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ABSTRACT

Cu, Cd and Zn concentrations over a 40 km long portion of the Spanish
continental shelf are an order of magnitude higher than enrichments generally
found in coastal water. All samples were analyzed with a simple device which
automates the pre-concentration of Cu, Ni, Cd, Zn and from seawater and fresh
water by bis (2-hydroxyethyl)- dithiocarbamate-metal complex retention on a
hydrophobic column. Enrichments observed over the Spanish shelf are
sufficient to influence the composition of the Mediterranean because Spanish
coastal water is entrained in the inflow to the Alboran Sea. Trace metal and
ancillary data for 172 samples from the Gulf of Cadiz collected in April and
October'86 confirm that Spanish shelf water dominates Cu, Cd and Zn fluxes
through the Strait of Gibraltar. Following a review of alternative
explanations, a shelf "metal-trap" mechanism is presented in order to
reconcile the magnitude of observed metal enrichments with their geographical
distribution and seasonal variability. A simple box model of the metal-trap
indicates this mechanism must be operating over the whole length of the
Iberian Atlantic coast (rather than the Gulf of Cadiz only) in order to
support the important metal sink through the Strait of Gibraltar.

The three water masses originating in the Atlantic and entering the Alboran
Sea through the Strait of Gibraltar are (1) Atlantic surface water, (2) North
Atlantic Central Water and (3) Spanish shelf water, based on salinity and Cu,
Ni, Cd and Zn concentrations. A conservative mixing model of these
end-members is solved by weighted least-squares and shown to be consistent



with tracer data for 43 surface stations in the Strait of Gibraltar. Spanish
shelf water is restricted to the northern half of the Strait and can be traced
as a plume in the Alboran Sea. On three occasions (April'86, June'82 and
October'86), salinity, Cu, Ni, Cd and Zn distributions in the surface Alboran
Sea are consistent in most cases with conservative mixing of the three
previously defined end-members with Mediterranean water. A metal enriched
plume originating from the Spanish shelf was present in the Alboran Sea during
all three sampling periods, but was significantly stronger in June'82.

Cu, Cd and Zn flux estimates at the Strait of Gibraltar for the Atlantic
inflow and the saline outflow confirm that Spanish shelf water influences the
composition of a basin as large as the Mediterranean. In- and outflow are
roughly in balance for these elements. In contrast to Cu, Cd and Zn, Ni
concentrations for the inflow are a factor of two lower than the Mediterranean
outflow. Estimates of metal sources within the basin indicate the difference
may be due to river input. Estimates of atmospheric input of Cu, Cd, Ni and
Zn are an order of magnitude higher than either the uncertainty in the
difference between in- and outflow concentrations, or the east-west gradient
in surface water concentrations of the Mediterranean. This is true when
aerosol input of these elements is scaled to the observed change in dissolved
Al concentration in the water column and enrichment factors in aerosols
relative to the crust from either the remote Pacific ocean, the Atlantic ocean
or the Mediterranean Sea. The discrepancy may indicate either significant
scavenging of trace elements in the Mediterranean, or that enrichment factors
measured in aerosols are not representative of the composition of the dust
input which dissolves in the water column.
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CHAPTER ONE

INTRODUCTION



The history of reliable trace metal mesurements in the ocean does not reach

far back in time. The difficulty in obtaining reproducible results for these

elements was due to their presence in sea water at levels on the order of 10-9

M. In order to avoid contamination, new sample collection and analysis

procedures had to be developed. Boyle et al. (1975) determined dissolved Cu

concentrations ranging between 0.9-3.2 nM for surface water south of New

Zealand, followed by a number of Pacific profiles showing deep water

concentrations increasing to 6 nM (Boyle et al. 1977). Pacific profiles for

the element Cd "oceanographically consistent" with the distribution of

temperature and salinity in the water column soon followed, and showed

concentrations increasing from the surface (.l+.l nM) to the deep ocean (1.1

pM) (Boyle et al., 1976 and Martin et al., 1976). A linear correlation

between Cd and phosphate concentrations in subsurface Pacific water was the

first evidence of a link between trace metal and nutrient cycling, i.e.

surface uptake by phytoplankton and regeneration by particle dissolution in

deeper water. The first profiles of Ni (3 - 12 nM, Sclater et al., 1976) and

Zn (0.1 - 10 nM, Bruland et al., 1978) also showed significant enrichments in

deep Pacific water relative to surface water. Bruland (1980) subsequently

measured Cu, Ni, Cd and Zn concentrations in surface water of the North

Pacific gyre as low as 0.5, 2.1, .001 and .07 nM, repectively.

Since these studies on the distributions of dissolved metals concentrations,

the composition of phytoplankton in surface water (Bruland et al. 1978,

Collier and Edmond, 1985) and that of sinking biogenic particles collected by

sediment traps deeper in the ocean was determined. These results showed that

internal trace metal cycling in terms of phytoplankton uptake at the surface



and redissolution at depth maintains concentration gradients between the

surface/deep ocean and the deep Atlantic/Pacific. On the other hand, the

relative importance of external inputs by rivers, aerosols and sediment

diagenesis with respect to trace metal distributions has proved more difficult

to establish. Early on, the Mediterranean basin was seen to present a unique

opportunity to discern these external metal sources for two reasons: (1) the

dominant inflow/outflow water transport through the Strait of Gibraltar

simplifies the determination of a metal budget for the basin and (2) low

nutrient concentrations inhibit metal redistribution by plankton. A first

survey of Mediterranean surface waters in 1980 (Spivack et al. 1983) showed

that Cu, Ni and Cd are on average enriched relative to eastern Atlantic

nutrient-depleted water by factors of 3, 2 and 5, respectively, and raised the

possibility of a source for these elements within the basin, natural or

anthropogenic. A more detailed look at the Alboran Sea which lies immediately

east of the Strait of Gibraltar in 1982 (Boyle et al. 1985), however, showed a

metal-enriched plume which appeared to originate from the Atlantic. This was

the first indication that Mediterranean metal enrichments are not necessarily

caused by a source within the basin.

These considerations of potential trace metal sources for the Mediterranean

Sea provided the motivation for this thesis. Three questions were posed at

the onset of this work:

(1) What portion of Cu, Ni, Cd and Zn enrichments observed in the

Mediterranean Sea originates in the Atlantic ?

(2) Are metal enrichment patterns in the surface Alboran Sea systematically



related to contributing Atlantic and Mediterranean water masses ?

(3) Do anthropogenic metal inputs influence trace metal concentrations in

the Mediterranean ?

The Gibraltar Experiment (Kinder and Bryden 1987), which involved primarily

physical oceanographers concerned with water transport in the Strait of

Gibraltar, twice offered the opportunity to sample the Gulf of Cadiz and the

Alboran Sea which lie at opposite ends of the Strait. Results from these

cruises are interpreted in chapters 3 through 5. Chapter 2 describes an

automated trace metal pre-concentration device which was developed in order to

facilitate analysis of the many samples required to understand the high

variability of trace metal concentrations in the region. The Gulf of Cadiz

(the source region for the Atlantic inflow) is examined in detail in Chapter

3 on the basis of 172 samples, including 8 profiles, collected in April and

October 1986. Spanish shelf water which is highly enriched in Cu, Cd and Zn

is identified on both occasions and shown to dominate the trace metal flux

into the Strait of Gibraltar. In Chapter 4, the distribution of trace metals

within the Strait (43 surface samples) is subsequently analyzed with respect

to conservative mixing of three Atlantic water masses contributing to the

inflow (surface Atlantic water, NACW and Spanish shelf water). Alboran Sea

surface samples collected in April'86, June'82 and October'86 are compared in

Chapter 5 in order to constrain temporal variability of Cu, Ni, Cd and Zn

inputs through the Strait. Chapter 6 concludes this thesis by discussing

implications of the results with respect to metal inputs within the

Mediterranean basin.
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CHAPTER TWO

AUTOMATED PRE-CONCENTRATION OF TRACE METALS
FROM SEA WATER AND FRESH WATER



INTRODUCTION

King and Fritz1 recently pointed out that separation and concentration

of trace metals from sample matrices by solvent extraction 2 is a labour

intensive procedure that is not easily automated. In response, these

workers developed an alternative method based on the adsorption of

complexed metals onto a resin column. Sodium bis (2-hydroxyethyl)

dithiocarbamate was shown to form hydrophobic complexes with several

metals, including Cu, Ni, Cd, Zn, Co and Pb. These complexes adsorbed

quantitatively on XAD-4 resin when seawater or distilled water, both

spiked at concentrations on the order of 10- 6M, was passed through a

column.

A reliable method capable of processing samples at a high rate and

requiring a minimum of attention had to be devised for our work on the

distribution of trace metals in coastal waters3 . We present here a

low-cost automation of the method of King and Fritz with some

significant modifications which proved necessary to determine dissolved

metal concentrations of 10-9M or less typically found in seawater. With

this procedure, ten 30 ml samples can be pre-concentrated in less than 4

hours without requiring any attention. The device is constructed from

commercially available components and could simply be adapted to other

column separation techniques requiring trace-metal-clean conditions.



EXPERIMENTAL SECTION

Apparatus

Figure 2.1 depicts the configuration of the pre-concentration device. A

system of 10 columns and sample reservoirs in parallel, including both

air and reagent manifolds with their respective control valves, fits in

a laminar flow-bench 2'*2'*2 in size (Environmental Air Control, Inc.).

As long as labroratory dust levels are not excessive, a complete clean

room transformation is not necessary in order to obtain

contamination-free sample pre-concentrations using this technique.

Each of the ten extraction units is built around a custom-designed 3 way

valve block made of polypropylene and the Teflon cylinder from a Nalgene

stopcock (# 6470). The maximum operating pressure is 20 PSI. The valve

blocks include four reagent outlets compatible with standard

chromatography fittings (1/4-28) used for 1/8" OD teflon tubing.

Connected to each valve are:

(1) a sample reservoir made from a polypropylene syringe (Becton

Dickinson & Co., choice of volume: 10 to 60 ml) via a tefzel

Luer-lock + 1/4-28 adapter. Each syringe barrel-reservoir is capped by

a section of another syringe mounted upside-down. The analyte should

not reach the level of this connection to avoid contamination. Each

reservoir cap is attached to a common air manifold via a small 3-way

stopcock and a Luer connection.

(2) a small resin column (0.3 ml) made of a section of 1/8" OD

(.06" ID) teflon tubing. A double layer of 8 pM Nuclepore polycarbonate
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membrane filter inserted between a standard tubing-to-tubing 1/4-28

connection constitutes the frit.

(3) a sample loading tube (Teflon 1/4-28) with bottle cap matching the

sample bottle attached air-tight to the valve block. An additional

diagonal conduit in the valve block with 1/4-28 connections directs air

flow only.

(4) a branch of the manifold linking each valve unit to the reagent

input valve.

The design of the valve-block is such that air-pressure applied over the

reservoirs blows out reagent in excess of a fixed volume (1 ml + 0.1)

when the reagent manifold is opened to the waste position.

The ten valve units are mounted to a plexiglass frame which also

supports a valve actuating rod and a three-position sliding tray. Both

actuating rod and sliding tray are controlled by pairs of air-actuated

pistons (polypropylene syringes). Pressure at the air manifold is

controlled by a 3-way pneumatically controlled Rheodyne (Model 5302)

slider valve. A 6-position, chemically inert, Rheodyne valve (Model

5012) switching between rinse solution, eluent and waste is connected to

the reagent manifold. Functions of all 8 solenoid air valves

controlling these operations as well as the 6-way valve positions are

listed Table 2.1.

The custom valve-blocks are disengaged from the actuating rod for

individual operation in order to allow each reservoir to be filled

manually with the sample solution. The sample bottle is temporarily

screwed air-tight onto the matching cap attached to the block.



Table 2.1 Functions for solenoid control channels.

Channel #

1 P on columns

2 P on bottles

3 Actuating rod on Run

4 Actuating rod on Load

5 Tray to 2nd position

6 Tray to 3rd position

7 6-way valve* switch

8 6-way valve reset

* l:Rinse reagent, 2: Waste, 3: not used, 4: Eluent, 5: Rinse, 6: Waste



Air-pressure applied over the loading bottle with a syringe via the

diagonal conduit then forces the sample solution into the reservoir.

This type of sample inlet to the reservoir avoids handling a removable

reservoir cap and reduces the risk of contamination during sample

loading. In addition, when the loading bottle is disconnected i.e. in

the automated mode, this flowpath permits rinsing of the reagent

manifold prior to input to the columns.

Reagents

Benson Co. (Reno, NE) kindly supplied the hydrophobic resin in 20 to

30 pM size range (Neutral Porous, BPR-80). Columns were slurry packed

with 0.3 ml of resin in ethanol. Two to three complete

extraction-elution cycles are usually sufficient to clean the columns.

Blanks obtained with Amberlite XAD-2 resin (used by King and Fritz), on

the other hand, could not be decreased to acceptable levels even after

extensive cleaning. This may be due to impurities in the resin or to

contamination during grinding which is necessary for the resin beads

manufactured by Amberlite.

Oxidation of the resin by nitric acid can be minimized by rinsing the

columns with water after the final elution step if the system is not

going to be used within a day. This prevents formation of

cation-exchange sites on the resin which retain major seawater cations

until the final elution step. When this precaution is taken, Na, Mg, K

and Ca levels in the concentrate are typically 0.2% of seawater

concentrations if samples are taken up in a final volume of 0.5 ml.



Since concentrates from seawater samples run without ligand contain

similar salt concentrations, mechanical trapping of sea water in the

first prototype of this system may have contributed to the residual

salt.

NaHEDC was synthesized following the procedure of King and Fritz.

Ligand crystals have been preserved for two years in a freezer without

noticeable degradation. However, for reproducible extractions, the 6%

by weight solution of the ligand at pH-8.3 should be less than 6 days

old if kept in a refrigerator. The ligand solution is purified by two

passages through a resin column similar to that used for samples.

Water is purified with a Corning Mega-Pure glass still after passage

through a mixed-ion exchange bed and activated charcoal. Buffer

solution of 0.1N NaBO 3 is cleaned by passage through a resin column

after addition of 1 ml NaHEDC/1000 ml. Ammonia is added to the buffer

(to 0.5 N) in order to neutralize acidifed samples. Ammonia is

sub-boiling distilled by gently swirling reagent grade ammonia next to

an open bottle of distilled water overnight in a closed container. One

liter of water rinse solution is buffered to pH-9.0 by addition of 1 ml

of purified 0.1N NaBO 3 . The elution solution is composed of

glass-distilled ethanol IN in HNO 3 . Nitric acid is distilled three

times in Vycor glass. Elution is not complete when using IN nitric

acid. Phosphoric acid is cleaned by passing a 0.25N solution through a

small Dowex AG 50W-X8 cation-exchange column.



Seawater is acidified upon collection with 1 ml of 6N HC1 (3 times

Vycor-distilled) for a 250 ml sample. In order to obtain good Cu, Ni,

Cd and Zn recoveries simultaneously, 30 ml samples are first neutralized

to pH-8.4 with 1 ml of NaBO3/ NH4OH buffer. Then, 0.1 ml of ligand

solution, sufficient to complex a solution 250 pM in divalent cations,

is added to each neutralized 30 ml sample. Samples are also routinely

spiked with Co before NaHEDC is added to reach an effective

concentration of 10- 9 M which is more than an order of magnitude higher

than natural seawater concentrations. Monitoring of Co recovery by

GFAAS provides a simple check on ligand degradation, column performance

or errors in reagent additions. After weighing and reagent addition,

samples can be loaded immediately for extraction. Loading of ten

samples takes approximately one-half hour.

Procedure

Each action of the device is controlled by a programmable HP 41CX

calculator-timer connected to an Oceanics 1000A interface and a simple

relay circuit. Eight solenoid air valves are controlled by this circuit

and activate each component of the device.

The general sequence of steps, outlined in Figure 2.2, is as follows:

Once each reservoir has been filled with a buffered sample (typically 30

ml) including the ligand, the device is switched to the automated mode.

During the first step of the cycle, columns are loaded with metal-ligand

complex contained in each sample. In order to sustain a flow rate of 15
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Table 2.2 Outline of timer program.

Main timer program

1 Initialize clock
2 P on reservoirs
3 Delay for 2 hours
4 P off
5 Tray to 2nd position
6 Rinse subroutine
7 6-way valve switched to position 5
8 Rinse subroutine
9 6-way valve switched to position 1
10 Rinse subroutine
11 6-way valve switched to position 4
12 Elute subroutine
13 End

Rinse subroutine

1 P on reagent bottles
2 Actuating rod to Load position
3 Delay for 2 minutes
4 P off
5 6-way valve to next position (6 or 2)
6 P on reservoirs
7 Delay for 1 minute
8 Actuating rod to Run position
9 Delay for 15 minutes
10 Return

Elute subroutine

1 P on reagent bottles
2 Actuating rod to Load position
3 Delay for 30 seconds
4 P off
5 6-way valve to position 6
6 Tray to 3rd position
7 P on reservoirs
8 Delay for 1 minute
9 Actuating rod to Run position
10 Delay for 45 minutes
11 Return



ml/hour, 5 PSI air pressure is applied over each column reservoir via

the air manifold. Samples passing through each column are collected in

cups at the first position of the sliding tray for subsequent weighing.

Passage of air through the columns towards the end of this step does not

adversely affect reproducibilty.

Following the loading phase, all 10 valve blocks are simultaneously

isolated or connected to the common reagent manifold by vertical motion

of the actuating rod. The collection tray moves to the second (waste)

position for three rinse cycles. Table 2.2 contains a detailed

description of the steps involved in loading the rinse solution from the

6-position pneumatic reagent flow valve. After the columns have been

rinsed of salts which interfere with the analysis of the concentrate by

GFAAS, samples are eluted with 1 ml of lN HNO 3 ethanol solution into

teflon beakers placed under the columns in the final position of the

sliding tray. This final step ends less than 4 hours after the

beginning of the automated procedure. After evaporation to dryness by

placing the teflon elution beakers in a hot water bath, concentrates are

taken up in typically 0.5 ml of 0.3 N HNO 3 and 0.025 N H3PO 4 solution

for analysis.

Concentrates were analyzed with a Perkin-Elmer Zeeman 5000

graphite-furnace atomic absorption photometer equipped with an HGA-500

furnace controller/AS-40 autosampler. Standard lamp and furnace

conditions were used. For Zn and Cd analyses, a L'vov platfrom was

used. Pyrocoated graphite tubes were used for Cu, Ni and Co

determinations. Standard curves were established by spiking



concentrates from distilled water processed as a sample. A change in

sensitivity in this matrix relative to a pure HNO3/H3P04 solution is

significant (10-20%) only for Cd and Zn. Addition of phosphoric acid

considerably improves reproducibility of analyses for Cd and Zn.

RESULTS AND DISCUSSION

Acidified North Atlantic surface water from the Sargasso Sea was spiked

with Cu, Ni, Cd and Zn at levels comparable with typical oceanic waters.

Replicate analyses of both spiked and unspiked samples (concentrated

from 30 ml to 0.5 ml) are listed in Table 2.3. Reproducibility between

days ranged from 5 to 8%. Within a day, reproducibility of replicate

analyses on different columns was 3-4%. Recoveries range between 93 to

98% and can be corrected for when determining actual metal

concentrations. Trace metal concentrations found in Sargasso Sea

surface water are comparable to earlier determinations by different

methods in this laboratory as well as by other workers4 ,5: Cu: 0.83 nM,

Ni: 1.95 nM, Cd < 1 pM, Zn: 0.1 nM.

Spiked seawater samples buffered to pH-5.0 with 250 Ml of 0.3 M ammonium

acetate and 5N ammonia, instead of NaBO 3 , show 100 % recoveries for Cu

and Ni, but Cd and Zn are not retained on the column under these

conditions. Depending on the elements of interest, a compromise may

have to be made between recovery efficiencies for different elements.

Alternatively, extractions could be repeated under optimum conditions

for each element. Modification of the pre-concentration method to three



Sargasso Sea surface water pre-concentrations:
30 ml to 0.5 ml at pH-8.4

Table 2.3

Element

Cu nM

Ni nM

Cd pM

Zn nM

% Recovery

93

94

98

98

Blank

0.1

0.05

<1

0.3

SW+spike
(n-13)

3.08 +.2

5.08 +.3

76 + 5

3.38 +.3

SW
(n-13)

0.83 +.1

1.95 +.2

1+1

0.1 +.I



order of magnitude lower metal concentrations has lowered the working

range in pH relative to results reported by King and Fritz.

Blanks were determined by passing seawater a second time through the

procedure after adding all reagents except the ammonia whose negligible

contribution was checked separately. Results listed in Table 2.3

indicate blanks are small relative to open ocean surface concentrations

for all elements except Zn. This limitation is not significant for our

purpose since Zn concentrations are typically an order of magnitude

higher in coastal or subsurface water than in Sargasso Sea surface

water. Blank contributions from the NaHEDC ligand accounts for more

than 80% of the total blanks for Cu, Ni and Zn. Further purification of

the ligand could, therefore, reduce the blank if necessary. Pb

concentrations determined for Sargasso Sea surface water (74 ±5 pM,

collected June '88) by pre-concentrating 30 ml to 0.1 ml at pH-5.0 are

comparable to reported values 6 . Work is ongoing to reduce the current

blank of 10 pM to the level obtained for cobalt-APDC coprecipitation (<4

pM).

In order to determine the applicability of this method to fresh water

systems with metal concentrations often below the detection limit for

analysis by GFAAS via direct injection7, Guadiana river water (Spain)

has been analyzed by the pre-concentration method. After filtration

through a 0.4 AM Nuclepore polycarbonate membrane, fresh water samples

are treated in the same way as seawater. As indicated in Table 2.4,

recoveries cannot be distinguished from 100% for Cu, Ni and Cd. Even

though recovery for Zn is lower (85%), reproducibility remains high for
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Table 2.4 Guadiana river water pre-concentrations:
30 ml to 3 ml at pH-8.4

Element RW RW+spike % Recovery

(n-3) (n-2)

Cu nM 11.6 +.6 19.5 +.6 101

Ni nM 12.2 +1. 22.8 +.8 103

Cd pM 19 +.6 259 + 1 101

Zn nM 2.4 +.2 10.5 +.1 85



this element. We cannot explain 10-15% lower recoveries from spiked

Corning distilled water which were observed for the same metals.

CONCLUSION

This device has automated the pre-concentration of trace metals from

natural fresh- and seawater by HEDC-metal complex retention on a

hydrophobic column. Previous work on dithiocarbamates8 indicates that

other elements should be amenable to this procedure as well. In

particular, high recoveries of Ag, Fe, U, V, Bi were obtained by King

and Fritz.

Due its flexibility in programming, eluent choice and sample size, this

device should allow the automation of other column separation techniques

requiring trace metal clean conditions. Chelex and Fractogel

immobilized hydroxyquinoline resins, for instance, have succesfully

been used to preconcentrate from seawater a number of trace elements

such as Cd and Zn9, Mn10 , All1 and Gal2. These methods could easily be

automated with this system. Minimal sample handling, and consequently

lower risks of contamination, involved in the automated column

extraction approach should allow a greater number of laboratories to

determine reliably trace metal concentrations in natural waters.
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CHAPTER THREE

Cu, Ni, Cd AND Zn ENRICHMENTS IN THE GULF OF CADIZ



INTRODUCTION

High Cu, Cd and Zn concentrations have been observed in shelf waters of

the Gulf of Cadiz (van Geen et al, 1988). These enrichments are

sufficient to influence the composition of the Mediterranean because

Spanish coastal water is entrained in the inflow to the Alboran Sea. In

fact, the flow averaged composition of the inflow in June'82, determined

on the basis of data from the western Alboran Sea (Boyle et al, 1985 and

Sherrell and Boyle, 1988), indicates no net source of Cu, Cd and Zn is

required within the basin in order to explain metal enrichments in the

Mediterranean relative to surface Atlantic water, first reported by

Spivack et al, (1983). Here, we support this conclusion by presenting

trace metal and ancillary data for 172 samples from the Gulf of Cadiz,

collected in April and October'86, which confirm that Spanish shelf

water dominates Cu, Cd and Zn fluxes through the Strait of Gibraltar.

Following a discussion of the set of 145 surface samples, 8 trace metal

profiles , as well as 20 determinations of 2 2 8Ra/2 2 6Ra activity ratios,

possible mechanisms causing exceptional metal enrichments over the

Spanish shelf are evaluated.

Surface transects extending from the open ocean to nearshore areas

generally show increasing trace metal concentrations as coastal waters

are entered. However, the cause of these enrichments can differ from

one situation to the other. Bruland et al. (1978) related high Cd

concentrations in Pacific surface waters to upwelling of metal (and

nutrient) enriched subsurface water off central California. On the

otehr hand, Boyle et al., (1981) attributed elevated Cu concentrations



in shelf waters north of the Gulf Stream and in the Gulf of Panama to

remobilization from coastal sediments. Heggie (1982) and Heggie et al.

(1987) also presented evidence that continental shelf sediments are the

major source for Cu (and Mn) enrichments in shelf waters of the eastern

Bering Sea. In the North Atlantic, Bruland and Franks (1983) showed Cu,

Ni, Cd and Zn concentrations increasing as fresher coastal water over

the north-american shelf is approached from the Sargasso Sea. Shelf and

riverine metal sources could not be distinguished in this case. In the

eastern Atlantic, Kremling (1983) demonstrated that Cd, Cu and Mn

concentrations are higher inshore of a hydrographic front off the

British Isles. None of these studies, however, have encountered water

as enriched in Cu, Cd and Zn as Spanish coastal water off Cadiz.

In this paper, mechanisms which have been proposed to explain metal

enrichments in continental shelf waters are examined in the context of

the Gulf of Cadiz. It turns out, first, that metal contributions from

suspended particles are negligible even in the most turbid waters

sampled. Dissolved and particulate inputs by the Guadalquivir river

also prove to be too small to account for metal concentrations off Cape

Trafalgar, unless these enrichments reflect an exceptional period of

erosion. We argue that acid sludge discharges in the Gulf of Cadiz are

insufficient as well to explain observed enrichments. For lack of an

obvious source of Cu, Cd and Zn from the shelf, we propose a mechanism

to explain observed coastal metal enrichments analogous to the nutrient

trap found in estuaries. Following a discussion of evidence for this

mechanism, the composition of surface Atlantic water, NACW, as well as



seasonal variability in Spanish shelf water, is estimated for salinity

and Cu, Ni, Cd and Zn concentrations. The three end-members

contributing to the Atlantic inflow are defined for the purpose of

tracing their advection through the Strait of Gibraltar and into the

Alboran Sea (Chapters 4 and 5).

SAMPLING AND ANALYSIS

Two cruises (March 26-April 19 and October 12-17 1986) of USNS Lynch

during the Gibraltar Experiment (Kinder and Bryden, 1987) offered the

opportunity to collect surface samples with a contamination-free

underway pumping apparatus. Profiles and additional surface samples

were also collected during RV Oceanus cruise 176 on 14-16 April 1986.

Five liter Niskin bottles modified and cleaned as described in Boyle et

al. (1985) were used for the profiles. Salinity and nutrients were

determined using standard techniques (Guildline Autosal salinometer and

colorimetry, respectively) described in Strickland and Parsons (1968).

Trace metal analyses on 30 ml samples followed a resin pre-concentration

procedure which has been automated (Chapter 2). Comparison of this

procedure for selected samples with modified Co-APDC (cobalt-ammonium

pyrrolinedithiocarbamate) co-precipitation (Boyle et al. 1981) showed no

significant differences for Cu, Ni, Cd and Zn. All sample concentrates

were analyzed by graphite-furnace atomic absorption (Perkin-Elmer Zeeman

5000, HGA 500). One-sigma precision for this data set is 5% or 0.1 nM

for Cu and Ni whichever is larger, 5% or 5 pM for Cd and 6% or 0.2 nM

for Zn. Blank corrections averaged 0.1 nM, 0.01 nM, <1 pM and 0.3 nM



for Cu, Ni, Cd and Zn respectively. A number of samples spanning the

range of metal concentrations in the Gulf were also filtered through 0.4

pm Nuclepore filters before acidification.

Trace metal concentrations were determined for several Iberian rivers by

direct injection GFAAS with calibration by standard addition. Results

for the Guadalquivir river by this method agree with trace metal

concentrations determined by the automated pre-concentration procedure,

indicating river water may also be analyzed by resin extraction.

Finally, dissolved 2 2 8Ra/2 2 6Ra activity ratios for 20 surface samples

were determined with towed Mn impregnated fibers following the method of

Moore (1976) during RV Oceanus cruise 176.

RESULTS

In April 1986, surface salinity in the Gulf of Cadiz outside the region

influenced by continental shelf waters ranged from 36.25 to 36.4 0/0o

(Fig. 3.1a). Over the Spanish continental shelf, salinities ranged from

35.6 to 36.0 /o o,,. In contrast, salinity in Moroccan shelf water

remains above 36.14 0/0.. Extensive CTD coverage obtained during this

cruise indicates an average surface mixed layer depth of 60 m (Bray,

1986). This, and profile data to be presented, implies that surface

samples taken with the underway pumping apparatus (intake depth between

1 and 3 m) are representative of a significant portion of the water

column rather than a thin surface layer. Phosphate and silicate

concentrations ranged from 0.98 pM to 0.05 pM and from 3.2 to 0.3 pM,
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respectively (Fig. 3.1a and Table 3.1a). Elevated nutrient

concentrations were restricted to less saline water overlying the

continental shelf and the highest values were found near the mouth of

the Guadalquivir river.

Zn concentrations generally follow the distribution of salinity and

nutrients, even though patterns differ in detail (Fig. 3.1b). Zn

concentrations range between 0.3 - 1 nM for samples with salinity higher

than 36.25 */... Zn levels over the Spanish shelf, on the other hand,

are elevated by at least an order of magnitude: Zn > 50 nM over a

distance of 40 km from the estuary of the Guadalquivir river (sample #

1) to shelf water off Cadiz south of the estuary (sample # 73, 2, 3 and

0.1). Mimicking Zn enrichments, Cu and Cd concentrations in shelf water

(Fig. 3.2) are also extremely high, eg. for sample # 0.1: Zn- 51nM,

Cu-20 nM and Cd-340 pM. Cu, Cd and Zn concentration for shelf samples

between the estuary of the Guadalquivir and the shelf off Cadiz increase

linearly with decreasing salinity (Fig. 3.3). Ni enrichments over the

Spanish shelf are much weaker. Only a single sample (# 1), the freshest

sample from the estuary of the Gaudalquivir (35.42 */..), reaches a

concentration greater than 5 nM (twice typical open ocean

concentrations).

The offshore Zn distribution agrees with surface samples collected in

September 1980 (Spivack et al, 1983) and a profile, collected in June

1982 at 35046'N, 060 30'W, which shows Zn concentrations increasing from

0.8 nM at the surface to 1.5 nM at 400 m depth (Sta. 3 of Sherrell and
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Boyle, 1988). Since changes in Zn concentrations with depth down to 400

m are negligible relative to enrichments in Spanish shelf water, surface

enrichments in the deeper portion of the Gulf of Cadiz can not be due to

upwelling. For this reason, an anticyclonic tongue of high Zn

concentrations extending beyond the shelf south-west of Cadiz over a

distance of 100 km. (barely detectable on the basis of salinity) is most

likely due to advection of shelf water (Fig. 3.1b). Cu and Cd ratios

relative to Zn for enriched offshore samples are consistent with

conservative mixing of open ocean and shelf water. However, nutrients

phosphate and silicate are depleted within the tongue to levels close to

the detection limit and salinity is higher by 0.2 */0o than expected for

shelf water of equal metal concentrations. Such discrepancies suggest

that nutrients and salinity are not conservative relative to Cu, Cd and

Zn on the advection time scale of this feature. This example

illustrates the potential uses of dissolved metals as tracers of

cross-shelf circulation.

Profile data are consistent with tracer distributions in surface water.

There are two distinct water masses in the Gulf of Cadiz in addition to

surface Atlantic water and shelf water: the saline Mediterranean outflow

(38.4 "/o) and fresher NACW (35.7 "/0o at 400 m depth). All four

end-members are represented in the set of profiles whose locations are

indicated in Fig. 3.1b. In order of decreasing latitude, the

composition of these profiles for salinity, Si, P, Cu, Ni, Cd and Zn is

depicted in Fig. 3.4. Briefly, stations 1 and 3, and a 15 m thick

surface layer at station 6 show the characteristic shelf water
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signature. Profiles at stations 2 and 11 can simply be accounted for by

mixing of surface Atlantic water and NACW. Only Cd and, to a lesser

extent Ni, are significantly enriched in NACW. For Cu, Ni, Cd, Zn, and

salinity, the upper 400 m of an Atlantic profile can be described

mathematically as mixtures of surface Atlantic water and NACW. Vertical

concentration gradients are significant only for Cd and Ni and the

linear relationship with salinity is indicated in Fig. 3.5. Surface

Atlantic water and NACW are also indicated in Fig. 3.3 b,c to show that

shelf enrichments can not be attributed to upwelling of subsurface water

only. The deeper portions of profiles 15, 5 and 7 contain the

Mediterranean outflow. Salinities greater than 37.3 */o, (approximately

50% Mediterranean outflow contribution) are found at 150 m, 200m and 340

m depth at Stations 15, 5 and 7 respectively, which is also the order of

increasing distance from the source of this water mass. Trace metal

concentrations of 1.7 nM, 4.5 nM, 75 pM and 5.1 nM for Cu, Ni, Cd and Zn

in the ouflow (Sta. 15) match the composition of Mediterranean deep

water determined in June 1982 from an Alboran Sea profile (Boyle et al.,

1985 and Sherrell and Boyle, 1988).

Due to greater sampling density in the western approaches to the Strait

of Gibraltar, the Zn distribution in this region has been enlarged in

Fig. 3.6a. Shelf enrichments are clearly restricted to waters shallower

than 200 m. A smaller set of surface samples collected in October'86

(Fig. 3.6b) shows significant changes occurred over 6 months. First,

the range in metal concentrations is much smaller in October than in

April (Fig. 3.2). To some extent, this reflects that the October cruise



collected fewer samples from the area where highest enrichments were

observed in April. However, even samples from the same location have

trace metal concentrations which are roughly a factor of two lower than

in April. In addition, within the October data set, several samples (1,

2, 3, 103, 104 and 105) show very low metal enrichments relative to

salinity (Fig. 3.3). The composition of these samples is comparable to

that found in waters over the north western shelf of the Gulf of Cadiz

in April'86. Another difference between the two trace metal data sets

is that at a given Zn concentrations, Cu and Cd concentrations in shelf

water are significantly higher in October than in April (Fig. 3.2).

These differences must somehow be related to changes in circulation

and/or variations in the strength of the metal source to the shelf.

Over the Moroccan shelf, Cu, Ni and Cd concentrations in surface samples

do not show evidence of enrichment other than by mixing with Atlantic

subsurface water. Zn levels of 3 nM, on the other hand, are higher than

concentrations found in the Gulf of Cadiz outside the region influenced

by Spanish shelf water. One reason for this may be that a small degree

of shelf enrichment does occur off the Moroccan coast, but to an extent

detectable only for Zn which is more sensitive to this process than

other metals. In any case, Zn concentrations around 1 nM in surface

waters in the southern half of the Strait of Gibraltar (Fig. 3.6a)

indicate that little Moroccan shelf water is entrained with the inflow

to the Alboran Sea. Due to its negligible contribution to metal fluxes

through the Strait, this water mass can be neglected.



DISCUSSION

Offshore surface water concentrations of Cu (1.2 nM), Cd (15-30 pM) and

Zn (1 nM) in metal-depleted water at the center of the Gulf of Cadiz are

higher than in the Sargasso Sea: 0.8 nM, 2 pM, and .06 nM, respectively,

determined by Bruland and Franks (1983). Given the presence of a strong

subsurface source in the the case of Cd (NACW), surface enrichments

could be due to upwelling. A more likely explanation for surface

enrichments is simply that mixing with enriched shelf water raises

offshore surface Cd concentrations, as it does in the case of Cu and Zn.

Ni, which is not enriched in shelf water to the same extent as Cu, Cd

and Zn, is found at comparable concentrations in both the Atlantic

central gyre and offshore waters of the Gulf of Cadiz. Evidently,

Spanish shelf can not be traced far beyond the Gulf of Cadiz since metal

concentrations for samples 38-46 and 49,50 at the south-west border of

the large scale survey (Fig. 3.1b) already approach typical surface

Sargasso Sea values.

Despite unusually high Cu, Cd and Zn concentrations found in Spanish

coastal water, several arguments allow us to rule out the possibility of

contamination during sampling or analysis. First, surface sampling

procedures which were followed in the Gulf of Cadiz have repeatedly

yielded consistent results for contamination prone elements such as Cu,

Zn and Pb in Sargasso Sea surface water where metal concentrations are

lower. Second, remarkably constant inter-element ratios between Zn and

Cu, Ni, Cd (Fig. 3.2 a,b,c) for the suite of enriched shelf samples

argue against contamination. Metal-salinity relationships (Fig. 3.3



a,b,c,d) for enriched shelf samples off Cadiz are roughly linear over a

range in metal concentrations of more than one order of magnitude. It

is unlikely such a relation would have been preserved if samples were

randomly contaminated. The Cu/Zn ratio in shelf waters off Cadiz is

equal to that found in metal-enriched surface samples from the Alboran

Sea which lies downstream of the flow path of Spanish coastal water

(Sherrell and Boyle, 1988). This a final argument against contamination

since these samples were collected on different cruises and analyzed by

two different methods.

The particulate metal contribution to total Cu, Cd and Zn concentrations

is known to be small in the open ocean (Boyle et al., 1981). Filtered

and unfiltered samples were compared over a wide range of metal

concentrations. As it turns out, even in samples with very high metal

levels, the difference between filtered and unfiltered samples is less

than 10% of the total concentration. Total Cu, Ni, Cd and Zn

concentrations mainly reflect the dissolved component. Observed coastal

enrichments are, therefore, not simply due to higher concentrations of

particles in shelf water.

Riverine metal source

Despite linear metal-salinity relationships in the region between the

Guadalquivir river and the shelf off Cadiz, conservative mixing of river

water over the continental shelf is unlikely. Extrapolation of

metal-salinity relationships to zero salinity requires unrealistically

high riverine dissolved metal concentrations (eg. Zn- 10 pM). In order



to confirm that fluvial metal input to this region is not exceptional,

major rivers reaching the Atlantic flank of the Iberian peninsula were

sampled. Cu, Cd and Zn concentrations for the Guadalquivir river (Table

3.3) are not significantly different from levels found in the Mississipi

or even in an unperturbed system such as the Amazon (Shiller and Boyle,

1987) and, therefore, insufficient by several orders of magnitude to

explain observed shelf enrichments. For desorption from riverine

suspended particulate matter in the Guadalquivir estuary to account for

shelf enrichments, dissolution of Zn from a suspended load greater than

11 g/l would be required. This estimate is based on a Mississippi

suspended matter Zn concentration of 60 ppm determined by Shiller and

Boyle (1985). Such an unrealistically high particulate load

disqualifies the normal Guadalquivir river as a likely source of Cu, Cd

and Zn enrichments in waters overlying the Spanish shelf. Since

exceptional erosion events may contribute more sediment than normal

praticulate transport, it is not possible to entirely rule out input of

sufficient leachable Zn to the shelf.

Factors controlling the distribution of Ni in the Gulf of Cadiz are

ambiguous due to the lack of strong enrichments anywhere for this

element. Vertical profiles from June '82 and April '86 are consistent

with the Ni-salinity relationship determined in June 1982 for samples

unaffected by the shelf (Fig. 3.5 c). As it turns out, all Gulf of

Cadiz surface water samples, with the exception of # 1, 2, 3 which are

closest to the estuary of the Guadalquivir, conform to the mixing

relationship for vertical profiles (Fig. 3.3 c). From these



observations, it appears that a distinct shelf end-member does not need

to be invoked (with the exception of samples with Ni> 3.5 nM) for this

element. Ni also distinguishes itself from Cu, Cd or Zn by being

enriched in the Guadalquivir river (Table 3.3). In fact, extrapolating

the dominant surface trend to zero salinity yields a river concentration

very similar to the measured concentration xx miles upstream from the

estuary. Since both riverine and NACW sources of Ni are of similar

magnitude relative to salinity, shelf enrichments cannot be attributed

with certainty to input from either or both of these sources.

Anthropogenic discharges

C. Lambert (pers.comm.) argues that metal enrichments over the Spanish

shelf may be due to "chemical mud discharges" presumably identified on

a CZCS image of the Gulf of Cadiz dated August 24th 1981. The image was

processed by Andre and Morel (unpubl. manuscript) and shows high

concentrations of suspended matter (measured by radiance at 550 nm) in a

pattern closely following the distribution of Zn in April 1986 outside

the shelf area. Even though an anthropogenic source may be suggested by

the similarity between the clocwise rotating gyre (Fig. 3.1b) and the

feature in the CZCS image, several observations argue against this

assertion.

One source of metals to the Gulf of Cadiz are acidic effluents from a

nearby titanium dioxide production plant (Tioxide Espana, S.A.) which

are discharged daily at 360 30'N, 07000'W from two 750 m3 capacity

tankers and have been the subject of publicized environmental concern



(Oslo Commission, 1986). If this source were the cause of trace metal

enrichments in Spanish shelf waters, the implications would be very

significant since by extension Cu, Cd and Zn enrichments in the Alboran

Sea and throughout the Western Mediterranean basin would also be due to

these discharges. The total metal transport to the Mediterranean

through the Strait of Gibraltar was estimated recently (van Geen et al.,

1988) and turns out to be two orders of magnitude greater than acidic

effluent inputs for Zn (Oslo Commission, 1986). Since probably only a

fraction of the metal flux causing Spanish shelf enrichments contributes

to the Atlantic inflow, the sludge discharge can a fortiori not be

sufficient to sustain Spanish shelf water enrichments. In addition,

highest metal concentrations are observed near the mouth of the

Guadalquivir river rather than at the dumping site which lies 50 km

offshore. The particulate plume identified on the CZCS image may simply

have been due to a phytoplankton bloom in advected shelf water initially

enriched in nutrients. If this interpretation is correct, the CZCS image

can be taken as evidence for recurrence of the tongue-like circulation

feature that we observe in this work.

Shelf sediments

Since none of the mechanisms discussed above can explain observed shelf

enrichments, sediments must be considered as a potential source of Cu,

Cd and Zn. For comparison, Table 3.4 lists representative coastal

enrichments and corresponding salinities determined for various coastal

regions of the Atlantic and the Pacific. Since samples were not chosen

within estuaries, tabulated salinities are representative of shelf water



rather than a particular mixing proportion with river water. Clearly,

Zn, Cu and to a lesser extent Cd enrichments off Cadiz are considerably

higher than in other regions. More accurately, only the portion of the

Gulf of Cadiz south of the estuary of the Guadalquivir river stands out

relative to other coastal waters since enrichments are significantly

lower over the shelf north-west of the estuary.

The region off Cadiz does not show any striking features which might

explain the unusual degree of metal enrichments. The shelf,

approximately 20 n.mi. wide to the 100 m isobath, is much narrower than,

for instance, the continental shelf of the Eastern Bering Sea where Cu

concentrations do not rise above 5 nM (Heggie et al., 1987). Total

dissolvable Mn concentrations determined by G. Klinkhammer (unpubl.

data) for a selected number of unfiltered shelf surface samples are very

high off Cadiz: 157, 163, 25 nM for # 0.1, 14.7 and 287, repectively,

vs. a maximum of 20 nM in Bering Sea surface water. Concentrations in

offshore samples of the Gulf of Cadiz were 1.7 and 2.0 nM for # 262 and

256, respectively. This may indicate that anoxia in shelf sediments

sustains unusually important diagenetic metal flux in this portion of

the Gulf.

Even though processes releasing metals and 2 2 8Ra from shelf sediments

are different, this tracer can be used as a measure of shelf

water-sediment interactions. Moore (1987) has shown that the dissolved

2 28Ra/226Ra activity ratio is supported by sedimentary fluxes in

estuaries as well as near-shore fine grained sediments. The range of

2 28Ra/2 2 6Ra activity ratios found in shelf waters both North and South
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of the entrance to the Strait of Gibraltar (Table 3.5 and Fig. 3.7a) is

comparable to that found previously in the South Atlantic Bight

(Moore,1987) and over the shelf of the Amazon outflow (Moore et al.,

1986). With the exception of sample #11 whose high activity ratio

cannot be explained, the data contain three groups of samples indicated

in Fig. 3.7b: Spanish shelf water with activity ratios up to .57, more

saline Moroccan shelf water with ratios not exceeding .26, and surface

Atlantic water within the Strait (.16). Higher ratios in Spanish shelf

water could be due to either to input from the Guadalquivir or the

broader portion of the shelf shallower than 30m relative to Morocco.

Even though these possibilities cannot be distinguished, the Ra data are

compatible with trace metal distributions.

Current meter moorings of Grundlingh (1981) show that surface currents

over the shelf follow the coastline of the Gulf of Cadiz in a general

southern direction. The implication is that a metal source specific to

the shallow area off Cadiz may be superimposed on enrichments

originating upstream along the Iberic coast. Profiles collected in

shallow waters west of the Strait, however, do not show metal gradients

indicative of a strong pore water source. At station 3 (25 m deep)

uniform profiles for all tracers indicate a well mixed water column.

Evidence of either a shallow (less saline) or a bottom (pore waters)

metal source is obscured at this site. At station 1 which is slightly

deeper (45 m) and closer to the Guadalquivir estuary, Cu and Zn

concentrations are significantly higher in the upper water column rather

than towards the sediment. As indicated earlier, station 6 (115 m deep)



shows highest metal concentrations only within a 15 m thick surface

layer. Such concentration gradients indicate that sediments underlying

the deepest sample at stations 1 and 6 (45 and 115 m) cannot be the

dominant source of Cu, Cd and Zn to shelf waters off Cadiz. Perhaps

high shelf water Cu, Cd, and Zn concentrations are sustained by pore

water fluxes from sediments shallower than 45 m depth. If this

interpretation is correct, then enrichments extending beyond the

shallowest portion of the shelf are due to lateral advection. It is

worth noting that nutrient concentrations increase with depth at station

1. The divergent distributions of trace metals and nutrients may again

be due to greater reactivity of nutrients in surface water.



Box model for shelf metal enrichments

High water column metal concentrations in Spanish coastal water provide

circumstantial evidence for a strong "source" over the shelf. The

previous discussion has shown that neither a riverine nor an

anthropogenic origin for these enrichments is likely. A diagenetic

sediment source, on the other hand, can not be excluded but would have

to be considerably stronger than elsewhere in the ocean based on

reported water column concentrations. To reconcile these observations,

we propose a different mechanism, analogous to the "nutrient trap"

observed in estuaries (Redfield et al. 1963), which could account for

observed shelf enrichments without requiring an external metal source

other than open-ocean subsurface water laterally advected towards the

shore.

There are two prerequisites for this mechanism to hold, one physical and

the other geochemical: (1) an estuarine circulation pattern across the

shelf and, (2) metal removal by phytoplankton in coastal water followed

by regeneration. The role of these processes is indicated in Fig. 3.8

for a section perpendicular to the coastline. Briefly, subsurface

Atlantic water containing Cu, Cd and Zn is advected onto the shelf

(water transport Qd) . Due to plankton production in shelf water

stimulated by upwelling, trace metals are stripped from the dissolved

phase onto biogenic particles. These metal "trapping" particles remain

in the shelf box (eg. by sinking to shelf sediments) while shelf water

(now metal depleted) is advected offshore at the surface (Qs). Finally,

trapped trace metals are released by
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plankton decomposition which maintains elevated shelf water

concentrations.

The following section discusses details of the box model. Salinity of

36.0 0/. (Ss) is chosen for the shelf box based on the CTD survey of

the Gulf of Cadiz in April'86 by Bray (1986). The shelf box is

freshened relative to the offshore mixed layer (36.2 */oo) by river

input and upwelling of NACW. The mean salinity of 36.1 */0o (Sd) for

the top 300 m of the water column is chosen for the offshore subsurface

box. Also indicated in Fig. 3.8 are river discharge to the shelf box

(Qr), a longshore current flowing south along the Iberian peninsula (Q1)

and entrainment of shelf water with the Atlantic inflow through the

Strait of Gibraltar (Q ). For mass balance in the shelf box, these

water fluxes must satisfy:

(1) Q1 + Qd + Qr - Qs + Qg

Three terms of equation (1) can be estimated from the hydrography of the

region. Peak discharge (March) by the four main rivers on the Atlantic

coast of the Iberian peninsula (Guadalquivir, Guadiana, Tejo and Douro)

sums up to 2.7.103 m3/s (UNESCO, 1969). The distance separating the

Guadalquivir from the Douro is approximately 900 km of coastline. A

longshore current of 15 cm/s was determined off the south coast of

Portugal by Grundlingh (1981) and corresponds to a transport rate of

150.103 m3/s for a shelf box 20 km wide and 50 m deep. Finally, the

Atlantic inflow through the Strait of Gibraltar (700.103 m3/s, from

Sarmiento and Toggweiler (1988) based on data of Bryden and Pillsburry



(1988)) is composed of 30% shelf water of salinity 36.0 */... Therefore

Q equals 210.103 m3/s. The salt balance for the shelf box is the

second constraint that allows us to determine Qd and Qs

(2) S sQ 1 + Sd'Qd + 0.Qr - (Qs + Qg).Ss

Replacing the sink term Q +Qg by its equivalent given in equation (1)

yields:

(3) Qd - (Qr .S) / (Sd - S )

The resulting upwelling flux Qd is 1080.103 m3/s for a shelf box length

of 1000 km. River discharge is assumed to be proportional to coast

length. Most of the upwelling flux returns offshore at the surface

since equation (1) dictates:

Qs - 150 + 1080 + 3 - 210 - 1020 units of 103 m 3/s.

This flux could be wind-driven since Ekman transport and coastal

boundary result in an upwelling rate of 360 to 1100.103 m3/s from:

U - r. L / p.f

where p is the density of sea water (-1 g/cm 3), L the length of

coastline (108 cm), f the Coriolis paramater (9.3.10-5 /s at 400

latitude) and r the wind stress which varies between 0.3 (winter) and

1 dyne/cm 2 (summer) from the North along the Portuguese coast (May,

1986).



In order to quantify the metal-trap mechanism, mass-balances can be

expressed for any trace element following the example of equation (2)

for advective fluxes and by adding metal particulate fluxes:

(3) C .Q + Cd.Qd + C .Q + F - (Qs + Q ).C

Following the description in Fig. 3.8, the particulate flux which strips

offshore surface water of dissolved metals can be divided in two

components: (1) Fo which is regenerated into the deep offshore box and

(2) Fs which is decomposed into the shelf box. Following the approach

of Broecker and Peng (1982), mass balance for the offshore surface box

is expressed as:

(4) Q .(Cs - C) - Fo - 0

If the trapping efficiency f is defined as the proportion of the total

particulate flux which is recycled into the shelf box, f - F s/(F s+F ),

then substitution in equation (4) expresses F in terms of advective

metal fluxes:

(5) F - f.Q s. (C  - Co )

Replacing Fs with this expression in the mass balance equation for the

shelf box (equation 3) yields an expression for the shelf box metal

concentration as a function of the trapping effiency and water transport

fluxes:

(6) Cs - (Qs(l -f)+Q g)-' (Co(Ql-f Qs)+Cd*Qd+C r "Qr)



Rearranging equation (6) yields the expression for the trapping

efficiency which can be applied to Cu, Cd, and Zn:

(7) f - ( Q1 (Cs-Co ) + Qd'(Cs-Cd) + Qr (Cs'Cr) ) / ( Qs.(C -Co ) )

Taking first the example of Cd, box concentrations are determined based

on surveys of the Gulf of Cadiz in June '82 and April'86. Details on

end-member definitions follow in the final section of this chapter. As

in the case of salinity, the deep offshore box concentration is an

average of the top 300 m of the water column. River concentrations are

from Table 6.2 which is discussed later. Resulting box model

concentrations are: Cs - 190 pM, Co - 30 pM, Cd - 75 pM and C r

1200 pM taking into account desorption to obtain the effective river

concentration. The relative importance of the different terms is shown

by the following expression which follows the order of equation (6):

Cs - ( 1020.(l-f)+210 )-1.( 30.(150 - f.1020)+75.1080+1200.3 )

Transport rates Q are in units of 103 m3/s. For trapping efficiencies

of 100 and 50 %, for instance, the shelf box Cd concentration could

range between 280 and 100 pM, respectively. In this case, the trapping

effiency of Cd is:

f - (2.4 + 12.4 - 0.3.) / (16.3) - 89 %

Each term in this expression is in units of 104 pM.m3/s. The

implication is that a considerable metal sink through the Strait of

Gibraltar and elevated concentrations in shelf water can be sustained

for a 1000 km long shelf box if the trapping efficiency is 89 %. Since



Qd and Qs are not very different and the effects of river input or

longhore transport are relatively small (with respect to the metal

balance, clearly not the salt balance), the dominant term in equation

(7) for the trapping efficiency is the ratio (C s-C d)/(Cs-C ). In other

words, the greater the difference between deep water and shelf water

metal concentrations, or the smaller the difference between surface

water and shelf water, the greater the trapping efficiency has to be. A

minimum shelf box length of 630 km required to sustain the flow pattern

in Fig. 3.8 can also be recalculated from equations (3) and (6). This

case corresponds to a 100 % Cd trapping efficiency, a smaller river

input and, consequently, a lower upwelling rate.

In the case of Zn (Cs-21 nM, Co-0.5, Cd-1.5, Cr -33) and Cu (Cs-6 nM,

C o-1.3, Cd-1.3, C -24), the calculated trapping efficiencies are greater

than one (115 and 119 %) respectively, indicating this configuration of

the box model cannot sustain the metal sink through the Strait of

Gibraltar. Equation (6) can be rearranged to determine the fraction of

the flux through the Strait which could be supported given a 100 %

trapping efficiency and a 1000 km shelf box length. In effect, this

modification of Q involves redirecting a portion of this flux to the

offshore surface box where metals can be taken up and recycled to the

shelf box. As it turns out, only 27 and 8 % of the actual Zn and Cu

fluxes through the Strait, respectively, can be supported by this

configuration. Alternatively, the difference could be accounted for if

the length of the shelf box were increased to 3,700 and 14,500 km for Zn

and Cu, respectively, assuming 100 % trapping efficiency. Keeping in



mind the extreme simplification of this model, it appears that while

coastal Cu enrichments could not be sustained against metal output

through the Strait of Gibraltar, a metal-trap along the Iberian coast

may play a significant role in the case of Cd and Zn.

In the following section, three tracers (salinity, Cd and phosphorous)

are shown to support the existence of the circulation pattern required

for the "metal-trap" in the Gulf of Cadiz using their conservative

properties. Throughout the upper 400 m of the water column, salinity,

Cd and phosphorous are linearly related to each other (Fig 3.5a, b). As

indicated in this figure, the relationship based on two profiles

collected in June'82 (Boyle et al., 1985) also holds for stations 5, 6,

and 11 in April'86 as long as samples are unaffected by shelf processes.

While these tracers follow a common relation, the depth of occurence of

a given salinity, Cd and P composition rises significantly from the

center of the Gulf of Cadiz in the direction of the shelf. At offshore

stations 1 and 3 (June'82), for instance, water of composition salinity

equal to 35.95 /o., PO 4-0.5 pM and Cd-80 pM is found at approximately

200 m depth. At the western entrance to the Strait of Gibraltar (Sta.

5), water of similar composition is found at 160 m depth in April'86.

Near the shelf edge, however, the same signature occurs at depths as

shallow as 80 m at Sta. 6 (off Cape Trafalgar) and 100 m at station 11

(Moroccan coast). Since agreement between such different tracers would

have been very fortuitous were they not behaving conservatively, this is

strongly suggestive of subsurface advection and upwelling from the

center of Gulf towards the shelf. Finally, there is also evidence in



surface water of the circulation pattern described in Fig. 3.8: offshore

flow of coastal water is indicated by the metal-enriched plume which

leaves the shelf off Cadiz towards the center of the Gulf. Summarizing,

in addition to satisfying mass balance constraints in the case of Cd and

(marginally) Zn, tracer distibutions support two features of the

metal-trap: upwelling and offshore advection at the surface.

An additional test of metal-trap is given by the plankton flux required

to strip upwelling water from its metal content. Given the average

composition of plankton determined by Collier and Edmond (1985),

0.4.10-6 mole Cd/ gC, 0.4.10-6 mole Cu/ gC and 10-6 mole Zn/ gC, and

considering the respective Cd concentrations for these elements, carbon

fluxes ranging from 0.2 (Cd) to 3.5.106 gC/s (Cu) would be required for

1000 km long shelf box. These values are equivalent to gross production

rates rates ranging between 0.3 and 5.5.103 gC/m 2 .year. For comparison,

production rates in the Peru upwelling region are on the order of

2.10 3gC/m 2 .year. In the case of all three metals, therefore, primary

production required to strip upwelling subsurface water of dissolved

metals is reasonable for a high productivity region. If a trapping

efficiency is close to 100%, then the required plankton flux must be

multiplied by the ratio Cs/C d which is 2.5 for Cd. The resulting

primary productivity flux of 0.8.103 gC/m
2 .year is still reasonable for

this element, in contrast to Cu and Zn where the high Cs/C d requires too

high primary productivity rates for 100 % trapping efficiency.

Three observations concerning features of the metal-trap must still be

explained: (1) the absence of comparable enrichments off the Moroccan



coast, (2) the relation between variability in trace metal enrichments

and seasonality in the physical forcing for the trap circulation and (3)

the lack of particularly high nutrient concentrations in coastal water.

Given the mechanism invoked for metal enrichments along the Iberian

coast, two features specific to the Moroccan coast can account for low

metal concentrations in coastal water. First, river input per unit

length of the Moroccan coastline is an order of magnitude lower (UNESCO,

1969) than in Spain and Portugal. In addition, the southern direction

of the coastal current supplies metal-depleted open ocean water to the

Moroccan shelf and enrichments due to metal-trapping in the water column

are therefore limited. Seasonal variability in Spanish metal

enrichments is more difficult to explain. Indeed, the two physical

forcing mechanisms of the trap circulation are opposite in phase: river

discharge decreases by an order of magnitude along the Iberian coast

between March and August, but wind stress along the Portuguese coast is

much stronger during the summer months. The decrease in water column

enrichments observed between April and October'86 can, therefore, not be

explained at present.

Finally, a tentative explanation for the lack of nutrient enrichments

comparable to metals concentrations is presented on the basis of the

salinity-Cd-PO4 relationship at Sta. 6 (April'86). As indicated in Fig.

3.5a, b, while the Cd and salinity composition at 45 m depth for station

5 comforms to the relationship for the upper 400 m of the water column,

phosphate is depleted by approximately 0.2 pM relative to the predicted

nutrient concentration. Greater reactivity of phosphate relative to Cd



within the photic zone (indicated previously for offshore advection of

shelf water) is also confirmed by the breakdown of the

salinity-phosphate relation within 50 m of the surface (Fig. 3.5a). One

could therefore speculate that the absence of unusual nutrient

enrichments off Cadiz is due to uptake by phytoplankton before

subsurface water reaches the shallow portion of the shelf where

recycling takes place. Within the framework of the model, the

implication is that nutrient uptake reduces the effective deep water box

concentration before the shelf region is reached and limits the effect

of particulate recycling.

Composition of water masses entering the Strait of Gibraltar

Surface samples from the Alboran Sea have been analyzed for Cu, Cd and

Zn for June'82, April'86 and October'86 (Boyle et al., 1985, Sherrell

and Boyle, 1988, and van Geen and Chapter 5). In order to determine

variability in the Atlantic inflow composition to this region,

contributors are reduced to three end-members (1) surface Atlantic

water, (2) NACW and (3) Spanish shelf water, following the approach of

van Geen et al.(1988). End-members are redefined here based on the more

extensive data set presented in this paper. Sample coverage in April'86

is more complete than in October'86 when a smaller number of surface

samples is restricted to the western approaches to Strait of Gibraltar.

For June'82, only two profiles are available west of the Strait of

Gibraltar.



The composition of surface Atlantic water in the Gulf of Cadiz is

estimated first. Salinity in Atlantic surface water entering the Strait

is approximately 0.2 */0o higher in October (eg. samples 106, 107: 36.5

0/..) than in April (samples 253, 254: 36.3 */0o). For June 1982, an

end-member value of 36.5 */o, is chosen based on surface salinities at

stations 1 and 3. Surface concentrations of Cu, Ni, Cd and Zn in

metal-depleted offshore water do not differ significantly from one

season to the other: 1.0 nM, 2.3 nM, 30 pM and 0.8 nM, respectively.

For the definition of NACW, salinity, Cu, Ni, Cd and Zn concentrations

are based on June'82 profiles 1 and 3. The resulting composition for

both surface Atlantic water and NACW is given in Table 3.6. Estimates

for the combination of natural variability and analytical uncertainty

are also tabulated.

Defining seasonal variability for the final end-member, Spanish shelf

water, is critical since it dominates metal transport through the Strait

of Gibraltar. As discussed above, the distribution and magnitude of

Spanish shelf water enrichments for each season differ. Even though Cu

and Cd concentrations in shelf water increase linearly as a function of

Zn concentrations on both occasions, the slope of this relation is

approximately 30% higher in the Fall than in the Spring. As noted

earlier, absolute Zn concentrations decrease by approximately a factor

of two when comparing similar locations (Fig. 3.6). Despite such

variations in the magnitude of metal enrichments west of the Strait of

Gibraltar, Cu and Cd concentrations for this metal enriched end-member

are defined relative to a constant Zn concentration of 21 nM. This



choice is based on the highest value observed within the Strait in

April'86 (Chapter 4) and avoids obtaining shelf water contributions

greater than 100%. Corresponding salinity and Cu, Ni, Cd concentrations

are 36.0 */o., 6.1 nM, 190 pM, respectively in April'86 (eg. sample #

259).

It should be noted that according to the definition above, no pure

Spanish shelf water was sampled in October'86 and metal concentrations

must be extrapolated in order to define the end-member relative to the

same Zn concentration (Table 3.6). Choosing a particular composition is

in any case somewhat arbitrary given the continuum of observed

enrichments. A shelf end-member of, for instance, 10.5 nM Zn could have

been defined instead with corresponding salinity, Cu, Cd and Ni

concentrations based on linear relationships between tracers. For a

given sample in the Alboran Sea, the nominal shelf end-member

contribution would then simply be doubled. For lack of data, the

composition of the June'82 Spanish shelf end-member is simply linearly

interpolated with respect to time, assuming changes in inter-element

ratios are seasonal. The estimated uncertainty in the composition of

Spanish shelf water for most tracers is doubled relative to that for

surface Atlantic water and NACW.



CONCLUSION

Cu, Cd and Zn concentrations over a 40 km long portion of the Spanish

continental shelf are an order of magnitude higher than enrichments

generally found in coastal water. A consequence of these exceptional

enrichments is that geochemical processes involving trace metals over

the Spanish shelf influence the composition of a basin as large as the

Mediterranean for these elements. Seasonal variability in Spanish shelf

water enrichments was demonstrated based on samples collected in April

and October '86. For lack of direct evidence for the source of metal

enrichments off Cadiz, a metal-trap mechanism based on estuarine

circulation and metal uptake and regeneration over the Spanish shelf is

proposed. While this explanation remains tentative, the model indicates

that trapping should be active over the whole length of the Iberian

coast in order to sustain the significant metal sink through the Strait

of Gibraltar.

ACKNOWLEDGEMENTS

Space and time were generously provided during the Gibraltar Experiment

by Dr Tom Kinder and Dr Nan Bray on board USNS Lynch. We thank A.

Spivack, S. Chapnick, D. Lea, W. Moore, E. Callahan, C. Measures and H.

Yee who helped collecting samples and P. Rosener for assistance in

analyses. A. Cantos-Figuerola brought the Oslo Commission report to our

attention. Dr. Robert Beardsley offered helpfull suggestions for the

box model.



Station Latitude Longitude Salinity Si P04 Cu Ni Cd Zn

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0

36.700
36.500
36.333
35.850
35.617
35.217
35.167
35.167
35.167
35.133
35.167
35.250
35.500
35.817
36.050
36.217
36.400
36.567
36.683
36.750
36.767
36.850
36.933
36.983
36.950
36.083
36.917
36.800
36.683
36.517
36.367
36.183
35.900
35.717
35.567
35.417

-6.500
-6.483
-6.500
-6.483
-6.500
-6.483
-6.333
-6.417
-6.583
-6.700
-6.967
-7.017
-7.000
-7.017
-7.000
-6.983
-6.983
-6.983
-6.983
-6.983
-6.983
-6.983
-6.983
-6.983
-7.167
-7.333
-7.483
-7.500
-7.500
-7.500
-7.500
-7.500
-7.517
-7.517
-7.517
-7.517

35.418
35.763
35.630
35.939
36.278
36.341
36.291
36.287
36.350
36.392
36.357
36.382
36.220
36.284
36.302
36.321
36.214
36.113
36.164
36.152
36.087
35.962
35.862
35.903
35.870
36.039
36.168
36.248
36.254
36.305
36.254
36.297
36.222
36.248
36.261
36.248

3.22
0.45
0.18
0.25
0.80
0.93
1.05
1.07
1.25
0.84
0.85
0.75
0.65
0.84
0.89
0.89
0.85
0.49
0.87
1.04
0.95
0.80
1.25
3.07
1.07
0.93
1.11
0.85
0.91
0.93
0.93
1.02
0.58
0.71
0.67
0.58

0.45
0.30
0.12
0.06
0.05
0.05
0.05
0.11
0.05
0.04
0.05
0.05
0.07
0.07
0.08
0.08
0.04
0.07
0.04
0.04
0.05
0.08
0.15
0.40
0.12
0.08
0.06
0.09
0.06
0.05
0.07
0.07
0.06
0.07
0.05
0.05

40.7
43.4
18.2

6.7
3.1
2.5
2.2
1.5
1.1
1.4
2.5
1.4
4.8
1.8
1.8
1.7
2.1
3.1
2.4
1.9
2.3
3.0
3.2
3.6
4.3
2.6
1.8
1.1
1.2
1.1
1.0
1.4
4.5
4.8
2.5
3.4

8.0
4.9
4.5
3.3
3.2
1.7
2.2
1.9
1.9
2.4
2.5
2.5
2.8
2.6
2.8
2.3
2.6
2.8
2.8
2.7
2.9
3.0
3.1
3.3
3.2
2.5
2.6
2.6
2.1
2.9
2.5
2.4
2.5
3.1
2.5
3.0

947
1231

496
277

75
51
40
50
15
18
11
34

165
61
51
38
68

107
86
96
89

102

124
162

86
47
36
49
31
33
31

141
139

84
111

Table 3.1a. part 1. Surface samples, April'86
Surface sample #, latitude and longitude in decimal units,
salinity in */.., Si and P in pM, Cu, Ni and Zn in nM,
Cd in pM

159.5
150.2
101.0
35.2

6.9
1.6
0.9
1.5
0.3
0.5
1.0
0.5

19.0
2.8
3.4
1.6
6.0

12.2
8.9
6.6
7.4
9.3

10.4
6.3

12.2
7.7
3.7
1.9
3.8
0.7
0.5
1.2

18.9
18.1
10.2
13.3



Longitude Salinity

37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
46.0
47.0
48.0
49.0
50.0
52.0
53.0
54.0
56.0
57.0
58.0
70.0
71.0
72.0
73.0

253.0
254.0
255.0
256.0
257.0
258.0
259.0
260.0
261.0
262.0
263.0
264.0
265.0

35.267
35.167
35.167
35.317
35.483
35.650
35.767
36.000
36.033
36.550
36.617
36.067
36.000
36.000
35.983
36.000
36.000
36.000
36.000
36.167
36.333
36.417
36.567
35.867
35.883
35.933
35.950
36.000
36.033
36.067
35.717
35.733
35.750
35.817
35.833
35.850

-7.467
-7.733
-7.967
-8.000
-8.000
-8.017
-8.000
-8.000
-8.000
-7.983
-7.967
-8.000
-7.700
-7.367
-7.017
-7.033
-6.567
-6.350
-6.350
-6.400
-6.467
-6.500
-6.400
-5.883
-5.883
-5.867
-5.833
-5.850
-5.833
-5.833
-5.983
-6.017
-6.050
-6.067
-6.067
-6.083

36.371
36.398
36.378
36.420
36.418
36.408
36.387
36.391
36.361
36.276
36.222
36.057
36.399
36.399
36.359
36.317
36.054
35.992
36.005
36.043
35.954
35.937
35.887
36.298
36.214
36.234
36.153
36.074
36.029
36.086
36.119
36.141
36.276
36.262
36.238
36.219

0.80
0.85
0.96
0.87
0.82
0.87
0.96
0.84
0.87
1.09
1.15
1.62
0.76
1.20
1.13
1.15
0.51
0.51
0.67
0.40
0.49
0.64
0.98
0.00
0.00
0.00
0.83
0.83
1.32
1.46
0.60
0.63
0.99
0.89
0.70
0.73

0.07
0.05
0.07
0.04
0.05
0.13
0.05
0.07
0.08
0.25
0.17
0.26
0.09
0.09
0.10
0.09
0.08
0.09
0.10
0.40
0.49
0.64
0.98
0.00
0.06
0.20
0.24
0.07
0.20
0.15
0.11
0.07
0.06
0.04
0.03
0.03

1.4
1.0
0.8
0.8
1.4
0.9
1.0
0.7
0.8
1.0
1.4
1.3
0.7
0.9
1.8
1.2
1.5
2.5
2.6
5.1
3.3
3.0

14.5
1.1
1.0
0.9
1.4
2.0
4.3
6.1
1.7
1.6
1.0
0.8
0.8
1.0

2.2
2.3
2.3
1.9

2.0
2.4
1.9
1.9
2.1
2.2
2.0
1.8
2.2
2.4
2.4
2.4
2.4
2.2
2.5
2.9
2.4
3.4
2.6
2.6
2.8
2.7
2.6
3.0
3.1
2.5
2.1
2.4

2.6
2.7

32
19
17

9
16
17
14
13
13
24
30
51
13
13
43
33
46
93
92

145
143

98
407

34
41
38
45
80

135
211

60
35
36
28
33
40

Table 3.1a, part 2. Surface samples, April'86
Surface sample #, latitude and longitude in decimal units,
salinity in */., Si and P in pM, Cu, Ni and Zn in nM,
Cd in pM

2.6
0.8
0.1
0.1
0.6
0.8
0.3
0.2
0.2
0.7
0.6
1.5
0.1
0.2
4.0
1.7
3.3
7.9
8.6

17.6
10.4
10.2
72.4

1.6
1.1
0.7
1.7
4.9

14.1
21.3

2.8
1.2
0.8
0.9
1.1
1.1

Si P04Station Latitude Cu Ni Cd Zn



Station Latitude Longitude Salinity Si P04

266.0
267.0
268.0
269.0
271.0
272.0
273.0
274.0
275.0
276.0
277.0
278.0
279.0
280.0
281.0
282.0
283.0
284.0
285.0
286.0
287.0
288.0

0.1
1.0
2.0
3.0
5.0
6.0
7.0
7.1
8.0
8.1
9.0

10.0
11.0
11.1
13.0
14.2
15.0

35.900
35.950
36.000
36.033
36.117
36.100
36.100
36.083
36.083
36.083
36.083
36.050
36.017
35.967
35.933
35.917
35.917
35.900
35.933
35.967
36.000
36.067
36.530
36.400
36.390
36.157
35.930
35.960
35.790
35.900
35.610
35.790
35.620
35.590
35.480
35.490
35.810
36.160
35.942

-6.100
-6.100
-6.067
-6.050
-5.983
-6.050
-6.100
-6.200
-6.233
-6.267
-6.283
-6.283
-6.283
-6.317
-6.333
-6.283
-6.233
-6.200
-6.150
-6.167
-6.167
-6.133
-6.400
-6.420
-6.400
-6.316
-5.882
-6.210
-6.130
-6.200
-6.010
-6.130
-6.060
-6.100
-6.450
-6.360
-6.000
-6.380
-5.673

36.067
36.038
36.038
36.007
36.123
36.156
36.085
35.976
35.969
35.938
35.946
35.970
35.983
35.977
35.999
36.114
36.052
36.042
36.025
36.009
35.996
36.010
35.876
35.935
35.979
35.995
36.323
36.003
36.231
36.141
36.142
36.340
36.215
36.188
36.217
36.165
36.339
35.982
36.349

0.60
0.79
1.39
1.46
1.06
1.06
1.69
2.42
2.28
1.59
1.82
1.72
1.23
0.46
0.63
0.73
0.66
0.70
0.66
0.89
1.29
1.75
1.13
0.33
0.04
1.63
0.66
1.05
0.62
0.25
0.46
0.81
0.33
0.41
0.28
0.74
0.50
1.37
0.82

0.04
0.07
0.19
0.15
0.11
0.11
0.34
0.31
0.26
0.27
0.23
0.21
0.17
0.08
0.06
0.09
0.10
0.07
0.09
0.13
0.17
0.24
0.31
0.17
0.05
0.26
0.10
0.18
0.05
0.06
0.06
0.05
0.08
0.04
0.08
0.10
0.04
0.24
0.10

2.4
2.6
4.6
5.7
5.8
5.0
6.2

11.4
9.9

11.9
10.9
10.5
8.2
7.0
1.7
1.3
1.5
1.5
1.9
5.6
9.1
8.2

19.7
15.6

9.9
1.3
6.2
1.5
1.4
1.9
1.6
1.9
1.7
1.6
1.4
1.4
8.9
1.4

2.7
2.9
2.8
3.2

4.5
3.8
4.0
3.9
3.9
3.4
3.1
2.8
2.6
2.6
2.7
2.9
3.2
3.7
3.6
4.0
3.6
2.4
3.2
2.3
2.9
2.1
2.5
2.4
2.4
2.4
2.4
2.3
2.5
2.2
3.4
2.4

101
99

167
186
179
173
191
266
219
240
243
240
203
167

66
52
64
75

105
129
232
200
340
255

73
198

33
160

32
44
62
31
57
65
61
52
41

235
28

Table 3.1a, part 3. Surface samples, April'86
Surface sample #, latitude and longitude in decimal units,
salinity in "/.,, Si and P in pM, Cu, Ni and Zn in nM,
Cd in pM

4.1
8.1

18.8
20.8
19.4
19.4
20.2
30.2
30.4
40.5
29.7
31.3
24.6
20.3

5.3
1.9
2.7
3.8
7.8

14.2
28.0
28.5
51.0
35.3

7.8
24.0
1.9

18.5
1.6
1.6
3.7
2.1
3.9
4.7
3.3
3.5
2.9

30.6
1.7

Cu Ni Cd Zn



Si P04 CQ Ni Cd Zn

1
2
3
5
6
7
8

10
11
12
13
15
17
19
21
22
23
24
25
26
27
28
30
31
32
81
88
89
90

103
104
105
106
107

36.165
36.085
35.970
35.820
35.822
35.823
35.823
35.860
35.860
35.860
35.860
35.885
35.888
35.957
35.957
35.955
36.010
36.010
36.012
36.047
36.045
36.045
36.075
36.075
36.075
36.093
36.032
36.015
35.997
36.067
36.047
36.007
35.925
35.887

-6.318
-6.323
-6.328
-6.150
-6.112
-6.068
-6.028
-5.985
-6.032
-6.077
-6.160
-6.123
-6.027
-6.022
-6.128
-6.175
-6.180
-6.138
-6.075
-6.080
-6.138
-6.180
-6.245
-6.188
-6.143
-5.993
-5.433
-5.482
-5.530
-5.862
-5.822
-5.813
-5.792
-5.815

36.207
36.197
36.228
36.490
36.409
36.436
36.490
36.481
36.461
36.470
36.378
36.374
36.396
36.387
36.365
36.376
36.280
36.260
36.304
36.308
36.300
36.301
36.291
36.298
36.311
36.481
36.288
36.290
36.276
36.148
35.865
36.002
36.378
36.406

0.40
0.33
0.33
0.33
0.33
0.46
0.46
0.40
0.43
0.43
0.36
0.33
0.36
0.46
0.43
0.46
0.53
0.40
0.30
0.17
0.20
0.07
0.13

0.05
0.03
0.10
0.06
0.03
0.05
0.04
0.08
0.06
0.05
0.05
0.10
0.12
0.09
0.09
0.06
0.14
0.19
0.12
0.15
0.14
0.14
0.15
0.14
0.15
0.02
0.22
0.13
0.14
0.12
0.11
0.07
0.02
0.02

2.5
1.1
3.6
1.4
1.6
1.5
1.4
1.8
1.9
1.4
1.9
1.9
3.1
3.1
3.0
2.0
5.1
5.0
4.2
4.4
4.8
4.7
5.6
4.8
4.6
1.8
4.8
4.3
5.0
4.7
5.9
2.6
1.7
1.4

2.3
2.6
2.6
2.6
3.0
2.3
2.3

2.1
3.0
2.6
2.7
2.8
2.9
2.0
2.7
2.3
2.8
2.6
3.0
2.5
2.3
2.3
2.7
2.8
2.8
2.8
3.0
2.8
2.7
2.5
2.4
2.2

72
39

111
27
42
31
37
42
42
35
55
51
79
84
87
67

145
159
110
147
145
157
146
152
125

56
137
114
136
116
109

65
36
31

Table 3.1b Surface samples, October'86
Surface sample 4, latitude and longitude in decimal units,
salinity in °/.., Si and P in pM, Cu, Ni and Zn in nM,
Cd in pM

4.4
1.5
6.8
0.0

1.6
1.8
2.8
2.3
1.8
3.0
3.5
5.3
5.9
7.2
3.8

11.5
11.4

9.7
9.4

10.5
10.7
11.4
11.7

9.2
3.2

10.8
8.0

10.2
9.3
8.0
4.2
1.4
1.4

Station Latitude Longitude Salinity
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Depth m Salinity Si P04 0J Ni Cd 2t

Station 1
36.400 N
6.420 W

Station 2
36. 390 N

6.400 W

Station 3
36.160 N
6.320 W

Station 5
35.930 N
5.880 W

Station 6
35.960 N
6.210 W

Station 7
35.790 N
6.130 W

Station 11
35.480 N
6.450 W

Station 15
35.942 N
5.673 W

0
20
30
40
45

0
10
70

110
155

0
5

15
20
25

0
58

108
158
200

0
15
45
80

115

0
40

140
240
340

0 36.217
50 36.207

150 35.963
200 35.920

0
50
75

150
200
250
400
450
500
510

36 349
36.365
36.174
38.303
38.372

0.33
0.18
0.21
2.63
7.12

0.04 0.05
0.07 0.09
0.18 0.08
2.34 0.39

35.935
35.931
35.932
35.945

-35.963

35.979
36.020
36.024
35.941

35.995
35.983
35.984
35.984
35.984

36.323
36.267
36.236
36.035
37.613

36.003
36.117
36.017
35.949
35.907

36 231
36.471
36.101
36.600
38.072

0.28 0.08
1.11 0.11
3.62 0.49
3.94 0.55

0.82
0.72
1.75
5.42
5.37

38 517 9 18 0.45
38.450 8 93 0 45

38 450 9.15 0 44

Profile data, April'86
Sample #, station position indicated for surface sample, depth m.

0.17
0.18
0.16
0.46
0.59

15.6
15.0
11.7
11.1

7.0

1.4
2.1
1.2
2.2

9.9
8.5
8.4
8.3
8.0

1.3
1.4
1.4
1.7
1.8

6.2
7.0
1.5
2.0
1.0

1.5
1.0
0.8
1.2
1.1

255
328
284
253
317

73
54
54
54
70

198
198
191
205
213

33
39
37
83
87

160
162

69
76
89

32
30
47
88
59

35.3
31.5
31.0
26.2
17.7

7.8
2.5
3.5
2.0
1.5

24.0
25.9
24.8
26.7
20.3

1.9
1.2
1.2
1.6
5.0

18.5
19.3

3.7
4.0
2.1

1.6
1.1
1.2
1.7
2.7

0.26
0.31
0.26
0.28
0.28

0.10
0.08
0.11
0.40
0.33

0.18
0.13
0.18
0.41
0.52

0.05
0.12
0.32
0.50
0.38

1.63
1.29
1.32
1.78
1.94

0.66
0.49
1.13
2.20
4.33

1.05
0 82
1.79
4.14
3.03

0.62
0.80
1.95
4.29
6 09

Table 3.2

61 3.3
56 3.4
89 1.7

101 1.4

0.10
0.10
0.28
0.33
0 39

1.6 2.3
1.4 2.0
1.8 2.5
1.3 2.5

1.4 2.4
2.5

1 2 2.4
5.2

1.8 4.6
16 45
1.7 4.8

48
18 43
17 48
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Table 3.3 Trace metal concentrations for major Iberian rivers determined
by GFAAS direct injection and standard additions, Cd
concentrations below detection limit of = 100 pM.
Seawater contribution (%) estimated from Mg concentration
determined by flame AA.

Location % SW (Mg)

Guadalquivir

Guadalquivir #1

Guadalquivir #2

Guadiana

Tej o

Tejo #1

Sevilla

2/3 upstr

2/3 upstr

Merida

Truj illo

Lisboa

Cu nM

2 9.5

2 15.7

2 14.3

<1 10.1

Ni nM

21.3

64.1

78.6

7.0

.6 58.8

<1 9.6

<1 7.5

20.8

Zn nM

13.0

33.2

40.2

3.1

7.0

418

Tejo #2 Lisboa

River

14.0 392



Table 3.4 Shelf enrichments for areas indicated

Location Salinity Cu nM Ni nM Cd pM Zn nM Mn nM Reference

30.0

9

4.2

2.5

160 this work

this work

this work

20 Bruland,1983

12 Kremling,1983

Martin,1976

30 Heggie,1987

11.0

3.0

1.9

4.0

2.5

Cadiz

Huelva

Morocco

NW Atlantic

NE Atlantic

Calif. Bight

Bering Sea

35.95

35.95

36.20

30.00

35.00

33.50

31.50



Station

0.100
1.000

2.000

3.000
3.100
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11.000
13.000
14.000
15.000

Latitude Longitude 228Ra/226Ra

36.530
36 400
36.280
36.220
36.180
36.157
36.100
36.080
35.930
35.960
35.790
35.610
35 620
35 580
35.590
35.480
35 810
35 950
35 942
35.850

-6.400
-6.420
-6.480
-6.580
-6.450
-6.316
-6.270
-6.000
-5.882
-6.210
-8.130
-6.010
-6.060
-6.100
-6.100
-6.450
-6.000
-5.590
-5.673
-5.720

0.570
0.410
0.270
0.230
0.240
0.180
0.440
0.260
0.150
0.350
0.170
0.200
0.230
0.260
0.160
0.420
0.160
0.160
0.160
0.230

0.050
0.010
0.010
0.020
0.010
0.010
0.030
0.010
0.010
0.010
0.020
0.010
0.020
0.020
0.020
0.050
0.010
0.010
0.010
0.020

salinity

35.876
35.935

35.979

35.995
35.987
36.043
36.323
36.003
36.231
36.142
38.215

36.188
36.217
36.339
35.982
36.349

Table 3.5 Nearest trace metal station, location, 2 2 8Ra/ 22 6 Ra
activity ratio, uncertainty and salinity in 0/o., when
available.

+/-



Table 3.6 End member composition for surface Atlantic water, Spanish
shelf water, NACW and Mediterranean deep water. Estimate of
combination of natural variability and analytical uncertainty
indicated in parentheses.

Surface
Atlantic

Sal.*/oo 36.3 (.1)

Cu nM 1.0 (.3)

Ni nM 2.2 (.3)

Cd pM

Zn nM

Spanish
Shelf

30 (10)

0.8 (1.)

April'86

Sal."/o 36.0 (.2)

Cu nM

Ni nM

Cd pM

Zn nM

6.1 (.6)

3.4 (.3)

190 (20)

NACW

35.7 (.05)

1.3 (.3)

3.3 (.3)

150 (10)

1.5 (.5)

June'82

36.0 (.2)

6.7 (.6)

3.4 (.3)

210 (20)

Mediterr.

38.45 (.02)

1.9 (.3)

4.6 (.3)

77 (10)

4.8 (.5)

October'86

36.1 (.2)

8.0 (.6)

3.4 (.3)

260 (20)

21 (1.) 21 (1.) 21 (1.)
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CHAPTER FOUR

VARIABILITY OF TRACE METAL FLUXES THROUGH THE STRAIT OF GIBRALTAR



INTRODUCTION

Three water masses west of the Strait of Gibraltar show sharp contrasts

in trace metal concentrations: (1) Atlantic surface water, (2) North

Atlantic Central Water and (3) Spanish coastal water. The first goal of

this paper is to exploit these circumstances and follow the advection of

these water masses into the Strait of Gibraltar. A regression model

decomposes each sample into these end-members; sensitivity of the model

is discussed in detail. The second objective is to examine the

distribution of Cu, Ni, Cd and Zn within the Strait with respect to the

mass balance of these elements in the Mediterranean basin.

Surface samples collected in March-April and October 1986 have recently

allowed us to establish that Spanish Atlantic shelf water is highly

enriched in Cu, Cd and Zn relative to nutrient depleted Atlantic surface

water (van Geen et al., 1988). A distinction is made between shelf

waters and upwelling of North Atlantic Central Water (NACW), which is

also enriched in certain metals (profiles collected during Donde Va?,

Boyle et al., 1985). By comparing profile and shelf water

metal-salinity relationships, surface enrichments can be attributed in

part to mixing with deeper water in the case of Cd. In the case of Cu

and Zn, levels of Cu and Zn in Spanish coastal water are higher by an

order of magnitude than in subsurface Atlantic water of the same

salinity (van Geen et al., 1988). Profiles collected in April'86

indicate that shallow advection onto the shelf region and

"metal-trapping" along the Iberic peninsula is the most likely source of



these enrichments (Chapter 3). Riverine and anthropogenic inputs are

not sufficient to explain Spanish shelf-water metal enrichments.

SAMPLING AND ANALYSIS

We present here new data for 43 surface samples distributed across the

Strait of Gibraltar on April llth, 12th and 16-18th. Surface samples

were collected on USNS Lynch during the Gibraltar Experiment (Kinder and

Bryden, 1987) with a contamination-free underway pumping apparatus.

Salinity and nutrients were determined using standard techniques

(Guildline Autosal salinometer and colorimetry, respectively) described

in Strickland and Parsons (1968). Trace metal analyses on 30 ml samples

followed a resin pre-concentration procedure which has been automated

(Chapter 2). All sample concentrates were analyzed by graphite-furnace

atomic absorption spectroscopy (Perkin-Elmer Zeeman 5000 and HGA 500).

One-sigma precision for this data set is 5% or 0.2 nM for Cu and Ni

whichever is larger, 6% or 6 pM for Cd and 6% or 0.3 nM for Zn. Blank

corrections average 0.1 nM, 0.05 nM, <1 pM and 0.3 nM for Cu, Ni, Cd and

Zn respectively.

THE CONSERVATIVE MIXING MODEL

Distributions of trace metals and salinity in the western approaches to

the Strait of Gibraltar can be described as conservative mixing of the

three end-members mentioned above, even though non-conservative

processes most likely play a role in shallow Spanish coastal waters

(Chapter 3). As indicated by end-member compositions in Table 4.1,



Atlantic surface water (1) is depleted in all trace metals. Only Cd

enrichment in less saline NACW (2) is comparable to concentrations found

in Spanish coastal water (3) which is highly enriched in Cu and Zn.

Given the continuum of linear salinity-trace metal relationships over

the shelf, the shelf end-member end-member is somewhat arbitrarily

defined by a salinity of 36.0 */0o and corresponding Cu, Cd, Zn

concentrations. This description corresponds to water found at the

north-west entrance to the Strait. End-member definitions have been

revised relative to earlier work (van Geen et al., 1988) based on a more

extensive data set (Chapter 3). The main differences are that metal

concentrations are roughly halved for the definition of "100 %" Spanish

shelf water, and that Cd concentrations are inceased to 30 pM for

surface Atlantic water.

Trace metal and salinity data for 43 surface stations within the Strait

(Fig. 4.1) can be related to the end-members defined above. Station

tracer data are listed in the appendix. Mediterranean deep water,

defined on the basis of a second profile collected during Donde Va?

(Boyle et al., 1985) is added to the list of end-members in order to

describe the northernmost stations in the western Alboran Sea where this

water mass outcrops at the surface. A fifth tracer (Ni) not as

dramatically enriched as other metals in Spanish shelf waters, and only

slightly enriched in NACW, is included in the definition of the four

sources (Table 4.1).

Assuming conservative mixing of salinity and trace metals, each surface

sample can be described as a linear combination of four distinct end
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Fig. 4.1 End-member distributions on April llth, and 16-18th. Length of

bar is proportional to contribution. Filled circle indicates
station location.



Table 4.1 Model matrix A

Surface Spanish
Atlantic Shelf

36.30

1.0

2.2

30

0.8

1

36.00

6.1

3.4

190

21.0

1

NACW Mediterranean
Deep

35.70

1.3

3.3

150

1.5

1

38.45

1.9

4.6

77

4.8

1

Salinity

Cu

Ni

Cd

Zn

Closure

Standard
Error

0.1 0/

0.33 nM

0.33 nM

10 pM

1.0 nM

0.001



members. In this expression, the weight of an end-member is the

fraction of the total sample contributed by each source. In matrix

notation, this relationship can be expressed as:

(1) A • f - d

where A is the (6*4) model matrix whose top five rows contain the tracer

composition of each end-member (- Table 4.1) , (6*1) vector d contains

the composition of a specific sample and f is a (4*1) vector whose four

elements are the fractions of each contributing source which we want to

estimate (Mackas et al.,1987). The fractions are constrained to be

positive and to sum to unity: a final line of factors equal to unity

added to the model matrix and to each column data vector expresses this

additional closure condition. The system is over-determined since there

are 4 unknowns (the end-member fractions) and 6 linear equations (one

for each tracer + the closure condition).

The solution need not match the data perfectly due to analytical errors

and "real world" deviations from the model. For each tracer, a residual

is defined as the difference between observed and model-predicted data.

Assuming the data follow Gaussian statistics, the best fit to each set

of equations corresponding to a sample is obtained by minimizing the sum

of the squared residuals (i.e. the L2 norm, Menke (1984)). However,

residuals must first be normalized with respect to each other by giving

proper weights to each tracer equation. This is achieved by dividing

all tracer values by their respective estimated standard errors which

are also listed in Table 4.1. Error estimates are greater than



(salinity) or comparable to (trace metals) analytical errors and

represent the degree to which the model is required to fit the data for

a given tracer. If W is a diagonal matrix composed of the inverse of

estimated uncertainties for each tracer, the weighted model matrix

becomes A - W.A (Table 4.2). Similarly, tracer data at each station are

converted to d -W.d. By this transformation, the variance of each

tracer datum is, by definition, equal to one. The closure condition is

given a high weight of 1000, i.e. an error of 0.001, and forces the

model parameters to add up to 1 within 0.01% for all samples.

The dynamic range separating end-members for each tracer, expressed in

Aw, is compared on the same scale in Fig. 4.2. The greater the range

for a given tracer, the more useful it will be in resolving end-member

contributions. Salinity dominates the estimate for the fraction of deep

Mediterranean water, Zn and Cu dominate the estimate for the shelf

end-member fraction, and Cd best resolves the deep Atlantic contribution

after correction for Cd of shelf origin. The least-squares solution to

equation (1) for each surface sample is:

(2) f - (A t.A )-1.A t.dw w w w

Taking the additional inequality constraints into account, an iterative

solution is found using the Kuhn-Tucker theorem (Menke, 1984). By this

procedure, if the unconstrained best fit requires one of the end-member

fractions to become negative, the solution becomes the next best fit

with that fraction set to zero. This simple program was applied to each

sample on a Tektronix 4052 computer. Matrix inverses are calculated by
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Table 4.2 Variance normalized model matrix A
w

Surface Spanish
Atlantic Shelf

363

3.0

6.6

3

0.8

1000

360

18.3

10.2

19

21

1000

NACW Mediterranean Standard
Deep Error

357

3.3

9.9

15

1.5

1000

384.5

5.7

14.7

7.7

4.8

1000

Salinity

Cu

Ni

Cd

Zn

Closure



a supplied subroutine based on Gauss-Jordan triangularization. Before

discussing in detail the distribution of the four end-members in the

Strait of Gibraltar and the Alboran Sea (Fig. 4.1), the uncertainty in

these solutions must be estimated.

HOW ROBUST ARE THE SOLUTIONS ?

Since both the model matrix A and the data d were premultiplied by the

weight matrix W in the expression of the generalized inverse, the data

covariance matrix becomes the identity matrix. Assuming errors in the

data are uncorrelated (not necessarily true for "real world" errors ),

off-diagonal elements of the data covariance matrix can be set to zero.

How errors in the data are amplified as uncertainty in the model

parameters can be estimated from the unit covariance matrix of the model

parameters:

(3) cov f - (A t.A )-1
w w

Diagonal elements of cov f (see Table 4.3) are the variances of the

model parameters. The uncertainty in each model parameter is estimated

from the square root of the variance: 10% for surface Atlantic water, 4%

for Spanish shelf water, 9% for NACW and 5% for Mediterranean deep

water. These estimates depend on the structure of the model matrix and

not on the composition of a specific sample. Non-zero off-diagonal

terms of the covariance matrix indicate that the model parameters are

not mutually independent.



Model parameter covariance matrix cov f

Surface Spanish
Atlantic Shelf

NACW Mediterranean

Deep

Surface
Atlantic

Spanish
Shelf

NACW

Mediterranean
Deep

Table 4.3

.0092 .0015

.0020

-.0077

-.0027

.0091

-.0029

-.0008

.0014

.0023



The contribution of each tracer to the solution can be illustrated by

removing the constraint imposed by each tracer in turn. Standard errors

for each model parameter are calculated from the modified covariance

matrix (Table 4.4). This procedure quantifies the role of each tracer

in determining the solution which was discussed qualitatively earlier.

Without the salinity constraint, uncertainty in the Mediterranean

contribution increases by a factor of three to 17%. Estimates of

surface Atlantic and NACW contributions are strongly dependent on the Cd

constraint: uncertainties increase to 24 and 22%, repectively, when

neglecting this tracer. The contribution of the final end-member,

Spanish shelf water, is better constrained than other members.. Removal

of either Cu or Zn does not significantly affect the variance of the

solution. This indicates that, of these two tracers, one is redundant

because of strong Cu and Zn enrichments in the same end-member.

Simultaneously neglecting these two tracers, however, increases the

uncertainty in shelf end-member proportion to 38%.

The model parameter covariance matrix can be decomposed in greater

detail. The redistribution of end-member fractions due to a one

standard error unit change in each tracer datum is derived from equation

(2):

a f/a d - A . (At . A)-1 (subscript w becomes implicit)

Table 4.5 contains this (6*4) matrix (neglecting the closure condition)

and lists individual changes in end-member fractions. The squares of



Table 4.4 Sensitivity of standard error (%) to disregarding each tracer
in inversion.

Surface Spanish
Atlantic Shelf

NACW Mediterranean
Deep

All 6 tracers

no Salinity

no Cu

no Ni

no Cd

no Zn 10 7 12
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Table 4.5 End-member redistribution (%) a f/a d

Surface Spanish
Atlantic Shelf

-1.4

1.4

-3.6

-7.2

-0.6

2.6

-0.9

-0.4

NACW Mediterranean

Deep

1.9

-3.3

2.4

5.9

3.8

-0.7

2.0

1.7

Zn 2.0

Salinity

Cu

3.5 -4.6 -0.9



101

entries in each column of Table 4.5 sum up to the diagonal terms of the

model parameter covariance matrix discussed above.

Standard errors in model parameters (due to errors in the data) range

from 4% for Spanish shelf water to 10% for surface Atlantic water. It

is more difficult to establish the regression sensitivity to the

assumptions of the model. These are (1) the structure of the model

matrix, i.e. the choice and composition of end-members, and (2)

conservative mixing. Assumption (2) of the mixing model implies the

absence of significant external input or output mechanisms that could

affect dissolved trace metal concentrations in surface water. This is

reasonable given the time scale of mixing in the Strait (on the order of

days) and the oceanic geochemistry of trace metals (Bruland, 1983). To

get an intuitive understanding of assumption (1), a simple mixing model

A.f - d is solved algebraically for two end-members of arbitrary

composition (SI, Z1) and (S2, Z2), respectively.

S Z f S
11 1 d

For A - , f - and d - as defined for equation (1)

S2 Z2 2 Zd

the best fit solution minimizes:

Z (residual)2 - (Sd- (f1 .S1 +f2 .S2))
2 + (Zd-(fl. Zl+f 2.Z2)

2

recalling that fl + f2 - 1 and

setting a E (residuals)2 / a. f1 = 0 yields:

fl1 (Sd -S2)/(S1-S2)
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The sensitivity of the solution to variations in the data (Sd) or the

composition of either of the end-members (S1, S2) , becomes:

(4) a fl/a Sd - 1/(S1-S2)

If for a given sample: Sd- x.Sl+(l-x).S 2  (0<x<l), then:

(5) a fl/a sl - -x/(S1-S 2)

(6) a fl/a S2 - (x-1)/(S1-S 2)

As discussed above and shown again by equation (4), the uncertainty in

the solution due to errors in the data does not depend on the

composition of a specific sample. Changes in end-member fractions

caused by a variation in the model matrix (equations (5) and (6)),

however, do depend on the composition of a specific sample. As

indicated for the simple two end-member case, the closer a sample is to

the composition of one of the end-members (eg. x close to 1), the more

sensitive the solution will be to variations in the composition of that

same end-member. Since a general derivation of this problem is

cumbersome, changes in end-member composition for a sample composed of

equal (25%) proportions of each of the end-members were simulated

instead. Van Geen et al. (Chapter 3) recently estimated uncertainties

for the composition of Atlantic end-members: 1 standard error unit

(listed in Table 4.1) for each tracer in surface Atlantic water, NACW,

and Mediterranean deep water and 2 units for Spanish shelf water.

Results from this computer simulation are summarized in Table 4.6.

End-member fraction deviations from 25% were squared and
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Simulation results for changes in end-member composition (%).

Surface
Atlantic

lS

1.2

0.7

2.7

5.4

0.9

Spanish
Shelf
2S

0.5

1.6

0.4

0.3

2.3

2.9

NACW Mediterranean

3S

0.9

2.0

1.9

4.8

2.8

6.3

Total % 11.5

Deep
4S

2.6

0.4

1.2

1.0

0.4

3.1

5.7

Table 4.6

Salinity

E e 2 6.3

5.3 11.4
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added to each other. Adding the squared uncertainties due to errors in

sample composition (from the covariance matrix) yields the total error

estimate for the model parameters: surface Atlantic water and NACW, 11%,

Spanish shelf water, 5%, and Mediterranean deep water, 6%.

Finally, the model chosen to describe trace metal concentrations in the

Strait of Gibraltar can be evaluated by graphically by comparing

measured and model-derived tracer data for the set of surface stations

(Fig. 4.3). How much weight a tracer datum carries in its own

prediction in the least-square solution is first calculated from the

(6*6) data resolution matrix N (Menke, 1984) which relates observed and

model-predicted data: dPre - N.d. Predicted data, dPre, are

calculated by applying the forward problem to estimated model

parameters: dpre - A . f. Substitution from (2) yields:

N - A.(At.A)'l.At

Table 4.7 lists the data resolution matrix calculated for this problem.

Since predicted data are the product of observed data by the data

resolution matrix, deviations from the identity matrix indicate that a

predicted tracer value is a linear combination of its own and other

observed tracer values. Diagonal entries of the data resolution matrix

are defined as the importance of the data in their own prediction. In

decreasing order, the importance of the closure condition is .99,

salinity: .94, Cd: .86, Zn: .64, Cu: .35, and Ni: .21. Off-diagonal

entries are small for tracers with a high weight in their own

prediction, such as salinity and Cd. Perhaps surprisingly, Zn and Cu
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Fig. 4.3 Observed vs. model-predicted data from best fit. Diagonals
indicate one standard error deviation from one to one
correspondence.
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Table 4.7 Data resolution matrix

Salinity

.94

Cu

.00

Ni Cd Zn 1

.21 -.09

.35 -.04 .03

.02 .02

.47 -.00

.33 -.06 -.07

.01 .03

.64 -.01

.99

Salinity

.21

.86
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have a low importance relative to their wide dynamic range. This is due

to high co-linearity in the distributions of these two tracers which are

dominated by the same end-member (Spanish shelf water). Examination of

the off-diagonal term relating these two tracers (0.47) indicates that

the individual importances of Cu and Zn is replaced by a role in

predicting each other.

It should be expected that tracers with a high importance, such as

salinity and Cd, follow a one to one line in Fig. 4.3 within the a

priori error bands. This is because these tracers almost independently

determine Mediterranean and NACW contributions, and therefore also

control their own prediction. In contrast, tracers that are redundant

(e.g. Ni vs. all other tracers, or Cu vs. Zn) and therefore do not

control their own prediction, provide a verification of the conservative

mixing hypothesis as well as the composition chosen for the end-members.

As it turns out, residuals are small also for the "weaker" tracers. The

fact that no systematic errors can be detected supports the choice of

end-members; the model is consistent with the data. It is worth noting

that end-members were chosen on the basis of observed profiles and

surface samples from the Gulf of Cadiz (Chapter 3), i.e. independently

from data for the Strait of Gibraltar.

DISTRIBUTION OF END-MEMBERS IN THE STRAIT OF GIBRALTAR

On the basis of the distribution of Atlantic end-members (Fig. 4.1),

surface waters in the Strait can be divided in two regions by a boundary

roughly equidistant from each shore throughout the Strait during both
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sampling periods (Fig. 4.1) The southern half is rather uniformly

composed of 90-95% Atlantic surface water and 10-5% North Atlantic

Central Water. The reduction of an Atlantic profile to mixing of two

end-members, mentioned in the introduction, limits the depth resolution

of the model. Indeed, two mixing equivalent scenarios for surface Cd

enrichments, such as (1) discrete mixing of the surface and 400 m deep

extrema or, (2) continuous mixing to a shallower depth can not be

distinguished in principle.

CTD data from USNS Lynch (Bray, 1986) obtained at the time of chemical

surface sampling (Sta. GB1131, GB 1198) along 5040'W indicate that at

the center of this section, below a 50m mixed layer, the inflow is not

homogeneous down to the interface with the saline outflow (150 m). The

intrusion of NACW causes a salinity minimum at approximately 90 m depth.

This recurrent feature was discussed in detail by Gascard and Richez

(1985). Surface transects at 5040 ' W were taken after LW on both April

llth and April 17th. At that time, the preceding 6 hours have seen the

strongest inflowing currents as the interface separating in- and outflow

deepens. This explains the strong subsurface presence of NACW in the

CTD profile and implies that surface samples at this section of the

Strait may underestimate the proportion of NACW in the inflow. Further

east, the interface is shallower: 40 to 70 m deep at 05030' W. The

inflow at this section is vertically homogeneous on April 12th (1 day

after spring tide), but not on April 17th (Sta. GB 1193) when a small

subsurface salinity minimum due to NACW is again detectable. Gascard



109

and Richez (1985) also discuss the greater penetration through the

Strait of NACW at neap tide.

The northern half of the Strait is more heterogeneous in composition.

Spanish coastal water dominates samples close to the shore and is

gradually diluted towards the center of the Strait. Spanish shelf water

is a combination of Atlantic surface water, NACW and some river water

that has passed over a shallow portion of shelf in the Gulf of Cadiz

(Chapter 3). Surface water at the northwest entrance to the Strait is

composed almost exclusively of Spanish shelf water defined in Table 4.1

(sample # 259). This end-member contributes as much as 50% to the

surface Alboran Sea at 5015 ' W (# 178). Since CTD profiles of the

northern portion of the Strait show a vertically homogeneous inflow

layer, one can assume that surface data along this section are

representative and that metal enrichments from the Spanish shelf

entering the Alboran Sea are not restricted to very shallow depths. It

should be noted that this end-member could not have been quantified by

standard tracers because shelf-water and NACW are both less saline

sources relative to surface Atlantic water. Nutrients and temperature

would be uncertain tracers since both are strongly non-conservative in

surface water.

Transects across the Strait on April 11, 12th and 16-18th show that the

shelf water fraction at 5040' W in the northern portion of the Strait is

much greater during the later period. This change is not simply due to

patchiness in the area since it is confirmed over five stations: # 144,

148, 151, 168-170 and 239-247. Cross-strait sections at 5040' W started
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from the North roughly at LW on both April llth and 17th and samples are

spaced evenly over the two hours required to reach the Moroccan coast.

Therefore, the greater proportion of shelf water on April 17th can not

be due to a difference in sampling time relative to the tide. Perhaps

spring tides are accompanied by less entrainment of Spanish shelf water.

This possibility may be worth further study.

Contribution of Mediterranean deep water to surface water is significant

only in the Alboran Sea: 71, 14, 28 and 12% at stations # 184, 181, 180

and 179 respectively. Only three (Atlantic) end-members are represented

at half the locations in the Strait and the mixing model changes

configuration for these samples. There are still 6 equations to be

satisfied in the least square sense but only three unknown model

parameters. The new covariance matrix for this reduced system decreases

the uncertainty due to errors in the data for surface Atlantic, NACW and

Spanish shelf water to 7%, 9%, and 4%, respectively.

Four samples at the southern end of the Alboran Sea section (# 171, 172,

173, 174) indicate caution must be used when interpreting trace metal

data in this area. Model results indicate up to 19% contribution from

the Spanish shelf end-member. However, in view of the dominant current

direction in the Strait, it seems unlikely that this water mass could

cross over to the Moroccan shore south of Ceuta. This feature should

probably be interpreted as a different water mass influenced by the

Mediterranean shelf, which is not included in our analysis.
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CONCLUSION

Distributions of dissolved constituents Cu, Ni, Cd, Zn and salinity in

the Strait of Gibraltar were shown to be consistent with conservative

mixing of water masses contributing to the Atlantic inflow. These three

water masses, (1) surface Atlantic water, (2) NACW and (3) Spanish shelf

water, can be followed into the Alboran Sea. The data confirm that

Atlantic metal-enriched water masses entering through the Strait of

Gibraltar can account for Cu, Zn and Cd enrichments of the Mediterranean

relative to nutrient-depleted Atlantic surface waters. However, high

current shear across the Strait makes it difficult to flow-average the

relative contributions of Atlantic water masses to the inflow at this

location. In addition, the proportion of NACW may be underestimated by

considering surface samples only. Even though Ni is enriched in the

Mediterranean outflow, Spanish shelf water cannot be the source of this

element. Interestingly, surface samples from the Mediterranean (Spivack

et al., 1983) show larger relative enrichments towards the eastern basin

for Ni than for Cu, Cd and Zn. This observation is consistent with a

source, eolean or riverine, internal to the Mediterranean for this

element.

Results from surface samples collected in the Alboran Sea at three times

of the year, April '86, June '82 and October '86, also indicate

significant variations in the relative proportion of the three Atlantic

end-members over longer time scales (Chapter 5). This may be related to

seasonal changes in the circulation through the Strait predicted by

Bormans et al. (1987) on the basis of tide gauge and meteorological data
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and confirmed by direct measurements made during the Gibraltar

Experiment (Ochoa and Bray, manuscript and J. Candela, pers. comm.).

Over even longer time scales, climate change may have affected source

waters for the inflow and therefore the composition of the

Mediterranean. Lowering of sea-level during glacial time would have

exposed the Atlantic Spanish shelf and limited processes which give rise

today to very high dissolved metal concentrations in that region. Given

the short residence time of water in the Mediterranean relative to the

inflow (100 years), such a signal could be looked for in both planktonic

and benthic foraminifera of the Mediterranean if skeletons of these

organisms reflect ambient Cu or Zn concentrations (Boyle, 1981).
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Station Latitude Longitude Salinity Si P04

144
148
151
154
157
160
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
184
239
240
241
242
243
244
245
246
247
248
249
251
253
254
255
256
257
258
259

36.000
35.983
35.950
35.933
35.900
35.867
35.933
35.950
35 967
35.983
36 017
36 033
35 850
35 867
35 877
35 888
35 933
35 967
36.000
36.033
36.067
36 083
36 100
36 183
35 933
35.950
35.967
35.983
36.017
36.033
36.000
35.967
35.950
35.933
35.900
35.867
35.867
35.883
35.933
35.950
36.000
36.033
36.067

-5.633
-5.650
-5.650
-5 650
-5.617
-5.650
-5.467
-5 450
-5 467
-5 467
-5 467
-5 467
-5 317
-5 283
-5 245
-5 250
-5 217
-5.233
-5 267
-5.267
-5 217
-5 233
-5.267
-5.267
-5 450
-5.467
-5.467
-5.467
-5.467
-5.467
-5.667
-5 650
-5 650
-5.667
-5.650
-5.650
-5.883
-5.883
-5.867
-5.833
-5.850
-5.833
-5 833

36.131
36.091
36.161
36.285
36.285
36.282
36.253
36.251
36.267
36.231
36.181
36 215
36 409
36 354
36 356
36 363
36 299
36.218
36.193
36.063
36.400
36.693
36.284
37.742
36.282
36.283
36.280
36.143
36.051
36.060
36.061
36.054
36.038
36.347
36.245
36.167
36.298
36.214
36.234
36.153
36.074
36.029
36 086

1.49
0.84
1.04
0.92
2.68
1.44
0.99
1.39
1.56
1.66
1.64
1.46
1.17
1.09
1.19
1.22
1.22
1.09
1.27
1.41
2.11
2.41
3.18
3.20
0.83
0.90

0.20
0.08
0.10
0.19
0.10
0.16
0.13
0.13
0.18
0.14
0.17
0.19
0.09
0.08
0.10
0.09
0.12
0.12
0.12
0.20
0.19
0.22
0.22
0.17
0.14
0.13
0.08
0.09
0.17
0.23
0.38
0.22
0.10
0.05
0.12
0.16

0.06
0.20

0.83 0.24
0.83 0.07
1.32 0.20
1 46 0.15

Cu Ni Cd 2h Surf Atl Sp Shelf NACW Med

0.150
0.091
0.064
0.029
0.047
0.095
0.031
0.030
0.035
0.079
0.063
0.124
0.066
0.117
0.052
0.053
0.040
0.042
0.053
0.144
0.100
0.106
0.110
0.097
0.042
0.039
0.035
0.065
0.124
0.163
0.167
0.204
0.116
0.035
0.043
0.050
0.034
0.041
0.038
0.045
0.080
0.135
0.211

11.4
5.5
2.0
0.8
1.0
6.1
0.9
1.0
0.8
5.6
3.2
7.6
4.0
4.6
4.2
3.8
1.8
1.6
2.4

12.7
8.5
7.0
7.6
7.1
2.2
1.6
1.7
4.0
9.2

17.8
14.6
20.9
11.8

2.2
1.7
1.7
1.6
1.1
0.7
1.7
4.9

14.1
21.3

0.11
0.56
0.70
1.00
0.89
0.55
0.96
0.97
0.95
0.69
0.77
0.36
0.66
0.25
0.80
0.80
0.90
0.89
0.81
0.26
0.44
0.26
0.29
0.07
0.87
0.91
0.92
0.73
0.37
0.14
0.12
0.00
0.43
0.92
0.89
0.83
0.93
0.87
0.89
0.84
0.62
0.32
0.00

0.48
0.19
0.05
0.00
0.02
0.17
0.00
0.00
0.00
0.23
0.10
0.31
0.13
0.19
0.14
0.14
0.03
0.03
0.07
0.55
0.38
0.23
0.28
0.14
0.03
0.02
0.02
0.13
0.44
0.82
0.71
1.00
0.50
0.04
0.06
0.06
0.02
0.00
0.00
0.05
0.19
0.65
1.00

0.35
0.25
0.23
0.00
0.08
0.23
0.04
0.03
0.05
0.07
0.13
0.27
0.11
0.40
0.00
0.01
0.04
0.08
0.12
0.19
0.05
0.23
0.29
0.08
0.07
0.05
0.04
0.14
0.19
0.02
0.16
0.00
0.07
0.00
0.05
0.11
0.03
0.12
0.10
0.11
0.19
0.03
0.00

0.07
0.00
0.02
0.00
0.01

0.00
0.00
0.00
0.01
0.00
0.05
0.10
0.16
0.05
0.06
0.02
0.00
0.00
0.01
0.12
0.28
0.14
0.71
0.02
0.01
0.02
0.00
0.00
0.01
0.02
0.00
0.00
0.04
0.00
0.00
0.02
0.01
0.01
0.00
0.00
0.00
0.00

Residual.Sq

3.92
1.07
0.64
0.18
1.15

12.52
0.95
1.23
0.30
0.84
0.52
6.15
0.34
2.14
0.45
0.62
0.27
0.34
0.37
2.18
1.75
0.33
3.40
1.07
1.23
0.25
1.61
0.97
1.30
0.56
2.39
2.44
1.66
0.95
0.79
0.72
1.13
1.09
2.12
1.90
0.39
0.39
5.79
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CHAPTER FIVE

VARIABILITY OF Cu, Ni, Cd AND Zn DISTRIBUTIONS
IN SURFACE WATERS OF THE ALBORAN SEA
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INTRODUCTION

Atlantic shelf water off the Spanish coast is strongly enriched in

certain trace metals, and may dominate the flux of Cu, Cd and Zn to the

Mediterranean Sea through the Strait of Gibraltar (van Geen et al,

1988). The initial data suggested that the integrated surface input of

these elements through the Strait roughly matched the ouput by the

underlying Mediterranean outflow to Atlantic. However, determination of

the average composition of the inflow is complicated by recently

observed temporal variability of metal enrichments in Spanish shelf

water (Chapter 3) and day to day changes in the proportion of shelf

water entrainment within the Strait (Chapter 4).

The first goal of this paper is to adress this problem by presenting new

trace metal data for 99 surface samples collected during the Gibraltar

Experiment on two cruises in the Alboran Sea (Kinder and Bryden, 1987).

The second objective is to quantitatively relate dissolved metal

distributions to the composition of water masses contributing to the

Alboran Sea. A major factor controlling these distributions is vigorous

surface circulation as indicated by the distributions of two classical

tracers: temperature and salinity. Infra-red satellite images generally

show a clockwise rotating gyre with a diameter on the order of 50 n.mi

(The ?Donde Va? Group, 1984). The IR pattern shows entrainment in the

gyre of colder water from the northern Alboran Sea and from the Atlantic

inflow through the Strait of Gibraltar. High surface salinities in the

northern Alboran Sea indicate outcropping of Mediterranean deep water in

that region. Complementing this picture, geostrophic calculations
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(Parilla and Kinder, manuscript) and direct current measurements show

that a narrow jet with velocities often greater than 100 cm/s enters the

Alboran Sea from the Strait of Gibraltar (La Violette, 1985). Such

features are examined in this paper by integrating information from five

tracers (salinity, Cu, Ni, Cd, Zn) at each surface station. To this

end, a conservative mixing model is solved by weighted least-squares in

terms of four end-members: Atlantic surface water, North Atlantic

Central Water, Spanish shelf water, and Mediterranean deep water. The

model provides a common basis from which to compare tracer distributions

in April'86, October'86, as well as earlier results from June'82 (Boyle

et al., 1985).

ANALYSIS

Surface samples were collected on two USNS Lynch cruises, March 26-April

19 and October 12-17 1986, with a contamination-free underway pumping

apparatus. Salinity and nutrients were determined using standard

techniques (Guildline Autosal salinometer and colorimetry, respectively)

described in Strickland and Parsons (1968). Trace metal analyses on

30 ml samples followed a resin pre-concentration procedure which has

been automated (Chapter 2). All sample concentrates were analyzed by

graphite-furnace atomic absorption spectroscopy (Perkin-Elmer Zeeman

5000 and HGA 500). One-sigma precision for this data set is 5% or 0.1

nM for Cu and Ni whichever is larger, 5% or 5 pM for Cd and 6% or 0.2 nM

for Zn. Blank corrections averaged 0.1 nM, 0.01 nM, <1 pM and 0.3 nM

for Cu, Ni, Cd and Zn respectively.
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RESULTS

Although five tracers display a remarkable dynamic range in surface

waters of the Alboran Sea (salinity: 36-38 */.0, Cu: 1-5 nM, Ni: 2-5nM,

Cd: 40-150 pM and Zn: 1-13 nM), changes in the main circulation features

of the Alboran Sea can be followed over the three sampling periods by

restricting our attention to two tracers: salinity and Zn. The location

of samples listed in Table 5.1 (April'86) and Table 5.2 (October'86), as

well as June'82 (Table 5.3, data from Boyle et al.,1985) is indicated in

Fig. 5.1. In April'86, saline Mediterranean deep water clearly outcrops

over a greater portion of the northern Alboran Sea: the 36.5 */o

isohaline is shifted 20 n.mi. to the south relative to June'82 and

October'86 (Fig. 5.1). This may be related to greater wind stress from

the northwest in November through March (Bormans et al, 1986). Such

variability is not unusual for the Alboran Sea on shorter time scales as

well, as indicated by a suite of satellite IR images covering October

11-13th '82 (La Violette, 1986). South of the region of Mediterranean

water upwelling, the Atlantic inflow sustains a less saline layer over

the upper 200 m of the water column. The extent of this layer is

brought into perspective when considering that water transport by the

inflow is 30 times greater than all fresh water inputs to the

Mediterranean (Tchernia, 1980).
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While the distribution of salinity is mainly determined by mixing of

Mediterranean deep water and fresher Atlantic water, Zn reflects the

advection of two components within the inflow: surface Atlantic water

and Spanish shelf water. This is due to Zn enrichments in Spanish shelf

water by more than order of magnitude relative to surface Atlantic water

(Chapter 3). Surface transects in April'86 showed that Spanish shelf

water was restricted to the northern half of the Strait of Gibraltar

(Chapter 4). The separation between Atlantic surface water and Spanish

shelf water is clearly preserved in April'86 over a distance of 30 n.mi.

into the Alboran Sea (Fig. 5.2). The Zn enriched plume (5 nM at 4030 W)

is sharply bordered by a Zn-depleted portion of the inflow ( 2nM). In

June'82 (Fig. 5.2), there is an additional extension of the Zn enriched

plume to the north and metal enrichments penetrate further east into the

Alboran Sea. In contrast, the Zn enriched portion of plume is weaker in

October'86 and appears to vear to the southeast. Another difference

between October'86 and other sampling periods are low Zn concentrations

(< 2nM) found north of the zone directly influenced by Spanish shelf

water. Such Zn levels are only found at two station northwest of

Alboran Island in April'86 and over a wider area southeast of the Strait

in June'82. Since Zn concentrations generally increase in surface

waters of the Mediterranean east of the Alboran Sea (Sherrell and Boyle,

1985), low concentrations of this element most likely indicate patches

of surface Atlantic water.
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DISCUSSION

The composition of the three Atlantic contributors to the inflow

(surface Atlantic water, NACW and Spanish shelf water, Table 5.4) is

based on surveys of the Gulf of Cadiz in April and October'86 (Chapter

3). Cu and Cd concentrations in shelf water were found to increase

linearly as a function of Zn concentrations on both occasions. The

slope of this relation for Cu and Cd, however, was approximately 30%

higher in the Fall than in the Spring. Another difference between the

two seasons is that absolute Zn concentrations decreased by

approximately a factor of two over the Spanish shelf from April to

October when comparing similar locations. Despite such variations in

the magnitude of metal enrichments west of the Strait of Gibraltar, Cu

and Cd concentrations for this metal enriched end-member were defined

relative to a constant Zn concentration of 21 nM. Since our main

interest at this point is the trace metal mass-balance through the

Strait, a common basis in terms of the most sensitive indicator of

Spanish shelf water (which dominates advective metal fluxes) simplifies

comparison of the different data sets. The composition of the June'82

Spanish shelf end-member was simply linearly interpolated with respect

to time, assuming changes in inter-element ratios are seasonal. A

gradual increase in the Cu/Zn ratio over the course of a year observed

for enriched plume samples of the Alboran Sea (Fig. 5.3) supports this

assumption. Seasonal variations in shelf water Cd concentrations

relative to Zn, on the other hand, are too small to be detected against

natural background variability of the surface Alboran Sea (Fig. 5.4).
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Combining Zn and salinity with tracers Cu, Ni and Cd allows us to test

to what extent the complex pattern of metal distributions is determined

by the four end-members listed in Table 5.4. Assuming conservative

mixing of salinity and trace metals, each surface sample can be

described as a linear combination of four distinct end members.

Following a more detailed description in Chapter 4, this relationship is

expressed as:

(1) A f - d

where A is the (6*4) model matrix whose top five rows contain the tracer

composition of each end-member (- Table 5.4) , (6*1) vector d contains

the composition of a specific sample and f is a (4*1) vector whose four

elements are the fractions of each contributing source which we want to

estimate (Mackas et al.,1987). The fractions are constrained to be

positive and to sum to unity. The system is over-determined since there

are 4 unknowns (the end-member fractions) and 6 linear equations (one

for each tracer and the closure condition). The best fit for the set of

equations corresponding to each sample is obtained by minimizing the sum

of the squared residuals (i.e. the L2 norm, Menke, 1985). Residuals are

normalized with respect to each other by giving proper weights to each

tracer equation: all tracer values are divided by their respective

estimated standard errors, also listed in Table 5.4. The relative size

of standard errors indicates the degree to which the model is required

to fit the data for each tracer.
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The least-squares solution to (1) for each surface sample is:

(2) f - (A t.A )-l.A t.d
w w w w

In order to take the inequality constraints of positive end-member

fractions into account, an iterative solution is determined using the

Kuhn-Tucker theorem (Menke, 1984). Salinity dominates the estimate for

the fraction of deep Mediterranean water, Zn and Cu dominate the

estimate for the shelf end-member fraction, and Cd mainly resolves the

deep Atlantic contribution after correction for Cd of shelf origin.

Amplification of errors in the data as uncertainty in the model

parameters is estimated from the unit covariance matrix:

(3) cov f - (A t.A )-1
w w

The square root of the variance of each model parameter reflects errors

due to uncertainty in the composition of a sample: 10% for surface

Atlantic water, 4% for Spanish shelf water, 9% for NACW and 5% for

Mediterranean deep water. When estimated standard errors in the

composition of the end-members are included (Chapter 4), uncertainties

for surface Atlantic, Spanish shelf, NACW and Mediterranean water

contributions increase to 11, 5, 11 and 6%, respectively.

The conservative mixing model is applied to all April, June and October

surface samples from the Alboran Sea (results listed in Tables 5.1, 2,

3). The difference between measured data and model derived data

(residuals), can be evaluated graphically as deviations from a one to

one correspondance (Fig. 5.6). As should be expected, measured and
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model-derived salinity and Cd values agree with each other within the

a priori error bands for most of the data. This reflects that both

tracers (almost independently of other constraints) determine

Mediterranean and NACW contributions, respectively, and therefore also

control their own prediction (Chapter 4). In contrast, tracers that are

redundant (e.g. Cu relative to Zn, or Ni relative to all other tracers)

and therefore do not control their own prediction, provide a test for

the assumptions of the mixing model: (1) conservative mixing and (2) the

composition and choice of end-members. As shown in Fig. 5.6, there is

also good agreement for most samples between observed and model-derived

Zn and Cu concentrations. Surface enrichments in the Alboran Sea for

these elements are indeed traceable to Spanish shelf water.

Since nutrients are not conservative in surface water and trace metals

are removed by surface productivity, non-conservative mixing of metals

can be examined by comparing both types of tracer. Potential

non-conservative mixing, however, does not affect all tracers equally.

Based on the composition of plankton determined by Collier and Edmond

(1985), Cd should be much more sensitive to removal by phytoplankton

than other metals of concern here. A 10 pM decrease in Cd concentration

could be achieved by as little as a 0.015 pM decrease in dissolved P04

concentration, assuming stoichiometric uptake in proportion to the

average metal/nutrient ratio of plankton. However, trace metals appear

to be taken up in surface water less efficiently than nutrients in

surface water (Boyle et al., 1985). In particular for the Gulf of

Cadiz, uncoupling between nutrient and metal uptake was demonstrated: a
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0.2 pM decrease in PO4 concentration in shelf water advected to the open

ocean was unaccompanied by detectable Cd, Cu or Zn removal (Chapter 3).

Significant non-conservative behaviour for these elements therefore

seems unlikely in the western Alboran Sea.

In contrast to Cu and Zn in the case of Spanish shelf water, there is no

consistency check for the proportion of NACW dictated by Cd. Only an

additional tracer significantly enriched in NACW could determine with

greater certainty that the proportion of this end-member in surface

water of the Alboran Sea is not, for instance, underestimated due to Cd

removal. It is worth noting that NACW is required to explain surface Cd

data because the sum of squared residuals increases sharply when

neglecting this end-member in the regression (eg. from 0.3 to 6.1 for

April sample # 180).

Agreement between observed and model-derived Ni concentrations is not as

good as for the other four tracers (Fig. 5.6). Ni residuals are greater

than one standard error unit (0.33 nM) for 1 sample out of a total of

55 in April'86, 2 out of 42 in June'82 and, 19 out 44 in October '86.

Such deviations cannot be solely due to the small dynamic range between

end-members with respect to Ni concentrations which reduces the weight

of this element in its own prediction. In fact, a systematic error is

suggested by observed concentrations greater than predicted values for

all samples with large Ni residuals. The salinity-Ni relation of these

samples (Fig. 5.5) shows how the two tracers conflict in their

prediction of the proportion of Mediterranean deep water. Based on

end-member compositions listed in Table 5.4, Ni concentrations in
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October '86 correspond to as much as 50% more Mediterranean deep water

than is dictated by salinity for samples in the northern half of the

Alboran Sea. Rain input to the surface mixed layer diluting salinity by

1 */o (corresponding to the discrepancy with Ni) is unlikely: 135 cm

of rain would be required for a mixed layer depth of 50 m. Therefore, Ni

enrichments in October'86 (and an occasional sample in April'86 and

June'82) suggest an additional, as yet unidentified, source for this

element.

Keeping the limitations of the mixing model in mind, the distributions

of water masses in April'86, June'82 and October'86 can be compared for

samples in the region most directly reflecting the composition of the

Atlantic inflow (Fig. 5.7-10). The regression for each sample in this

region was done without considering Ni for all October'86 samples, April

'86 sample # 181, and June'82 sample # 4. As indicated in Tables 5.1,

2, and 3, Cu or Zn constraints were neglected for 6 additional samples.

After these corrections, the sum of squared residuals for each sample

within Fig. 5.7 amounts to less than 3 standard error units. This

indicates that the following main model results (Fig. 5.4) are

consistent with the data: (1) penetration of Spanish shelf water into

the Alboran Sea is greatest in June'86 and, as indicated by the 20%

contribution contour, to the north of the shelf water core observed in

April and October'86; (2) NACW is present in greater proportion in

June'82 (up to 40%) than at other times (maximum of 23% and 21% in April

and October '86, repectively) and closely follows the distribution of
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Fig. 5.7a Surface Atlantic end-member (%) distribution
Alboran Sea water in April'86.
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360 40

360 00



137

360 40 N1 Surfac e  Atlantic

June'82

*10

18
S*016

044

37 61
e81

S47

*61

503 50 0 403 027Fig. 5.7b Surface Atlantic end-member (%) distribution in the surface11
A34 S57

*87

e85 *91

e91

5° 30 50 00 40 30'

Fig. 5.7b Surface Atlantic end-member (%) distribution in the surface

Alboran Sea water in June'82.



138

360 40 N- Surface Atlantic
October'86

62 74

* 73

* 75

S O CV r * 81

a) o 89
C (n CO e89

S**88
ue r a N (D 86

360 00 ' . •
. 88

04 *89

S* 87

W O " 91 0 92

O M *o80

50 30 50 00 40 30 W

Fig. 5.7c Surface Atlantic end-member (%) distribution in the surface
Alboran Sea water in October'86.



139

360 40 NJ Spanish shelf
April'86

S06

.03 .07

4 * 08

e08

S30 23 10
*38

55

360 00 07 27
*03 @06 *14

e03

" 14
9

1 04 .03

50 30 50 00 40 30 W

Fig. 5.8a Spanish shelf end-member (%) distribution in the surface
Alboran Sea water in April'86



140

Fig. 5.8b Spanish shelf end-member (%)
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Spanish shelf water at that time, (3) the distribution of metal depleted

surface Atlantic water varies considerably from one cruise to the other.

Interpreting temporal variations in the distribution of Atlantic

end-members is complicated by the dynamic nature of surface circulation

in the Alboran Sea. Current variations occur on times scale of hours

(tides), weeks (spring vs. neap tides) and months (Ochoa and Bray,

manuscript). In particular, the proportion of Spanish shelf water was

shown to vary between 20 and 70% at the same location in the northern

Strait of Gibraltar for samples taken one week apart (Chapter 4). High

frequency variations in inflow composition should, however, be buffered

by mixing in the western Alboran Sea since the residence time of water

in the surface layer is approximately three weeks relative to the

inflow. We believe that variations in the proportion of Spanish shelf

water reflect seasonal changes in the composition of the inflow.

However, the present data set cannot rule out modulation by the

spring-neap cyle. Detailed time-series would be necessary to evaluate a

potential link between surface distributions of end-members and spring

tides at Gibraltar (June 22 '82, April 11 '86 and October xx '86,

respectively).

An earlier attempt to determine the mass balance of Cu, Ni, Cd and Zn at

the Strait of Gibraltar based on June'82 data (van Geen et al., 1988)

can be revised based on the 1986 results. The composition of the

Mediteranean outflow is well constrained, but a representative inflow

composition appears much more difficult to determine due to variability

in the proportion and/or composition of Spanish shelf water entering the
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Alboran Sea. Trace metal concentration were on average lower in April

and October'86 than in June'82 over the western Alboran Sea. Our

previous calculation for the flow weighted composition of the Atlantic

inflow may have overestimated average Cu, Cd and Zn concentrations over

the course of a year.

Since the data is dominated by surface samples, overestimating the

Spanish shelf water contribution could also be due to vertical

stratification of the inflow. Tracer distributions for Station 4

colllected in June'82 at 36006'N, 50 10'W (5 km south-east of Gibraltar)

provide a test for this possibility. Close to linear salinity-tracer

relationships (Fig. 5.11, data in Table 5.5) indicate that the vertical

distribution of Atlantic end-members is homogeneous as the inflow enters

the Alboran Sea. In particular, Cu and Zn concentrations at 20 m depth

which are not significantly lower than at the surface indicate Spanish

shelf water is not restricted to a thin surface layer. Elevated Cd

concentrations at 20m depth, on the other hand, indicate that the

contribution of NACW to the inflow may be underestimated by surface

samples.

Seasonal differences between metal distributions are reduced when

considering samples closest to the Strait of Gibraltar only. Based on a

simple average of samples across the eastern end of the Strait, the

following end-member composition is obtained for the Atlantic inflow (1)

April'86: 57, 27, and 16% for surface Atlantic, Spanish shelf and NACW

respectively, (2) June'82: 58, 30, and 11%, (3) October'86: 74, 25 and

0%. Multiplying these contributions by the respective end-member metal
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concentrations (Table 5.4), and finally averaging the resulting

compositions for the three sampling times, yields the following estimate

of the inflow composition: Cu: 2.6 nM, Ni: 2.6 nM, Cd: 92 pM and

Zn: 6.2 nM. It should be noted that if velocities into the Alboran Sea

are higher in the core of the Spanish shelf water plume, the

contribution of this end-member is underestimated by this approach.

These results confirm that no net source within the Mediterranean basin

is required to explain Cu, Cd and Zn enrichments in the saline outflow

relative to nutrient depleted surface Atlantic water. Some of the

enrichment, however, must be internal to the basin since Cu, Cd, Zn, and

especially, Ni concentrations, increase to the east in surface waters of

the Mediterranean (Spivack et al., 1983).

CONCLUSION

We have shown that trace metals are unique tracers of Spanish shelf

water, surface Atlantic water, NACW and Mediterranean water in the

surface waters Alboran Sea. The complex distributions of Cu, Ni, Cd, Ni

and salinity can be explained by conservative mixing of these four

end-members in most cases. Such tracers may eventually contribute to

quantitative modelling of surface circulation from the Gulf of Cadiz to

the Alboran Sea when combined with the extensive CTD coverage obtained

at the time of chemical sampling in June'82 and April'86, and within a

few weeks in October'86.

Repeated sampling of a metal enriched plume in the Alboran Sea confirms

the important role of Spanish shelf water in influencing the composition
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of a basin as large as the Mediterranean. Inflow and outflow fluxes of

Cu, Cd and Zn through the Strait of Gibraltar are close to balanced,

given the uncertainty in the inflow estimate. A better constrained

determination of contemporary metal fluxes trough the Strait would

require a sampling and analysis effort beyond current technology and

ressources.

ACKNOWLEDGEMENTS

Space and time were generously provided during the Gibraltar Experiment

by Tom Kinder and Nan Bray on board USNS Lynch. We thank E. Callahan,

C. Measures and H. Yee for help in collecting samples.



Qj NI C Zt Surf Atl Sp Shelf NACW Med

t--

. .
c

(D

0

r
H-

(D

113 36.000 -3.500
114 36.183 -3.483
115 36.333 -3.517
116 36.417 -3.483
119 36.500 -3.500
120 36.583 -3.500
123 36.667 -3.517
171 35.850 -5.317
172 35.867 -5.283
173 35.877 5.245
1 74 35.888 -5.250
175 35.933 -5.217
176 35.967 -5.233
177 36.000 -5.267
178 36.033 -5 267
179 36 067 -5.217
180 36 083 -5.233
181 36 100 -5.267
184 36 183 -5.267
1 85 36 400 -5.017
1 86 36 333 -5.000
187 36.150 -5.017
1 88 36.000 -5.000
1 89 35.967 -5.050
190 35.833 -5.000
191 35.667 -5.000
192 35.483 -5.000
193 35 350 -4.733
194 35 217 -4 483
195 35.333 -4.500
196 35.500 -4.533
197 35.650 -4 450
198 35.817 -4 483
199 35.900 -4.433
200 35.967 -4.467
201 36.083 -4.517
202 36.200 -4.583
203 36.317 -4.517
204 36.500 -4.500
205 36.533 -4.500
206 36.633 -4.217
207 36.667 -3.983
208 36.500 -4.000
209 36.333 -4.000
210 36.167 -4.000
211 36.000 -4.000
212 35.833 -4.000
213 35.667 -4.000
214 35.533 -4.000
215 35.367 -3.983
216 35 367 -3 700
217 35 350 -3 500
218 35 483 -3 500
219 35 687 3 500
220 35 833 3 483

36.565 0.53 0.08
36.570 0.45 0.06
35.959 0.55 0.06
36.606 0.53 0.07
36.794 0.42 0.07
37.179 2.32 0.14
37.962 3.83 0.19
36.409 1.17 0.09
36.354 1.09 0.08
36.356 1.19 0.10
36.363 1.22 0.09
36.299 1.22 0.12
36.218 1.09 0.12
36.193 1.27 0.12
36.063 1.41 0.20
36.400 2.11 0.19
36.693 2 41 0.22
36.284 3.18 0.22
37.742 3.20 0.17
38.066 3.45 0.17
37.881 2.33 0.12
37.475 1.39 0.07
37.219 2.23 0.21
36.262 1.04 0.10
36.391 1.46 0.12
36.454 1.60 0.19
36.426 1.36 0.13
36.395 1.18 0.16
36.361 1.50 0.10
36.364 0.78 0.09
36.367 0.75 0.08
36.370 1.28 0.10
36.325 1.04 0.10
36.762 1.71 0.12
37.057 2.62 0.28
36.950 2.41 0.22
36.873 0.59 0.19
36.858 0.43 0.06
36.797 0.72 0.06
36.882 0.80 0.12
36.773 0.67 0.04
36.913 1.02 0.06
36.697 0.83 0.04
36.648 0.70 0.04
38.688 0.53 0.03
36.712 0.51 0.04
36.542 1.23 0.08
36.604 2.06 0.17
36.368 1.63 0.09
36.395 1.71 0.09
36.433 1 58 0.10
36 513 2 19 0 13
36 518 1 71 0 12
36 914 0 64 0 07
36 772 1 55 0 12

2.8 0.052 2.9
2.6 0.047 1.5
2.5 0.045 1.5
2.6 0.050 2.4
2.6 0.057 2.9
2.9 0.069 3.3
3.9 0.087 4.4
2.9 0.066 4.0
3.1 0.117 4.6
2.6 0.052 4.2
2.7 0.053 3.8
2.5 0.040 1.8
2.5 0.042 1.6
2.6 0.053 2.4
2.8 0.144 12.7
3.2 0.100 8.5
3.5 0.106 7.0
3.7 0.110 7.6
4.0 0.097 7.1
4.4 0.079 5.2
3.9 0.068 4.7
3.3 0.077 4.9
3.2 0.104 7.9
2.6 0.054 2.3
2.7 0.050 2.1
3.2 0.064 5.5
2.9 0.071 4.0
3.0 0.068 4.0
2.6 0.060 4.5
2.4 0.074 8.1
2.7 0.033 5.0
2.6 0.095 5.0
2.8 0.039 2.0
3.1 0.065 4.3
3.1 0.079 5.5
3.5 0.043 5.2
3.2 0.052 3.4
3.0 0.057 3.0
2.7 0.068 4.0
2.9 0.063 3.5
2.9 0.065 3.7
3.2 0.073 4.4
2.8 0.080 3.0
2.7 0.080 3.6
2.6 0.061 3.4-
2.9 0.077 3.3
2.8 0.072 4.0
3.0 0.088 6.2
2.2 0.041 2.2
2.0 0.040 2.0
2.7 0.063 3.6
2.8 0.078 4.2
2 8 0.063 4.0
2 9 0 088 3.9
28 0 070 4.0

0.75
0.77
0.79
0.77
0.68
0.48
0.09
0.66
0.25
0.80
0.80
0.90
0.89
0.81
0.26
0.44
0.26
0.37
0.07
0.09
0.24
0.34
0.24
0.79
0.78
0.63
0.61
0.64
0.76
0.68
0.83
0.47
0.86
0.58
0.44
0.57
0.63
0.63
0.60
0.59
0.60
0.49
0.65
0.69
0.68
0.51
0.60
0.47
0.00
0.00
0.70
0.56
0 68
0 38
0.58

0.11
0.00
0.02
0.06
0.06
0.03
0.04
0.13
0.19
0.14
0.14
0.03
0.03
0.07
0.55
0.38
0.23
0.30
0.14
0.06
0.03
0.08
0.27
0.06
0.04
0.13
0.10
0.14
0.15
0.26
0.12
0.15
0.03
0.13
0.14
0.10
0.08
0.07
0.11
0.08
0.10
0.13
0.07
0.10
0.09
0.09
0.13
0.22
0.00
0.00
0.14
0.14
0.12
0 08
0.13

0.00
0.08
0.19
0.02
0.03
0.07
0.08
0.11
0.40
0.00
0.01
0.04
0.08
0.12
0.19
0.05
0.23
0.23
0.08
0 00
0.00
0.03
0.03
0.12
0.10
0.10
0.17
0.12
0.03
0.00
0.00
0.26
0.05
0.04
0.05
0.00
0.00
0.03
0.04
0.04
0.05
0.06
0.06
0.04
0.04
0.16
0.11
0.11
0.00
0.00
0.06
0.15
0.06
0.20
0.04

0.14
0.15
0.00
0.15
0.23
0.42
0.79
0.10
0.16
0.05
0.06
0.02
0.00
0.00
0.01
0.12
0.28
0.10
0.71
0.84
0.73
0.55
0.46
0.03
0.08
0.14
0.12
0.11
0.06
0.06
0.05
0.11
0.05
0.25
0.38
0.33
0.29
0.28
0.25
0.29
0.25
0.32
0.21
0.18
0.19
0.24
0.16
0.20
0.00
0 00
0.10
0.16
0.14
0.34
0.24

Station Latitude Longitude Salinity SI P04 Residual.Sq

1.86
0.00
5.66
0.17
1.02
2.31
1.62
0.34
2.14
0.45
0.62
0.27
0.34
0.37
2.18

0.33
0.80 no NI (3.4)
1.07
0.30
0.36
1.54
2.20 ni Cu(5.9)
0.21
0.28
7.14
1.34
0.79
0.27
8.06
6.27
2.28
1.97
0.27
1.32
5.96 no ?
0.88
0.22
0.90
0.35
0.15
0.21
0.19
0.21
0.62
0.75
0.08
0.02

0.73
0.10
0.11
1.72
0.90



Station Latitude Longitude Salinity Si P04

m0,
()

D3 0

0o

o v

cn r

Spm00CEn

'-1rL OIaCD0

D)D(D (n

0.
EnCDt-. 0

(nrt
H.

:3

(D

(D

En

39 35.848 -4.738
40 35.882 -4.713
41 35.883 -4.755
43 35.883 -4.868
44 35.885 -4.962
45 35.922 -4.997
46 35.925 -5.053
47 35.928 -5.137
48 35 935 -5.217
65 35.987 -5.410
67 36 013 -5.337
69 36 015 -5.247
72 36 055 -5.167
74 36.057 -5.280
75 36.083 -5.302
77 36.077 -5.192
78 36.072 -5.127
79 36.067 -5.057
80 36.067 -5.003
81 36.093 -5 993
82 36.110 -5.077
83 36.108 -5.140
84 36.110 -5.198
85 36.113 -5.265
86 36.080 -5.330
87 36.053 -5.370
88 36.032 -5.433
89 36.015 -5.482

108 35.917 -4.767
109 35.950 -4.785
110 35.963 -4.792
111 35.995 -4.812
112 36.025 -4.830
113 36.055 -4.848
114 36.090 -4.868
115 36.122 -4.883
116 36.158 -4.917
117 36.188 -4.915
118 36.227 -4.925
119 36.258 -4.942
120 36.253 -4.988

36.438 0.03 1.54
36.447 0.03 1.40
36.422 0.04 1.41
36.382 0.02 1.30
36498 0.05 1.40
36.399 0.05 1.95
36.328 0.09 3.48
36.357 0.12 3.69
36.368 0.12 3.26
36 329 0.05 2 34
36318 0.14 4 60
36.284 0.20 4.73
36.288 0.15 4.59
36.436 0.06 2.52
36.437 0.08 2.75
36.420 0.05 2.82
36.471 0.04 2.00
36.489 0.02 1.72
36.479 0.02 1.68
36.481 0.02 1.80
36.470 0.03 1.54
36.481 0.03 1.93
36.484 0.01 2.10
36.455 0.06 2.29
36 446 0.05 2 66
36.520 0.06 2.51
36.288 0.22 4.82
36.290 0.13 4.30
36.356 0.03 1.77
36.366 0.03 1.59
36.385 0.03 1.58
36.368 0.03 1.72
36.375 0.03 1.72
36.374 0.04 1.69
36.387 0.02 1.67
36.359 0.03 1.59
36.507 0.02 1.70
36.506 0.03 2.00
36.506 0.03 1.96
36.523 0.02 2.08
36.568 0.02 1.75

Surf Arl Sp Shelf NACW MedOu NI mO

2.6 0.1 1.870 0.8
2.6 0.0 1.500 0.9
2.6 0.0 1.610 0.9
2.6 0.0 1.690 0.9
3.1 0.0 2.280 0.9
2.7 0.1 3.380 0.9
2.7 0.1 7.820 0.7
2.7 0.1 8310 0.7
2.5 0.1 7.110 0.7
2.5 0 1 5.160 0.8
2.9 0.1 9 460 0.5
2.7 0.1 12 450 0.5
3.1 0 1 10.520 0.5
3.2 0.1 4.170 0.8
3.1 0.1 4.570 0.8
3.6 0.1 4.620 0.8
2.9 0.0 2.240 0.9
3.0 0.0 2.190 0.9
2.9 0.1 2.970 0.9
2.8 0.1 3.220 0.9
2.5 0.1 2.680 0.9
3.0 0.0 2.390 0.9
3.1 0.1 2.810 0.9
3.7 0.1 3.400 0.8
3.6 0.1 4.150 0.8
3.5 0.1 4.030 0.8
2.8 0.1 10.750 0.5
2.8 0.1 8.030 0.5
2.8 0.1 2.360 0.9
2.6 0.0 1.860 0.9
2.8 0.0 1.500 0.9
3.0 0.1 1.230 0.8
2.8 0.1 1.340 0.9
2.9 0.0 1.210 0.9
2.8 0.0 0.930 0.9
2.4 0.0 1.490 0.9
3.1 0.1 1.870 0.8
4.0 0.1 2.100 0.8
3.9 0.1 1.590 0.7
3.8 0.1 1.700 0.7
3.0 0.1 1.670 0.6

0.06
0.04
0.05
0.03
0.06
0.13
0.32
0.35
0.28
0.18
0.43
0.53
0.48
0.17
0.20
0.21
0.09
0.08
0.10
0.11
0.08
0.08
0.12
0.16
0.20
0.17
0.50
0.35
0.08
0.06
0.05
0.06
0.06
0.05
0.04
0.05
0.07
0.09
0.07
0.09
0.05

0.11
0.04
0.05
0.07
0.04
0.01
0.00
0.00
0.00
0.00
0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00

10.00
0.05
0.06
0.07
0.13
0.08
0.07
0.06
0.06
0.08
0.10
0.13
0.10
0.21

0.03
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0 00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.01
0.01
0.01
0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.05
0.06
0.07
0.07
0.13

0.13
0.11
0.13
0.35
0.05
0.29
2.34
2.50
2.54
2.53
0.00
1.87
0.68
1.81
1.55
1.68
1.83
0.35
0.02
0.01
0.05
1.95
0.75
0.67
1.19
0.95
1.60
0.00
1.00
0.82
0.88
1.37
1.44
1.64
1.96
1.26
0.52
1.42
2.20
2.74
1.08

Redidual.Sq

0.38
0.92
0.81
0.99
3.92
1.07
2.46
2.62
?.59
2.58
3.57!699158e-4457
2.06
1.37
6.81
5.30

11.60
4.83
4.07
1.60
1.17
0.29
5.57
4.20

10.56
10.02
8.56
1.60
3.92
2.64
1.44
2.43
3.95
3.03
3.84
3.64
1.32
2.93

14.17
12.70
12.77

1.25



Station Latitude Longitude Salinity SI P04

1 35.910 -5.050 36.400 0.55 0.00
2 36.012 -5.078. 36.400 0.91 0.01
3 36.055 -5.098 36.370 1.74 0.13
4 36.100 -5.160 36.290 3.26 0.15
5 36.150 -5.187 36.880 2.05 0.00
6 36.200 -5.217 37.000 0.49 0.01
7 36.080 -5.153 36.890 1.67 0.08
8 36.117 -4.792 36.280 1.51 0.21

10 36.180 -4.665 36430 0.22 006
1 1 36.078 -4.660 36.370 1.34
12 36.052 -4.607 36.400 1.34 0.12
13 36 012 -4.607 36.390 0.64 0.18
14 35 962 -4 602 36.430 0.18 0 10
15 35 920 -4.597 36 430 0.25 0.02
16 35 858 -4.597 36.410 0.25 0.04
17 36 205 -4 673 36.350 1 26 0 14
18 36 262 -4 680 36.670 3.07 0.26
19 36.327 -4.703 36.740 2.51 0.25
20 36 345 -4.723 37.030 1.64 0.27
21 36 400 -4.752 37.130 005 0.12
22 36 463 -4.762 37340 0.13 0.10
23 36.683 -4 280 37.410 0.77 0.06
24 36 630 -4 292 37.180 1.21 0.06
25 36 578 -4.297 37 160 0.02 0.04
26 36.528 -4 303 36 980 0.05 0.05
27 36.453 -4.312 37.250 0.04 0.06
28 36.408 -4.270 37.170 0.04 0.06
29 36.373 -4.258 36.600 1.70 0.09
30 36.335 -4.253 36 350 0.85 0.09
31 36.265 -4.253 36.420 0.15 0.02
32 36.213 -4.242 36.410 0.17 0.03
33 36.133 -4.153 36.440 0.33 0.01
34 36.053 -4.128 36.450 0.20 0.08
35 35.870 -4.150 36.430 0.24 0.06
36 35.878 -4.040 36.430 0.25 0.02
37 35.845 -3.888 36.430 0.23 0.00
38 35.858 -3.835 36.410 0.29 0.01
39 35.900 -3.662 36.420 0.06
40 35.903 -3.520 36.850 0.01
41 35.897 -3.392 36.500 0.02
42 35.920 -3.257 36.510 0.02
43 35.922 -3.115 36.500 0.02

Qa

1.8
2.3
3.6
2.9
2.2
2.0
3.1
2.2
2.1
3.8
2.4
22
16
1.8
1 5
2.1
1.9
2.5
2.6
1.8
2.0
2.2
1.8
2.0
1.8
2.1
1.9
2.4
2.5
1.8
1.9
1.7
2.1
1.6
1.5
1.6
1.6
1.6
1.9
1.9
1.8

NI OI Zh

2.6 0.051 2.4
2.7 0.067 4.2
3.1 0.125 8.8
4.0 0.108 7.1
3.4 0.077 7.3
4.2 0.081 9.0
3.4 0.112 7.7
2.8 0.084 4.4
2.7 0.056 2.9
3.1 0.155 9.4
3.0 0.087 5.1
2 6 0.065 4.5
2.6 0.048 3.1
2 6 0.039 2.4
2 4 0.041 2.0
2.7 0.084 4.6
2 9 0.093 4.6
3.3 0.127 6.9
3.2 0.119 6.8
3.8 0.103 2.6
4.0 0.083 2.9
4.1 0.097 3.1
3.6 0.059 1.9
3.9 0.064 2.4
3.4 0.063 1.8
4.2 0.077 3.1
3.8 0.069 3.9
3.0 0.100 5.8
2.7 0.117 5.0
2.6 0.048 2.3
2.7 0.057 3.0
2.6 0.040 1.8
2.7 0.043 2.6
2.6 0.040 2.1
2.5 0.048 2.0
2.6 0.043 2.2
2.5 0.047 2.2
2.5 0.067 2.6
3.1 0.067 3.3
4.3 0.053 2.7
2.7 0.048 2.7

1.9 2.9 0.055 3.2

Surf Atl Sp Shelf NACW Med

(D
En

O r

0W (D

Fo(D o

CCI)
CDino

(n

0.85
0.76
0.34
0.48
0.47
0.37
0.27
0.61
0.81
0.11
0.57
0.78
0.87
0 91
0.91
0.61
0.44
0.16
0.18
0.10
0.22
0.08
0.48
0.42
0.51
0.26
0.41
0.42
0.36
0.87
0.79
0.92
0.87
0.92
0.86
0.89
0.88
0.72
0.58
0.56
0.85

0.10
0.19
0.40
0.31
0.15
0.23
0.29
0.18
0.13
0.42
0.21
0.20
0.11
0.09
0.07
0.17
0.13
0.22
0.22
0.00
0.02
0.03
0.01
0.03
0.01
0.04
0.07
0.21
0.20
0.10
0.12
0.07
0.11
0.08
0.07
0.07
0.08
0.09
0.09
0.06
0.10

0.05
0.04
0.16
0.17
0.09
0.02
0.11
0.19
0.04
0.32
0.15
0.02
0.01
0.00
0.02
017
0.22
0.32
0.21
0.40
0.22
0.29
0.11
0.14
0.15
0.20
0.10
0.19
0.34
0.03
0.07
0.00
0.00
0.00
0.06
0.03
0.04
0.15
0.09
0.21
0.01

0.77 0.11 0.05 0.07

0.00
0.02
0.10
0.04
0.28
0.37
0.32
0.02
0.02
0.15
0.07
0.01
0.01
0.00
0.00
0.04
0.20
0.30
0.39
0.49
0.54
0.60
0.41
0.42
0.32
0.50
0.42
0.18
0.10
0.00
0.02
0.00
0.02
0.00
0.01
0.01
0.00
0.04
0.24
0.17
0.04

Residual.Sq

0.89
1.05
0.82
0.10 no Ni(8.7)
1.00 no Zn(3.2)

14.83 no ?
0.26
0.43
1.84
1.74
0.58
0.49
0.63
1.84
0.46
0.00
0.61
0.87
1.88
0.51
2.07
2.34
3.06
4.52
2.49
4.76
1.78
0.04
1.80
1.22
0.97
1.87
3.80
1.12
0.40
1.26
0.57
0.13
0.57

24.35
1.05
1.75



156

Table 5.4 End-member composition for April, June and October.

Surface Shelf
Atlantic Apr.86

36.3

1.0

2.2

30

0.8

36.0

6.1

3.4

190

21

Shelf Shelf
June'82 Oct.'86

36.0

6.7

3.4

211

21

36.1

8.0

3.4

260

21

NACW Mediter. Error

35.7

1.3

3.3

150

1.5

38.45

1.9

4.6

77

4.8

.33 nM

.33 nM

10 pM

1 inM

Salinity
0.1 0/o

Cu

Ni

Cd

Zn
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Three questions were posed at the onset of this work:

(1) What portion of Cu, Ni, Cd and Zn enrichments observed in the

Mediterranean Sea originates in the Atlantic ?

(2) Are metal enrichment patterns in the surface Alboran Sea

systematically related to contributing Atlantic and Mediterranean

water masses ?

(3) Do anthropogenic metal inputs influence trace metal concentrations

in the Mediterranean ?

As shown in the preceding chapters, the answer to the second question is

affirmative since the composition of surface Alboran Sea water is

consistent with conservative mixing of the four end-members contributing

to the region. While the results do not provide definitive answers to

questions (1) and (3), certain constraints can be placed on the nature

of Cu, Ni, Cd and Zn fluxes to the Mediterranean. As was mentioned in

Chapter 1, one of the ideas behind studying the Mediterranean is that

the two-layered circulation pattern through the Strait of Gibraltar

integrates the net effect of metal input and removal over the residence

of water time within the basin (on the order of a century). Potential

sources of metals (natural or anthropogenic) are rivers, rain and

aerosols, and sediment diagenesis. A sink which could offset these

inputs to the water column is scavenging of metals dissolved in the

water column onto sinking particles.
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The budget approach for determining metal fluxes to the Mediterranean

basin, i.e. the comparison of fluxes through the Strait of Gibraltar,

has recently been applied to another element: Al. Measures and Edmond

(1988) found inflow/outflow concentrations of 16 and 86 nM,

respectively, indicative of a strong source within the basin. When

compared with the total dust input to the basin (24.109 kg/year, mainly

from the Sahara desert) and taking into account that dust contains 10%

by weight Al, the exchange through the Strait can be supported by as

little as 5% dissolution of Al from dust input to the Mediterranean.

The situation is simplified for this particular element because

anthropogenic or riverine inputs are negligible. One limitation to this

comparison is that it is not clear whether Al scavenging from the water

column could be significant over the residence time of water in the

basin. On the other hand, a 5% dissolution fraction was in fact

observed directly with sea water suspensions of aerosols collected over

the central Pacific by Maring and Duce (1987). The setting for these

calculations is most favorable in the case of Al due to (1) relatively

low concentrations in the inflow and (2) the very high fraction of Al in

airborne dust.

The situation is not as clear-cut for Cu, Ni, Cd and Zn as it is for Al.

First of all, the apparent difference between inflow and outflow trace

metal concentrations initially calculated by Spivack et al. (1983) only

holds for Ni after the Atlantic inflow composition is corrected for

entrainment of metal enriched Spanish shelf water and NACW (Table 6.1).

If Cu, Cd and Zn input and removal fluxes within the basin are
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significant, they must be roughly in balance. For comparison, input

fluxes from rivers and aerosol dissolution are estimated in the

following way:

(1) River concentrations of two essentially pristine rivers (Amazon and

Orinoco) and two rivers draining industrially developed regions

(Mississippi and Guadalquivir) are listed (Table 6.2).

Interestingly, the effect of anthropogenic activity appears minimal,

except perhaps in the case of Ni which is enriched in both the

Mississippi and the Guadalquivir. The integrated effect of riverine

input (500 km3/year, Sarmiento and Toggweiler, 1988) on water column

Cu, Ni, Cd and Zn concentrations is estimated on the basis of the

highest river concentration for each element listed in Table 6.2.

To account for Cd desorption, the Mississippi river concentration is

increased by a factor of ten. Riverine input is integrated over the

volume of the basin (3.8 106 km3, Sverdrup et al., 1942) taking into

account the 170 year residence time of water relative to the

Atlantic inflow (22,000 km3/year, from Sarmiento and Toggweiler

(1988) based on data from Bryden and Pillsbury, 1988)). Table 6.1

expresses the impact of riverine dissolved metal input in terms of

an estimated change in water column concentrations between inflow

and outflow through the Strait of Gibraltar due to this source. The

net effect of input from the Black Sea (200 km3/year) corrected for

the deep Mediterranean outflow through the Bosphorus (100 km3/year)

is neglible.



164

(2) The effect of atmospheric input on Cu, Ni, Cd and Zn concentrations

is normalized with respect to the observed Al increase of 70 nM in

the water column. The main difficulty lies in determining

concentrations of other soluble metals in dust relative to Al.

Enrichment factors (EF) relative to crustal metal/Al ratios of Cu,

Ni, Cd and Zn determined for aerosols over the remote Pacific ocean

(Arimoto et al., 1985) are listed in Table 6.2. While enrichment

factors over the North Atlantic and the Mediterranean higher by a

factor of 10 have been reported for Cd and Zn (Buat-Menard et al.,

1979 and Arnold et al., 1985), such differences will only reinforce

the argument that follows. The impact of dust input to the

Mediterranean with respect to water column concentrations is

calculated for two scenarios: Estimate (1) assumes an aerosol

composition reflecting crustal metal/Al ratios (EF-1) and 100%

dissolution of Cu, Ni, Cd and Zn, Estimate (2) assumes dust input

according to enrichment factors listed in Table 6.2 and again total

dissolution of metals other than Al.

Distributions of Cu, Ni, Cd and Zn concentrations in Mediterranean

surface waters from the Strait of Gibraltar to Greece (Fig. 6.1 from

Spivack et al., 1983 and Sherrell and Boyle, 1988) can now be compared

to the relative strengths of the three metal sources which have been

estimated: (1) the Atlantic inflow, (2) rivers, and (3) atmospheric

input (highly uncertain). From the eastern Alboran Sea to the center

of the Western Mediterranean basin, Cu, Ni, Cd and Zn concentrations

remain essentially constant (with some scatter) at the level of the

average composition of the inflow. Apparently, the influence of Spanish
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Table 6.1 Metal balance through the Strait and internal source estimates
AC: change in concentration in basin over residence time of
water

C AC . ACatl.in rivers aerosol
crustal

Cu nM 2.6 +.3

Ni nM 2.6 +.3

Cd nM .092 +.01

Zn nM 6.2 +1

+ .5

+ 1.4

+.027

+ .7

+ .9

+ 1.3

+.003

+ 1.1

'ae sol

+ 4.8

+ 3.9

+.700

+24.0

med.out

1.9 +.2

4.6 +.2

.077 +.005

4.8 +.5

------ INFLOW----I----------INPUTS----------- I ----- OUTFLOW-----

Inflow and outflow concentration uncertainties based on spatial and
temporal variability.

AC rivers assumes: river input of 500 km3/year and inflow of
22,000 km3/year, highest river concentration chosen for each element
from Table 1, desorption estimated to cause ten-fold increase in Cd
river concentration, AC - (C river.Qriver) / Qinflow

AC aerosols normalized to 70 nM Al, corresponding to 5 % dissolution of
aerosol, 100 % dissolution for Cu, Ni, Cd and Zn with crustal ratios
(EF-1, crustal concentrations listed in Table 6.2))

AC aerosols assuming enrichment factors listed in Table 6.2 and total
dissolution, (EF from Table 6.2)
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Table 6.2 River and aerosol input characterization

Amazon Orinoco Mississippi Guadalquivir Black Seal Crustal ppm

Cu nM

Ni nM

Cd nM

Zn nM

24

5

.060

4

19

38

.030

2

23

23

.120

3

16

64

.100

33

2

10

.070

3

5

3

200

20

River data other than Guadalquivir (this work), Shiller and Boyle (1987)
Black Sea surface water, W. Landing (pers. comm.)
Crustal metal concentrations, Taylor (1964)
Enrichment factors from Arimoto et al., 1985
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shelf water extends over at least 2000 km from the Strait of Gibraltar

at the time this survey was made (September '80). Further east, an

increase in surface water concentrations (about 1 nM for Cu, Ni and Zn,

20 pM for Cd) is comparable to the predicted effect of river input or

aerosol input at crustal metal/Al ratios. There is a limit to this

comparison since atmospheric and riverine inputs affect mainly surface

waters at first; gradients in surface water metal concentrations

amplify the impact of these sources. For this reason, it is clear that

aerosol input according to the reported open ocean (Pacific) enrichment

factors (and a fortiori Mediterranean EF) would be considerably greater

than the east-west change observed in surface waters: higher by factors

of at least 5, 4, 35 and 20 for Cu, Ni, Cd and Zn, respectively.

There may be two explanations for the difference between the observed

and predicted magnitude in concentration changes in surface water due to

aerosol input. One possibility is that Cu, Ni, Cd and Zn removal from

surface water is sufficient to compensate for a strong atmospheric

source. However, this is unlikely given the low productivity in surface

waters of the basin. Little vertical metal redistribution by plankton

uptake from surface water (followed by regeneration at depth) is also

indicated by the similarity between surface and deep water metal

concentration. A more likely explanation is that aerosols with EF>>1 do

not reflect the composition of the dominating dust input to this

region. Indeed, during the 3 to 4 major Saharan dust storms each year,

atmospheric Al concentrations in the air increase by more than two

orders of magnitude (Dulac et al., 1987). According to measurements
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from Bermuda by Duce et al. (1976) , Cu, Ni, Cd and Zn levels in

aerosols approach crustal ratios relative to Al during these events. In

addition, Maring and Duce (1989) found that only a small fraction of the

aluminosilicate Cu fraction in aerosols dissolves in seawater. A

combination of these factors could explain why metal/Al ratios measured

in aerosols off Corsica do not seem representative of the flux weighted

composition input to the Mediterranean.

Summarizing the answer to the first question, surface concentrations of

Cu, Ni, Cd and Zn in the Western Mediterranean reflect mainly the

composition of the Atlantic inflow. Further east, metal concentrations

increase due to a combination of atmospheric and riverine input. Unless

trace metal scavenging from Mediterranean surface waters is significant,

aerosols enriched relative to the crust in Cu, Ni, Cd and Zn do not seem

to dominate the dust input to the basin. With regard to the final

question concerning the effect of anthropogenic inputs, Cu and Cd do not

appear significantly enriched in rivers draining industrialized regions.

While Zn may be enriched in certain polluted rivers (Shiller and Boyle,

1987 and Chapter 3), the effect on the Mediterranean as a whole relative

to enrichment by Spanish shelf water entrained with the inflow is

limited (Table 6.1). In the case of Ni, on the other hand, riverine

input (perhaps raised by anthropogenic inputs) seems to be the main

cause for elevated Mediterranean outflow concentrations relative to the

Atlantic inflow.
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In this BASIC program written for the Tektronix 4052, the
(overdetermined) system of linear equations A.f - d, is solved by
weighted least-squares, subject to the constraint that elements of the
solution f must be positive. Construction of the model matrix and the
data vector is discussed in manuscript b. Convergence of the algorithm
is assured by the Kuhn-Tucker theorem discussed by Lawson and Hanson in
Solving least square problems, Prentice-Hall, Englewood Cliffs, NJ
(1974).

Step 1. Initialization and data input.

Data for a total of r samples is read into (r, 11) matrix U1 in the
order: sample #, latitude, longitude, salinity, Si, P04, Cu, Ni, Cd, Zn,
free.

After the number of tracers used in the inversion D1 is entered (and
subsequently incremented to D1+1 to account for extra constraint on sum
of fractions), a number of matrices are declared:
A5(8,4) contains the composition of the four end-members for all tracers
U7(Dl) contains ID# for each tracer retained for inversion
A(Dl,4) is the reduced model matrix reflecting tracer choice
U8(8) contains weights for all tracers (inverse of standard error)
U2(Dl,D1) is the diagonal matrix containing weights of the retained
tracers.
Multiplied by U2, the reduced model matrix A is modified to the weighted
model matrix of the same name.

Starting the loop (U3) marking each sample, zero values for any of the
retained tracers are checked. Vector B9(D1) is loaded with the
composition of the sample plus one extra element equal to one, and
multiplied by U2 to obtain the weighted data vector B(Dl). Both model
matrix and data vector are now in the same units and have matching
dimensions. The initial guess for the model parameter is set to
X-(0,0,0,0). The end-members are separated in two groups: (1) those
satifying the inequality constraint (X.>0) and (2) end-members
satisfying X.=0. The index vector Il() indicates whether if each model
paramater is free (11-1) or restricted to 0 (11-0). Initially
X=(0,0,0,0), hence Il-(0,0,0,0).

Step. 2 Test on gradient vector

From the previous solution X, the gradient vector (also called dual of
the problem) W- At(d-A.X) is calculated to determine the change in total
error when varying either of the model parameters. The highest positive
element of W indicates which element of X to include next in the
regression set in order to cause the largest decrease in total error.
If at this stage there is no end-member left with 11=0, or if W.<0 for
any end-member with I1-0, then the solution has been found and ihe
program exits to the next sample. At the solution, the gradient vector
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W is zero for end-members with 1-1, indicating a minimum in the total
error. The solution does not correspond to the absolute minimum error
(Wi<0) when a boundary is reached, i.e. when Il(i)and Xi equal zero.

If, on the other hand, one of the elements of W is positive and 11-0 for
that element, then this parameter is set free by changing Il to 1 and
included in the regression.

Step 3. Least squares solution

A new model matrix is calculated containing all the retained tracers and
all model parameters with I1-l. The least square solution is:
Y - (A2t.A2)-1.A2t.B The matrix inverse is calculated by a supplied
subroutine based in Gauss-Jordan triangularization.

Step 4. Test for negative model parameters and readjustment

If all model parameters are positive, the program returns to Step 2 in
order to determine the new gradient vector.
If, on the other hand, any of the model parameters has become negative,
the inequality condition is infringed. The index of the model parameter
whith smallest X(i)/(X(i)-Z(i)) is reset to 11-0. The program then
returns to Step 3 where the least-square solution is calculated for the
reduced set of end-members.

This version of the program allows a maximum of four end-members and 7
tracers. In practice, 5 or less tracers (Salinity, Cu, Ni, Cd and Zn)
are used. If desired, the additional tracer options can be used to
eliminate one or more of the end-members. This is simply done by
setting the composition of that end-member for a fictitious tracer to,
for instance, 1000 (zero for other end-members), and the corresponding
sample composition to 1 (on data entry into Ul). Since for any
end-member composition, the residual to this contraint (1000. X(i) - 1)
will be very large, the solution is forced to eliminate the
corresponding end-member.
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90 REM TM INVERSION 6-88
100 INIT
110 REI LOADING OF DATA MATRIX
120 PRINT "BINARY INPUT FILE 0 ?"
130 INPUT F
140 FIND F
150 READ @33:R,C
160 DIM UI(R. 11)
170 FOR M-1 TO R
180 FOR N-1 TO C
190 READ @33:Ul(M,N)
200 NEXT N
210 Ul(M.11)-0
220 NEXT N
230 REM SETS * TRACERS, INITIALIZES OUTPUT FILE
240 PRINT ** OF TRACERS"
250 INPUT D1
260 D1.-+D1
270 DIM X(4),W(4),I1(4),Z(4),E(1.1)
280 DIM A(DI,4).B(D1),E(1.,D1),S9(D1,4)
290 DIN P3(4,4),Y(1).U7(DI),US(S)
300 DIM AL(4,Dl).BBl(D.l),Pl(DI,1),A2(D1,4).A4(4,D1),PS(4,DI)
310 DIM U2(DI.,D),B9(D1).B8(D),.7(D,1),US(R,11),AS(8,4)
320 FOR I-1 TO R
330 FOR 1-1 TO 11
340 US(,J)-O
350 NEXT J
360 NEXT I
370 REM LOADS MODEL MATRIX
380 READ AS
390 DATA 36.5,36.1,35.7.38.45
400 DATA 0,0,0,0
410 DATA 0.0.0.0
420 DATA 1,8,1.3,1.9
430 DATA 2.2.3.4.3.3.4.6
440 DATA 0 03.0.26,0.15,0.077
450 DATA 0 8.21,1.5.4.8
460 DATA 1.1.1.1
.*70 REM SELECTS TRACERS. UP TO 7
-80 FOR I-1 TO D1-1
90 PRINT "TRACER ID s'

500 INPUT U7(I)
510 NEXT I
520 U7(D1)-8
530 REM REDUCES MODEL MATRIX TO CHOSEN TRACERS
5.0 FOR I-1 TO DL-L
550 FOR J-1 TO 4
560 A(I.J)-AS(U7(I).J)
570 A(D1.J)-L
580 NEXT J
590 NEXT I
600 REM LOADS WEIGHTS FOR ALL TRACERS
610 READ US
620 DATA 10.0 02.0 2.3 3. 00.1.1000
630 REM LISTS MODEL MATRIX ND WEICHTS FOR CHECKING
6-0 PRINT A
650 PRINT US
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660 PRINT WANT TO CHANGE END-MEMBERS OR ERRORS ?
670 PRINT * IF NOT RUN 690"
680 END
690 REM SETS UP DIAGONAL WEIGHT MATRIX
700 FOR I-I1 TO D1
710 FOR J-1 TO Dl
720 U2(I,J)-O
730 IF IoJ THEN 750
740 U2(I,J)-U8(U7(I))
750 NEXT J
760 NEXT I
770 REM TRANSFORMATION TO WEIGHTED MODEL MATRIX
780 S9-U2 MPY A
790 A-S9
800 REM START OF INDIVIDUAL SAMPLE LOOP
810 FOR U3-1 TO R
820 REM CHEKS FOR NULL DATA
830 IF Ul(U3,4)-O THEN 2040
840 IF Ul(U3,7)-O THEN 2040
850 IF Ul(U3.8)-O THEN 2040
860 IF Ul(U3,9)-O THEN 2040
870 IF Ul(U3,10)-O THEN 2040
880 REM LOADS DATA FOR CHOSEN TRACERS
890 FOR LI- TO D1-1
900 59(Ll)-UI(U3.3+U7(L1))
910 NEXT Ll
920 B9(D1)-l
930 REM CONVERSION TO WEIGHTED SAMPLE DATA
940 B-U2 MPY 89
950 REM SETS INITIAL SOLUTION AND INDICES 11 TO ZERO
960 FOR N8-1 TO 4
970 DIM I1(4).X(4),Z(4)
980 Il(N8)-O
990 X(N8)-O
1000 Z(N8)-O
1010 NEXT NS
1020 REM CALCUtATES ERROR GRADIENT OF CURRENT SOLUTION
1030 PL-A MPY X
L040 PI-8-PI
1050 Al-TRN(A)
1060 EL-TRN(PI)
1070 E8-E1 MPY Pl
1080 v-Al MPY P1
1090 REM SELECTS LARGEST POSITIVE GRADIENT FOR 11-0
1100 W9-0
1110 19-0
1120 FOR I-1 TO 4
1130 IF 11(I)-l THEN 1170
1140 IF W(I)<-W9 THEN 1170
1150 W9-W(I)
1160 19-1
1170 NEXT I
1130 REM SOLUTION IF EITHER ';<0 FOR ALL 11-0 OR NO 11-0 IS LEFT
19O IF 49<-O THEN 1380
1200 REM ADDS END ME.MBER JITH HIGHEST GRADIENT AND SETS 11-1

1210 11(19)-
1220 81-B

2130 REM COUNTS a OF END MLEBERS 'ITH 11-1

: .0 N-0
'250 FOR 1-1 TO
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1260 IF I1(I)-0 THEN 1400
1270 N-N+I
1280 KEN RESETS MATRICES FOR MODIFIED II LIST

1290 DELETE PS,Y,P3,A4,A2.P6,P7
1300 DIN A2 (D.1N).A4(N,D1),P3(N,N),Y(N).PS(N,D1),P6(N,N),P7(N,N)
1310 M-0
1320 FOR K-1 TO I
1330 IF Il(K)-0 THEN 1390
1340 M-N+1
1350 FOR J-I TO D1
1360 REM SKIPS COLUMN IF 11-0
1370 A2(J,M)-A(J.K)
1380 NEXT J
1390 NEXT K
1400 NEXT I
1410 REM FINDS LEAST SQUARE SOLUTION
1420 A4-TRN(A2)
1430 P3-A4 MPY A2
1440 P6-P3
1450 P7-P3 MPY P6
1460 P3-INV(P3)
1470 P7-P3 MFY P6
1480 P5-P3 MPY A4
1490 Y-P5 MFY B
1500 Mi-O
1510 REM SETS Z EQUAL TO SOLUTION UNLESS 11-0, THEN Z-0
1520 FOR J-1 TO 4
1530 IF I1(J)-0 THEN 1570
1540 M1-M4l+
1550 Z(J)-Y(MI)
1560 GO TO 1590
1570 Z(J)-O
L580 GO TO 1590
1590 NEXT J
1600 REM CHECKS FOR NEGATIVE END MEMBER
1610 A9-1
1620 FOR I-1 TO 4

1630 REM EXITS LOOP IF ANY Z<O
1640 IF Z(I)<O THEN 1700
1650 X(I)-Z(I)
1660 NEXT I
1670 REM RETURNS TO CALCULATE NEW GRADIENT IF ALL Z>0
1530 CO TO 1030

1690 REM FINDS NEGATIVE EM WITH SMALLEST A9
1700 FOR I-1 TO 4
1710 IF I1(I)-0 THEN 1770
1720 IF Z(I)>O THEN 1770
1730 A8-X(I)/(X(I) -Z(I))
1740 IF A8>A9 THEN 1770

1750 A9-A8
1760 A9-X(I)/(X(I) -Z())
L770 NEXT I
1'80 REM CALCULATES NEW ESTIMATE FOR X WITH EM<O SET TO 0

L'90 FOR 1-1 TO 4
1300 X(I)-X(I)+A9*(Z(I) -X(I))
1810 IF ABS(X(I))>L OE-3 THEN 1830
'1320 t1(I)-O
.330 'E.XT I
.- O REM RETLRNS FOR NEW LEAST SQUARE SOLUTION
1.30 C0 TO 12>0
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1860 REM FINAL SOLUTION:
1870 REM LOADS OUTPUT MATRIX
1880 US(U3,)-Ul(U3, 1)
1890 U5(U3,2)-X(1)
1900 US(U3,3)-X(2)
1910 U5(U3,4)-X(3)
1920 US(U3,5)-X(4)
1930 U5(U3,6)-E8(l,1)
1940 US(U3,7)-El(1,1)
1950 US(U3.8)-E(1, 2)
1960 U5(U3,9)-E1(1,3)
1970 U5(U3.10)-EI(1,4)
1980 U5(U3, 11)-EI(1,5)
1990 IF E8(1.1)>50 THEN 2040
2000 IMAGE 7(1E )
2010 REM PRINTS OUTPUT, CHANGE FORMAT IF LESS THAN 5 TRACERS
2020 PRINT USING "5D.4(2D.2D).2X.2D.1D, 6(3D.ID)":Ul(U3,1),X,E8,El
2030 REM NEXT SAMPLE
2040 NEXT U3
2050 END
2060 REM VARIANCE AND COVARIANCE MATRIX
2070 DIM R9(6.4).P9(6,6),D9(3,3),AS(4,3),A7(3.4),A6(4,4)
2080 R9-A MPY P3
2090 P9-R9 MPY Al
2100 PRINT "OUTPUT FILE*"
2110 INPUT F
2120 FIND F
2130 WRITE @33 R,11
2140 FOR J8-1 TO R
2150 FOR J9-1 TO 11
2160 WRITE @33.U5(J8.J9)
2170 NEXT J9
2180 NEXT J8
2190 END
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