117 4158.43490 N33 5140.52367 W116 520.36316 N33 $48 \quad 22.56058$ W117 3945.97021 N34 049.62429 W117 821.13025 N34 049.29734 W117 819.97527 $\begin{array}{llrlll}\text { N33 } & 35 & 0.16606 & \text { W116 } & 46 & 57.61770\end{array}$ N33 5429.38891 W116 5948.58947 N33 5629.60497 W116 5948.23438 N33 4326.12393 W117 723.59382 N33 $36 \quad 8.70462$ W117 $20 \quad 35.93141$ N33 $38 \quad 55.56498 \quad$ W116 $33 \quad 37.45588$ N33 $38 \quad 55.50174$ W116 $33 \quad 37.50194$ N33 $57 \quad 22.11212$ W117 651.48114 N33 4055.43459 W116 2738.15799 N33 $40 \quad 54.41405$ W116 $27 \quad 37.98518$ N33 4754.40246 W117 1923.27089 N33 3341.54072 W116 4757.09115 N34 156.46646 W117 $26 \quad 33.96287$ N33 5831.10829 W116 4532.12235 N33 $58 \quad 31.10829$ W116 $45 \quad 32.12235$ N33 4214.54143 W116 1845.67968 N33 $45 \quad 54.83638$ W117 4447.20368 N33 4554.76166 W117 4447.83939 N33 3311.85937 W116 3426.88115

$\begin{array}{llllllll}671.9138 & -0.0222 & 0.0326 & 0.0000 & 1983.000 & 0.1612 & 0.1660 & 4.887:\end{array}$ $816.3548-0.0195 \quad 0.0236 \quad 0.00001983 .000 \quad 0.2432 \quad 0.2563 \quad 0.505=$ $\begin{array}{lllllllll}877.1005 & -0.0195 & 0.0236 & 0.0000 & 1983.000 & 1.5700 & 19.5520 & 4.9337\end{array}$ $\begin{array}{llllllll}524.9454 & -0.0090 & 0.0201 & 0.0000 & 1983.000 & 0.1336 & 0.1533 & 0.2093\end{array}$ $\begin{array}{llllllll}122.4205 & -0.0284 & 0.0343 & 0.0000 & 1983.000 & 0.4819 & 0.3664 & 4.993 \% \\ 122.4210 & -0.0284 & 0.0343 & 0.0000 & 1983.000 & 0.4820 & 0.3666 & 4.993 \%\end{array}$ $\begin{array}{llllllll}122.4210 & -0.0284 & 0.0343 & 0.0000 & 1983.000 & 0.4820 & 0.3666 & 4.993 \vdots \\ 587.8591 & -0.0211 & 0.0343 & 0.0000 & 1983.000 & 0.1639 & 0.1304 & 0.484:\end{array}$ $487.2419-0.0239 \quad 0.0325 \quad 0.00001983 .000 \quad 0.1578 \quad 0.2131 \quad 0.496:$ $494.1899 \quad 0.0000 \quad 0.0000 \quad 0.00001983 .00014 .1488 \quad 4.888519 .602$ $\begin{array}{llllllll}11.2441 & 0.0000 & 0.0000 & 0.0000 & 1983.002 & 9.9000 & 17.0000 & 19.50 c ः \\ 12.4241 & 0.0000 & 0.0000 & 0.0000 & 1983.000 & 9.9000 & 17.0000 & 19.50 c \jmath\end{array}$ $\begin{array}{rrrrrrrr}12.4241 & 0.0000 & 0.0000 & 0.0000 & 1983.000 & 9.9000 & 17.0000 & 19.5005 \\ 840.0742 & -0.0133 & 0.0186 & 0.0000 & 1983.000 & 0.4324 & 0.2672 & 3.3789\end{array}$ $\begin{array}{llllllll}1309.4025 & 0.0000 & 0.0000 & 0.0000 & 1992.800 & 0.0050 & 0.0050 & 0.00 C 3\end{array}$ $1522.1080-0.0225 \quad 0.0288 \quad 0.00001983 .000 \quad 0.2123 \quad 0.0989 \quad 0.9573$ $\begin{array}{llllllll}479.7071 & -0.0187 & 0.0312 & 0.0000 & 1983.000 & 0.2590 & 0.3161 & 0.4942 \\ 762.2697 & -0.0199 & 0.0403 & 0.0000 & 1983.000 & 0.2747 & 0.2538 & 0.5363 \\ 735.9345 & -0.0121 & 0.0222 & 0.0000 & 1983.000 & 0.1499 & 0.1324 & 0.3513\end{array}$ $\begin{array}{rrrrrrrr}735.9345 & -0.0121 & 0.0222 & 0.0000 & 1983.000 & 0.1499 & 0.1324 & 0.3513 \\ 453.1565 & -0.0139 & 0.0155 & 0.0000 & 1983.000 & 0.8679 & 1.0526 & 15.3614\end{array}$ $\begin{array}{rrrrrrrr}32.1904 & 0.0000 & 0.0000 & 0.0000 & 1983.002 & 0.5000 & 0.5000 & 1.00 C 2 \\ 164.6301 & -0.0036 & 0.0268 & 0.0000 & 1983.000 & 0.2218 & 0.2771 & 1.1119\end{array}$ $\begin{array}{llllllll}1521.7460 & -0.0225 & 0.0288 & 0.0000 & 1983.000 & 0.6555 & 2.9513 & 0.9993\end{array}$ $\begin{array}{lllllllll}1412.5494 & -0.0189 & 0.0192 & 0.0000 & 1983.000 & 0.6111 & 0.3275 & 0.9995\end{array}$ $\begin{array}{rrrrrrrr}749.3190 & -0.0181 & 0.0346 & 0.0000 & 1983.000 & 0.2139 & 0.2502 & 0.4112\end{array}$ $\begin{array}{rrr}1069.4826 & -0.0049 & 0.0231 \\ 786.0270 & -0.0088 & 0.0230\end{array}$ | 786.0270 | -0.0088 | 0.0230 | 0.0000 | 1983.000 | 0.1341 | 0.1708 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 983.8125 | -0.0180 | 0.0231 | 0.0000 | 1983.000 | 0.1965 | 0.1316 | $\begin{array}{rrrrrrrr}751.3333 & -0.0211 & 0.0286 & 0.0000 & 1983.000 & 0.1402 & 0.1808 & 0.4267 \\ 188.1576 & 0.0000 & 0.0000 & 0.0000 & 1992.802 & 0.5000 & 0.5000 & 1.0000\end{array}$ $\begin{array}{lllllllll}1545.9185 & -0.0268 & 0.0327 & 0.0000 & 1983.000 & 0.3929 & 0.0352 & 0.9993\end{array}$ $\begin{array}{llllllllll}1545.8605 & -0.0268 & 0.0327 & 0.0000 & 1983.000 & 38.4783 & 22.7927 & 9.95: 3\end{array}$ $\begin{array}{llllllll}1648.1312 & -0.0183 & 0.0208 & 0.0000 & 1983.000 & 0.1349 & 0.1000 & 0.4833\end{array}$ $1646.6605-0.0182 \quad 0.0234 \quad 0.00001983 .000 \quad 0.1347 \quad 0.1000 \quad 0.0 C=2$ $\begin{array}{rrrrrrrr}1450.3935 & -0.0181 & 0.0206 & 0.0000 & 1983.000 & 0.2006 & 0.0822 & 2.64 \varepsilon_{7}\end{array}$ $173.7541 \quad 0.0000 \quad 0.0000 \quad 0.00001983 .00019 .6000 \quad 0.600019 .60$ に $\begin{array}{llllllll}1545.7990 & 0.0084 & -0.0062 & 0.0000 & 1983.002 & 1.6000 & 0.7000 & 19.50: \\ 1221.9767 & 0.004 & & 0.000\end{array}$ $\begin{array}{rrrrrrrr}1221.9767 & -0.0243 & 0.0211 & 0.0014 & 1983.000 & 0.4709 & 0.4484 & 3.53:: \\ -21.5440 & -0.0149 & 0.0365 & 0.0000 & 1983.000 & 1.0996 & 1.5824 & 11.4883\end{array}$

| -22.3993 | -0.0186 | 0.0328 | 0.0000 | 1983.000 | 1.1107 | 2.1024 | 19.5623 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $-18.9723-0.0168 \quad 0.0406$ $\begin{array}{lll}-10.4459 & 0.0000 & 0.0000\end{array}$ -25.2576 $\quad 0.0000 \quad 0.0000$ $-16.2459 \quad 0.0000 \quad 0.0000$ $\begin{array}{lll}-14.2683 & -0.0130 & 0.0317 \\ -26.8555 & -0.0263 & 0.0320\end{array}$ $-21.2459 \quad 0.0000$ 701.7696-0.0268 $743.3144-0.0250$ $1661.6177-0.0270$ $640.0622-0.0250$ $1488.7082-0.0274-0.0314$ $-36.6410-0.0267 \quad 0$. 1345.7927-0.0278 $923.7605-0.0232$ 81.0491-0.0059 $\begin{array}{lll}498.0631 & -0.0270 & 0 \\ 188.0666 & -0.0196 & 0\end{array}$ $1058.1591-0.0230$ $175.0786 \quad 0.0000$ 530.2309-0.0266 $530.4337-0.0266$ $1567.8805-0.0170$ $1572.1398-0.0170$ $719.2156-0.0266$ 507.7101-0.0285 0.0281 $1577.6169-0.0079 \quad 0$

$794.7609-0.0287$ 663.9043-0.0216 662.3584-0.0006 1674.58430 .0000 $910.8104-0.0222$
$898.6569-0.0285$ 765.0032-0.0261 1032.8638-0.0282 $2114.1003-0.0176$ 2116.70290 .0000 $\begin{array}{rr}126.9869 & 0.0000\end{array}$ 1127.44090 .0000 $808.2544-0.0267$ $376.6506-0.0267$ 642.42520 .0000 1215.91690 .0000 $1211.3469 \quad 0.0000$ $361.5385-0.0142$ $\begin{array}{ll}367.1637 & -0.0291 \\ 366.8923 & -0.0291\end{array}$ $1659.0607-0.0199 \quad 0.0233$

74.5166	-0.0143	0.0191	0.0000	1983.000			
75.5441	70	10	0.0000				
750	-0.0260	.		1983.000	16.1684		
633.	-0.0270	0.02					
691					0.8140	0.9282	16.25EE
818	-0.0251	0.0256			32		
279.5533	-0	0.0309			0.0584		
264.1502					0.0628		
	-0.02	0.0266			0.6102		
985	-0.02	. 0266	0.0000		42.5292		
558	-0.0198	0.0222		19			
1485.5569	0.0000				44.7213		
	-0.02	0.028		1983.000	0.7350		
1695.9	-0.02	0.0289	0.	1983.000	12		
343	-0.031	0.030		19			233
50	-0.0278	0.0268		19			cs
700	-0.0277	0.0		1983.000	0.		
1533.6569	0.0000	0.0		1983.000	38.2	23.	
	-0.0282	0.0275	. 0	198			
	-0.0163	0.00					52
203	-0	0.0242					
	-0.	0.0242	0.	1983.00	42.49		
2040	-0.0	0.0242	. 00	1983.00			
205	-0.0203	0.0242			42	14.	
	-0	0.0199	0.		1.7781	0.8170	
261	-0.	0.0007	0.0003	19	19.6		
135	-0.00	0.000	0.0	19			
4					14.		
157	-0				0.	02	
131	-0.0083	0.0146	0.0				
131	0.0062	-0		19		1.0293	9.3135
131	0.0	-0		1983.000	0.4027		-3
13	0.	-		19	4.		19.5332
	-0.010	0		1983.000	1.5891		
583.9569	-0.010	. 015		198			
45	-0.0139	0.0155		1983.000	0.8679		
166	0.0084			19	18.628		
	-0.00	0.0122		1983.000	0.	54	8.3447
133	-0.00	0.0118					
36	-0.0142	0.0177				0.7532	8.8005
123	-0.0097	0.0131					
	-0.010	0.0132			0.9928		
609	-0.00	0.0100			, 9166		
112	-0.00	0.0138			. 3785		7
	-0.00				. 0152		14.3933
1276	-0.0	0.0142	0.0000	19	5529		6.5635
83	-0.	0.0148			. 3755		0.9984
10		-0.00					
102	-0.0025	0.0103		198	. 2728	0.6418	13.93:2
89	-0.010	0.0	0.0		4.4824		
67	-0.004				1.3885	0.3846	
52	-0	0.0					10.93i4
-72	-0.00	0.0049	0.000	1983.000	0.5824	0.5099	
748.5412	-0.003	0.					
1577.6169	-0			1983	.		
48	0.0	0.0			.	. 8656	44.25:7
	-0.02	0.0	0.0		0.6209		
360.7130	-0.0	0.02				21	
359	-0.0	0.0			. 621		
34	-0.0	0.00	.	3.000		0.8544	19.6035
701	-0.022	0.0283	0.00	3.000	0.4426		
663.8995	0.0	. 0065	0.0	1983.000			
652.6819	0.0						
1300.5255		0.0					
195	.	0.0000	0.0	1983.000		13.3888	
-36.6410	-0.02	0.0319	0,	1983.000	0.4581	0.9291	
1000.1433	-0.02	0.02		193.000			$5.15{ }^{\text {c }} 2$
676.2472	-0.025	0.0		1983.000	0.4349	. 7163	
-85.5989	0.00	0.00	.	1983.00	0.4915	0.486	
-85.1377	0.0000	0.0000	.	1983.00	15.344	12.2226	
1682.1796	-0.026	0.0311		983.00	0.815		7.0324
1345	-0.02	0.0		1983.000	. 552	640	10.1945
7.7220	-0.0	0.024	0.000	1983.000	. 433	. 6220	6.1959
71.5385	-0.0142	0.017	.	1933.			
	-0.0143	0.0191	0.0	1983.000	0.495	46	
479.0259	-0.0104	0.0139	0.000	1983.000	0.4377	0.6766	11.6927
879.6353	-0.0276	0.0321	-0.006	1986.573	0.725	0.988	12.0354
71.7596	0.0000	0.0000	.	1993.000			
104.7767	-0.0060	0.008	0.000	1983.000	0.509	0.5577	3i3
105.3077	-0.02	0.0267	0.000	1983.000	0.509	0.5577	, 73
81.0491	-0.0250	0.0343	0.0003	1983.000	0.497	1.1288	-
498.0631	-0.0270	0.0330	0.0000	1983.000		. 1523	
-15.1996	-0.0053	0.0040	-0.0001	1983.000		4805	8.37:
1137.9786	-0.0065	0.0	0.0000	1983.000	0.9684	0.8619	12.51:7
790.3725	-0.0169	0.0206	0.000	1983.000	0.4861	0.5424	6.195:
-71.7558	0.0000	0.0000	0.0000	1983.000	12.9495	14.7408	19.6:16
2.590	-0.0091	0.0118	0.0	1983.000	. 4		.

| salva_salto_net | N33 | 14 | 1.15601 | W115 | 15 | 41.32205 |
| :--- | :--- | :--- | ---: | ---: | :--- | ---: | ---: |
| soda_salto_net | N33 | 10 | 42.96416 | W115 | 55 | 4.38765 |
| stage_salto_net | N32 | 54 | 54.26926 | W116 | 17 | 8.11664 |
| sup_salto_net | N32 | 57 | 17.65786 | W115 | 49 | 30.74694 |
| volcan_salto_net | N33 | 6 | 6.73003 | W116 | 34 | 43.99499 |
| volcan_2 salto_net | N33 | 6 | 6.73013 | W116 | 34 | 43.99481 |
| w1lson_salto_net | N33 | 10 | 38.22493 | W116 | 26 | 1.39365 |
| yak_s_salto_net | N33 | 6 | 8.57596 | W116 | 16 | 39.00044 |

594.0476	-0.0030	0.0029	0.0001	1983.000	1.0148	0.6815	17.4032
31.9068	-0.0171	0.0215	0.0001	1983.000	0.4096	0.5212	5.0317
824.8944	-0.0272	0.0311	0.0004	1983.000	0.6041	0.8009	8.4216
191.8180	-0.0253	0.0283	0.0001	1983.000	0.4424	0.7456	6.8293
1594.2916	-0.0259	0.0316	0.0000	1983.000	1.0083	0.6408	10.0317
1594.3875	-0.0083	0.0107	0.0000	1983.000	1.0083	0.6408	$10.034:$
1363.8983	-0.0247	0.0298	0.0001	1983.000	0.7782	0.5624	6.2821
$1081.2583-0.0251$	0.0285	0.00021983 .000	0.5981	0.6180	4.7886		

Table 4: VLBI/GPS sites used in this analysis

site full-name		lat	de		on	ade	height	u	v	W	h	Sn	Se	Su
YOMA 7894 glbk_sln	N32	56	20.89178	W114	12	11.30341	238.4184	0.0004	0.0002	0.0105	1987. 353	0.0657	0.0647	0.0653
BLKB7269 glbk_sln	N33	39	49.49969	W115	43	11.33474	489.3921	-0.0054	0.0010	-0.0031	1987.079	0.0658	0.0649	0.0654
DEAD7267 glbk_sln	N34	15	17.99416	W116	16	43.97113	833.0976	-0.0040	-0.0002	0.0541	1987.642	0.0659	0.0651	0.0655
MONP7274 glbk_6ln	N32	53	30.35936	W116	25	22.14310	1838.7331	-0.0317	0.0253	-0.0064	1987.544	0.0657	0.0646	0.0653
PINY GPS glbk_sln	N33	36	33.29567	W116	27	31.68935	1235.5440	-0.0165	0.0212	-0.0018	1986.480	0.0636	0.0332	0.01 c2
GOLDVENO glbkeln	N35	14	51.72318	W116	47	41.60213	1062.8826	-0.0024	0.0082	-0.0081	1989.506	00658	0.0647	0.0653
MOJA_GPS glbk_sln	N35	19	53.60277	W116	53	17.35055	904.5336	-0.0039	0.0077	-0.0032	1991.161	0.0619	0.0317	0.0075
SIO1_GPS glbk_sln	N32	52	3.98589	W117	15	8.39604	7.5681	-0.0322	0.0299	0.0153	1991.876	0.0635	0.0327	0.0069
SOLJ_GPS glbk_sln	N32	50	23.52199	W117	15	8.99042	215.4982	-0.0323	0.0285	0.0069	1988.170	0.0636	0.0331	0.0078
NIGO_GPS glbk_sln	N33	30	52.32750	W117	43	49.05408	235.7494	-0.0314	0.0307	0.0011	1989.787	0.0628	0.0331	0.0072
PEAR 7254 glbk_6ln	N34	30	43.67421	W117	55	20.61791	890.9723	-0.0150	0.0205	-0.0158	1986.877	0.0659	0.0651	0.0656
JPLM_GPS glbk_sln	N34	12	17.35069	W118	10	23.59868	423.9774	-0.0270	0.0242	0.0126	1991.901	0.0620	0.0332	0.0067
OVRO_GPS glbk_sln	N37	13	57.22076	W118	17	37.65250	1178.0603	-0.0058	0.0076	-0.0010	1989.908	0.0597	0.0323	0.0069
PVER_GPS glbk_6ln	N33	44	37.54758	W118	24	12.78565	69.4543	-0.0291	0.0301	0.0092	1990.778	0.0622	0.0337	0.0069
BRSE_GPS glbk_sin	N33	24	25.25418	W118	24	17.47350	448.5902	-0.0307	0.0333	0.0088	1989.508	0.0625	0.0339	0.0072
BLOF_GPS glbk_sln	N32	55	36.40844	Wil8	31	6.75401	297.3293	-0.0306	0.0359	0.0070	1989.313	0.0627	0.0343	0.0073
SAFE_GPS glbk_sln	N34	19	49.57244	W118	36	4.85026	1102.9961	-0.0261	0.0255	0.0094	1991.498	0.0617	0.0337	0.0069
LOVE_GPS glbk_sln	N34	29	46.75128	W118	40	7.17291	727.0558	-0.0248	0.0218	0.0068	1991.749	0.0615	0.0337	0.0070
WHIT_GPS glbk_sln	N34	34	2.77603	W118	44	34.00343	1221.3702	-0.0121	0.0251	0.0009	1990.550	0.0615	0.0340	0.0076
CATO_GPS glbk_sin	N34	5	8.92891	W118	47	8.75839	825.5900	-0.0291	0.0291	0.0014	1991.589	0.0618	0.0340	0.0070
HAPY_GPS glbk_sln	N34	21	28.70043	W118	51	0.52712	669.0879	-0.0248	0.0296	0.0144	1991.762	0.0615	0.0340	0.0071
HOPP_GPS glbk_sln	N34	28	39.80814	W118	51	55.96788	1344.9731	-0.0227	0.0236	0.0123	1991.881	0.0614	0.0339	0.0063
SNPA_GPS glbk_sln	N34	23	16.33306	Wi18	59	55.65153	184.7995	-0.0272	0.0270	0.0062	1990.597	0.0614	0.0341	0.00
SNP2_GPS glbk_sln	N34	26	25.26217	W119	0	34.72668	1476.6934	-0.0242	0.0231	-0.0023	1992.127	0.0614	0.0341	$0.00 \in 3$
SCLA_GPS glbk_sln	N34	19	32.44823	W:19	2	21.12539	655.3611	-0.0264	00286	0.0195	1990.215	0.0615	0.0344	$0.00{ }^{-6}$
MPNS_GPS glbk_sln	N34	48	46.17029	W:19	8	43.47866	2662.6006	-0.0223	0.0198	0.0233	1991.705	0.0610	0.0341	0.00%
COTR_GPS glbk_gln	N34	7	12.68080	W:19	9	14.39109	-34.0748	-0.0289	0.0340	-0.0271	1989.603	0.0616	0.0346	0.0073
MUNS_GPS glbk_sln	N34	38	8.81283	W:19	18	1.94763	2107.5871	-0.0280	0.0249	0.0044	1991.396	0.0611	0.0343	$0.00{ }^{-3}$
SOLI_GPS glbk_sin	N34	17	54.02647	W119	20	33.67371	-11.6259	-0.0292	0.0281	0.0046	1991.471	0.0613	0.0345	0.00
FIBR_GPS glbk_sln	N35	23	54.58928	W. 19	23	38.45561	54.7118	-0.0088	0.0127	0.0040	1989.906	0.0604	0.0341	0.0070
TWIN_GPS glbk_sln	N33	13	54.29920	W119	28	44.25935	200.1605	-0.0324	0.0355	-0.0026	1989.613	0.0620	0.0352	0.0073
YAM2_GPS glbk_sin	N34	51	9.16981	W:19	29	3.89002	806.6027	-0.0280	0.0284	0.0010	1990.462	0.0608	0.0345	0.0072
LACO_GPS glbk sin	N34	29	39.87590	W:19	42	50.01706	1164.8576	-0.0298	0.0301	0.0036	1991.061	0.0609	0.0348	0.0069
CENT_GPS glbk_sin	N33	59	41.43538	W:19	45	10.51788	389.5322	-0.0278	0.0342	0.0065	1989.853	0.0612	0.0351	0.0070
MADC_GPS glbk_sln	N35	4	32.23428	W:20	4	1.66736	958.0918	-0.0248	0.0306	0.0040	1990.801	0.0603	0.0349	0.0069
GAVI_GPS glbk_sln	N34	30	6.52010	W120	11	55.65845	713.3918	-0.0323	0.0344	-0.0098	1989.950	0.0606	0.0354	0.0073
ALAM_GPS glbk_sin	N34	47	54.60789	W: 20	15	24.47970	457.2234	-0.0312	0.0347	0.0282	1991.478	0.0604	0.0353	0.0069
POZO_GPS glbk_sln	N35	20	45.59111	Wi 20	17	55.29107	728.6537	-0.0242	0.0316	0.0144	1989.899	0.0600	0.0352	0.0072
GRAS_GPS glbk_sln	N34	43	50.04385	W: 20	24	50.64455	331.1783	-0.0286	00369	0.0165	1991.231	0.0603	0.0354	0.0069
LOSP GPS glbk_sin	N34	53	37.47457	W:20	36	22.28021	463.1409	-0.0279	0.0347	0.0050	1990.706	0.0601	0.0356	0.0069
VNDN_GPS glbk_sin	N34	33	22.55601	W:20	36	58.31329	-11.4871	-0.0302	0.0363	0.0030	1991.399	0.0603	0.0357	0.0068
BLAL_GPS glbk_sln	N35	21	31.36183	$\mathrm{W}: 20$	49	54.22078	166.4970	-0.0264	0.0357	0.0068	1989.712	0.0596	0.0356	0.0070
BLAN_GPS glbk_sln	N35	39	52.44917	w:21	17	4.04932	-24.8115	-0.0246	0.0359	-0.0089	1989.960	0.0591	0.0360	0.00

Table 5: USGS trilateration subnetworks

subnetwork	site $^{\mathrm{a}}$	min. vel. direction	scatters
San Gabriel - Tehachapi	52	$\mathrm{~N} 25^{\circ} \mathrm{E}$	$5.70 \mathrm{~mm}, 0.17 \mathrm{ppm}$
Los Padres - Tehachapi	35	$\mathrm{~N} 30^{\circ} \mathrm{E}$	$4.23 \mathrm{~mm}, 0.20 \mathrm{ppm}$
Carrizo - San Luis	26	$\mathrm{~N} 50^{\circ} \mathrm{E}$	$3.07 \mathrm{~mm}, 0.22 \mathrm{ppm}$
San Luis - Parkfield	67	$\mathrm{~N} 50^{\circ} \mathrm{E}$	$4.84 \mathrm{~mm}, 0.25 \mathrm{ppm}$
Salton - Mexicali	63	$\mathrm{~N} 50^{\circ} \mathrm{E}$	$3.35 \mathrm{~mm}, 0.22 \mathrm{ppm}$
Anza - Joshua	83	$\mathrm{~N} 50^{\circ} \mathrm{E}$	$3.64 \mathrm{~mm} ; 0.22 \mathrm{ppm}$

a. Some sites are used by two subnetworks. The total number of sites is 323

Table 6: imposed constraints for minimum constrained solutions

section	constraint	function
southern	$\mathrm{V}($ Mecca $)=0$	control section translation
	V (Salva) towards $\mathrm{N} 135^{\circ} \mathrm{E}$	control section rotation
northern	V (Pattiway) $=0$	control section translation
	$\mathrm{V}($ Tank $)$ towards $\mathrm{N} 115^{\circ} \mathrm{E}$	control section rotation
	V (Red hill) towards $\mathrm{N} 40^{\circ} \mathrm{W}$	remedy connection defect between
		San Luis and Carrizo subnetworks
	$\mathrm{V}($ Gifford $)=\mathrm{V}($ Allen $)$	stabilize Carrizo subnetwork

Table 7: Velocity constraints

VG site	EDM site	distance	final status
DEAD7267	Sandhill	0 km	used
NIGU_GPS	Niguel	0.43 km	used
PINY_GPS	Asbestos	2.07 km	used
MONP7274	Monu_res	0.22 km	not used
BLHL_GPS	Blhllres	0.02 km	used
SAFE_GPS	Piconcer	0.03 km	used
MPNS_GPS	Mt_pinos	0 km	used
SNP2_GPS	Santapau	0 km	not used
JPLM_GPS	Jpl1_rm1	0.21 km	not used
PEAR7254	Tank	1.34 km	used
WHIT_GPS	whitaker	0.02 km	not used
MUNS_GPS	Reyes	1.83 km	used

Table 8a: Compatibility test: formal uncertaities of VG solution scaled by a factor of 2

Compatibility test:			using VG final combined sites, 2 sigma scaling											
* dif. between: ../net_mid/solvem_scum.map.2sig and solvem_comb.map.2sig time: 1993/ 6/19 9:11:10														
* symbol ! means failed to pass compatıbılıty crıterıon (95% confidence level) * lon lat dVe dVn Cve cvn corr site														
	245.79686014	32.93913660	0.00136413	0.02452755	0.010	0.060	0.0002	YUMA7894						
	244.28018503	33.66374988	-0.01315690	0.01159851	0.010	0.010	0.0001	BLKB7269						
$!$	243.72111933	34.25499839	0.45676708	-14.35719731	1.874	4.865	0.4458	DEAD7267						
	243.57718401	32.89176545	-0.00700461	0.00997472	0.010	0.075	0.0009	MONP7274						
1	243.54119793	33.60924826	0.29972965	0.56813894	0.329	0.210	-0.2082	PINY_GPS						
	243.20511069	35.24770040	-0.00629703	0.00881368	0.010	0.059	0.0000	GOLDVENU						
	243.11184743	35.33155577	-0.00265779	0.01103823	0.010	0.068	0.0118	MOJA_GPS						
!	242.74767081	32.86777149	0.12466139	0.34017860	0.158	0.112	-0.0327	SIO1_GPS						
	242.74750448	32.83986590	-0.62119023	-0.05496714	0.351	0.082	0.2946	SOLJ_GPS						
	242.26970952	33.51453355	-0.93363227	-0.09740505	0.558	0.090	0.3535	NIGO_GPS						
	242.07760677	34.51213101	-0.35341706	0.94341074	1.139	1.503	0.1356	PEART̄254						
!	241.82678075	34.20481771	0.02744370	0.23830264	0.066	0.087	0.1238	JPLM_GPS						
	241.70620810	37.23256085	0.00185869	0.00768912	0.032	0.058	0.5619	OVRO_GPS						
	241.59645089	33.74376112	-0.15998870	-0.00620707	0.099	0.065	0.1891	PVER_GPS						
	241.59514843	33.40701310	-0.23408981	-0.02840351	0.145	0.059	0.3541	BRSH_GPS						
	241.48145932	32.92677808	-0.28616706	-0.02482963	0.173	0.074	0.3831	BLOF_GPS						
	241.39865512	34.33043485	-0.27162688	0.09311457	0.258	0.151	-0.1215	SAFE_GPS						
	241.33134321	34.49631810	-0.15725304	-0.05568800	0.154	0.087	0.0174	LOVE GPS						
!	241.25722227	34.56743609	-0.05806882	0.04037959	0.099	0.010	0.0002	WHIT GPS						
	241.21423648	34.08581136	-0.10485400	0.02804152	0.125	0.087	0.1354	CATO_GPS						
	241.14985593	34.35797001	-0.07133113	0.03383853	0.126	0.064	-0.0114	HAPY_GPS						
	241.13445555	34.47772261	-0.06852287	0.03997701	0.123	0.085	0.0217	HOPP_GPS						
	241.00121016	34.38786845	-0.07769973	0.02264104	0.088	0.092	0.1770	SNPA_GPS						
	240.99035625	34.44034866	-0.06183294	0.03334909	0.133	0.079	0.0035	SNP2_GPS						
	240.96080051	34.32567828	-0.00853319	0.11668614	0.166	0.089	0.0079	SCLA ${ }^{-} \mathrm{GPS}$						
	240.85459139	34.81282355	-0.53368052	-1.89414712	1.084	0.972	0.0442	MPNS_GPS						
	240.84600455	34.12018709	-0.01927014	0.04762380	0.075	0.079	0.2635	COTR_GPS						
	240.69946154	34.63577947	0.11105169	0.39055221	0.376	0.289	-0.2492	MONS_GPS						
	240.65731550	34.29833854	-0.07910686	-0.01003713	0.071	0.083	0.4248	SOLI_GPS						
	240.60598525	35.39849624	0.01268432	-0.00574471	0.088	0.052	0.2558	FIBR_GPS						
	240.52104141	33.23174766	-0.22896639	-0.01672173	0.128	0.078	0.2807	TWIN_GPS						
	240.51558838	34.85254527	0.08541753	0.16629373	0.389	0.118	-0.1298	YAM2_GPS						
	240.28610896	34.49440779	-0.04608349	0.00924951	0.051	0.067	0.6352	LACO_GPS						
	240.24708046	33.99484105	-0.08073921	0.00144013	0.071	0.073	0.3680	CENT_GPS						
	239.93287233	35.07561848	0.08124144	-0.02023866	0.183	0.101	-0.2460	MADC_GPS						
	239.80120849	34.50180898	-0.03119595	0.01093596	0.053	0.065	0.3211	GAVI_GPS						
	239.74320302	34.79849954	-0.01240376	0.00230387	0.010	0.066	0.0012	ALAM_GPS						
	239.70130990	35.34599556	-0.00357143	0.01445015	0.048	0.053	0.5409	POZO_GPS						
	239.58593468	34.73056499	-0.00905166	0.00600201	0.039	0.064	0.6166	GRAS_GPS						
	239.39381344	34.89374052	-0.00955126	0.00769894	0.037	0.047	0.5056	LOSP_GPS						
	239.38380469	34.55626281	-0.00583750	0.01671035	0.027	0.073	1.0641	VNDN-GPS						
	239.16827399	35.35870946	0.03555383	0.01247149	0.115	0.080	0.4527	BLEL_GPS						
	238.71554378	35.66456696	0.06122698	0.02540618	0.050	0.059	0.3777	BLAN_GPS						

Table 8b: Compatibility test: formal uncertaities of VG solution scaled by a factor of $\mathbf{3}$

Compatibilıty test							
dif. between: solvem_scum.map and solvem_comb.map time: 1993/ 6/18 10:38: 8							
* symbol ! means * Ion	$\begin{aligned} & \text { failed to pa } \\ & \text { lat } \end{aligned}$	compatibili dVe	y criterion dVn	confıd Cve	e leve Cvn	corr	site
245.79686014	32.93913660	0.00110082	0.04783318	0.010	0.128	0.0002	YOMA7894
244.28018503	33.66374988	-0.01423932	0.03626075	0.010	0.115	0.0001	BLKB7269
243.72111933	34.25499839	2.57709513	-14.92675860	3.493	7.405	0.3441	DEAD7267
243.57718401	32.89176545	-0.00925721	0.02890729	0.046	0.106	0.3424	MONP7274
243.54119793	33.60924826	0.44382895	0.72407307	0.622	0.349	-0.1914	PINY_GPS
243.20511069	35.24770040	-0.01169488	0.02355854	0.010	0.072	0.0000	GOLDVEENO
243.11184743	35.33155577	-0.00284685	0.03034332	0.026	0.105	0.9018	MOJA GPS
242.74767081	32.86777149	0.17561412	0.44715790	0.306	0.185	-0.0492	SIO1_GPS
242.74750448	32.83986590	-1.04459018	-0.07692382	0.668	0.143	0.2982	SOLJ GPS
242.26970952	33.51453355	-1.55243931	-0.14888767	1.048	0.164	0.3662	NIG0_GPS
242.07760677	34.51213101	-0.59677372	1.32770323	1.932	2.655	0.0898	PEAR7254
241.82678075	34.20481771	0.03755696	0.31948650	0.115	0.150	0.1054	JPLM_GPS
241.70620810	37.23256085	0.00716116	0.01687425	0.055	0.091	0.5763	OVRO_GPS
241.59645089	33.74376112	-0.27230285	-0.00086074	0.176	0.113	0.1705	PVER_GPS
241.59514843	33.40701310	-0.39212608	-0.03529394	0.266	0.103	0.3356	BRSH_GPS
241.48145932	32.92677808	-0.47673354	-0.02852606	0.317	0.128	0.3683	BLOF_GPS
241.39865512	34.33043485	-0.49641544	0.21086890	0.463	0.295	-0.2375	SAFE_GPS
241.33134321	34.49631810	-0.25995412	-0.02756850	0.272	0.141	-0.0483	LOVE_GPS
241.25722227	34.56743609	-0.12751644	0.07081243	0.210	0.125	-0.0854	WHIT-GPS
241.21423648	34.08581136	-0.20485314	0.05775850	0.228	0.142	0.0614	CATO_GPS
241.14985593	34.35797001	-0.15432592	0.05655611	0.227	0.125	-0.1042	HAPY_GPS
241.13445555	34.47772261	-0.15316821	0.06726543	0.236	0.139	-0.0741	HOPP GPS
241.00121016	34.38786845	-0.14941471	0.04121216	0.159	0.154	0.1368	SNPA-GPS
240.99035625	34.44034866	-0.13929515	0.05770642	0.247	0.157	-0.1161	SNP2-GPS
240.96080051	34.32567828	-0.07261411	0.13980394	0.288	0.172	-0.1224	SCLA_GPS
240.85459139	34.81282355	-0.56636179	-2.05712972	1.725	1.534	-0.0090	MPNS_GPS
240.84600455	34.12018709	-0.03382335	0.06308288	0.130	0.138	0.2363	COTR_GPS
240.69946154	34.63577947	0.03599830	0.40834621	0.685	0.507	-0.3795	MUNS_GPS
240.65731550	34.29833854	-0.12692127	0.01022904	0.134	0.129	0.3762	SOLI_GPS
240.60598525	35.39849624	0.05412186	-0.00156087	0.187	0.110	0.2489	FIBR_GPS
240.52104141	33.23174766	-0.37961713	-0.01427152	0.243	0.135	0.2550	TWIN_GPS
240.51558838	34.85254527	-0.04306524	0.20396856	0.662	0.214	-0.2316	YAM2_GPS
240.28610896	34.49440779	-0.07326673	0.02745191	0.099	0.123	0.4817	LACO_GPS
240.24708046	33.99484105	-0.12629734	0.01161305	0.124	0.127	0.3309	CENT_GPS
239.93287233	35.07561848	0.19091242	-0.02636650	0.365	0.186	-0.2492	MADC_GPS
239.80120849	34.50180898	-0.04346573	0.03291356	0.064	0.125	0.3208	GAVI_GPS
239.74320302	34.79849954	-0.01514391	0.02141486	0.058	0.127	0.5712	AIns ${ }^{-}$GPS
239.70130990	35.34599556	0.00567670	0.02951935	0.083	0.103	0.4656	F.
239.58593468	34.73056499	-0.00773401	0.02124843	0.068	0.101	0.6476	GRAS_-.
239.39381344	34.89374052	-0.00298646	0.02103266	0.078	0.081	0.3805	LOSP-GFS
239.38380469	34.55626281	-0.00369599	0.03898145	0.058	0.126	0.8062	VNDN_GPS
239.16827399	35.35870946	0.07398258	0.02387236	0.243	0.139	0.4297	BLHL_GPS
238.71554378	35.66456696	0.12775462	0.05067990	0.137	0.103	0.2276	BLAN_GPS

Table 8c: Compatibility test: add constraint on site SNP2 with scaling factor of 3

