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Abstract

One key design variable that has largely been neglected in control-structure design is
passive structural damping. Passive damping improves nominal performance by elim-
inating degrading structural vibrations resulting in improved control characteristics
and lowered required effort. A great advantage of added passive damping in SISO con-
trolled structures is the improved stability and performance robustness characteristics
given plant uncertainties. Theoretical formulations verifying the improved stability
robustness characteristics on simple controlled structures are derived based on phase
margin, gain margin and root locus properties of the structures. Numerical studies
performed on more complicated systems verify the improved design characteristics for
passively damped controlled structures. The theory is expanded to include MIMO
controlled structures where the robustness properties of these systems are greatly
affected by uncertainties in plant directions. Numerical studies verify the improved
performance and robustness characteristics of passively damped MIMO controlled
structures.
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Chapter 1

Introduction

1.1 Background and Motivation

With the development of high performing space systems, the interaction among the

engineering disciples and subsystems is becoming increasingly important. This is

particularly true in the fields of structural and control system design. The need for

larger and higher performing spacecraft is continually increasing. But due to high cost

of placing these craft into orbit, the need for light systems is equally important. This

may result in extremely flexible structures which causes control-structure interaction.

Thus methodologies to control flexible structures and design of structures for control

are of great importance. Incorporating the two disciplines will allow for improved

performance, mass reduction, and improved reliability.

Traditionally, the structure and control system of a spacecraft are design sepa-

rately. First the structural engineer attempts to develop a minimum mass design

based on environmental conditions and performance requirements. With the struc-

tural design complete, the control engineer attempts to develop a control system based

on performance requirements such as command following and disturbance rejection

capabilities. Past methodologies avoid the problem of control-structure interaction

by limiting the control bandwidth far below the structural modes of vibration. This

prevents large structural vibrations which can degrade performance and cause in-

stability. To meet the requirement of future missions, control of flexible structures
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with closed loop bandwidths within the natural frequency is essential to maintain low

weight and high performance requirements. Such systems include large space based

antennas, space telescopes, and solar arrays which are extremely flexible, yet require

precision pointing.

The overlap of control bandwidth with structural modes of vibration presents sev-

eral challenges to the designer, since accurate modeling of the structure is essential

in the control design. Furthermore, future system will make use of multi-input-multi-

output design further complicating the design procedure because of the interaction

between inputs and outputs. New structural design methodologies need to incorpo-

rate control and system objectives. One such method involves computing the optimal

stiffness and mass distribution for good control [5, 10, 14, 15, 16, 17, 18, 23, 25, 26].

This methodology uses constrained non-linear optimization to simultaneously derive

a structural and control design that minimizes a performance variable and/or mass

given system constraints. Advanced MIMO control design techniques such as LQG,

H 2, and H~ are used to derive appropriate control design [7, 8, 19, 22]. These methods

use plant inversion techniques based on modeled dynamics to derive appropriate con-

trol laws. This makes them very sensitive to model uncertainties which can degrade

performance and cause instability. Robust control methods such as Y synthesis and

H, control design exist, but are highly complex and overly conservative [6, 12, 22].

While several methodologies have shown progress towards improving the con-

trol of flexible structures, one important structural parameter that has been largely

neglected is passive structural damping. Only recently, have passive damping tech-

niques received attention in improving the characteristics of controlled structures

[1, 9, 11, 21, 24, 31]. Passive damping provides a fail safe method for the removal

of structural vibrational energy . This reduces the need for active control to remove

these vibrations, thus providing better rigid body control and disturbance rejection

of the system [9]. The reduced control effort can bring about weight reductions as

a result of smaller actuators and power sources [11]. Other advantages of passive

damping are that it requires no power, is often less expensive than active control

systems, and can not drive the structure unstable [1].



One key advantage of increasing the amount of passive damping in a structure is

the improved robustness characteristics [28, 31, 12]. The addition of passive damping

pulls the plant poles deeper into the left hand plane. This allows more room for

the system root locus to avoid the right hand plane, thus improving the stability

robustness properties. Von Flotow et al. [31] pointed out that for high bandwidth

control of flexible structures, pole-zero cancellation is necessary. Uncertainty in the

modeled dynamics can cause a pole-zero flip which cause the root locus to enter

the right hand plane resulting in an unstable system. The degree of damping to

prevent this is based on the pole-zero separation as a result of the uncertainty and

the bandwidth of the controller. While much research is currently talking place in

the area of robust control design, very little work is place on how to design structures

so that they are inherently robust. Robust plant design by modifying stiffness and

mass properties of structures is difficult. Passive damping adds a new dimension to

the design process allowing for robust structural dynamics.

While passive damping is very beneficial, active control is necessary for good

performance such as for command following or shape control. Thus an active/passive

damping mix is desirable. Passive damping is used for stability robustness and active

control is used for performance.

The Passive and Active Control of Space Structures (PACOSS) study [24] has

demonstrated the benefits of passive damping on controlled flexible structures such as

improving performance, reducing weight, and reducing system complexity. Dynamic

and control testing was performed on a large flexible structure (Dynamic Test Article

(DTA)). The goal of the control system was to provide active vibration suppression

of disturbances on the structure. An active and active/passive mix were examined.

Results of the study were as follows.

1. Reduce complexity:
Nine actuators needed for active control as opposed to two actuators for the
active/passive mix.

2. Reduced control effort:
Maximum torque required reduced from 1371 N . m to 167 N . m.

3. Improved Reliability.



4. Improved Performance:
A factor of 230 improvement in settling time as a result of a slew maneuver.

5. Reduced Weight:
Mass reduction of 140 lbs (- 2% of total weight).

The passive damping levels added to the structure were about 5% of critical at the

modes of concern. McLoughlin [21] pointed out similar advantages for passively

damped controlled structures.

This thesis will explore the advantages of increasing the amount of passive damp-

ing on feedback controlled flexible structures with particular attention placed on the

stability and performance robustness characteristics. While previous studies have

shown improvements in performance and robustness through the addition of passive

damping, these issues have never been directly address. Expansion of the idea of

robust structural design using passive damping to MIMO have never been addressed.

Derivation of required passive damping levels for robust structural design would pro-

vide the structural designer with useful information to improve the system design.

Though the examination of simple examples, theoretical limits in stability of the con-

trol structure are determined as a function of passive damping. Design studies are

then used to verify these derivations and provide further evidence in the advantages

of passive damping for SISO and MIMO controlled structures. This thesis promotes

the principle of robust structural design through the addition of passive damping

techniques to improve performance and robustness of controlled flexible structures.

1.2 Thesis Outline

Chapter 2

The virtues of passive damping on controlled structures using theoretical meth-

ods are examined. Both performance and robustness properties of simple structures

are investigated. Effects of passive damping for structural vibration suppression are

examined. Three methods for determining the required amount of damping given

pole/zero uncertainty are examined. The first method determines the amount of pas-

sive damping needed for robust control based on the shape of the root locus plot

rrm _11 1- I~-^ 1IIIII~- ~ --- I YI~LI__I~II~-II.I --~L- --- -------I . I --I I .1-^-.~1~---~--- 1~--- ~-- I



of a controlled structure. The second method looks at open loop phase uncertainty

and derives a required amount of passive damping to achieve a desired phase margin.

The third method examines the stability properties of a simple structure with PD

control where an allowable pole/zero uncertainty given passive damping is derived.

Uncertainty in the plant directions of a simple two degree of freedom structure is also

examined to show the benefits of passive damping for MIMO control.

Chapter 3

The necessary structural modeling techniques and control design techniques for

examining the virtues of passive damping are discussed in chapter 3. State space

models of the structure in modal space are derived. Passive damping is added as a

percentage of critical. H2 optimal control design techniques are discussed.

Chapter 4

Simple SISO examples are used to numerically examine the virtues of passive

damping of flexible structures. The first structure examined is a two mass system

connected by a spring. Control of the position of one mass is achieved by applying an

appropriate force on the other mass. Both unrobust and robust control techniques are

used to derive the necessary control law for good disturbance rejection. Performance

and robustness improvements are examined for increased passive damping. A similar

study is performed on a four disk system connected by flexible springs. The system

has noncollocated actuator and sensor. Benefits of passive damping for high and low

bandwidth control are examined.

Chapter 5

In this chapter, passive damping effects are examined on MIMO systems. Two

systems are examined. The first system is the four disk system with two noncollocated

actuators and sensors. The second system is a nine disk system connected by flexible

springs with two actuator and sensors. Performance and robustness characteristics

are computed as a function of passive damping.

Chapter 6

A summary of the results from chapter 4 is presented and comparison to the



theoretical derivations in chapter 2 is made. Suggestions for future research in the

area of passive damping for use in the control of flexible structures are made.



Chapter 2

Passive Damping in Controlled

Structures

Design trends in large spacecraft have resulted in the need for precision control of

flexible structures. To meet future weight requirements, space structures will be

extremely flexible making them very susceptible to environmental and onboard dis-

turbances. Through the use of passive damping techniques, reduction of structural

disturbance excitation is achieved, allowing for more precise control. To eliminate

unwanted dynamics of the structure, plant inversion techniques must be used in the

control design. Thus an accurate representation of the structure is needed to design

the controller. For high bandwidth control of lightly damped structures, uncertainty

in the structure model results in unrobust systems. As von Flotow indicated [31],

small amounts of passive damping in the structure can greatly improve the stability

robustness properties of the system, thus bringing about the idea of structural de-

sign for robustness. In this chapter, performance and robustness benefits of passively

damped controlled structures are theoretically examined. Simple examples are used

to provide evidence of the advantages of increasing passive damping in controlled

structures.



2.1 Nominal Performance Benefits

With control system performance requirements being pushed upward while at the

same time spacecraft are built lighter and more flexible, the interaction between the

control system and structure dynamics has become increasingly important. The limit

of the closed-loop bandwidth is based on the structural flexibility as well as sensor

and actuator dynamics. The objective for most controlled structures is to achieve

good rigid body control with little structural vibration. If not correctly dealt with,

these structural vibrations can result in poor performance or even instability. Passive

damping techniques provides a simple method to eliminate structural vibrational

energy, thus improving design objectives and allowing for higher bandwidth control.

In order to achieve high bandwidth control, high controller gains are necessary.

Control dynamics are added to provide active damping and good steady state tracking

as well as filtering of unwanted dynamics or noise. Hughes et al. [13] and Spanos [30]

found that for structures with stable rigid body control and collocated sensors and

actuators, the flexible dynamics of the structure would not destabilize the system.

While this is obvious since there is no dynamic link between the sensor and actuator,

control maneuvers add vibrational energy to the structure. This results in vibrations

that can be undesirable, especially for structures used for precision pointing such

as solar arrays or antennas. Thus passive damping is useful to eliminate vibrations

caused by rigid body control and disturbances on the structure.

Lets consider a single degree of freedom structure consisting of a point mass con-

nected to a fixed body by a spring and a damper as shown in figure 2-1. The equation

of motion of the system is

mi(t) + ci(t) + kx(t) = f(t) (2.1)

where f(t) is the disturbance force on the mass and x(t) is the displacement from

the unforced location. The values m, c, and k are the mass, damping constant,
and stiffness respectively. Given a unit impulse disturbance at t = 0, the resulting



x(t)
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Figure 2-1: Single Degree of Freedom Spring/Mass/Damper System.

vibrations are described by an exponentially decaying sinusoid

(t)=;w - e-Cw"t sin w 1 - 2  (2.2)

where w is the natural frequency of the system and C is the damping ratio.

W c=V (2.3)

The impulse response is shown in figure 2-2. Note that the rate of decay of the sinusoid

is inversely proportional to the damping ratio. Undamped structures experience no

decay in vibration. The maximum overshoot of the disturbance response occurs when

the time derivative of the response is zero.

d = (W C sin ( 1 J- C +t)+ - eC cos (W - (2t) = 0 (2.4)

For lightly damped system (C z 0), the derivative of the displacement is zero at the

following times.
7r 31r 5ir

The maximum overshoot occurs in the first time period.

Xma, = X(r/2w~) = 1 e- (2.6)

Note that the maximum overshoot is inversely proportional to the damping ratio.

Thus passive damping provides a simple and fail-safe method of reducing struc-
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Figure 2-2: Impulse Response of Spring/Mass/Damper System.

tural vibrations as a result of disturbances. This simple example shows how the

settling time and overshoot given an impulse disturbance are reduced by increasing

passive damping. In high bandwidth maneuvers of a spacecraft, structural vibrations

are excited. To maintain precise control of the structure, either passive or active

techniques are needed to reduce these vibrations. An advantage of passive damp-

ing in controlled structures thus results from the reduction in effort required by the

controller to provide vibration suppression.

2.2 Robustness Benefits

2.2.1 Gain Stabilization

One method to robustly control a flexible structure is to assure that the open loop

gains of the system are below some uncertainty bound in the frequency domain. By

observing the singular values of the open loop system T(s) and applying stability ro-

bustness bounds such as the small gain theorem, the advantages of passive damping

on controlled structures are evident. Since the open loop gain at structural resonance

is inversely proportional to damping, large gains are observed for lightly damped

structures. While active control techniques can be used to minimize structural ex-

Time t
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Figure 2-3: Closed-Loop System with Multiplicative Error.

citation at resonance, an accurate representation of the structure is needed in the

control system design. The addition of passive damping provides a simple method to

reduce the gains at resonance, allowing for robust control of a flexible structure.

Consider a modeled structure G,(s) with feedback compensation K(s) as shown in

figure 2-3. The open loop system is given by T(s) = G,(s)K(s). For good command

following and disturbance rejection, high loop gain is necessary within its bandwidth

wcl. Thus the singular values of the open loop system must be much greater than one

across the bandwidth of the system.

,min[T(jw)] > 1 V w < wc (2.7)

The uncertainty in the structure is modeled as a multiplicative error given by E(s).

The actual dynamics of the structure Ga(s) are then given by the following equation.

G,(s) = [I + E(s)]G,(s) (2.8)

If it is assumed that the plant is square, i.e. the number of actuators equals the

number of sensors, then the multiplicative error is as follows.

E(s) = [Ga,(s) - G,(s)]G-(s) (2.9)

Though the use of the small gain theorem, Athans [3] found that a sufficient

_L_ _LI~ _I _ _I~ _CI ~I __



condition for stability robustness is given by the following inequality.

~ma[E(jw)] < min [I + T-(jw)] V w (2.10)

Applying the condition for good performance given by equation 2.7, and some basic

facts about singular values given in appendix A.1, the singular values of the uncer-

tainty must be less than one within the closed-loop bandwidth of the system.

',ma,[E(jw)] < 1 Vw < wej (2.11)

Substituting in equation 2.9 into the inequality and applying the properties of singular

values given in appendix A.1, a sufficient condition for stability robustness is given

by the following inequality.

Ao = -7maGa ) - 0ma4Gn(jW)] < 1 Vw < wC, (2.12)
min[Gn(jW)1] Crmin[Gn(jW)1

This inequality indicates that the peak singular values of the actual plant dynamics are

extremely important to the stability robustness properties of the system. The height

of these peaks are determined by the amounts of passive damping in the structure.

Consider a plant with one eigenvalue with a nominal natural frequency of w, and

an actual natural frequency wa. The plots of the singular values are shown in figure 2-

4. For low frequencies, the nominal and actual plant should match well. The greatest

difference in singular values Aa is at resonance, as the figure shows. The peak values

of the singular values are inversely proportional to damping. Thus passive damping

provides a simple method to make the overall system more robust.

Even though this example is extremely conservative in nature, it does provide

insight to the benefits of passive damping on the stability robustness properties of

controlled structures. What ever techniques are used to filter out the plant dynamics

for high bandwidth control, it must include the uncertainty in the modeled dynamics

to ensure the system is robustly stable. The more passive damping in the structure,

the less effective the filtering needs to be across the uncertainty region of the plant
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Figure 2-4: Singular Values of Nominal and Actual Plant.

dynamics.

2.2.2 Phase Stabilization

Robust Pole-Zero Cancellation

In order to achieve high bandwidth control of a flexible structure, the unwanted dy-

namics within the control bandwidth of the plant must be canceled out. This is

accomplished by notch filtering the control signals at the structural natural frequen-

cies, resulting in perfect cancellation of plant poles by compensator zeros. Thus an

accurate model of the structure is needed to determine its poles for the design of

the compensator. For undamped systems, uncertainty in the plant pole location can

result in instability in the closed-loop system.

Figure 2-5 shows the root locus of the system with plant poles below and above

the compensator zero as a result of uncertainty in modeled plant dynamics. If it is

assumed that there is a phase lag of -900 due to all other dynamics of the loop,

the departure angle of the root locus is 1800 as a result of an uncertainty with the

plant pole above the compensator zero. But if the uncertainty results in the plant

pole being below the compensator zero, the departure angle of the root locus is 00

__ ~ -.~-_1.- 1 11111~---- - 1
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Figure 2-5: Departure Angles of Root Locus of a Single Oscillatory System as a
Result in Uncertainty in Pole Location.

resulting in an unstable system. The plant poles migrate to the zero in semicircles.

By placing a little damping in the structure, the plant poles are shifted to the left

resulting in a system where the plant poles can migrate to the compensator zeros in

a stable manner. The degree to which the poles migrate to the right hand side is

based on the pole-zero separation resulting from uncertainty in the plant model. If it

is assumed that the poles migrate to the zeros in semicircles, the amount of passive

damping to assure stability robustness is given by the following

C z - (2.13)

where wz is the zero natural frequency and w, is the pole natural frequency. This

amount of passive damping will assure that the root locus will not cross the imaginary

axis.

Phase Properties of Passively Damped SISO Plants

In the following example, the amount of passive damping for the control of a simple

system with one oscillatory mode is considered. In order to achieve a desired close-loop

bandwidth including the structural natural frequency, pole-zero cancellation is needed

to filter out resonances of the plant. This calculation is a first order approximation of

_I ~ _LI~~ -l- --- i ~-~L~----~ .. ~-~~ L~-ml~ I~---~I~I~UIelP~Y YCII---LIIL - --L~I-~LIIIIII-~.- ^- . -)_



the amount of damping needed to achieve high bandwidth control. The derivations

are based on findings reported by von Flotow and Vos [31].

The plant under consideration contains a single oscillatory mode represented by

the following transfer function

1
G(s) (2.14)

a2 + 2Cw,,s+ W2

where w, is its natural frequency and C is the amount of passive damping. For this

system, the phase angle 0(w) at any frequency is given by the following.

0(w) = - tan - 1 2w - w (2.15)

It can be shown that at resonance (w, = w), the change in phase angle with respect

to frequency is given by
dO -1"dO -1 (2.16)

which says that the phase change at resonance is sharp for low damping (see Figure

2-6). If the uncertainty in the eigenfrequency is given by 6w = w, - Wactl, then a

first order approximation in the uncertainty in phase angle near resonance is given

by the following.
-W

60 = (2.17)

Thus the uncertainty in phase of the plant given an uncertainty in natural frequency

is inversely proportional to the damping. Von Flotow defined a permissible amount

of modal damping as a result of uncertainty in eigenfrequency as

.w
> - (2.18)

Wn

where it is assumed that the desired phase margin is 60 = 1 rad(, 60(0o)).

In order achieve precision control of a plant, the plant dynamics within the control

bandwidth must be filtered by canceling plant poles with compensator zeros. By

observing the phase excursion given by the plant uncertainty, the effects of non-

~__1_1 _ _~ _I I __I



-50- .

de-100 ...... .

-150 -

-200 i i i i
10-' 10o  101

Frequency (rad/sec)

Figure 2-6: Bode Plot Illustrating Phase Change at Resonance.
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Figure 2-7: Bode Plot Illustrating Phase Excursion for Different Amounts of Passive
Damping.

perfect pole-zero cancellation on closed-loop stability can be determined. Figure 2-7

shows the phase excursion as a result of the actual plant natural frequency being less

than the modeled frequency (wact~l < w) which introduces a local phase lag. Given

an undamped structure with nonperfect pole-zero cancellation, the phase excursion

is 1800, thus impossible to stabilize. The introduction of damping reduces this phase

excursion.

Given a phase margin of 60m, which is the amount of phase needed to drive

the system to instability, the permissible amount of uncertainty in the plant natural

frequency is given by

Sw < 60",W , (2.19)

Thus it is sufficient to say that the amount of damping needed given a pole-zero

_ _1_^__ -~11~---_1_111 _ _11__1__~ i.



mismatch of 6w and a desired phase margin of 560, is

1 6w
C > -(2.20)

This is a low order example of the virtues of passive damping in the robust control

of a structure. A quantitative amount of passive damping required for robust stability

is determined based on modeling uncertainty in the structural natural frequencies.

In application to real systems, the deeper the closed-loop poles can be pushed into

the left hand plane, the less sensitive they need to be to model uncertainties. Passive

damping provides a simple and safe way to push the plant poles into the left hand

plane, thus improving the stability robustness properties of the system.

2.2.3 Simple Structure with PD Control

Hughes [13] and Spanos [30] found that high bandwidth control of a structure with

noncollocated sensors and actuators is impossible with zero passive damping. The

high gains at resonance destabilize the system, thus open-loop bandwidth must be

well below the first structural mode as to not excite the system. A conservative

approach in the control design dictates that open-loop bandwidth should be one order

of magnitude below the first structural mode of lightly damped structures to prevent

structural excitation. In order to achieve high bandwidth control, notch filtering at

structural resonance is needed to prevent structural excitation. The degree of filtering

is highly dependent on the amount of passive damping and structural uncertainty.

The following example examines the benefits of passive damping on a simple

structure with PD control. The example is based on findings reported by Spanos

[30]. Stability bounds are determined based on structural configurations indicating

performance limits.

Lets consider a structure with one rigid body mode and one flexible mode at

frequency w,. The transfer function representing the structure is given by

y(s) _1 + ij = ans2 + 2(s + w(2.21)
u() +2CWs+W22 (2.21)
U(S) J ' 7S2+S2 + 2(wnS 2W



Figure 2-8: Pole-Zero Patterns for Different Values of an.

where y(s) is the measured position of the structure and u(s) is the control effort

applied to the structure. The inertia of the structure is given by J and the amount

of modal damping is C. The term a, represents the modal participation coefficient of

the mode defined as

a = 1 + Jinej, (2.22)

where 0 is the eigenvector of a given mode normalized to unit mass. The modal

participation coefficient reflects the mass participation in a given mode. The resulting

structure has alternating pole-zero patterns as shown in figure 2-8. Three types of

modes are represented by the system based on the value of an.

appendage mode: Resulting from collocated sensors and actuators where an > 1.

in-the-loop minimum phase mode: Resulting from noncollocated sensors and ac-

tuators with a minimum phase plant where 0 < a, < 1.

in-the-loop nonminimum phase mode: Resulting from noncollocated sensors and

actuators with a nonminimum phase plant where an < 0.

Note that a rigid body system is indicated by an = 1 when the flexible modes are

canceled by the zeros.
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If the mode is minimum phase and lightly damped, it can be shown that a, is

also the ratio between square of the pole and zero frequency

2

n - (2.23)

where w, is the zero frequency. Thus a relationship between the modal participation

coefficient and plant pole-zero separation is established.

- 1 (2.24)

This is significant since the separation between poles and zeros is inversely propor-

tional to the mass participation in the mode defined by a,.

With the plant model defined, a PD controller is coupled to the system as shown

in figure 2-9. The controller consists of two gains; Kp which amplifies the position

error and Kd which amplifies the time derivative of position (velocity). The inertia

term (J) was removed by absorbing it into the two gains. To achieve a closed-loop

bandwidth of wcl for the rigid body plant, the controller gains must be as follows,

Kp = (/4 + 4C + 2 - 2(2 - 1)w, (2.25)

Kd = 2(CcKp (2.26)

where Ce is the desired closed-loop damping ratio. For most systems, it is desirable

to have a closed-loop damping ratio of (cl = 1/v/. The characteristic equation of the

closed-loop system is then given by the following fourth order equation.

4 + (Kda, + 2CWn)S3 + (2(wnKd + anK + w)s 2'+

(2CwKp + Kdw2)S + (K= ) = 0 (2.27)

By using the Routh stability criterion, the stability conditions for the closed-loop



Controller Plant

Figure 2-9: Single Mode Structure with PD Controller.

system are given by the following three equations.

0 < Kda, + 2(wn (2.28)

0 < KpKda + (2Kp + 2(Kd + KdW,)Wa ,

(42wKd + 2(Cw - 2(Kp - Kdwn)Wn (2.29)

0 < 2CK Kda + (4C2 K+ 4C2 KPKd + 2CwnK3 + Kd2wn)wan +
C2U;2 K2 2(8C3w,KKd + 4 wK - 4( K +

2(w3Kd - 4Cw,K,Kd - K2W)Wn (2.30)

For a given closed-loop bandwidth wci and damping ratio (ct as well as a structural

natural frequency w, and modal damping C, conditions on the modal participation

coefficient a, can be determined to maintain stability. The dominant governing equa-

tion for stability based on the Routh stability criterion is given by equation 2.30. By

observing the necessary modal participation coefficient for stability at various fre-

quencies as well as amounts of modal damping, the benefits of passive damping on

the controlled structure are evident (see figure 2-10). The regions above the lines

define structural designs with PD control which are stable.

As figure 2-10 shows, for structures with collocated sensors and actuators (an > 1),

the closed-loop system is always stable. But for noncollocated system, instability can

occur when the closed-loop bandwidth is within a tenth of the first natural frequency

(wn/lw, = 1/10), especially for lightly damped systems. For undamped structures,

~I II _1___1_ __ I^ -. .--I ^-II__- I_ ~---~-- -X-
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Figure 2-10: Stability Bounds of One Mode Structure with PDI Control for Various
Levels of Modal Damping.

a, must be greater than one for all frequencies. Nonminimum phase plants (a < 0)

cannot be stabilized with PD controL As damping increases, the minimum allowable

amount of ac decreases and the maximum allowable closed-loop bandwidth increases.

Root locus plots for the single mode structure using PD control with a, = 0.8

and w, = wi = 1 are shown in figure 2-11. Notice that the poles migrate to the

zeros in semicircles similar to the results shown in section 2.2.2. The compensator

zero is used to draw the rigid body poles into the left hand plane. Furthermore, the

flexible body poles depart to the right as they migrate towards the plant zeros. Thus

undamped systems can not be stabilized. Passive damping pushes the flexible body

root locus into the left hand plane allowing for stable control of the structure. The

amount of damping needed to stabilize the system is dependent on the size of the

semicircle resulting from the root locus of the flexible body pole migration to the

plant zero. The size of the semicircle is based on the plant pole-zero separation and

the bandwidth of the structure. Larger pole-zero separation and higher bandwidth

systems result in larger semicircles.
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Figure 2-11: Root Locus Plots of One Mode Structure with PD Control.

By using the results obtained in figure 2-10 and applying equation 2.24, a relation-

ship can be established between the maximum allowable plant pole-zero separation

and modal damping for control within the structural bandwidth as shown in figure 2-

12. The figure shows an inverse linear proportionality between modal damping needed

to stabilize a controlled structure and pole-zero separation. These results show good

comparison to the assumptions in section 2.2.2 where the amount of damping needed

to assure stability given pole-zero uncertainty was based on the size of the semicircles

made by the root locus resulting from plant poles migrating to zeros. Furthermore,

it indicates that less damping is required than that assumed by von Flotow's linear

approximation using equation 2.18.

Given a simple structure consisting of one mode with PD control, the importance

of passive damping to the performance and stability of the control structure are

made evident. The closed-loop bandwidth is dependent on both the plant pole-

zero separation and amount of structural damping. An implicit relationship between

maximum pole-zero separation and modal damping to achieve stable control within

the structural bandwidth is established.
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Plants

A major source of model uncertainty lies in the directional information about the
plant. Small changes in plant variables can result in dramatic differences in the

directional information of a plant which can cause instability. The addition of passive

damping to a MIMO plant reduces the uncertainty in directional information of the

plant. The directional information of a plant describes how the inputs and outputs of

the system interact. MIMO control techniques take advantage of the interactions and

coupling between the plant inputs and outputs to improve the control characteristics

of the system.

Plant zeros are dependent on plant directions in comparison to plant poles which

are based on modal frequencies. In optimal control design, plant inversion techniques

are used to develop high performance controllers. This results in cancellation of plant

transmission zeros by compensator poles and replacing them with more desirable dy-

0.77



namics (see [3]). Thus accuracy of plant directions with respect to model uncertainty

is extremely important in the design of MIMO optimal controllers.

Lets consider a n degree of freedom structural model defined by the following

matrix differential equation

Mi(t) + C+(t) + Kx(t) = u(t) (2.31)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,

and u(t) in the applied accelerations. The eigensystem of the plant is defined by the

eigenvalues A and eigenvectors 4.

K( = M PA (2.32)

The eigenvectors are normalized about the mass matrix ITMt = I. By transforming

the differential equation to modal coordinates, the matrix equation is converted into

n uncoupled differential equations.

i(t) + 2ZA'/ 2 (t) + A77(t) = 4TU(t) (2.33)

The vector y(t) are the states of the structure in modal coordinates given by the

transformation x(t) = 477(t). The diagonal elements of Z represent the amount of

modal damping at each mode as a ratio of critical. The scalar transfer function with

relation to actual outputs is derived.

x(s) _ j l + w (2.34)
us(s) r=1 , 2 + 2(,ws + w ,

Notice that the poles of the plant are given by the denominator of the transfer func-

tions which are the same for all input to output relationships. Thus there is no change

in the directionality of the plant near pole frequencies. Directional changes are based

on the numerator of the transfer function which also defines the plant zero locations.

Thus uncertainty in the plant zeros indicates uncertainty in the plant directions.



Lets consider a two degree of freedom system. The resulting transfer function is

given by the following equation.

xj(s) _ (Ijlt1i + jA22i)V2s + 2(4jl~ 1 li 2W 2 + 4j242iC1 1 )s + ( 2+ j2i 2 1w)
Ui(s) (s2 +(2 2wis + W)(S2 +C 2 W2  + W2 )

(2.35)

Notice that the plant eigenvectors play no part in the denominator of the transfer

function, thus they do not affect the poles of the plant. Furthermore, the denominator

is the same for all input to output mappings.

The directional information of the plant is a measure of the interaction of the

inputs and outputs of the system. For a two input two output system with equal

modal damping ( 1 = (2 = (), one such indicator of plant directions is the ratio of

the output states given equal inputs. The ratio of the output states given only the

input ul(s) is
x1(s) als2 + 2(a2s + as

z2(s) blS2 + 2Cb 2s + b3

where

al = (11I11 + 1221 1 = 0'21(11 + 422 21

a2 = I 1 1 1 11W 2 + (12t21J1 b2 = 2 1 1 1t 2 + $ 2 2 I 21 W 1  (2.37)

2 + W2 = ( 11W2 W2a3  )11 4' 11W + 1 2 21 1 b3 = 221xw + $ 22A 2 12

Notice that plant poles play no part in the ratio of the outputs, thus not affecting

plant directions.

Since the Laplace transform is a representation of the system in frequency space

(s = jw), the frequency behavior of the plant output ratios is the following complex

function.
zx(jw) (a3 - aiw2 ) + 2(a2j

X2(jw) (b3 - bW 2 ) + 2(bzwj

The ratio of the magnitudes of the outputs is then

1(w) ZIx(w) (a 3 - a w 2 )2 + 4 2a2
2  (239)

(2.39)
ZZ(W) |z2(W)I \ (b3 - blW2)2 + 42b2

XI_ __I_ _ _



and the phase difference between the two outputs is then

Z(w) = L Lxl(w)- Lz 2(w) (2.40)
X2(W)

O(w) = tan-' 2 a2 _ tan- (2.41)
a 3 - al 2  b3 - b1

2  (2.41)

The change in phase difference 0 with respect to frequency w is then given by

dO a2a3 + a+a2
2  b2b3 ± blb2 w 2

dw 2C (a 3 - alw2 )2 + 4C2a2  (3 - blW2 )2 + 4C2b2w (2.42)

The frequency where the phase change is critical is at the location of the plant zeros

(w,1 = 3/ai and wz2 = b3bl). For small damping values, dO/dw at the zero

frequencies is
dO a, dO b(- - - _ (2.43)
dw W (a2 dw 2 0

If the uncertainty in the zero location is given by 6w, = wl - zl,,t,,l, then a first

order approximation of the uncertainty in phase difference between the two outputs

is given by the following.

60 = 6wU, a, (2.44)
Ca2

Thus the uncertainty in the phase difference between the outputs of the plant at the

plant zero locations is inversely proportional to damping. These results are similar to

the change in phase angle with respect to frequency for SISO systems (see equation

2.16). Similar equations can be derived for output ratios as a result of inputs into the

second channel and for ratios of inputs while measuring only one output. This idea

can be extended for higher order MIMO systems.

The importance of damping to the change in phase difference with respect to

frequency is easily shown in the following example. Consider a two mass system

connected by a spring and a damper as shown in figure 2-13. Position of the two

masses are measured and force is also applied to the two masses. The plant transfer

~I __X __ 11__ 1_____11____ _IXIYL_~*_ll___rmp_ __ 1_~1~1 - -I - - . L-



function is given by

G(s) = z(s) = 1 m 232 + cs + k cs + k
u(,) ,2[mlm2s2 + (ml + mz)cs + (ml + mz)k] CS + k ms 2 + cs + k

(2.45)

where two zeros exist on the diagonal terms and one zero on the off-diagonal terms.

The system contains one rigid body mode and one flexible mode at

(ml + m2)k= + )k (2.46)
mim 2

The amount of modal damping is given by

c ,ml + m2
C = m+M (2.47)2 m 1m 2k

The change in phase difference between the first and second output given inputs into

the first channel at the frequency of the location of the zero is given by

(2.48)

Notice the inverse proportionality of the function with respect to the amount of

passive damping in the plant. A plot of the phase difference for various amounts of

passive damping and mi = ms = 1 and k = 1 is shown in figure 2-14. As damping

increases, the change in phase difference with respect to frequency decreases. Notice

the 1800 jump in phase difference for undamped structures.

This indicates that the uncertainty in direction through the plant is reduced by

the addition of passive damping to a structure. For undamped systems, the degree

of uncertainty in the relative phase difference between the two outputs due to an

uncertainty in zero location is 180 degrees. This may cause the system to go unstable

if one tries to control the plant near the frequency of the zero. For the given two

mass system, the addition of just 1% modal damping to plant results in a drop in

phase difference from 180 degrees to 15 degrees given a 10% uncertainty in the zero
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Figure 2-13: Two Mass Spring Damper MIMO Plant.
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Figure 2-14: Phase Difference for Various Amounts of Passive Damping on Two
Mass Spring Damper MIMO Plant.
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Chapter 3

Model and Controller Derivation

This chapter discusses the mathematical necessities for derivation of the structural

model and computation of the control law to examine the virtues of passive damping

on controlled structures. The structure is represented by the stiffness and mass matrix

derived from a lumped parameter model. The structural model-is then transformed

to modal space to add damping as a ratio of the structural natural frequencies. With

the structural model defined, a model based compensator is used to derive a control

design. H optimal control design is used due to the ease of computation and physical

understanding of performance measure being minimized. H 2 optimal control design

minimizes the H2 norm of a weighted system which represents the total spectral power

as a result of white noise inputs. H2 control design allows for a general control design

framework similar to that of Linear Quadratic Gaussian control design involving the

solution of two Riccati equations. Computation of the H2 norm is accomplished by

solving a Lyapunov equation based on the closed-loop state matrices.

3.1 Development of Structural Model

The type of structures under investigation are linear structures with control effort and

external disturbances affecting the system. The equations of motion for a structure

_ ~ __L _~ I ______ _ __ I_



are given by the following matrix differential equation of motion

Mij(t) + C4(t) + Kq(t) = Fu(t) + Fd (t) (3.1)

where M is the mass matrix, C is the damping matrix, and K is the stiffness matrix.

Each of these matrices are of dimensions n x n where n is the number of degrees of

freedom of the structure. The vector q(t) is the amplitude of motion of the structure.

The matrix F, is a n x p, applied load distribution matrix which relates the control

effort vector u(t) to the structural system. Similarly, the matrix Fd is a n x Pd

disturbance load distribution matrix which relates the disturbance load vector (t)

to the structural system. Lumped parameter models are used to derive the system

matrices as a function of structural design variables.

For many structures, especially lightly damped systems, a modal space represen-

tation of the plant is desirable since damping can be added as a ratio of the structural

natural frequencies ( () which can be computed experimentally.

Given an undamped structure defined by the mass and stiffness matrix, the eigen-

system of the plant is defined as

KI = MQ4A (3.2)

where A is a diagonal eigenvalue matrix and (P is the eigenvector matrix of the plant.

The diagonal elements of A are the square of the natural frequencies of the structure

(Ai = w?). The eigenvectors are normalized about the mass matrix to one.

#(TM(I = I (3.3)

By transforming the plant states from physical space q(t) to modal space y(t),

q(t) = lbq(t) (3.4)



the following modal space equations of motion for the structure are derived.

i(t) + A7(t) = TM-1Fu(t) + ITM-1F (t) (3.5)

Modal damping is introduced into the system

2Ciwl

C = "-. (3.6)

where Ci is the damping ratio at frequency wi. For many cases, equal damping ratio

is assumed across frequencies (C = 2CA). Thus the damped modal space equations

of motion are as follows.

ij(t) + 2CAr(t) + Ary(t) = TM-1F,u(t) + 41M-1Fd(t) (3.7)

The state space representation of the plant in modal coordinates is similar to the

one in physical coordinates.

i(t) = Apx(t) + Bpu(t) + Bdw(t) (3.8)

y(t) = CP,(t) (3.9)

The state vector z(t) is made up of the modal displacements and velocities.

z(t) = (t) (3.10)

The state matrices are as follows.

0 1[ 0 0 [
-A -2(A 1/ 2 BTM-1F, d = M-1Fd

~ _ ~_~_ __. ~



CP = CP ](t) (3.12)

The output state matrix C, transforms the measured state to physical space where

C, is the physical output state matrix.

3.2 H2 Optimal Control Design

3.2.1 Computation of H2 Norm

The H2 norm of a closed-loop system is a measure of its total spectral power as a

result of white noise inputs. This makes the H 2 norm an ideal performance mea-

sure. Furthermore, the H2 norm is easy to compute given the closed-loop state space

representation of the system, involving the solution to a Lyapunov equation.

The H2 norm of a system defined by the transfer function G(s) is as follows

1

IGIIH 2  0 - trace [GH(jw)G(jw)] dw} (3.13)

where the transfer function G(s) = C(sI - A)-1B is the loop under investigation.

Through the use of Parseval's theorem, the H 2 is also the following time based integral

[22, page 14].

|IGIIH2  {j trace GT(t)G(t)] dt (3.14)

The function G(t) is the inverse Laplace transform of G(s), which is the response due

to impulses applied at the inputs of the system. Thus minimizing the H2 norm also

minimizes the impulse response of the system.

Given a system transfer function G(s), the solution of the H2 norm is conveniently

obtained by the following equation [7, pages 831-846].

IIGIIH = trace [BTLoB] = trace [CL CT] (3.15)

The matrices Lo and Le are the observability and controllability gramians respectively.
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Figure 3-1: Linear Fractional Transformation of System

They are evaluated by solving the following Lyapunov equations.

ATLO + LoA + CTC = 0 (3.16)

ALc + LcAT + BBT = 0 (3.17)

Thus by applying the associative state space matrices under consideration, the H2

norm can easily be computed. For a solution to the H2 norm to exist, the state matrix

A must be negative definite, i.e. the system is stable. Furthermore, the H2 norm can

not be computed with any feedforward terms (D = 0).

One advantage of using the H2 norm as the control cost is that several loops

can be studied at the same time, and weights can easily be placed on critical values.

Furthermore, weights in the frequency domain can easily be augmented into the plant,

thus allowing for loop shaping in the design. To better represent the system under

investigation, a linear fractional transformation is used such as in figure 3-1.

The inputs into the plant w(s) can represent disturbances, sensor noise, command

signals, etc. Similarly, the outputs from the plant z(s) can represent state values,

effort, state errors, etc. The measured signals are given by y(s) and the control effort

by u(s). The plant is defined by the state function where P(s) is the associative
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transfer function.

i(t) A, B 1  B 2, (t)

z(t) = C1 Di D 12  w(t) (3.18)

y(t) C2 D21 D22  u(t)

The compensator is given by the following transfer function.

K(s) = Ck(sI - Ak)- Bk (3.19)

For a solution to the H2 norm to exist, no feedforward terms can exist (Dll = 0).

Furthermore, it is assumed the no measurements of the effort are taken directly

(D 22 = 0). The intention of H2 optimal control design is to minimize the H2 norm of

the loop G(s) = z(s)/w(s) where its state matrices are as follows.

A = B2Ck = 1 Dl2 Ck (3.20)
A BkC2 Ak B BkD21 (3.20)

A common representation of the plant P(s) is to have disturbance and sensor

noise as inputs and plant states and effort as outputs as shown in figure 3-2 where

Wd is the weighting on disturbances, W, is the weighting on sensor noises, W is the

weighting on the effort, and W, is the weighting on the plant states. For this example,

the transfer function P(s) is defined as

Ap BdWd O0 BP

P(s) := (3.21)
W, O00 0

A compensator that minimizes the H2 norm of the weighted closed-loop system

z(s)/w(s) can be computed directly using a simple algorithm involving solution of

two Riccati equations.
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Figure 3-2: Example Block Diagram of a Closed-Loop System

3.2.2 Computation of Controller

H2 optimal control design allows for a general framework to design a control system.

The H2 optimal control design algorithm computes the optimal controller K(s) that

minimizes the H2 norm of the loop z(s)/w(s) defined by the weighted plant P(s).

A, B1  B 2

P(s) := C D,1 D1 2  (3.22)

C2 D 21 D22

The compensator uses the model based compensator framework as shown in figure

3-3. The design technique essentially uses optimal Kalman filter design to compute

the necessary filter gains H for good state estimation and Linear Quadratic Regulator

design to compute the necessary control gains G for good performance. The control

and filter gains G and H are computed to minimize the H2 norm of the closed-loop

system. The optimal compensator K(s) is given by the following state space equation.

B(t) = [A, - HC2 - B2G + HD22 G]i~(t) + Hy(t) (3.23)

u(t) = -G(t) (3.24)

weighted
effort

weighted
states



Filter Gains

Figure 3-3: Model Based Compensator

In order for the plant to be well posed, no feed forward

Furthermore, D12 and Di must have full column rank.

The following matrix transformation relates the LQG

ables in the H2 design.

terms can exist (D 1l = 0).

weights and the plant vari-

Q Nc CTCi CTD12

N T R DT, CI DT2D12

(3.25)

SNf B1 B T  B1 DT
= B(3.26)

N T D21B T  I

The matrices N, and N are correlation matrices between sensor noises and distur-

bances.

The computation of the optimal filter gains and controller gains that minimize

the H2 norm of z(s)/w(s) involves the solution of two Riccati equations. The filter

gains H are given by

H = (ECT + N )0- (3.27)

such that E is a symmetric positive semidefinite matrix that satisfies the following

u(s)

1__ _ __^ 1_ __1_11__1_111___1111_-1_----1__-_1__ .^ . __~~_ II - -- I _

e(s)



algebraic Ricatti equation (ARE).

AT + A,E - (C2  + Nf)TO- 1(C 2 + N) + = 0 (3.28)

The controller gains G are given by

G = R-1(BTM + NT ) (3.29)

such that M is a symmetric positive semidefinite matrix that satisfies the following

ARE.

ATM + MA, - (BTM + NT)TR-(BTM + N T ) + Q = 0 (3.30)

The computation of the H2 compensator is simple given the plant defined by

P(s). It allows for a very general framework where the H2 norm of an loop defined

by z(s)/w(s) can be minimized. This design methodology is an expansion of the

LQR design method, thus many of its properties can be exploited. With the H2

optimal compensator, the H2 norm of the closed-loop system is computed by solving

the Lyapunov equations discussed in section 3.2.1.
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Chapter 4

SISO Design Studies

In this chapter, numerical studies are performed on simple SISO controlled flexible

structures to verify the effectiveness of increasing passive damping to improve per-

formance and robustness characteristics. Comparisons to the theoretical derivations

from chapter 2 are made to validate the assumptions. Passive damping levels be-

low 10% of critical are examined because it is easily obtainable without much added

mass and complexity. Anderson et al. [1] showed that 6% average modal damping

was achieved with about 15% added structural mass or about 10% of total mass for

application to the MIT Interferometer Testbed. All examples make use of H2 optimal

control design to derive the necessary control law. Performance variables such as the

H2 norm, settling time, and control effort variance are examined for various amounts

of passive damping. Robustness characteristics are computed based on uncertainty

in a specific design variable. Stability and good performance bounds are derived for

various amounts of damping. Good performance robustness is based on a no more

that ±5% change in the nominal H2 norm as a result of the uncertainty.

4.1 Two Mass System Example

The first system under investigation is a modally damped two mass system connected

by a spring as shown in figure 4-1. The system has uncollocated sensors and actuators.

This is a benchmark problem for the control of flexible structures originally proposed
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Figure 4-1: Two Mass System.

by Wie et al. [32]. It is the simplest of flexible structures containing one flexible mode.

The objective of the control system is to reject disturbances on the second mass by

applying forces on the first mass. A large uncertainty is assumed in the stiffness of

the structure, resulting in uncertainty in the plant-pole locations. The performance

and stability properties of the system as a result of trading off damping for stiffness

are investigated. H2 optimal control techniques are applied to develop a stabilizing

controller.

4.1.1 Derivation of Structural Model

The two mass structure is modeled as two lumped masses of mass m connected by

a flexible spring with a stiffness of k. The control force u(t) acts on the first mass

and position y(t) of the second mass is measured. The equations of motion of the

undamped system are given by the following matrix equations

Mj(t) + Kq(t) = Fu(t) + Fd (t) (4.1)

where the matrices are as follows.

M = K = (4.2)
0 m2 -k k

Fe = Fd = (4.3)
0 1

~iP1 I-I- LCI___II____L^IIII__. --i~L1 I ii --I-_-I _ -_.- I~I.

q1(t) qtqlt t I q h2(t)

u(t) , Y(t)

M1M



The lumped masses under consideration are equal (ml = m 2 = m). In order to add

modal damping to the system, it is transformed to a modal space. The eigensystem

of the plant is given by

Kt = MoA where kTM$ = I (4.4)

where A is the eigenvalue matrix and (k is the eigenvector matrix.

A = i (4.5)

The system consists of one rigid body mode and one mode with a natural frequency

at w, = 2k/m. The transformation q(t) = y(t) is used to convert the plant from

physical space to modal space where y(t) is the modal displacement. The modal

states are then used to derive the modal state space equations. -

X(t) = EM(t)(t) (4.6)

The resulting modal state space equation of motion are as follows.

i(t) = Apx(t) + Bpu(t) + Bd((t) (4.7)

y(t) = C,z(t) + 0(t) (4.8)

where the state matrices are

Ap = BP = Bd (4.9)
-A -20A T M-1F T M-1Fd

[ ]A
CP= 0 1 0 0 (4.10)

0 •
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The measurements of the system are given by y(t), control effort by u(t), sensor noise

by 0(t), and disturbances by ((t). Modal damping is defined by the damping ratio C.

In this design example, the effects on stability and performance robustness of the

system are investigated as a result of presumed trade-offs between stiffness and modal

damping. It is assumed that the addition of passive damping will require sacrifice in

stiffness to maintain a constant mass.

zlk
a= (4.11)

This penalizes larger values of damping. The drop in stiffness for increased damping

is proportional to a as shown above where ko is the nominal stiffness of the undamped

plant.

k = ko - Ak = ko(l - a() (4.12)

In this design example, the nominal system is given by

ml= m = 1 kg

ko = 1 N/m

( = 0 Ns/m

The plant has a natural frequency of w, = N2 rad/sec. The migrations of plant poles

for increasing ( and various values of a are shown in figure 4-2. No zeros are present

in the undamped plant. The two poles at the origin result from the rigid body mode

and the two off the origin are the result of the vibrational mode.

4.1.2 Unrobust H2 Optimal Control Example

System Description

The first example investigates the advantages of passive damping on the two mass

system with active vibration suppression. The system makes use of H 2 optimal control

design to derive the necessary control law. Robustness issues are ignored in the

I~~Y1-lll~-----~l -IIII-1I1I_ ~PIIYIILX-~II.. --I.~L .i~ i IIII IIYI^IPIII~I~-- ~C~ ~.I_ ill ;-_-I~I IIYL( rr~l~l~- ^- ~ _~____ I1I__I.--LIIII~-I~LIII-~ 1 I --
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Figure 4-2: Migration of Plant Poles of Nominal Two Mass System for Increasing C
and Various a.

control design. The intention is to develop a control system that can suppress within

15 seconds an impulse disturbance on the second mass by applying a force on the

first mass. Changes in performance and stability levels as a result of increased modal

damping are investigated. Uncertainty is assumed in the stiffness of the plant. Trade-

offs between stiffness and damping are studied.

The system framework under investigation is shown in figure 3-2. Inputs to the

system are disturbances wi(t) and sensor noises w2 (t). It is assumed that sensor noises

are small compared to disturbances allowing for good estimation. Outputs from the

system are weighted effort zi(t) and weighted physical plant states z2(t). H 2 optimal

control design as discussed in section 3.2.2 is used to compute the control design that

minimizes the H 2 norm of z(s)/w(s). The weights of the system are as follows.

Wd = 1

W, = 1

W, = 0.001
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1 4 0

0 04

Since it is only desired to eliminate disturbances on the second mass, weighting terms

on the first mass states are set to zero. The plant state weighting matrix is multi-

plied by the plant eigenvectors to properly weight the physical states. The resulting

weighted plant state representation is given by the following state equation.

:i(t) Ap BdWd 0 Bp z(t)

zr(t) 0 0 0 W, wi(t)
(4.13)

z 2(t) W, o 0 0 w2(t)

y(t) c, o W. o u(t)

Given the system framework and weighting, the two Riccati equation problem de-

scribed in section 3.2.2 is used to compute the optimal H2 compensator. The resulting

compensator is of the same order as the plant. The computational framework for the

investigation of the virtues of passive damping is simple. First the plant model is

computed with modal damping values C. The stiffness to damping stiffness/damping

trade-off ratio a is used to compute the plant stiffness. With the plant model com-

puted, the weighted system is formed and the H2 optimal control design algorithm is

used to derive the optimal compensator. The engineering software package MATLAB

was used to perform investigation. The package has control system design tools such

as H2 control design built in. Once the H2 compensator is computed, the closed-loop

system is formed and performance and stability levels are computed. For this in-

vestigation, performance measures included the H2 norm and settling time as well as

maximum deflection due to an impulse disturbance on the second mass. Control effort

measured was based on the effort variance due to zero mean white noise disturbances.

The variance is the deviation of effort from its mean value given the disturbances.

See section A.2 for computation of effort variance.
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Uncertainty was assumed in stiffness k. Upper and lower stability bounds of

stiffness for increased damping were computed. Computations were performed for

various trade-off ratios a. For the particular case of a = 1, robust performance

properties were computed. Changes in performance levels such as the H2 norm and

settling time were computed for various level of modal damping and uncertainties in

stiffness.

Results

Results of the investigation using H2 optimal control on the two mass system gave

clear indication that passive damping greatly improves the stability robustness prop-

erties without much effect on nominal performance. Furthermore, vast improvements

in performance robustness were obtained for increased damping.

The performance measure which the control design optimized was the H2 norm

between the weighted plant inputs and outputs. Figure 4-3 shows the changes in

the H2 norm for increased damping. The H2 norm was normalized by dividing it

by the H2 norm of the undamped case. For small amounts of damping, performance

levels remain relatively unchanged. But for increased damping, the performance levels

are based on the trade-off ratio a. For low values of a (little stiffness lost in adding

passive damping), damping improved performance due to the added passive vibration

suppression, thus reducing the need for active vibration suppression. About a 20%

improvement was achieved for 20% modal damping and a = 0.

For high values of a, nominal closed-loop performance degraded for increased

damping, but robustness continues to increase. This is due to the large drop in

stiffness resulting from the high stiffness to damping trade-off ratio. This softens the

link between the masses, decreasing its natural frequency and controllability. But for

a less than 2.5, the H2 norm of the closed-loop system did not degrade significantly.

Figure 4-4 shows the normalized variance of the effort as a result of white noise

disturbances. For up to 4% modal damping, effort is decreased slightly for all values

of a. Up to a 20% drop in effort is experienced for values of a less than 2.5. This is

due to the fact that passive damping dissipates some of the vibrational energy, thus

11__ ~_~___11___1_1__1_1__I^
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Figure 4-3: Normalized H2 Norm of Nominal System for Increasing C and Various
Levels of a.

reducing the effort of active vibration suppression. Obviously for high stiffness to

damping trade-off ratios, the great drop in stiffness results in more effort needed to

provide vibration suppression due to its high flexibility.

While the past two figures show changes in nominal performance levels for various

values of modal damping, they are not realistic performance measures. Performance

issues such as settling time and maximum deflection due to real disturbances provide

a better understanding of actual performance issues. Figure 4-5 and 4-6 show the

changes in settling time and maximum deflection given an impulse disturbance on

the second mass. Again, all values are normalized by dividing them by the nominal

value with no modal damping. These results are similar to that with the Hz norm.

For low damping, the settling time is not greatly affected. For low values of a and

high damping, settling time drops off significantly. An almost 40% drop in settling

time occurs with 20% modal damping with a = 0. Again, high values of a show

increased settling time due to the great trade-off in stiffness for damping. Similar

results are experienced for the maximum deflection of the second mass.
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Figure 4-6: Normalized Maximum Deflection of Nominal System for Increasing
and Various Levels of a.

Even though passive damping did improve performance characteristics of the

closed-loop system, not much improvement was gained. Thus why use passive damp-

ing if active damping can provide a good job? The next two figures show the main

advantage of passive damping in a system using unrobust control design methods.

Figures 4-7 and 4-8 show the upper and lower bounds in stiffness needed for the

closed-loop system to remain stable. For the nominal system with no modal damp-

ing, there was no downward stability margin. But as modal damping increased, so

did the stability margins. At about 8% modal damping, about an 8% lower margin

in stiffness was acceptable for the system to remain robustly stable. For low values of

a, the change in the lower stiffness bound changed linearly with modal damping at a

rate of 1.1. This agrees with the results in chapter 2 where a linear relation between

plant pole uncertainty and modal damping was observed.

On the upper stiffness bounds, even greater stability robustness properties were

experienced for increased damping. With 10% modal damping, all the systems expe-

rienced infinite upward stability margins. With a = 0, only 6% modal damping was
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Figure 4-7: Lower Stiffness Bound for Stability for Increasing ( and Various Levels
of a.

needed to achieve infinite upper stiffness uncertainty.

These results provide clear evidence that increased passive damping on controlled

structures results in some improvement in nominal performance characteristics, but

greatly improves the stability robustness characteristics. With zero damping, no

downward stiffness uncertainty was allowed for stability. The addition of damping

greatly improved the stability robustness characteristics of the system.

In comparison to the results found in section 2.2.3. About 2.5 times more passive

damping was needed to robustly stabilize the two mass system as compared to the

single mode structure with PD control. This system used a higher order optimal

compensator design based on the modeled system, thus more sensitive to modeled

uncertainties. Still, a linear relationship between modeled uncertainty and passive

damping was observed for a < 2.5,

0.6 , n (4.14)
Wn
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Figure 4-8: Upper Stiffness Bound for Stability for Increasing C and Various Levels
of a.

where Aw, is the uncertainty in natural frequency.

The next examples show the performance robustness characteristics for various

amounts of modal damping for the specific case of a = 1. Figure 4-9 shows the values

of the H2 norm given a percent uncertainty in stiffness k and various amounts of

modal damping C. For zero damping, there is no downward performance robustness

due the fact the system goes unstable. But as damping increases, not only does the

H2 norm drops down slightly, but it maintains a broader performance level given the

uncertainty in stiffness. With 16% modal damping, the H 2 norm remains relatively

unchanged for even 15% downward stiffness uncertainty. This is a vast improvement

over the case with zero modal damping.

Performance robustness improvements are also achieved using real performance

levels such as settling time due to an impulse disturbance on the second mass as shown

in figure 4-10. Even though settling time is not well maintained for low damping, it

does provide a more robust system in comparison to the undamped case. High levels

of damping provide significant maintainability in performance given uncertainty in
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Figure 4-9: H2 Norm Given an Error in Stiffness k(a = 1).

stiffness, especially for upward stiffness uncertainty.

Figure 4-11 shows the motion of Hz compensator poles and zeros as well as plant

poles for increasing damping in the design model for a = 1. For zero modal damping,

compensator zero cancellation of plant poles is not achieved for the given weighted

plant. But as damping increases, the compensator zeros move closer to the poles,

providing better plant inversion resulting in improved performance. Thus passive

damping improves stability and performance robustness characteristics of the plant

allowing for improved plant inversion by the compensator, thus permitting higher

bandwidth control.

The results presented show that the addition of passive damping to a simple struc-

ture improves the design of a controlled structure. Passive damping provides a method

to easily dissipate vibrational energy which can cause the system to go unstable. Fur-

thermore, by pushing the plant poles away from the imaginary axis, maintainability of

stability and performance levels is improved given plant model uncertainty. With the

increase in damping, also came a decrease in control effort resulting in systems with

lower power requirement, smaller actuators, and less complexity than cases without
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passive damping.

4.1.3 Robust H2 Optimal Control Example

The previous example examined the virtues of passive damping on unrobust control

design. It clearly indicated that the addition of passive damping greatly enhances the

stability robustness as well as the performance properties of the system. Furthermore,

it improves the performance robustness properties of the system. This investigation

examines the advantages of adding passive damping to uncertain systems with robust

control design. Even with robust design techniques, passive damping is still advan-

tageous since it helps in the reduction of control effort, improves on the robustness

characteristics achieved, and allows higher robust performance.

Robust H2 optimal control design is used to derive a controller for the two mass

system. No direct methods exist for the computation of the robust controller. Instead,

constrained non-linear optimization is used to determine the optimal control design

variables to minimize the H2 norm of the system. Constraints are placed such that

the perturbed system as a result of the addition of the uncertainty is stable. Two

cases are examined with +100% & - 50% uncertainty and ±10% uncertainty in the

plant stiffness. Trade-off studies between stiffness and modal damping are performed.

System Description

The system under investigation is similar to that in the previous section, except that

sensor noise is completely ignored. The system framework is shown in figure 4-12.

The controller used in this example is a third order compensator where the polynomial

coefficients ai were design variables.

K(s) = ai(s + a2)(s 2 + a3s + a4 ) (4.15)
(s + as)( 2 + aes + a7)

The nonlinear optimization routine computes the optimal values of a, such that it

minimizes the H2 norm of z(s)/w(s) given the constraints that the perturbed system

due to uncertainties in stiffness remains stable. To ensure the closed-loop system



settles in a reasonable amount of time, constraints are also placed on the closed-loop

poles such that they are to the left of -0.15. This assures a settling time of about 20

seconds given impulse disturbances. The optimization objective is as follows

i W(SZ ) ,2

Rf{Ai[Ae(k)]} < -0.15

R ({A[Aa(k + Ak1 )]} < 0

R{Ai[AI(k - Ak 2)]} < 0

(4.16)

(4.17)

(4.18)

(4.19)

The upper bound on stiffness is given by Aki and the lower bound by Ak 2.

weighting terms and uncertainty used in the example are as follows.

Wd

W,

WP

Ak

Ak 2

The

= 1

= 1

0 o]

= 2k

= 0.5k

The resulting weighted plant state representation is given by the following equation.

z(t)
zl(t)

z 2(t)
z Mt)

Ap

0

WP

CP

BdWd Bp

0 w,

0 0

0 0

x(t)

w(t)

u(t)

(4.20)

such that



Figure 4-12: System Framework with Robust H2 Control.

The initial compensator used for the optimization was a nonminimum phase robust

controller design developed by Byun et al. [6] which met the robust stability require-

ments as shown in equation 4.21. Improvements in performance and stability were

computed for various amounts of modal damping and values of a.

0.9173(s + 0.15)(82 - 2s + 4)
K(s) = (4.21)(a + 1.6)(S 2 + 2s + 4)

The optimization toolbox in MATLAB [27] was used to perform the optimization

process. The function CONSTR was used which was based on Sequential Quadratic

Programming to minimize a nonlinear function given constraints.

Results

If robust control techniques can be used to provide reasonable performance with

desired robustness characteristics, then why apply passive damping to a structure?

The results presented indicate that improvements in performance characteristics as

well as a drop in control effort result due to increased passive damping. This allows

for lighter and higher performing control-structure systems than systems with only

active vibration suppression. Furthermore, these results show further improvements

on stability and performance robustness over the cases without passive damping.
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Figure 4-13: H2 Norm of Nominal System for Various Amounts of Passive Damping.

Four structural designs were examined using 0%, 1% 5% and 10% modal damping

as well as for different stiffness to damping trade-off ratios; a = 0, a = 1, a = 2.5,

and a = 5. Performance measures included the H 2 norm of the weighted closed-loop

system, settling time due to an impulse disturbance on the second mass, and effort

variance due to white noise disturbance on the second mass. All the optimal systems

hit the hard constraint of 50% downward stiffness uncertainty. Upper bounds on

stiffness uncertainty were above the +100% constraint for all the cases.

Figure 4-13 shows the changes in the nominal performance index (H2 norm) for

increased passive damping. As damping increases, the H2 norm dropped for all the

cases. For the case a = 0, there was a 25% drop in the nominal performance index

using 10% damping, resulting in better vibration suppression. For the case with

a = 5, the performance index remained relatively the same due to the large drop in

stiffness needed to maintain a constant mass design.

More realistic performance measures such as the settling time due to an impulse

disturbance on the second mass are shown in figure 4-14. It shows no consistent

change in performance was observed for increased modal damping. For the case of

a = 0, there was a 25% drop in settling time using 10% modal damping, but for
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3 alphai0.O
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Figure 4-14: Settling Time due to Impulse Disturbance on Second Mass of Nominal
System for Various Amounts of Passive Damping.

other values, the settling time increased slightly for increased modal damping. For

the most part, the settling time remained about the same for all the cases.

On the other hand, there was an appreciable drop in variance of the effort due

to white noise disturbances on the second mass as shown in figure 4-15. As much

as a 50% drop in effort was experienced given 10% modal damping and a = 0. For

a < 2.5, all the cases experienced a great drop in effort. For the case of a = 5, effort

remained relatively the same. Again, this is due to the large decrease in stiffness to

maintain a constant mass design.

For all the cases investigated, the optimal designs hit the stability limit of 50%

lower uncertainty bound on stiffness, but resulted in much higher than the 100%

upper stiffness uncertainty bound as shown in figure 4-16. Almost all the cases showed

improved upper stiffness uncertainty bounds for increased passive damping. For all

the cases, uncertainty in stiffness beyond 1000% was experienced with 10% modal

damping. The cases with a = 5 tended to have smaller upper uncertainty bounds

than the rest of the cases.

The performance robustness characteristics for increased damping and a = 1 are
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Figure 4-15: Variance of Effort of Nominal System for Various Amounts of Passive
Damping.
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Figure 4-17: H2 Norm Given an Error in Stiffness k (a = 1).

shown in figures 4-17 and 4-18. As damping increases, the deviation of performance

levels from the nominal case decreased given higher stiffness uncertainty. Because

all the designs allowed up to a 50% decrease in stiffness, good performance was----- ----- .. ... . .. ;
unachievable beyond that amount. But for increased stiffness uncertainty, stability

and performance levels improved greatly for increased damping. With 10% modal

damping, the performance level did not deviate much from the nominal design level

with stiffness uncertainty values ranging from -40% to 200%.

The previous results used very high uncertainty levels in the plant model. For most

designs, model uncertainty around +10% is more realistic. The next few examples

examine the results of decreasing the stiffness uncertainty bounds to 1 10% compared

to the first example with +100% & - 50 uncertainty in stiffness. The particular

case of 4-17: = 1 was examined.

Figure 4-19 shows the di 4-18. Aerence in the 2 norm of the two examples for different

amounts of modal damping. Obviously, the case with stiffness10% uncertainty had much

improved performance measure than the case with higher uncertainty. But as modal

damping increased, the difference between the two decreased.
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Figure 4-20: Settling Time due to Impulse Disturbances on Second Mass of Nominal
System for Various Amounts of Passive Damping and a = 1.

Using realistic performance measures such as the settling time due to an impulse

disturbance on the second mass, different results than that of the H2 norm resulted

as shown is figure 4-20. As damping increased, so did the difference between the two

cases. For the larger uncertainty case, the settling time remained constant, while

the case with lower uncertainty bounds had a large decrease in settling time. Since

the H2 norm is composed of equal measures of both state and effort variables, the

effort for the lower uncertainty case must not drop as much as compared against

the case with higher uncertainty. This is observed in figure 4-21. Thus designs with

large uncertainties need much effort to provide robust control. As damping increases,

effort can greatly be reduced, thus lowering the H2 norm. On the other hand, designs

with smaller uncertainties, the addition of passive damping has more of an effect on

reducing plant state deviation from zero, thus having a stronger effect on settling

time.

Even though a lower bound of 10% stiffness uncertainty was placed on the second

example, this constraint was not hit. Table 4-1 shows the percent allowable downward

uncertainty in stiffness. As damping increased, so did the uncertainty bound. This is

_1~1 ~.~X1_ ll~ C I~- -~----_ ---- I -_
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Figure 4-21: Effort Variance of Nominal Systems for Various Amounts of Passive
Damping and a = 1.

Table 4-1: Lower Uncertainty Bound for Various Amounts of Passive Damping for
the ±10% Uncertainty Case.

saying that uncertainty was not much of a design driver for this example. As damping

increased, so did the upper stiffness uncertainty bound as shown in figure 4-22. At

10% modal damping, both systems had uncertainty bounds beyond 1000%.

The location of plant poles and compensator zeros for increased modal damping is

shown in figures 4-23 and 4-24 for the ±10% and +100% &-50% stiffness uncertainty

case respectively. As modal damping increased, the compensator zeros moved closer

to the plant poles resulting in better plant inversion. Full plant inversion by the

compensator is not achieved due to the high weighting on effort and the stability

robustness constraints. For the lesser uncertainty case, the compensator zeros tended

Modal Lower Stiffness
Damping Uncertainty Bound
S= 12%

.= 0.01 13%
S= 0.05 15%
(= 0.1 17%
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Figure 4-22: Upper Stiffness Uncertainty Stability Bound of Systems for Various
Amount of Passive Damping and a = 1.

to follow the nominal plant poles for increased damping. Note that the compensator

zeros were below the plant poles preventing the root locus from crossing into the

imaginary axis as discussed in section 2.2.2. For the higher uncertainty case, the

zeros were far below the nominal plant poles. This shows that for robust systems,

better plant inversion can be achieved by increasing the structural passive damping

properties. This allows for higher bandwidth control while still maintaining desired

stability robustness properties.

These results show that even for robust control synthesis, passive structural damp-

ing can be very useful. The addition of passive damping had some effect on improving

performance, but greatly reduced the amount of effort necessary to control the struc-

ture. Furthermore it improved further on the stability robustness properties of the

design and helped greatly in improving the performance robustness due to model

uncertainty. Better plant inversion was also achieved allowing for higher bandwidth

control.
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4.2 Four Disk Example

The next example problem investigates the virtues of passive damping on a more

complicated structure consisting of four disks connected by flexible springs. The

objective is to control the angular position of one of the disk by applying a force on

an other disk given some uncertainty in the inertia in one of the disk. This system is

based on an example problem originally examined by Rosenthal [29]. The structure

uses a noncollocated pair of actuator and sensor. The structure is modeled as a fourth

order system consisting of four lumped masses and three springs.

The actuator is placed such that it lies near the node of the second flexible mode.

This results in a near pole-zero cancellation in the plant model. Essentially, the second

mode is uncontrollable. The uncertainty in the plant model results in a pole-zero flip

which makes it difficult to control near that frequency.

Improvements in control performance, stability robustness and performance ro-

bustness are investigated for various amounts of modal damping added to this sys-

tem. Two examples are studied. The first example examines the advantages of passive

damping on unrobust H2 control on the four disk system. Comparisons between high

bandwidth control incorporating the first structural mode and low bandwidth control

with a closed-loop bandwidth ten times below the first structural mode are exam-

ined. The second example examines the advantages of passive damping with robust

H2 control.

4.2.1 Derivation of System Model

The system under investigation is a simple structure consisting of four disks connected

by flexible springs with modal damping as shown in figure 4-25. The structure is made

up of four disks of equal inertia J except for the first disk which is some fraction e

of the inertia J. All springs are of equal stiffness k. Control torques u(t) act on the

second disk and the angular position y(t) of the fourth disk is measured, resulting in

a noncollocated sensor-actuator problem. Disturbances ((t) act only on the second

disk.
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Figure 4-25: Four Disk System.

The equations of motion for the undamped structure are given by the following

matrix equation

Mj(t) + Kq(t) = Feu(t) + Fda(t) (4.22)

where the matrices are as follows.

eJ 1 -1 0

J -1 2 -1 1
M = K = k Fe = Fd = (4.23)

J -1 2 -1 0

J -1 1 0

The vector q(t) consists of the angular positions of each disk. Modal damping is

added to the structure by converting it to modal space where A is the eigenvalue

matrix and I is the eigenvector matrix. The eigenvectors are normalized such that

$PTMb = I. A state space representation of the structure in modal space is used

similar to that of the two mass problem (see equations 4.7) except for C, which is

modified to measure the angular position of the four disks.

C= 0 0 0 1 0 0 0 0 (4.24)0a
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Table 4-2: Natural Frequencies of Nominal Four Disk System

The nominal structure is composed of disks and springs with the following properties.

k = 1 N-m

J = 1 N-.m

e = 0.375 nominal

C = 0 N.m.s

The natural frequencies of the structure are described in table 4-2. Figure 4-26 shows

the mode shapes of the nominal system. Notice that the actuator is placed at the

location of a node of mode #3 resulting in a plant pole-zero cancellation.

An uncertainty exists in the inertia of the first disk which results in the actuator

either being to the left or right of the node of mode #3. The uncertainty in the

disk inertia is given by 0.25 < e < 0.5. A nominal value of e = 0.375 is used to

compute the controller. This uncertainty results in a pole-zero flip as shown in the

pole-zero plots for the nominal and extreme uncertainty cases in figure 4-27. This

uncertainty makes it impossible to control mode #3 because instability results due to

the 1800 phase difference between the modeled and unmodeled system at that natural

frequency.

As shown in section 2.2.2, the addition of passive damping can greatly improve the

control characteristics of the closed-loop system given a pole-zero mismatch. Given

some desired phase margin 6bm and a pole-zero mismatch of 6w, equation 2.20 can

be used to determine the amount of passive damping needed. The addition of passive

damping pushes the plant poles to the left, allowing more margin for the root-locus

mode # freq. (rad/sec) description
1 0 rigid body mode
2 0.8999 1st flex. mode
3 1.6212 2nd flex. mode
4 2.0563 3rd flex. mode
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of the poles to move around.

4.2.2 Unrobust H 2 Optimal Control

System Description

The advantages of adding passive damping to the four disk system with H2 optimal

control design techniques are examined. An appropriate control law is computed

such that good command following of the fourth disk is achieved by applying an

appropriate force on the second disk. Two control designs are examined. The first

control design incorporates low bandwidth control such that it is ten times below

the first structural natural frequency. This prevents large excitations of structural

modes which can drive the system unstable. This example shows the advantages of

passive damping on a gain stabilized system. The second control design incorporates

high bandwidth control which encompasses the first structural mode and lies close to

the second mode. Thus an accurate plant model is needed to assure plant dynamics

do not drive the system unstable. This example shows the advantages of passive

damping on a phase stabilized system. Performance and robustness characteristics

for both systems are compared. Furthermore, no stiffness trade-off for added damping

is performed.

The system framework is the same as that used in the two mass system (see figure

3-2). The following weights were used to derive the H2 controller which minimized the

H2 norm of the weighted closed-loop system between disturbance and sensor noise

inputs, and effort and plant state outputs. Robustness issues were ignored in the

control design.

Wd = 1

W, = 0.1

W, = 7 for low bandwidth control

W, = 1 for high bandwidth control
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Table 4-3: Properties of Four Disk System with Unrobust H 2 Control

W 0.0001 xl 0o

0 04

The resulting closed-loop systems had the following properties given the undamped

four disk structure as described in table 4-3.

Changes in performance levels such as the H2 norm of the weighted closed-loop

system and step-response time for various amounts of damping were examined as well

as effort variance due to white noise command input. An allowable uncertainty in

the inertia of the first disk e to maintain stability and good performance was also

computed. Good performance was based on the allowable uncertainty such that the

performance measure (H2 norm) did not change by more than 5%.

Results

Results of the investigation on the four disk system were similar to that of the two

mass system. For both high and low bandwidth control, improved nominal per-

formance as well as reduced control effort was achieved for increased modal damp-

ing. Furthermore, vast improvements in stability and performance robustness were

achieved. While the lower bandwidth control system used a more conservative design,

robustness issues were important for the undamped system.

The H2 norm of the weighted closed-loop system for both low and high bandwidth

control is shown in figure 4-28. Because of a lower weighting on the effort output,

the high bandwidth control case was able to achieve a lower H2 norm. As damping

increased, the H2 norm for both cases dropped. As much as a 35% decrease in

IIII-.~~LLI-l---I~ -I--C__
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Figure 4-28: H2 Norm of Nominal System for Various Amounts of Passive Damping.

the H2 norm was achieved by increasing the amount of modal damping from 0% to

10%. This is due to the fact that passive damping absorbed some of the structural

vibrational energy as a result of the control maneuver. Thus the need for active

vibration suppression by the controller was reduced.

More realistic performance measures such as response time and maximum over-

shoot given a step command are shown in figures 4-29 and 4-30. While settling

time decreased slightly given increased damping, a major reduction in overshoot was

achieved for the high bandwidth case. For high bandwidth control, large structural

vibrations occur, thus the addition of passive damping greatly helps reduce these

vibrations. Since the low bandwidth case had a bandwidth ten times below the first

structural mode, not much structural vibration occurred, thus the overshoot given a

step command was small.

While performance characteristics showed modest improvement with increased

modal damping, major reduction in effort was also achieved, especially for the high

bandwidth case as shown in figure 4-31. The measurement of effort was based on

the effort variance given white noise command signals. In order to achieve higher
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Figure 4-31: Effort Variance given White Noise Command Signal of Nominal Sys-
tems for Various Amounts of Passive Damping.

bandwidth, more effort was needed as shown in the figure. The addition of passive

damping provided another source to reduce structural vibrations, reducing the burden

for active vibration suppression by the control system.

The greatest benefits of the addition of passive damping came with increased per-

formance and stability robustness properties of the structure given plant uncertainties.

The allowable uncertainty in the inertia of the first disk e to maintain stability for

various levels of modal damping is shown in figure 4-32. Because the low bandwidth

control system was gain stabilized such as to not significantly excite the structural

natural vibrations, it was more robust than the system with the high bandwidth con-

troller. With little damping (C = 0.1%), the allowable uncertainty in e was about

5% for both cases. Thus model uncertainty played an important role in the stability

properties of the low bandwidth control case. With just 0.7% modal damping, over a

100% uncertainty in e was allowed for the low bandwidth case. The high bandwidth

case needed more damping to assure stability robustness. As much as 6% modal

damping permitted 100% uncertainty in e to maintain stability.
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Figure 4-32: Plant Pole-Zero Mismatch and Allowable Uncertainty in Inertia of
First Disk to Maintain Stability of System for Various Amounts of Passive Damping.

The results of the four disk system showed excellent correlation to the study

performed on the single mode structure with PD control from section 2.2.3. The

allowable uncertainty in plant pole-zero mismatch is given by

-- plant pole-zero mismatch (4.25)
wn

where w, is the zero frequency and w, is the pole frequency match. From study on

the single mode structure, a linear relationship between damping and plant pole-zero

separation was established to guarantee stable control within the bandwidth of the

structure (see figure 2-12). This provides evidence to the fact that there is a linear

relationship between allowable uncertainty in plant pole-zero mismatch and modal

damping to maintain stability.

The effects of performance robustness with increased passive damping were similar

to that of the stability robustness case as shown in figure 4-33. In this example,

performance robustness was based on the allowable uncertainty in e such that the
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Figure 4-33: Plant Pole-Zero Mismatch and Allowable Uncertainty in Inertia of

First Disk to Maintain Good Performance of System for Various Amounts of Passive
Damping.

H 2 norm of the weighted system did not vary by more than 5%. To maintain good

performance robustness, more damping was needed as compared with the stability

robustness case. Again major gains in performance robustness was achieved with

the addition of passive damping. Low bandwidth control again was less sensitive to

uncertainties than high bandwidth control.

Even on more complicated systems such as the four disk example, major perfor-

mance and robustness improvements were made with the addition of passive damp-

ing. This example shows that even for conservative control systems with closed-loop

bandwidths ten times below the first structural mode, model uncertainty can still be

destabilizing. Furthermore, uncontrollable modes resulting in a near pole-zero can-

cellation can be destabilizing if not modeled accurately or damped sufficiently. The

uncertainty in the plant dynamics causes uncertainty in the pole-zero locations which

can result in a pole-zero flip and destabilize the system. Passive damping provides an

effective method to reduce the destabilizing structural vibrations and thus improve



performance, reduce effort, and improve robustness as the previous example show.

4.2.3 Robust H2 Optimal Control

System Description

A similar investigation to that of the two mass system with robust H2 contrc. was

performed on the four disk system. The objective was to determine the the controller

K(s) that minimized the H2 norm of the system shown in figure 4-12. A fourth order

compensator was used where the polynomial coefficients of its transfer function ai

were design variables.

als3 + a 2s 2 + a 3ss + a 4

K4 + a5S
3 + a68 2 + a78 + as

Constraints were placed such that given an uncertainty in the inertia of the first disk,

the system remained stable. Furthermore, a extra constraint was placed such that

the closed-loop poles always remain to the left of -5.4 x 10- 4 rad/sec. This assured

that closed-loop damping did not decrease from that of the initial case.

optimization objective = min (4.27)

such that

{A[AcI(e)]} -5.4 x 10- 4  (4.28)

R{A[Ac(e + Ae)]} 0 (4.29)

R{A[AcA(e-Ae)]} 0 (4.30)

The weighting terms and uncertainty used for this investigation were as follows.

Wd = 1

W, = 1
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0

0

1 0
WPo 0

0

0

Ae = 0.175 (±47%)

Since it was desired to control only the position of the first disk, weighting terms

relating that state were set to one. The rest were set to zero. The initial compensator

used for the optimization was the following nonminimum phase compensator which

was robust given the disk inertia uncertainty.

8.38s3 - 0.955s2 + 21.9s + 0.345
s4 + 37.3sS + 5.58s2 + 97.6s + 5.21

Again, the optimization toolbox for use with MATLAB was used to perform the

constrained optimization.

Trade-offs of stiffness for passive damping were again studied where the amount

of damping added resulted in a proportional drop in stiffness given by a as shown

in equation 4.12. Performance and stability properties were investigated for various

amounts of modal damping and stiffness to damping trade-off ratios a.

Results

Results of the investigation on the four disk system were similar to those of the

two mass system. Again, the addition of modal damping showed improved nominal

performance while maintaining stability given plant uncertainties. Better plant inver-

sion by the compensator was achieved which allowed for higher bandwidth control.

Furthermore, with increased damping came some improved performance robustness

characteristics and a drop in effort variance. But peak effort given step commands

increased greatly.
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Figure 4-34: Normalized H2 Norm of Nominal System for Various Amounts of
Passive Damping.

As figure 4-34 shows, the addition of passive damping resulted in a significant

drop in the nominal performance index (H2 norm). The H2 norm was normalized by

dividing it with the value obtained for the undamped system. An almost 60% drop in

the H2 norm occurred with just the addition of 1% modal damping. The systems with

low values of a showed some improved performance with increased modal damping,

but not as significant as with the addition of just 1% damping.

Plots of the nominal response time given a step command also show similar results

as shown in figure 4-35. An almost 90% drop in response time occurred with the

addition of just 1% damping. Again, additional damping did not reduce the response

time as much as compared with just 1% damping. This is due to the fact that the given

weights used in the optimization resulted in a cheap control problem. Essentially,

effort did not play a significant part in the H2 norm, thus the addition of 1% passive

damping was enough to allow good plant inversion by the compensator. Since only

the third order compensator was used, full plant inversion was not possible. This is

shown in figure 4-40 for the specific case of a = 1.

The resulting plant inversion allowed for increased closed-loop bandwidth as shown

(I~_ 1_ 11111 11_~ -- IYII~LPYY-LIII 111-~1--^-~ 1_ -



Figure 4-35: Normalized Step Response Time of Nominal System for Various
Amounts of Passive Damping.

in figure 4-36. With just 1% damping, a 50% increase in bandwidth was achieved

(wbo = 0.2121 rad/sec). This was 75% of the first structural natural frequency.

Additional damping allowed for even higher bandwidth for low values of a. Notice

that for a = 5, more that a 300% increase in bandwidth was achieved over the nominal

case with only 10% damping.

A drop in the variance of the effort due to stochastic white disturbances on the

second disk was also achieved for increased modal damping as shown in figure 4-37.

For most cases, the addition of damping resulted in a 75% drop in effort. Even though

the variance dropped, the peak effort as a result of a step command increased greatly.

Table 4-4 shows a great jump in the peak effort as a result of the addition of damping

for the case of a = 1. By adding damping, much higher nominal performance was

achieved. To achieve better control, more effort was needed as shown in the table.

Because cheap control weights were used, large increases in effort resulted.

For the specific case of a = 1, improved step response occurred with the addition

of passive damping which is shown in figure 4-38. Note the improved control with just

the addition of 1% damping. The settling time as well as the overshoot decreased,
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Figure 4-36: Normalized Closed-Loop Bandwidth of Nominal System for Various
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Table 4-4: Peak Effort of Nominal System given a Step Command for Various

Amounts of Passive Damping (a = 1).

resulting in improved controlled plant. The closed-loop bode plot (figure 4-39) shows

the improved frequency characteristics with the addition of passive damping. Again,

increased damping showed improved bandwidth and decreases in the amplitude peaks

at lower frequencies. Note that the high frequency peaks were not greatly reduced

due to the fact that a third order compensator was used which did not allow full plant

inversion.

The degree of plant inversion with increasing damping is shown in the pole-zero

plot of the plant and compensator (see figure 4-40. The undamped case showed

bad plant inversion by the compensator. The compensator zero laid near the second

mode. But as damping increased to 1%, the compensator zero moved closer to the

first plant pole. This resulted in better filtering of the first flexible mode achieving

better control. Increased damping shows even better plant inversion.

The performance robustness characteristics of the four disk system for various

levels of modal damping and a stiffness to damping trade-off ratio a = 1 are shown

in figures 4-41 and 4-42. For zero damping, very good performance robustness was

achieved, but at the cost of poor performance. To remain stable given the plant un-

certainty, the controller had a low cut-off frequency such that the plant looks rigid to

the controller. The uncertainty in the inertia does not significantly change the rigid

body dynamics of the plant, thus indicating good performance robustness character-

istics for low cut off frequencies. For moderate damping values (C = 2.5%), good

performance robustness was achieved as well as improved stability robustness. But

Modal Damping Peak Effort (N)

C = 0 0.2180
( = 0.01 153.2
(= 0.025 171.0
(= 0.05 206.8
(= 0.075 150.3

= 0.1 144.5
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higher damping resulted in a drop-off in the performance robustness characteristics,

probably due to the drop in stiffness associated with increased damping.

These results further show the virtues of passive damping for more complicated

system. The addition of passive damping pushes the plant poles to the left, providing

more room for the root locus of the poles to move around in a stable manner. This is

especially important when a plant pole-zero flip exists due to plant uncertainty. As

shown in section 2.2.2, when the pole lies below the zero, its root locus goes into the

right hand plane if no damping exists, thus high bandwidth control is very difficult.

The addition of just 1% modal damping allowed for the poles to migrate to the zero

in a stable fashion, thus allowing better plant inversion and improved control. But at

the cost of an increase in peak effort given a step command input. Furthermore, for

moderate levels of modal damping, improved stability and performance robustness

characteristics were achieved.
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Chapter 5

MIMO Design Studies

MIMO control methods such as H2 control take advantage to the directionality of the

system dynamics to improve control. Thus robustness with respect to plant direc-

tions becomes extremely important in the control of MIMO flexible structures. In this

chapter, passive damping effects are examined on MIMO systems. Two controlled

structures are examined. The first system is the four disk system with two noncollo-

cated actuators and sensors. The second system is a nine disk system connected by

flexible springs with two actuators and sensors. Performance and robustness charac-

teristics are computed as a function of passive damping.

5.1 Four Disk Example

While the previous examples examined the virtues of passive damping on SISO sys-

tems, this example examines the virtues of passive damping on a flexible structure

with MIMO control. The four disk structure examined in section 4.2 is used again

with two noncollocated sensors and actuators.

Improvements in control performance, stability robustness, and performance ro-

bustness are investigated for various amounts of structural passive damping. H2

optimal control is used to derive the necessary control law for good disturbance re-

jection on the structure. The design objective is to develop a control law to maintain

a desired structural shape given disturbances on the structure.
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5.1.1 Derivation of System Model

The same four disk structure examined in section 4.2 is used in this investigation.

Actuators are located on the second and third disk and sensors are on the first and

fourth disk as shown in figure 5-1. Only angular positions of the two disks are

measured. Passive damping is added to the structure as a ratio of critical. The

equations of motion of the undamped structure are the same as for the SISO example

(see equation 4.22) except for the disturbance and effort distribution matrices which

are as follows.
00

1 0
Fd = F = (5.1)

0 1

00

A state space representation of the structure in modal space is used similar to the

SISO example except that the output state matrix Cp is changed to compute the

physical displacements of the first and fourth disk.

10000000] 4 0
C I= (5.2)S0 0 0 1 0 0 00 04

The natural frequencies and mode shapes of the structure remain unchanged (see

table 4-2 and figure 4-26) and the undamped structure has no transmission zeros. The

nominal zeros of the structure from each input to each output is shown in table 5-1.

These zeros play a crucial role in determining the plant directions. MIMO optimal

control design uses the directional information of the plant to achieve good control.

The phase difference of the two outputs as described in section 2.2.4 is shown in figure

5-2. Note that the phase changes occur at the location of the individual input-output

zeros as shown in the table. As damping increases, the severity of change in phase

difference reduces, thus allowing for greater uncertainty in the plant model.

Figures 5-3 and 5-4 show the difference in magnitude and phase between two

most uncertain plants (emin = 0.25 & emax = 0.5) for each input to output relation.
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Figure 5-1: Four Disk MIMO Structure.

Input #1 Input #2

Output #1 ±0.6180j ±j
Y1 ±1.6180j

Output #2 ±1.6330j ±2j
Y2 ±0.8165j

Table 5-1: Location of Individual Input-Output Zeros of Undamped Four Disk Sys-
tem
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Figure 5-2: Phase Difference between Outputs of Four Disk System.

A comparison is made between the undamped structure and the structure with 5%

modal damping. The peaks and valleys in the magnitude difference occur at the pole

and zero locations respectively. For the undamped system, the magnitude differences

at resonance are infinite and phase differences are +1800. The addition of 5% damping

greatly reduced the difference in magnitude and phase between resulting from the

differences in plant uncertainty indicating a more robust plant.

As with the SISO example, the stability and performance robustness properties

of the system are investigated given an uncertainty in the inertia of the first disk.

Because the structure is MIMO, the actuators can compensate for the fact that the

first actuator lies on the node of the third mode. Thus this MIMO system tends to

be more robust than the SISO system. The allowable uncertainty in the inertia of the

first disk to maintain stability and good performance are computed for various levels

of modal damping. Good performance is computed such that given an uncertainty

in the first disk, the performance measure (12 norm) does not deviate by more than

±5% from nominal.
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5.1.2 Derivation of Control Model

This example investigates the advantages of passive damping on the four disk system

with MIMO control for active vibration suppression. The system makes use of H2

optimal control design to derive the necessary control law. Robustness issues are

ignored in the control design. An appropriate control law is derived to maintain the

original shape of the structure given an impulse disturbance on the first disk.

The system framework is again the same as used in the SISO example (see figure

3-2). The following weights were used to derive the H2 controller that minimized the

weighted closed-loop system between disturbance and sensor noise inputs, and effort

and plant outputs.

Wd = I

W, = 1x10-81

We = 1x10- 6 1

Wp = 0.01 xl 0 4

As much as a -34 db attenuation of disturbances was achieved with this control

design. This included attenuation of disturbances within the structural natural fre-

quency.

5.1.3 Results

Results of the investigation on the four disk system with MIMO control were sim-

ilar to the results using SISO control. Again, improved performance as well as a

reduction in control effort was achieved with increased modal damping. While the

undamped system tended to be more robust than in the SISO example, further gains

were achieved in stability and performance robustness through the addition of passive

damping.

The H2 norm of the weighted closed-loop system for various amounts of modal
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Figure 5-5: H Norm of Nominal System for Various Amounts of Passive Damping.

damping is shown in figure 5-5. As the figure shows, the addition of modal damping

resulted in a drop in the nominal H2 norm indicating improved performance. More

than a 50% drop in the performance measure was achieved with the addition of

10% modal damping. Passive damping provided another source for the removal of

vibrational energy reducing the need of active vibration suppression.

Since the need for active control to suppress structural vibrations was reduced

with increased modal damping, a decrease in control effort also resulted. Figure 5-6

shows the variance of both outputs as a result of white noise disturbance inputs on

all disks. As much as an 80% drop in the variance was achieve through the addition

of 10% modal damping. Due to the small inertia of the first disk, disturbances tend

to affect it more requiring more effort to remove the resulting vibrations.

By observing the singular values across frequency between the disturbance input

and sensor outputs, the effectiveness of vibration suppression across frequency is made

evident. Figure 5-7 shows the singular values for an undamped and a 10% modally

damped structure. With no damping, the amount of vibration suppression was about

-34 db for the worst case. Notice that through the addition of passive damping, the
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Figure 5-6: Effort Variance of Nominal System for Various Amounts of Passive
Damping.

singular values shifted downward indicating more effective vibration suppression. As

much as an 80% drop in the peak singular value was achieve with just 10% modal

damping.

By observing more realistic measures of performance such as the response given

an impulse disturbance, the true advantages of passive damping are evaluated. Figure

5-8 shows the response on the first disk as a result of an unit impulse disturbance

on it. Plots are shown for both an undamped and a 10% modally damped structure.

A reduction in overshoot as well as improved settling time was achieved with the

addition of passive damping.

A major difference between the MIMO and SISO system was in the inherent ro-

bustness of the undamped system. This appears due to the fact that one actuator can

compensate for a deficiency in the other. Figures 5-9 and 5-5 show the stability and

performance robustness characteristics of the closed-loop system given an uncertainty

in the inertia of the first mass. Stability robustness was based on the allowable uncer-

tainty in the first inertia e to maintain stability. Performance robustness was based
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Figure 5-8: Response
Disturbance.

of First Disk of the Nominal System given a Unit Impulse
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Figure 5-9: Allowable Uncertainty in Inertia of First Disk to Maintain Stability of
System for Various Amounts of Passive Damping.

on the allowable uncertainty in e to maintain no greater than a 5% change in the

H2 norm. As much as a 29% uncertainty in e was allowed to maintain good perfor-

mance of the undamped system. Furthermore, a 43% uncertainty in e was allowed to

maintain stability of the undamped system. The addition of passive damping showed

additional performance and stability robustness, but this example experienced fairly

good robustness characteristics even in the undamped system.

The addition of passive damping to MIMO controlled structures has also been

shown to be beneficial using the four disk structure example. As with SISO plants,

major performance improvements as well as reduction in control effort was achieved

with the addition of passive damping. While this particular example tended to be

very robust even for undamped dynamics, further improvement in its robustness

characteristics were achieved with added passive damping.
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Figure 5-10: Allowable Uncertainty in Inertia of First Disk to Maintain Good Per-
formance of Nominal System for Various Amounts of Passive Damping.

5.2 Nine Disk Example

The previous example showed performance and robustness improvements with the

addition of passive damping to a simple MIMO structure. While improvements were

shown, stability and performance robustness properties were good for the undamped

system. As much as a 29% uncertainty in the inertia of the first disk was tolerable to

maintain good control. Because of the low order of the problem, robust estimation

of the plant was achieved allowing for good control characteristics. This example

examines the benefits of passive damping on a similar, but more complicated structure

which is unrobust with no modal damping. The structure consists of nine disks

connected by flexible springs. Two sensors and two actuators are used to eliminate

disturbances on the system. Again H2 optimal control design is used to derive the

necessary control law. Performance and robustness properties are investigated for

various amounts of modal damping.
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Figure 5-11: Nine Disk MIMO Structure.

5.2.1 Derivation of System Model

A similar structure to that of the four disk system (section 5.1) is used except that it

has nine disks connected by flexible springs as shown in figure 5-11. The system has

the following stiffness and mass properties.

k = 1N.m

J = 1 kg.m 2

The actuators are located on the fourth and sixth disk, while the sensors are on the

second and eighth disk. Similar equation of motion to the previous section are derived

(see equation 4.22), except that the system of ninth order.

The structure has nine modes given by table 5-2. This first four mode shapes are

shown in figure 5-12. Note that the sensors are located at the nodes of the fourth

mode, thus making it unobservable. Active control at the frequency of the fourth

mode is impossible. Thus a transmission zero lies at the frequency of the fourth mode

resulting in a plant pole-zero cancellation. Any uncertainty in the model can result

in a pole/zero flip which can cause instability. The structure also has a transmission

zero at 1.4121 rad/sec.

Figures 5-13 and 5-14 show the difference in magnitude and phase between two

most uncertain plants where uncertainty lies in the inertia of the first (top) disk

(Jmi, = 1.8 & J,, = 0.8) for each input to output relation. A comparison is made
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Table 5-2: Poles and Zeros of Nine Disk Structure.

Mode #1 (Risid Body Mode w=0)

).5 0

-0.5 0

Phi

8

4

2-

0.5 -0.5

8

6

4

2

0.5 -0.5

Figure 5-12: First Four Mode Shapes of Nominal Nine Disk System.
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Poles
Mode # Frequency

rad/sec
1 0
2 ±0.3473
3 ±0.6840
4 ±1.0
5 ±1.2856
6 ±1.5321
7 ±1.7321
8 ±1.8794
9 ±1.9696

Zeros
1 ±1.0
2 11.4142
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Figure 5-13: Magnitude Difference between the Two Most Uncertain Structures.

between the undamped structure and the structure with 5% modal damping. The

peaks and valleys in the magnitude difference occur at the pole and zero locations

respectively of each input/output transfer function. For the undamped system, the

magnitude differences at resonance are infinite and phase differences are +1800. The

addition of 5% damping greatly reduced the difference in magnitude and phase be-

tween resulting from the differences in plant uncertainty indicating a more robust

plant.

As with the previous example, this investigation examines the virtues of passive

damping on the nine disk system with MIMO control for active vibration suppression.

The system makes use of H2 optimal control design to derive the necessary control

law. Robustness issues are ignored in the control design. An appropriate control law

is derived to maintain the unforced structural shape given an impulse disturbance on

the first disk.

The system framework is the same as in the previous section (see figure 3-2). The

following weights were used to derive the H controller that minimized the weighted

closed-loop system between disturbances and sensor noise inputs, and effort and plant
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Figure 5-14: Phase Difference between Actual the Two Most Uncertain Structures.
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r- 0.01 x I

The response of the first disk given an impulse is shown in figure 5-17. Note that

the undamped case continued to resonate at about 6 Hz (1 rad/sec) due to the

unobservable fourth mode.

As with the previous example, the stability and performance robustness prop-

erties of the system are investigated given an uncertainty in the inertia of the first

disk. Because of the higher complexity and pole-zero cancellation in the system, the

control system is very sensitive to changes in the undamped structure. Again good
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Figure 5-15: H2 Norm of Nominal System for Various Amounts of Passive Damping.

performance is based on the H2 norm not deviating by ±5% from the nominal value

given an uncertainty in the inertia of the first disk.

5.2.2 Results

Results of this investigation using MIMO control on the nine disk system were similar

to that of the four disk system. Again, improved performance as well as a reduction

in control effort was achieved with increased modal damping. Gains in stability and

performance were also achieved.

The nominal H2 norm of the weighted closed-loop system for various amounts of

modal damping is shown in figure 5-15. As the figure shows, the addition of modal

damping results in a drop in the H2 norm indicating improved performance. For

the undamped case, the H2 norm was infinite due to the unobservable fourth mode.

Vibrations at the frequency of the fourth mode (1 rad/sec) cannot be removed due

to the sensors being at the location of the nodes of that mode.

Since the need for active control to suppress structural vibrations is reduced with
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Figure 5-16: Effort Variance of Nominal System for Various Amounts of Passive
Damping.

increased modal damping, a decrease in control effort also results. Figure 5-16 shows

the nominal effort variance of the outputs as a result of white noise disturbance inputs

on all disks. Due to the symmetry of the structure, the variance of the effort is equal

for both actuators. As much as a 60% drop in effort was achieved by increasing

damping to 10%.

Realistic performance improvements by increasing passive damping of the nine

disk system are shown in figures 5-17 and 5-18. The first figure is the response of the

first disk of the system as a result of a unit impulse applied on it. Note that for the

undamped system, the resonance at 1 rad/sec does not decay due to the unobservable

mode. The addition of passive damping reduces the maximum displacement and

settling time as a result of the impulse as shown in the figure. The second figure is

of the effort applied on the structure as a result of the disturbance. Note that the

effort is reduced for the damped case. The maximum effort needed and settling time

is reduced for the damped case.

The major difference with the nine disk system as compared to the four disk
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Figure 5-18: Effort Applied on Nominal Structure given a Unit Impulse Disturbance

on the First Disk.
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Figure 5-19: Allowable Uncertainty in Inertia of First Disk to Maintain Stability of

Optimal System for Various Amounts of Passive Damping.

system was in the inherent robustness. The undamped nine disk system was very

sensitive to model uncertainty as shown in figures 5-19 and 5-20. They show the

stability and performance robustness characteristics given an uncertainty in the in-

ertia of the first disk. The undamped case could not tolerate any uncertainty. This

corresponds to the results in chapter 2 where no uncertainty was tolerable for control

of simple undamped structures with pole-zero cancellation. But for both stability

and performance robustness, as much as a 6% uncertainty was allowed in the inertia

of the first disk given 10% modal damping. With just 1% modal damping, a 3.5%

uncertainty was tolerable.

This investigation has shown that passive damping is effective on even more com-

plicated structures such as the nine disk example. This system suffered from a pole-

zero cancellation which made the fourth mode unobservable, thus unrobust. This also

resulted in undamped vibrations at the frequency of the unobserved mode. Passive

damping allowed for removal of the unobserved vibrations as well as improving the

overall performance and reducing the necessary effort for control of the structure.
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Figure 5-20: Allowable Uncertainty in Inertia of First Disk to Maintain Good Per-
formance of Optimal System for Various Amounts of Passive Damping.

Furthermore, improvements in stability and performance robustness were achieved

with increased damping.
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Chapter 6

Conclusion and Suggestions for

Further Research

The need for high performing, yet robust and light weight controlled structures is crit-

ical in achieving the goals of future space missions. The evidence presented clearly

points to the advantage of passive damping in achieving these goals. Robust control

techniques with closed-loop bandwidths incorporating the structural natural frequen-

cies are extremely difficult to implement without passive damping. Passive damping

provides a reliable and light weight method to reduce structural vibrations allowing

for increased robustness and improved control. Structural design for robust control

allows for reduced controller complexity and a reduction in the size and number ac-

tuators and power sources needed for active control. Thus passive damping is an

important design variable in the structural design of future spacecraft.

The design studies provided evidence supporting performance and robustness im-

provements in SISO and MIMO controlled structures. Not only were performance

variables such as the H2 norm, settling time, and maximum overshoot reduced, but

control effort was also reduced. In addition, by examining passively damped controlled

structures, improved stability and performance robustness characteristics were quan-

tified. Most undamped systems studied allowed for no model uncertainty to achieve

high bandwidth control objectives. By raising the amount of passive damping to 10%,

as much as a 6% uncertainty in natural frequency was allowed for the two mass sys-
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tem to remain stable. More than a 10% allowable uncertainty in natural frequency

of the four disk system was shown. Even with robust control techniques, nominal

performance was improved as well as performance robustness improvement achieved

by increasing passive damping.

The results from the design studies showed much similarity to the those predicted

theoretically in chapter 2. Three formulations for predicting required amounts of

passive damping were derived for plants with pole and zero uncertainties. The first

formulation examined simple root locus of structures controlled with plant inversion

techniques involving pole-zero cancellation. The amount of damping needed was

based on the size of the semicircle the root locus made by uncertain plant poles or

compensator zeros migrating to compensator zeros or plant poles (see equation 2.13).

The second formulation was based on phase uncertainty and desired phase margins

in the frequency domain (see equation 2.18). The third formulation was based on

stability bounds derived for a simple two degree of freedom structure with PD control

(see figure 2-12). All derivations showed linear increases in stability bounds with

increased passive damping, with minor differences in the slope.

The SISO four disk system showed excellent correspondence with the third formu-

lation as shown in figure 4-32. The four disk system contained an actuator at the node

of the third mode resulting in a plant pole-zero cancellation, thus making the third

mode uncontrollable. Passive damping reduced the effects of the vibrations at that

frequency allowing for improved performance and robustness. The two mass system

required more damping to maintain stability given plant uncertainty as compared

with the formulations in chapter 2 as shown in figure 4-7. The allowable uncertainty

did increase linearly with passive damping. Because perfect pole-zero cancellation

was not exhibited for the two mass system, good correlation to the theoretical for-

mulations did not occur. But based on these examples, a one-to-one relationship

between passive damping and plant eigenvalue uncertainty is shown to be sufficient

to assure a robust plant design.

AW,
WVn
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While each plant will exhibit different robustness characteristics, passive damping

greatly improves the allowable uncertainty to maintain stability and good perfor-

mance.

While this thesis made a first attempt in addressing required amounts of passive

damping for controlled structures, much work still needs to be continued. Damping

was treated as a percentage critical (modal). Real damping treatments such as tuned

mass dampers or damping elements need to be modeled directly as elements in a

finite element model. Methodologies to determine appropriate amounts of damping

based on actual treatments need to be developed. McLoughlin thesis [21] developed

a required amount of passive structural damping based on open loop dynamics of the

plant. This method determined optimal damper locations and amounts of damping

needed to minimize an open loop performance measure. In the PACOSS study [24],

passive damping treatments were applied based on modal strain energy of the plant.

The control design played little role in the application of the damping treatments.

Design methods incorporating passive damping must be expanded to include the

control design and system objectives.

While damping treatments helped improve robustness characteristics with respect

to stiffness and mass uncertainty, these systems are very sensitive to uncertainty

damping values. A conservative approach might include modeling damping levels be-

low actual values assuring that the root locus of the system does not cross the imag-

inary axis. For high performing system, accurate representation of passive damping

might be essential to assure stability and good performance.

While many damping treatments exist, applying them in the engineering commu-

nity is slow. Robust design is essential to any system, especially in the control of

flexible structures where plant inversion techniques are necessary for good control.

Success of any space mission where precision pointing of large structures is needed

can greatly be improved by the addition of passive damping techniques. Develop-

ment of structural design tools incorporating passive damping would greatly help in

improving the success of future space missions.
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Appendix A

Mathematical Necessities

A.1 Singular Value Properties

maz[A - ]  1
Umin [A]

Omin[A - ']
1

°m, [A]

,ma,[A] - 1 _ £,ma[I + A] < ma,[A] + 1

imin[A] - 1 < o'min[I + A] 5 omi,[A] + 1

,ma.,[A + B] K Omax,[A] + ma,,,[B]

ma,,,[AB] 5 aom,,[A] - ma,[B]

A.2 Stochastic MIMO LTI Systems

Taken from Athans [4].

* ((t) is a white noise vector.

E[((t)] = 0

= I 6(r)
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4 u~u) = I

The operators E[.], T(r), and 4(w) are the expectation, autocorrelation, and

power spectral density functions respectively.

e LTI Dynamic System is stable (i.e. )A[A] < 0).

+(t)

y(t)

= Az(t) + L (t)

= CX(t)

* In statistical steady-state, both x(t) and y(t) are stationary vector valued ran-

dom processes.

* Mean

E[z(t)]

E[y(t)]

= 0

0

* State Covariances E,.

Ex = E[x(t)xT (t)]

where E, is the solution of the following Lyapunov Equation.

AE, + EAT + LLT = 0

* Output Covariance Ez.

EY = E[y(t)yT (t)]

which is a function of E,.

E~ = C ,CT
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* For SISO, the covariance is the same as the variance of the system.
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