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“Nati non foste per viver come bruti,
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Abstract

The LHCb experiment will take place at the future LHC accelerator at CERN and

will start in 2007. It is a single arm spectrometer dedicated to precision measure-

ments of CP violation and rare decays in the b quark sector. Recent experimental

results have shown that CP violation is large in this sector.

LHCb is designed with a robust and flexible trigger, in order to extensively

gain access to a wide spread of different physical processes involving the beauty

particles. This will allow to over-constrain the Standard Model predictions about

CP violation, and to discover any possible inconsistency, which would reveal the

presence of “New Physics”.

The work presented in this thesis has two main parts: the development of the

Resistive Plate Chambers, proposed for the detection of muons in LHCb, and the

study of the detector performances in the physical channel ����� �����	� .

The LHCb experiment has finished its R&D at the end of 2002. We have par-

ticipated in the development of a suitable detector for the outer part of the Muon

system. Because of the large surface to cover (more than 200 m 
 ) and the high

time resolution requested for triggering, the Resistive Plate Chambers (RPC) ap-

peared to represent a valid technology, and their industrial implemented produc-

tion would have allowed to reduce the costs. The efforts have then been concen-

trated on the aging effects, to verify that the RPC detectors are able to satisfy the

LHCb requirements for a period of ten years working. The results of a compre-

hensive aging test carried through three years are presented in the first part of the

thesis. As we shall see the detectors have showed important aging effects and have

been abandoned.

The design values of the center-of-mass energy and luminosity at LHC repre-

sent new limits, never reached by hadron colliders. As a result, high production

cross-sections will be attained and high statistics data samples are foreseen to be

collected, for a large variety of processes.

In the second part of the thesis is reported a complete study of the the process
��� � �
��� �����	� , a marginal channel respect to main LHCb physics program.

However it has recently gained interest, since its the theoretical cross-section has

been determined with a good accuracy. New physics results can thus arise from

the comparison of the predicted value and a precise experimental measurement. A
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particular focus has been put on the detection performances of LHCb, and on off-

line and on-line event selections. Three possible physics fields of interest have been

individuated and discussed: the application as an absolute luminosity monitor, the

efficacy in a precise calibration of the LHCb spectrometer, and the study of the

proton structure functions.
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Chapter 1

The LHCb experiment at LHC

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a 27 km circumference high luminosity proton-

proton collider with a center-of-mass energy of � � = 14 TeV.

The change of technology from LEP to LHC is necessary because energies at the

TeV scale cannot be reached by circular � ��� � colliders because of the high energy

loss via synchrotron radiation. A proton collider is thus preferred although the

hadronic background environment renders the experiment more difficult. The 27

km ring of LEP accelerator and its injection scheme can be reused with only minor

civil engineering modifications, which allows CERN to concentrate all efforts on

the instrumentation and the experiments.

The accelerating complex of the SPS is used as injector for the LHC. The proton

beams are accelerated in a linear accelerator (Linac) up to 50 MeV. Then two

circular accelerators boost them to 1 GeV (Booster) and 26 GeV (PS) before they

enter the Super Proton Synchrotron (SPS). There they reach the energy of 450

GeV and enter the LHC via two new tunnels (see Figure 1.1). The final energy of

7 TeV is limited by the magnetic field of 8.34 T in the super-conducting magnets.

Five experiments will make use of LHC. The ATLAS and CMS experiments lo-

cated in new caverns built at IP1 and IP5 are multi-purpose central detectors.

Their main (but not unique) task is to find the Higgs boson, using the full LHC

potential by running at the very high design luminosity � ���	��

� cm � 
 s ��� . The

ALICE experiment at IP2 will study the quark-gluon plasma in dedicated runs for

heavy ions (Pb-Pb, Ca-Ca) collisions. TOTEM is a very small detector studying

very forward QCD processes at IP5. It will measure the total cross-section at LHC,

which is very important for the other experiments, for instance to measure abso-

lute luminosity. Finally the LHCb experiment at IP8 is dedicated to b-quark physics

and will be described in detail in Section 1.2.
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Figure 1.1: The LHC complex.

1.1.1 pp interactions

The relevant cross-sections at LHC are given in Table 1.1. The inelastic cross-

section ��������� is extrapolated basing on UA1, CDF and D 	 data [1] but affected by

large uncertainties. The total inelastic cross-section defines the average number of

interactions per bunch crossing


���
�
�� � ����������������
where

�����
= 40 MHz is the bunch crossing frequency. The average number

of inelastic pp interactions per bunch-crossing (“primary vertices”) is 17.4 at the

maximal luminosity � ��� � 

� cm � 
 s ��� and 0.37 for LHCb, that will work at a

lower average luminosity � ����� � � 
 
 cm � 
 s ��� , in order to avoid multiple pp

interactions in the same event. At this luminosity there are interactions in 30% of

the bunch crossings and the effective interaction rate is thus about 12 MHz.

1.1.2 b quark production

The cross-section � ���� will be between 175 and 950 � b [2] depending on the value

of badly known parameters. The value of 500 � b is a mean assumed as a refer-
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Table 1.1: Cross-sections at LHC.

Total ������� 100 mb

Inelastic � � � ��� 55 mb
���� ��� �� 3.5 mb	 � 	 � � � � 500 � b

ence by all LHC experiments. It will be known more precisely after the start of

LHC. The dominant
	 � 	

production mechanism in pp collisions is the fusion of two

or more gluons radiated from the constituent quarks of the protons. This leads

to an approximately flat distribution in rapidity and hence an angular distribution

peaked at low polar angles. The directions of the two b hadrons are very cor-

related, as shown in Figure 1.2. The two peaks correspond to
	 � 	

pairs flying in

either directions of the beam axis. Consequently a dedicated b-physics experiment

should cover low polar angles.

0
1

2
3

1
2

3

θb   [ra
d]

θ
b    [rad]

Figure 1.2: Polar angle 
 of
	

and
� 	

hadron directions.
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1.2 The LHCb detector

The LHCb detector [3] is a forward single arm spectrometer dedicated to the study

of CP violation and other rare phenomena in the decays of Beauty particles. Its

main features are:

� the precise particle identification to render a wide range of multi-particle

final states accessible.

� the high-resolution micro-strip vertex detector allowing the identification of

secondary vertices and precise proper-time measurements.

� its versatile trigger scheme including a hadron trigger to select hadronic b

decays and a vertex trigger to select events with secondary vertices

The LHCb experiment looks like a fixed target experiment (e.g. HERA-B) be-

cause of the very forward peaked b-quark distribution at LHC. It will be located at

IP8 in the pit where the Delphi experiment used to be. To avoid any civil engineer-

ing the detector has to fit in the present cavern, which constrains the total length

of the detector to 20 m and requires a displacement of the interaction point by 11

m.

LHCb will study both low and high multiplicity events, like
� � � ����� � and� �� � � � � respectively, hence has to be sensitive to a wide momentum range. The

acceptance of the detector, as defined by the aperture of the magnet, is 300 mrad

in the horizontal plane (bending plane) and 250 mrad in the vertical plane.

The major difficulty of an experiment looking for rare phenomena is the design

of the trigger scheme. B events can be distinguished from other pp events by the

presence of tracks with high transverse momentum (��� ) with respect to the beam

axis and detached secondary vertices. The design of most sub-detectors is driven

by triggering considerations.

The choice of the optimal luminosity is the result of a compromise between

the maximization of the probability of having one interaction per bunch cross-

ing and the need to keep the radiation damage low. A piled-up second primary

vertex could be mis-identified by the trigger as a detached secondary vertex. At

� ����� � � 
 
 cm � 
 s ��� the rate of 0, 1 and more interactions is 27.7, 9.3 and 3.0

MHz respectively. Figure 1.3 shows the latest version of the LHCb detector geom-

etry. One can see from left to right:

� the vertex locator (VELO)

� the upstream Ring-Imaging Cherenkov detector (RICH1)

� the trigger tracker (TT)

� the magnet

� the tracking system (T1 ... T3)
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� the downstream Ring-Imaging Cherenkov detector (RICH2)

� the preshower (SPD/PS)

� the electromagnetic calorimeter (ECAL)

� the hadronic calorimeter (HCAL)

� the muon system (M1 ... M5)

1.2.1 The VELO

The vertex locator [4] provides precise informations about charged particles close

to the interaction point. Its fine segmentation allows for a precise primary vertex

reconstruction and a search for detached secondary vertices. As it surrounds the

interaction region it also allows some knowledge about the backward side of the

event, which helps disentangling multiple primary vertices.

Figure 1.4: A cross-section of the VELO tank.

The detector is composed of 21 parallel disk-shaped silicon strips, with a ���
�

segmentation geometry. The position resolution of the primary vertex is 40 � m in
� and 8 � m in � and � . For secondary vertices it varies from 150 and 300 � m (in
� ) depending on the number of tracks. This corresponds to less than 50 fs res-

olution on the B proper time of flight. The VELO is used for the Level-1 trigger

which enriches the B event content by finding high impact parameter tracks and

secondary vertices.



1.2 The LHCb detector 9

1.2.2 The beam pipe

After the exit wall of the VELO the LHC beam is protected by a beam pipe [5]

made of two conical sections. The first section leads through RICH1 and has an

opening angle of 25 mrad. It is followed by a second section with an opening angle

of 10 mrad. The minimal radius is 2.5 cm (limited by LHC injection requirements)

and the final radius of the second section is 13 cm. The main part is made of a

40%-60% Al-Be alloy.

1.2.3 The RICH

The two Ring-Imaging Cherenkov detectors [6] use the Cherenkov effect to iden-

tify particles. Their main task is to allow the separation of kaons from pions over

the full momentum range accessible from LHCb.

For the K- � separation the benchmark is the distinction between the
�
� � �

and the
� � � � ���	� channels. The RICH achieves a K- � separation above 3 � for

tracks in the range 3-90 GeV. It is also crucial to tag the flavor of the reconstructed

B using the kaon from the � ��� � � decay chain from the other b-hadron.

Figure 1.5: A cross-section of RICH1 linked to the VELO tank.

The RICH detects ring images formed by Cherenkov photons around the track

of the particle traversing the detector. The photons are detected by cylindrical pix-

elated Hybrid photodiode (HPD) tubes. These detectors are sensitive to magnetic

fields, which imposes that RICH is located outside of the bending area. Because

of this requirement and as there is a strong correlation of the momentum and the

polar angle of the track ( 
�� ���
	 ) it is segmented in two parts:

� the upstream RICH (RICH1) located before the magnet uses silica aerogel

(refractive index � =1.03) and � ��
 � � ( � =1.0014) as radiators. It is designed

for low momentum (1-70 GeV) and high angle (30-300 mrad) tracks. The

light is reflected by spherical mirrors onto the photo-detector.
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� the downstream RICH (RICH2) located after the magnet uses � 
 � ( � =1.0005)

as radiator. It covers high momentum (12-150 GeV) and low angle tracks

(15-120 mrad).

1.2.4 The Trigger Tracker

The Trigger Tracker (TT) is located downstream of RICH1 and in front of the

entrance of the LHCb magnet. It is used both in the Level-1 trigger, to assign

transverse-momentum information to large impact parameter tracks, and in the

off-line analysis, to reconstruct the trajectories of long-lived neutral particles that

decay outside of the fiducial volume of the VELO and of low-momentum particles

that are bent out of the acceptance of the detector before reaching tracking stations

T1-T3.

The active area of the trigger tracker is entirely covered by silicon microstrip

detectors with a strip pitch of 198 � m and strip lengths of up to 33 cm.

1.2.5 The Magnet

The dipole magnet [7] is located close to the interaction point to keep it small,

but after the iron shielding wall which protect the VELO and RICH1 from the

magnetic field. The field is oriented vertically which makes the tracks to bend in

the horizontal � � � plane. It has a maximal intensity of 1.1 T and a total integral

of 4 Tm on average.

Figure 1.6: The LHCb magnet.

Its aperture is 300 mrad in the bending plane and 250 mrad in the vertical

plane. The magnet is made of 50 tons of aluminum conducting wires (9 km in

total) and of a 120 kt steel plate yoke. It dissipates 4.2 MW.

To compensate for possible left-right asymmetries in the detector, one has to

be able to reverse the polarity of the magnet field. This requirement and a de-

tailed cost analysis have lead to the choice of a warm magnet rather than a super-

conducting magnet.
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1.2.6 The Tracking system

The tracking system [8, 9] provides the momentum measurement of charged par-

ticles and links the tracks found in the VELO to the hits in the trigger tracker,

in the calorimeters and in the muon detector. It also provides the seeding infor-

mation for the RICH counters. A mass resolution requirement of 10 MeV in high-

multiplicity decays-as
�
�� � � � � translates to a momentum resolution requirement

of � � � ��� ������� .

The tracker consists of three stations perpendicular to the beam axis. Every

tracking station measures the � coordinate which is in the bending plane and 2

stereo coordinates at �
	�� , to have also some information about � and to resolve

ambiguities. As the track density at fixed � approximately follows � � � 
 , the track-

ing system is segmented in an inner tracker located close to the beam pipe and an

outer tracker which covers the remaining 98% of the area.

The Inner Tracker

The inner tracker (IT) covers the innermost part of the tracking stations T1 ... T3.

The latest design foresees cross-shaped stations equipped with silicon detectors.

The silicon foils are 300 � m thick and have a 230 � m strip pitch. This allows

for a resolution of 70 � m . The same read-out scheme as for the VELO is foreseen,

except for the interface to the Level-1 trigger which is not needed by the IT.

The Outer Tracker

The outer tracker (OT) extends to the outermost part of the tracking stations.

It is made of drift cells called straw tubes. These have a 5 mm diameter and

75 � m thick walls. To reach an average resolution on the momentum of � � � �
�
������� the tracking precision has to be optimal in the � � � magnet bending plane.

Therefore most stations have two planes with wires in the vertical direction and

two stereo planes with wires in the horizontal direction.

The drift gas is an ��� � � 
 � � ��� 
 
 mixture which optimizes the drift speed. The

total drift, amplification and transmission time is kept slightly below 50 ns, which

is the delay between two LHC bunch crossings. Thus it can happen that two events

are piled-up in the outer tracker.

1.2.7 The Calorimeters

The calorimetry system [10] identifies photons, electrons and hadrons and mea-

sures their position and energy, which are used as input to the Level-0 trigger. As

for the VELO, the design is motivated by fast triggering requirements. Thus the

detector description is a compromise between a small number of read-out chan-

nels and a low occupancy with a reasonable energy and position resolution. Fast

binary read-out has been chosen to cope with the Level-0 trigger requirements.
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The Electromagnetic Calorimeter and the Preshower

The electromagnetic calorimeter system (ECAL) detects electrons and photons via

showers of � � � � pairs and photons. Its total radiation length is 25
�
� . It is seg-

mented in two parts:

The preshower consists of 12 mm of lead followed by 15 mm of scintillators. It

allows the separation of photons and electrons by the different shapes of the elec-

tromagnetic showers induced in the ECAL.

The electromagnetic calorimeter uses the Shashlik technology with lead as ab-

sorber material. It is segmented in three resolution zones in order to optimize the

��� reconstruction.

The Hadronic Calorimeter

The hadronic calorimeter (HCAL) identifies hadrons ( ����� ����� � �� �	�
���
�	
 ) via in-

elastic interactions with the detector material. The products of the interaction are

mainly � which are detected in the scintillators (the � � via the electromagnetic

shower of the � ).

The HCAL is made of 16 mm thick iron and 4 mm thick scintillating tiles,

parallel to the beam. The light is collected at the end of the tile by wavelength

shifting fibers (WLS).

1.2.8 The Muon System

The muon detector [11] identifies muons, the only charged particle able to tra-

verse the calorimeters without interacting. As high ��� muons are mainly produced

in B decays, the muon detector is an essential component of the Level-0 trigger. It

is also used in the muon identification which is an basic ingredient of the search

for rare semileptonic decays.

The detector consists of a muon shield (composed of the ECAL, the HCAL and

four layers of iron) and of 5 stations. It will be described in more detail in Chap-

ter 2.

1.3 The LHCb trigger

The trigger is an vital component of the LHCb experiment and it is its major chal-

lenge. Most sub-detectors designs are motivated by triggering considerations. The

high interaction rate, the low b cross-section compared to the total cross-section

and the high-multiplicity environment make arduous to efficiently select interest-

ing B-decays.

The bunch-crossing frequency is 40 MHz. Every 25 ns a pp event can occur.

At � ����� � � 
 
 cm � 
 s ��� an inelastic pp interaction (called minimum bias event)

happens at an average rate of 17 MHz. The ratio of the � �� and inelastic minimum

bias cross-sections is about 100. The � �� production rate is thus about 150 kHz.
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Essentially rare
�
� decays – ��� � � � 
�� or less – are of interest for CP violation stud-

ies. Adding up all the physics channels (listed in [5]) one gets 120 physics events

per second. Requiring that all tracks are detected one ends with about 10 B events

per second which can be used for physics analysis.

For every B event of interest there are thus � ��� background events. The re-

duction to 200 events that will be written to storage per second is achieved in a

three-level trigger scheme [13]. The steps of the trigger algorithm are described

below and summarized in Table1.2.

Table 1.2: Summary of the trigger scheme.

Level Selects Input rate Reduction Latency

Pile-up system Single events 13 MHz 1.3

Level-0 High � � tracks 10 MHz 10 4 � �
Level-1 Secondary vertices 1 MHz 25 � 1.6 ms

HLT Reconstructed B events 40 kHz 200

Events are written on tape 200 Hz

1.3.1 The Level-0 trigger

The Level-0 1 (L0) exploits the high mass of the B-meson, resulting in decay prod-

ucts with high transverse momentum (��� ). High-� � photons, electrons, hadrons

and muons are reconstructed in the electromagnetic, hadronic calorimeter and

the muon system, respectively. The pile-up system, consisting of two VELO disks

upstream the interaction region, identifies multiple interactions and is used to sup-

press events with multiple vertices or with large hit multiplicity. Hence more low-

multiplicity events are retained while keeping the same accept rate, and therefore

both the average event size and computing time are reduced, with even a slight

increase of selection efficiency. The pile-up information, together with the highest-
� � photon, electron and hadron, and the two highest-� � muons, are passed to the

L0 decision unit, which forms the final decision.

The fully synchronous L0-trigger has a fixed latency of 4 � � and is implemented

in custom boards. The rate at the L0 output is reduced to 1 MHz. Efficiencies of

approximately 90%, 70% and 50% are achieved for events with muons, hadrons

and photons respectively.

The relative weight of each trigger can be tuned by changing the single cuts,

depending on the type of physics one wants to favor. The optimization of the cuts

for the precise measurements of CP-violating parameters leads to a bandwidth

of 60% for the hadron trigger, 10% for the electron trigger, 10% for the photon

trigger and 20% for the muon trigger.

1The trigger levels are numbered from 0 for historical reasons. The other experiments number
starting from 1
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1.3.2 The Level-1 trigger

The Level-1 trigger (L1) reduces the rate further to 40 kHz, using information

from the VELO and the TT station 2. The algorithm will be implemented on a

commodity processor farm, that will be shared with the High Level Trigger (HLT)

and the off-line reconstruction. The available time at L1 is on average � 1 ms,

with a maximum latency of 52.4 ms given by the L1 buffer size.

Large impact parameter tracks are reconstructed and matched to clusters in the

TT station. The fringe field between the VELO and the TT is sufficient to obtain

momentum information with a precision of � 30%. In addition the tracks are

matched to muon candidates from L0, enhancing the performance for channels

containing muons. Using two high impact parameter tracks with the highest � � ,

efficiencies between 50% and 70% are achieved.

1.3.3 The High Level Trigger

The full detector information is available at the High Level Trigger (HLT). The

tracking stations (T1-T3) provide more precise momentum information, with which

the L1 decision can be confirmed within 4 ms, reducing the rate by a factor 2, while

retaining signal efficiency above 95%. The remaining time ( � 14 ms) is used to

select the individual channels with an output rate of � 10 Hz per channel.

1.4 Simulating LHCb

The software applications of LHCb are based on an object oriented (OO) C++

framework called Gaudi [14]. The simulation package GAUSS [15], based on

GEANT 4 [16] is not yet completely debugged and presently it is still used the

Fortran package SICBMC [17], based on GEANT 3 [18] for the detector description

and PYTHIA 6 [19] and QQ [20] for the physics event generation. The other

packages are BOOLE [21] for the digitization of the event, BRUNEL [22] for the

reconstruction, and DAVINCI [23] for the analysis.

The single packages will be described in detail in the chapter 4

1.5 Physics performance of the LHCb experiment

The current � � � � B-factories have measured CP violation in the B-system with very

high accuracy [24], sin � � � ������� � 	 ��� � � � , and in excellent agreement with the

indirect measurement of ���
	 � � ������� � � and 
���� from semi-leptonic
� � -decays and� � - � oscillations [25], sin � � � ������� ��	 ��� � � � .

After one year of nominal operation of LHC the data sample collected by LHCb

will be sufficient to determine
�

with similar accuracy as is foreseen by the B-

factories. The Standard Model analysis predicts a value of the CKM angle � of

2T1 ... T3 and M2 ... M5 can be included in L1



1.5 Physics performance of the LHCb experiment 15

� ��� ��� 	 ��� . The direct measurement of � is one of the main purposes of LHCb. The

high � �� cross-section and luminosity will provide an unprecedented large sample

of
� �� -mesons, with which this can be achieved.

In addition, basic parameters like the mass difference 
 ��� and the lifetime

difference 
 � � of the two
�
�� mass-eigenstates will be determined with high preci-

sion [26]. Moreover, any new particle present in the loop diagrams could signifi-

cantly enhance the branching ratios of channels with very low branching ratios in

the Standard Model, such as
�
� � ��� � � , or the experimentally very clean decays

containing muons,
� � � � � � � � � � , � �� � � � � � and

� � � � � � � , whose estimated

Standard Model branching ratios are � � � � �	� , � � �	� ��
 and �	� ��� � respectively.

Table 1.5 lists the performance of the LHCb experiment for the most promising

decay channels to construct the unitarity triangle. The numbers are given for one

year of data taking, which corresponds to � ��� seconds of running at

� ����� � � 
 
 cm � 
 s ��� , hence an integrated luminosity of 2 
 �
��� .

Table 1.3: Performance of the LHCb experiment after one year of data taking for

selected benchmark channels and related CKM parameters. The annual yields

include both the indicated decays and their charge conjugates, but not the tagging

efficiency.

Decay Annual Physics

Channel Yield Performance� � � � ��� ��� 240k � � ��� � � � � � ��� � �� � � � � 4.4k � � ����� � ��� � � � � ���� � � ��� � � � 206k � � � � � � � �	��� �� �� � � ��� � 120k � � � � � � ���� �� � � �� � � 80k � � 
 ��� � � ��� � � � � ���� � � � ��� � 26k� � � � � � � 135k� �� � � � � � 5.3k� �� � � � � � 37k

To conclude the physics capability of LHCb, we want to stress that an extensive

and peculiar study of high-energy hadron physics is obtainable, in addition to CP-

violation program. For instance the extreme forwardness of LHCb, with a rapidity

coverage up to 8, turns out to be very useful for the determination of the proton

structure functions at very low parton fractional momenta. A comprehensive case

study will be treated in the second part of the thesis.
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Chapter 2

The Muon System

2.1 Introduction

Muon triggering and off-line muon identification are fundamental requirements of

the LHCb experiment. Muons are present in the final states of many CP sensitive

B decays, in particular the two “gold-plated” decays,
� � � � � � � ��� � � � � and

� �� �
� � � � ��� � � . Moreover, muons from semi-leptonic b decays provide a tag of the

initial state flavor of accompanying neutral B mesons. In addition, the study of

rare B decays such as the Flavor Changing Neutral Current decay,
� �� � �
� , may

reveal new physics beyond the Standard Model.

The LHCb muon detector uses the penetrative power of muons to provide a

robust muon trigger. The heavy flavor content of triggered events is enhanced by

requiring the candidate muons to have high transverse momentum, ��� . The same

unique properties are utilized off-line, to accurately identify muons reconstructed

in the tracking system and to provide a powerful B meson flavor tag.

2.2 Physics requirements

The main requirement for the muon detector is to provide a high ��� muon trigger

at the earliest trigger level (Level-0). The effective LHCb Level-0 input rate is

about 15 MHz on average at � ����� � � 
 
 cm � 
 s ��� , assuming a non-diffractive

p-p interaction cross-section of 55 mb. This input rate must be reduced to 1 MHz

within a latency of 4.0 � s , while retaining good efficiency for events containing

interesting B decays. The muon trigger provides between 10% and 30% of this

trigger rate. In addition, the muon trigger must unambiguously identify the parent

bunch crossing, requiring a time resolution better than 25 ns.

The muon system must also provide off-line muon identification. Muons recon-

structed in the high precision tracking detectors with momenta down to 3 GeV/c

must be correctly identified with an efficiency of about 95% while keeping the

hadron misidentification rate below 1%. Efficient muon identification with low
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contamination is required both for tagging and the clean reconstruction of muonic

final state B decays.

The muon trigger is based on a muon track reconstruction and ��� measure-

ment with a resolution of 20%. Hits in the first two stations are used to calculate

the � � of the candidate muon.

2.3 General detector structure

The muon detector consists of five muon tracking stations placed along the beam

axis. The first station (M1) is placed in front of the calorimeter preshower, at

12.1 m from the interaction point, and is important for the transverse-momentum

measurement of the muon track used in the Level-0 muon trigger. The remaining

four stations are embedded within the muon shield at mean positions of 15.2 m

(M2), 16.4 m (M3), 17.6 m (M4) and 18.8 m (M5). The shield is comprised of the

electromagnetic and hadronic calorimeters and three iron filters and has a total

absorption-length of 20 nuclear interaction-lengths. The minimum momentum

requested to a muon to traverse the 5 stations is 5 GeV/c. The positions of the

muon stations can be seen in Figure 2.1, which shows a side view.

Figure 2.1: Side view of the muon system.

The chambers within the filter are allocated about 40 cm of space and are sepa-

rated by three shields of 80 cm thickness. The inner and outer angular acceptances
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of the muon system are 20 (16) mrad and 306 (258) mrad in the bending (non-

bending) plane, similar to that of the tracking system. This provides a geometrical

acceptance of about 20 % for muons from b decays relative to the full solid angle.

The total detector area is about 435 m 
 .

2.4 Logical layout

The Muon system provides a digital information about the � � � spatial coordinates

of the muon tracks. The spatial resolution is given by the dimension of a logical

pad, whose structure across the detector represents the logical layout. The logical

layout describes the � and � granularity in each region of each muon station, as

seen by both the muon trigger and the off-line reconstruction.

Since the polar angle and the momentum of the particles are correlated, high

momentum tracks tend to be closer to the beam axis. Therefore multiple scattering

in the absorber increases with the distance from the beam axis, limiting the spatial

resolution of the detector. The granularity of the logical pads varies accordingly,

and have been chosen such that its contribution to the ��� resolution is approxi-

mately equal to the multiple-scattering contribution. The various contributions to

the � � resolution are shown in Figure 2.2.
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Figure 2.2: Contributions to the transverse momentum resolution of the muon

system as a function of the muon momentum averaged over the full acceptance.

The � � resolution is defined as � � � � �� � � � � 	 �� � � � � � 	 �� , and is shown for muons from

semi-leptonic b decay having a reconstructed � � close to the trigger threshold,

between 1 and 2 GeV/c.

Given the different granularity requirements and the large variation in particle

flux in passing from the central part, close to the beam axis, to the detector border,
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each station is subdivided into four regions with different logical-pad dimensions

Region and pad sizes scale by a factor two from one region to the next.

In the � plane all the tracks appear to straight lines, as they are not bent by the

magnet, thus the required granularity is broader, and the logical pads are wide, as

appear in Figure 2.3.

Otherwise the � dimensions of the logical pads are determined primarily by

the precision required to obtain good muon � � resolution for the Level-0 trigger.

The resulting � � � aspect ratios are 2.5 in station M1 and 5 for stations M2 and

M3. Stations M4 and M5, which are used to confirm the presence of penetrating

muons, have aspect ratios of 1.25. The total number of logical pads in the muon

system is 55,296.
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Figure 2.3: Front view of one quadrant of muon station 2, showing the dimensions

of the regions. Inside each region is shown a sector, defined by the size of the

horizontal and vertical strips. The intersection of the horizontal and vertical strips,

corresponding to the logical channels, are logical pads. The region and channel

dimensions scale by a factor two from one region to the next.

Each logical pad may group one or more physical pads, whose dimensions are

limited by occupancy and capacitance considerations, according to the detector
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technology. The Muon system has been designed in a flexible way, such that the

required logical layout can be achieved in several ways and is independent from

the detectors used (see Figure 2.4).

Figure 2.4: Logical pads and physical pads in Region 4 (top) and Region 3 (bot-

tom) for Stations M4 and M5. In the former case the � dimension is that of 4

chamber strips and the � dimension is the same of the chamber itself. In the latter

case more granularity is required and both � and � have half dimensions.

2.5 Detector Requirements and Specifications

The basic function of the LHCb Muon system is to identify and trigger on muons

produced in the decay of b hadrons. The trigger logic is designed in such a way

that information from all five muon stations is required. Thus the trigger efficiency

is highly affected by the single station efficiency, as

� � � ����� � � � � � � ��� � � ��� � �

As a result, in order to achieve a muon trigger efficiency of at least 95%, the

single-station efficiency has to be higher than 99%. This is ensured by having more

than one independent detector layers per station and taking the logical OR.

The detector efficiency is mainly limited by the intense flux of charged and

neutral particles in the angular coverage of the LHCb experiment. These flux levels

exceed those experienced by the ATLAS [27] and CMS [28] muon spectrometers

and pose a different challenge.

2.5.1 Background environment

High particle fluxes in the muon system impose stringent requirements on the in-

strumentation. These requirements include the rate capability of the chambers,



22 The Muon System

the aging characteristics of the detector and redundancy of the trigger instrumen-

tation. The high hit rates in the chamber also effect the muon transverse mo-

mentum resolution due to incorrect hit association. Four classes of backgrounds

relevant to the
�
� �

�
detection can be distinguished:

1. Decay muons: The large number of � /K mesons produced in the p-p collisions

contribute mainly to the background in the muon system through decays in

flight. Such decay muons form the main background for the L0 muon trigger.

2. Shower particles: Photons from � � decays can interact in the area around the

beam pipe and generate electromagnetic showers penetrating into the muon

system. Hadrons emerging from the primary collision can interact late in the

calorimeters and contribute to the background in the muon system through

shower muons or hadron punch-through.

3. Low-energy background: Another important background is associated with

low-energy neutrons produced in hadronic cascades in the calorimeters, the

muon shield or in accelerator components. They create low-energy radiative

electrons via nuclear n- � processes and subsequent Compton-scattering or

via the photo-electric effect in the detector material of the muon chambers.

The photons have a probability of a few per mil to generate detectable elec-

trons via these effects, which are in general only affecting a single detector

layer. Moreover, the hits due to the low energy background occur up to a

few 100 ms after the primary collision.

4. Beam halo muons: The charged-particle flux associated with the beam halo

in the accelerator tunnel contains muons of a rather wide energy spectrum

and the largest flux at small radii. In particular those halo muons traversing

the detector in the same direction as particles from the interaction point can

cause a L0 muon trigger.

Background caused by real muons traversing the detector is well simulated

with the available Monte Carlo packages [29, 30]. An estimate for the rate in the

various regions of the muon system has been obtained from a detailed study [31,

32] whose results are summarized in Table 2.1.

The nominal rates are calculated for a luminosity of � � � � �	� 
 
 cm � 
 s ��� ,

at which the LHCb experiment should be able to operate for short periods. The

maximal rates are then obtained applying a safety factor of 5 in the stations M2-

M5 and a safety factor of 2 in the station M1, which is positioned in front of the

calorimeters and therefore is less affected by the uncertainties in the showering

processes in the absorber material. The rate rises from a few hundred Hz/cm 

in the outer regions of stations M4 and M5 to a few hundred kHz/cm 
 in the

innermost part of station M1.

2.5.2 Muon system technologies

The combination of physics goals and background conditions determines the choice

of detector technologies for the various stations and regions. The following param-
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Table 2.1: Particle rates in the muon system. The first row gives the max-

imal particle rate in each region and station per interaction as obtained

from the simulation; the second gives the calculated rate at a luminosity of

� � ��� � � 
 
 cm � 
 s ��� assuming a total � � � cross-section of � =102.4 mb; and

the last row the rate including the safety factors.

Region 1 Region 2 Region 3 Region 4

8.3 � � � � 
 /cm 
 3.3 � � � � 
 /cm 
 1.4 � � � � 
 /cm 
 4.5 � � � � � /cm 

Station 1 230 kHz/cm 
 93 kHz/cm 
 40 kHz/cm 
 12.5 kHz/cm 


460 kHz/cm 
 186 kHz/cm 
 80 kHz/cm 
 25 kHz/cm 

2.7 � � � � � /cm 
 1.9 � � � � � /cm 
 4.7 � � � � �

/cm 
 8.3 � � � � � /cm 

Station 2 7.5 kHz/cm 
 5.3 kHz/cm 
 1.3 kHz/cm 
 230 Hz/cm 


37.5 kHz/cm 
 26.5 kHz/cm 
 6.5 kHz/cm 
 1.2 kHz/cm 

7.2 � � � � �

/cm 
 2.3 � � � � �

/cm 
 7.3 � � � � � /cm 
 3.0 � � � � � /cm 

Station 3 2 kHz/cm 
 650 Hz/cm 
 200 Hz/cm 
 83 Hz/cm 


10 kHz/cm 
 3.3 kHz/cm 
 1.0 kHz/cm 
 415 Hz/cm 

4.7 � � � � �

/cm 
 1.6 � � � � �

/cm 
 5.4 � � � � � /cm 
 1.8 � � � � � /cm 

Station 4 2.3 kHz/cm 
 430 Hz/cm 
 150 Hz/cm 
 50 Hz/cm 


6.5 kHz/cm 
 2.2 kHz/cm 
 750 Hz/cm 
 250 Hz/cm 

3.2 � � � � �

/cm 
 1.3 � � � � �

/cm 
 4.7 � � � � � /cm 
 1.7 � � � � � /cm 

Station 5 880 Hz/cm 
 350 Hz/cm 
 130 Hz/cm 
 45 Hz/cm 


4.4 kHz/cm 
 1.8 kHz/cm 
 650 Hz/cm 
 225 Hz/cm 


eters particularly affects the technology choice:

1. Rate capability: The selected technologies must provide single layer efficien-

cies of more than 95% at the expected rates.

2. Ageing: The materials of the detectors should have good ageing properties,

allowing 10 years of operations. Moreover, the detector itself should tolerate

the total integrated charge accumulated in that period.

3. Time resolution: The muon system must provide unambiguous bunch cross-

ing identification with high efficiency. The requirement is at least � � � effi-

ciency within a 20 ns window for each of the two layers in the station.

4. Spatial resolution: The spatial resolution must allow the determination of the
� � of triggering muons with a resolution of 20%. This requires a granularity

varying from few mm in the innermost region of stations M1 and M2, to

few tens of cm in station M5. To minimize the deterioration of the intrinsic

detector resolution, cross talk between readout channels should be limited

below 10%.
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Based on the above considerations, three different detector technologies have

been proposed to cover the 435 m 
 of the Muon system.

Multiwire Proportional Chambers (MWPC) represent a well known and robust

technology, adopted as the base type of detector, in all the regions where the

expected particles rates are between 1 kHz/cm 
 and 200 kHz/cm 
 . In order to

provide the necessary efficiency and time resolution, one chamber is formed by 4

wire planes, and the signal are ORed.

In the innermost region of the Muon system (station M1, region R1) the rate of

almost 500 kHz/cm 
 might not allow to use MWPC because of ageing. Since an

exhaustive test has not been possible, the Gap Electron Multiplier (GEM) detector

has been suggested as a possible and safer alternative for this part of the Muon

system, which is however rather small, being about few m 
 .

2.6 The Resistive Plate Chambers

In regions R3 and R4 of stations M4 and M5 the expected rate is below 1 kHz/cm 
 ,

and the requirements on spatial resolution are rather modest due to the large size

of logical pads. The Resistive Plate Chambers (RPC) [34] were originally proposed

for this part of the Muon system, representing the 48% of the total surface.

Figure 2.5: RPC detector during the assembling. The front-end boards are visible.

In last few years considerable R&D on this type of detectors had led to the de-

sign of a particular configuration, consisted in two Single-gap RPCs whose signals

are independently read out by two strip planes, and then ORed (Figure 2.6).

Figure 2.7 shows a typical time spectrum for a Single-gap RPC. The sigma

of the Gaussian fit gives an excellent time resolution of � 1.1 ns, with the full

efficiency reached already in a 10 ns time window, well within the LHC bunch
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HV

 

Figure 2.6: Sketch of the RPC configuration which were proposed for LHCb. It is

composed by two Single-gaps in OR.

crossing distance (25 ns), even considering any possible jitter introduced by the

electronic chain. Moreover the performance of two gaps in OR is supposed to be

even improved.
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Figure 2.7: Time resolution of a RPC. The � scale is in ns.

The efficiency curve is reported in Figure 2.8. The OR of the two planes reaches

99.5%, and is consistent with the theoretical efficiency computed by multiplying

the inefficiencies of the Single-gaps, according to the relation

���

�
� � � � � � � ��� � � � � � � �

The little discrepancy is due to some correlation in the efficiencies of the two gaps.

The cluster size is also plotted in Figure 2.8, with the relative scale on the right

side. The cluster size is the average number of adjacent physical strips around the

particle track giving a signal over threshold. It measures the cross-talk, that is the

spacial resolution of the detector. Because in the Muon system regions supposed

to be covered by RPCs one logical pad is at least formed by two physical strips,
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a cluster size less than 2 was the requirement to not deteriorate the momentum

resolution of the Muon system. This requirement was met by the RPC prototype.

These detectors had proved that the Muon system requirements may thus be

fulfilled, concerning the efficiency, the spatial resolution and the time resolutions

(see for example [33]).

Once the intrinsic performances of the detector has been proved to completely

fulfill the efficiency, the spatial resolution and the time resolution needs of the

Muon system, the successive step has been the verification of the rate capability

and especially of the ageing properties of the RPCs. An extensive aging test has

then been performed, whose details will be broadly discussed in the next chapter.

As we shall see, the results of the test have not been affirmative, as the RPCs

have unambiguously shown to suffer aging, exhibiting an increase of the electrode

resistivity, leading to a degeneration of the rate capability.

The technology has then been abandoned, and the RPC part of the Muon sys-

tem is going to be covered by Multiwire Proportional Chambers, which already

were used for the innermost regions. The flexible design of the Muon system has

allowed to substitute the technology without major efforts, since the RPCs had al-

ready been planned with the same dimensions and the same physical pad layout

of the MWPC.

The work of this thesis represents a sort of summary about the aging research

on the Resistive Plate Chambers for LHCb.
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Figure 2.8: Efficiency and cluster size for the OR of two single-gap RPC.



Chapter 3

Aging characteristics of the Resistive

Plate Chambers

3.1 Introduction

The forthcoming LHC experiments represent a hard challenge for all the detector

technologies, including Resistive Plate Chambers. RPCs are widely used in high

energy physics experiments, in particular for the muon triggering, which requires

fast time response and large coverage area, for which RPCs represent a very suited

solution. In order to get these detectors standing the very large particle flux den-

sity of a hadron collider (up to few kHz/cm 
 ), in the last decade many efforts have

been done to improve their rate capability (see [35, 36, 37]). This has been par-

tially achieved by operating in avalanche mode, rather than streamer mode, since

the reduction of the gas gain leads to a faster recharge time. The other important

parameter affecting the rate capability is the volume resistivity of the electrodes.

Materials like glasses, with typical resistivity around � � � 
 �
cm, result in small rate

capabilities. Phenolic bakelite electrodes, which can be produced with resistivity

as low as � ��
 �
cm, are used in detectors working at high rate [38, 39, 40].

In LHCb the rate capability requirement is even more stringent respect to the

other experiments. In particular the particle rates expected in the Muon System

(see Table 2.1) are significantly larger than those expected in the corresponding

sub-detectors in ATLAS and CMS.

The rate capability of a RPC is determined by the volume resistivity � of the

electrodes and scales roughly as � ��� , as we shall see in section 3.3. Variations of

the electrode resistivity affect directly the rate capability of the RPC: it is therefore

very important to be able to monitor this parameter during the chamber opera-

tion. Possible variations can be due to changes in environmental parameters like

temperature and humidity[41, 42] or to aging effects.

In this chapter the performances of two RPC detectors under high radiation

conditions will be reported as they have been measured along their whole life,

from the building in 1999 to the end of the aging test in spring 2003. Some pecu-
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liar characteristics exhibited in such environment will be remarked and explained

within a simple model.

3.2 Detector characteristics

Two identical chambers had been built in 1999 to study the response of RPCs

in the high background conditions foreseen at LHCb, and to verify their aging

properties. The detectors are two Single-gap RPCs, with 2 mm gas gap and 2

���������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������

bakelite

bakelite

    dielectric

ground plane

ground plane

gasspacer
dielectric foil (PET)

graphite

strip plane

+ hv

- hv

Figure 3.1: Layout of a RPC detector.

mm thick electrodes plates, made of phenolic bakelite (Figure 3.1). The nominal

nominal bakelite resistivity was � � � � � �
cm. It was opportunely chosen not too

high (typical values are � � � � � � � � 
 ) in order to achieve high rate capability.

The internal surface of the electrodes is treated with linseed oil, to smooth

any possible disuniformity which would distort the electric field. The high voltage

is applied to the external surface of the electrodes through a painted graphite

film, with a superficial resistance of � 200 k
� ��� , dielectrically isolated by a

200 � m PET foil from the environment. The distance between electrodes is main-

tained by polycarbonate spacers, 1 cm diameter, dislocated on an square array

with 10 cm pitch. All around the detector the gap is closed by a polycarbonate

frame, glued on the electrodes.

The sensitive area of both chambers is 50 � 50 cm 
 . The detectors operated in

avalanche mode with a 95% C 
 H 
 F � , 4% i-C � H � � and 1% SF � gas mixture, usually

fluxed at a rate of about 1 l/h. The signals are inductively readout by an external

copper plane, segmented in 3 cm wide strips. On one detector (called in the

following RPC A) the strip plane has been cut in two along its length, so that

the final strip size is 3 � 25 cm 
 , while on the other detector (RPC B) it was

3 � 50 cm 
 . The electronics consisted in fast voltage amplifiers with gain of 300,

directly coupled to the strips.
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Figure 3.2: Principle of signal formation in a RPC.

3.2.1 Operating principle of the RPC

When a charged particle ionizes the gas of the RPC, an avalanche is formed by

multiplication in the gas if the electric field is sufficiently high (see Figure 3.2)

. The avalanche charge � , is collected by the anode and produces an inducted

charge ��� on the external readout electrode, representing the prompt singal of the

RPC.

The avalanche charge � , is related to the ionization charge � � , via the gain:

� ����� �
� depends strongly on the electric field and on the distance of the primary ioniza-

tion cluster from the anode � .

It shows a double-regime behavior respect to some threshold voltage ��� : if

the potential � gap across the gas gap is below ��� , � tends rapidly to unity, and

no multiplication occurs; if otherwise � gap � ��� , � increases rapidly with voltage,

entering in the avalanche regime. The value of ��� depends on several variables,

either constructive or environmental, like the gap width, the gas composition, and

the gas temperature and pressure.

It is known that in order to operate in avalanche mode � should not exceed

the limit value ��	 �
� � � ��� . Anyway space-charge effects can limit the growth of

the avalanche charge to a saturation value [43] increasing linearly with � gap, so

that

��
 � gap � ���
This effect is more evident in gas mixtures containing quenching gases with high

electron affinity that suppress the streamer formation [44], such as SF � in our case.

3.3 Rate Capability

The rate capability represents a fundamental parameter for all the detectors em-

ployed on accelerator beam experiments. It determines the intensity of the radia-

tion background that a given detector can stand, still reaching full efficiency in the
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particle detection. As already said in section 2.5 the LHCb Muon system is particu-

larly sensible to even small variations of the chamber efficiency � ��� � 	 , because the

trigger uses all the five stations, so that its efficiency results to be � � � � � � � � ��� � 	 � � .
For that reason a single chamber is constituted by 2 sensible planes in the case of

RPCs and 4 in the case of MWPC.

The use of resistive electrodes in RPCs, on one hand assures that the surface

discharged by the avalanche remains limited, in order to achieve a good spacial

resolution, but on the other hand it increases the recharge time, leaving that part

of the electrode blind and decreasing the rate capability.

A simple model [33] which schematizes the RPC as a series of three plane ca-

pacitors gives a formula relating the electrode resistivity to the maximum particle

flux a RPC can stand: � 	 �
� �

�
��� �

�
��� � 
 	

�
� � �

where �
� is the electrode relative dielectric constant ( � 5 in the case of pheno-

lic bakelite), 	 is the electric field inside the gas gap (typically of the order of

5 kV/mm), � is the avalanche charge (30 pC may be considered a reasonable value

for low energy ionizing particles) and � is the electrode resistivity. Plugging all the

numbers in the formula one finds a maximal rate capability of about 15 kHz/cm 
 ,

to be considered as limit for the operation of the RPC.

Since the rate capability and the electrode resistivity are so closely related, if

we want to test the efficiency performances of the detectors at high particle rates,

we have to monitor the bakelite resistivity.

3.4 Experimental setup at GIF

All the tests presented in this chapter have been performed at the Gamma Irra-

diation Facility (GIF) [45], the experimental area provided by CERN, used to test

the LHC detectors under very high background conditions, by means of an intense

photon flux. The conditions of the GIF are likely to be very similar to those that

will be encountered in the experiment on the beam, with a diffuse and low energy

photon gas. The photons of the GIF are produced by a � 
 � Cs radioactive source

(662 keV nuclear dis-excitation; 30.2 y half-life; 740 GBq at March 1997) and

are collimated by lead filters within a solid angle of 74 � � 74 � . Further remote-

controlled lead planes allow to tune the photon flux within a four orders of mag-

nitude range. A total of 17 values can be set for the absorption factor, from Abs=1

to Abs=10000 (Abs= 
 means source off). The filters also make the flux uniform

on a plane surface parallel to the source.

To perform efficiency measurements the GIF area is reached by a low-energy

muon beam arising from the dump of the X5 proton beam of the SPS (see Fig-

ure 3.3).

The experimental setup is schematically shown in Figure 3.4. The position

1 is the main irradiation position, very close to the source ( � 55 cm), where
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Figure 3.3: Schema of the GIF. The X5 proton beam coming from SPS is dumped,

and the surviving low energy muons reach the irradiated area ( � 150 m 
 ).

the detectors were placed in order to be continuously exposed to a large flux of

radiation.

In particular here the two chambers prepared for the aging test (RPC A and

RPC B) have been installed for about two years. Only during the first part of the

aging test the RPC B was used as a reference chamber, and was fixed on the side

concrete wall (position 2), outside the photon cone. Later this detector too was

moved just behind the other in the high-radiation position. Position 3 is the test-

beam position. The X5 muon beam passes aside of the source, hence in order to be

hit the detectors had to be placed in this position, a little farther from the source,

though still remaining inside the radiation acceptance.

In Figure 3.4 are also shown the telescope of scintillators counters, providing

the trigger, and the hodoscope, measuring the particle position ( � � � ) with an

accuracy better than 1 cm, used to perform efficiency measurements.

3.4.1 Photon spectrum and filter calibration

The total photon spectrum of GIF source is composed by a direct component at

662 keV and an indirect component, due to scattering with the lead filters ( ��� �
180 keV), the albedo from the concrete walls ( ��� � 400 keV) and Pb induced

fluorescence ( ��� � 85 keV) (see Figure 3.5).



32 Aging characteristics of the Resistive Plate Chambers

X5 beam

S1 S2 S3Hodoscope

137Cs

Source filters
3

1

2
Concrete

shield

Figure 3.4: Schematic view of the test setup. The positions of the RPCs corre-

sponding to the various measurements are indicated (1-3). The scintillator coun-

ters (S1-S3 and the Hodoscope) were used for measuring the RPC efficiency with

the particle beam.

Figure 3.5: Simulation results of the photon spectrum for a distance of 155 cm

from the source and an absorption factor Abs=1[46].
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Table 3.1: Photon flux for different source distances at Abs=1[46].

Distance (cm) Direct radiation flux (Hz/cm 
 ) Total radiation flux (Hz/cm 
 )

50 ������� � � ��� � 	 � ��� � � � � ��� � �	��� � 	 ��� � � �
155 ��� � � � � � � � 	 � ��� � � � � � � � �	��� � 	 ��� � � �
300 ��� � ��� � � � � 	 � ��� � � � � ��� � �	� � � 	 ��� � � �
400 ��� ����� � � � � 	 � � ��� � � ������� �	� � � 	 ��� � � �

The maximum (Abs=1) photon flux at different distances is reported in Ta-

ble 3.4.1, for direct radiation ( 	 � � 662 keV) and for total radiation ( 	 � �
662 keV). The intensity scales quadratically with the distance.

In comparing the model with the data it is very important to accurately know

the relative absorption factors (Abs) of the various GIF filters. Only the direct

radiation depends linearly to 1/Abs, while the total radiation (direct plus diffuse)

rather follows a power law of the kind
� ��
 (1/Abs) �

�
. Since the exponent could

depend on the effective energy spectrum of the photons for the detector under

study, we calibrated the filters directly measuring the hit rate of a RPC.

The particle rate is measured as a function of the high voltage (see Figure 3.6)

and the plateau value is taken as the reference value for the given absorption

factor. The rate has been corrected taking into account the contribution to the

cluster-size due to the photons, which has been disentangled from that due to the

beam thanks to time considerations [47].

Table 3.2 reports the particle rates for each of the GIF nominal absorption

factors, measured at � 80 cm from the source, during the 2002 test-beam.

Table 3.2: Measured particle rates for each GIF Absorption factor, for a RPC set at

� 80 cm from the source (see Figure 3.23).

Absorption factor 250 100 50 20 10 5 2 1

Rate (Hz/cm 
 ) 50 125 210 390 520 980 1850 3000

An older measurement is shown in Figure 3.7, used to exctract the
�

coefficient

from the fit. It gives the value
� � ����� � 	 ��� � � .

Note that the detector count rates are several orders of magnitude lower than

the photon rates shown in Table 3.4.1. This is because the RPC is able to detect

only a small fraction of photons, namely those which convert in charged particle

capable to ionize the gas.
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Figure 3.6: Particle flux as a function of high voltage for a source absorption factor

250.

1/ABS

Φ
 (

H
z/

cm
2 )   2.194    /     2

P1   1048.   34.81
P2  0.7140  0.1128E-01

10 2

10 3

10
-3

10
-2

10
-1

1

Figure 3.7: Particle flux as a function of the inverse nominal source absorption

factor. The fit gives
� � ����� � 	 ��� � � .

To better understand how the conversion happens in a RPC, consider that at

the typical GIF energies the most probable interaction process for photons is the

Compton scattering. If ��� is the photon energy, the scattered electron will have a

maximum energy of
� 	 �

� �����
� � �
��� � � �

where

� � ���
� � � 


Hence, a 662 keV photon will extract an electron with a maximum energy of 478

keV. The range of this electron in bakelite being only 1.5 mm [48], it is clear
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how only the photons converting inside the resistive electrode (2 mm thick) will

produce electrons able to reach the gas gap and ionize the gas. We can estimate

the conversion effciency of the RPCs for the GIF photons through the equation:

� � �
��

��� � � � � �
� kHz/cm 


��� � � � � � � Hz/cm 
 � ����� � � ��� ��� �	� � 


where
�
� is the source photon flux,

�
is the measured particle rate, and � � � � is a

factor to scale the source activity from 1997 (when the data were computed) to

2001. The found value is in agreement with previous estimations [49].

3.5 Performance of RPCs before aging

The first test-beam at the GIF was held in October 1999. In this test there were the

RPC A and another Double-gap RPC, of whom RPC B constituted one of the two

active layers. In Figure 3.8 are shown the results. The efficiencies are plotted as

a function of the high voltage for different values of the absorption factors, corre-

sponding to measured particle rates of 2 kHz/cm 
 , 5 kHz/cm 
 and 10 kHz/cm 
 .

The Single-gap (RPC A) begins to suffer the particle rate at the largest value of

10 kHz/cm 
 , where a smoothing of the plateau is visible. The Double-gap, on the

other hand does not present any change up the maximal rate.

After this test the Double-gap was dismounted and only one gap kept to make

the Single-gap RPC B. These two detectors have been installed permanentely at the

GIF from the beginning of 2001. All the results will refer to them in the following.

3.6 Behavior of RPCs at the GIF

During the irradiation test at the GIF has been observed that the current drawn by

a RPC detector subject to a high particle flux, presents some peculiar characteris-

tics:

� it depends linearly on the applied voltage, above a certain threshold;

� it saturates with increasing flux values;

� it depends exponentially from the temperature for a fixed applied voltage.

We have tried to explain these features with a phenomenological model based on

few simple physics assumptions. The most important result of the model is to

furnish a method to measure the resistivity of electrodes [50].



36 Aging characteristics of the Resistive Plate Chambers

HV (kV) HV (kV)

0

25

50

75

100

8.5 9 9.5 10
0

25

50

75

100

8.5 9 9.5 10

0

25

50

75

100

8.5 9 9.5 10
0

25

50

75

100

8.5 9 9.5 10

0

25

50

75

100

8.5 9 9.5 10
0

25

50

75

100

8.5 9 9.5 10

Figure 3.8: The efficiency as a function of HV for Singe-gap RPC (left) and a

Double-gap RPC (right) measured in October 1999 at the GIF, with background

rates up to 10 KHz/cm 
 .

3.7 The model

The current drawn by a RPC exposed to a particle flux
�

(particles/s) can be

achieved from the avalanche charge:

� � � � � � � � � (3.1)

Of course if
�

refers to neutral particles one must take into account their detection

efficiency, i.e. the probability of releasing one or more electrons in the gas (of the

order � � � 
 for RPC exposed to GIF photons).

The basilar hypothesis the model is based upon, is that all the physical prop-

erties of the detector must depend on the effective voltage across the gas gap � gap

(see Figure 3.9). This results to be the external voltage � � provided by the power

supply, minus the voltage drop inside the resistive plates, which can be argued by
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Vgap

V0

Figure 3.9: � gap is the voltage drop on the gas gap, while � � is the external applied

voltage.

means of the Ohm’s law:

� gap � � � �
���

(3.2)

where
�

is the steady current flowing in the electrodes and
�

their total resistance.

For a typical RPC the main contribution to this resistance is the bulk resistivity

� of the phenolic bakelite, to which it is related by the second Ohm’s law:

� � �
�

�

where
�

is the global thickness of the plates an
�

their surface. In fact the graphite

film on one side and the oil on the other are too thin to appreciably contribute to

the volume resistivity.

The drop inside highly resistive electrodes can be quite important if the current

flowing through the RPC is large enough, so that � gap is not directly measurable.

Figure 3.10 shows the avalanche charge measured in a RPC as a function of

the applied voltage � � . In this case the measurement has been done with cosmic

rays, so that the particle flux is very low, the voltage drop across the electrodes is

negligible and � gap � � � . On the same plot the current has been superimposed,

to show the proportionality with the charge, expected from Equation 3.1. It is

seen that above the knee of the curve, representing the threshold value � � , both

the charge and the current grow linearly with � gap, which is an indication of the

saturation effect.

Note that also below the knee the current increases almost linearly with a much

gentler slope. This is the dark current contribution, due mainly to leak through

the spacers and the frame, and has not been considered in the model.

The particular double-regime behavior of the
�
� � gap curve can be modeled

at a first order of approximation by a linear function with a discontinuity of the

derivative in the threshold value ��� ( 
 is the unit step function):

� � � gap � ��� 
 � � gap � � � � � � gap � � � � (3.3)

where � is a normalization factor proportional to the particle flux.

To turn into a more realistic description we can think that the value of ��� ,

which depends for example on the thickness of the gas gap, slightly varies in differ-

ent points of the detector, because of some local disuniformities. So the expression
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Figure 3.10: Solid circles: avalanche charge vs. � � , measured with cosmic rays.

Open circles: current (arbitrary scale) measured with low particle flux. In both

cases � gap � � � . RPC operated with C 
 H 
 F � , i-C � H � � and SF � mixture in 95:4:1

proportion.

(3.3) can be folded with a Gaussian distribution of ��� :

� � � gap � � �
�

� �
� � � � ����� gap � ���
	����
 �� � �

� � � gap � � � ��� ��� � � 

� � gap � � �

� ��� � ����� (3.4)

where ��� is the average value and ��� the rms spread of ��� .

For � gap � ��� this function becomes simply
� � � � � gap � ��� � . A fit of Equa-

tion (3.4) to the data is presented in Figure 3.11, showing an excellent agreement.

The relative spread ��� � ��� is typically 3% to 4% in the detectors tested. The fact

that it varies, though slightly, from detector to detector, confirms that geometric

effects could also contribute to the spread.

3.7.1 Limit case

Consider now a detector exposed to a large and uniform particle flux, as the flux of

photons from GIF. When the current drawn by the detector increases, the voltage

drop in the plates is relevant and the condition � gap � � � is no more valid, as

� gap begins to displace from � � . Considering 15 pC as a typical value for the

avalanche charge (from Figure 3.10) and assuming 2 mm thick electrodes with

� � � � �
cm resistivity, we can compute from Eq. (3.2) that for particle flux densities

of 170 Hz/cm 
 there is 100 V difference between � gap and � � .
The more the flux increases the more � gap shifts from � � , towards the minimum

threshold value ��� . In the limit of infinite flux the avalanche charge must becomes

very small in order to keep the current finite; in other words the gap voltage

decreases to the minimum value at which no multiplication occurs and the RPC is
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Figure 3.11: RPC current vs. � � measured with low particle flux ( � gap � � � ) and

fitted with the function (3.4).

“turn off”. We have

� gap � ��� for
� � 


In this limit we can derive from Eq. (3.2) the value of the current:

� � �
max � � � � � �

� (3.5)

This represents the central equation of the model, showing how under high flux

condition the RPC current depends linearly on the applied voltage � � and saturates

to a maximum value
�

max independent from the flux
�

. Note that the saturation

is a consequence of a negative feedback effect on the current: the more the cur-

rent increases the more the electrode resistance rises, so that the effective voltage

across the gap drops, reducing the gas gain and the current itself.

It is remarkable that the linear coefficient between the current
�

and the ap-

plied voltage � � is the inverse of the electrode resistance
�

. Since the properties of

the gas mixture and the gap width only enter via ��� , they do not affect the slope of

the
�
� � � curve. Hence from the measurement of the

�
� � � characteristic curve in

high radiation conditions one can extract
�

and can easily monitor its variations.

We stress here that the linearity of Eq. (3.5) is based only on the general as-

sumption of the presence of a sharp threshold effect in the avalanche evolution. In

particular, it has no relation with the linear dependence of the avalanche charge

on � gap (Figure 3.10), and also holds in a regime of non saturated avalanche.
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3.7.2 General case

Eq. (3.5) can be generalized for arbitrary flux values: using Eq. (3.2) and Eq. (3.3),

one has for � � � � � :

� �
�
�
�

��� � � � � � � � �
� �

� �

� � � � � � � � �
� � � � � ���

�
eff

(3.6)

where an effective resistance
�

eff has been defined:

�
eff � �

� ��� �
� �

The parameter
� � � � controls the deviations from the simple proportionality

between the current and the flux. Since � 
 �
, this causes the current to saturate

at
�

max for large values of the flux, when
�

becomes large. The saturation is most

readily achieved for detectors of large resistance, where the internal voltage drop
� �

may attain values of hundreds of volts at relatively small flux. By including in

Eq. (3.6) the spread in ��� we obtain

� � � � � �
�
�

eff

�
� �
� � � � � ����� � ����	 ���
 �� � �

� � � � � � � ��� ��� � � 

� � � � ���

� � � � � ��� (3.7)

This formula represents the operational method furnished by the model to mea-

sure the bakelite resistance of the RPC. It will be used in the following to fit the
�
� � � curve, and in particular to extract

�
eff from its slope.

To compute the true resistance
�

from
�

eff, the value of
�

is also necessary.

If
�

is a priori known to be large, the correction can be neglected. Otherwise,
�

must be obtained by fitting the current at different values of the flux.

It is important to underline that due to the factor
� � � � � � � , if

�
is large,

a simple estimate can be sufficient: the correction introduces in fact only a very

small uncertainty on
�

. So the method works better under high-flux conditions

and for large resistance values, since in this case
� � � .

We have seen how the Eq. (3.2) and its generalized version Eq. (3.6) account

for the first two characteristics of a RPC under high flux conditions, enumerated

in Section 3.6. Nevertheless the same relations also make an explicit prediction

about the dependence of the current on the temperature. Since we expect that

the variation of ��� with temperature would be negligible, the dominant effect on
�

comes from the exponential dependence of the phenolic plates resistivity on the

temperature. Hence the model gives a simple way to correct experimental data for

temperature effects.

Finally we want to remark that this method allows to measure the resistivity

of a RPC in a non-destructive way, during chamber operation. It only requires

the detector to be exposed to high radiation environment. Thus it turns out to be

very useful for the periodical monitoring of the bakelite properties required by the

aging test.
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3.8 Comparison with data

3.8.1 Current versus photon flux

The study of the current dependence upon flux has been performed by placing

the detectors close to the source, in position 1. Figure 3.12 shows the current of

RPC A, measured at several filter absorption factors, for two different values of the

applied voltage � � (10000 and 10800 V) well above the threshold voltage ��� . The

nominal filter absorption of the source was varied between 1 and �	��� . Saturation

is evident already at low flux values (Abs ��� � � � � 
 ).
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Figure 3.12: RPC current measured at fixed � � (10800 V, solid circles; 10000 V,

open circles), plotted against the inverse of the nominal source absorption factor.

The curves are the predictions of the model.

Considering that the dependence of the flux from the source absorption factor

is
� � Abs � � � � � � � � , and that

� 
 �
, from Eq. (3.6) one has

� � Abs � � � � � � ��� � � � �
Abs

� � � � � � (3.8)

This relationship was used to fit the data of the current versus the inverse of the ab-

sorption factor, using the value of
� � ��� � obtained from Figure 3.7, and

� � Abs=1 �
as a free parameter. We obtained

� � � � ��� ��� � 	 �����
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leading to a saturation of 98%. This implies only a minor correction to the resis-

tance value, so that one can consider
�

eff � � .

As expected,
�

was smaller at larger distances from the source, since it de-

creases proportionally to the flux. Going from � � � cm to � � ��� cm the saturation

corrections became as low as 75%. For that reason, the resistivity measurements

were normally taken at the minimum possible distance, about 55 cm.

Note that the data of Figure 3.12 are in very good agreement with the model

over almost three orders of magnitude on the flux.

3.8.2 Resistance measurements

HV (V)
7500 8000 8500 9000 9500 10000 10500 11000

A
)

µ
I (

0

1

2

3

4

5

6

Chi2 / ndf = 95.72 / 27
 2.032 ±) = 333.3 ΩR (M

 5.169 ±   = 378.7 σ
 5.625 ±    =  8773 TV

 0.001348 ±p4       = 0.2225 

C   (8/11)°RPC A    19.2  

HV (V)
7500 8000 8500 9000 9500 10000 10500 11000

A
)

µ
I (

0

1

2

3

4

5

6

Chi2 / ndf = 95.72 / 27
 2.032 ±) = 333.3 ΩR (M

 5.169 ±   = 378.7 σ
 5.625 ±    =  8773 TV

 0.001348 ±p4       = 0.2225 

Chi2 / ndf = 95.72 / 27
 2.032 ±) = 333.3 ΩR (M

 5.169 ±   = 378.7 σ
 5.625 ±    =  8773 TV

 0.001348 ±p4       = 0.2225 

HV (V)
7500 8000 8500 9000 9500 10000 10500 11000

A
)

µ
I (

0

1

2

3

4

5

Chi2 / ndf =  1385 / 27

 1.739 ±) = 382.5 ΩR (M
 2.128 ±   = 270.8 σ

 3.091 ±    =  8858 TV

 0.0001865 ±p4       = 0.04123 

C   (8/11)°RPC B    19.2  

HV (V)
7500 8000 8500 9000 9500 10000 10500 11000

A
)

µ
I (

0

1

2

3

4

5

Chi2 / ndf =  1385 / 27

 1.739 ±) = 382.5 ΩR (M
 2.128 ±   = 270.8 σ

 3.091 ±    =  8858 TV

 0.0001865 ±p4       = 0.04123 

Chi2 / ndf =  1385 / 27

 1.739 ±) = 382.5 ΩR (M
 2.128 ±   = 270.8 σ

 3.091 ±    =  8858 TV

 0.0001865 ±p4       = 0.04123 

Figure 3.13: Current vs. � � for RPC A (top) and RPC (bottom) for source nominal

absorption factor 1. The fitting function is Eq. (3.7).

Typical
�
� � � curves taken for minimum GIF absorption factors (Abs=1) are
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shown in Figure 3.13 for the two detectors under test. A perfect linearity is ob-

served above a certain threshold voltage. The curves are fitted by Eq. (3.7) and

the resistance
�

eff, the average threshold voltage � � and its rms ��� are extracted.

Note that the resistance can be simply obtained by the slope of the linear part of

the curve

� � eff � ��� � 
 �


 � �
In this particular example, referring to the end of the aging test, the two detectors

have large resistance of few hundreds of M
�

, conducing to resistivity around � �
� � � 
 �

cm. Due to this large resistance and to the high radiation flux, the saturation

value was very close to 1, so that the computed
�

eff can be safely approximated

with the real
�

.

We want to recall here that since the main contribution to the resistivity of the

electrodes is given by the phenolic resin, the resistance measured can be consid-

ered as the bakelite bulk resistance.

3.8.3 Efficiency measurements
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Figure 3.14: Efficiency of RPC A for different absorption factors. On the left the

data are plotted vs. � � . On the right they are plotted vs. � gap � � � �
� �

using the

value of
�

determined by the model.

The model is based on the hypothesis that all the physical properties of a RPC

depend on � gap, including the detection efficiency of the detector. This guess had

already been used elsewhere to extract
�

from efficiency curves [51, 52, 53]. Now

we want to interpret the efficiency curves of RPCs for minimum ionizing particles

(MIPs) using the values of
�

obtained by the method presented, in order to get a

further validation.

Measuring the MIP efficiency as a function of � � in presence of a large photon

background rate from the GIF, several curves for different absorption factors are
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obtained (Figure 3.14, left). On the other hand, when the efficiency is plotted as

a function of � gap � � � �
� �

, using the value of
�

determined by our model, the

curves join as expected (Figure 3.14, right).

This represents a strong cross-check which further validate the model, since

the resistance found by the
�
� � � curve and that found by making the efficiency

independent from the flux are two uncorrelated measurements.

3.8.4 Argon based measurements

We want now to remark that the presence of a high background radiation is not

mandatory for the validity of the model. The only condition needed is that the

current flowing through the electrodes is large enough to create a sensible voltage

drop and to originates the negative feedback effect. This can be produced either

by an intense external radiation source, or by a particularly ionizable gas. As a

prove a test has been made by fluxing a RPC with pure argon, and measuring the

current as a function of the high voltage, with no radiation present. The curve is

plotted in Figure 3.15, showing a perfect linearity above the threshold.
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Figure 3.15: I-V curve for a 150 � 30 cm 
 RPC fluxed with pure argon. The fitting

function is Eq. (3.7).

The data are well fitted by Eq. (3.7), the function predicted by the model. The

comparison with standard curves of Figure 3.13 exhibits a much lower thresh-

old voltage (2033 V for argon against 8800 V) and a much sharper transition to

avalanche regime ( � ����� � � � � � for argon against � ����� � ��� for standard mix-

ture). Considering that the dimension of the detector in this case were 150 � 30 cm 
 ,

the resistivity is computed to be � � � ��� � � � � � � �
cm, a value in agreement with

the building specification.
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3.8.5 Temperature effects

Under the assumption that the RPC plates resistance is due to the bakelite, the

temperature dependence of the RPC resistivity should be the same as for bakelite

bulk resistivity, i.e. it should have the form:

� � � 
 � ��� �
� � ��
 
 � � 
 ��� (3.9)

where 
 is the temperature in � � and 
 
 � � � � � � is the reference temperature.

Measuring directly the bulk resistivity on three different bakelite samples we ob-

tained � � ��� ����	 ��� � �
In Figure 3.16, the measurements of the resistance of RPC A and B are shown as

a function of the temperature. An exponential fit of these data gives a temperature

coefficient 
 � � � ��� ����� 	 ��� � ���
in nice agreement with that of the bakelite itself. This represents another clear

hint that we are really measuring the volume resistivity of the bakelite.

15/05/2002

14/06/2002

R20A = (154.6 ± 37.4) MΩ
αA = 0.134 ± 0.036

R20B = ( 79.2 ± 1.6) MΩ
αB = 0.121 ± 0.012

R20B = ( 97.3 ± 2.2) MΩ
αB = 0.126 ± 0.003
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Figure 3.16: Resistances of RPC A and B plotted versus temperature. The temper-

ature coefficient � is fitted using the exponential function.

As observed above, Eq. (3.6) allows to correct the RPC current measurements

for temperature effects, that are introduced through
�

, allowing an unambiguous

normalization of the current itself, for example at 20 ��� . This is shown in Fig-

ure 3.17, where the effect of 24-h temperature oscillations is almost completely

corrected.
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Figure 3.17: Time evolution of currents for RPC A and B under GIF irradiation.

Raw currents are on the left, showing typical daily oscillations. The corrected

currents at 20 � � are on the right.
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Figure 3.18: Current of RPC A corrected for temperature plotted versus time for

the first year of aging test.
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Figure 3.18 presents the corrected current (normalized at 20 � � ) of RPC A as

measured during the first year of irradiation test. Apart from some jumps, related

to occasional changes in the high voltage, changes in the gas composition and to

the insertion or removal of other detectors between the GIF and the RPC, a steady

exponential decrease of the current is clearly observed, of almost one order of

magnitude. These data have provoked a great astonishment, as a probable hint

of an aging affect. The current decrease has been attributed to a corresponding

increase of the detector resistivity, which seems to be the main effect of RPC aging.

3.10 Accumulated charge

In 2000 we irradiated in steady conditions three samples of bakelite with differ-

ent resistivity by means of a very intense � � Co photon source [33]. The material

demonstrated that its conductivity properties were not altered up to huge radi-

ation doses, as high as 20 kGy, corresponding to few thousands years of LHCb.
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Figure 3.19: Accumulated charge density for RPC A (top) and RPC B (bottom) as

a function of time.

Now we want to test the material when it is assembled inside a complete detec-

tor, and is traversed by a current flux. The parameter used to measure the amount

of current flowing in a detector is the accumulated charge per surface unit, and it

is commonly used to also measure the aging.

In wire chambers for example, the corresponding parameter the accumulated

charge density per wire length. The LHCb MWPC are going to integrate up to
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1 C/cm in ten of working. In a similar way we can evaluate the total charge density

that will be accumulated in ten years of LHCb by the RPCs. The average expected

flux in the Muon system is 375 Hz/cm 
 , corresponding to half the maximum

flux expected in station 4 region 3 (see Table 2.1). The average avalanche charge

produced by a low energy photon, supposed to be the main contribution to the

background in LHCb, is 30 pC, twice the charge from a minimum ionizing particle.

Then the current density flowing in the electrodes is 11.25 nA/cm 
 , corresponding

in ten years ( �	� � s) to 1.1 C/cm 
 . In order to accumulate such amount of charge

in a reasonable time, the detectors were placed as close as possible to source,

to increase the background rate, and were operated at a voltage of 10.8-11 kV,

corresponding to the end of the efficiency plateau, to increase the current flow.

Figure 3.19 shows the accumulate charge density for the two detectors as func-

tion of time. Because of a not very steady GIF duty cycle, at the end of the first

year the irradiated RPC could reach the value of 0.4 C/cm 
 , corresponding to 6

LHCb-years in the innermost region (M4-R3) and a little less than 2 LHCb-years

in the outermost region (M5-R4).

After the reported period the chambers have not been able to accumulate much

more charge, because their resistivity increased, even that of the reference RPC,

so that the currents drawn were tiny, as viewed in the previous section.

3.11 Resistivity versus time

A systematic set of measurements of RPC electrode resistivity was regularly per-

formed using the method described in section 3.7 starting from January 2001. In

order to compare measurements taken at different temperatures, all the temperature-

depending quantities have been rescaled to the reference temperature of 20 � � .

The values of � 
 � for the first years are reported in Table 3.3 for RPC A, with

the accumulated charge density.

Table 3.3: The time evolution of the accumulated charge density and the resistivity

for RPC A and RPC B from 1999 to 2001.

RPC A RPC B

Date
�

� � � (C/cm 
 ) � 
 � � �	� � �
�

cm � �
� � � (C/cm 
 ) � 
 � � � � � �

�
cm �

Oct 99 0 � 2 0 � 4

Jan 01 0.076 6.6 	 0.5 - -

Mar 01 0.110 8.5 	 0.7 - -

Jul 01 0.361 26 	 2.3 - -

Aug 01 0.42 39 	 4 0.05 13 	 1.2

Dec 01 0.42 69 	 6 - -

Since the method used to measure the resistivity has been developed in 2001,
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we have had to recover old data in order to estimate the RPC resistivity in 1999.

The Figure 3.20 represents the measurement of the current as a function of the

GIF flux intensity, the analogous of the Figure 3.12. It is clear that saturation was

not at all reached in 1999, so that the resistivity could not be directly extracted by

fitting the
�
� � � curve.
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Figure 3.20: The current of RPC A (top) and RPC B (bottom) at fixed HV (10200 V)

plotted against the inverse of the GIF absorption filter. The data were taken in

October 1999. Comparing with Figure 3.12 the saturation effect is here very small,

or absent, due to the small resistance of the RPCs.

The
�

term is in fact very small. By fitting the currents with Eq. (3.8) one

has
� � ����� 	 ��� � � for RPC B, and

� � ��� � � at 95% CL for RPC A. This fact

suggests that the initial resistivity of the RPCs was much lower than in 2001, at

the beginning of the aging test. Although the value of
�

can not be extracted for

such a low saturation value, an alternative indirect method is possible to evaluate

the resistance of the detectors.

Recalling that
� � �

�
, and knowing that � did not change from 1999 and

2001 (same distance from the source and roughly same activity) we can scale
�

according to
�

, and conclude that the RPC A resistivity in 1999 was less than

� � � � � � � � �
cm. The resistivity of RPC B was a factor 2 larger, namely � � � � �	� � � �

cm.

Since temperature was not monitored in 1999 an estimation have been done

to obtain the reference values at 20 � � . Basing on meteorological archives, the

average temperature in the test area has been evaluated in 23 ��� , meaning a

correction factor of 1.8. The corrected resistivities are then � 
 � � � � �	� � � �
cm for

RPC A and � 
 � � � � � � � � �
cm for RPC B, in fair agreement with the nominal

building value.

After this period the detectors were stored for a year (2000). At the beginning
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Figure 3.21: The resistivity for RPC A (top) and B (bottom) during 2002. The

linear fit gives a slight steeper slope for RPC B.
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of the aging test (January 2001) we found that the resistivity of RPC A had already

increased by a factor 3. It increased another factor 6 during the irradiation period

(January-August), when 0.42 C/cm 
 of charge density were accumulated. The

increase continued even after August, when irradiation was stopped, confirming

a clear contribution not related to irradiation. This is confirmed by the reference

RPC, whose resistivity was measured again in August 2001, which increased from
� � � � � � � �

cm to � � � � �	� � � �
cm, in spite of the low charge density accumulated

(0.05 C/cm 
 ), mainly due to scattered photons or discharge currents.

From 2002 the detectors were both installed in front of the source and the

resistivity was measured as frequently as possible. The results are plotted in Figure

3.21.

In the first 225 days the resistivity of both chambers continued increasing, even

though, because of the high value reached, the currents drawn were tiny (about

5 nA/cm 
 ), so that negligible charge was accumulated during this period. The

trend is rather linear, with RPC B showing a slightly steeper slope than RPC A. In

fact this chamber, although never irradiated before, soon reaches resistivity values

similar to the other, ending up the period with even a higher resistivity. These

results suggest that a pure “temporal” effect also contributes to the RPC aging,

and that this would be the main aging effect over 10 years of operation in LHCb.

3.11.1 Humid gas flow

The phenomenon of the increase in bakelite resistivity is thought to be related to a

decrease of the water content in the bakelite plates. While water evaporation from

the plates is always present, it is probably enhanced both by the current flowing

in the electrodes and by the flux of dry gas in the chamber. It is already known,

on the other hand, that humidity plays a crucial role in the conductivity process

of the bakelite [42]. To verify this interpretation, and to check if the effect could

be reversed, during 2003 we started a series of measurements flushing our RPCs

with a humid gas mixture.

1.2% of vapor water was added to the usual gas mixture, by bubbling it through

a tank containing water at 7 � � . The high voltage was turned on only for few

minutes, during the measurements, in order to avoid the dangerous formation

of fluoridric acid in the gap, consequently to a molecule breaking caused by the

discharge. The results are shown in Figure 3.22.

In RPC A the effect was limited, while in RPC B the resistivity immediately is

seen to decrease, and dropped a factor 2 in 20 days. When dry gas flow was re-

stored the resistivity rapidly increased in both detectors, resuming the old values.

Stopping the flow of dry gas also resulted in a less rapid decrease of the resistivity.

The different behavior between the two detectors has to be probably ascribed to

building differences.
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Figure 3.22: The resistivity for RPC A (top) and B (bottom) during 2003, when

humid gas was flowed.
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3.12 Rate capability measurements

Since the rate capability is inversely proportional to the electrode bulk resistivity,

the study of the former is basically equivalent to the study of the latter. Further-

more is rather important to check how the increase of the resistivity observed

affects the performances of the detectors under high rates. Whilst the resistivity

of a material is a well defined physical quantity, this is not the case for the rate

capability, that could depend on several variables, e.g. the readout electronics

characteristics. Moreover it is defined by the specific requirements of the experi-

ment.

Hence, in order to study quantitatively the effect, a rate capability definition

suited for RPC detectors must be provided: the rate capability
�

max for a given RPC

detector is the maximum rate the RPC can stand providing 95% efficiency, at the

maximum voltage of 10.6 kV.

This guarantees the 99% efficiency demanded by the trigger of LHCb for the

AND of two chambers, and an operational plateau of about 400 V below 11 kV,

considered the threshold of the streamer regime.

Figure 3.23: The experimental setup at GIF during test-beam with X5 muon beam.

To understand how the aging would affect the detector performances the RPC

efficiency was measured in two test-beams. The tests have been performed in the

same GIF area used for irradiation, by means of the X5 muon beam coming from

the dump of a proton beam extracted from the CERN SPS. Muons comes to GIF

in bunches every SPS cycle, during 14.4 s. A single bunch has a frontal section

of about 10 � 10 cm 
 and contains �	� � particles with an average momentum of

100 GeV/c.

Two scintillators at the very ends of the room provided the trigger, and a ho-

doscope measured the position of the particle with an accuracy of 1 cm. The

detectors were placed centered with respect to the beam and aside with respect to
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the source, though uniformly irradiated by it. The Figure 3.23 shows the setup.

3.12.1 2001 test

As previously seen after one year of aging test the irradiated RPC (A) showed a

serious increase of the bakelite resistivity, which prevented the detector to accu-

mulate a higher value of charge than 0.42 C/cm 
 . In the same period also the

reference RPC (B) accumulated a little amount of charge, 0.05 C/cm 
 , mainly

due to albedo particles. Thus in August 2001 another test-beam was performed to

check the performances of the detectors.

In Figure 3.24 is plotted the efficiency of the RPC A as a function of the back-

ground rate for 5 different values of high voltage. The efficiency is normalized

over the value at source off.

Figure 3.24: The relative efficiency of RPC A as a function of the background rate

for various HV values measured in August 2001 at the GIF. The measurements

have been taken with a temperature of 25.1 � � .

It is seen that the rate capability for this detector, as it has been defined in

Section 3.3, is about 1.15 kHz/cm 
 . Since the rate capability is inversely pro-

portional to the resistivity of the electrodes, this value must be rescaled to the

reference temperature of 20 � � by means of the Equation 3.9, in order to be com-

pared with similar measurements. Considering that the average temperature of

the test was 25.1 � � it is straightforward to find that the rate capability of RPC A

at the reference temperature was 640 Hz/cm 
 .
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Also the resistivity of the RPC A was measured during this test, finding the

value of � � � � � � � �
cm, which reported to the reference temperature becomes

��� � � � � � �
cm (see Table 3.3).

Hence, after one year of test and 0.42 C/cm 
 accumulated charge the resis-

tivity of the RPC increased and subsequently a degradation of the rate capability

performance is found.

3.12.2 2002 test

In the summer of 2002 another comprehensive test was performed, in order to

better quantitatively characterize the effects of aging in RPCs. Figure 3.25 shows

the various efficiency curves for different source absorption factors as a function

of applied voltage for the two RPCs under test. The detectors exhibit very similar

performances, as one could have argued from the fact that the resistivity were

measured to be comparable, even if there is a factor of 8 in the accumulated

charges.

The normalized efficiency as a function of the particle rate (Figure 3.26) shows

that the rate capability of the detectors has decreased down to about 350 Hz/cm 
 for

both RPCs. This means about 200 Hz/cm 
 at the reference temperature of 20 � � .

3.13 Conclusions

We have been extensively studying aging effects on bakelite RPCs for three years,

applying a properly developed method which allows to measure the electrode re-

sistivity during the chamber operation. The results of the three different beam

tests performed over a period of three years are summarized in Table 3.4.

Table 3.4: Resistivity � and rate capability
� 	 �

�
for RPC A in three different beam

tests at GIF. (* RPC B).

� � 	 �
�

T � @ 20 ��� � 	 �
�

@ 20 � �
Test � � � � � �

cm � (Hz/cm 
 ) ( ��� ) � � � � � �
cm � (Hz/cm 
 )

Oct 99 � 1 � 5000 23 � 2 � 3500

Aug 01 20 1150 25.1 35 650

Jul 02 65 350 24.5 110 200

Jul 02 � 45 380 24.5 75 220

The value of the resistivity of the first test is affected by large uncertainties,

being evaluated indirectly by “historical” values, properly rescaled according to

the model. The rate capability too has to be considered not so accurate, because a

comprehensive study of the efficiency dependence from rate was not done. Taking

into account this, all the values of
� 	 �

�
result in good agreement with the �����
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Figure 3.25: Efficiency of RPC A (top) and RPC B (bottom) plotted against the

chamber HV, for different source absorption factors.

dependence, in particular the 2001 and 2002 data, presenting a constant product

of � � 	 �
�
.

At the end of the test the resistivity of the RPC plates shows an increase of

two orders of magnitude, from � � � � �
cm to � � � 
 �

cm. Although irradiation may

contribute, the effect seems mainly to be spontaneous, induced by the drying up

of the bakelite. Humid gas has been flowed with different response: one detector

rapidly decreased its resistivity while the other was much less affected. Restoring

dry gas flow has resulted again in fast resistivity increase for both, making the

method not very useful to recover the detector performances.

As expected the resistivity rise caused a drop in the rate capability, from few

kHz/cm 
 to about 200 Hz/cm 
 . We can estimate how much the Muon system per-

formances would have been deteriorated by such a decrease of the rate capability.
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The combined efficiency of the two stations, each one is covered by a double layer

of RPC detectors is
���

� �
� � � � � � � � � ������� � 
 � 


In Region 3 the average rate is 700 Hz/cm 
 . From Figure 3.26 is seen that the

single RPC efficiency, corresponding to such a rate, for a reasonable value of HV,

is about 65%. The consequent M4&M5 efficiency would be 77%, reducing to 75%

when the whole Muon detector is considered. This would result in an unaffordable

degradation of the trigger performances.

After the results of this comprehensive aging test the LHCb collaboration has

decided to switch to the safer MWPC technology to cover also the outermost re-

gions of the muon detector.
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Figure 3.26: Efficiency of RPC A (top) and RPC B (bottom) plotted against the

particle flux, for different value of high voltage. The measured has been taken in

August 2002 at a temperature of 24.5 � � .



Part II

Physics studies





Chapter 4

Study of ��� � ��� � � ��� 	 process at

LHCb

4.1 Introduction

The �
� boson is the “massive photon” responsible for the weak neutral current

interactions. It was predicted within the electroweak theory and was firstly pro-

duced in a proton-antiproton collision at 540 GeV center-of-mass energy, with its

charged companions W � and W � , at the CERN 
 � ���
 . Then its characteristics

were precisely measured at LEP, where � � and � � beams were tuned just at the

� � resonance energy, to get the highest production cross-section.

The heavy mass ( � 91 GeV/c 
 ) makes the detection of this particle rather

easy. An interesting signature is represented by a couple of leptons with oppo-

site charges and high transverse momenta. This and the large invariant mass of

the particles provide a clear selection strategy and ensures a good efficiency in

the rejection of the combinatorial background, practically negligible at such high

values of � � .

Although the �
� detection does not enter the main LHCb B-physics program, its

features make this channel very useful for calibration and alignment purposes, and

for absolute luminosity measurement. Moreover the particular shape of LHCb, de-

signed to cover low polar angles, turns out to be decisively in the study of peculiar

proton structure functions, selecting quasi-free partons.

In this chapter the process ��� � � � � � � � � will be studied, exploiting the

characteristics of the LHCb detector, in particular the precise muon identification

and the good momentum resolution. The aim of the study is to demonstrate that in

spite of the limited angular acceptance and the optimization for a different kind of

physics, the number of ��� detected at LHCb is sufficient to make profitable physics.

Three possible applications have been individuated and discussed: the calibration

of the spectrometer, the absolute luminosity measurement and the calculation of

the proton structure functions.
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4.2 Hadronic production of � � boson

In the framework of the parton model the hadronic production of a ��� boson
��� � �
� � ���
� � is described as a particular case of the general Drell-Yan process
��� � ���
�	�

�
, schematized in Figure 4.1. If � � and � � are the two incoming beam

µ+

µ−

q
_

pA

pB
q
_

fB

f
q

A

Z0

q

Figure 4.1: The basic � �� � Z � � ���
�	� parton model interaction.

protons in their center-of-mass frame, each with energy 	 � � � 	 , the total squared

center-of-mass energy is then � � � 	 
� � � 	 . The two partons � �� (as well as ��� ) that

enter the hard interaction carry fractions � � and � 
 of the total beam momentum,

i.e. they have four-momenta

�
� � 	 � � � 	 � � ��� � � � � � � ��

 � 	 � � � 	 � � 
 � � � � � � � 
 �

The squared invariant mass of the two partons is defined as

�� � � � � � �

 � 
 � � � � 
 �

The QCD tree level diagrams for the point-like parton process are drawn in

Figure 4.2. The most probable process is the quark-antiquark annihilation ( � �� �
Z � ), which may be combined with a gluon ( � �� � Z � � ) or a photon ( � �� � Z � � )

radiation. Note that differently from the proton-antiproton machines, at LHC the

antiquarks must come from the sea, because only protons are colliding. The other

possible process is the Compton scattering between a quark and a gluon ( ��� �
� Z � ). An example of a possible one loop correction diagram for such a process is

also sketched in Figure 4.3.
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Figure 4.2: Tree level diagrams for ��� production in a proton-proton collision.

From top to bottom there are the quark-antiquark annihilation, the same process

with a gluon or photon radiation, and the quark-gluon Compton scattering.
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q

g Z0

q

Figure 4.3: One loop correction to the quark-gluon scattering diagram.

Instead of � � and � 
 it is often customary to use the related variables � and �

� � � � � 
 �
��
�

� � �
�
� � � �
� 


the first relation thus fixes the product of � � � 
 at LHC ( � � = 14 TeV) to � �
� � � � � �

. It is effortless to demonstrate that the variable � is the rapidity of the

� � boson, so that the single fractional momenta of the quarks and antiquarks are

directly related to the rapidity distribution of the weak boson

� � �
� �


Z
� ��� � 
 �

� �

Z
� � � �

For momenta much larger than the � � mass (� � �
Z), � can be safely approxi-

mated by the pseudorapidity

� ��� � � � �	��
 � ��

� � �
As a consequence the � distributions of the partons can be argued from the

observable pseudorapidity distributions of the muons from the � � decay. In Fig-

ures 4.4 and 4.5 are shown the � distributions for the selected ��� � ���
� � events

in LHCb.

4.2.1 Cross-section

The cross-section for the Drell-Yan process in the parton model at first order of

approximation for � �� fusion is [54]

� �
� � 
 �

� � � � � � � � � � � �
� � � �	

��� 
 � �

�
��� � 
� ��
�

�
� �

��
�

�
� 
� � �

� � � � �
� ��
� � � 
 � � � ��

� � � � �
� �
� � � 
 ��� � � � 
 � �� � (4.1)

with
�� �

�

Z in the case of the ��� production The first factor in brackets is the

high energy QED cross-section for � � � � � �����	� , since � �� � �����	� is the same
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Figure 4.4: Fractional momentum of the upstream parton plotted against the frac-

tional momentum of the downstream parton. Their product is a constant.
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Figure 4.5: Fractional momentum distributions of the downstream parton (top)

and upstream parton (bottom).
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apart from the quark charge. The extra factor 1/3 accounts for the fact that all

three colors of � and �� occur with equal probability, but only a � and �� of the same

color can annihilate to form a colorless boson. The
� � � � � are the quark structure

functions, which must be known at different values of fractional momenta � , in

order to evaluate the integral.

The production cross-section of ��� boson has been recently measured at the

Tevatron collider, the proton-antiproton machine with � � = 1.96 TeV (see Fig-

ure 4.6). The last updated results for the � � � � � � � cross-sections are � Z � � Z �
��� � = 246 	 6(stat.) 	 12(syst.) 	 15(lum.) pb and � Z � � Z � ��� � = 263.8 	
6.6(stat.) 	 17.3(syst.) 	 26.4(lum.) pb, for CDF and D 	 experiments respec-

tively [55]. Both measurements are consistent with the Next-to-Next-to-Leading-

Order (NNLO) theoretical calculation of 250.5 	 3.8 pb [56]. All the values al-

ready include the branching ratio for the ��� decay mode, which is (3.367 	 0.008)%.
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Figure 4.6: W � � � and �
� � ��� cross-section measured by CDF and D 	 at

� � = 1.96 TeV. The data match with the theoretical NNLO calculation represented

by the solid lines.

Recently a NNLO estimation of the ��� production cross-section has been done

for the LHC energy of 14 TeV as well [57]. At such a higher energy the cross-

section is foreseen to be almost an order of magnitude larger, as high as

� Z � � Z � �
� � = 1.86 	 0.07 nb (see Figure 4.7).

4.3 Luminosity monitor

LHCb will have a great potential to make various precision measurements in the B

physics sector and to discover New Physics. It is designed to provide high statistics
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Figure 4.7: Total proton-(anti)proton cross-sections as a function of � � . The rela-

tive values for Tevatron and LHC are marked. The figure is taken from [58].
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B related data samples, and the accuracy of the precision measurements will be

limited by systematics effects and, in some case, by the uncertainty in the measure-

ment of the luminosity � . Although a mere relative luminosity knowledge, simply

achievable by counting the total event multiplicity, is sufficient to determine given

quantities (e.g. branching ratios), the absolute luminosity value is needed to com-

pute the cross-sections.

In general there are two possibilities to determine the luminosity. Either to

measure a pair of cross-sections which are connected quadratically with each

other, or to measure a cross-section whose value is well known or which may

be calculated with good accuracy. The well-known example of the first possibil-

ity is the measurement of the total and differential forward elastic cross-sections

which are related by the optical theorem. This method requires dedicated detec-

tors placed as close as possible to the beam, and is used at LHC by the TOTEM

experiment [59].

Several types of processes stand out as examples of the second possibility to

measure the luminosity. One is the exclusive lepton-pair production via photon-

photon fusion
��� � ��� � � � �

Luminometers for LHC based on such a process, measuring either � � � � pairs [60]

or � ��� � pairs [61] have been proposed.

Recently attention has also focused on W and � � production as a possible lu-

minosity monitor. The reason is that the signal is clean, and the production cross-

sections are large and can now be calculated with considerable theoretical accu-

racy [57].

A Next-to-Next-to-Leading-Order (NNLO) calculation at the LHC center-of-mass

energy is reported in Figure 4.8, for both the weak bosons. The figure shows the

Figure 4.8: The prediction of the cross-sections for W and ��� production and

leptonic decay at LHC obtained from global analysis of the same data set

MRST00 [62].The band of the NNLO predictions takes into account the ambiguity

in the corresponding splitting functions [63].
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successive approximations starting to Leading-Order (LO). The final result has an

error band, accounting for uncertainties in some deep inelastic coefficient function

and in ��� �
�

� � , of about 1%. However the uncertainties in the input of the quark

density functions mean that the error could, conservatively, be as large as 	 4%

(see Figure 4.9).

Figure 4.9: The predictions of the cross-section for ��� production and leptonic

decay at LHC obtained using various NLO and NNLO sets from MRST99 [64] and

MRST00 [62].

As seen from Figure 4.8, the cross-section for the charged W bosons is more

than an order of magnitude larger respect to the neutral � � . This would sug-

gest the use of W � � � events, to measure the luminosity. Although this channel

keeps all the characteristics of ��� � ���
�	� concerning the very low background,

the presence of the undetected neutrino causes a more complicated reconstruc-

tion, especially in a non hermetic detector like LHCb. Hence for the purpose of

this thesis only the � � � � � � � process has been considered, with the proposal of

studying W � � � in the future.

Once the cross-section is known the luminosity can be calculated by the rela-

tion:

� �
�

Z �����

� Z � � ����� � � �����
where

�
Z ����� is the event yield observed, � Z � is the cross-section, �	��� is the branch-

ing ratio for the relevant channel, and � ��� � is the total efficiency of the detector.

Note that in order to limit the statistical uncertainty below the 4% of the theo-

retical error, about � � 
 events must be collected.

4.4 Spectrometer calibration

One of the hardest difficulties encountered in a very complicated experiment like

LHCb is to study and to control the systematics. An exact alignment of the sub-
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detectors and a precise calibration of the spectrometer are needed to perform an

accurate physics analysis.

A by-product of selecting the channel � � � � � � � is to store tracks with huge

momentum value. The decaying muons momentum range can be evaluated by the

relation �
Z


 
 	 �
� � �

� �
�

Z


 
 	 ���
where 
 
 is the opening angle between the two muons. Considering 40 mrad and

700 mrad respectively as the minimum and maximum possible angle one gets that

the muon momentum is comprised between 130 GeV/c and 2275 GeV/c.

These tracks are very little affected by the multiple scattering in the material,

and can be used off-line to precisely align the various detectors downstream to the

magnet.

Another possible applications of the collected data sample of � � � � � � � is

the calibration of the LHCb spectrometer. The � � boson mass is known with an

accuracy 

�
�
�

� � � � �

. This can be used to correct any systematic effect in the

measurement of the particle momentum. Furthermore the very high momenta of

the decaying muons allow to calibrate the resolution of the spectrometer up to few

TeV/c region.

4.5 Study of quark distribution functions

We have seen in Section 4.3 how decisively the quark density affects the cross-

section. They enter the theoretical calculation through the parton distribution

functions (or structure functions)
� � � � � �


 � , which parameterize the probability to

find a parton
�

with a fraction � of the beam energy ( � � � 

� � ����� � 	 � � � 	 ) when the

beam particle is probed by a hard scattering at the scale
�

 .

If
�� is the parton cross-section for a given process, then the hadron cross-section

may be written as

� �
�
�
� �
�
� 

�
� � � � �

� 
 � � 
 � � 
 �
� 
 � �� (4.2)

The relevant types of partons in the case of the proton are the valence and sea

quarks (or antiquarks) and the gluons. Many different sets of parton distributions

exists in literature for the proton [65]. These are usually determined from exper-

imental observables in lepton-hadron deep inelastic scattering (from fixed target

and HERA experiments) and Drell-Yan lepton pair production processes at hadron

colliders [66]. The experimental data are fitted with the constrain that the
�



dependence is in accordance with the standard QCD evolution equations. An ex-

ample of proton structure functions taken by the CTEQ 4L data set [67] is shown

in Figure 4.10. The momentum-weighted combination �
� � � � � �


 � , for which the

normalization condition � ��� � � � � � � � � �

 � � � normally applies, is drawn for � �

and
����� � valence quarks and for sea quarks, as a function of � at

�

 �

�

	 .

Whilst the � distributions of the valence quarks are now well constrained, un-

certainties for the � distributions of sea quarks and antiquarks and gluons remain
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Figure 4.10: Momentum-weighted proton structure functions for � � and
��� � �

valence quarks and for sea quarks-antiquarks, plotted against the fractional mo-

mentum � for a fixed
�

 �

�

	 . The data set is CTEQ 4L, the standard PYTHIA

generator input.

important. As a result the total cross-section prediction of ��� boson production is

much more inaccurate than the point-like QCD calculation would allow.

Thus precisely measuring the ��� production cross-section, and assuming that

the parton cross-section
�� is known with good accuracy, from Eq. (4.2) the parton

distribution functions
� � � � �


 � can be determined at
�

 �

�

	 for different � . Note

that at LHC, in contrast to proton-antiproton colliders like Tevatron, the antiquarks

entering the process have to come from the sea. Hence the possibility to highly

improve the accuracy of the poorest known distribution functions is realized.

4.6 ����� � � � � � � � simulation

In order to study the ��� � ��� � ��� �	� process, 50000 events have been gener-

ated and the complete response of the LHCb detector has been simulated. The

whole analysis work was centrally realized at CERN, on the Linux cluster LX-

PLUS/LXBATCH [68], a farm of about 1000 machines providing computing power

to CERN users.
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4.6.1 Event generation

The generation of the data sample is performed using the FORTRAN program

SICBMC, which embeds different packages to implement different tasks.

The proton-proton interactions are generated using PYTHIA 6.2, the standard

event generator in high-energy physics, continuously tuned to reproduce the latest

experimental results. All the tree level processes described in the previous section

are included in the simulation of the ��� production. Elastic proton-proton scatter-

ing (��� � ��� ), single diffraction (��� � � � ), and double diffraction (��� �
���

)

processes are considered as well, in order to simulate the underlying event. Being

interested only in real ��� bosons, the �
� / � � interference structure has been not

considered, just including the ��� matrix elements, so that only “on mass-shell”

� � are generated.

The decay of unstable particles is performed by the QQ program. In order to

save CPU time and increase the event generation efficiency, the � � is forced to

decay to ���
� � , which are required both to have a polar angle less than 400 mrad,

representing the limit angle a track may have to leave hits in at least three VELO

stations. To save further generation time the Monte Carlo always try to change the

sign of the � component of the momentum before rejecting a track as outside the

acceptance.

The tracking of the decay products through LHCb is performed by the GEANT

package. The detector geometry and material are described in detail, including

the active detector components and their front-end electronics, passive materials,

such as the beam-pipe, infrastructural supports, and so on. Low-energy particles,

mainly produced in secondary interactions inside the detector, are also traced ap-

plying a cut-off of 10 MeV for hadrons and 1 MeV for electrons and photons.

The whole SICBMC program is to be replaced by its C++ counterpart, called

GAUSS, which makes use of GEANT4.

4.6.2 Detector response

The digitization and the reconstruction of the event is performed by the C++

program BRUNEL. The response of various sub-detectors is simulated, introducing

the detection efficiency, the spacial resolution and the electronic noise.

Then the reconstruction algorithms elaborate the different hits producing tracks,

vertices and particles with determined properties, prompt for the analysis.

Recently the digitization phase has been split from BRUNEL and performed by

a dedicated package called BOOLE. BRUNEL is now ready to receive as its input

either simulated hits or real detector response.

4.6.3 Physics analysis

Finally the events are analysed with the C++ program DAVINCI, in order to select

the interesting physics and reduce background. All the Monte Carlo information
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is available in the analysis (“MC Truth”), though it is absolutely hidden in the

reconstruction phase.

Unlike what is going to happen during real data taking, the trigger filter is also

applied in DAVINCI. The L0 and L1 algorithms however, just flag the triggered

events, providing the complete on-line and off-line selection for any kind of study.

4.7 Event selection

In Figure 4.11 is schematized a generic ��� event, with some of the properties of

the reconstructed tracks used in the event selection. Every track has its own impact

parameter (IP) respect to the primary vertex, i.e. to the primary interaction point.

In the case of a ��� production this should be the only vertex present in the event,

as it coincides with the secondary vertex, i.e. the common muons decay vertex.

To identify muons originating from the interaction point from those arising from

IPµ

IPµ

IP Z
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Figure 4.11: Schematic representation of a reconstructed � � � � � � � event. Some

of the track parameters used for the selection are indicated. IP is the impact pa-

rameter respect to the primary vertex and Dof is the distance of flight.

long-lived particles (e.g. from semileptonic decay of B mesons) a small impact

parameter is requested.

In the figure are also drawn the impact parameter of the � � and its distance of

flight (DoF). Having the ��� a � � = 0.08 fm, it does not fly at all, so that both these

quantities must be compatible with zero, within the reconstruction error.

Hence the topology of the channel is very simple, with two muons with op-

posite charge coming directly from the interaction point whose invariant mass is

near the � � boson mass. The event reconstruction thus requires to look for muons

with very low impact parameter and � � with small impact parameter and distance

of flight.

The selection algorithm starts with the reconstruction of the primary vertex,

i.e. the determination of the � coordinate of the primary collision. The interaction

region has a Gaussian distribution with � � 5 cm around the nominal interaction

point. All the tracks reconstructed in the VELO are used to identify the primary

vertex, in order to get the best resolution. The analysis is performed only for single
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interaction events, and in case more than one primary vertex is found, the event

is skipped.

Then the reconstructed tracks identified as muons are selected. The particle

identification algorithm combines the informations from different sub-detectors:

the RICH system, the ECAL and HCAL calorimeters, and the Muon system, of

course, which provides discrimination between hadrons, electrons and muons.

For the �
� � ���
�	� channel the most relevant source of misidentification is rep-

resented by the pions that succeed in traversing the muon filter (punch-through).

The Table 4.1 reports the muon identification efficiency and the misidentification

probabilities for b � � X events. Although the momentum range for the muons de-

Table 4.1: Muon identification efficiency (%) and particle misidentification proba-

bilities (%) for b � � X.

Nominal Maximal

background background
� � 94.0 	 0.3 94.3 	 0.3
� �

0.78 	 0.09 3.5 	 0.2
���

1.50 	 0.03 4.00 	 0.05
���

1.65 	 0.09 3.8 	 0.1
���

0.36 	 0.05 2.3 	 0.1

caying from b quarks is rather lower respect to the ��� muons, the reported values

may give an idea of the performances of the LHCb detector.

The next step is to make all the possible � ��� � combinations. For each of them

an unconstrained vertex fit is performed and the single impact parameters respect

to the primary vertex are calculated. If a di-muon is likely to come from a same

decaying particle, the invariant mass is calculated and a � � boson candidate is

created. The impact parameter and the distance of flight of the � � are then eval-

uated. Very rarely ( � ��� � � ) the algorithm finds more than one ��� candidate, in

which case the whole event is skipped.

4.7.1 Definition of selection cuts

Ten different selections parameters are used to isolate the signal decays of interest.

They are described in the following (see also Figure 4.11). In order to optimize

the selection, every couple of muons is divided accordingly to the largest and the

smallest of each parameter, and separate cuts are applied. Pairs of tracks identified

as muons with opposite charge are formed requiring:

� the track with the smallest momentum � to have � � 60 GeV/c;

� the track with the largest momentum � to have � � 100 GeV/c;
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� the track with the smallest transverse momentum � � to have � � � 10 GeV/c;

� the track with the largest transverse momentum ��� to have � � � 20 GeV/c;

� the track with the smallest impact parameter significance respect to the pri-

mary vertex IP ��� IP to have IP � � IP � 3

� the track with the largest impact parameter significance respect to the pri-

mary vertex IP ��� IP to have IP � � IP � 5

Each pair surviving these conditions is fitted to a common vertex and used to form

a � � candidate. The � � candidates are created requiring:

� the di-muon vertex fit to have a chi-square � 
 � 5;

� the di-muon invariant mass to lie within a 	 25 GeV/c 
 window centered on

the nominal ��� boson mass;

� the ��� candidate to have an impact parameter significance respect to the

primary vertex IP � � IP � 5;

� the � � candidate to have a distance of flight significance DoF � � DoF � 5;

For a Gaussian error the significance indicates the displacement of a certain

quantity from zero in units of standard deviations, and is therefore the most mean-

ingful statistical variable. Requiring an impact parameter significance IP � � IP � 5

means that the impact parameter must be compatible with zero within 5 standard

deviations. This is no more true if the error is not Gaussian, which could happen

in case of a bad reconstruction.

4.7.2 Trigger selection

Events surviving the off-line selection are then passed through the L0 and L1 trig-

ger simulation algorithms. The complete off-line and on-line performance of the

detector can then be studied.

As seen in Section 1.3 the LHCb trigger project includes a third level, com-

monly referred to as High Level Trigger (HLT), still under development. Anyway

preliminary considerations suggest that because of the high signal to background

ratio of the �
� � ���
�	� channel, a minimal bandwidth can be achievable in the

HLT without a further reduction of the event rate, that is maintaining an efficiency

of the order of 100%.

4.8 Selection efficiencies

The total signal efficiency is calculated as the fraction of signal events that are

triggered (by L0 and L1), reconstructed and selected with off-line selection cuts.

It can be factorized as

� ��� � � �
� � � � �

� ����� � � � � �
� � ��� � � � � � � ��� � � � � � �
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The different efficiencies for ��� � ���
�	� are summarized in Table 4.2 and are

discussed below.

Table 4.2: Summary of signal efficiencies for ��� � ���
�	� . The error is statistical.

The number of processed events are reported as well.

Event number Efficiency (in %)

Generated in 4 � 110766

Generated in 400 mrad 49734 �
� ��� = 44.9 	 0.2

Reconstructible 16205 �
� � ��� � � � = 32.6 	 0.2

Reconstructed 15460 �
� ����� � � � = 95.4 	 0.2

Selected 14359 � ����� = 92.9 	 0.2

L0 passed 13955 ���
� = 97.2 	 0.1

L1 passed 8711 ���
� = 62.4 	 0.4

Total efficiency � ����� = 7.9 	 0.1

� generation efficiency ( �
� ��� ). This is the efficiency to generate events with the

required cut at 400 mrad. This ratio is much greater than the corresponding

solid angles ratio ����� � � = 13% because at the LHC energy the muons decay-

ing from �
� are considerably forward boosted at low polar angles, in spite of

their large transverse momentum, as can be seen from Figure 4.12, showing

the theta distributions of the two decaying muons. It is also evident how the

polar angles of the two opposite charge muons are highly correlated.

� reconstructible efficiency ( �
� ��� � � � � ). It is not an easy task to precisely deter-

mine the geometrical acceptance of a such complicated detector as LHCb is.

The reconstructibility notion helps in the determination of whether a certain

track is likely to be effectively reconstructed by the apparatus, including the

geometrical acceptance and any possible material effects in the detector. A

Monte Carlo event to be reconstructible implies that all the final state parti-

cles are reconstructible. A stable charged MC particle can be reconstructible

in one of the following categories:

Long track: the particle has 3 � +3
�

VELO clusters and 1 � +1 � � � � � � clusters

in each of the 3 Tracking stations.

Upstream track: the particle has 1 � +1 � � � � � � clusters in each of the 3 Track-

ing stations and 3 Trigger Tracker clusters.

VeloTT track: the particle has 3 � +3
�

VELO clusters and 3 Trigger Tracker

clusters.

The most of the muons decaying from � � are reconstructible as Long tracks.

� reconstructed efficiency ( �
� ����� � � � ). A decay to be effectively reconstructed im-

plies that all the final state particles are reconstructed, meaning that an as-
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Figure 4.12: Polar angles of the two muons decaying from ��� boson in 4 � .

sociation has been found between the real reconstructed track and a corre-

sponding reconstructible MC track. This association is done if:

Long tracks share at least 70% of the clusters in the VELO and 70% in the

Tracking stations.

Upstream tracks share at least 70% of the clusters in the Tracking stations

and have no more than 1 different cluster in Trigger Tracker out of those

used.

VeloTT tracks share at least 70% of the clusters in the VELO and have no

more than 1 different cluster in Trigger Tracker out of those used.

The reconstruction efficiency is well above 90%, as expected for muons with

such a high momentum. The value in is fair agreement with the muon iden-

tification efficiency for b events (see Table 4.1), which result to be practically

independent from the momentum above 10 GeV/c.

� selection efficiency ( � ����� ). Basically no background process exists for the chan-

nel �
� � ���
� � with similar production rates. The selection cuts can then be

smooth, and consequently the selection efficiency is high, above 90%.

� L0 trigger efficiency ( ���
� ). The L0 algorithm select the 8 highest � � muons,

2 for each Muon station quadrant. It is hence straightforward for a � � �
���
�	� event to pass the L0 trigger filter, as denoted by the very high efficiency.

� L1 trigger efficiency ( � �
� ). The matter is well different for the L1 trigger,

which in fact has a much lower efficiency. Its algorithm looks for a detached
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secondary vertex, being optimized for B-physics, and tends to refuse the

�
� � ��� �	� event. Moreover both muons very often saturates the dynamic
� � range of the L0, fixed at 5.15 GeV/c. At L1 the two muons arrive with

the same � � value and are rejected as clones. This unexpected feature of the

clone-checking algorithm of the L1 had never been exploited before, and the

study of �
� � �����	� process has been decisively to discover it. It has now

been fixed by checking the hit tiles in M1, as well. What actually helps in

increasing the L1 efficiency is that a bonus is foreseen for muon pairs with

large invariant mass, which can override the algorithm decision. At the end

the result is comparable for instance with that of � � � � � � � � .

4.9 Annual yield

Once the total efficiency is known, the annual signal yield is computed as

� � � � � � � � Z � � ����� � � ��� � (4.3)

where � ��� � = 2 fb ��� is the annual integrated luminosity, assuming 10 � s as one

year of data taking and � ����� � � 
 
 cm � 
 s ��� as nominal average luminosity;

� Z � � 55 nb is the � � production cross-section expected at 14 TeV; �	� � � 3.4% is

the branching ratio of the � � decay in � � � � .

The number of events produced in the solid angle, filtered by the off-line

selection and by the trigger are reported in Table 4.3. The final annual yield

Table 4.3: Annual yield for � � � � � � � .

Produced in 4 � Off-line selected L0+L1

(3.6 	 0.1) M (483 	 4) k (293 	 3) k

of 293 hundreds events per year means a bandwidth of 29 mHz, or 1 ��� �
� � � � event every 34 s. As a comparison, the total number of � � � � � � � collected

by the Aleph experiment was about 200k in 5 years of data taking (1990–1995) at

� � � 91 GeV [69].

4.10 Single muon distributions

Single muons distributions are reported in the following figures, both for recon-

structed and selected tracks.

The momentum distributions are shown in Figure 4.13. The high peak at very

small momenta is due to the combinatorial background and is efficiently cut out

with minor loosing of events in the high momenta region. It is interesting to note

how the tail of the distribution reaches very high values, up to 2 TeV/c. This will

result rather useful for calibration purposes.
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Figure 4.13: Momentum spectra of the reconstructed (light) and selected (dark)

muons tracks.

The single muons transverse momentum spectra (Figure 4.14) shows a peak

value at half the ��� boson mass, as expected. Again the reconstructed tracks with

very low � � are due to the combinatorial background. Note how the clear separa-

tion between the ��� decaying muons population and the low-� � tracks population

provides an easy and well optimized selection cut. This is peculiar of the low-angle

tracks and represents a major difference respect to the 4 � experiments, which pre-

dominantly collect particles at high angles.

Also the polar angle 
 distribution (Figure 4.15), and consequently the pseu-

dorapidity � � �
� � � 
 � ��

� � � distribution (Figure 4.16), are mostly affected by the

� � cut, which rather depopulates the zone with 
 � 0.1 rad and � � 3, where

the low-� � background is present. In Figure 4.16 the 4 � expected distribution has

been superimposed as well, in order to appreciate the pseudorapidity acceptance

of the LHCb detector. Note the cuts at very low polar angle ( 
 � 20 mrad) and

very high pseudorapidity ( � � 5), indicating that muons escape from the detector

acceptance as they enter the hole left for the beam-pipe, which has a coverage of

about 20 mrad in � plane and 15 mrad in � plane.

The impact parameter significance respect to the primary vertex is shown in

Figure 4.17. As foreseen most of the tracks have an impact parameter within 2

standard deviations from zero. For a comparison, a typical corresponding cut for� � � � ���	� is between 5 and 10. Of course in that case the cut is on the lower

values.
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Figure 4.14: Transverse momentum spectra of the reconstructed (light) and se-

lected (dark) muons tracks.
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Figure 4.15: Polar angle distributions of the reconstructed (light) and selected

(dark) muons tracks.
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Figure 4.16: Pseudorapidity distributions of the reconstructed (light) and selected

(dark) muons tracks. In white the predicted pseudorapidity distribution of muon

in 4 � .
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Figure 4.17: Impact parameter significance distributions of the reconstructed

(light) and selected (dark) muons tracks.
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4.11 Invariant mass and � � distributions

The di-muons invariant mass is plotted in Figure 4.18. The spectrum has been

dimuon invariant mass (GeV/c^2)
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Figure 4.18: Invariant mass spectrum of the di-muons fitted with a Breit-Wigner

function.

fitted with the usual Breit-Wigner function

� ��� �
�
� � � �


��� �
�
�
�
�
� � 
 � �


��� � � �
and the fit results for � � mass and width are reported in Table 4.4 with the analo-

gous PDG [56] published values. The mass of the ��� is determined with a relative

Table 4.4: �
� boson properties as fitted from di-muon invariant mass and as pub-

lished on PDG 2000.

�
� Mass
�
� (GeV/c 
 ) �
� Full width

� �����
Fit 91.19 	 0.02 3.35 	 0.04

PDG 91.882 	 0.0022 2.4952 	 0.0026

error of 

�
�
�

� � � � � � � and it is perfectly compatible with the PDG value.

The full width of the resonance results a � 30% wider respect to the PDG value.

This broadening is the effect of the momentum resolution of LHCb spectrome-

ter, not optimized to measure such high values. Moreover the relative error on

the momentum measurement increases with the momentum itself, because higher
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momentum tracks are less bent by the magnet, and have smaller sagitta. For LHCb

the relation is


 �
� � ����� � � � � �

GeV/c ��� �

which means for instance that a momentum of 750 GeV/c, corresponding to the

mean value of ��� decaying muons distribution, is determined with a 3% error, and

a momentum of 2 TeV/c with a 7% error.
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Figure 4.19: Momentum spectrum of the reconstructed (light) and selected (dark)

� � boson.

Figure 4.19 represents the ��� candidates momentum spectrum. Note how al-

though none direct cut is applied on this quantity, only particles with more than

250 GeV/c momenta are selected.

The transverse momentum distribution is plotted in Figure 4.20. The bump at

� 40 GeV/c, cut out by the selection, is due to fake ��� candidates formed by a

true �
� decaying muon, with a most probable � � near to half the �
� mass, and a

low-� � background muon arising from the interaction point.

Figure 4.21 shows the pseudorapidity distribution of the � � candidates. It is

clear how the selection criteria cut the bosons with low pseudorapidity, as they

have a great probability to have a decaying muon out of the detector acceptance.

The impact parameter significance distribution of the ��� candidates (see Fig-

ure 4.22) looks very similar to the single muon distribution (Figure 4.17), con-

firming that both particles are likely to be produced in the primary interaction

vertex.
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Figure 4.20: Transverse momentum spectrum of the reconstructed (light) and

selected (dark) ��� boson.
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Figure 4.21: Pseudorapidity distribution of the reconstructed (light) and selected

(dark) � � boson.
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Figure 4.22: Impact parameter significance distribution of the reconstructed

(light) and selected (dark) ��� boson.

4.12 Analysis results

The analysis has demonstrated that a useful number of ��� � �����	� events will be

detected at LHCb. Assuming an event rate of � 30 mHz (from Table 4.3) the

necessary statistics to perform an absolute luminosity measurement with an error

below the theoretical limit of 4%, is collected in about 9 hours of data taking.

However one is not obliged to collect �	� 
 events every time an absolute luminosity

measurement is needed. It is in fact straightforward to use this process to calibrate

some relative luminosity monitor in order to achieve precise and instantaneous

absolute luminosity informations.

As a result of the forwardness of LHCb, low polar angle and high pseudora-

pidity particles are selected. This means that the parton coming downstream the

detector carries almost the whole amount of momentum, while the parton coming

upstream the detector is essentially at the rest. Thus LHCb will have a great po-

tential to study the parton structure function at high
�

 �

�

Z � � � � and very low

� � �	� � � , in a kinematic region not probed by the present experiments, as results

from Figure 4.23.

Figure 4.24 shows the explored regions of the
�

 � � plane. LHCb will be able

to confirm the Tevatron data at high
�

 reducing the statistical error, and to extend

the measurements to a very low � region.
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Figure 4.23: Experimental measurements of the proton structure functions. The

data are plotted as a function of
�

 in bins of fixed � [56].
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Figure 4.24: Kinematic domains in � and
�

 probed by various experiments,

shown together with the important constraints they make on the various parton

distributions. LHCb will be able to explore the red region.
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4.12.1 Low
���

region

The
�

 �

�

Z bond can be removed extending the study to the Drell-Yan process

��� � � � � � � � � , with an off-shell � � mass �
�

Z. However the background rejec-

tion could represent a harder task at low-� � , where more others physical channels

are present, and the selection would not be as clean as for � � � � � � � . Moreover

the mass spectrum of the process (see Figure 4.25) shows a very poor statistics

in the region between the ��� resonance peak and masses as low as � 35 GeV/c 
 ,
providing a large uncertainty in the determination of � � � 
 product.
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Figure 4.25: Invariant mass of the muons from the process ��� � � � � � � � � � � �
decaying in the LHCb angular acceptance.

A feasible channel to increase statistics and keep a detectable signal might be

represented by ��� � � � � � � � � � , allowing the study of the structure functions at
�

 � � � GeV 
 and fractional momenta as low as � � �	� � � , again in an unprobed

kinematic region. The performances of LHCb respect to this channel are matter

for a study beyond this thesis.



Conclusions

The work of this thesis concerned both the development of a suitable detector for

the LHCb Muon system, and the study of physics performance of the LHCb exper-

iment itself.

The Resistive Plate Chambers detectors had been proposed to equip the outer-

most part of the Muon system, where the radiation flux does not exceed the value

of 1 kHz/cm 
 . Several detector prototypes have been built and tested, demon-

strating how the LHCb requirements about efficiency, time resolution and spatial

resolution were completely fulfilled. The efforts have then focused on the aging

properties, to verify whether the requested performances could be maintained for

10 years of operation.

An exhaustive test has been performed at CERN, by means of the Gamma Irra-

diation Facility, a very intense photon source reproducing the high background en-

vironment foreseen at LHCb. The peculiar characteristics presented by RPCs, when

exposed to high irradiation have been explained within a simple phenomenolog-

ical model, which provides as well a practical method to measure the bulk resis-

tivity of the electrodes in a non-destructive way, during the chamber operation.

This method was used to monitor the resistivity during almost three years of the

test, at the end of which the RPCs have undoubtedly shown to suffer aging effect.

The resistivity is in fact increased by two orders of magnitude, from � � � � �
cm, to

� � � 
 �
cm. The most affected property by this change has been, as expected, the

rate capability of the detectors, dropped from few kHz/cm 
 to 200 Hz/cm 
 .

The aging effects seem to be predominantly “timing” spontaneous effects, ba-

sically independent from the accumulated charge, although probably enhanced

by intense irradiation. The responsible has been found in the water content of

the phenolic resin composing the electrodes, which decreases as dry gas is fluxed

inside the detector, increasing as a consequence the resistivity. The method of

flowing humid gas has been tried, and considered not suitable to permanently

recover the original performances of the chambers.

The results of the aging test have forced the LHCb collaboration to abandone

the RPC as a practicable technology for the Muon system. They have been replaced

by safer Multiwire Proportional Chambers.
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In the second part of the thesis the process ��� � Z � � ��� �	� has been analysed.

The theoretical cross-section for this process has recently been calculated at NNLO,

and at LHC energy (14 TeV) is foresee to be � Z ��� � � 1.9 nb, sufficiently high to

detect a large number of ��� bosons also at LHCb, in spite of the limited angular

acceptance and the optimization for the B-physics.

A sample of 50000 events have been generated and the detection efficiency

of the apparatus have been extensively simulated, including the reconstruction,

the off-line selection and the trigger selection. The annual yield found ( � 290k)

allows to use the channel to perform profitable physics studies.

A precise and extensive calibration of the spectrometer is achievable thanks to

the very high momenta reached by the decaying muons, up to 2 TeV/c.

An absolute luminosity measurement can be obtainable in a straightforward

way, due to the accuracy of the theoretical value of the cross-section.

Finally an interesting program of hadron physics is possible by studying the

pseudorapidity distribution of the muons, which are related to the fractional mo-

menta � of the partons entering the ��� production process. The forwardness of

LHCb is peculiar to select very high pseudorapidity ��� bosons, allowing to extract

the proton structure functions
� � � � �


 � at very low � , down to � �	� � � , and high
�

 � � � � GeV 
 , in a kinematic region not accessible by other experiments.
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