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1. Preamble

These lecture notes present the computation of the fulesysif Boltzmann

equations describing the evolution of the photon, baryahcatd dark matter flu-
ids up to second order in perturbation theory, as recenilyistl in Refs. [1, 2].

These equations allow to follow the time evolution of the m@s microwave

background anisotropies at all angular scales from they egmbch, when the
cosmological perturbations were generated, to the pregeotigh the recombi-
nation era. The inclusion of second-order contributioma@ndatory when one
is interested in studying possible deviations from Gaundfsiaof cosmological

perturbations, either of primordial (e.g. inflationaryjgim or due to their sub-
sequent evolution. Most of the emphasis in these lecturtssnaill be given

to the derivation of the relevant equations for the study afngic microwave
background anisotropies and to their analytical solutions

2. Introduction

Cosmic Microwave Background (CMB) anisotropies play a sgeole in cos-
mology, as they allow an accurate determination of cosmcébgarameters and
may provide a unique probe of the physics of the early unévarsl in particular
of the processes that gave origin to the primordial pertioha.

Cosmological inflation [3] is nowadays considered the dantparadigm for
the generation of the initial seeds for structure formatlarthe inflationary pic-
ture, the primordial cosmological perturbations are eeé#&tom quantum fluctu-
ations “redshifted” out of the horizon during an early pdrid accelerated expan-
sion of the universe, where they remain “frozen”. They arseotable through
CMB temperature anisotropies (and polarization) and thgelscale clustering
properties of the matter distribution in the Universe.

This picture has recently received further spectaculafigoations from the
results of the Wilkinson Microwave Anisotropy Probe (WMA#Yee year set
of data [4]. Since the observed cosmological perturbataresof the order of
102, one might think that first-order perturbation theory wil &dequate for all
comparisons with observations. This might not be the caseigh. Present [4]
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6 N. Bartold', S. Matarresé & A. Riottcd®

and future experiments [5] may be sensitive to the non-titiea of the cosmo-
logical perturbations at the level of second- or highereogkrturbation theory.
The detection of these non-linearities through the nonsSianity (NG) in the
CMB [6] has become one of the primary experimental targets.

There is one fundamental reason why a positive detectioriso relevant:
it might help in discriminating among the various mechars$ar the generation
of the cosmological perturbations. Indeed, various modéisflation, firmly
rooted in modern particle physics theory, predict a sigaift@mount of primor-
dial NG generated either during or immediately after inflativhen the comov-
ing curvature perturbation becomes constant on superdroscales [6]. While
single-field [7] and two(multi)-field [8] models of inflatigoredict a tiny level of
NG, “curvaton”-type models, in which a significant conttiloun to the curvature
perturbation is generated after the end of slow-roll inflatby the perturbation
in a field which has a negligible effect on inflation, may prdi high level of
NG [9]. Alternatives to the curvaton model are models wheoeiaature per-
turbation mode is generated by an inhomogeneity in the dextay{10, 11], the
mass [12] or the interaction rate [13] of the particles resiue for the reheating
after inflation. Other opportunities for generating thevature perturbations oc-
cur at the end of inflation [14], during preheating [15], an@ @hase-transition
producing cosmic strings [16].

Statistics like the bispectrum and the trispectrum of theBCé&n then be
used to assess the level of primordial NG on various cosncdbgcales and to
discriminate it from the one induced by secondary anisi&pnd systematic
effects [6,17-19]. A positive detection of a primordial NGGthe CMB at some
level might therefore confirm and/or rule out a whole classnethanisms by
which the cosmological perturbations have been generated.

Despite the importance of NG in CMB anisotropies, littleoeffhas ben made
so far to provide accurate theoretical predictions of it. te contrary, the vast
majority of the literature has been devoted to the compriaif the bispectrum
of either the comovig curvature perturbation or the graigital potential on large
scales within given inflationary models. These, howeves,rat the physical
guantities which are observed. One should instead provid# prediction for
the second-order radiation transfer function. A prelimyretep towards this goal
has been taken in Ref. [20] (see also [21]) where the full séarder radiation
transfer function for the CMB anisotropies on large angstaies in a flat uni-
verse filled with matter and cosmological constant was cdethuncluding the
second-order generalization of the Sachs-Wolfe effedth biwe early and late
Integrated Sachs-Wolfe (ISW) effects and the contributibthe second-order
tensor modes.

There are many sources of NG in CMB anisotropies, beyond fingopdial
one. The most relevant sources are the so-called secondaptrapies, which



Cosmic Microwave Background Anisotropies up to SecondiOrde 7

arise after the last scattering epoch. These anisotropiebe divided into two
categories: scattering secondaries, when the CMB photatieswith electrons
along the line of sight, and gravitational secondaries véftatts are mediated by
gravity [22]. Among the scattering secondaries we mayhisthermal Sunyaev-
Zeldovich effect, where hot electrons in clusters transfeergy to the CMB
photons, the kinetic Sunyaev-Zeldovich effect producedhgybulk motion of
the electrons in clusters, the Ostriker-Vishniac effecddpiced by bulk motions
modulated by linear density perturbations, and effectstdueionization pro-
cesses. The scattering secondaries are most significamalhangular scales
as density inhomogeneities, bulk and thermal motions grohbe@come sizeable
on small length-scales when structure formation proceeds.

Gravitational secondaries arise from the change in endngiyatons when the
gravitational potential is time-dependent, the ISW effacd gravitational lens-
ing. At late times, when the Universe becomes dominated &ydtrk energy,
the gravitational potential on linear scales starts to @erausing the ISW effect
mainly on large angular scales. Other secondaries thdt femm a time depen-
dent potential are the Rees-Sciama effect, produced dtivéngnatter-dominated
epoch by the time evolution of the potential on non-lineatess.

The fact that the potential never grows appreciably meaatsrtost second
order effects created by gravitational secondaries arergetly small compared
to those created by scattering ones. However, when a photpagates from the
last scattering to us, its path may be deflected because gfdkational lensing.
This effect does not create anisotropies, but only modifiésting ones. Since
photons with large wavenumbétsre lensed over many regions &/ H, where
H is the Hubble rate) along the line of sight, the correspompdiecond-order
effect may be sizeable. The three-point function arisimgnfthe correlation of
the gravitational lensing and ISW effects generated by tlaéen distribution
along the line of sight [23, 24] and the Sunyaev-Zeldovideaf[25] are large
and detectable by Planck [26].

Another relevant source of NG comes from the physics opegadt the re-
combination. A naive estimate would tell that these noeditities are tiny being
suppressed by an extra power of the gravitational potentalwever, the dy-
namics at recombination is quite involved because all thelmzarities in the
evolution of the baryon-photon fluid at recombination areldhes coming from
general relativity should be accounted for. This compédatynamics might lead
to unexpected suppressions or enhancements of the NG athéatation. A step
towards the evaluation of the three-point correlation fiomchas been taken in
Ref. [27] where some effects were taken into account in tiseinalled squeezed
triangle limit, corresponding to the case when one waverarigomuch smaller
than the other two and was outside the horizon at recombimati

These notes, which are based on Refs. [1, 2], present theutatign of
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the full system of Boltzmann equations, describing the @vmh of the pho-
ton, baryon and Cold Dark Matter (CDM) fluids, at second omaedt neglect-
ing polarization, These equations allow to follow the tinvelation of the CMB
anisotropies at second order on all angular scales fromaHhg epochs, when
the cosmological perturbations were generated, to theeptaisne, through the
recombination era. These calculations set the stage fordhmputation of the
full second-order radiation transfer function at all ssatend for a a generic
set of initial conditions specifying the level of primortion-Gaussianity. Of
course on small angular scales, fully non-linear calcorfeiof specific effects
like Sunyaev-Zel'dovich, gravitational lensing, etc. W@provide a more accu-
rate estimate of the resulting CMB anisotropy, howeverpag las the leading
contribution to second-order statistics like the bispgutis concerned, second-
order perturbation theory suffices.

These notes are organized as follows. In Section 3 we prdhiglsecond-
order metric and corresponding Einstein equations. Ini@eédt the left-hand-
side of the Boltzmann equation for the photon distributiandtion is derived
at second order. The collision term is computed in Sectiom55ection 6 we
present the second-order Boltzmann equation for the pHotghtness function,
its formal solution with the method of the integration aldhg line of sight and
the corresponding hierarchy equations for the multipolenaats. Section 7 con-
tains the derivation of the Boltzmann equations at secoddrdor baryons and
CDM. Section 8 contains the approximate solution of the Bodnn equations
up to first order. Section 9 contains a brief summary of thaltesin Appendix
A we give the explicit form of Einstein’s equations up to sedmrder, while in
Appendix B we provide the first-order solutions of Einstsiequations in various
cosmological eras.

In performing the computation presented in these lectuteshave have mainly
followed Ref. [28] (in particular chapter 4), where an ekeel derivation of
the Boltzmann equations for the baryon-photon fluid at firdieois given, and
Refs. [1, 2] for their second-order extension. Since thészdgon at second order
is straightforward, but lenghty, the reader might benefitfrreading the appro-
priate sections of Ref. [28]. In the Conclusions (Sectiow8&have also provided
a Table which summarizes the many symbols appearing thouidihese notes.

3. Perturbing gravity

Before tackling the problem of interest — the computatiothefBoltzmann equa-
tions for the baryon-photon and CDM fluids — we first providetlecessary tools
to deal with perturbed gravity, giving the expressions foe Einstein tensor
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perturbed up to second order around a flat Friedmann-RalveYialker back-
ground, and the relevant Einstein equations. In the foligwire will adopt the
Poisson gauge which eliminates one scalar degree of fre&domthe go; com-
ponent of the metric and one scalar and two vector degreeseddm fromy; ;.

We will use a metric of the form

ds* = a*(n) [—echdn2 + 2w;da’dn 4 (e 72V 6;; + Xij)da:id:cj] , (3.1)

wherea(n) is the scale factor as a function of the conformal timeand w;
andy;; are the vector and tensor peturbation modes respectivelgh Ehetric
perturbation can be expanded into a linear (first-order)aedcond-order part,
as for example, the gravitational potential = &) + &) /2. However in
the metric [[3.11) the choice of the exponentials greatly $iéipcomputing the
relevant expressions, and thus we will always keep themeviiés convenient.
From Eqg. [3.l) one recovers at linear order the well-knowrgitudinal gauge
while at second order, one finds? = ¢®2) — 2(¢(1)2 andT® = @ +
2(ypM)2 wherep™, 1) andg?), ) (with ¢ = 1) andy® = w()) are
the first and second-order gravitational potentials in tiregitudinal (Poisson)
gauge adopted in Refs. [6,29] as far as scalar perturbagiensoncerned. For
the vector and tensor perturbations, we will neglect linesator modes since
they are not produced in standard mechanisms for the g@necdicosmological
perturbations (as inflation), and we also neglect tensoranad linear order,
since they give a negligible contribution to second ordetyrbations. Therefore
we takew; and y;; to be second-order vector and tensor perturbations of the
metric.

Let us now give our definitions for the connection coefficseand their ex-
pressions for the metriE(3.1). The number of spatial dinwerssisn = 3. Greek
indices ¢, 3, ..., u, v, ....) runfrom 0 to 3, while latin indicesi( b, . . ., 4,5, k, . . .,
m,n,...)runfrom1to 3. The space-time mettig, has signature<{, +, +, +).
The connection coefficients are defined as

o _ 1 o (39;77 L 9980 _ 3%) . (3.2)

By = 9 ozb oz oxP
The Riemann tensor is defined as

A A
aﬁ;w = F%l«u - F%u,v + F?\éurﬁv - gvrﬁu : (3.3)

The Ricci tensor is a contraction of the Riemann tengyy, = R0 and in
terms of the connection coefficient it is given by

Ry = 9218, — 8,19, + T2, 1%, — I3, T, . (3.4)

oo pv
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The Ricci scalar is the trace of the Ricci tensir= RH,. The Einstein tensor is
defined as?,, = R, — 39 R

The Einstein equations are written @, = £27},,, SO thats? = 871G,
whereGYy is the usual Newtonian gravitational constant.

4. Thecollisionless Boltzmann equation for photons

We are interested in the anisotropies in the cosmic digtabwf photons and
inhomogeneities in the matter. Photons are affected byitgrand by Compton
scattering with free electrons. The latter are tightly dedpo protons. Both
are, of course, affected by gravity. The metric which deteemthe gravitational
forcesis influenced by all these components plus CDM (antrines). Our plan
is to write down Boltzmann equations for the phase-spadeiisions of each
species in the Universe.

The phase-space distribution of particlgs?, P*,7) is a function of spa-
tial coordinatesr?, conformal timen, and momentum of the particl®* =
dz* /d\ where)\ parametrizes the particle path. Through the constBit=
g P*PY = —m?, wherem is the mass of the particle one can elimin&té
andg(z*, P7,n) gives the number of particles in the differential phasesspa!-
umedz!'dz?dz3dP'dP2dP3. In the following we will denote the distribution
function for photons withy.

The photons’ distribution evolves according to the Boltamaquation

—
an ~ U (4.1)

where the collision term is due to the scattering of photdiisree electrons.
In the following we will derive the left-hand side of Eq._(3 While in the next
section we will compute the collision term.

For photons we can impoge* = g,,, P*P” = 0 and using the metri¢(3.1)
in the conformal timey we find

2
P? = a2 {—624’(130)2 + 24 2wiP0PZ] =0, (4.2)
a
where we define
p? =g P'P7. (4.3)
From the constraini{4.2)

2 N /2
PO—® (p—2 n QwiPOPZ) . (4.4)
a
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Notice that we immediately recover the usual zero and firdeorelations”? =
p/aandP® = p(1 — ®M)/a.

The component®? are proportional tgn?, wheren® is a unit vector with
n'n; = &;;n'n? = 1. We can writeP’ = Cn’, whereC is determined by

gijPin =C?ad*(e Y + xijninj) =p?, (4.5)

so that

, , - , 1
pi— Py (6_2‘1’ + x;mnknm) 1z _ Pie¥ (1 — —X;mnknm) , (4.6)
a a 2
where the last equality holds up to second order in the geations. Again we
recover the zero and first-order relatiadds= pn’/a andP* = pn'(1+ W) /a
respectively. Thus up to second order we can write

P = e "2 (1 wn) . (4.7)
Eq. (4.6) and[{4]7) allow us to replad® andP? in terms of the variables and
nt. Therefore, as it is standard in the literature, from now @nwill consider
the phase-space distributighas a function of the momentug = pn® with
magnitudep and angular direction?, f = f (2%, p,n, n).

Thus, in terms of these variables, the total time derivativéhe distribution
function reads

df of ofdat  Oofdp  Of dn

Y _ 9 _ 9] op el 4.8

dn On Ox*dn Opdn On® dn (4.8)
In the following we will computelz®/dn, dp/dn anddn®/dn.
a)dz® /dn:

From

; dxt o datdn  dat
B e (4.9)

and from Eq.[(46) and(4.7)

dz’ i D+ L 1 k._m

o n'e (1 wWin! = 5 Xkmn'n . (4.10)

b) dp/dn:
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For dp/dn we make use of the time component of the geodesic equation
dPY/d\ = —FgﬁPaPﬁ, whered/d\ = (dn/d)\) d/dn = P° d/dn, and

dPO 0 PaPﬁ
Ty~ TesTpu (4.11)
Using the metric[(3]1) we find
dg 0
0 apf Ov va af a pf
2l 3PP g [2—8505 —8501’} PP

— 2(H+®') (P°)° + 4% ;PO P + 4Huw, P"P’

1 . .
+ 2e72° [(H — \I//)G_N&'j —wij + —X;j + Hxij | PP

2
(4.12)
On the other hand the expressibn [4.7)R5fin terms ofp andn’ gives
dpP° pd® _g i - i d(p/a)
o = _ad_ne (1+wmn') +e (l—i—win)d—n
4 Pemedwin) (4.13)
a dn
Thus Eq.[(4.1]1) allows us expregs/dn as
1d , o1 w
—L W W e — Wt — Sy (4.14)
pdn ’ 274

where in Eq.[[4112) we have replac®d and P’ by Egs. [4.¥) and(416). Notice
that in order to obtain Eq.{4.114) we have used the followixgressions for the
total time derivatives of the metric perturbations

@ _ 0% 0P da’
dn — On @ 0xi dn
_ 0P 0P i LT j 1 k,m
= o + 3" € 1-—wjn 5 Xkm V"1 (4.15)
and
d(w;in?) - (Ow;  Ow; d? Ow; . Ow; j
=n' -—— | = ! -n' 4.16
dn <8n+8:vﬂdn) 8nn+8:vﬂnn’ ( )

where we have taken into account thatis already a second-order perturbation
so that we can negledt’/dn which is at least a first order quantity, and we can
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take the zero-order expression in Hq. (4.10):/dn = n'. In fact there is also
an alternative expression fap/dn which turns out to be useful later and which
can be obtained by applying once more [Eqg. (4.15)

1d dd 1 o
——p=—H——+<I>’+\IJ/—w£nl——x;-nZnJ. (4.17)
pdn dn 274

c) dn'/dn:

We can proceed in a similar way to computé /dn. Notice that since in Eq.(4.8)
it multiplies 9 /0n® which is first order, we need only the first order pertur-
bation of dn’/dn. We use the spatial components of the geodesic equations
dP'/d\ = =T, s P* PP written as
dpP? . pepB
=-I;——. 4.18
d77 Otﬁ PO ( )

For the right-hand side we find up to second order

i v [ 090 | 0950 09ap
2T ;PPP = g% —
of g [axﬁ e T av

= 4(H = WP P +2 (x'f +wh —wy') POPE

} pepp (4.19)

0P 20120 i i 0\2 oV i ok
ov k pm i 8XZ7 axzk ank Jj pk
+28:17i Opm P P™ — | 2Hw"d1, — (&rk + Dz + o2, P’ pT

while the expressiof (4.6) @ in terms of our variables andr’ in the left-hand
side of Eq.[(4.18) brings

dP? p g [d¥ , ad(p/a) ;, dn 1 &
_ £ ey ! . 7 1- = . m
n e {dnn—i-p dn n—l—dn 2Xk n'n
_opiwl d(mntn™) (4.20)
a 2 dn

Thus, using the expressidn (4.6) fBf and [4.4) forP' in Eq. (4.19), together
with the previous resulf{4.14), the geodesic equafior8ygives the following
expressionin’ /dn (valid up to first order)

dn’
dn

= (D) + T p)nfnt — @ — W, (4.21)
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To proceed further we now expand the distribution functarphotons around
the zero-order valug(®©) which is that of a Bose-Einstein distribution

1
fOpm) =2 ————,
expy =~ o — 1

p { T(n) }
whereT'(n) is the average (zero-order) temperature and the f&atomes from
the spin degrees of photons. The perturbed distributiorhofgns will depend

also onz’ and on the propagation directioti so as to account for inhomo-
geneities and anisotropies

(4.22)

. . , , 1 . ,
fat p,n'in) = FOp,n) + fO @ p,n' ) + §f(2) (z',p,n’,n), (4.23)

where we split the perturbation of the distribution funatimto a first and a
second-order part. The Boltzmann equation up to second oeadebe written
in a straightforward way by recalling that the total timeidative of a giveni-th
perturbation, a®.g. df(¥) /dn is at leasta quantity of thei-th order. Thus it is
easy to realize, looking at Ed. (4.8), that the left-hane sitBoltzmann equation
can be written up to second order as

1 2 0
g _ W 14 050 d () Ly
dn dn 2 dn Op dn 2
af® 9 1 1
—Z (™ g 4 —®@ 4 —g@
+ g 8n< + W+ 0@ 4 o

Af ) duw; i 1 af© OXij i j
b Op B—nn TP Op 6—nnn ’
where for simplicity in Eq.[(4.24) we have already used thekigeound Boltz-
mann equatioridf /dn)|(?) = 0. In Eq. [4.2#) there are all the terms which will
give rise to the integrated Sachs-Wolfe effects (corredpmto the terms which
explicitly depend on the gravitational perturbations)jlelther effects, such as
the gravitational lensing, are still hidden in the (secamnder part) of the first
term. In fact in order to obtain Eq. (4]24) we just need fortthee being to know
the expression fadp/dn, Eq. [4.17).

(4.24)

5. Collisonterm

5.1. The Collision Integral

In this section we focus on the collision term due to Comptaitering

e(@)y(p) < e(d)y(p'), (5.1)



Cosmic Microwave Background Anisotropies up to SecondiOrde 15

where we have indicated the momentum of the photons and@hsdnvolved in
the collisions. The collision term will be important for skinscale anisotropies
and spectral distortions. The important point to compugecttilision term is that
for the epoch of interest very little energy is transferréderefore one can pro-
ceed by expanding the right hand side of [Eq.1(4.1) both iniheiperturbation,
Eq. (4.23), and in the small energy transfer. Part of the agatiwn up to second
order has been done in Refs. [30-32] (see also [33]). Inquéati Refs. [30, 31]
are focused on the effects of reionization on the CMB anigoéss thus keeping
in the collision term those contributions which are reléfanthe small-scale ef-
fects due to reionization and neglecting the effects of te&imperturbations on
the left-hand side of Eql.{(4.1). We will mainly follow the faalism of Ref. [31]
and we will keep all the terms arising from the expansion efdallision term up
to second order.
The collision term is given (up to second order) by

C(p) = C(p)ac®, (5.2)
whereq is the scale factor arﬂj
B 1 dq dq’ dp’
®) = 557 G erRE@ BEw)
x  (2m)'t(q+p—d —p) M|
x A{g(d)fPH+ f(p)] — g(@) f(P)[1+ f(P)]} (5.3)

where E(q) = (¢®> + m?2)Y/?, M is the amplitude of the scattering process,
0 g+p—d — 1) =6 (a+p—d —p)(E(q) +p— E(q) — ') ensures the
energy-momentum conservation apé the distribution function for electrons.
The Pauli suppression factofs — g) have been dropped since for the epoch
of interest the density of electroms is low. The electrons are kept in thermal
equilibrium by Coulomb interactions with protons and theg aon-relativistic,
thus we can take a Maxwell-Boltzmann distribution aroundeulk velocityv

- 3/2 . 2
g(q)=ne<wiTe) exp{—%} (5.4)

By using the three dimensional delta function the energysfiex is given by
E(q) — E(q + p — p’) and it turns out to be small compared to the typical

1The reason why we write the collision term as in Eq.|(5.2) & the starting point of the Boltz-
mann equation requires differentiation with respect toffineparamete\, df /d\ = C’. In mov-
ing to the conformal time) one rewrites the Boltzmann equation &/dn = C’(P°)~!, with
PO = dn/d\ given by Eq.[(4]r). Taking into account that the collisiorés at least of first order,
Eqg. [52) then follows.
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thermal energies

L =P)9 _ o7y m,). (5.5)

E(q) - E(q+p-p')~ -

In Eq. (5.5) we have usefi(q) = m. + ¢*/2m. and the fact that, since the
scattering is almost elastip (~ p'), (p — p’) is of orderp ~ T', with ¢ much
bigger thanp — p’). In general, the electron momentum has two contributions,
the bulk velocity § = m.v) and the thermal motiory(~ (m.T)'/?) and thus
the parameter expansigrim. includes the small bulk velocity and the ratio
(T /m.)"/? which is small because the electrons are non-relativistic.

The expansion of all the quantities entering the collisiemrt in the energy
transfer parameter and the integration over the momgatadq’ is described in
details in Ref. [31]. Itis easy to realize that we just neaxigbattering amplitude
up to first order since at zero ordglfq’) = g(q+p — p’) = g(q) and§(E(q) +
p—E(q')—p') = 6(p—p') so that all the zero-order quantities multiplyifig |
vanish. To first order

|M|? = 6morm?[(1 + cos?6) — 2cosf(1 — cosf)q - (P +p')/me], (5.6)

wherecosf = n - n’ is the scattering angle ang- the Thompson cross-section.
The resulting collision term up to second order is given k] [3

3neo dey
cw) = 2 [ty ) + o)+ e p)
D 4
+ 2, p) + 2 (p. ) + P (p, p’)] : (5.7)

where we arrange the different contributions following R81]. The first order
term reads

V(p,p') = (1+cos’0) lé(p - )P @) - ()
+ (SO - 9P -p)- V%p_,p/)] : (5.8)

while the second-order terms have been separated into &ots. pThere is the
so-called anisotropy suppression term

(2)(

A (1+cos®d) 6(p — ") (P (') = S @ (p)); (5.9)

N~

p.p) =
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a term which depends on the second-order velocity pertiorbdefined by the
expansion of the bulk flow ag = v(1) + v(2) /2

P (p,p) = %(1+00829)(f(0’ )~ (p))(p—p')v? %p_,p/) ;(5.10)

a set of terms coupling the photon perturbation to the vijloci

(2)

(P p) = (f(”(p') — f(l’(p)) (1+cos’0) (p—p') v

o
X W — 2cosf(1 — cos0)d(p —p')(n +n’) - v] :
p

and a set of source terms quadratic in the velocity

6782@) (p, p’) e (f(O) (p/) _ f(O) (p)) (p— p/) v (1 i 60329)
. (-p)-vdp—p)
2 ap/Q
—  2cosf(1 — cosf)(n +n') - V%p_/p/)] .

(5.11)

The last contribution are the Kompaneets terms descrilpagtgal distortions to
the CMB

o (p.p) = (1+<30829)%[(f@)(p’)—f@(p))ﬂ (5.12)
2 o/
TEZE) (5O + 1O0) + 2000 0)
y aa(g];pv +2<p—p/>co§i<1—cos29> lg(p_p,)
< 1O+ 1O0) (FO0) - 1) %p‘p)] |

Let us make a couple of comments about the various contibsitio the col-
lision term. First, notice the terrazf)(p,p’) due to second-order perturbations
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in the velocity of electrons which is absent in Ref. [31]. barglard cosmo-
logical scenarios (like inflation) vector perturbations aot generated at linear
order, so that linear velocities are irrotationdl’ = 9'v(1). However at sec-
ond order vector perturbations are generated after hodemssing as non-linear
combinations of primordial scalar modes. Thus we must tateaccount also a
transverse (divergence-free) componeft; = 902 + v'2" with 903" = 0.
As we will see such vector perturbations will break azimuglyanmetry of the
collision term with respect to a given mode which instead usually holds at
linear order. Secondly, notice that the number density @ftebns appearing in
Eq. (5T) must be expandedas= 7.(1 + d.) and then

s M (p, p') (5.13)

gives rise to second-order contributions in addition tolisteabove, where we

split 6. = 6§1) + §§2)/2 into a first- and second-order part. In particular the
combination with the term proportional #in ¢(!)(p, p’) gives rise to the so-
called Vishniac effect, as discussed in Ref. [31].

5.2. Computation of different contributions to the cotlisiterm

In the integral[(5.I7) over the momentum the first-order term gives the usual
collision term

1 ) o £(0)
CW(p) = neor [fé”<p>+§f§”P2<v-n>—f<1>—p gp von| . (5.14)

where one uses the decomposition in Legendre polynomials

Fx,pm) =320+ 1)£) (p) Pelcosv) (5.15)
14

whered is the polar angle ofi, cost) = n - V.

In the following we compute the second-order collision teseparately for
the different contributions, using the notatiéttp) = C(") (p) +C?)(p)/2. We
have not reported the details of the calculation of the 6rster term because for
its second-order analogff) (p,p)+ cgz)(p, p’), the procedure is the same. The
important difference is that the second-order velocitgntercludes a vector part,
and this leads to a generic angular decomposition of thellision function (for
simplicity drop the time dependence)

3
i i . 4
FOepm =30 30 Jimbep) (-0 gy Vema), (5.16)
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such that

) _ ,/2€+1/de DY: (n (5.17)

Such a decomposition holds also in Fourier space [34]. Thegioo at this stage
is a bit confusing, so let us restate it: superscripts deti@erder of the per-
turbation; the subscripts refer to the moments of the thistion. Indeed at first
order one can drop the dependencenoisettingm = 0 using the fact that the
distribution function does not depend on the azimuthalanglin this case the

relation with £ is

() = (i) 420+ 1)3mo £ (5.18)

Im

a)cs (p, p'):
The integral ovep’ yields

cdp) = 3nZ;T / dp’p’ciQ R (p,p') = 3n;;T / dp'p'd(p — ')
Q/
[ e - £ ) (5.19)

To perform the angular integral we write the angular depeoden the scattering
anglecosff = n - n’ in terms of the Legendre polynomials

4 [1 + lpz(n : n/)]

L+ en)? = g

1+— Z Yo (n)Y5, (n) 7| | (5.20)

20+1

m_72

where in the last step we used the addition theorem for spdidérarmonics

47

2
- " * /
Po= 5 m;nm(nmm(n ). (5.21)

Using the decompositiof (5.1.7) and the orthonormality ef¢hherical harmon-
ics we find

1 < Vir
C2(p) = meor | 1)0) — FO0) 5 30 L 20 Vi)

m=—2

(5.22)
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It is easy to recover the result for the corresponding firdeo contribution in
Eq. (5.12) by using Eq[{5.18).
b) et (p. P'):

Let us fix for simplicity our coordinates such that the polagle of n’ is
defined by’ = ¥(2) . n’ with ¢’ the corresponding azimuthal angle. The contri-

bution Ofcgjz)(p, p’) to the collision term is then

3neo d0(p —p')
@) — T @ | a0 () — £(0)
CPp) = T [ty (1O - 1)
1 du’ 27 doé'
< [ L) [ w2, 529)
_ 0 o
We can use Eq[{5.20) which in our coordinate system reads
4 1= C=m)! @) pmias (@) im(d o)
g 1+§mzz_2mp2 (Il'V )P2 (n -V )8 s (524)
so that
di)lp( ) =Py(n- v\ Py - 93)) = Py(u) Py (5.25)
5 P2(n-1') = Po(n- V) Py(n' - 1Y) = Po(pu) Pa(u) :

By using the orthonormality of the Legendre polynomials smegrating by parts
overp’ we find

af©
op

CP(p) = —neorp v® .n. (5.26)

As it is clear by the presence of the scalar produ@ - p the final result is
independent of the coordinates chosen.
2 .
¢) co) (p. P'):
Let us consider the contribution from the first term
9d(p —p')

C(AQi(I)(Papl) = (1 + COS29) (f(l)(Pl) - f(l)(P)) (p—p)-v p! ’

where the velocity has to be considered at first order. Inttegial [5.7) it brings

L@ 3ne0Tv/ , 1 0(p —p') /1 A’y )
—_— = d —_— —_ p—

27'rd/

(o — p'1) /0 01+ cos6), (5.27)

X
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The procedure to do the integral is the same as above. Weaisaithe relations
as in Egs.[(5.24) anf(5.25) where now the angles are thosa teikh respect to
the first-order velocity. This eliminates the integral oyérand integrating by
parts ovep’ yields

Lo = -2 [ L inwnw| e

4p 2 3
(1) /
x [pw— 20 ) (F N (o ') = FD o, ) + 9 (1 — ,/)WT;%M} ,

2

We now use the decompositidn (5.15) and the orthonormalithe Legendre
polynomials to find

/d%u’f(”(p,u’)Pz(ﬂ’) => d%u’Pz(u’)Pz(u’) D (p)
4

=3 [ [fren+ §ren] i)

- f<”< )+ f<”< ), (5.29)

where we have used P»(u/) P (') = 3Pi(1') + 2Ps(1'), with Py (i) = 4.
Thus from Eq.[(5.28) we get

_C(zg(l)( ) = neoT{V'n[f(l)(p) —fél)(p)— afap( p)

(1)
- inew (fé”@) +p2let) )N

(1)
+ o200+ s s e (2100

(1) (1)
+ p2 gy 2,00 1) 8p())”. 5.30)

In ¢(? (p, p’) there is a second term
R a1y = ~2008(1 = cost) (fD (') = fV()) 5(p — ) (n + 1) - v,
whose contribution to the collision term is

3neorv bay
3Cun®) =~ [aysp—p) [ ()
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2m /
FY @)+ ) /0 %cosb‘(l — cosb) . (5.31)

This integration proceeds through the same steps a(éfé I . In particular

by noting thatcosf(1 — cosf) = —1/3 + Py(cosf) — 2P3(COS€)/3 Egs. (5.24)
and [5.2b) allows to compute

/—0059 1 — cosf) = —% + Pi(p)Pi(p) — %PQ(M)PQ(M') : (5.32)

and using the decompositidn (5115) we arrive at

icfimw = —"eUT{V'nfz(l)(p)(l—Pz(\‘r.n))

+ UEPQ(v-m (3f1(1)(p)—3f§1)(p))”- (5.33)
We then obtain

(1)
L) = nm{v ~ n[f<1><p> - 1) -2 o)

+ %Pz(\““n)( 5 (p) —p%jfp)ﬂ +U{2f1(1)(p)

(1)
+ pafap( )+ 5P2( )(— Wp)
orm .y, 3 ofP(p)
s o BN s

As far as the remaining terms, these have already been cethpuRef. [31]
(see also Ref. [30]) and here we just report them

d) ¢t (p, p'):
The term proportional to the velocity squared yield a cdmtipn to the colli-
sion term

af©@ 11 ,9%2fO
(2) - .n)? 2
20'01) ( ) neaT{(V Il) |:p ap + 20p 6p2 :|
) f(O) 3 .92 f(O)
2 2
+ v [p ap + 20P a7 } } . (5.35)

e) e (p,p'):
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The terms responsible for the spectral distortions give

5020 = o ot [ 1 po o] ] (5.36)

Finally, we write also the part of the collision term comimgrh Eq. [5.1B)

s cW(p,p) — sHCW(p) =mncor s [fé”(p)

Lep oo - p 20
+ 2f2 PV -n)—f P o v-n|. (5.37)

5.3. Final expression for the collision term

Summing all the terms we find the final expression for the sioli term [5.I7) up
to second order

C(p) = CV(p) + L0 (p) 5.39)
with

1)y (1) 1 Wp oy ) _ i
O (p) = neor | fo ' (p) + 5 f2 " Po(V-m) = f17 —p v-n| (5.39)

and

2
1 Var
Sc@(p) = neaT{2 (g§>(p)_1 3 S 2 (p) Yapm(n)

m=—2

= IO 400 )+ AP ) -
oo }_%p%(o)vm.nw.n{f(l)(p)

1
- fé”(p)—pa—pp) 150() + P9 - m)

(1) (1)
) - p2 ) p(p)ﬂ +ol2f0) +p2 0

S
St

~dp

(1)
+ s+ o)

3 91" () [ Of© 11,820
2P Op +(v-m)Tip Op +20p op?
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N.
3, o2 f(O)
[ "0 o }

1O 09 ) <>)}
+ mzap[p <T o + FO1 4 O . (5.40)

Notice that there is an internal hierarchy, with terms whicmot depend on the
baryon velocityv, terms proportional to- - n and then to(v - n)?, v andv?
(apart from the Kompaneets terms). In particular noticet¢hen proportional to
sYv - nis the one corresponding to the Vishniac effect. We pointtbat we
have kept all the terms up to second order in the collisiomtén Refs. [30, 31]
many terms coming from have been dropped mainly because these terms are
proportional to the photon dlstrlbu'uon functight’) which on very small scales
(those of interest for reionization) is suppressed by tffeslon damping. Here

we want to be completely general and we have to keep them.

24

6. TheBrightnessequation

6.1. First order

The Boltzmann equation for photons is obtained by combikigg(4.24) with
Egs. [5.3D){(5.40). At first order the left-hand side reads

df df™ af© o) dgi af© ow )
-— = -p ——— +p—F— . (6.1)
dn dn dp Ox* dn dp On

At first order it is useful to characterize the perturbatitmshe Bose-Einstein
distribution function[{4.22) in terms of a perturbation he temperature as

-1
i iy p _
Thus it turns out that
(0)
o= —p% : (6.3)
dp

where we have used the fact thiaf /00 |o—o = —pdf(® /dp. In terms of this
variable©™) the linear collision term[{5.39) will now become proportibmno
—pdf© /9p which contains the only explicit dependence mrand the same
happens for the left-hand side, Elg.{6.1). This is tellinghas at first orde® (")
does not depend ambut only onz?,n?,n, 8 = @M (2% n?, 7). This is well
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known and the physical reason is that at linear order theme isnergy transfer
in Compton collisions between photons and electrons. Toergthe Boltzmann
equation foro(!) reads

oo™ 90 pet) . gpM)
on tn oxt + x| on
= n.ora 681) + %Gél)Pg(ff ‘n) — oW +v.nl, (6.4)
where we made us qu” = —paf<0>/ap®<”, according to the decomposition

of Eq. (5.15), and we have taken the zero-order expressioasf/dn, dropping
the contribution fromin‘/dn in Eq. (4.8) since it is already first-order.

Notice that, since®?) is independent of, it is equivalent to consider the
guantity

3 (1)
() (i i ) — [ dpp’f
AW (2t ntT) oy [ ° (6.5)

being A = 40 at this order. The physical meaning &f" is that of a
fractional energy perturbation (in a given direction). far&q. [4.2%) another
way to write an equation foA (1) — the so-called brightness equation — is

d% [A“) + 4<I><1>} - 4(% (<1><1> + \1/<1>)

= neora [Aél) + %Agl)Pg(ff ‘n) — AD 4+ 4y . n} . (6.6)

6.2. Second order

The previous results show that at linear order the photamiloligion function
has a Planck spectrum with the temperature that at any pejmrdls on the
photon direction. At second order one could characteriggérturbed photon
distribution function in a similar way as in Eq.(6.2)

F@,p,nt, ) =2 [exp{ﬁ —1}}_1, (6.7)

where by expandin@ = ™) + ©(®/2 4 ... as usual one recovers the first-
order expression. For example, in termsafthe perturbation of () is given
by Eq. [6.3), while at second order

(2) (0) 2 £(0) (0) 2
LA X7 SN (an 7 %) CR (6.8)

2 2 9p 2 op? pap
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However, as discussed in details in Refs. [30, 31], now tloersdorder per-
turbation®® will not be momentum independent because the collision term
in the equation fol®(? does depend explicitly op (defining the combination
—(pof© /ap)~1f@ does not lead to a second-order momentum independent
equation as above). Such dependence is evident, for examglee terms of
C®@ (p), Eq. [5.40), proportional to or v, and in the Kompaneets terms. The
physical reason is that at the non-linear level photons &adrens do exchange
energy during Compton collisions. As a consequence spetis@rsions are
generated. For example, in the isotropic limit, only the K@meets terms sur-
vive giving rise to the Sunyaev-Zeldovich distorsions. Ascdssed in Ref. [30],
the Sunyaev-Zeldovich distorsions can also be obtained thé correct coeffi-
cients by replacing the average over the direction electrdh with the mean
squared thermal velocit?, ) = 37./m. in Eq. (5.40). This is due simply to
the fact that the distinction between thermal and bulk vigloaf the electrons
is just for convenience. This fact also shows that spectsabiions due to the
bulk flow (kinetic Sunyaev-Zeldovich) has the same form a&sttiermal effect.
Thus spectral distorsions can be in general described bgplmbComptony-
parameter (see Ref. [30] for a full discussion of spectrsicdsions). However
in the following we will not be interested in the frequencypdadence but only
in the anisotropies of the radiation distribution. Therefae can integrate over
the momentunp and define [30, 31]

_ [dpp*f®

A(Q)(xivniﬂ_) _ W 7

(6.9)

asin Eq.[(6.b).
Integration ovep of Eqgs. [4.24){(5.40) is straightforward using the follagi
relations

(0) 2 £(0)
/dpp3paf = —4N; /dpp?’pz& =20N;
p Op>
afm
/dpp3f<” = NAW; /dpp3p o= —4NAD  (6.10)
P

Here N = fdpp3f(0) is the normalization factor (it is just proportional the
background energy density of photgng. At first order one recovers Ed.(6.6).
At second order we find

1d d : |
LA Ta® 1 49@] 4 L (A0 1 4eM] 40 (0 _ Wi
an[A +40 ]+dn [A® +40M] —2a® (90" — o)
0 ow; OXii 4
—o—= (g® 4 @ 42t 4 9ZAY i
o ( + ) + o n + on nn
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1 < Vir
5253/2

m=—2

/
L NN AR Yy, (m) + 20600 + &W)

<Agl> + %Aél)Pg(\? n)— AD 4 4v. n) +4v® . n
+2(v - n) [A(l) +3A0 — AfY (1 - gPQ(o : n))]
—vAY (44 2P (¥ -n)) + 14(v - n)? — 21;2] , (6.11)

where we have expanded the angular dependendeasfin Eq.[(5.16)

(z (1 ; 4m
A (x,n) zg:,,;gA 2€+1ng(n), (6.12)

with

A, = i 2 [ a0a0v;, ). 6.13)

where we recall that the superscript stands by the ordereopénturbation. At
first order one can drop the dependencenosettingm = 0 so thatAgz =

(—i)~H(204+1)6,m0 Agl). In Eq. [6.11) we have introduced the differential optical
depth

7= —R.ora. (6.14)

It is understood that on the left-hand side of Eqg. (6.11) caeth pick up for the
total time derivatives only those terms which contributesécond order. Thus
we have to take

()

%d% [A® 1 40¢)] +% A0 1 420)] ’ (6.15)

1/0 .0 )
R i 2 (2) (2) i(gp(1) (1)
. (an—i—n 3xi) (A® +40@) + ni(@®) + )
OAM

ont ’
where we used Eqd. (4]10) and_(4.21). Notice that we can wite) /on’ =

(AN /92%) (92" /on?) = (AWM /9x?)(n — n;), from the integration in time of
Eq. (4.10) at zero-order wheti is constant in time.

xOi(AD +400) + [(@) + ¥ Pynind — (@7 4 w)]
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6.3. Hierarchy equations for multipole moments

Let us now move to Fourier space. In the following, for a giveave-vectork
we will choose the coordinate system such that= k and the polar angle of the
photon momentum ig, with 1 = cos? = k - n. Then Eq.[(6.1]1) can be written
as

AP LikpA® — 7 AP = S(k,n,7), (6.16)

whereS(k,n, n) can be easily read off Eq._(6111). We now expand the temper-

ature anisotropy in the multipole momeméfi in order to obtain a system of
coupled differential equations. By applying the angulaegmal of Eq.[(6.13) to

Eq. (6.16) we find

Af) (k) :k[ Hm _A®), - Zm AR

2)
3= T0 m ™ g5 At | 7 AL S (6.17)

where the expansion coefficients of the source term are giyen
Stm = (4\11<2>’ - T'A@) 5000mo0 + 4D @ 6,16,0 — 4wy, 001

— 8@y — —A( 8oz — 24 002

a3k .o
-2 f 2y [UéWkl)vé”(kz)kz-k1+<5§”<k1>+<1><”<k1>>

2
X Aél)(kg) — ng(kl)Agt) (kg):| 6@06m0
Pri [ (1) Mwe®)
+ 16k (271') (0] (kl)q) (kg) 0010mo — 2 (‘I’ Vo )m
+ 876V + @)]m + 67(A V), — 27'(A§1>v)m] o + 7'

d’ky M (k 1) (1) —igv 1)
X /(%) [(5 (k1) + @ (k1)) Ay (k) — ig (kl)Am(kQ)}

x 5g25m0+/é’“)1 [8\1/(1)(k1)+27 (69 (k) + oM (Kky))

— )80+ 00 (k) - kz} AD (1)5,0 — i(~i) "

NG RICTES VDY Z (20" +1) [8A;,>vq> 2(eM)

€ m'=—1
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(1) (1) 1L 2" 1 l
o] (4O (YL

1
+ i) DT ) Y > (2%"+1)[2A§}?v

0 mi=—1
(1) 1 | 1
+ 5(5@/2 A2 V:| o ( 0 0 0 0 m, -m

(1)
+ U (=i) (=)™ Z / d3k13[ (1) )UO k(kQ)

m’/,m/"’=—1

< V) (W50 ()~ kY )]
x ((1) 0 0 ) (o o )20 =m0

oIS S ()

L m'm'=

x AP k)@ + W) (ko )kr iy (k1) (KY0 (R)
- klyf;n,,(f{l)) / QY1 ()i (0)Y10(n)Yeem(n),  (6.18)

wherek, = k — ky andky = |ko|. In Eq. [68) it is understood thah| < 2.

Let us explain the notations we have adopted in writing[EG86 The baryon
velocity at linear order is irrotational, meaning that ithe gradient of a potential,
and thus in Fourier space it is parallelkpand following the same notation of
Ref. [37], we write

vD (k) = —iviY (K)k . (6.19)

The second-order velocity perturbation will contain a $nerse (divergence-
free) part whose components are orthogon&l te e3, and we can write

@ (k) = —ivP(k E (2) ©2 T i€1
v = —i, es; + Uy, , 6.20
( ) 0 ( ) 3 ) \/§ ( )

wheree; form an orhtonormal basis witk. The second-order perturbatian
is decomposed in a similar way, withy; the corresponding components (in
this case in the Poisson gauge there is no scalar compor&ntjlarly for the
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tensor perturbatior;; we have indicated its amplitudes gs- in the decompo-
sition [36]

3 . .
Xij = Z —\/;xm(el + zeg)i(el + Zeg)j . (621)

m==%2

We have taken into account that in the gravitational parhefRoltzmann equa-
tion and in the collsion term there are some terms, dév, which still can be
decomposed in the scalar and transverse parts in Fouriee sgan Eq.[(6.20).
For a generic quantity’(x)v we have indicated the corresponding scalar and
vortical components witkifv),,, and their explicit expression is easily found by
projecting the Fourier modes ¢fx)v along thek = e3 and(e, Fie; ) directions

3 ~ T
1m0 = [ B0 00 kv R 2T (622)
Similarly for a term likef (x)Vg(x) we used the notation
3 ~ T
(190009 =~ [ S5 jag00) 10675 hy [ 623)

Finally, the first term on the right-hand side of Elg. (6.17% baen obtained by
using the relation

ik - nA(Q) (k) = ; Agfrz(k)m [Hfméffl,m - Hl+l,mé5+17m:|
— Rom (2) N K¢m (2) ~
= k;ﬂ: [2€ - IAE—l,m 20 1 3Ag+17m:| Gom , (6.24)

whereGy,, = (—i)*\/47/(20 + 1)Ysm(n) is the angular mode for the decom-
position [61R) andss,, = V12 —m2. This relation has been discussed in
Refs. [34,36] and corresponds to the testWA () /92 in Eq. (6.11).

As expected, at second order we recover some intrinsicteffehich are
characteristic of the linear regime. In EQ. (8.17) the iefa{6.24) represents
the free streaming effect: when the radiation undergoesdteeaming, the in-
homogeneities of the photon distribution are seen by thewsrsas angular
anisotropies. At first order it is responsible for the hiergr of Boltzmann
equations coupling the differelitmodes, and it represents a projection effect
of fluctuations on a scalé onto the angular scalé ~ kn. The termT’Agfi
causes an exponential suppression of anisotropies in $enaé of the source



Cosmic Microwave Background Anisotropies up to SecondiOrde 31

term Sy,,,. The first line of the source terh (6118) just reproduces tpres-
sion of the first order case. Of course the dynamics of thergbooder metric
and baryon-velocity perturbations which appear will bdedént and governed
by the second-order Einstein equations and continuityt&ns The remaining
terms in the source are second-order effects generateddsmar combinations
of the primordial (first-order) perturbations. We have oetkthem according to
the increasing number @gfmodes they contribute to. Notice in particular that
they involve the first-order anisotropie‘s,(zl) and as a consequence such terms
contribute to generate the hierarchy of equations (apam the free-streaming
effect). The source term contains additional scatterirac@sses and gravita-
tional effects. On large scales (above the horizon at reguatibn) we can say
that the main effects are due to gravity, and they includé&tehs-Wolfe and the
(late and early) Sachs-Wolfe effect due to the redshift phesuffer when trav-
elling through the second-order gravitational potentileese, toghether with
the contribution due to the second-order tensor modes, bese already studied
in details in Ref. [20]. Another important gravitationafesft is that of lensing
of photons as they travel from the last scattering surfacestd contribution of
this type is given by the last term of Eq. (6118).

6.4. Integral solution of the second-order Boltzmann eiguat

As in linear theory, one can derive an integral solution & Boltzmann equa-
tion (6.11) in terms of the source tersi Following the standard procedure
(seee.g. Ref. [28, 35]) for linear perturbations, we write the lefirid side as
AP 4 ikuAR) — ' AR = =ikt g AR)etken=7] /dp in order to derive the
integral solution

Mo .
A® (k,n, 10) = / dnS (k, n, m)enn—m) =7 (6.25)
0

wheren, stands by the present time. The expression of the photon nrteméfi
can be obtained as usual from Hg. (6.13). In the previougsesk have already
found the coefficients for the decomposition of source t8rm

¢
Sticnn) =Y 3 Sl (=) |/ 57 Yon(m). (6.26)

{ m=—/4

In Eq. (6.25) there is an additional angular dependencedrexponential. It is
easy to take it into account by recalling that

ekx = Xg:(i)é(% + 1)je(ka) Po(k - %). (6.27)
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Thus the angular integrdl (6J13) is computed by using themposition of the
source term(6.26) and Ef.(6127)

o
AD () = (—1) (i)t + 1) / dne=700)
0

l2
Z Z (_i)£28l2m2 Z igljfl (k(n - 770))

Eg mngfg Zl
b by ! 0 by 0
(55 ) (58 ) e

where the WigneB — j symbols appear because of the Gaunt integrals

X

X

Gramams = / GPAY:, 10y (8) Vi (8) Vi ()

l1l2l3
B \/(211 +1) (202 + 1) (203 + 1)
- 4

fl 82 £3 fl 82 £3
( O O O ) ( mq mo M3 )7 (629)

Since the second of the Wignerj3symbols in Eq.[(6.28) is nonzero only if
m = meg, OUr solution can be rewritten to recover the correspondkpgession
found for linear anisotropies in Refs. [34, 36]

X

Afnlem) _ " ) (12.m)
Tﬂ_/o dne ;Sezmu k(o — )], (6.30)

Wherejtglz’m) [k(no — n)] are the so called radial functions. Of course the main
information at second order is included in the source temtaining different ef-
fects due to the non-linearity of the perturbations. In titaltangular momentum
method of Refs. [34,36] Eq.(6.B0) is interpreted just adikergration over the
radial coordinatéyx = n, — n) of the projected source term. Another important
comment is that, as in linear theory, the integral soluti®2§) is in fact just a
formal solution, since the source te$ncontains itself the second-order photon
moments up td = 2 (see Eq.[(6.18)). This means that one has anyway to resort
to the hierarchy equations for photons, Hqg. (6.17), to sflvehese moments.
Neverthless, as in linear theory [35], one expects to nesdgew moments
beyond/ = 2 in the hierarchy equations, and once the moments enteritiggin
source function are computed the higher moments are obit&iom the integral
solution. Thus the integral solution should in fact be maleasmtageous than
solving the system of coupled equations (6.17).
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7. TheBoltzmann equation for baryonsand cold dark matter

In this section we will derive the Boltzmann equation for sias particles, which
is the case of interest for baryons and dark matter. Thesieqgs are necessary
to find the time evolution of number densities and velocitiethe baryon fluid
which appear in the brightness equation, thus allowing tselthe system of
equations. Let us start from the baryon component. Elestaoatightly coupled
to protons via Coulomb interactions. This forces the re¢atinergy density con-
trasts and the velocities to a common valtie= 6, = §, andv, = v, = v, SO
that we can identify electrons and protons collectivelylzar{onic” matter.

To derive the Boltzmann equation for baryons let us first $ogn the colli-
sionless equation and compute thereféyédn, whereg is the distribution func-
tion for a massive species with mass One of the differences with respect to
photons is just that baryons are non-relativistic for theays of interest. Thus
the first step is to generalize the formulae in Section 4 uptd£21) to the case
of a massive particle. In this case one enforces the cons@ai= g, Q" Q" =
—m? and it also useful to use the particle enefgy= +/q? + m?2, whereq is
defined as in Eq[(4.3). Moreover in this case it is very coiemrto take the
distribution function as a function of the variablgs= ¢n‘, the positionz? and
time n, without using the explicit splitting into the magnitudetbé momentum
q (or the energy E) and its directiosf. Thus the total time derivative of the
distribution functions reads

dg O0g 0Ogdx* 0Og dg¢t

dn ~ dn Ozt dn ' ¢ dn

(7.1)

We will not give the details of the calculation since we jused to replicate the
same computation we did for the photons. For the four-mouoreiatf the particle
notice thatQ’ has the same form as Ef._(4.6), while " we find

o_c¢? ¢
Q= — E<1+WZE>. (7.2)

In the following we give the expressions far’ /dn anddq® /dn.
a) As in Eq. [4ID)iz /dn = Q'/Q° and it turns out to be

dzt . . 1
e (Y B

b) Fordq® /dn we need the expression@f which is the same as that of EQ.(4.6)

) i 1
0 = e (1 bt z

a
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The spatial component of the geodesic equation up to secdled eads

dQ? 1 ,
5127 = —2(H-1) <1 - Ekanknm> gn’e‘p + T2
OV @ . h  ax. O0PE\ E, o
Z= 2 (opink — 5tk — Sl Y i ir
<axkaE(nn ) 97 a a(w +Hw' 4+ X%
. . ) ) ) ) qjqk
+ wh =)+ [Het = O+ X )| L 78)

Proceeding as in the massless case we now take the total ématde of
Eq. (Z.4) and using EJ.(4.5) we find

dq’ : 7" 5 ; s
— _H—\I// 7 ] +\I’_(I),7,E <I>+\I/_\Iji_ O+
an ( )¢+ Ve e g€
—  B(w" +HwY) — (X% + vl —w)E
- : : i] ¢4
+  (HW Ok — (X + X% T Xj’k)} B (7.6)
We can now write the total time derivative of the distributfoinction as
dg 99 | 4 i orw ;1 k g
I _ —-J PN ) 1_ i T m m _-7
n 877+Ene win 2Xk n'n p
N} q'q" 4T i BT ¢ 4T
+ |-(H-9)¢"+ T —-c¢ — P'Fe —U,—¢
"B "B
— B 4+ HW) = (x% +wiy —wi)E
i i i K qjqk Og
+ (HW 5jk - (X gk + X k,j + X]k)) B :| 8qz . (77)

This equation is completely general since we have just sdiwethe kinematics
of massive particles. As far as the collision terms are covest for the system
of electrons and protons we consider the Coulomb scattgriogesses between
the electrons and protons and the Compton scatterings éeff®tons and elec-

trons

dge

dn (x,q,m) = <Cep>QQ’q’ + <Cev>pp’q’ (7.8)
dg

d: xQn) = (Ceplarq’ (7.9)

where we have adopted the same formalism of Ref. [28] wigmdp’ the initial
and final momenta of the photorgandq’ the corresponding quantities for the
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electrons and for proton® and Q’. The integral over different momenta is
indicated by

B d3p d3p/ dSq/
o= [ s [ | (749

and thus one can reag, as the unintegrated part of Ef. (5.2), and similarly for
cep (With the appropriate amplitudé/|?). In Eq. [7.8) Compton scatterings be-
tween protons and photons can be safely neglected becauamtiitude of this
process has a much smaller amplitude than Compton scattesiith electrons
being weighted by the inverse squared mass of the particles.

At this point for the photons we considered the perturbatemound the zero-
order Bose-Einstein distribution function (which are thekmown quantities).
For the electrons (and protons) we can take the thermaitiitibn described by
Eqg. (5.4). Moreover we will take the moments of Efs.|(7[88) T order to find
the energy-momentum continuity equations.

7.1. Energy continuity equations

We now integrate Eq[{7.7) oveq/(27)3. Let us recall that in terms of the
distribution function the number density, and the bulk velocitw are given by

d3q
.= , 7.11
= e 74D
and
3 7
vio L[ da (7.12)

ne ) 237 FE

where one can sdf’ ~ m, since we are considering non-relativistic particles.
We will also make use of the following relations when intégrg over the solid
angled2

. o aa . .1 ...
/dQnZ:/dannjnk:O, /Enlnj :gw. (7.13)

Finally notice thatlE /dq = q/F anddg/0dq = (¢/E)dg/0E.

Thus the first two integrals just bringg, and (n.v?) ;. Notice that all the
terms proportional to the second-order vector and tenstumbations of the met-
ric give a vanishing contribution at second order since ia thase we can take
the zero-order distribution functions which depends omiyyand FE, integrate
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over the direction and use the fact thé?txl-j = 0. The trick to solve the remain-
ing integrals is an integration by parts ovér We have an integral like (the one
multiplying (¢’ — H))

d’q ;g d*q
| g = =3 e = one 719

after an integration by parts ovet. The remaining integrals can be solved still
by integrating by parts ovef. The integral proportional té-* in Eq. (Z.T) gives

d3q
/WE = —U; Ne , (715)

where we have used the fact thid /dq* = ¢'/ E. For the integral

/ d*q q'¢" 9y
(2m)3 E 9q'’

(7.16)

the integration by parts brings two pieces, one from thevd#dn of ¢*¢* and
one from the derivation of the energy

d*q ¢" Pq ¢ q" " d*q ¢* ¢"
—4 L LL _ b, 2L (717
/(277)39E+/(27r)3gEE v +/(27r)3gE2E (7.17)
The last integral in Eq[{Z.17) can indeed be neglected. Ealcthis one makes
use of the explicit expression (5.4) for the distributiondtiong to derive

vt = g? - ?Uiga (718)
and
’q j ij 2.4 j
(271')3 99 q" = 0nemeTe + NeMv v . (719)
Thus it is easy to compute
U d3 T, T,
§ /—q3gq2q’“ = -V 0° == + 30 pupne— + U pu0° (7.20)
mg (27T) Me M

which is negligible taking into account th&t /m. is of the order of the thermal
velocity squared.

With these results we are now able to compute the left-hateddfithe Boltz-
mann equation (718) integrated owélg/(27)3. The same operation must be
done for the collision terms on the right hand side. For eXargr the first
of the equations in[(718) this brings to the integréls,) 0o qq' + (Cey)pp’qq’-
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However looking at Eq[{513) one realizes that, ),, ¢, vanishes because the
integrand is antisymmetric under the charge- q’ andp < p’. In fact this is
simply a consequence of the fact that the electron numberisezved for this
process. The same argument holds for the other tegmoq:4,- Therefore the
right-hand side of Eq[{7.8) integrated ov&y/(27)? vanishes and we can give
the evolution equation fon.. Collecting the results of Eq_(7.114) o (7120) we
find

One PV a(“%e)

o oz

Similarly, for CDM particles, we find

+3(H =W )ne +e?TV0%n, (@) — 20 ;) = 0.(7.21)

oncom " R a(vinCDM)
on e

+ eqj-HllvéDM NCDM ((I),k — 2\1171@) =0. (7.22)

+ 3(7‘( — \I//)TLCDM

7.2. Momentum continuity equations

Let us now multiply Eq.[{7]7) byq'/E)/(27)% and integrate oved3q. In this
way we will find the continuity equation for the momentum ofyians. The first
term just givegn.v*)’. The second integral is of the type

0 dq  qn’ qn’ 0 Te :
By L A i A L LA I 7.23
Ol / (27T)3g E E  Oxf <n me5 n vv> (7.23)
where we have used Eq. (7119) aAd= m.. The third term proportional to
(H—"")is

d*q 1 99 ¢' Bq P
| ot s = | G (7.24)

where we have integrated by parts oyerNotice that the last term in Eq.(7124)
is negligible being the same integral we discussewd abofzgi{7.20). By the
same arguments that lead to neglect the term of [EQ.](7.26)dasy to check
that all the remaining integrals proportional to the gratiitnal potentials are
negligible except for

— e — 2 = etV 7.25
0, [T = e (7.25)

The integrals proportional to the second-order vector amddr perturbations
vanish as vector and tensor perturbations are tracelesdiagrgence-free. The
only one which survives is the term proportionaltt + Hw? in Eq. [Z.7).
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Therefore for the integral ovet®qq’/E of the left-hand side of the Boltz-
mann equatior(717) for a massive particle with mass(m,) and distribution
function [5.4) we find

Bq ¢ dg. o -
/ q q ag _ 8(” v ) +4(H_\P/)nev1+(1),le{>+\1/ne

2r)3 Edyp  On
T.\" 0 N BL ,
S+ e d4+T ) 7
+e (ne—me) +e a7 (nev’v") + an Ne + Hw'ne .

(7.26)

Now, in order to derive the momentum conservation equatiobéryons, we
take the first moment of both Ed._(¥.8) ahd {7.9) multiplyihgrh byq andQ
respectively and integrating over the momenta. Since pusly we integrated
the left-hand side of these equations owéyq’ / E, we just need to multiply the
previous integrals by, for the electrons and for., for the protons. Therefore
if we sum the first moment of Eqs$. (7.8) aid {7.9) the dominantribution on
the left-hand side will be that of the protons

d3 d . . ;
/ (27TC)23 Q° di; - <Cep(ql + QZ»QQ’qq’ + <Cequ>pp’qq’ : (7.27)

Notice that the integral of the Coulomb collision teegy (¢* + Q°) over all mo-
menta vanishes simply because of momentum conservatiant@the Dirac

functiond(¢+Q — ¢’ — Q’)). As far as the Compton scattering is concerned we
have that, following Ref. [28],

<Cevqi>pp’qq’ = _<Cevpi>pp’qq’ ) (7.28)

still because of the total momentum conservation. Theeefdrat we can com-
pute now is the integral over all momentaf, p’. Notice however that this is
equivalent just to multiply the Compton collision ter@{(p) of Eq. (5.3) byp’
and integrate ovef®p/(273)

i d3p
<Ce’yp >PP’QQ’ = ae@/ (27‘1’)3

whereC(p) has been already computed in Egs. (5.39) And(5.40).
We will do the integrall(7.29) in the following. First let ustioduce the defi-
nition of the velocity of photons in terms of the distributitunction

P'Cp). (7.29)

. 3 _
o+t = [ Sl (7.30)
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wherep, = p.,/3 is the photon pressure apd the energy density. At first order
we get

4 .
Wi A(l) 7.31
31)7 47 ( )

whereA is the photon distribution anisotropies defined in Eq.](64%)second
order we instead find

(2)i
408 s 4 0y
25 =5 | o —A@pi gag DD (7.32)

Therefore the terms in Eq§.(5]39) ahd (5.40) proportiangft (p) andf 2 (p)

will give rise to terms containing the velocity of the phosoi©n the other hand
the terms proportional tﬁél)(p) andfég)(p), once integrated, vanish because of
the integral over the momentum directief, [ dQn’ = 0. Also the integrals
involving P, (¥ - n) = [3(¥ - n)? — 1]/2 in the first line of Eq.[(5.39) and (5.40)
vanish since

/dQPg(v n)n' =10 vj/dannjn =0, (7.33)

where we are using the relatios (4.13). Similarly all thente proportional to

v, (v - n)? andv? do not give any contribution to Eq.(7]29) and, in the second-
order collision term, one can check thatiQY>(n)n’ = 0. Then there are terms
proportional to(v - n) £ (p), (v -n)pd f© /dp and(v - n)pd £ /dp for which

we can use the rules{6]10) when integrating @wehile the integration over the
momentum direction is

/ZQ (v -n)n' —vk/@nknZ = —v‘ (7.34)
™
Finally from the second line of Ed.(540) we get three intégrOne is
&*p 5 di? i
[ e v ms ) =, [ AV (7.35)

wherep, is the background energy density of the photons. The secomgs

from
3p (1)
%/ (;l )3P "(v-n)Py(¥ - n) (fz(l)(p) - (9fap( )> (7.36)

5 asy ,
= ZﬁvAél) [3%17;@@1/571%- nn —vj/—n n ] = —ﬁVAél)ﬁl,
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where we have used the rulés (8.10), Eq. (7.13) Aad2/47) nininFn! =
(6 6k 4 5%kl 4 §i1§7k) /15. In fact the third integral

3
- [ G v ). (7:37)

exactly cancels the previous one. Summing the variousratege find

dp - _ 4. (1) (1) dQ A(2)
/(2w)3c(p)p_new”[3(v vil- ] ma

4v® 4 dQ
35+ 3OO — V) +/ AD(v-n)n +ADv

33 o .(7.38)

Eq. (Z.38) can be further simplified. Recalling tkigt) = Aél) we use Eq[{7.32)
and notice that

gA(l) (v n)n’ =o' 4 %mgw , (7.39)

where the photon quadrupdlfy is defined as

g ae (. . 1. A®?)
i = [ 228 (pind —— ) (A £ 2 ") 7.40
K / in (n n 35 ) ( + 5 ( )

Thus, our final expression for the integrated collision t¢r29) reads

d3p ; 4 ; ; 4 (@i v(2)i
—rC i = neorpy | = (0 — )i = _
/ (27)3 (P)p* = neorpy [3(1) vy )+ 3 5 9

4 ) ) y
+3 (52” + Ag”) (i — D1y 4 v§1>nﬂ . (7.41)

We are now able to give the momentum continuity equation &ybns by
combiningm,,dg, /dn from Eq. [7.26) with the collision terni (7.29)

0 i . ) T\ "
(pb’U ) + 4(H _ \I//)pb’l}z + (I),zeqH—\I/pb + e<1>+\ll (Pb—b)
on m,

0 oo Ow’ )
o 4+v Y T, 0 i
+ e 5 (ppv?v") + an o+ Hw' py
_ 4 i i 4 ’U(2)i ’U(Q)i
=  —N0Ta P~y g(v(l) _ v'(yl) ) + § <T _ 'YT

4 . . y
+ 3 (55}’ +A + q><1>) (0 — (D7) 4 @”ny] . (7.42)
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wherep, is the baryon energy density and, as we previously explainedook
into account that to a good approximation the electrons d@owtribute to the
mass of baryons. In the following we will expand explicitlyfast and second-

order Eq.[(Z.4R).

7.2.1. First-order momentum continuity equation for bargo
At first order we find

oy a . )
)i (1), _ /p'y i _ ()i
= +HVW 4 372! (v of ) . (7.43)

7.2.2. Second-order momentum continuity equation fordrasy

At second order there are various simplifications. In paldicnotice that the
term on the right-hand side of Eq.(7142) which is propomiico 6, vanishes
when matched to expansion of the left-hand side by virtubefitst-order equa-
tion (Z.43). Thus, at the end we find a very simple equation

1 (%(2) Ot ow ) _
z (@i 497 19 @) 2= (1)
39,00 4 (o) 1 p))p 4 (ﬂ) N ()
; mp 3 Pb

3

(2)i (2)i . ) 3
) [(vz - %> - (Aél) +@(1)) (”(m _”W) 1 oI

with 7/ = —n.ora.

7.2.3. First-order momentum continuity equation for CDM
Since CDM patrticles are collisionless, at first order we find

1 7
aUCI))M
on

+ HoGh + @D = 0. (7.45)

7.2.4. Second-order momentum continuity equation for CDM
At second order we find

o 2)i Ow' i oY i
s (el e ) S

j i . T i
oA Ojvat + (@) + T 4 (ﬂ) —0. (7.46)
mcpMm
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8. Linear solution of the Boltzmann equations

In this section we will solve the Boltzmann equations at firster in perturbation
theory. The interested reader will find the extension ofétfesmulae to second
order in Ref. [2]. The first two moments of the photon Boltzma&guation are
obtained by integrating EJ._(6.6) ovéf,, /4r anddf,n’/4x respectively and
they lead to the density and velocity continuity equations

’ 4 . ’
A+ O -4 =0, 8.1)
(1)ir 3 (1)7i N (1),3 1 (1) (1)
vy "+ ZajH'Y + ZAOO + ¢\t = —1 (v — vy ) , (8.2)

wherell¥ is the photon quadrupole moment, defined in Eq.(7.40).

Let us recall here that”) = A{l) = [dQA® /4x and that the photon
velocity is given by Eq[{7.31).

The two equations above are complemented by the momentutmgioy
equation for baryons, which can be conveniently written as

Wi = v,(yl)i + EI [v(l)i' + HoW? 4 fIJ(l)’l} ) (8.3)
T

where we have introduced the baryon-photon r&ties 3p,/(4p-).

Eg. (8.3) is in aform ready for a consistent expansion in thallsquantityr —!
which can be performed in the tight-coupling limit. By firakingv (Vi = ("
at zero order and then using this relation in the left-hade sif Eq. [8.8) one
obtains

v — (i = g [vgm" + Ho DT 4 o) (8.4)

Such an expression for the difference of velocities can bd irsEq. [8.2) to give
the evolution equation for the photon velocity in the limitight coupling
(1),

oD 4 HHiRngZ + %ﬁ—OR + oM =9, (8.5)
Notice that in Eq.[(8]5) we are neglecting the quadrupolénefghoton distri-
butionTI(M% (and all the higher moments) since it is well known that a¢din
order such moment(s) are suppressed in the tight-couptmgby (successive
powers of)1/7 with respect to the first two moments, the photon energy den-
sity and velocity. Eqs[(8l1) and (8.5) are the master eqnativhich govern
the photon-baryon fluid acoustic oscillations before thecbpof recombination
when photons and baryons are tightly coupled by Comptonesoad.
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In fact one can combine these two equations to get a singtedearder dif-
ferential equation for the photon energy density pertumhatA((JB). Deriving

Eq. (8.1) with respect to conformal time and using E](&Spaplace@ivgl)i
yields

Wr o R A g (1)
(Al —4w®) + Mg (Al - aw)
(1)
292 (1) _ (1) :é 2 (1) v
v (AOO AU ) = (@ + 1+R) : (8.6)

wherecs, = 1/4/3(1 4+ R) is the speed of sound of the photon-baryon fluid.
Indeed, in order to solve Eq.(8.6) one needs to know the &walof the grav-
itational potentials. We will come back later to the diséosof the solution of
Eq. (8.6).

A useful relation we will use in the following is obtained bgrsidering the
continuity equation for the baryon density perturbatiory grturbing at first
order Eq.[(Z.211) we obtain

5 4t =30 — 0. 8.7)
Subtracting Eq[{817) form Ed._(8.1) brings
v Ay 4 i i
AR = 30 4+ S (o — v D7) =0, (8.8)

which implies that at lowest order in the tight-coupling egppmation
4
A = §5§1> : (8.9)
for adiabatic perturbations.

8.1. Linear solutions in the limit of tight coupling

In this section we briefly recall how to obtain at linear ordlee solutions of
the Boltzmann equations (8.6). These correspond to thesticascillations of
the photon-baryon fluid for modes which are within the hamizd the time of

recombination. It is well known that, in the variatﬁlﬁé})) —4v(W), the solution
can be written as [32, 38]

[1+ R(n)| Y4 (A —49W) = Acos[kr,(n)] + B sin[krs(n)]

LA AW naa (e@pn . YD)
1 [ manp (800 + 2y

< sinfk(rs (n) — v ()] (8.10)
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where the sound horizon is given by(n) = [ dn/cs(n’), with R = 3p,/(4p-).
The constantst and B in Eq. [8.10) are fixed by the choice of initial conditions.

In order to give an analytical solution that catches moshefghysics under-
lying Eq. (8.10) and which remains at the same time very sintptreat, we will
make some simplifications following Ref. [28,39]. Firsty ®mplicity, we are
going to neglect the rati® wherever it appeargxceptin the arguments of the
varying cosines and sines, where we will tré&at R, as a constant evaluated at
the time of recombination. In this way we keep track of a damguif the photon
velocity amplitude with respect to the caBe= 0 which prevents the acoustic
peaks in the power-spectrum to disappear. Treakiregs a constant is justified
by the fact that for modes within the horizon the time scaléhefocillations is
much shorter than the time scale on whiglvaries. If R is a constant the sound
speed is just a constaat = 1/4/3(1 + R..), and the sound horizon is simply
Ts (77) = Cs).

Second, we are going to solve for the evolutions of the peations in two
well distinguished limiting regimes. One regime is for tagerturbations which
enter the Hubble radius when matter is the dominant compotiext is at times
much bigger than the equality epoch, with< k., ~ 77;11, wherek,, is the
wavenumber of the Hubble radius at the equality epoch. Therategime is
for those perturbations with much smaller wavelenghts tvigicter the Hubble
radius when the universe is still radiation dominated, thaterturbations with
wavenumberg > k., ~ ngql. In fact we are interested in perturbation modes
which are within the horizon by the time of recombinatign Therefore we will
further suppose that, > 7., in order to study such modes in the first regime.
Even though). > 7., is not the real case, it allows to obtain some analytical
expressions.

Before solving for these two regimes let us fix our initial didions, which are
taken on large scales deep in the radiation dominated ara (fe 0). During this
epoch, for adiabatic perturbations, the gravitationaéptils remain constant on
large scales (we are neglecting anisotropic stressestsdtha~ ¥(1)) and from
the (0 — 0)-component of Einstein equations

M (0) = _gagy 0). (8.11)
On the other hand, from the energy continuity equafiod (8nllarge scales

A((Jlo) — 49 = const.; (8.12)

from Eqg. [8.I1) the constant on the right-hand side of Edl4Bis fixed to be
—60M1)(0); thus we findB = 0 andA = —63(1)(0).
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With our simplifications Eq[(8.10) then reads

A —av® = — 600 (0)cos(won)
8k [
— = | an V(@) sinfwo(n —1')], (8.13)
S o sintentn - 1)

wherewy = kc,.

8.2. Perturbation modes with < k4

This regime corresponds to perturbation modes which ehteiHubble radius

when the universe is matter dominated at times> n.,. During matter dom-

ination the gravitational potential remains constant lfbat super-horizon and
sub-horizon scales), as one can see for example fromEQ), @il its value

is fixed to @) (k,n) = L1 (0), where®)(0) corresponds to the gravita-
tional potential on large scales during the radiation datgd epoch. Since we
are interested in the photon anisotropies around the timecoimbination, when
matter is dominating, we can perform the integral appeanirkgy. (8.10) by tak-

ing the gravitational potential equal to its value duringteadomination so that
it is easily computed

n (1)
2/ dn ) () sinfwo(n — n')] = 18 277(0) (1 — cos(won)) - (8.14)
0 10 wo
Thus Eq.[(8.IB) gives
Al — 4™ = gq)(l)(O)cos(won) - ?’5—6@<1>(0). (8.15)

The baryon-photon fluid velocity can then be obtaine@iaél)i = —3(AE)B) —
4w MY /4 from Eq. [8:1). In Fourier space

ik; vgl)i = %fb(l)(O) sin(won)wo , (8.16)

where, going to Fourier spacgo{’ — ik; v{"" (k) and

. Kkt 9
v’(yl)z = _izﬁ@(l)(o) sin(won)cs (8.17)

since the linear velocity is irrotational.
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8.3. Perturbation modes with > k.4

This regime corresponds to perturbation modes which ehteiHubble radius
when the universe is still radiation dominated at times< 7.,. In this case

an approximate analytical solution for the evolution of gegturbations can be
obtained by considering the gravitational potential fouegradiation dominated
epoch, given by Eq[{BI8). For the integral in Hg. (8.13) westfind

mn
| @ sinfintn o)) = = 5 costen). (8.18)
0 2wo
where we have kept only the dominant contribution oscilatin time, while
neglecting terms which decay in time. The solution (B.13)dmees

AL = 4v® = 60M(0) cos(won) , (8.19)
and the velocity is given by

vgl)i = —i%gfb(l)(O) sin(won)cs , (8.20)

Notice that the solution§ (8.119)—(8120) are actually aciromly when radiation
dominates. Indeed, between the epoch of equality and reicatitn, matter
starts to dominate. Full account of such a period is given ia.@ection 7.3 of
Ref. [28], while its consequences for the CMB anisotropylion can be found
e.g. in Ref. [40].

9. Conclusions

In these lecture notes we derived the equations which alloevaluate CMB
anisotropies, by computing the Boltzmann equations deiscrithe evolution of
the baryon-photon fluid up to second order. This allows ttofokhe time evo-
lution of CMB anisotropies (up to second order) on all scafemm the early
epoch, when the cosmological perturbations were genertatéitke present time,
through the recombination era. The dynamics at second @ garticularly im-

portant when dealing with the issue of non-Gaussianity inBCAhisotropies.
Indeed, many mechanisms for the generation of the primardiamogeneities
predict a level of non-Gaussianity in the curvature pestidn which might be
detectable by present and future experiments.
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Symbol Definition Equation
DU Gravitational potentials in Poisson gauge [13.1)
w; 2nd-order vector perturbation in Poisson gauge [1@B.1)
Xij 2nd-order tensor perturbation in Poisson gauge [1@.1)
n Conformal time [(3h)
I Photon distribution function [148)
g Distribution function for massive particles [5.4)E(Y.1)
F@ i-th order perturbation of the photon distribution function @.23)
é;l Moments of the photon distribution function @17
C(p) Collision term [53) &[5Y)
P Magnitude of photon momentunp (= pn?) @3)
nt Propagation direction [{46)
A (gt ni p) First-order fractional energy photon fluctuations [16.5)
AP (2 nt ) Second-order fractional energy photon fluctuations [1(6.9)
Ne Electron number density [{Zh1)
6e(dp) Electron (baryon) density perturbation [B3.13)
k Wavenumber [(66)
U Baryon velocity perturbation [16.19) £(6.20)
ng)fM Cold dark matter velocity [(736)
vgz)z Second-order photon velocity [(732)
Som Temperature source term [@17)
T Optical depth [(614)
P~ (Pb) Background photon (baryon) energy density [¥.43)

Appendix A. Einstein’sequations

In this Appendix we provide the necessary expressions tbvddathe gravita-
tional part of the problem we are interested in, namely tlooisd-order CMB
anisotropies generated at recombination as well as thesticascillations of
the baryon-photon fluid. The first part of the Appendix comsghe expressions
for the metric, connection coefficients and Einstein’s tenmerturbed up to sec-
ond order around a flat Friedmann-Robertson-Walker backgtothe energy-
momentum tensors for massless (photons) and massive (tsaaym cold dark
matter) particles, and the relevant Einstein’s equatiofise second part deals
with the evolution equations and the solutions for the sdeanmer gravitational

potentials in the Poisson gauge.

Appendix A.1. The metric tensor

As discussed in Section 3, we write our second-order metthd Poisson gauge,

ds* = a*(n) [—e*Pdn? + 2wida’dn + (e 72V 655 + xiy)dx'da’] | (A1)
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wherea(n) is the scale factor as a function of conformal timeandw; andy;;
are vector and tensor peturbation modes respectively. E@thc perturbation
is expanded into a linear (first-order) and a second-order pa discussed in
Section 3.

Appendix A.2. The connection coefficients

For the connection coefficients we find

Iy = H+9,
0P
ng = (Q).I'l + Hwi )
_ y . 0P
FBO _ wl + sz + 62\P+2¢%’
1 (0w;  Ow; 1
0 _ = J ? —2¥v—-2% AW ) .
i = 2(8xi+axj>+e (R =00 i + g s
i 1 1 (?wi Ow;
1(OX'; | oxy | Ok
- : : . A2
+ 2<8xk+8:ﬂ+ 0x; (A-2)
Appendix A.3. Einstein tensor
The components of Einstein’s tensor read
0 e 2 / e
Gy = —— [3H* — 6HY' + 3(V’)
— PP (9,00 - 2V (A.3)
i e?? iNTy! N ai 1 2 i
U A
+ <4H2 - 2“—) iy (A.4)
a a
0 1 —2¢ 2 a” &/ AV / !
G, = —|e H? —2— —20'®" — 3(V')? + 2H (D' 4 21")
a a
2W

+ 2@") +e*? (a@a% + V2P — v%)]&;ﬁ + 2—2
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X (—a@ajcb —0'0;® + 0'0; ¥ — "9,V + 9"V, ¥ — aixyaj@)

H o i 1 i i’
ﬁ(awﬁajw)_ﬁ(awﬁajw )
1

1 .~
a2

+ (ij» + =X

1 )
5 §v2X;> . (A.5)

Taking the traceless part of EQ. (A.5), we fidd— ® = 9, whereQ is defined
by V2Q = —P + 3N, with P = P?;,
P’ = 9'®0; ¥ + % (0°®0;® — 0'WO; V) + ArGna’e 2T (A.6)

andV>N = 9,07 P,
The trace of Eq[{AJ5) gives
"
e 2 <H2 — 2% 2@y — 3(U')? 4+ 2H (30 — Q') + 2\1/”>
a

2v
+% (20,00*® + 0, VOFT — 20,D* T + 2(P — 3N))

o 87TGN

3 a®Tk . (A.7)

From Eq.[A.4), we may deduce an equationdér

1 , a" ,
— §V2wz + (4H2 - 2?) W' (A.8)

= - (5;1 - av%) (2 (V' +(H-0) D) - &rGNa?e—?‘I’T{)) :

Appendix A.4. Energy-momentum tensor

Appendix A.4.1. Energy-momentum tensor for photons
The energy-momentum tensor for photons is defined as
2 d*P PHP,
T“V = / f7
T g ) @ P

whereg is the determinant of the metric (A.1) arfds the distribution function.
We thus obtain

(A.9)

()

i A
To = =y <1+AEB) + = ) , (A.10)
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; 4 R R . 1 ,
Ty = _ge%upﬁv (vgl)l + Qvf)z + Aéé)v,(fﬁ) + gﬁye‘p_@w’ (A.11)
7 —= 1 1 7 1 A(2)
Ty = by (Hv it 56.7' (1 + AL+ —30 ; (A.12)
wherep, is the background energy density of photons and
. a0 1 A®2)
i 220 S (1)
1T / in (n n 35 ) (A + 5 ) , (A.13)

is the quadrupole moment of the photons.

Appendix A.4.2. Energy-momentum tensor for massive festic
The energy-momentum tensor for massive particles of mgssumber density
n and degrees of freedog

T, = gjg éjr?g Q;?“ Gm (A.14)
whereg,, is the distribution function. We obtain

Too = —Pm=—hm (1 +50 4+ %55,?) , (A.15)

Tho = —€" pnu), =—e*p, (v,ﬁi” + %vfﬁ” + 55;%,(,1)1’) (A.16)

Toy = pm <52-%m +vfnvmj> = pm (53—%’” +v,<,1>ivf,i>j) , (A1T)

wherep,, is the background energy density of massive particles antiave
included the equilibrium temperatufg, .

Appendix B. First-order solutions of Einstein’s equationsin various eras

Appendix B.1. Matter-dominated era

During the phase in which the CDM is dominating the energysigmof the Uni-
verseg ~ n? and we may use Ed.(A.7) to obtain an equation for the grawitat
potential at first order in perturbation theory (for whight) = w(1))

oM 43 =0, (B.1)
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which has two solution§>$) — constant and®’) = H/a®. At the same order
of perturbation theory, the CDM velocity can be read off frio (A.4)

. 2
W= ——9ipM) B.2
! 37 (B-2)

The matter density contrast') satisfies the first-order continuity equation

(1)7 )
T2 g (B.3)

' — _
0 ozt 3H

Going to Fourier space, this implies that

k2 2
)=o)+ B2 ®4

whereé,il)(o) is the initial condition in the matter-dominated period.

Appendix B.2. Radiation-dominated era

We consider a universe dominated by photons and masslessnosu The
energy-momentum tensor for massless neutrinos has the feames that for
photons. During the phase in which radiation is dominatheyeénergy density
of the Universega ~ n and we may combine Eqd._(A.3) arid (A.7) to obtain an
equation for the gravitational potenti&l®) at first order in perturbation theory

v L) — 1v2\1j(1) — HQ(l)’ + EV2Q(1)
3 3 ’
9 .00 i
viQW = sy, (B.5)

where the total anisotropic stress tensor is

i Py i Pv i
P Pepg B.6
Ta= pp 703" pp v (86)

We may safely neglect the quadrupole and solve[Eq] (B.5hgett. = <I>$)77.
Then Eq.[(B.b), in Fourier space, becomes

2 K% 2
u/I+—U/+ (?__Q)UZO (B?)
n n



52 N. Bartold', S. Matarresé & A. Riottcd®

This equation has as independent solutians = j; (kn/v/3), the spherical
Bessel function of order 1, and_ = n; (kn/+/3), the spherical Neumann func-
tion of order 1. The latter blows up ggyets small and we discard it on the basis
of initial conditions. The final solution is therefore

sin(kn/v/3) = (kn/v/3)cos(kn/V'3)
(kn/v/3)?
where®®)(0) represents the initial condition deep in the radiation era.

At the same order in perturbation theory, the radiationeigfacan be read off
from Eq. [A.3)

ol = 301)(0)

(B.8)

) 1 (aaifb(l))/
e _
vg>__—§—3——7;——. (B.9)
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