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Abstract

In this thesis, we develop several methods for the delineation and analysis of anisotropic
fractures in the subsurface. Our principal goal is to develop methods to use seismic
data to infer fracture properties. In turn, we relate this information to the fluid flow
properties of anisotropically fractured media.

The first problem is to examine media with cracks oriented over a range of direc-
tions rather than begin perfectly aligned. We use this model of crack distributions
to examine both velocity and permeability variations in an anisotropically fractured
rock. The analysis begins by considering a material under a uniaxial stress, as cracks
in a rock mass subjected to a uniaxial stress will be preferentially closed depending
on the angle between the fracture normal vectors and the direction of the applied
stress. If the prestress fracture orientation distribution is isotropic, the effective elas-
tic properties of such a material after application of the stress are then transversely
isotropic due to the overall alignment of the cracks still open. Velocity measurements
in multiple directions are used to invert for the probability density function describing
orientations of crack normals in such a rock. The information on fracture distribution
obtained from the velocity inversion allows an estimation of the anisotropic perme-
ability of the fractured rock system. Permeability estimates are based on the number
of cracks open in each direction. This approach yields a prediction of permeability as
a function of the angle from the uniaxial stress axis. The inversion for crack orienta-
tion is applied to ultrasonic velocity measurements on Barre granite, and permeability
predictions for this sample are presented. The inversion results are good and repro-
duce velocity measurements well, and the permeability predictions show some of the
expected trends. Initial comparisons of the predictions with available permeability
data, however, show deviations suggesting that further information on partial crack
closure and connectivity of cracks should be included into the permeability model.

After considering the more general range of crack orientations considered in the



inversion procedure, we analyze the behavior of elastic waves on encountering a frac-
tured region which is too small for velocity variations to become apparent, and there-
fore too small for observations of shear wave splitting. This new problem is solved
through the study of the scattering of elastic waves from isolated fracture zones.
When the scattering zone is much smaller than the wavelength of an incident plane
wave and has a relatively small difference in elastic properties from the surrounding
background medium, the Born approximation allows an estimate of the radiation pat-
tern of elastic wave Rayleigh scattering of both compressional and shear waves due to
a perturbation of any combination of the 21 independent elastic constants. Examina-
tion of radiation patterns for incident shear and compressional waves shows that the
shear waves are the most sensitive to the alignment of fractures in anisotropic zones.
As the polarization of the incident S-wave ranges from perpendicular to parallel to
the fractures, the amplitude of the scattered waves goes to zero.

The calculation of scattered wavefields is extended to larger regions of inhomo-
geneity by application of a Ray-Born technique. This approach applies ray methods
to the computation of Green's tensors for the background medium and uses the Born
approximation to determine the scattered wavefield from each volume element within
a discretized model of heterogeneity. Comparisons of Ray-Born results to the com-
plete solution for scattering from an elastic sphere show that that method works fairly
well for wavelengths on the order of five times larger than the scale lengths typical
of the heterogeneity, but then breaks down to the failure of the Born approximation.
With this restriction in mind, the method is applied to a hypothetical layered earth
model containing a thin, laterally extensive fracture zone. The results confirm that
scattering from shear waves will give unique information on fracture orientation even
for this extended zone. On the other hand, compressional waves are more useful in
inference of nature of the fluid filling the cracks. Modeling of scattered waves in VSP
data from the Lardarello geothermal field in Italy demonstrates the applicability of
the method and suggests that at least in this locality, anisotropic fracturing is not
responsible for the observations. Analysis of the Fresnel zones affecting reflections
from the thin fracture zones responsible for the scattering allows a delineation of re-
gions of more intense fracturing, information of importance for the development of
geothermal resources.

Thesis Advisor: M. Nafi Toksiz
Title: Professor of Geophysics
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Chapter 1

INTRODUCTION

It is always hazardous to attempt the quantitative discussion of geological

problems, for the reason that the conditions are apt to be complex and

imperfectly known; and in this case an uncertainty attaches to the law of

relation, as well as to the quantities to which it is applied.

-Grove Karl Gilbert (1880)

1.1 Objectives

Elastic wave propagation in the earth is affected by many forms of heterogeneity.

While layered earth models, along with the well developed theory of wave propagation

in plane or radially layered media, can account for a large portion of seismic data

from both local and teleseismic recordings, there are many observations which clearly

reflect more complicated features. Much of this complication results simply from

two or three-dimensional geologic structure along the propagation path. However, it

is becoming increasingly clear that anisotropy also can have a significant influence

on seismic observations. The most concrete evidence for the presence of anisotropic

earth materials arises from the phenomenon of shear-wave splitting or birefringence,

the separation of a shear wave into two quasi-shear waves with different velocity



and perpendicular polarizations as the wave propagates in an anisotropic region.

Definitive identification of this splitting allows the inference of an anisotropic material.

Many studies have used this property, or the general variation of travel time with

direction, to determine the presence of anisotropy in a variety of settings. The oceanic

crust and upper mantle can display a significant degree of anisotropy (Hess, 1964;

Raitt et al., 1968; Bachman, 1979, 1983; White and Whitmarsh, 1984; Stephen,

1981, 1985; Kuo et al., 1987; Berge et al., 1991). Earthquake source regions are

also often anisotropic (Crampin et al., 1985; Peacock et al., 1988; Kaneshima et

al., 1988, 1989; Iannaccone and Deschamps, 1989; Booth et al., 1990; Savage et al.,

1990; Shih and Meyer, 1990), as are other regions of crystalline crust (Hurich et

al., 1985; Chroston and Max, 1988; Christensen and Szymanski, 1988; Wang et al.,

1989; Leary, 1990). It is also clear that anisotropy is a property of importance in

sedimentary basins where hydrocarbon exploration is common (Podio et al., 1968;

Kaarsberg, 1968; Jones and Wang, 1981; Robertson and Corrigan, 1983; White et

al., 1983; Helbig, 1984; Banik, 1984; Winterstein, 1986; Thomsen, 1986; Kerner et al.

1989). It is well known that an elastic medium containing a set of aligned ellipsoidal

inclusions will be effectively anisotropic for wavelengths greater than the dimension of

an individual ellipsoid (Hudson, 1980, 1981). A fractured medium can be modeled as

a homogeneous matrix containing a set of such inclusions with a low aspect ratio, and,

if the fractures are aligned, it follows that the resulting material will be anisotropic.

Observations of shear-wave birefringence in areas where other explanations are not

geologically realistic have led to the suggestion that many portions of the earth's crust

contain fractures or microcracks which are aligned in a parallel, vertical orientation by

the influence of regional tectonic stresses (e.g., Bamford and Nunn, 1979; Crampin,

1981; Leary and Henyey, 1985; Crampin et al., 1985; Crampin et al., 1986; Martin

and Davis, 1987; Leary et al., 1987; Peacock et al., 1988; Leary et al., 1990).

This particular form of anisotropy is of significant economic and academic interest.

For example, it is possible that the seismic anisotropy can be used to gain a knowledge



of the in situ state of stress in the subsurface by relating anisotropic velocities to

fracture orientation. Knowledge of fracture orientation is also of great value in a rock

where the matrix has a background permeability which is very low, as the fractures

can provide the most important conduits for fluid flow and can cause a relatively

significant permeability. Therefore, any information on subsurface fracture properties

which can be obtained from seismic data has many possible uses, and a number of

studies have been conducted to model such media. The majority of these works have

considered layered earth materials with a constant degree of fracturing of identical

orientation. Due to the inherent complexities of the earth, however, a model with

large regions of the crust containing equal densities of fractures perfectly aligned is

clearly a simplification. Like all layered earth models, it will probably allow the

explanation of many data sets, but will fall short in cases where the earth is simply

too complicated to be represented by this idealized structure.

The purpose of this thesis is to propose and test several models for elastic wave

propagation and scattering in fractured media and utilize the results to develop an

understanding of the effects of anisotropic fracture distributions on fluid flow in the

subsurface. These techniques are designed to allow remote inference of the fracture

properties in the crust. In turn, this knowledge will aid in the determination of

the in situ state of stress and permeability, which are important for an understand-

ing of current tectonic influences and for analysis of hydrothermal and hydrocarbon

production.

We examine first the properties of a granite which is subjected to uniaxial stress

in the laboratory. In this case where only a comparatively small laboratory rock

sample is considered, the microcracks create the anisotropy. Our analysis allows an

investigation of the effects on elastic wave velocities of cracks distributed over a range

of orientations. Subsequently, we view the problem from a more regional scale to

consider instead the influence of complex zones of locally intense, parallel fracturing on

elastic wave propagation. To this end, we apply the Born approximation to scattering



in anisotropic media in Chapter 3. Consideration of the Rayleigh scattering from a

single, small fractured volume provides some simple guidelines for the generation of

scattered wavefields which can be extended to more realistic and involved models

of fracture zones. We do this in Chapter 4 by computing the Green's tensors for

wave propagation in the background medium with ray theoretical methods. The

asymptotic Green's tensors, in combination with the Born scattering theory from

Chapter 3, provide a means for modeling the seismic waves reflected from three-

dimensional fracture zones such as those commonly found in geothermal fields. In

the remainder of this chapter, we describe in more detail the background leading to

the material described in the following chapters and then provide a summary of the

contents of the thesis.

1.2 Background

The problem of determining the effective elastic properties of two-phase mixtures has

frequently been investigated in order to better understand the seismic properties of

rocks under in situ conditions. It has long been suggested that the closing of mi-

crocracks explains the rapid increases of elastic wave velocities with applied pressure

in laboratory measurements (e.g., Nur and Simmons, 1969; Nur, 1971). With this

evidence for the presence of microcracks in rocks which form the earth's crust, several

models were developed for the seismic velocities of a homogeneous medium containing

voids or inclusions representing cracks with different advantages and various degrees

of accuracy. Isotropic models for the effects of randomly aligned ellipsoidal cracks

include those by Kuster and Toks6z (1974) and O'Connell and Budiansky (1974).

The latter has the advantage of allowing the introduction of larger quantities of frac-

tures through the application of a self-consistent approximation which accounts for

multiple scattering.

However, to investigate the seismic effects of aligned cracks, different models must



be sought. Because of the symmetry in the problem, a material containing parallel

cracks is transversely isotropic with five independent elastic constants and an axis of

symmetry perpendicular to the cracks. Anderson et al. (1974) presented a numerical

scheme for the evaluation of the anisotropic velocities in such media which can include

arbitrary ellipsoidal voids. Nishizawa (1982) extended this approach by adding only

a small amount of the total fracture volume and calculating the effective properties

of the resulting anisotropic material before adding another subset of fractures. This

iterative procedure should allow the application of the theory to large crack densities.

In contrast to these numerical schemes, Hudson (1980, 1981; see also Crampin, 1984)

developed an analytic solution for the effective elastic constants of the transversely

isotropic medium containing aligned cracks. This solution was obtained by consider-

ation of the wavefields scattered by a set of ellipsoidal cracks with three important

assumptions: 1) the incident wavelength is longer than the size of individual cracks,

2) the cracks have small aspect ratio, and 3) the overall crack density is low. With

these assumptions, a set of equations for the five independent elastic constants in the

effective medium was derived. It is an expansion of the total scattered wavefield in

powers of crack density ( up to second order terms. This crack density is equal to na3,

where n is the number density of cracks and a is the radius of an individual ellipsoidal

crack. For simplicity the crack is assumed to be "penny-shaped", an ellipsoid with

two equal semi-axes much larger than the third. Various possibilities for pore-fluid

are considered in the derivation. This solution, though subject to certain limitations

due to the assumptions, is versatile and flexible due to the explicit equations for the

elastic constants. These expressions can easily be used in theoretical applications

other than the calculation of velocities.

The utility of the Hudson solution is obtained by the use of an idealized represen-

tation of the structure of crack distributions in true earth materials, however. True

rock microcrack distributions can be observed to have a wide variety of shapes and

interconnections which can strongly affect the elastic behavior of the sample (Hadley,



1976; Batzle et al., 1980). In particular, the two surfaces of a crack are not simple

and smooth, but instead have roughness and asperities which come into contact as a

crack closes with increasing applied pressure. Gangi (1978) developed a "bed of nails"

model which applied a statistical distribution of crack surface roughness to examine

in detail the pressure dependence of crack closure and permeability of rough cracks.

Walsh and Grosenbaugh (1979) modeled the compressibility of a material containing

an isotropic distribution of rough cracks with isolated asperities, while more recently

Brown and Scholz (1985) presented a model for closure of a single crack or joint with

two rough surfaces. An inversion scheme developed by Zhao and Toks6z (1991a)

based on a modified version of this theory allows an estimation of the distribution

of roughness of the crack surfaces. For the purposes of this thesis, we will utilize

the penny-shaped crack model following Hudson (1980) in order to make theoretical

developments and calculations feasible.

One means of making the penny-shaped crack model more realistic for the study

of anisotropic media is to allow for cracks with a range of orientations distributed

around a preferred direction rather than a single, parallel set of cracks. Sayers (1988a,

1988b) developed a scheme for averaging the Hudson (1980) expressions for the effec-

tive moduli over a crack orientation distribution function, and, through a curve fitting

procedure, for obtaining an estimate of crack density. This algorithm was applied to

a set of ultrasonic measurements of velocity in a granite sample which was subjected

to a uniaxial stress. As the uniaxial stress was applied, the velocities which were

initially isotropic became distinctly anisotropic, with two unique quasi-shear waves.

The behavior results from crack closure with increasing stress which is dependent on

the crack orientation with respect to the uniaxial stress axis. Such a medium displays

transverse isotropy even though the cracks are not parallel, as there is still a unique

axis of symmetry, the stress axis. In Chapter 2, we take this idea' of averaging over

crack orientation and develop a true inversion scheme which helps to gain an under-

standing of the unique parameters relating the mathematics to the observable velocity



variations in the rock. One of the principal conclusions is that it is very difficult to

develop a unique set of parameters describing the true microcrack properties of the

rock which also allows a calculation or prediction of the elastic properties.

These detailed studies of the microcrack structure of rocks make clear some of

the difficulties involved in obtaining a thorough understanding of the relationship

between nature of cracks and elastic wave propagation. At the same time, it is

possible to use a simple representative model of the rock, such as that employed by

the Hudson theory, to account for many aspects of seismic observations. There have

been many observations of anisotropic velocity variations in a variety of geological

environments (Bamford and Nunn, 1979; Leary and Henyey, 1985; Crampin et al.,

1986; Leary et al., 1987; Martin and Davis, 1987). Modeling of seismic waves in such

media generally applies models which contain homogeneous layers of fractured rock,

with effective elastic constants from the Hudson theory or a similar approach (Liu

et al., 1989; Mandal and Toks6z, 1990). The results make it clear that such media

will yield distinctive evidence for anisotropy and therefore of the aligned fracturing,

chiefly through analysis of polarization anomalies.

However, it is also clear from field observations that in many regions the fracture

zones cannot be represented by simple, homogeneous layered structures. For exam-

ple, in many regions of interest for geothermal field development or for nuclear waste

disposal, the problem is to find relatively localized zones of fractured rock which may

or may not be laterally continuous and are certainly not simple layers (Green and

Mair, 1983; Carswell and Moon, 1985; Batini et al., 1985a; Batini et al., 1990.; Juhlin

et al., 1991). Such media cannot be modeled by the reflectivity or discrete wavenum-

ber algorithms, which are limited to plane layered media (Booth and Crampin, 1983;

Mandal and Toks6z, 1990). Even ray theoretical methods may not be applicable if

the zone of fracturing is on the order of a wavelength in dimension. Fracture zones in

the Lardarello geothermal field in Italy fit this description (Batini et al., 1990). These

thin fracture zones have significant seismic signatures (Batini et al., 1983; Batini et



al., 1985a), and an important area of research is to gain an understanding of the

effects of such zones on seismic data in order to better locate suitable drilling sites

for development of the geothermal field.

For these problems, a different modeling algorithm must be developed. In Chapter

4, we present a Ray-Born algorithm to solve this problem. Beydoun and Mendes

(1989) developed a Ray-Born method for modeling and inversion in isotropic media

which combines two very general approximations. The Born approximation is used to

account for the effects of short wavelength heterogeneities in a background medium.

This approach expresses the heterogeneity as a perturbation to the elastic properties

of the background which in turn leads to an expression for the scattered wavefield

as a perturbation to the displacements resulting from propagation in the background

medium. The effect of the heterogeneity can be expressed as a secondary source

radiating energy as the incident wave passes by. A version of this solution was derived

as early as 1896 to derive the scattering of acoustic waves from objects much smaller

than a wavelength in dimension (Rayleigh, 1945). This phenomenon is known as

Rayleigh scattering. Since then, there have been numerous applications of this general

type of theory to elastic, isotropic media for both modeling the scattered field and

as a basis for inversion (e.g., Miles, 1960; Chernov, 1960; Gubernatis et al., 1977b;

Clayton and Stolt, 1981; Cohen et al., 1986; Boyse and Keller, 1986; Beydoun and

Mendes, 1989). More recently, expressions for Rayleigh scattering due to transversely

isotropic obstacles in an isotropic medium have been developed by Ben-Menahem and

Gibson (1990), and the theory is extended to the case of the most general anisotropic

obstacle in Chapter 3.

The second fundamental approximation involved in the Ray-Born method is the

application of asymptotic ray theory for the calculation of wave propagation in the

background medium. This step imposes the constraint of a smoothly varying back-

ground on the procedure, as the high frequency assumption involved in the develop-

ment of the ray equations requires that the wavelength of the propagation signal be



much less than the scale length typical of the medium (Cerveny' et al., 1977; Ben-

Menahem and Beydoun, 1985). Therefore, the Ray-Born approach in full implies that

the wavelength must be greater than the scale length of the heterogeneous zone of

interest, but less than the scale length of the background earth model.

Implementation of the Ray-Born computations has two basic steps. First the

Green's tensors for wave propagation from the energy source to the scattering region

and from the scattering region to the receivers are calculated by paraxial ray tracing

(Cerven' et al., 1984; Cerven', 1985; Beydoun and Keho, 1987). Secondly, the Born

approximation is used to compute the properties of the secondary sources which

represent the heterogeneity. The incident wavefield controls the properties of the

secondary source, and propagation from this source is controlled by the rays from the

scatterer to receiver. An integration over the total region of heterogeneity is required.

Whereas previous applications of this approach have been only to isotropic media, in

Chapter 4 we also include the effects of anisotropy due to fractures.

1.3 Outline

The background provided above gives the motivation behind our investigations of the

complex models of fractured media. This material will be covered in the following

chapters as follows.

In Chapter 2 we consider the behavior of an isotropically fractured medium sub-

jected to uniaxial stress. Following the method suggested by Sayers (1988a, 1988b),

it is assumed that the unstressed rock contains only a random orientation of cracks,

and a model for the closure of cracks with applied uniaxial stress can be obtained.

By expanding the resulting orientation distribution function in generalized spherical

harmonics, the effective elastic constants from the Hudson (1980, 1981) theory are

averaged over all orientations yielding the effective properties of the rock sample un-

der uniaxial stress. The resulting equations for phase velocities in such a material are



nonlinear functions of crack density ( and a parameter am which describes the aspect

ratio distribution. An inversion for these two parameters is implemented by lineariz-

ing the equations for phase velocity about starting estimates of and a,. An estimate

of permeability variation with direction in the resulting transversely isotropic medium

is obtained from a model which assumes that the anisotropic permeability will be re-

lated to the density of cracks open in a given direction. The inversion is applied to

ultrasonic measurements of velocity in a Barre granite sample (Nur and Simmons,

1969), and permeability predictions are presented. We discuss the implications for

the inference of both crack structure and permeability from velocity measurements.

Chapter 3 extends the theory of Born scattering to include a general anisotropic

perturbation to an isotropic background medium. The perturbation can therefore

have up to 21 independent elastic constants. After deriving the general expressions

for the radiation patterns, the specific example of Born scattering from a localized

region of fracturing within an isotropic medium is considered. This is a canonical

problem which can be used to gain some intuitive guidelines for both forward and

back scattering from more complicated regions of fracturing, anisotropic or isotropic.

The problem is solved by using as perturbations to the elastic constants the results

of the Hudson (1980, 1981) theory. By substituting these analytic expressions for

the perturbations into the appropriate equations for Rayleigh scattering from the

Born approximation, we can write explicit results for Rayleigh scattering from the

fractured region due to an incident plane wave. We show that the scattered shear-

wave energy from an anisotropic region will be distinctly different from that generated

by an isotropically perturbed zone. In particular, when the cracks are aligned rather

than randomly oriented, the shear wave scattering in this approximation will vanish

for directions of incidence where the shear wave polarization is parallel to the plane

of the fracture orientation. This implies that some experiments might be possible

which could use observations of seismic wave scattering to obtain some knowledge of

the orientation of aligned fractures in the subsurface.



The solution to the canonical problem of Rayleigh scattering from an anisotropic

obstacle derived in Chapter 3 forms a fundamental part of the Ray-Born algorithm

presented in Chapter 4. We begin by outlining how the algorithm can be used for a

fully general anisotropic medium with anisotropic perturbations using ray theoretical

solutions for the Green's tensors in an anisotropic or isotropic medium along with the

Born approximation. Our implementation includes only isotropic earth models with

anisotropic perturbations due to aligned fractures. The computation of Green's ten-

sors in the background is accomplished by using dynamic ray tracing in ray-centered

coordinates, which allows the simple application of paraxial ray tracing methods. Af-

ter describing the algorithm, we first test its accuracy by comparison with a complete

discrete wavenumber solution for scattering from an elastic sphere due to an incident

plane compressional wave. The results suggest that the wavelength of interest must

be on the order of five times longer than the length scale of the heterogeneous zone

to be modeled with the Ray-Born method. Using this guideline, we next apply the

method to a hypothetical layered model containing a thin but laterally extensive frac-

ture zone. By considering both isotropic and anisotropic fracture zones, we show that

the P to P-wave reflections from the fracture zone can be expected to yield almost

no information on fracture orientation, though S to S-wave reflections are highly sen-

sitive to the orientation of the incident wave polarization with respect to the aligned

fractures. In contrast, the P-wave reflections can be used in some cases to allow an

inference of the nature of the fluid filling the fractures. Finally, after considering this

hypothetical model, we apply the Ray-Born calculations to the modeling of VSP data

from the Lardarello geothermal field in Italy. As only vertical component P-wave data

is available from the field experiment, we would expect it would not be possible to

determine the presence or absence of fracture alignment in the thin fracture zones

below the depth of the well. However, it was possible to develop a realistic model

for these fracture zones which was entirely isotropic, and it was not possible to find

an vertical fracture model of realistic fracture density which could explain the large



amplitude reflected waves found in some of the data. This suggests that anisotropic

fracturing is not causing these reflections.

In Chapter 5, we summarize the results of the thesis. The different models we have

derived allow different ways of developing more realistic depictions of the propagation

of elastic waves in fractured media. We discuss the insights gained from these studies

as well as some of the limitations which became apparent. Possible extensions of this

work for future research applications are suggested.



Chapter 2

Fracture Orientation and

Permeability Estimation From

Velocity Anisotropy in Fractured

Rock

With every new answer unfolded, science has consistently discovered at

least three new questions.

-Wernher von Braun

2.1 Introduction

A common goal of seismic field experiments is to estimate rock properties such as

permeability from the information contained in the seismic waveforms. Fractured

media provide a particularly interesting example of a permeable medium, since a

material containing an aligned system of cracks will be effectively anisotropic for

elastic wavelengths much greater than the crack dimensions (Hudson, 1980, 1981;

Crampin, 1984). While a particular rock may have a randomly oriented distribution



of cracks, application of a uniaxial stress will preferentially close fractures depending

on orientation with respect to the stress axis (Walsh, 1965; Nur, 1971). It has been

suggested that the prevailing tectonic stress regimes in the Earth frequently include

a maximum compressive stress which is horizontal, resulting in such an alignment of

vertically oriented cracks (Crampin, 1981). A uniaxial stress is easily produced in

laboratory experiments as well (Nur and Simmons, 1969).

Analysis of the elastic anisotropy produced by crack alignment can be used to

investigate fracture properties. Sayers (1988a, b) suggested a means of inverting for

the orientations of crack normals using these velocity measurements. This method

involves an expansion of the fracture orientation distribution function in terms of

harmonics related to the system of Euler angles describing the orientations. The co-

efficients in the expansion are subsequently related to perturbations in elastic moduli

predicted by the Hudson (1981) theory for the properties of a cracked medium, and an

inversion was performed based on an approximate expression for elastic wave velocity

derived from a variational approach (Sayers, 1988a, b).

In this chapter, we apply an alternative form of an inversion for crack orientations.

A nonlinear inversion is performed by linearizing the phase velocity expressions about

an initial estimate of crack density and a parameter describing the distribution of

crack aspect ratios. The resulting estimates of crack orientations and the distribution

of aspect ratios with respect to direction are used to predict permeability as a function

of direction with respect to the uniaxial stress axis. These permeability predictions are

calculated based on a model for permeability in the fractured medium which accounts

for crack closure effects by multiplication by the fraction of cracks open in a given

direction. The method is applied to ultrasonic velocity data for Barre granite (Nur

and Simmons, 1969), and the implications of the results for permeability prediction

are discussed.



2.2 Theory

2.2.1 Inversion for Crack Orientations

The rock medium is assumed to contain an isotropic distribution of cracks in the un-

stressed state so that the effective elastic parameters of the material are also isotropic

in this case. When a uniaxial stress is applied to such a material, some of the cracks

will close depending on the angle of the crack normal with respect to the stress axis

(Walsh, 1965) (Figure 2-1). This angle yo is given by

cos To = (2.1)

where C is the crack aspect ratio, Eo is the Young's modulus of the uncracked material,

and o is the applied uniaxial stress. The initially isotropic material will become

anisotropic after application of the stress with rotational symmetry about the stress

axis (Nur, 1971). The effective elastic properties of the stressed, cracked material will

then have a transversely isotropic symmetry.

The effective elastic moduli of the medium can be estimated by averaging the elas-

tic constants of the fractured material over a crack orientation distribution function

N(0, 4, 0) , where 0, 4, and 0 are Euler angles of rotation specified in Figure 2-2.

These angles define the set of rotations necessary to obtain the orientation of the

crack Cartesian coordinate system x, y, z for each crack with respect to the compos-

ite medium reference Cartesian coordinate system denoted by X, Y, Z. We specify

the initial orientation of the fracture prior to rotation such that the crack normal

(parallel to z) is parallel to Z, and the other two axes x and y are therefore in the

plane of the fracture. Note that for a circular crack, only 0 and 4 are necessary

to fully specify crack orientations, and q can freely range from 0 to 2ir. The crack

orientation distribution function N(O, 4, q) is defined so that integration over the full

domain is one:

o2 Jo
2 f N(0, , ) dO d4 d = 1 (2.2)



This function can be expanded in generalized spherical harmonics

oo 1 1

N(0, i, 4) = E E E WmnZimn(()e-im e - i"n (2.3)
1=0 m=-I n=-I

Here ( = cos 0. The derivation of the generalized Legendre functions Zimn(() and

some of their properties are described by Ben-Menahem and Singh (1981). Each

coefficient Wm,, in the expansion of the orientation distribution function N(C, 0, 0)

is obtained by integrations of the following form:

Wimn = 42" j J 1 N((, b, 4)Zimn(()eimo ein' d( d 4 d o (2.4)

With this expansion, the orientation distribution function can be decomposed into

harmonic components.

If a polycrystalline aggregate were considered, an estimate of the elastic properties

of the aggregate could be obtained by simply averaging the elastic constants of the

individual crystals with respect to the orientation distribution. This method, the

Voigt approach, is known to yield an upper bound on the elastic constants (Hearmon,

1961). The same procedure can be applied to the fractured medium by averaging the

effective elastic constants of fractured material over all sets of fracture orientations

in the rock (Sayers, 1988a). Since this is an upper bound, and it is not clear how far

removed from the true solution this bound is, there will be some limitations on the

accuracy of the results which are not well defined. Application of similar techniques

to other problems involving cracks has shown that resulting errors are generally not

too large for smaller crack concentrations, however (Walsh, 1965). The averaged

constants can be written (Morris, 1969)

Cijkl = Cmnpq 2  2  Tijk1mnpq((, , 4) N(0, 1, 4) d( do d4

= cmnpqTijklmnpq (2.5)

Tijklmnpq x k O
Xmpq =Xn OX, aX,

The Einstein summation convention is applied. The matrix Tijklmnpq essentially de-

fines an average rotation of the elastic constants of the individual components mnpq,



which for the polycrystalline case are the elastic constants of a single crystal and for

the fractured material case are the constants corresponding to a single set of paral-

lel fractures. Morris (1969) has calculated a table of values for the matrix elements

Tijklmnpq in terms of the coefficients of the expansion of the distribution function up

to order 1 = m = n = 4 for composites of materials with orthorhombic symmetry

which can also be applied to material with hexagonal symmetry. The orthogonality

properties of the harmonics cause terms for indices greater than 4 to disappear, since

the fourth-order elastic tensor ,,pq will only have coefficients for I = m = n = 4. The

Morris (1969) table can easily be used in equation (2.5) to find the overall properties.

The theory of Hudson (1980, 1981) for the stiffness constants of a fractured

medium can be used to obtain values for cijkl to use on the right-hand side of equa-

tion (2.5). This theory provides an expression for the effective elastic tensor cijkl of

a homogeneous medium containing a single set of parallel penny-shaped cracks with

dimensions much less than a wavelength. This expression is in terms of a first-order

correction cljki to the elastic tensor of the unfractured material c .1 ijkl"

Cijkl = Cik + Cjkl (2.6)

Here is the crack density defined by = na3 , n is the number of cracks per unit

volume, and a is the crack radius. The explicit forms of the correction terms is given

in Appendix A. Hudson (1980) also derived a second-order term which results in

values of the stiffnesses which are quadratic functions of the concentration of cracks,

and hence the second-order theory actually displays divergent behavior for large crack

concentrations. In order to match the observed data discussed below, the second-order

correction was therefore not applied.

If we apply a stress along the z axis, the only nonzero coefficients in the expansion

of the resulting crack distribution will be Wooo, W200, and W400 due to the symmetry

around the z axis and the circular symmetry of the cracks. For purposes of the

inversion, we follow Nur (1971) and Sayers (1988b) and take as a model for the crack



aspect ratio distribution in the unstressed state a simple linear function

N'(a) = No( 1 _ a) 0 < a < am (2.7)
am

The parameter am sets the maximum aspect ratio present in the rock sample and is

given by am = oo/Eo, where ao is the hydrostatic pressure required to close all cracks.

To serve as a density function, equation (2.7) is normalized by the total number of

cracks present n, at stress a:

n= N+ am 02 (2.8)
S 2 E 10am 3Eo

Given this distribution of cracks, the crack orientation distribution function after

application of a uniaxial stress can be obtained using the closure model given by

equation (2.1). At any given angle 0 from the stress axis, all fractures with aspect

ratio a > a cos 2 0 /E o are open. The resulting coefficients in the expansion of the

orientation distribution function are

1
W000 = 187 2

1 5E 1 1 0
W20o = +

5nl/272 2 Eo 3 7 Eoam

1 1 9-_ a
W40 = 315 2E

315 noz2 2 E2am

III, n = (2.9)

One important aspect of this particular distribution model is that the expansion up

to terms 1 = 4 is exact, and there is therefore no truncation error from termination of

the series. If, however, only a single crack aspect ratio were considered, the poststress

distribution of cracks resulting from the closure model governed by equation (2.1)

would be a box car function with respect to the 0 (or r) variable, and strong Gibbs

phenomena effects would result since accurate representation of this discontinuous

function will require a large number of terms in the expansion. Truncation of the

expansion series in this case would yield unrealistic results due to strong oscillations

of the predicted distribution function.



The choice of aspect ratio in equation (2.7) is rather arbitrary and may not be truly

representative of the cracks within a rock sample, though accuracy of results using

the distribution will give some indication of its validity. For purposes of comparison

in applications, we also consider a flat aspect ratio distribution

Nf(a) = Nf 0 < a < am (2.7')

For this aspect ratio distribution, the normalization constant is

n = No am- (2.8')
n - 3Eo

and the coefficients in the generalized spherical harmonic representation are

S 1
Wooo = 287r2

1 5 cr
W200 = n37r2

no '30 2 2Eo
W400 =0

0n' = nf (2.9')
N0

The results for this hypothetical distribution of cracks may be compared to those

obtained using the distribution given in equation (2.7).

Given the values of the elastic constants resulting from the averaging process, ve-

locities can be computed for the stressed, cracked material. The quasi-compressional

wave phase velocity vqp, vertically polarized quasi-shear wave velocity vqsy, and hori-

zontally polarized shear wave velocity VSH in a general transversely isotropic medium

are given by (Musgrave, 1970)

p C1p 4 (h cos2 + a sin2 ) (2.10)

+ [(h cos2 f + a sin 2 l) 2 - 4(ah - d2) cos 2 flsin2 ]1,/2

12SV (hCOS2 0 + a sin2 p) (2.11)pos2 =p 44 + (2.11)

- [(h COS2 + asin2 )2 - 4(ah - d2) cos2/ 0 sin2/] 1 / 2



PVSH = C44 cos2 3 + 66 sin (2.12)

a = 11 - 4 4

h = C33 - C44

d = C13 + C44

Here p is the angle measured from the symmetry axis, in this case the z axis, and

the standard 6 by 6 form for the tensor of elastic constants has been utilized. This

expression uses the averaged elastic constants to predict the phase velocity value in

a given direction.

For a given uniaxial stress a and intrinsic Young's modulus Eo, the only unknown

parameters necessary to compute velocity from equation (2.10) are crack density

and maximum crack size am. Therefore, these are the natural quantities to determine

through inversion procedures. Since equation (2.10) is a nonlinear function of and

am (through the dependence of the elastic constants on the orientation function), an

inversion is performed by linearizing the problem about an initial estimate of model

parameters (Tarantola, 1987; Hatton et al., 1986):

d - Gmo + AAm (2.13)

Here d is the data vector containing observed velocity values, G is the forward model

operator yielding velocity predictions for a given set of model parameters in starting

model vector mo, A is a matrix of partial derivatives of velocity with respect to

model parameters, and Am is a perturbation to the starting estimate of model values.

The partial derivatives are somewhat complicated algebraically but can be computed

analytically with no approximations. We then perform an iterative least squares

inversion for the model parameters am and , which allows an estimate of the crack

normal orientation distribution.

The forward modeling part of this inversion procedure is similar to that proposed

by Sayers (1988a, b), but there are several significant differences. For example, Sayers



(1988b) considers a stress applied along the x axis, which results in a more complicated

expansion of the crack orientation distribution function since the orientation is in that

case a function of angle 0 as well as 0. The approach described in this paper uses the

exact expression for phase velocity, while Sayers (1988b, see also Sayers 1986) uses

an approximate expression derived from a variational method.

More important than these considerations, however, are the differences in inversion

algorithms. Sayers (1988b) proposes what is essentially a curve fitting methodology

where vqsv is approximated by a constant and vqp and vSH are approximated as the

sum of a constant and a cos 20 term. The coefficients of these functions are then

determined using a least squares procedure, and crack density is obtained from the

values of the coefficients. Since there are at most two coefficients in any one of the

velocity expressions, only two-parameter values can be obtained in this way, though

Sayers (1988b) chooses only to attempt to estimate crack density (. In contrast, the

procedure suggested here uses the complete expressions for the velocities and for the

partial derivatives in the inversion. As many parameters as there are data points can

be estimated by this approach, and data types from different experiments can easily

be combined in a single inversion. For example, velocity measurements from different

stress values can be used to invert for crack density at each stress and for a single

value of am, which should remain constant for a given rock sample. On the other

hand, the curve fitting approach will only allow a determination of the coefficients

for each data curve at each stress and does not truly allow a combination of the data

sets.

Perhaps the most important advantage of the more complex inversion scheme

in seeking to understand the properties of the physical model and of the effects of

the cracks on the propagation of elastic waves is that consideration of the partial

derivatives allows insights into the sensitivity of the inversion to each of the various

parameters. In turn, this gives more information on the validity of inversion results

and on the factors which are important in controlling velocity variations within the



fractured medium. A disadvantage of this more complicated inversion algorithm is

that it is potentially more susceptible to problems such as nonuniqueness and local

minima, whereas as the curve fitting approach will tend to be more robust.

2.2.2 Permeability Prediction

The crack orientation distribution function resulting from the inversion can be used

to predict permeability values. The permeability of a single fracture of aperture Lo

is simply
L0

ki = o (2.14)

This cubic law permeability results from the analysis of flow through a single parallel

plane walled fracture (Snow, 1969) and gives the flow rate per unit length along

the fracture. Conventional permeability values are defined from Darcy's law relative

to flow across a unit surface element area. To make this conversion, consider as a

model a block volume containing a set of cracks which extend through the length of

the block. The permeability of the volume relative to the surface area of the block

is obtained by simply adding the contribution of each fracture, which amounts to

multiplying equation (2.14) by the number of cracks in the volume. The number of

cracks of interest is the number with normals perpendicular to the direction in which

permeability is to be estimated, which requires a knowledge of the crack normal

distribution function P'(X, ,i), x = cos 6 (Figure 2-3). The superscript I refers to the

linear aspect ratio distribution in equation (2.7), and a superscript f would refer to

the flat distribution. Due to the circular symmetry of the cracks, this function is

equal to 2rNI((, 0, q) so that X = ( and q = 40. Remembering that 5 = na3 , a set of

cracks of density 0 with aspect ratio a yields a permeability k,,

0 3

ka = (2.15)

where the product in the numerator gives nL . Since the model considers a unit

volume, the dimensions of ka in equation (2.15) are length squared, where the length



unit will be the same as that of the unit volume under consideration.

Integrating over the range of crack aspect ratios for cracks still open in a given

direction, from adc = cos 2 "oo/Eo to am, using the linear aspect ratio distribution

from equation (2.7), gives permeability as a function of angle 0 measured from the

stress axis for all of the cracks in this direction:

k'(O - r/2) = [ cos 8  + 1 cos1o 0 (2.16)
2(2 1 20 4 E 5 E96\ 2 -07 1O 3 Eo )

Cracks oriented in directions other than parallel to the applied pressure gradient

will also have a contribution to the permeability. The effects of these cracks can be

partially included by adding their permeability, multiplied by the cosine of the angle

between each fracture set and the direction of the pressure gradient. Restricting

attention to crack normals within a single vertical plane, such as the x - z plane,

we can integrate the result of equation (2.16) multiplied by the appropriate cosine

function:

Sk'(O - r/2) cos(7 - O)dO (2.17)

Here y - 7r/2 is the direction of interest for the permeability estimation. In principle,

cracks with normals outside of the vertical plane could be considered, but it turns out

that the resulting integral is very complicated and does not add significant insight to

the resulting permeability model. Carrying out the integration in equation (2.17), we

have for the linear aspect ratio distribution

k'(7 - 7r/2) = X' (2.18)
48 r2 k E1O -o 3 Eo)

5

20

-am 1 cs ' (128+ 128sin 2  + 48sin4 + 40sin6 + 35sin67) + sino4E49 35

1 5 COs2 Y (256 + 256 sin 2 y + 96 sin 4

55 E5 63
+ 80 sin6 7 + 70 sins 8 + 63 sin 7y) + sin2 y]



The same procedure can be performed for the flat aspect ratio case (equation (2.7')),

and the resulting permeability expression is

k(r -7/2)= 1 X (2.19)192r2 am -

Xf = Ca4

4 1 [c S2  (128 + 128sin 2  + 48sin4  + +40 sin 6  + 35 sin67 ) + sin ]
E04 9 35

These two results may be used to provide an estimate to permeability within the

fractured rock as uniaxial stress is applied. If the uniaxial stress is sufficiently large

to close off all cracks present in a given direction, then the integration limits in

equation (2.17) must be changed to account for the range of angles where no cracks

are present. This results in expressions of very similar form to the permeability results

in equations (2.18) and (2.19).

While this appears to be a simple approach to permeability estimation, it is related

to other studies of fluid flow through crystalline rock. Bernabe (1986) examines in

detail the applicability of the equivalent channel concept to permeability modeling

for several granites and concludes that it is a valid approach. Our case is analogous

to an equivalent channel model in that we replace the complicated fracture network

by a simplified representation of sets of plane walled fractures extending through the

medium, though we do not base our "channel" on some of the conventional concepts of

the surface area and volume of the porous structure. However, the model does include

the effects of crack closure as a function of direction. Some of the effects which are

neglected are the diminished aperture of cracks due to asperities and the complicated

flow paths within the rock. The effect of surface roughness of cracks is probably not

too important over relatively low pressure ranges, since fractures with asperities still

display a cubic law permeability behavior with an effective, mean crack width (Tsang

and Witherspoon, 1981, 1983). Numerical studies of fluid flow through cracks with

asperities confirm this conclusion (Brown, 1987). Therefore, the tortuosity effect is



of much greater concern. The most direct way to include the tortuosity is to simply

normalize the permeability predictions by some constant so that the values are of the

correct order of magnitude. This can be done easily if permeability for one direction

is known or if the permeability of the unstressed rock is known.

It is important that we have only included a fracture contribution to permeability

in this model. If the medium under consideration has a significant amount of a

different type of interconnected pores and tubular fluid conduits, such as is the case

in some sandstones, the effects of the crack closure must be added to the permeability

due to other porosity types. Since the equidimensional pores of a sandstone will only

be minimally affected by the applied stress, the effects of the cracks may not be so

important for overall permeability values. This crack model is most important for

low porosity rocks such as fractured limestones or granites and other crystalline and

metamorphic which would be essentially impermeable except for the cracks.

The permeability model also essentially assumes a prestress isotropicity of the

fracture network creating the permeability of the rock medium. It is conceivable that

some particular arrangements of cracks and their intersections might show strong

variations in effective permeability depending on the direction of the applied stress,

but the model assumes that this effect will not occur and that the behavior of the

medium is independent of the direction of the stress axis. Therefore the cracks in

the medium must on average have an isotropic distribution in both orientation and

in intersection properties.

2.3 Application To Ultrasonic Data

The inversion procedure together with the permeability models equations (2.18)

and (2.19) provide a method for predicting permeability values given observations

of elastic wave velocities which could be obtained from either laboratory samples or

field data. Nur and Simmons (1969) made velocity measurements on samples of Barre



granite as a function of direction for several magnitudes of applied uniaxial stress.

Measurements were presented for both quasi-compressional wave signals and quasi-

transverse waves, SV and SH. The Barre granite sample used by Nur and Simmons

(1969) was dry, so the Hudson (1981) formulation for dry cracks is appropriate. A

value of 2.7 g/cm3 was used for density in the equations required for the inversion,

and the Lame parameters used to compute the Young's modulus were A0o = 22.05 GPa

and lu0 = 35.97 GPa (Nur, 1971).

2.3.1 Velocity Inversions

Velocity data for qP waves at uniaxial stress values of 0, 10, 20, and 30 MPa were

jointly inverted for the crack density at each stress value and for a single value of

maximum aspect ratio am. The results for these parameters are given in Table 2.1

for both the linear and the flat aspect ratio distribution function (equations (2.7)

and (2.7')). Corresponding quasi-compressional wave velocity predictions and obser-

vations are compared in Figures 2-4 and 2-5. The theory is able to match the data

fairly well, with a fit approximately the same as that obtained by Sayers (1988b).

In general, the linear distribution gives a slightly better fit to the observed veloc-

ity values. The trends in crack density shown by the inversion results in Table 2.1

are reasonable. As stress increases, more cracks will close reducing the overall crack

density, as occurs for these results. In addition, the two aspect ratio distributions

give essentially the same ( at each pressure (Table 2.1). However, the maximum

aspect ratio given by the constant distribution function, 3.99x10 -4 , is about 60% of

the value resulting from the linear case, 6.34x 10- 4 . This occurs because with the

Walsh (1965) crack closure model, many cracks of small aspect ratio are required to

close at low pressures such as 10 or 20 MPa. For example, at 10 MPa, the largest

crack which closes, with a normal in the direction of the applied stress, has an aspect

ratio of approximately 1.17 x 10-4 for a material with the Lame parameters used for

this inversion. The flat distribution will contain proportionately fewer small aspect



ratio cracks for a given total crack density and so will require a smaller am to achieve

the same degree of predicted velocity increase for a given applied uniaxial stress.

Analogous results for the SH data are presented in Table 2.2, and velocity pre-

dictions are shown in Figures 2-6 and 2-7. While the SH data are similar to those in

Figures 2-4 and 2-5 for the quasi-compressional waves, the qSV results are relatively

poor and are given in Table 2.3 and Figures 2-8 and 2-9. A non-attenuative trans-

versely isotropic medium always has equal qSV velocities parallel and perpendicular

to the symmetry axis (see equation (2.11)), but it is clear from the data in Figure 2-8

that this condition is not quite true for these observations. It is clear that there is

a trend to the qSV velocity with direction that is not reproduced in the variations

predicted by the crack model. It is possible that the Barre granite has some slight

intrinsic anisotropy which would cause the stressed system to have some overall sym-

metry other than transversely isotropic. A likely cause of SV velocity variation is

preferred grain orientation in the granite. Lo et al. (1986) clearly demonstrate such

a residual anisotropy after crack closure in measurements of velocity in Chelmsford

granite. If the residual anisotropy is the cause of most of the velocity variation for

the SV data, the inversion results are not significant for inference of crack orientation

since the forward model involved in the inversion includes only anisotropy due to

cracks.

The effects of this residual anisotropy seem to be evident to a smaller degree at

high pressures for the quasi-compressional and SH wave data also (Figures 2-4, 2-5,

2-6 and 2-7). Since the total velocity anisotropy is greater for the quasi-compressional

and SH data, however, the fractures have more effect on observed velocities and the

inversion results are more significant for these cases. The values of crack density

obtained from the two quasi-shear wave data sets are very similar, but the quasi-

compressional wave data consistently yielded a somewhat lower estimate of crack

density. The results for all data sets are also essentially the same as those obtained

by Sayers (1988b). In order to examine these differences in estimated crack density,



a joint inversion of both SH and qP wave data from experiments at a single uniaxial

stress was attempted, but it was found that the value of obtained was between the

values resulting from the individual inversions and predicted velocities too large to

match the qP data well, but too small for the SH velocity measurements. The cause of

the difference in results for quasi-compressional and quasi-shear wave data is difficult

to explain but may be caused by remnant water within the granite sample. Liquid

within the cracks would tend to raise the qP wave velocity for a given crack density,

while having a much more negligible effect on quasi-shear wave velocities. Therefore

a single value of would be able to yield velocity predictions matching both sets of

data. It would be desirable to repeat the velocity experiment with uniaxial stress

taking great care to maintain the dryness of the rock sample in order to confirm this

hypothesis.

It is possible that both the qP and SH estimates for crack density are high due to

the use of the Voigt approximation in calculating elastic constants (equation (2.5)).

Since the Voigt approach gives an upper bound, the averaged constants could be

"stiffer" than those of the fractured medium, and a higher density of cracks would

then be necessary to reduce the velocities to the observed values. If, however, the qP

estimated crack density is reduced by the presence of liquids as suggested above, this

will offset the error and the solution will not be too far off. It is likely that the true

crack density is near the values we estimate.

Unlike the crack density, the estimates for a, from qP and SH data are comparable

for each aspect ratio distribution. For the flat distribution, the values differ by about

12%, and the variation is about 6% for the linear function. In both cases, the qP

inversion yields the smaller estimate for am. This difference likely stems from effects

similar to those suggested as causing the decrease in crack density estimates.

Although there is some consistency of these inversion results for crack density

and for the maximum aspect ratio parameter, it remains to establish the validity of

the inversion results and the accuracy of the resulting description of crack geometry



within the rock. Several studies involving direct examination of rock samples for crack

geometry have been conducted. Sprunt and Brace (1974) examined Westerly granite

using SEM techniques and estimated an aspect ratio distribution which showed a

large number of cracks with aspect ratio greater than 10-2. A similar, but more

detailed, study by Hadley (1976) revealed a much larger proportion of aspect ratios

of the order of 10- 4 but also showed that the distribution depends on the stress

history of the rock sample with prestressed samples containing a larger fraction of

small aspect ratio cracks. Hadley (1976) concluded that a typical mean aspect ratio

was of the order of 1 x 10- 3. Due to resolution limitations of the SEM technique, the

smallest aspect ratio which was observable was estimated to be about 5 x 10- 5, but it

is also clear that some limitations on the validity of the observations will result from

the limited, two-dimensional sampling of three-dimensional cracks. Therefore, many

small aspect ratio cracks in the rock could have been missed using the SEM imaging.

Wong et al. (1989) also conclude that SEM images failed to detect a significant

segment of the small aspect ratio population in a Westerly granite.

Direct observation of crack closure under uniaxial stress reveals other potential

difficulties of the crack closure model used in this study. Batzle et al. (1980) showed

that crack closure in Westerly granite can be incomplete due to the influence of

roughness of the crack surfaces. In addition, the effects of crack intersections can be

important in altering crack behavior as stress is applied. The crack roughness and

intersections combined will clearly result in departures from the simple crack model

locally, but it is not obvious how significant this effect will be on the macroscopic

scale.

Other, indirect, investigations of crack dimensions have been conducted using

differential strain analysis (DSA) techniques (Siegfried and Simmons, 1978). In prin-

ciple, the DSA approach can produce information on crack aspect ratios by monitor-

ing linear strain of a rock sample subjected to hydrostatic pressure. However, this

method is subject to relatively large error due to numerical differentiation (Cheng



and Toks6z, 1979). It is worth noting that Feves and Simmons (1976) found that the

majority of cracks in a Westerly granite close at hydrostatic pressures of about 20

to 30 MPA, corresponding to an aspect ratio of about 5. x 10- 4 to 7.5 x 10- 4 using

the Walsh (1965) theory, a range which includes the results of our inversion. Cheng

and Toks6z (1979) applied a velocity inversion technique for isotropic, hydrostatic

pressure cases to Westerly granite and found an aspect ratio distribution in general

agreement with this result. It seems that our inversion results are corroborated by

other indirect techniques using elastic properties in finding a significant amount of

small aspect ratios for cracks within igneous rocks, while direct observations using

SEM reveal porosity of larger aspect ratio. The larger aspect ratio porosity is a

much less important source of variation in elastic behavior than the cracks under the

pressure changes we consider here.

2.3.2 Permeability Predictions

Permeability predictions using the qP and SH results from both aspect ratio distribu-

tion functions are shown in Figure 2-10, and they all compare favorably, though there

is some variation for uniaxial stresses of 30 and 40 MPa. The curves for 10 MPa were

normalized in the direction perpendicular to the applied stress to match a perme-

ability measurement for Barre granite under 10 MPa hydrostatic pressure (Bernabe,

1986). This normalization assumes that the permeability in the direction perpen-

dicular to the stress shows the same behavior as does isotropic permeability in the

hydrostatic case. The other permeability curves were normalized to have the same

permeability in the stress direction since the physical model for crack behavior in-

cludes no change in the crack distribution in this direction. In principle, the closure

of cracks in other directions is also included in equations (2.18) and (2.19), but the

arbitrary normalization is still necessary. Without this scaling, the permeability pre-

dictions would actually rise in the stress direction as stress increases due to the lack

of tortuosity effects in the permeability theory.



Laboratory experiments (Zoback and Byerlee, 1975) show that there is in fact a

decrease in permeability in the direction parallel to the applied uniaxial stress, but

this effect is not very large. Figure 2-11 compares the permeability measurements by

Zoback and Byerlee (1975) to the constant values we would predict for permeabil-

ity in the stress direction. The three data points in Figure 2-11 were measured by

Zoback and Byerlee (1975) while increasing uniaxial stress on a sample of Westerly

granite under 50 MPa confining pressure and 11 MPa pore pressure, and the curve

between the two data is the trend inferred for permeability between these points.

The Zoback and Byerlee (1975) data were made at very high uniaxial pressures to

investigate dilatancy effects, and our theory is based on linear behavior which cannot

be extrapolated to high stress.

While measurements of anisotropic permeability as a function of direction are not

available to confirm the permeability predictions, the comparison to measurements

parallel to the stress axis provide one check on the model, and a second check can

be made by comparison with permeability measurements as a function of hydrostatic

pressure. The permeability values perpendicular to the stress axis from both the

qP and SH results are compared to the measurements by Bernabe (1986) for Barre

granite in Figure 2-12. The predicted permeability decreases are too small, and, in

addition, the measurements show a tendency to decrease the most rapidly at the lower

pressures, while the predictions have the opposite tendency. Within the limitations

of the fact that we are comparing hydrostatic pressure and uniaxial stress cases,

this suggests that some effects of crack closure are missing from our model. Other

examples of permeability measurements reported in the literature for granites show a

wide variation both in the absolute value of permeabilities under pressure and in the

magnitude of change in isotropic permeability with increasing pressure (e.g., Brace et

al. 1968; Bernabe, 1986), so a perfect correlation would not necessarily be expected.

Although these comparisons of theory and data are limited, alternative numerical

schemes for analysis of permeability anisotropy in fractured media have been recently



developed. Zhao and Toks6z (1991b) apply finite difference methods to the modeling

of steady state fluid flow in statistical models of fractured media. The results show

that the numerically estimated permeability has a highly variable degree of anisotropy,

87% to 184%, which depends on the nature of the synthetic fracture network. This

numerical permeability anisotropy is higher than we estimate here since the fracture

description applied by Zhao and ToksSz (1991b) is much more strongly aligned than

our distributions of orientations, but it is encouraging that the variation of perme-

ability with respect to the symmetry direction of the model has similar trends in both

cases.

2.4 Discussion And Conclusions

The results of the velocity inversion suggest that the physical model for the fracture

behavior under uniaxial stress is capable of describing most of the effects of the

cracks on the elastic properties of the medium and that the model is able to match

observations of velocity in the Barre granite. The aspect ratio of the dry fractures

does not affect the elastic wave velocities in the Hudson formulation. Only the density

of cracks ( is important in this case, and so the inversion results suggest that we are

modeling this aspect of the system fairly well. On the other hand, permeability

critically depends on the aspect ratio due to the cubic dependence on crack width in

equation (2.14). The permeability predictions are highly sensitive to this parameter,

and it is important to have an understanding of the aspect ratio distribution obtained

by inversion.

Some insight into the roles of a, and in the model of cracks and their effect on

elastic behavior is obtained by independently inverting velocity data from different

uniaxial stresses for crack density and am at each stress. Parameter results for the

independent inversion procedure applied to the SH data are given in Table 2.4, and

the theoretical velocities are compared to the data in Figure 2-13. Because am is



though the joint inversion solutions are still preferred, since a, should not be a

function of pressure. Note that the velocity at 0 MPa is independent of aspect ratio

and am cannot be determined for this case. The crack density values are almost

identical to those obtained by the joint inversion (Table 2.2), but the results for am

vary around the value 6.75 x 10- 4 . Independent inversions of the qP data result in

similar comparisons. From this and other properties of the inversion behavior, it is

clear that the crack density is uniquely determined for each data set and serves to

provide an overall shift upward of the velocity curve as density reduces so that the

mean velocity matches the mean of velocity observations. It can even be determined

independently of the aspect ratio distribution. In contrast, the aspect ratio parameter

am gives fine control of the shape of the velocity curve so that it may match the details

of the data trends. It does this by governing the amount of fine cracks present for a

given aspect ratio distribution which close at the pressure of interest.

Further understanding of the behavior of the inversion procedure is given by the

similarity of the predictive capability of the flat and linear aspect ratio distributions

in the velocity inversions (Figures 2-4, 2-5, 2-6, 2-7, 2-8 and 2-9). This indicates a

nonuniqueness of inversion results arising from the fact that enough cracks of aspect

ratios which will close with the appropriate magnitudes of uniaxial stress are present

in both distributions. Some constraints on this type of nonuniqueness can be made

based on the accuracy of the velocity predictions resulting from the aspect ratio

distributions. For example, an inversion based on a parabolic aspect ratio distribution

proportional to (a-am)2 was attempted. This parabolic distribution will have an even

large proportion of small aspect ratio cracks than the linear model in equation (2.7).

However, the inversion based on this distribution failed to converge to parameter

values which could reproduce velocity data. This provides indirect evidence that

the parabolic distribution is not realistic and that more larger aspect ratio cracks are

required. On the other hand, the results of the two distributions presented above both

reproduce data fairly well. Although the differences tend to be subtle in the plots of



velocity predictions and data, the linear model is consistently somewhat better and

also gives a smaller root mean square error, about 30% for the qP inversion and 17%

for the SH case. This suggests that the linear model is in fact a better representation

of the real crack distribution and that there are many fine cracks which cannot be

resolved with SEM techniques. In addition, the larger value of maximum aspect ratio

is encouraging since it is closer to the results of other studies (Feves and Simmons,

1976; Cheng and Toks6z, 1979), though in any case, the rock may contain porosity

of even larger aspect ratio.

Nonuniqueness in the inversion also results from the assumption of noninteractive,

penny-shaped cracks. Mavko and Nur (1978) consider a tapered crack model instead

of ellipsoidal cracks and show that the two crack models can produce the same effects

on elastic behavior, indicating an inherent lack of uniqueness. They also demonstrate

that ellipsoidal crack models achieve these results with smaller values of aspect ratio.

A theory accounting for the interactions of cracks will also give a larger estimate for

aspect ratio than the noninteractive theories such as the Walsh (1965) model (Doyen,

1987). It is clear then that our results are dependent on the crack model, which

assumes penny-shaped, noninteracting cracks. In summary, it seems that our results

for crack density are well defined and reliable but that the estimation of am must be

considered more carefully in order to confirm its validity. This confirmation can be

based on the accuracy of the inversion and on comparison to observation of aspect

ratio distributions in rocks.

The ambiguity in the aspect ratio does not seem to have too large of an impact on

permeability predictions, however (Figure 2-10). Instead, the dissimilarity between

the hydrostatic data of Bernabe (1986) and the predictions for the direction perpen-

dicular to the stress axis (Figure 2-12) is caused by other effects. There are two likely

principal causes of this failure.

First, the permeability model fails to include the effects of interconnecting cracks.

It is clear that intersections can affect crack closure (Batzle et al., 1980). Numerical



studies in two-dimensional models of fractured materials show that connectivity is

also very important for fluid flow (Long and Witherspoon, 1985). It is difficult to

model these effects in the true three-dimensional medium. Snow (1969) presents an

approach similar to our model of continuous planar fractures which is appropriate

for several discrete sets of fractures but also neglects the effects of interconnection.

Long et al. (1985) and Andersson and Dverstorp (1987) present numerical techniques

for modeling the permeability of sets of penny-shaped cracks suspended in a three-

dimensional volume. An application of our inversion technique could be to develop

crack aspect ratio and orientation models for procedures like this.

A second source of error in our permeability calculations is that the present ver-

sion of this theory does not include any change in aspect ratio for the cracks which

remain open. In actuality, the aspect ratio of the open cracks will decrease as the

uniaxial stress is applied (Toks6z et al., 1976). This effect will tend to decrease the

permeability values in directions away from the stress axis. This is one major reason

that permeability predictions for 10 MPa show an almost imperceptible drop from

the constant 0 MPa case. The largest crack which will completely close in the Barre

granite at this pressure, the crack with a normal parallel to the stress axis, has an

aspect ratio 1.1 x 10- 4 . With the cubic law behavior of the crack permeability, the

cracks with aspect ratios smaller than this value have minimal contribution to fluid

flow even in the zero stress case. The permeability predition would drop further and

be more realistic if the partial closure of cracks with initial aspect ratios larger than

1.1 x 10- was incorporated into the modeling scheme.

The change in aspect ratio with stress will affect only the permeability predictions

as long as the cracks are dry. If, however, the cracks are assumed to be filled with a

fluid, the aspect ratio also affects the elastic constant values. The forward modeling

of velocities would then have to include the variation of aspect ratio with direction

in order to compute the velocity values. However, a relatively small amount of gas

mixed with the fluid will still cause the the effective properties of the medium to be



essentially that of a gas, since the effective bulk modulus k* of a two-phase medium

is given by

(k*) - 1 = Vk 1 + (1 - V)kg 1  (2.20)

where k and kg are fluid and gas bulk moduli, respectively, and V is the volume

fraction of fluid (Kuster and Toks6z, 1974). The large compressibility of the gas will

tend to dominate the overall properties of the crack-filling material, and it will tend

to behave as though the cracks are filled with a gas. As long as the shear modulus and

bulk modulus of the crack-filling material are small, the aspect ratio of the cracks has

little impact on the elastic constants in the Hudson (1981) approach, and the present

approach will be sufficient.

This approach should at least provide a means of obtaining an initial estimate of

permeabilities for use in modeling of fluid flow in subsurface fractured media. Po-

tential areas of application include both hydrological studies and petroleum reservoir

modeling. Perhaps the most important aspect of the theory is that it represents an

attempt to extend knowledge of the permeability of a subsurface feature to regions

beyond the borehole using seismic data.



Aspect Ratio

Distribution Function

Flat Linear

3.99 x10 - 4  6.34 x10 - 4

0.275 0.275

0.253 0.254

0.235 0.235

0.221 0.221

Table 2.1. Inversion results using qP velocity measurements of Nur and Simmons

(1969). The subscript P on p indicates the uniaxial stress value for each crack

density.

Aspect Ratio

Distribution Function

Flat Linear

4.48 x10 - 4  6.75 x10 - 4

0.315 0.315

0.286 0.285

0.257 0.256

0.235 0.234

0.214 0.215

Table 2.2. Inversion results using SH velocity measurements of Nur and Simmons

(1969). The subscript P on (p indicates the uniaxial stress value for each crack

density.
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Parameter

am
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'2o

03o

'40

Aspect Ratio

Distribution Function

Flat Linear

7.34x 10- 4  13.1 x10- 4

0.314 0.314

0.286 0.285

0.252 0.252

0.227 0.227

0.206 0.206

Table 2.3. Inversion results using qSV velocity measurements of Nur and Simmons

(1969). The subscript P on (p indicates the uniaxial stress value for each crack

density.

Uniaxial Stress,

MPa

0 0.315

10 0.283 4.98 x 10- 4

20 0.255 5.94 x 10- 4

30 0.234 6.78 x 10- 4

40 0.217 5.61 x 10- 4

Table 2.4. Results of independent inversion of SH velocity measurements of Nur and

Simmons (1969) for crack density and maximum aspect ratio am at each stress.

The inversion cannot determine information on aspect ratio at 0 MPa.
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Figure 2-1: Schematic diagram illustrating the behavior of a randomly fractured
medium under an applied uniaxial stress. (Top) A possible random crack system
with no stress applied. (Bottom) The same system after application of the uniaxial
stress, where cracks have closed depending on their orientation with respect to the
stress. If the angle 7 indicated on the figure is equal to or smaller than the angle o0
defined in the text, the crack will close under the applied uniaxial stress.
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Figure 2-2: Euler angles of rotation 9, y, describing orientation of a given crack
coordinate system x, y, z (fine lines) with respect to the composite medium coordinate
system X, Y, Z (heavy lines). The dashed line indicates the intermediate position of
the y axis, and the two disks represent the X - Y planes before and after rotation,
which are also the crack planes. The set of rotations is defined as follows: (1) rotate
by y about Z (the same as z initially), (2) rotate by 0 about the new y axis, (3) rotate
by € about the new z axis. Since the cracks are assumed to have circular symmetry,
the first two rotations actually uniquely specify the orientation of a single crack.
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Figure 2-3: The angles 6 and r, necessary to specify the orientation of a crack normal.
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Figure 2-4: Results of inversion for crack density and maximum aspect ratio a,
using Barre granite quasi-compressional wave velocity data and the linear aspect
ratio distribution function (equation (2.7)). The points are data collected by Nur
and Simmons (1969), and the lines indicate the results of a joint inversion of all of
the data in this figure. The value of the applied uniaxial stress is indicated for each
curve.
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Figure 2-5: Results of inversion for crack density ( and maximum aspect ratio am
using Barre granite quasi-compressional wave velocity data and the flat aspect ratio
distribution function (equation (2.7')). The points are data collected by Nur and
Simmons (1969), and the lines indicate the results of a joint inversion of all of the
data in this figure. The value of the applied uniaxial stress is indicated for each curve.
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Figure 2-6: Results of inversion for crack density ( and maximum aspect ratio am
using Barre granite SH velocity data and the linear aspect ratio distribution (equa-
tion (2.7)). The points are data collected by Nur and Simmons (1969), and the lines
indicate the results of a joint inversion of all of the data in this figure. The value of
the applied uniaxial stress is indicated for each curve.
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Figure 2-7: Results of inversion for crack density and maximum aspect ratio am
using Barre granite SH velocity data and the flat aspect ratio distribution (equa-
tion (2.7')). The points are data collected by Nur and Simmons (1969), and the lines
indicate the results of a joint inversion of all of the data in this figure. The value of
the applied uniaxial stress is indicated for each curve.
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Figure 2-8: Results of inversion for crack density ( and maximum aspect ratio am
using Barre granite qSV velocity data and the linear aspect ratio distribution (equa-

tion (2.7)). The points are data collected by Nur and Simmons (1969), and the lines

indicate the results of a joint inversion of all of the data in this figure. The value of

the applied uniaxial stress is indicated for each curve.
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Figure 2-9: Results of inversion for crack density and maximum crack size am using
Barre granite qSV velocity data and the flat aspect ratio distribution (equation (2.7')).
The points are data collected by Nur and Simmons (1969), and the lines indicate the
results of a joint inversion of all of the data in this figure. The value of the applied
uniaxial stress is indicated for each curve.
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Figure 2-10: A) Permeability predictions as a function angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of qP data and the flat
aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 2-10: B) Permeability predictions as a function angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of SH data and the flat
aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 2-10: C) Permeability predictions as a function angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of qP data and the linear
aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 2-10: D) Permeability predictions as a function angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of SH data and the
linear aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 2-11: Comparison of permeability predictions parallel to the stress axis with
measurements by Zoback and Byerlee [1975] of permeability parallel to the stress
axis in an experiment performed on Westerly granite. The curve inferred by Zoback
and Byerlee [1975] to represent permeability behavior between data points at 0 and
310 MPa is given by the solid line. The constant permeability which would be pre-
dicted by the theoretical model over the pressure range investigated by Nur and
Simmons (1969) is indicated.
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Figure 2-12: Comparison of hydrostatic permeability measurements with theoretical
permeabilities perpendicular to the stress axis. The data, measurements on Barre
granite [Bernabe, 1986], are indicated by the line and the points are calculated from
equations (2.18) and (2.19). Since the permeabilities are normalized to have the same
value at 10 MPa, the data and theoretical points overlap at this value of stress. The
velocity data types used to calculate the permeability predictions are indicated in the
figure.
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Figure 2-13: Results of independent inversions for crack density 6 and maximum
crack size a, of Barre granite SH velocity data. The points are data collected by
Nur and Simmons (1969), and the lines indicate the inversion results. The value of
the applied uniaxial stress is indicated for each curve.



Chapter 3

Elastic Wave Scattering by

Anisotropic Obstacles:

Application to Fractured Zones

All mathematicians would therefore be intuitive if they had good sight,

because they do not draw false conclusions from principles that they know.

And intuitive minds would be mathematical if they could adapt their sight

to the unfamiliar principles of mathematics.

-Blaise Pascal

3.1 Introduction

Scattering of elastic waves by variations of the elastic properties of the earth is a

fundamental problem with significant applications in several areas. As early as 1896,

the effects of localized variations in bulk modulus and density on propagation of the

acoustic waves were considered with what was essentially the first Born approximation

(Rayleigh, 1945). More recently, Miles (1960) outlined the extension of the Born

approximation to a fully elastic scattering obstacle. Chernov (1960) applied the same



approach, under the name of the method of small perturbations, to the acoustic case

in order to examine propagation in random media. The application of the Born

approximation essentially consists of the insertion of a perturbation solution into the

equation of motion, and the perturbations to the elastic properties of the medium then

appear as source terms for waves which propagate in the unperturbed, background

medium. This method only accounts for single scattering, but nonetheless can be

very useful.

In seismology, the scattering due to random variations of velocity is often con-

sidered as an explanation for features of elastic wave propagation which are difficult

to account for as deterministic body or surface wave propagation. Aki (1969) sug-

gested surface wave single scattering by heterogeneities concentrated along the earth's

surface as a source for the coda energy following deterministic arrivals of local earth-

quakes and attempted to infer typical scatterer size and density. Subsequent work

continued to explore this hypothesis, considering the effects of body wave scattering

as well (e.g., Aki and Chouet, 1975). The application of the Born approximation

to a single scattering model for P-wave coda was described by Hudson (1977), out-

lining some suggestions for application to statistical distributions of fluctuations of

the elastic properties of a given medium and the resulting stochastic variations of

the wavefield. Subsequently, Hudson and Heritage (1981) thoroughly analyzed the

application of the Born approximation to the elastodynamic scattering in an effort to

estimate the applicability of the method to various scattering problems in earthquake

seismology. Gao et al. (1983a, 1983b) presented some simple models for the effects

of multiple scattering on observed coda signals, while Wu and Aki (1985a) applied

a single scattering model, including the Born approximation, for a volume distribu-

tion of scatterers and inferred mean amplitude deviations of seismograms for given

distributions of scatterers. The influence of scattering on the observed attenuation

of various waves is also important (e.g., Aki and Chouet, 1975; Dainty and Toksoz,

1977; Dainty, 1981; Aki, 1980). A recent general model for the attenuation of elas-



tic waves within the earth includes a significant contribution from scattering due to

inhomogeneity in the uppermost crust (ToksSz et al., 1988).

In addition to these studies of the effects of scattering on forward modeling of wave

propagation, both stochastic and deterministic, scattering theory has important im-

plications for various inversion algorithms. The application of the Born approximation

allows a linearization of the inversion procedure which is often utilized in very general

inversion schemes in exploration seismology (e.g., Beydoun and Mendes, 1989; Cohen

et al., 1986; Boyse and Keller, 1986; Clayton and Stolt, 1981). A fundamental aspect

of these approaches to inversion is that a relatively accurate background model must

be available which accounts for the smoothly varying properties of the medium. The

Born scattering theory then can account for sharp, localized variations of the velocity,

impedance or density (Beydoun and Mendes, 1989). These methodologies applied to

exploration seismology are developed with the intent of estimating the properties of

large regions of the subsurface. Another significant area of use for the Born approxi-

mation is the field of nondestructive evaluation. In this case, the task is generally to

examine the scattering due to a single flaw or inhomogeneity within an otherwise ho-

mogeneous material (Gubernatis et al, 1977a). For spherical obstacles, the size of the

inhomogeneity enters the expressions for the scattered field only through the product

of volume and elastic parameters and hence cannot be determined uniquely without

assumptions regarding obstacle properties (Gubernatis et al., 1979; Kohn and Rice,

1979). A technique to determine the radius of a spherical obstacle fairly robustly is

described by Bond et al. (1988) with an application to data for a polystyrene sphere

embedded in thermoplastic.

The studies discussed above generally consider only the effects of isotropic varia-

tions of elastic moduli, though Kohn and Rice (1979) discuss briefly the generality of

the scattering results for anisotropic materials. It is clear that the earth is in many ar-

eas anisotropic, motivating the extension of these Born scattering techniques to more

general media. Anisotropy of oceanic crust has been clearly observed (Hess, 1964;



Stephen, 1985), and shales and other materials in sedimentary basins are frequently

observed to exhibit relatively strong anisotropy (Winterstein, 1986; Thomsen, 1986).

It is also often suggested that much of the earth's crust is fractured and that the

cracks which remain open tend to be aligned by prevailing tectonic stress regimes

(Crampin, 1981). An isotropic material containing an aligned system of cracks will

be effectively anisotropic for wavelengths larger than the crack size (Hudson, 1980,

1981; Crampin, 1984). Various observations of shear wave splitting and travel time

anomalies in several areas help to confirm the existence of anisotropy due to aligned

crack systems (Peacock et al., 1988; Leary et al., 1987; Crampin et al., 1986; Bamford

and Nunn, 1979).

An initial investigation of the effects of anisotropy on Rayleigh scattering was

made by Ben-Menahem and Gibson (1990) by looking at the simple, special case

of a transversely isotropic inclusion in an isotropic background medium without ap-

plication. We generalize this investigation of the effects of anisotropy on scattering

theory by considering the Rayleigh scattering due to the most general anisotropic in-

clusion and apply it to the realistic example of variations in elastic properties caused

by fracturing. A general inclusion can have up to 21 independent elastic constants,

although there will generally be fewer due to symmetry considerations. In order to

estimate the scattered wavefields, the values of the elastic constants and density are

expressed as an average background value plus a small variation. The first Born ap-

proximation is applied to the subsequent perturbed wave equation, which yields an

expression for the scattered field which is linear in the perturbations of the elastic

constants. Expressions for the radiation patterns due to perturbations of each of the

21 independent elastic constants are derived.

In order to present a concrete example of the application of this method, we

examine the effects of a small volume of fracturing within a homogeneous background

medium. The effective elastic moduli in the presence of the aligned crack system can

be estimated using the theory of Hudson (1980, 1981), which gives approximate values



for perturbations to elastic constants as functions of second order in crack density

for both the isotropic case of randomly oriented cracks and for the anisotropic case

of parallel cracks. These expressions for the perturbations provide realistic values

to use in the scattering theory. The parallel crack model has 5 independent elastic

constants, and therefore the medium is transversely isotropic with a horizontal axis

of symmetry when the cracks are vertical. Consideration of the radiation patterns

for the random and aligned crack volumes with equal crack density show that there

are some distinct differences in the scattered displacement fields. Scattering from

the parallel crack volume is significantly larger than from a random crack volume

in some directions and much smaller in others. In particular, scattering completely

vanishes for shear waves incident from certain directions with polarization parallel to

the crack orientations. Some hypothetical seismic experiments which could be used to

determine whether or not a fractured volume consists of aligned cracks are described,

based on these differences.

3.2 Estimation of the General Scattered Field

3.2.1 The Born Approximation

The equation of motion in an anisotropic medium is

pii - V - S = f (3.1)

where f is the single force source vector, and

S = T-M

T = c:E. (3.2)

Here S is the physical stress field, T is the stress given by Hooke's law, E being the

strain tensor, and M is a moment tensor density source (Ben-Menahem and Singh,

1981; Backus and Mulcahy, 1977a). The components of the tensor S, T and E are



denoted by aij, rij and cij, respectively. The solution of equation (3.1) can be obtained

in integral form using the Green's tensor solution, where the component Gij(x, t; x', t')

of the Green's tensor represents the i'th component of displacement at x and time t

due to the a point force in the j direction applied at x' at time t'. The solution is

written (Ben-Menahem and Singh, 1981)

u(x, t)= dV(x') J dt' G(x, t; x', t')- f(x', t')

+ J dV(x') J dt' M(x', t') : VG(x, t; x', t'), (3.3)

where the ~ symbol indicates transpose. This formulation can be used to find the

displacement due to any combination of single force or moment tensor type sources

distributed in space and time.

Now suppose that the values of density and elastic constants vary slightly from

given background values po and Cijkl, so that the new values are given by:

p = po0 +6p

c = CO+ 6 c. (3.4)

The deviations of the density and elastic constants result in deviations of the dis-

placement field as well. We proceed by assuming a perturbed field of the form

u(x, t) = UO(x, t) + bu(x, t), (3.5)

where again the superscript 0 indicates a background field which is the field which

would be obtained if in fact the true medium properties were po and c kl. Substi-

tution of the perturbed field (3.5) and the perturbed medium properties (3.4) into

equation (3.1), neglecting terms of second order, gives the following result:

poi0 pobil + pio _ V . (co : Eo + bc : Eo + co : E - M) = f. (3.6)

Upon inspection, we see that equation (3.6) is the sum of two equations, one of which

is equation (3.1), the equation of motion for the background displacement field uo



propagating in a material with the background properties. The other equation can

be obtained by subtracting equation (3.1) from equation (3.6):

po0 ii - V - (c : 6E + bc : E) = -pilo. (3.7)

Comparing this result with equation (3.1), it is evident that this provides an equation

of motion describing propagation of the scattered field Su, where the source terms are

a single force arising from density perturbations, and a moment tensor or double force

type source due to the elastic constant perturbations. This source representation

is an example of a stress glut due to the excess of the actual physical stress field

S in comparison to the stress field modeling the propagation of the elastic waves,

T (Backus and Mulcahy, 1977a, 1977b; Kennett, 1983). Wu and Aki (1985b) have

described a similar moment tensor source representation to estimation of the scattered

field for perturbations to the Lame parameters A and yi. The components of the

moment tensor

SM = bc : E o  (3.8)

for a general perturbation to any one of the elastic constants are simply

S6Mi = b6cjkc l. (3.9)

The time dependence of this source is governed only by the displacement due to the

background field uo, which can be simply calculated since in this approximation it

propagates with the properties of the background medium. The propagation of the

perturbed field Su is also governed only by the background properties of the medium,

and the perturbations enter only in the source terms. This allows a relatively straight-

forward estimation of the scattered field, and in a sense, the problem is completely

solved at this point, since the displacement due to both single force and moment

tensor sources is given by equation (3.3). We can write this solution as

bu(x, t) = dV(x') dt' Go(x, t; x', t') . (pi 0(x', t'))

+ J dV(x') J dt' [(Sc(x', t') : EO(x', t'))] : [VGo(x, t; x', t')].(3.10)



Here GO denotes the Green's tensor in the background medium. All that remains is to

actually write out the solutions due to various perturbations of material properties.

It is important to note that in addition to the simplification resulting from waves

propagating only in the background medium, certain advantages result from the fact

that the approximation is linear in perturbations to material parameters. Doubling

the amount of a perturbation will double the amplitude of the scattered waves, for

example. Inversions for medium velocities or densities are also facilitated by this

linearization (e.g., Beydoun and Mendes, 1989). The term bu(x, t) is known as the

Frechet derivative, a quantity often utilized in inversion schemes (Tarantola, 1987).

This estimate of the scattered field is variously known as the method of small

perturbations (Chernov, 1960) or the first Born approximation (Hudson and Heritage,

1981; Gubernatis et al., 1977b; Wu and Aki, 1985b). Since all second order terms

are neglected in the derivation, it is clear that the applicability of the results will

be limited by any departures from these assumptions. The stronger the contrast in

material properties between the obstacle and the surrounding background material,

the worse the results will be. Likewise, as the dimensions of the obstacle increase, the

validity of the Rayleigh scattering approach will decrease. Because the scattered field

is assumed to propagate in a medium with the properties of the background, that if

there is a slight departure from the background properties over a large volume, the

approximation will be poor as even estimates of travel times of the scattered field will

not be accurate due to the integration of an error in velocity over the propagation

path of the scattered signal.

3.2.2 The Moment Tensor Source

If we consider only perturbations to the elastic constants, the radiation due to the scat-

tering obstacles will be given entirely by the moment tensor source in equations (3.9).

The relationship between the strains due to an incident wave uo and the moment

tensor components 6Mij can be concisely expressed in the standard six by six form



of the elastic tensor (Musgrave, 1970). This expression is

SM 1l SCl 6012 6C13 6C14 C15 616 1

SM 22  6C22 5C23 6C24 6C25 0C26 622

SM 33  633 0C34 35 6 36 33
=3 (3.11)

SM 23  6C44 6C45 SC 46  2E3

SM 1 3  SC55 8C56 2F°3

SM 1 2  8066 2c°2

Since the elastic constant matrix SCIj is symmetric, only the upper half is shown for

clarity. This representation of the scattered field moment tensor obviates the relation-

ships of the incident field and the various moment tensor components. For example,

any element of the elastic constant matrix in the first row, SC1j, will contribute to

SM1 1, the dipole source oriented along the x-axis. A general perturbation SOCj with

I : J will contribute to the I'th and J'th moment tensor components in the column

vector on the left hand side of equation (3.11), though the diagonal elements with

I = J will only contribute to one source type. Likewise, any element Cj in the J'th

column of the matrix will only contribute to scattering if the incident wave has a non-

zero strain in the J'th component of the strain vector. This demonstrates important

restrictions on the information contained in the scattered wavefield generated by a

given incident wave. If it is desired to determine information on a number of pertur-

bations bCrJ from the scattered waves, then a large variety of incidence directions

and wave types will be required.

The significance of different elastic constants can also be categorized according to

the double force representation of the scattering due to the constants to summarize

their effects on scattering:

1. Single dipole.

SC11, 6C22, and 6C33.

2. Two dipoles.



6C12, 6C13, and 6C23.

3. Double couple.

C644, SC55, and 6C66.

4. Double couple and a dipole.

6 1 4 , C15, sC, c624, 6 25, 626, C34, 6C 3 5 , and SC36.

5. Two double couples.

SC45, 6046, and 6056.

A representative example of each of these double force systems is illustrated in Fig-

ure 3-1, showing the different degrees of complexity in the sources.

3.2.3 Radiation Patterns for Rayleigh Scattering

In order to derive far-field radiation patterns for the scattered field due to the per-

turbation of one of the elastic constants, we assume that the perturbation is located

within a small volume centered on the origin of the spherical coordinate system (Fig-

ure 3-2). When this volume is much less than a wavelength in size, the amplitude

and phase of the incident field uo(x, t) can be assumed constant throughout the vol-

ume of the obstacle at a given time, and the spatial distribution of the obstacle in

equation (3.10) can be expressed as a Dirac delta located at the origin with ampli-

tude equal to the volume 6V of the perturbed zone. Therefore, the integration in

equation (3.10) reduces to

6u(x, t) = SV dt' (c(O, t') : E(0, t')) : V (x, t; 0, t'). (3.12)

As the algebra is cumbersome and extensive, presentation of a representative exam-

ple of each of the five source groups is relegated to Appendix B to demonstrate the

application of this method, and radiation patterns for all of the elastic constants are

given in Appendix D. Along with the derivations of radiation patterns, we summarize



the unique aspects of scattering due to each perturbation example to illustrate the

information contained in observations of scattered fields and how this will affect esti-

mates of elastic properties from scattered displacements. A similar methodology for

calculation of radiation patterns was employed by Ben-Menahem and Gibson (1990)

for the case of a transversely isotropic inclusion.

3.3 Scattering Due to Fracturing

While in principle the scattering results shown above and in Appendix D can be

applied to any combination of one or more of the 21 independent elastic constants, in

general far fewer independent coefficients will likely be required to examine scattering

due to symmetry considerations for realistic earth materials. For example, some of

the most common causes of anisotropy in the earth's crust are periodic fine layering

and aligned fracture systems, both of which create an effective anisotropy (Crampin,

1981). These effects lead to a transversely isotropic symmetry with 5 independent

elastic constants. In addition, some lithologies, particularly shales, have significant

anisotropies on a large scale (Winterstein, 1986).

In order to restrict the analysis to cases of scattering with some degree of realism,

we can consider the scattering due to a small fractured region within an otherwise

isotropic rock layer. Effective anisotropy due to aligned systems of vertical cracks

appears to be widespread (Crampin, 1981; Crampin et al., 1986; Peacock et al.,

1988). However, it seems likely that the earth's crust is not uniformly fractured

to a constant degree. If the fracturing is not uniform, then the effects on elastic

wave propagation would not always be simply the propagation of elastic waves in

an effectively anisotropic medium with resultant shear wave splitting. When the

wavelength of the propagating wave is larger than the fractured zone, the effects of

the cracks would be scattering phenomena, and shear wave splitting would not be

observed, although the polarizations of propagating waves would be altered due to



the scattered waves.

The Born scattering approach can be used to gain some understanding of the

expected effects in this case. We consider the case of aligned vertical fractures with

5 independent elastic constants. If the cracks were inclined at some angle less than

900 with respect to vertical, several additional elastic constants would become non-

zero due to the rotation of the reference coordinate system, but there still are only

5 independent constants. Therefore, the subsequent analysis is still fairly general for

systems of aligned cracks, since a rotation of the cracks is equivalent to a change in

direction of the incident wave.

3.3.1 Perturbations to Elastic Constants

We can analyze the effects of fractured zones on scattering by applying the theory of

Hudson (1980, 1981) for perturbations to elastic constants due to the cracks. This

theory has also been applied by Crampin (1984). If we consider first the case where

the cracks are randomly oriented, we have the following approximations for the effects

of the cracks on the Lame parameters of the medium (Hudson, 1980):

Y o + o[- T(3U3 3 + 2U11 ) + e2 3 3+o + y/ (3U 33  2U11)2] (3.13)-- I

A o-[(3Ao + 2o)2 2  (3 U3+ 2 U1)

+ 2 110)4 U 1 2 Y 23 3( + 8g (3U 33 + 2U1 )2 (3.14)
81y2(Ao + 2po) 3 15 Ao + 2go

= o + A.

Here Ao and go are the Lam6 parameters of the unfractured background material,

and ( is the crack density defined as

S= na3 . (3.15)



The number density of cracks is n, and a is the radius of the low aperture ratio,

penny-shaped cracks. Perturbations of the Lam6 parameters given by equations (3.13)

and (3.14) are therefore expansions to second order in crack density , which is as-

sumed to be relatively small. The two quantities U1 1 and U33 are functions of the

Lame parameters of the uncracked medium and the crack filling material, and in this

paper, we will apply the definitions given by Crampin (1984). If the cracks are empty

(dry) then these two quantities are

4 Ao + 2Co
U1 = + o (3.16)

3 Ao + po
16 Ao + 2po

U33 = 3 3A. (3.17)
3 3A0 + 4po0

If the cracks are filled with a gas, the effective Lam6 parameters will still be essentially

the same as those in equations (3.13) and (3.14), since the low bulk modulus of a gas

will yield effectively the same values of U11 and U33 as those given in (3.16).

The Voigt form of the elastic tensor for an isotropic material is

A+2 2 A A

A A + 2p A

A A A + 21  (318)

t

where zero values have been omitted for clarity. Therefore, the non-zero perturbations

to the elastic constants are bC11 = 6C22 = SC 33 = 6A+261, 6C12 = 6C13 = 6C23 = SA,

and 60C44 = 6C55 = 6C66 = by. The moment tensor source is

6Ae + 26pe 1  26pc 2 263pc

M = 2 2 A + 26pe%2 26sA° (3.19)

2 3 2 3 6 + 2t 33

and we see that SA leads to an explosion-like source consisting of a sum of 3 equal

and mutually perpendicular dipoles proportional to the divergence of the wavefield e,
2%)



whereas 8M leads to a more complicated radiation pattern depending on the strains as-

sociated with the incident wave. These results reproduce those of Wu and Aki (1985b),

except for differences due to the generalization of the directions of propagation and

polarization of the incident waves. Since the 6A perturbation multiplies the divergence

of the wavefield, it will never generate scattered wavefields for shear wave incidence

and even for compressional wave incidence, will only radiate compressional waves

since it is an explosion-like source.

The scattered displacement fields due to the fractured material can be simply

computed by adding the contributions due to the perturbations to the Lame param-

eters, noting the relationship to the elastic constants SCIj (Appendix D). Carrying

out this addition, the resulting expressions for the scattered fields for compressional

wave incidence are

w2 ei(wt-;r/a)
6UP(x, t) = -(SVA) 4  r P(07; 0 1 0)

r 4pa r
W2  i(wt-r/6)

6uP(x, t) = -(VA) 4O r P(O', 0 ; 00, 0o)
4paO3 r

,2 i(wt-r/0)
6u'(x,t) = -(SVA) w e(0 ; 000o,0),

4rpao3 r

with the scattering coefficients Frp, .F6p, and F,:

(3.20)

= 6A + b6[sin 2 O0 sin 2 0(2 cos 2 0o cos 2 € + 2 sin 2 o0 sin2 2

+ sin 2q0 sin 20)

+ sin 200 sin 20 cos(ko - 4) + 2 cos2 0o cos 2 0]

= Sy[sin2 Oo sin 0 cos 0(2 cos 2 0o COS 2 q + 2 sin 2 0o sin2 2

+ sin 200 sin 2q)

+ sin 200 cos 20 cos(Co - €) - 2 cos 2 0 sin 0 cos 0] (

= S [sin 2 00(- cos 2¢0 sin 0 sin 2¢ + sin 2¢0 sin 0 cos 2¢)

+ sin 200 cos 0 sin(o - 0)].

3.21)

The total scattered field for either SV or SH-wave incidence can also be computed by

Sp(0, €; 00, 00)

€P(0,1 ; 0o, 0)

( ; 00, 00)



the same approach, yielding expressions of the form

02 ei(wt-r/a)
suH(x,t) = -(6VA) P3r (0) 0; 00, 0)

4irppa3 r

w 2 ei(wt-r/)

u gSH(x, t) = -(6VA) 4f 4 . 4s(, , ) (3.22)
0ue 47rpp r

busH(x,t) = -(8VA) W 2 ei w 80 0)
4rpp4 r

where .Fis is the scattering coefficient Rsy or rSH for SV or SH-wave incidence, re-

spectively. The same system of notation holds true for the other spherical coordinates

of the displacement for the scattered fields. These scattering coefficients are

= 6l[sin 00o cos 0o sin 2 0(2 cos2 0o COS2 4 + 2 sin 2 o0 sin2

+ sin 2q 0 sin 24) + cos 20o sin 20 cos(Co - 4) - sin 200 cos 2 0]

= SC1[sin 00 cos 00 sin 0 cos 0(2 cos 2 o0 cos 2 q + 2 sin 2 0o sin 2  +

sin 20o sin 24 + 2) + cos 20o cos 20 cos(4o - 0)] (3.23)

= iy [sin 00 cos 00 sin 0 sin(20o - 2 )

+ cos 200 cos 0 sin( o - 4)]

. sv(O, €; 0o, €0)

Osv (O. €; 0o 10)

sv(0, ; 00, 0o)

nd

SH(0 i 4; 0, 0o

P OSH (, ; O0, 0o

)

)

OSH(O, €; 0o, o)

= 6[sin 0o sin2 0 sin(24o - 24) + cos 00 sin 20 sin(4o - 0)]

= 5[sin0osin0cos0sin(2Oo- 24) (3.24)

+ cos Oo cos 20 sin(4o - 4)]

= 6p [sin 0o sin 0 cos(2€o - 24) + cos o0 cos 0 cos(4o - 4)].

These expressions for the isotropic coefficients obviate the simple role of 8A in the

scattering process, since it occurs only in ,!p for P to P mode scattering.

In contrast to the isotropic scattering obstacle defined by the randomly oriented

fractures, we can consider the case of aligned, vertical fractures. When the orientation

of the cracks is defined to be perpendicular to the x-axis of the Cartesian coordinate

a



system, the resulting perturbations to the elastic constants to second order in are

(Crampin, 1984):

C =C o (3.25)

(Ao + 2yo) 2 Un1

Ao(Ao + 2/o)U11

Ao(Ao + 21io)U 11

Ao(Ao + 2uo)U 11 Ao(Ao + 2yo)U 11

(Ao + 2po)qU21

Aoq U21

AXqU1 1 AoqU 12
\02 q

Ao+2go Ao+21o

Ao+2go

_ 
2  Ao

q = 15 + 28 + 28

3Ao + 8/o
X = 2po

Ao + 2/1o

For the aligned fractures the non-zero perturbations are then SC 11 , SC 22 = 33 =

SC23, SC 12 = SC 1 3 , and SC55 = SC66, a total of four independent variations. The

moment tensor source for this obstacle is

6M =

SC11 + 5C12(42 + 603)

26C55C12

26C55c13

25C55 s12

SC1261 + 5C22(6°2 + 633)

fL

P2 U

2g33YOU033

15

where

XU323

X U3

(3.26)

25C55c013

5C126 1 + 0C2 2 (602 + C3)



The radiation pattern is due to a superposition of three dipoles, in general unequal,

and two double couples, again not necessarily of equal magnitude.

The scattered fields due to the aligned fractured material are computed by adding

the contributions due to each of the five independent perturbations (Appendix D).

Application of this procedure yields expressions for the scattered fields which have

the same form as those in equations (3.20) and (3.22), with the following scattering

coefficients:

-ep(0, 4; 00, 0o)

.FOp(0, ; 0so, o0)

= 6CI sin2 0 Cos 2 o sin 2 0 Cos 2 4

+ SC22(cos 2 0 + sin 2 0 sin 2 O)(cos2 00 + sin 2 0o sin2 0o)

+ 6C 12[(sin2 00 sin 2 0o + Cos 2 00) sin 2 0 Cos 2 4

+ sin 2 0 Cos 2 0o(sin 2 0 sin 2  C + os 2 0)]

+ 60ss(sin 200 cos 4o sin 20 cos 4 + sin 2 0o sin 24 0 sin 2 0 sin 24)

SC11 sin 2 80 Co 2 o sin 0 cos 0 cos 2

- SC 22 sin 0 cos 0 Cos 2 €(sin 2 00 sin 2 0o + Cos2 00)

+ 6012 sin 0 cos 0[(sin 2 00 sin 2 0o + cos 2 00) Cos2 4

+ sin2 0 Cos 2 1o(sin2 4 - 1)] (3.2'

+ SCss(sin 200 cos 4o cos 20 cos 4

+ sin 2 0o sin 2 0o sin 0 cos 0 sin 24)

€.P,(o,; 0o, o)

'.Fsv(O, 4; 0o, 40o)

-6Cll sin 2 0 cos 2 0o sin 0 sin 4 cos 4

+ SC22 sin 0 sin 4 cos 4(sin 2 0 sin 2 0o + Cos2 0o)

+ C612 sin 0 sin 4 cos 4(sin 2 0o cos 2 0o - cos2 0o)

+ 6C55 (- sin 20o cos Oo cos 0 sin 4 + sin 2 00 sin 240 sin 0 cos 24).

= 6C sin 00 cos 00 cos 2 0o sin 2 0 cos 2 4

+ 6C22 sin 00 cos 00(sin 2 0o - 1)(sin2 0 sin 2 4 + Cos 2 0)

+ C012 sin 0 cos 0 cos 2 4 o(- sin 2 0 cos 24 + Cos 2 0)

7)



+ 6C 55(cos 20o cos €o sin 20 cos €

sin 00 cos 0o sin 20 0 sin2 0 sin 2q)

.Fesv(0, q; o, qo) = SCx sin 0o cos 0o sin 0 cos 0(cos2 0o cos2  )

+ 6C22 sin 0 cos 00o sin 0 cos 0(sin2 4o - 1)(sin2 4 - 1)

+ SC12 sin Oo cos Oo sin 0 cos 0(-2 cos 2 4 0 cos 2 4) (3.28)

+ SC 55(cos 200 cos o0 cos 20 cos 4

+ sin 0o cos 0o sin 20o sin 0 cos 0 sin 24)

Tsv(0, 4; 00, qo) = -C011 sin 0o cos 00 cos2 0o sin0 sin 4 cos 4

+ 60C22 sin 00 cos 0o sin 0 sin 4 cos q(sin2 o - 1)

+ C012 sin0o cos 0 sin 0 sin cos (cos 20o + 1)

+ 0C55(- cos 2 00 cos 4 o cos 0 sin 4

+ sin 00 cos 00 sin 20o sin 0 cos 2q).

. rSH(O, 0; 0o, 0o) = C11 sin 0o sin OCOS 0os in 2 0 cos2 4

+ 6 22 sin 0o sin o cos qo(sin 2 0 sin 2  C + cos 2 0)

+ C012 sin 00 sin 0o cos 0o(sin 2 0 cos 24 - cos2 0)

+ bs55(- cos 00 sin 4o sin 20 cos q + sin 00 cos 20o sin 2 0 sin 24)

FOSH(O, 0; 0, 0o) = -0C11 sin Oo sin o cos o sin 0 cos 0 Cos2

+ 6C22 sin Oo sin o cos o sin 0 cos 0(sin2  - 1)

+ C612 sin Oo sin o cos 0o sin 0 cos 0 (cos 2¢ + 1) (3.29)

+ SC55(- cos 0o sin 4 o cos 20 cos 4

+ sin 00 cos 24 0 sin 0 cos 0 sin 24)

.SH(O, ; 0, 0o) = (5C11 + 6C22) sin 0 sin o cos Oo sin 0 sin 4 cos 4

- 5C12 sin 0o sin 4o cos 4o sin 0 sin 24

+ C655 (cos 0o sin 4o cos 0 sin 4 + sin 00 cos 240 sin 0 cos 24).

The unique values of the four scattering coefficients lead to more complicated radia-



tion than for the isotropic obstacle.

Radiation patterns for these fracture zones also include a contribution from den-

sity variations as well. Since the presence of the cracks introduces a certain degree

of void space into the rock matrix, the resulting composite material will have a re-

duced density. However, since the overall volume of pore space due to low aspect

ratio fractures is very low, the density change is very small and will have a minimal

contribution to scattered wave amplitudes. This point is discussed in more detail in

Appendix E.

3.3.2 Radiation Patterns for the Fractured Scatterers

The perturbations to the elastic constants for the isotropic and anisotropic cases

are calculated using the background Lame parameters A0 = 43.93 GPa and /o =

28.80 GPa. This corresponds to isotropic velocities of ao = 6.13 km/s and o0 =

3.27 km/s when the density is 2.70 g/cm3 . The factor ASVw 2 appearing in the ex-

pressions for radiation patterns was arbitrarily set to 1 x 1010 for plotting purposes

in all radiation patterns shown below. Assuming a crack density of 0.05, the per-

turbations to the isotropic and anisotropic elastic constants are given in Table 3.1.

Comparing values of the perturbations, the effects of crack alignment is clear. While

both SC1 and 6C22 are analogous to the isotropic 6A + 26 , C11 is about twice as

large as 6A + 26p, and SC22 is about half the size of the isotropic quantity. This can

be understood by considering that 6C1 relates to c11, a strain acting to distort the

medium perpendicular to all cracks, but SC22 relates to E 2 and e 3, strains affecting

dilatation parallel to all cracks. When the cracks are randomly oriented, the affects

on strains are averaged over direction, and the elastic parameter perturbations are

also intermediate to the anisotropic extremes.

The isotropic velocities of the randomly cracked medium are a = 5.68 km/s and

/ = 3.16 km/s, defining velocity perturbations of 7.4% and 3.3%, respectively. Phase

velocities for the parallel crack case are shown in Figure 3-3 for the three coordinate



planes. The overall quasi-compressional wave anisotropy is about 12%, and the quasi-

shear wave anisotropy is 5.3%. This degree of quasi-compressional wave anisotropy

is about half that observed by Bamford and Nunn (1979) in a shallow limestone

formation.

Vertical incidence (00 = 00 = 0).

For vertically incident plane waves, the anisotropic scattering coefficients defined in

equations (3.27) through (3.29) reduce to

.Frp(0, q; 0, 0)

.Fop(0, 0; 0, 0)

.FOP(0, 0; 0, 0)

Y.sv(, €; 0, 0)

-F'sv(O, ; 0, 0)

.rsH(0, €; 0, 0)

.OSH(O, ; 0, 0)

1.FSH(O, 0; 0, 0)

= 6C22 Cos 2 0 + 6C12 sin 2 0 cos 2 / + 6C23 sin 2 0 sin2 2

= -6C22 sin 0 cos 0 + C012 sin 0 cos 0 cos 2

+ 6C23 sin 0 cos 0 sin 2

= -6C12 sin 0 sin cos + C23 sin 0 sin cos

= 6055 sin 20 cos

= 6 5 5 cos 20 cos

= -6C 55 cos 0 sin $

= 0

= 0

= 0.

Likewise, the isotropic coefficients (equations (3.21) through (3.24)) are

'(p(o, ¢; 0, 0)

pop(0, ; o, 0)
Pp(0, ; 0, 0)

= 6A + 26 cos 2 0

= -2J6 sin 0 cos 0

= 0

(3.30)

(3.31)

(3.32)

(3.33)



) sv(0,¢;0,0) = 6Ssin20cos

;sv(0,;0, 0) = S6cos 2coso (3.34)

Pisv(, ; 0, O) = -6cosOsin

sH(0, O 0, 0) = 6tsin 20 sin

*OSH(0,q;0,0) = 6S cos 20 sin (3.35)

FsH(0,0 O) = S6,cos0cos .

Since Oo = 0, the incident "SV" signal is polarized in the x direction, while the

"SH" is polarized parallel to the y-axis and causes no scattered field to be generated

from the anisotropic obstacle. Radiation patterns for vertically incident plane waves

are presented in Figures 3-4 and 3-5 for the randomly oriented and aligned crack

models, respectively. Note that the range of the coordinate axes in each of the plots

is indicated in the pattern for the P to P (P-P) scattering in the upper left corner

of each figure. Considering first the incident P-wave, the back scattered P-wave field

(0 = 0) for the isotropic obstacle is larger than back scattering in the anisotropic case.

The amplitudes of back scattering are proportional to A + S and SC22. Noting the

values in Table 3.1 for the perturbations, it is seen that back scattering in the isotropic

case is more than twice that for the aligned fractures. Also of importance, for incident

P-waves, no SH field is generated for the isotropic obstacle, while there in fact is a

considerable SH radiation from the aligned fracture perturbations due to the difference

in values of 6C23 and SC12 in FpP(0, 0; 0, 0) (equation (3.30)). However, the shapes

of the radiation patterns for SV incidence are the same, since the only perturbation

affected by the vertically propagating SV signal is SC55, which plays the same role

as 6y in the isotropic case. Therefore, the shapes of the patterns are the same with

a scaling factor due to the relative magnitudes of 6, and 60C55. The most significant

difference between the isotropic scattering and the aligned fractured scatterer is for

the incident SH-wave, polarized parallel to the crack plane in the anisotropic case.



The isotropic patterns in this case are the same as for an incident SV-wave rotated by

90". However, no scattered field at all is generated for the anisotropic perturbation

since 6C44 = 0.

Horizontal incidence along x-axis (00 = 900, 0o = 0).

The anisotropic scattei

crack plane reduce to

.F3p(O, €; 90, 0)

.FOp(O, 0; 90, 0)

.Fp(0, ; 90, 0)

YFsv(O, d; 90, 0)

.FGsv(O, €; 90, 0)

FSH(O, ; 90, 0)

S'OSH(O, €; 90, 0)

.'SH(O, €; 90, 0)

ring coefficients for waves propagating perpendicular to the

= SC11 sin 2 0 Cos 2  1 + C2(sin2 0 sin2  O + os 2 0)

= SC11 sin 0 cos 0 cos 2 € + 6C12 sin cos O(sin2 € - 1) (3.36)

= (12 11- C ) sin 0 sin cos

= -6C55 sin 20 cos €

= -6C 55 cos 20 cos

= 6 55 cos 0 sin €

= 6C55 sin2 0 sin 20

= SC55 sin 0 cos 0 sin 20

= 655s sin 0 cos 2A,

(3.37)

(3.38)

and the isotropic versions are

9p(O, 0; 90, 0)

P(O', 0; 90, 0)
j, (0, 0; 90, 0)

.sv(0, 0; 90, 0)

Psv(0, ; 90, 0)

= 6A + 26 sin2 0 cos2

= 26y sin 0 cos 0 cos2 o

S-b6 sin 0 sin 20

= -6t sin 20 cos €

= -6 cos 20 cos €

(3.39)

(3.40)



Osv( 0, ; 90, 0) = 6~cos0sin

sH(0, ; 90, 0) = -S6 sin2 0 sin 2

.S~SH(O, 0; 90,0) = -b sin0 cos 0 sin 2q (3.41)

OsH(O, ; 90, 0) = 6L sin 0 cos 2¢.

The patterns for the incident SV wave have the same directional variation as those

for vertical incidence, with the polarity of the radiated field reversed. A significant

difference in this case is that the incident SH-wave also generates a scattered field

proportional to 6055.

Three-dimensional plots of the radiation patterns for all three incident signals are

presented in Figures 3-6 and 3-7, for the isotropic and anisotropic scatterers, respec-

tively. The isotropic patterns for P-wave incidence are equivalent to those for vertical

incidence (Figure 3-4) with some interchange between SV and SH displacements due

to the change in direction of propagation. Total shear wave scattering is the same as

for the earlier case. The back scattered P-wave displacement field (9 = 900, 0 = 0)

is significantly larger than for vertically propagating incident fields since it is propor-

tional to 60C1 rather than 6C22 (Table 3.1). In addition, the P-SV and P-SH scattered

fields are both proportionately larger than for the randomly fractured scatterer, since

the magnitude of these fields includes 6C11 and 6C12. The isotropic scattering will be

multiplied by 6A, which is close to the value of 6C12, but 6C11 is much larger than the

isotropic equivalent, SA + 26p = -14.45 GPa. Physically, these perturbation values

imply that the anisotropic rock is much more compliant to a traction applied in the

x direction than the isotropic rock is to a traction applied in any direction. Since

SC55 is of the same order of magnitude as by, the radiation patterns for shear wave

incidence are similar for both the aligned and randomly oriented fractured scattering

obstacles.



Incidence out of symmetry planes (0o = 450, qo = 450).

The scattering coefficients for this incidence direction do not simplify significantly

from the forms given in equations (3.27) through (3.29), and all four of the elastic

constant perturbations contribute to the scattered displacement field. Plots of the

radiation patterns for the isotropic and anisotropic obstacles are compared in Fig-

ures 3-8 and 3-9. With the exception of the SV-wave incidence, the patterns are

highly distorted for the aligned fracture inclusion. The amplitude of the scattered

SV-waves are somewhat reduced for SV incidence, though the radiated SH field is

larger. In comparison, the radiation patterns for the incident P-wave are skewed to-

ward the x-axis in the anisotropic case by the large perturbation to SC11, and, as

for the other incidence directions, the P-SV and P-SH fields are comparatively larger

than for the isotropic scatterer. The patterns for an incident SH-wave are also twisted

toward the x - z plane by the high value of SC11. This effect will change the observed

polarizations of forward and back scattered displacement fields.

3.4 Discussion and Conclusions

The analysis of Rayleigh scattering using the Born approximation shows that per-

turbations to any of the 21 independent elastic constants can be simply related to a

scattered field through a moment tensor type source proportional to a strain tensor

component generated by the incident wave (equation (3.12)). Though the algebra

may be cumbersome, the total radiation pattern created by an anisotropic obstacle of

any symmetry can be calculated by summing the effects of all perturbations. Appli-

cation of this approach to an obstacle consisting of a vertically fractured region of an

otherwise homogeneous, isotropic background medium shows some distinct variations

from the scattering due to a volume of material which contains an equal density of

randomly oriented cracks. Probably the most significant difference is that for some

directions of incidence on the anisotropic obstacle, a shear wave will not generate any



scattered waves.

The variations of the radiated displacement field with the propagation direction

of the incident wave can be used to infer some properties of the medium. At least in

principle, the back and forward scattered fields in the Rayleigh scattering limit could

be used to obtain information about a vertically fractured region within an elastic

material. The most definitive experiment would be to use a shear wave seismic source

to examine the scattered field. By rotating the orientation of the shear wave source

polarization through at least 900, the crack plane is determined by finding the source

polarization yielding the smallest scattered field, which ideally would actually vanish.

If instead the cracks are randomly oriented throughout the scattering volume, the back

scattered shear wave displacements will remain constant in amplitude. To further

confirm the alignment of cracks, a P-wave source could be employed. For isotropic

scatterers, the back and forward scattered P-wave fields have the same amplitude

independent of incident direction (note Figures 3-4, 3-6, and 3-8). An aligned crack

volume would again yield a variation of the amplitudes of the scattered displacements

as source orientation with respect to the scattering region is varied.

It is important to note that the effect of vanishing scattering for certain S-wave

incidence directions will hold true even as the scattering region becomes large with

respect to a wavelength as long as the Born approximation is valid. Assuming a

vertical crack orientation with cracks perpendicular to the x-axis, SC44 will always

be zero (equation (3.25)). For an SV-wave propagating in the y - z plane, 0 = 900,

C°2 = -ik sinOo cos OoAe -i_ '

E33 = +ik8 sinOo cos OoAe-iV',

and so the contributions of these strains to the anisotropic fracturing moment tensor

in equation (3.26) vanishes independently of the value of 00. Since the only other non-

zero strain is co , which multiplies 6C44, the moment tensor vanishes for any SV-wave

incident in the plane defined by €0 = 900. The integral equation for the scattered field

in equation (3.10) includes no assumption regarding size of the scattering region, and



so the scattered field vanishes even as the dimension of the fractured volume increases.

A more appropriate problem regarding the accuracy of the predicted scattering

amplitude variations is the accuracy of the Born approximation itself. This is a ques-

tion which is still not completely answered (Beydoun and Mendes, 1989). Hudson and

Heritage (1981) undertook a detailed study of the validity of the Born approximation,

checking conclusions in part by comparison to analytical results for the complete scat-

tered field from a spherical object. One of the principal conclusions is that rigorously

speaking it is not sufficient for the amplitude of the scattered field to be small com-

pared to the incident wave. Instead, the field obtained by substituting the scattered

field bu(x, t) in place of 6uo(x, t) into equation (3.10) must generate a secondary field

which is much smaller than the field Su(x, t). This is difficult to check in a general

case. Another critical point is that the Born approximation is expected to break

down as the volume occupied by the perturbations 6CIJ increases due to the increas-

ingly significant multiple scattering effects. Naturally, if the perturbations are small

enough, this breakdown in the approximation will occur more slowly with increasing

size. Therefore, there is a trade-off between the size of the scattering volume and the

magnitude of perturbations to the elastic constants. If fracturing is sufficiently weak,

extension of the approximation to larger rock volumes containing cracks should be

possible due to small variation in C~j.

The implications of these results for inversion problems is also of importance.

Tarantola (1986) uses the Rayleigh scattering results for isotropic materials to infer

adequate medium parameterizations for traditional seismic data configurations. The

most significant consideration was to determine a parameterization yielding large back

scattered fields for all medium parameters under consideration, such as A, P and p,

since for seismic reflection experiments, energy generally tends to propagate vertically

downwards and to reflect back up to observing points. Assuming similar geometries

for the anisotropic obstacles (Figures 3-4 and 3-5), we see that the shear wave sources

would be expected to yield the most information regarding crack orientations and



that the use of P-wave sources and back scattered data would make it more difficult

to distinguish crack orientations. A Born inversion scheme would ideally employ S-

wave sources and multiple source polarizations to invert for anisotropic perturbations

to an isotropic background model in order to estimate locations of fracturing.

Another important question regarding the properties of the scattered fields is

whether the effects of anisotropic scattering obstacles can be mimiced by some combi-

nation of isotropic perturbations. Specifically, is there some arrangement of isotropic

scatterers which can cause scattering to completely vanish for some directions of inci-

dence? It is difficult to imagine such a configuration in the Rayleigh scattering limit,

since the shapes of individual obstacles are not taken into account. The scattering

coefficients presented for isotropic perturbations in equations (3.21) through (3.24)

show that there is no plane of incidence where scattering will vanish. Therefore,

within limitations of the Born and Rayleigh scattering theory, it would seem that

the aligned fracture obstacle defines a case where the presence of anisotropy can be

uniquely determined by the properties of the scattered fields. This evidence is dis-

tinctly different from shear wave splitting, which generally defines the best evidence

for elastic wave propagation within an anisotropic region larger than a wavelength

(Crampin, 1981).

The Rayleigh scattering results provide a good insight into the effects of slight

inhomogeneity upon the propagation of elastic waves, and it is clear from the results

for the fractured obstacle that there are significant differences between isotropic and

anisotropic scattering. These results outline a basis for data analysis to examine the

fractured nature of crustal material. Future extensions of imaging algorithms may

also be able to apply this scattering theory to better determine slight anisotropy in a

more generally isotropic portion of the earth as well.



PARAMETER PERTURBATION (GPa)

o 43.93

/to 28.80

6A -10.63

e6 -1.91

6C,1 -27.12

6022 -5.08

8012 -11.73

6C23 -5.08

sC55 -2.99

Table 3.1. Background Lame parameters Ao and yo

constants used to compute radiation patterns.

and perturbations to elastic



A) B)

X1

C) D)

Figure 3-1: Double force systems for each of the five types of sources resulting from
perturbations to elastic constants. Equations for the radiation patterns for each of the
sources depicted here are presented in Appendix B. A) Single dipole, 11, correspond-
ing to C11. B) Two dipoles, 11 and 33, corresponding to SC13 ) C) Double couple,
12, corresponding to 6C 6 6. D) Double couple, 23, and a dipole, 11, corresponding to
SC14. E) Two double couples, 13 and 23, corresponding to SC45.
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Figure 3-2: Coordinate system used for the radiation patterns. The direction of
propagation of the incident plane wave with wavefront normal vector p' is given by
the two spherical angle coordinates O0 and 00. Likewise, the propagation direction of
the scattered wave is specified by 0 and 0.



30 60 90

qP

qS 1

qS 2S I 60 90
0 30 60 90

Z-AXIS

DIRECTION OF SLOWNESS VECTC

II

- qP

qS

qS2

0 30 60 90
Y-AXIS Z-AXIS
R

Figure 3-3: Phase velocities for the anisotropic fractured material. The phase veloc-
ities for each of the three wave types which would propagate within the anisotropic
rock are shown as a function of the direction of the corresponding slowness vector
(Musgrave, 1970). The velocities are shown in each of the three coordinate planes,
with the directions of Cartesian coordinate axes at the bottom of the plots and the
symbols indicating propagation parallel and perpendicular to the cracks at the top.
Because the cracks are oriented perpendicular to the x-axis, this is the direction of
slowest propagation.
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Figure 3-4: Radiation patterns for vertical incidence (qo = 80 = 0) on the isotropic
scattering region with randomly oriented cracks. All plots in this figure are plotted at
the same scale, with the range of axes shown in the upper left pattern. Perturbations
to the Lame parameters used to generate these patterns are given in Table 3.1, and
the multiplicative factor ASVw 2 was set to 1 x 1010, an arbitrary scaling factor for
plotting. Incident wave type is indicated on the left, and the scattered wave is shown
across the top of the figure.
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Figure 3-5: Radiation patterns for vertical incidence (Oo = 8o = 0) on the anisotropic
scattering volume with aligned cracks. The format is the same as for Figure 3-4.
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Figure 3-6: Radiation patterns for horizontal incidence along the x axis (00 =
900, qo = 0) on the isotropic scattering region. The format is the same as for Fig-
ure 3-4.
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Figure 3-7: Radiation patterns for horizontal incidence perpendicular to the cracks
(00 = 900, €o = 0) on the anisotropic fractured region. The format is the same as for
Figure 3-4.
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Figure 3-8: Radiation patterns for incidence with 00 = 450, qo = 45* on the isotropic,
randomly oriented crack volume. The format is the same as in Figure 3-4.
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Chapter 4

Ray-Born Synthetic Seismograms

for Anisotropic, Fractured Media

The trouble with the world is not that people know too little, but that they

know so many things that ain't so.

-Mark Twain

4.1 Introduction

The modeling of seismic wave propagation to understand the effects of various earth

structures on observations and, conversely, to infer rock properties from data is hin-

dered by the complexity of geological materials. In many cases, the geologic structures

of interest are small compared to the three-dimensional volume through which the

waves are transmitted, leading to practical difficulties in implementation of numeri-

cal schemes such as finite differences. Wave propagation is also complicated in many

cases by anisotropy, which may be an inherent anisotropy of the minerals or an effec-

tive anisotropy due to the presence of a stack of thin isotropic layers (Crampin, 1981).

Either of these effects usually leads to a transversely isotropic medium with a verti-

cal axis of symmetry. Another very important source of effective anisotropy in the
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crust is the alignment of fractures in an otherwise isotropic and homogeneous layer,

also leading to a transversely isotropic medium (Bamford and Nunn, 1979; Crampin,

1981; Crampin et al., 1986; Leary et al., 1987). Frequently the least principal stress

is known through geological, seismological or borehole observations to be horizontal

at depth (Zoback and Zoback, 1980; Jamison and Cook, 1980; Hickman et al., 1988;

Evans et al., 1989), resulting in a vertical alignment of cracks. The resulting medium

has a horizontal axis of symmetry.

There have been many analyses of the effects of fractured layers of the earth

on synthetic seismograms or field data (Crampin, 1978; Crampin, 1981; Crampin

and McGonigle, 1985; Leary and Henyey, 1985; Martin and Davis, 1987). Most of

these studies have focused on the effects of shear wave splitting and the consequent

anomalies in the polarization of observed shear wave data. These approaches are very

successful in locations where the fractured, anisotropic region is sufficiently thick that

the propagating quasi-shear waves can separate sufficiently in time that they may be

resolved.

However, it is not realistic to suggest that the earth is everywhere uniformly

fractured, and many practical problems require the location of relatively small fracture

zones within the surrounding bedrock. Some important examples of such problems are

the location of fractures for the development of geothermal fields (Leary and Henyey,

1985; Batini et al., 1985a; Batini et al., 1990), for nuclear waste disposal (Green and

Mair, 1983; Carswell and Moon, 1985), or for other purposes (Juhlin et al., 1991). In

these situations, the dimensions of the fracture zones are often not sufficiently thick

that shear wave splitting will be detectable, even if the zone is anisotropic. Therefore,

a different form of evidence for the fracturing must be sought in seismic data.

In order to achieve this objective, we apply a Ray-Born computation of syn-

thetic seismograms to model the scattering of elastic waves by relatively small fea-

tures in three-dimensional structures. This approach is similar to that of Beydoun

and Mendes (1989), who outline a Ray-Born algorithm for migration or inversion
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problems in three-dimensional, isotropic media with examples of application to two-

dimensional problems. Two basic approximations are employed to compute the wave-

fields expected for relatively complicated media. First, ray theory is used to compute

the Green's tensors for a background earth model. Because asymptotic ray theory

is employed, this background reference model must be sufficiently smooth that the

high frequency assumption is valid (Ben-Menahem and Beydoun, 1985). Ray tracing

has the advantage of allowing the computation of Green's tensors for large, three-

dimensional models with minimal computation time. The second step is to use the

Born approximation to compute the elastic waves generated by perturbations to the

reference model, a method which expresses the effects of the perturbations as sec-

ondary sources radiating energy as they are encountered by the wave propagating

in the background medium (Gubernatis et al., 1978b; Wu and Aki, 1985). Appli-

cation of this approximation is valid only for small, short wavelength features of an

earth model. We show how the Ray-Born method can be extended to fully general

anisotropic and inhomogeneous earth models using the high frequency Green's tensor

for anisotropic background media (Ben-Menahem et al., 1990) and the expressions for

the secondary source radiation by anisotropic perturbations developed in Chapter 3.

We apply the method to three-dimensional isotropic earth models with anisotropic

perturbations.

After describing the Ray-Born algorithm including a brief review of the Born

approximation, we explore the question of the accuracy of the Born approximation

in computing the scattered waves caused by varying degrees of heterogeneity. This is

accomplished by comparing the Ray-Born results with the complete solution for waves

scattered from an elastic sphere by an incident plane P-wave. Using the guidelines

for application of the Ray-Born algorithm developed by this comparison, we next

examine the wavefields generated by a thin but laterally extensive fracture zone in

a hypothetical layered earth model in order to gain an understanding of the effects

of both fracture orientation and of the fluid filling the fractures on seismic waves in
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an ideal case. Lastly, we examine a set of VSP data from the Lardarello geothermal

field in Italy, where an important objective in the course of exploitation of geothermal

resources is the delineation of thin fracture zones several kilometers below ground.

We present a fracture zone model which explains the observed data and discuss the

implications of the results for determination of fracture alignment in the Lardarello

field based on the synthetic results from our model.

4.2 Computation of the Born Scattered Field

4.2.1 The Born Integral Equation

The vector form of the source free equation of motion for an inhomogeneous medium

is

where p is density, u is the

Menahem and Singh, 1981).

dot symbols over the vector

tensor E through the fourth

pii - V -T = 0, (4.1)

displacement vector, and T is the stress tensor (Ben-

Derivatives with respect to time are indicated by the

u. Hooke's law relates the stress tensor and the strain

order elastic tensor c:

T=c: E. (4.2)

The elastic tensor obeys the usual symmetry relationships

Cijkl = Cklij

= Cjikl (4.3)

= Cijlk,

resulting in a total of 21 independent elastic constants.

The Born approximation to the scattered field generated by heterogeneous mate-

rials is obtained by considering perturbations of the elastic properties of a prescribed
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background reference model:

p(x) = p(x) + Sp(x)
C:ijk(X) = Cjkl(X) + Cijk,(X). (4.4)

Here the superscript o indicates a value of the known background model and x is the

position vector. The values 6p(x) and Scijkl(x) are the perturbations to the reference

values po(x) and Cikli(X). Both the background and perturbation models are taken to

be functions of location x. Derivation of expressions for the scattered field proceeds

by assuming that the displacement field in the total medium is also given by the sum

of the field uo(x) which would propagate in the background material and a scattered

field Su(x):

u(x, t) = UO(x, t) + bu(x, t). (4.5)

In Chapter 3, we show that substitution of equations (4.4) and (4.5) into the equation

of motion (4.1), neglection second order terms, yields a solution for the scattered field

Su(x, t) = dV(x') J dt' Go(x, t; x', t') - (Spii(x', t')) (4.6)

JdV(x') J dt' [c(x', t') : Eo(x', t')] : [VGo(x, t; x', t')]. (4.7)

This Born approximation provides an approximation to the scattered field in terms of

the incident wavefield uO(x, t) propagating in the background medium, as EO(x', t')

is the strain associated with this displacement. Go(x, t; x', t') is the Green's tensor

for the background earth model, yielding the disturbance at location x from a source

applied at x'. The perturbations to the material quantities act as secondary sources

for displacement fields propagating in the reference model, where the product of

density perturbation and acceleration vector yields a single force source vector at

each point x' and time t'. Likewise, perturbations to the elastic tensor c result in

double force source terms which are doubly contracted against Go(x, t; x', t'). This

moment tensor type source SMij = bcijklEkl is more easily interpreted by writing it
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in the following form, employing the standard Voigt notation as described in Chapter

3 (equations 3.3 through 3.11):

6Mil C11 60C12 6013 6C14 6015s 6016 1

SM 2 2  6C22 6C23 6C24 C25 6C26 02

SM 3 3  C33 6C34 C35 636 6 3= (4.8)
SM 2 3  6C44 6C45 SC 4 6  2°3

SM 13  SC55 SC56 2e03

6M 12  6C66 2EO2

4.2.2 Evaluation of the Integral

Using equation (4.7), the Born scattered field for prescribed perturbations bp and

Scijki can be computed once the incident field uo(x, t) and its associated strain EO

are known. The Green's tensor Go(x,t;x',t') is the fundamental quantity which

must be obtained, as it can be used to compute these background fields as well as the

displacements generated by the secondary sources on the right hand side of equation

(4.7). Therefore, application of the integral solution requires first the knowledge of

the Green's tensors for propagation in the background model and then an algorithm

for the actual evaluation of the integral.

Following Beydoun and Mendes (1989), we proceed by discretizing the perturbed

volume of the earth model (Figure 4-1). Each unit cell within the discretization is

a rectangular prism with dimensions dxl, dx 2, and dx 3 . As long as the wavelength

of the incident wave is much greater than the largest dimension dxi, the scattering

due to each individual elemental volume is equivalent to Rayleigh scattering, which

reduces the integration over volume in equation (4.7) to a simple multiplication by

the elemental volume dV = dx1dx 2dx 3 :

Su(x, t) = SV dt' (Sc(0,t') : E (0, t')) : VGo(x,t;0, t'). (4.9)

Under the condition of Rayleigh scattering, each cell in the perturbed volume therefore

acts as a point source located at the center of the cell, indicated by the dots in Figure 4-

105



1. The point source at each lattice point is equivalent to some combination of single or

double forces as presented in equation (4.7). Evaluation of the integral is most easily

accomplished by simply summing the contributions of each of the point sources within

the scattering volume, which corresponds to the most elementary implementation of

the definition of an integral as a Darboux sum (Budak and Fomin, 1983).

Application of this integration scheme then requires a knowledge of the Green's

tensors corresponding to the wave propagation from the primary source to each ele-

mental scattering volume, yielding the properties of each secondary point source, and

also from the scattering volume to the receivers, which determines the scattered field

from each point source. Ray methods provide a fast and flexible means for performing

these calculations in general three-dimensional layered models. The principal require-

ment for ray solutions to be applicable is that the wavelength must be much less than

the characteristic length scale of the background earth model (Ben-Menahem and

Beydoun, 1985). For inhomogeneous and anisotropic media meeting this length scale

requirement, the ray theoretical Green's tensor is given by (Ben-Menahem et al.,

1990)

1 [p(xo)v(xo)J(xo)]1/2

u(x, t) 4 1 p(xo)v(xo)J(xo) [g (x)g(xo)] 6 (r(x xo)). (4.10)4 [v(xo)] I p(x)v(x)j(x)
The source position is indicated by xo, x is the observation point, v(x) is phase veloc-

ity, and v(x)J(x) is the Jacobian of the transformation from Cartesian coordinates

xi to ray coordinates yj, where J(x) is given by

ax 0x
S(x) = x . (4.11)

The ray coordinates here are specified to be the two take-off angles of the ray at the

source, the declination angle 0 and the azimuthal angle 0 (Figure 4-2). It is important

to realize that this Green's tensor contains only quantities obtained in the course

of normal ray tracing algorithms. It contains the effects of geometrical spreading

on amplitudes through the ratio of Jacobians v(xo)J(xo)/v(x)J(x), as well as the

material properties at the source and receiver points. The scalar amplitude multiplies
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a dyad given by the outer product of the polarization vectors at the source and at the

observation position, reproducing the usual reciprocity of elastic wave propagation in

inhomogeneous media whereby exchange of source and receiver positions result in the

equivalence (Ben-Menahem and Singh, 1981)

Gij(x, t; x', t') = Gji(x', t'; x, t). (4.12)

This ray theoretical Green's tensor will not be able to model aspects of wave propaga-

tion such as caustics or shadow zones, a fundamental limitation of the high frequency

approximation (Cerveny, 1985).

Given the general ray theoretical Green's tensor in equation (4.10), the Ray-Born

method could be applied to general anisotropic media with anisotropic inhomogeneity.

However, as a first step, in this paper we consider only an isotropic, inhomogeneous

background model with anisotropic inclusions in order to develop an understanding

of the effects of localized anisotropic regions on elastic wave propagation. This also

allows the utilization of the elegant dynamic ray tracing (DRT) techniques in the

ray-centered coordinates qI with basis vectors ej (Figure 4-2) (Cerveny', 1985). The

DRT involves, in addition to the standard determination of ray path and travel time

(kinematic ray tracing, KRT), the integration of eight additional ordinary differential

equations to obtain the two by two matrices Q and P. These components of these

matrices can be expressed as

QIJ - (4.13)

1 dQij
PIJ = 1 d (4.14)

v2 dr

Here r is the travel time along the ray, and I, J = 1,2. The PJ are needed only to

obtain QIJ.

The matrix Q is related to the curvature of the wavefront ((ervenyT, 1985). Knowl-

edge of the components of this matrix yields geometric spreading, which is propor-

tional to det Q. Q is also used for the application of the paraxial method, which
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allows extrapolation of travel time and polarization vectors from a central ray which

has been obtained by integration to nearby observation points. This results in sig-

nificant savings in computation time, as the two-point ray tracing is avoided. In an

application such as the Ray-Born method where the incident wavefield must be known

at a large number of points, this is an especially valuable feature. As these paraxial

ray tracing procedures are discussed in many references, the standard aspects are

summarized in Appendix F.

In addition to these more typical paraxial corrections, we also include a correction

to the geometrical spreading amplitude factor which can be derived using geometrical

arguments. The integration of both the KRT and DRT equations is dependent on the

choice of initial values, but once these values are selected the integration of the ray

equations governs all propagation effects along the ray path from the initial point,

within the limitations of the validity of ray methods. As the initial conditions can be

chosen along an initial wavefront as easily as from a source point, it follows that the

additional geometrical spreading from the wavefront at central ray point x' and time

r(x') to the wavefront at observation point x and time r(x) + AT is in a homogeneous,

isotropic material equivalent to the distance between wavefronts vAr. The total

geometrical spreading is then

det Q + vAr (4.15)

In an inhomogeneous material, this correction will be less accurate, but since the

paraxial corrections can only be applied a relatively short distance from the central

ray anyway, it should not be a severe limitation, and application of this correction

can be restricted to homogeneous regions of a model. It should also be noted that

in this formulation, the changes in reflection and transmission coefficients with the

variation in incidence angles on interfaces from the central ray to the ray which would

actually intersect the observation point are not included. This also should not be a

severe limitation except possibly near critical angles.

Another aspect of the DRT which proves very useful is that the partial derivatives
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may be used in an iterative two-point ray tracing scheme for rays propagating from

the source to fixed receiver locations. While this is not necessary for the calculation

of synthetic seismograms, it is often desirable for the determination of accurate ray

paths and will also yield more accurate results than straight application of the paraxial

method. Once a ray is traced with an initial source point x and take-off angles -7y

and 7-y°, the yi and 72 corresponding to the ray arriving at the desired observation

point can be estimated through

7Y "1%O + (Q-1)IJq (4.16)

We apply this result to two steps in the Ray-Born procedure. First, for the compu-

tation of the background synthetic seismograms, we perform an iterative two-point

ray tracing procedure where we shoot a fan of rays over some range of prescribed

take-off angles, and, beginning with the closest ray to each receiver, repeatedly apply

equation (4.16) until the ray arrives with some distance of the desired receiver point.

For layered models, the ray arriving essentially at the receiver point can usually be

determined in three or fewer iterations, providing a very rapid determination of ray

paths for multiply reflected and transmitted rays. For more complicated models, the

procedure may not converge well, in which case the straight paraxial method can

be applied. The second application of equation (4.16) is in the computation of the

Green's tensor. Since the dyad in equation (4.10) contains the polarization vector at

both the source and receiver points, in order to compute the tensor using the paraxial

method at the scattering lattice we employ (4.16) to correct the polarization at the

start of the central ray to be approximately that of the ray joining the source point

and scattering point (these corrections are specified in Appendix F). (erven'r et al.

(1987) outline the conversion of the results for the polarization dyad in ray-centered

coordinates to Cartesian coordinates. Both SH and SV waves are automatically in-

cluded in this procedure applied in ray-centered coordinates.

The algorithm can be summarized as follows:

1. Synthetic seismograms are computed for the background model using the iter-
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ative two-point ray tracing technique or the paraxial method. Green's tensors

are computed and then the desired primary source type is applied to compute

the background displacement field.

2. Green's tensor are computed for propagation from the primary source to each

elemental volume in the scattering region. The Green's tensors are also com-

puted for propagation from the scattering lattice to receivers. It is generally

more convenient to do the ray tracing from receivers to the scattering volume

and then apply the principle of reciprocity, transposing the Green's tensors

(Ben-Menahem and Singh, 1981). Paraxial corrections are applied to rays pass-

ing near scattering points to minimize the amount of ray tracing necessary.

3. Perturbations to the material properties are specified, and the integration of

equation (4.7) is performed by summing the contribution of each point source

within the scattering lattice. The scattered field resulting from this calculation

is then added to the primary field to produce the final synthetic seismograms.

An advantage of this method is that the Green's tensors may be saved prior to appli-

cation of the primary source of the Born approximation. This makes possible rapid

comparison of the effects of different primary sources or different material pertur-

bations on the wavefields, as the ray tracing, the most time consuming part of the

algorithm, need only be done once.

4.3 Comparison of Ray-Born Results to a Known

Analytic Solution

The preceding Ray-Born algorithm is in principle very general and can be applied to

a wide variety of three-dimensional earth models, both isotropic and anisotropic. As

long as the ray tracing can be satisfactorily accomplished, the integral over volume

of heterogeneity is simply computed by summation. However, prior to application
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of the method to general problems, it is desirable to have some knowledge as to the

accuracy and validity of the resulting synthetic seismograms. For this purpose, we

compare the Ray-Born scattered field results for a spherical obstacle to the known

solution in terms of spherical harmonics.

The scattered displacement field generated by a monochromatic plane wave inci-

dent on an isotropic, elastic sphere in an infinite homogeneous medium was obtained

by Ying and Truell (1956). Derivation of this solution begins by expressing the com-

ponents of displacement for a planar P-wave incident along the z axis

Vi(x 3 , t) = vi(X3,t)eit

Vi(x, t) = 5 3e- ik z (4.17)

in terms of an expansion of a potential Oi in spherical harmonics:

ui =-Vi
1 00

S= k (-i)m+(2m + 1)jm(kir)Pm(cos 0) (4.18)
0 m=O

In these expressions, ki = wa, where a is the compressional wave velocity in the

infinite medium, jm is the spherical Bessel function of the first kind, and Pm is the

Legendre polynomial. Spherical coordinates r and 0 are illustrated in Figure 4-3. The

scattered displacements are given by

VS = vs eiwt

v, = -V, + V x V x (rIIr,) (4.19)

where 4, and II, are the compressional and shear wave potentials respectively, with

harmonic expansions

00

?I, = E Amhm(kir)Pm(cos 0)
m=O

II, = ~ Bmhm(tir)Pm(cosO). (4.20)
m=O
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Here hm is the spherical Bessel function of the third kind, i = w# is the shear wave

number, and Am and Bm are the as yet unknown coefficients of the expansion. The

displacement field inside the sphere is expressed in similar expansions, giving two

more unknown coefficients C, and D,. Boundary conditions on continuity of stress

and displacement are applied at the surface of the spherical obstacle, resulting in 4

simultaneous equations which must be solved for the coefficients in each term m in

the expansions.

Since a general seismic signal is actually composed of contributions from multiple

frequencies, we apply a discrete wavenumber algorithm to compute synthetic seismo-

grams as follows. A range of discrete frequencies is specified, fi = Af, 2Af, 3Af, ... , fNyq

where fNy, = 1/2At is the Nyquist frequency corresponding to the time domain sam-

ple interval At. Each frequency fi corresponds to a wavenumber ki. The boundary

value problem is then solved at frequencies fi for the coefficients Am, Bm, Cm and

Dn. At each frequency, the harmonic expansion is carried out to sufficiently high

order m, that coefficients Am., Bmn, Cm, and D,, are negligible compared to A0 ,

Bo, Co and Do. The Bessel functions of the first and second kinds of arbitrary order

are computed using a Miller's algorithm appropriately modified for spherical Bessel

functions (Press et al., 1988). Finally, after the scattered field r and 0 components

have been computed at each frequency, this impulse response is convolved with the

spectrum of the incident plane wave signal through frequency domain multiplication,

and an inverse FFT is applied in order to produce the time domain response. In this

way, the full waveform elastic wave scattered field of the spherical obstacle can be

computed for a general incident plane wave pulse.

A comparison of the Ray-Born and discrete wavenumber algorithm results was

made using a spherical heterogeneity of radius a = 0.5 km surrounded by a ring of

receivers at a distance of 40 km (Figure 4-4). This configuration of receivers allows

a comparison of both forward (900) and back scattering results (2700). The infinite

medium velocities were ao = 4.5 km/sec and #0 = 2.7 km/sec, with density 2.67
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g/cm3 , and velocities within the spherical region were set to a = 4.545 km/s and

p = 2.727 km/s, perturbations of 1%. Density was kept constant, so that only the

elastic Lame parameters were varied. For the Ray-Born calculations, a 10 by 10 by

20 lattice with spacings dxx = dx2 = 0.10 km and dx 3 = 0.05 km was specified and

located centered on the origin. A finer spacing in the z direction was used for accu-

rate evaluation of the Ray-Born integral since this was the direction of the incident

wave propagation and therefore also of the most rapid variation of the integrand.

Amplitude and phase of the incident plane wave are constant in both x and y. The

perturbations at all lattice points at a distance larger than 0.5 km were set to zero

providing an approximation to the spherical inhomogeneity. For both methods, the

source wavelet used was given by

s(ti) = e- ( o(t- to))2 /y2 cos(wo(t - to)), (4.21)

where to is the arrival time, wo = 27rfo contains the center frequency fo, and -y is a free

parameter which we set to three. The resulting radial component P-wave synthetic

seismograms from the two methods for center frequencies of 0.25, 1, 2.5 and 5 Hz are

compared in Figures 4-5 and 4-6. Analogous plots for the S-wave theta component

are given in Figures 4-7 and 4-8. The important parameter for determination of

the validity of the Born approximation is the ratio of wavelength to sphere diameter

,q = ki/d. These frequencies we have examined, 0.25, 1, 2.5 and 5 Hz, provide ratios

77 = 18, 4.5, 1.8 and 0.9, respectively, for compressional waves. The corresponding

values for shear waves are 77, = 10.8, 2.7, 1.08 and 0.39. Examination of the results

for q, = 18 (Figures 4-5A, 4-6A, 4-7A and 4-8A) shows that the two solutions are

very similar, which is not surprising as this long wavelength reproduces the Rayleigh

scattering result, where the forward (900) and back scattering (2700) amplitudes are

the same. A plot of the maximum amplitudes as a function of scattering direction

shows that there is a systematic difference in the two results, with the Ray-Born

amplitude about 15% to 20% less than the discrete wavenumber result (Figure 4-9).

An error of approximately 2% results simply because the volume of the discretized
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version of the sphere is 98% that of the true sphere. The rest of the variation is

explained by the spherical harmonic solution P-wave impulse response and incident

waveform spectra presented in Figure 4-10. Because the impulse response increases

more rapidly with frequency than the amplitude of the incident wavelet decreases for

this low frequency source wavelet, the maximum response after convolution is actually

shifted to a slightly higher frequency. As the amplitude of Rayleigh scattering goes

as w2, this increases the amplitude of the discrete wavenumber solution. This is not

reflected in the Ray-Born solution, since it only includes the w2 specified for the center

frequency of the incident wavelet.

As the incident center frequency increases to 1 Hz and the ratio qp decreases to 4.5

(Figures 4-5B, 4-6B, 4-7B and 4-8B), the two methods compare about as well as for rip,

noting also the amplitude plot in Figure 4-9. Errors are less than 20% in all directions

for the P-wave amplitudes and less than 10% for all back scattered energy. Decreas-

ing the incident wavelength further, however, causes the results for the Ray-Born

method to begin to degrade. We see that the spherical harmonic solution predicts

that the back scattering amplitude at 2700 will become approximately constant for

shorter wavelengths though forward scattering amplitude increases significantly with

frequency (Figures 4-5C, 4-6C). In one sense, the comparison of maximum amplitudes

is not a strictly valid measure of equivalence for the higher frequency results in back

scattering, since the discrete wavenumber results show that for 7,p = 0.9 (5 Hz), both

shear and compressional wave back scattering have the form of two reflections from

the front and back of the sphere, while the Ray-Born method yields only a single wide

pulse due to insufficient cancellation of back scattered waves. Therefore, comparing

the amplitude of the single Ray-Born wavelet with the values for the two reflected

arrivals from the discrete wavenumber results does not reflect the true mismatch of

waveforms. It should also be noted that the same double reflection effect can be seen

for the scattered shear waves at q, = 1.8 (2.5 Hz) on the theta component plots. It

is because of the shorter shear wavelength that this happens at the lower frequency
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for shear waves.

It is worth noting, however, that the results for forward scattering at 900 from

both solution methods still tend to compare relatively well at higher frequencies. Also

encouraging is that both methods predict a much shorter pulse of higher apparent

frequency for forward scattering than for back scattering and that the total width in

time of energy at each observation point is the same. The Ray-Born method does

succeed in matching the gross features of the wavefields, including achieving at least

some of the general trends of amplitude variation with respect to both scattering

direction and increasing frequency. Details of the reflections are missing from the

Born approximation.

We computed the scattered fields using both methods for P and S-wave velocity

perturbations of 10% and 50% as well as the 1% perturbation results shown here.

The comparisons are essentially the same as these results, though the details of the

complete waveform solution change slightly for the 50% velocity perturbation and

these are not reproduced by the Ray-Born method, which has strictly linear behavior

with respect to variation in elastic constants. The amplitude comparisons become

only slightly worse as the velocity perturbations increase to 50% (Figure 4-11). The

more significant failures of the Ray-Born solution are still caused by increasing fre-

quency. Therefore, we conclude that a principal requirement for accurate solutions

using the Ray-Born technique with the degrees of heterogeneity we considered is that

the incident and scattered wavelengths must be 4 to 5 times larger than the length

scale of the heterogeneity, a restriction which for the case above corresponds to fre-

quencies less than or equal to 1 Hz. As the magnitude of the perturbations decreases,

this requirement can be relaxed as the Born approximation will be more accurate

for weaker heterogeneity. Conversely, for equal accuracy for larger perturbations, a

somewhat larger ratio of wavelength to heterogeneity dimension must be imposed

as the stronger velocity changes will reduce the accuracy of the Born approximation

(Figures 4-9 and 4-11). Even when the wavelength ratio is larger than five, subtle
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aspects of wave interaction with the heterogeneity can degrade results, as for the 0.25

Hz scattering for our spherical model, where the resonances of the sphere cause a

shift of the principal response frequency.

Although density perturbations were not considered in the above examples, the

restrictions on accuracy of the Ray-Born method should be the same as for elastic

properties. Both types of perturbations occur in convolutional integrals over volume

and time of the same form in equation 4.7. Therefore, the main factor which controls

the accuracy of the Born approximation in is still the rapidity of variation of the

incident wavefield with respect to the volume of the heterogeneity. The only difference

is that for density, the particle acceleration multiplies the perturbation whereas the

strain multiplies the elastic constant variation. Both accleration and strain will vary

with the same incident wavelength.

4.4 Synthetic Seismograms from a Fracture Zone

Model

Given the guidelines established in the comparisons with the complete solution for

scattering by an elastic sphere, we next apply the method to a layered earth model

containing a relatively thin but laterally extended zone of fracturing in the subsurface.

Using the Ray-Born method, we can easily compare the expected seismic response of

the model without the fractured region and with isotropic and anisotropic fracturing

present. In addition, the effects of various crack filling materials on the back scattered

displacement fields are tested.

The background earth model is presented in Figure 4-12. It consists of 3 layers

overlying a half space. The source is located at a depth of 0.25 km in the top layer,

which is 0.50 km thick, and receivers are located on the free surface at offsets from

the source epicenter of 0 to 1.95 km at an interval of 0.05 km, yielding a total of

40 observation points. A simulated fracture zone is located in the third layer, and
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it is shaped like a rectangular prism with dimensions of 0.315 km, 0.099 km and

0.018 km in the x, y and z directions, respectively. These axis directions are chosen

such that the receiver array is contained within the x - z plane (Figure 4-12). We

applied a center frequency of 25 Hz for the source wavelet, and the lattice spacing

was set to 0.009 km in all coordinate directions. The shear wavelength is 9.6 times

the lattice spacing so that the Ray-Born results should be valid for back scattered

waves. One end of this heterogeneity is located under the source point, and the region

is centered under the receiver array in the y direction, the direction perpendicular to

the receiver array. Though the background model is one-dimensional, the Ray-Born

solution requires three-dimensional calculation of the Green's tensors due to the three-

dimensional nature of the scattering lattice. This example allows the paraxial method

to be used to full advantage, however, as rays need only be traced down the axis of

the lattice in the x - z plane and the paraxial corrections can be used to project the

results out of this symmetry plane. Considerable computation time is saved, since

the need to trace rays along multiple azimuths is eliminated.

To calculate the scattered field for an isotropically fractured inhomogeneity, we

use the perturbations to the Lame parameters given by the Hudson theory for the

effective elastic moduli of a fractured medium (Hudson, 1980, 1981) (see Appendix

A). The effective moduli are given in terms of an expansion to second order in crack

density 6 = na3, where n is the number density of cracks, and a is the radius of the

penny-shaped cracks. We applied a crack density of 0.10, and assumed an aspect ratio

of 0.005. For the first case, we consider cracks which are dry or, equivalently, gas-

filled. The Lame parameters for the unfractured layer and the fractured perturbations

are presented in Table 4.1. Note that for the case of perturbations due only to fine

cracks, that density variations are not important (Appendix E).
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4.4.1 Isotropic, gas-filled fractures

In the calculations for the background field, we included P and S-waves leaving the

source in both the upward and downward directions. The reflections from each inter-

face were then modeled, including phases with a single mode conversion from P to S

or S to P on reflection, as waves changing mode more than once are generally of very

low amplitude. We first consider the effects of the fracture zone on the propagation

of SH waves generated by a single force source oriented perpendicular to the receiver

line (Figure 4-13). No compressional waves are emitted in the direction of the receiver

array, and all shear signals have a horizontal polarization. Taking the dot product of

all the Green's tensors with the source vector then yields a total of only six arrivals

for this source on the transverse component, the shear to shear wave reflections from

each interface, including the rays reflecting first from the free surface.

The calculated scattered field includes two S to S scattered waves, one leaving

the source in the downward direction, the other reflecting from the free surface and

subsequently traveling to the fractured zone (Figure 4-14). Like the case of reflection

from a planar interface, the incident SH-waves also do not yield a scattered P-wave

signal. The pulse broadens at farther offsets in Figure 4-14, which is plotted at a scale

2.5 times larger than the background field (Figure 4-13). This change in pulse shape

is caused by the directivity of the volume source of elastic waves, the fractured zone.

At near offsets, the energy from all points of the perturbed zone arrives more or less

simultaneously, yielding a single large arrival. At the farther offsets, the length of the

source becomes important and the difference in arrival times from the near and far

ends of the fracture zone is observable. The slight peaks at the start and end of the

pulse result from the concentration of energy from the two ends of the fracture zone

and are somewhat analogous to stopping phases from the ends of a planar earthquake

source (e.g., Bernard and Madariaga, 1984).

The total displacement field, the sum of the background field and the scattered

field, shows clearly the presence of the fractured zone (Figure 4-15). Arrows in Fig-
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ure 4-15 mark the arrival times of the two scattered signals on the zero offset trace,

and they are clearly of comparable amplitude to the standard reflections from the

nearby planar interfaces. The finite extent of the fracture zone can be inferred from

the fact that the back scattered waves are only observed in the shorter offset receivers.

These synthetic results show that even thin fractured regions can be detected with

seismic experiments.

The effects of the isotropic perturbation on P-waves are examined by applying an

explosion source to the Green's tensors. Figure 4-16 presents the resulting background

displacement field, which now contains non-zero radial and vertical components. The

largest disturbances on the vertical component are P-waves, with a pair of reflections

from the first interface observed at 0.2 and 0.32 sec on the zero-offset trace, from

the second interface at 0.52 and 0.65 sec, and from the third at 0.77 and 0.9 sec. In

addition, some large amplitude shear arrivals are observed at larger offsets. The radial

component is weaker at near source offsets since near vertical P-waves have minimal

horizontal displacement and shear wave conversions also only become significant at

larger offsets.

For the gas-filled fracture case, the perturbation to the Lame parameter SA is

about 5.5 times greater than the change in rigidity y (Table 4.1), and so we can expect

that the compressional wave scattering will be relatively significant, as a change in

A affects only P-wave scattering (Chapter 3). The total displacement fields for the

explosion source are shown in Figure 4-17, where the arrival times of the principal

scattered waves are marked. While the scattered shear waves are somewhat difficult to

discern compared to the background displacements on the radial component synthetic

seismograms, the scattered compressional waves are easily observed on the vertical

component. These results and the example of the transverse component SH-waves

show that both compressional and shear waves are of use in the detection of isotropic,

gas-filled fracture zones.
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4.4.2 Anisotropic, gas-filled fractures perpendicular to the

receiver array

We next consider the case where the experimental configuration is exactly the same as

above, except that within the fracture zone, all the fractures are vertical and aligned

perpendicular to the receiver array. The perturbations to the elastic constants are

again obtained from the theory presented by Hudson (1980) (see Appendix A). In

this anisotropic case, the fractured zone is transversely isotropic with a horizontal

axis of symmetry. The resulting perturbations to the elastic constants are given in

Table 4.2. Note that 5C44 = 0, which significantly affects the total displacement field

due to the SH-wave source (Figure 4-18). Since the only incident strain component

which is not vanishingly small is E2 3 , and only perturbation in this symmetry system

which influences scattering from an incident SH-wave is 6C44, the scattered field will

be essentially zero (equation 4.8). Accordingly, in Figure 4-18, the scattered field is

not visible.

In contrast, the scattering from incident compressional wave energy is affected to

a much lesser degree (Figure 4-19). Here we see that though reduced in amplitude

the P to P scattering is still detectable. This result is not unexpected, as the incident

P-wave strain, mostly 633, will still interact with the perturbation SC33. Though

reduced from the isotropic equivalent XA + 28ps, this perturbation is still large enough

to generate energy on the vertical component seismograms. Note that there is some

subtle evidence of the anisotropy in that the P to S converted scattered waves are

slightly larger than the corresponding arrivals for the isotropic case, due to the larger

value of SC55 compared to by. Clearly, though, the change in total displacement fields

is far more significant for the SH-wave source.
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4.4.3 Anisotropic, gas-filled fractures parallel to the receiver

array

In order to explore the effects of varying orientation of vertical fractures, we next

compute the scattered fields for a model of the same experimental configuration with

fractures aligned parallel to the receiver array. Perturbations to the elastic constants

have the same values as in the previous anisotropic model, but are rearranged some-

what due to the rotation of the elastic tensor (Table 4.3). The polarization of incident

SH-waves is now perpendicular to the fracture plane, and so there will be large scat-

tered fields, as the incident E23 strain now interacts with a non-zero perturbation

(equation 4.8). These effects are seen in the total field synthetic seismograms for the

horizontal point force source (Figure 4-20). Comparison to Figure 4-15 shows that

the scattered field for this anisotropic model is even larger than the original results

presented for the isotropic case. This again shows the sensitivity of shear waves to

fracture alignment.

The corresponding insensitivity of compressional waves is displayed by Figure 4-

21, the total displacement field synthetic seismograms for the explosion source. This

figure is essentially indistinguishable from Figure 4-19, where the fractures are ori-

ented perpendicular to the receiver line. As before, the strains from the incident

P-waves are almost entirely C33, and as the rotation of the fractures does not affect

SC33, the scattered fields are the same.

4.4.4 Anisotropic, gas-filled fractures at 45 degrees to the

receiver array

The two previous anisotropic models are special cases in that both contain fractures

oriented such that incident SH-wave displacement is polarized in a symmetry direction

of the anisotropic fracture zone. In the first case, fractures perpendicular to the array,

the SH polarization is contained in the symmetry plane. In the second example, the
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SH-wave is polarized parallel to the symmetry axis. If the fracture orientation is at

some arbitrary angle to the receiver line, the resulting synthetic seismograms would

be expected to be less simple. This effect is examined by considering a model where

the fractures are oriented at 450 to the array. Perturbations to the elastic constants

for this model are presented in Table 4.4.

The total displacement field from the horizontal point force source is presented in

Figure 4-22. For the first time, the SH-wave source results in a significant radial com-

ponent synthetic seismogram. In the isotropic case, the perturbations are such that

6 Cn = SC22 = SC33 = SA + ,by, 6 12 = 6C13 = 6023 = 6A, and 60C44 = 6C55 = 6066

are the only non-zero perturbations. However, the perturbations for the 450 case

clearly have other non-zero perturbations (Table 4.4), and, in addition, the equiva-

lencies which hold in the isotropic model are not all true. The result is a complicated

secondary source representation which yields both SH and SV energy from an inci-

dent SH-wave (equation 4.8). The vertical component synthetic seismograms are still

essentially zero since the vertically propagating shear waves have almost no vertical

components of displacement.

In contrast to these distinctive results for the shear waves, the explosion source

and resulting compressional waves incident on the fracture zone still generate a non-

unique result for the total displacement field (Figure 4-23). Since the rotation of the

elastic tensor does not affect 6C33 (Table 4.4), there is essentially no difference between

Figure 4-23 and the other sets of seismograms for the explosion source and anisotropic

fractures (Figures 4-19 and 4-21). It is clear that the information contained in the

shear wave polarizations is likely the most useful evidence for the alignment direction

of vertical fractures in fracture zones within the earth.

4.4.5 Isotropic, water-filled fractures

The preceding examples of scattered wavefields predicted for fracture zones which

contain gas show some of the possible effects of fracture alignment on seismic ob-
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servations. Additionally, we can consider the effect of changing the pore-filling fluid

from the gas state to liquid. The effective elastic constants for the model in Fig-

ure 4-12 with randomly oriented, water-filled fractures are given in Table 4.5. The

crack density was held at 0.10, as in the anisotropic and isotropic examples considered

above. Comparison with Table 4.1 shows that the most significant difference in the

perturbations is that SA is an order of magnitude smaller for the water-filled crack

case. Since 6A affects only P to P-wave scattering, the compressional waves should

be more affected by this change in pore fluid than shear waves.

The total synthetic seismograms for the horizontal point force (Figure 4-24) are

very similar to those in Figure 4-15 for the isotropic gas-filled model. However, the

results for an explosion source are very different for the two isotropic fracture models

(Figures 4-17 and 4-25). Figure 4-25 shows that as expected, the amplitude of the

scattered P-waves is considerably decreased and cannot be detected on the scale

plotted here. This is a classic case of "bright spot" behavior, a phenomenon used to

distinguish gas and oil reservoirs (Ensley, 1984). In hydrocarbon exploration studies,

it has been observed that the P-wave reflectivity of gas reservoirs is significantly

greater than that for oil reservoirs though S-wave reflection amplitudes are similar.

We have shown that the same type of behavior is to be expected for thin fractured

zones.

4.5 Application to Field Data

The delineation of fracture zones is of great practical interest in the development

of geothermal fields, as the permeability created by the fractures can control the

fluid flow in the geothermal systems. In order to facilitate the development of the

Lardarello geothermal field in Italy (Figure 4-26), an extensive geophysical study has

been conducted for a number of years (Batini et al., 1983, 1985a, 1985b, 1985c, 1990).

Recently, a VSP experiment was conducted in the Badia 1A well in the Lardarello
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field in order to attempt to further delineate several possible fracture zones (Batini

et al., 1990). Interpretation of the processed data from the VSP experiments and a

number of other surface seismic surveys resulted in the suggestion that three reflected

events from a subsurface feature below the depth of the well bottom and labeled the

"H marker" were due to thin, laterally continuous fractured zones distributed over

a depth range of approximately 0.200 km. This model is based on some regional

seismic observations. We have used Ray-Born synthetic seismograms to test this a

priori hypothesis and to develop a laterally varying model of fracture density in three

fracture zones which accounts for these arrivals as observed from two VSP surveys.

4.5.1 Background Model

A local three-dimensional seismic survey allowed the development of a fairly detailed

model of the principal geological layers in the Badia area. The principal geological

features of the locality are two shallow layers consisting of various sedimentary units

overlying a thicker zone of metamorphic rock. The L1 and L markers form the lower

interfaces of the first and second sedimentary layers, respectively. P-wave velocities

for the model are given in a cross-section in Figure 4-27, a section in the east-west

direction which intersects the position of the Badia 1A well. Contour maps of the

depths of the L1, L and H markers are presented in Figure 4-28, along with the

positions of the Badia 1A well and the two locations for the Vibroseis source. One of

the shot points is very close to the well and will be called the zero offset point, and

the A shot point is 0.981 km north and slightly east of the well. These maps clearly

demonstrate the three-dimensional nature of this modeling problem.

4.5.2 Data

Due to difficult drilling conditions, the Badia 1A well is highly deviated (Figure 4-

29), so that only vertical geophone components have sufficiently high signal to noise

ratio to analyze the comparatively weak scattered arrivals. Many of the vertical
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component data traces were however extremely noisy after the first arrival, especially

at shallower depths. Therefore, a subset of recorded data was used, with receiver

positions indicated in Figure 4-29. Slightly different depth ranges are covered by the

geophones from the zero and A offset experiments.

Data from both shot points are shown in Figure 4-30 where each trace is nor-

malized to unit amplitude on the first arrival. The signal from the far offset VSP is

somewhat noisier, since the first arrival prior to normalization is lower in amplitude

due to a greater distance from source to receiver. Therefore, noise is amplified more

in the normalization than with the zero-offset traces. For both data sets, however,

the downgoing waves are clearly much stronger than any reflected arrivals, which are

not visible in these sections. In order to bring out the upgoing reflected waves, we

processed the data using a median filter (Hardage, 1983; Reiter, 1990). The moveout

velocity on the filter was set to the opposite of the apparent velocity of the down-

going wave in order to enhance the reflected P-waves, and the filter was applied across

17 traces. After median filtering, the data were subsequently low-pass filtered with

cutoff frequencies of 55 and 85 Hz for the zero and A offset data, respectively. Since

the predominant signal strength is at 30 Hz, this should not significantly affect the

results. The processed data are displayed in Figure 4-31, where the zero offset data

are magnified by a factor of three compared to the A offset plot. The arrivals from

the H marker are indicated on these plots. Considering the difference in gain factors

applied to the upgoing data plots, it is clear that the signal observed from the A

offset source is much stronger, suggesting a lateral difference in the properties of the

H marker.

4.5.3 Modeling results

The geological model (Figure 4-28) clearly demonstrates the three-dimensional struc-

ture of the sedimentary and metamorphic layers in the Lardarello area. This sig-

nificantly affects the ray tracing procedures which must illuminate the H marker to
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calculate the scattered waves, as would be expected. To illustrate this problem, we

show the ray paths for a fan of rays traced from both the zero and A offset source po-

sitions with azimuthal take-off angle in the north-south direction (Figure 4-32). The

resulting ray paths for both source positions have large distortion in the east-west

direction due to the L1 and L interfaces (Figure 4-28), whereas in a one-dimensional

earth model, these rays would be entirely contained in a vertical plane. In particular,

we see that for the A offset source the bending of the rays at these interfaces is so

large that the rays exit the model before reaching the H marker depth. Therefore,

computation of the Green's tensors for the incident wavefield in equation 4.7 requires

that we trace fans of rays like those in Figure 4-32 over all azimuths. Approximately

2800 rays were traced from the two source positions. Although the ray tracing is

simpler from the receivers to the H marker since the metamorphic layer is homoge-

neous, even more rays are required since the closer proximity of the receivers to the

marker increases the range of take-off angles for the fans of rays over all azimuths.

Almost 8000 rays were traced from each receiver to insure sufficient coverage of the

H marker. These points regarding the three-dimensional nature of the wave propa-

gation for this problem emphasize the value of the ray tracing approach, which is a

practical and feasible method of solution. A more complete solution might in prin-

ciple be obtained using a finite-difference method, but the required discretization of

the three-dimensional model to adequately represent the different layers and the H

marker would be prohibitively time consuming.

Since the scattered waveforms are stronger on the A offset data, we began by

developing a model which would account for these data. A lattice was set up to

conform to the map of the H horizon in Figure 4-28C, though due to limitations

of computer storage, we limited the size of the lattice to 1.20 by 1.20 km. It is

more efficient for this modeling of scattering by a thin sheet to actually restrict the

lattice points to trace the depth of the sheet rather than specifying a regular three-

dimensional Cartesian lattice which would have many zero valued nodes. For the
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A shot point, the lattice ranged from 0.6 to 1.8 km in the east-west direction, the

complete width of the map, but only from 0.5 to 1.7 km in the north-south direction.

Similarly, the lattice for the zero offset source ranged from 0.8 to 2.0 in the north-

south direction. Utilizing a discretization in the two horizontal directions of 0.020

kmin, this results in a three-dimensional lattice of 61 by 61 by 1 points mapping the

H marker. Other forms of data analysis were unable to specify a thickness for the

hypothetical fracture zones, though various estimates ranged from 0.010 to 0.060 km.

We therefore set the thickness of the lattice to be 0.020 km. A source pulse for both

the zero and A offsets was applied by choosing the waveform recorded as a first arrival

on representative traces with good signal to noise ratio. Final synthetic seismograms

should therefore be directly comparable to the field observations.

By trial and error forward modeling, it was determined that a model consisting of

three fractured horizons could account for the observations. This was accomplished

by temporarily neglecting amplitude effects and matching only the arrival times of

the observed data. The depth and shape of the first of the zones, the H1 event, was

left to conform to the map in Figure 4-28C, since it was obtained by the regional

three-dimensional survey. The second and third zones, the H2 and H3 events, were

defined to have the same lateral variation as shown in Figure 4-28C, but deeper by

0.090 and 0.170 km, respectively. Our analysis therefore confirms a total thickness of

the H marker on the order of 0.200 km. It should be noted that the largest amplitudes

of the scattered waves in Figure 4-31 correspond to the arrivals from the H2 and H3

horizons, in agreement with some other regional observations (Batini et al., 1990).

After using these initial stages of modeling to define the depths of the H1, H2

and H3 markers, we developed a model to account for the differing strengths of the

recorded scattered waves from the two offsets by considering the regions imaged by

the two experiments. In Figures 4-33 and 4-34, we present contour maps of the total

travel time from source to lattice point on the H2 marker and back to receiver for

two pairs of receivers at equivalent well positions. The dot in the interior of each plot
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indicates the minimum time, which corresponds to the Fermat's principle true travel

time for the reflected pulse. The contour interval for these plots was chosen so that

each contour outlines a Fresnel zone. Sherriff and Geldart (1982) define the Fresnel

zone such that the distance from source to scattering surface is a quarter wavelength

larger for the outer edge of the zone than from the inner edge. Using the dominant

frequency for these data of 30 Hz and the medium velocity of 5.1 km/sec, this distance

corresponds to a travel time difference of 0.0083 sec. Since most of the effect of the

scattering surface is from that region enclosed within the first Fresnel zone, these

figures allow a simple determination of the region of the H2 marker observed in the

two VSP experiments.

Comparison of Figures 4-33A and 4-34A for receivers at the shallow region of the

data and Figures 4-33 and 4-34 from the deep portion shows that the A offset survey

is imaging a region of the H marker several hundred meters further to the north than

the zero offset shot point, though the imaging point for the deeper A offset receiver

(Figure 4-34B) approaches that for the shallow zero offset receiver (Figure 4-33A).

We developed a model assuming that the velocity variations at these markers are due

to fracturing and that there must be some larger velocity perturbations towards the

north, towards shot point A. After attempting several models, an isotropic model was

developed which satisfactorily explains the data. The crack density in the H1 marker,

which is weak in both data sets was set to 0.004 uniformly, whereas for the H2 and

H3 markers, crack density was set to 0.14 north of the 1.4 km line, and 0.004 south

of this border. Temperature and pressure conditions at. the depth of the H marker

are very uncertain, but other wells suggest that values of about 3000C and several

hundred bar pressure are appropriate (Batini et al, 1983). Under these conditions, the

bulk modulus of the pore filling fluid can probably be roughly estimated as 0.1 GPa

(Anderson and Whitcomb, 1973). The resulting perturbations to Lam6 parameters

are shown in Table 4.6, and the synthetic seismograms, processed exactly as were the

data, in Figure 4-35. In order to more clearly show the match with the observations,
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we present in Figure 4-36 the result of subtracting the synthetic results from the

observed data. The A offset synthetic removes a significant portion of the signal from

the observed data (Figure 4-36B), and so we infer that our model adequately accounts

for the seismic properties in the region imaged by the A source. The quality of the

fit of the zero offset synthetic is less satisfactory, however, which is at least in part

a consequence of the lower signal to noise ratio for the weak scattered wave in this

data set. At least part of the signal, especially from traces 55 to 65, is still relatively

well modeled.

Although some observations from other wells have suggested that vertical fractures

are present in the H marker, the successful match of data and synthetic seismograms,

particularly for the A offset data, suggests that a purely isotropic model can account

for these seismic observations. The synthetic examples shown above for the explosion

source clearly demonstrate that in any case a compressional wave experiment will

not yield any information allowing a unique interpretation of the presence of vertical

fractures, the only difference from the isotropic case being a weaker reflected wave.

We did attempt to develop a model for the H marker using the elastic constant

perturbations appropriate for vertical fractures, but even a crack density as high

as 0.30 yielded a signal for the A offset synthetics which was far weaker than the

observed data. This crack density is already so high that it likely violates the single

scattering assumption used in the derivation of the expressions for the effective elastic

constants, so we did not test any higher values. Instead, we interpret these results

as suggesting that the principle source of the scattered seismic energy is an isotropic

velocity change which may have some weak anisotropy superimposed due to vertical

fractures. The available data does not allow any further conclusions, and, as shown

in the synthetic examples, shear wave observations would be necessary to uniquely

determine the presence of anisotropy due to vertical fractures.
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4.6 Discussion and Conclusions

The Ray-Born method for the modeling of the effects of small, localized regions of

inhomogeneity on seismograms is very general and can in principle be applied to

fully anisotropic models. Limitations on the ray theoretical aspects of the algorithm

result from the well known assumption of high frequency methods, namely, that the

wavelength of the propagating signal must be much less than the scale length of the

background earth model (Ben-Menahem and Beydoun, 1985). Comparisons of Ray-

Born solutions with the complete, discrete wavenumber solution for the elastic wave

scattering from a spherical inhomogeneity illustrate some of the limitations of the

Born approximation. The principal restriction is also one of scale lengths. As the

ratio of the propagating wavelength to the scale length of the inhomogeneity decreases

below a value of about 5, the Born approximation fails to reproduce some significant

features of the scattered waves. For the sphere, the missing features were the dual

reflections from the front and back of the sphere in the back scattering direction

(Figures 4-5, 4-6, 4-7 and 4-8). The Ray-Born solution predicted only a single, broad

pulse.

With these limitations in mind, we applied the method to synthetic studies of

a thin, laterally extended fracture zone in a simple layered earth model (Figure 4-

12). These synthetic results clearly demonstrate that shear waves can be expected

to provide very useful information on the alignment direction of vertical fractures,

as the scattered wavefield varies significantly with the polarization direction of the

incident shear wave. In particular, if the incident SH-wave is polarized at an angle

to the fracture orientation, the scattered wavefield can have significant energy on the

radial component. This effect, especially when combined with the variation of the

observations with different incident polarizations, is not likely to be reproduced by

any realistic isotropic inhomogeneity in similar earth models.

The synthetic models also show that compressional wave scattering has different

utility. Though the P-waves are essentially insensitive to the orientation of vertical
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fractures (Figures 4-19, 4-21 and 4-23), the amplitude of the scattered wavefield varies

dramatically with pore fluid. Large reflected P-waves are to be expected for gas-filled

fractures, while water-filled fractures will lead to minimal scattering. In contrast,

shear wave scattering is almost unaffected by the fracture contents.

These guidelines aid in interpretation of the VSP data from the Badia 1A well

in the Italian Lardarello geothermal field. We successfully developed an isotropic

model of three fracture zones contributing to the seismic H marker, accounting for

observed reflected waves from below the depth of the well. The model implies that

fracture density increases northwards and that this would be a good direction for

further exploratory drilling in development of the geothermal resources.

There are, however, several ambiguities in the modeling which cannot be removed

due to limitations on the available data. For example, we cannot absolutely rule out

the presence of aligned, vertical fractures in the H marker since P-wave scattering from

a vertically fractured region shows no indication of fracture orientation. Comparison

of synthetic models for isotropic and anisotropic fracture zones of equal crack density

(Figures 4-17 and 4-19) shows that the amplitude of the observed P-waves should be

reduced for the anisotropic model. The large scattered field in the A offset data was

not reproducible with realistic crack densities, which does give an indirect evidence

for non-vertical fractures in this region. An ambiguity in the Ray-Born modeling of

fracture zones that enters here is that of the state of the pore fluids. We applied

a value for bulk modulus of the fluid based on some values representative for the

estimated in situ conditions. It is possible, however, that there is some error in the

bulk modulus value. If it is significantly overestimated, the effects of the fractures

will be more like those of the synthetic gas-filled fracture models with non-zero bulk

modulus of pore fluid and P-wave scattering amplitudes will increase for a given crack

density. This might make it possible to develop an anisotropic model accounting for

the field data.

Another area of ambiguity is that of the equivalent effects of increased fracture
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zone thickness and increased fracture density. Due to the linearity of the method and

our representation of the scattering lattices as only a single unit cell in the vertical

direction, a doubling of the thickness of the unit cell results in a doubling of the

scattered wavefield (equation 4.9). The same effect results from a doubling of the

perturbations to elastic constants. Our assumed value of 0.020 km for the thickness

of the three fractured intervals H1, H2 and H2 is of the same order of size as other

estimates (Batini et al., 1990), but could very well be off. At the same time, the

successful modeling of the observed data, especially for source offset A, suggests that

our model of the zones as a single lattice point in thickness is not far off and that the

zones are not too thick.

It is possible that both isotropic heterogeneity and superimposed vertical fractur-

ing are present. In this active geothermal area, ongoing hydrothermal processes will

likely cause mineral alteration and the sealing of many fractures (Batini et al., 1983;

Batini et al., 1985c). Under these conditions, the properties of the rock across the frac-

tured regions could well be altered in such a way that a superposition of anisotropic

fracturing and isotropic velocity variations is not so unrealistic. An increase in poros-

ity due to pores of large aspect ratio would change density proportionately more the

elastic properties and would lead to isotropic scattering of elastic waves. It does

appear from the modeling of the P-wave data that the velocity variations are not

entirely due to vertical fracturing in any case, and a completely isotropic model can

explain the data. The only way to concretely determine the presence or absence of

anisotropy would be to obtain high quality shear wave data from the same localities.

Similar conclusions regarding the information contained in seismic data were ob-

tained by Stolt and Weglein (1985) in an analysis of multiparameter, linearized inver-

sion methods. Due to the physics of wave propagation and limitations on observed

quantities from experimental configurations, signal to noise ratio, and the deep explo-

ration targets, it may only be possible to achieve some knowledge of the location in

depth or time of heterogeneity. Increasingly ambitious goals under better conditions
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or more elaborate experiments include: (1) the sign of the property changes in the

heterogeneous zone, (2) the magnitude of the changes, (3) lateral variations of data

amplitudes allowing more detailed analysis, (4) inference of multiple physical prop-

erties, and (5) true values of all earth properties. Clearly the last goal is only going

to be achievable in extremely rare cases. The analysis of the properties of scattered

wavefields from fractured zones shows that to achieve anything but the first two or

three goals requires very good quality seismic data and must incorporate shear wave

observations. Therefore, given that only compressional wave data of relatively low

signal to noise ratio was available, the Ray-Born method allowed some very useful

information on the positions both vertically and laterally of some changes in earth

properties.

Our models of both synthetic and field data emphasize the utility of the Ray-Born

method for modeling scattered wavefields in complicated three-dimensional geolog-

ical structures. Although there is non-uniqueness in relating amplitude to fracture

density and fracture zone thickness, the model for the Badia 1A data does do well

in predicting the kinematic properties of the scattered waves. It should therefore

give concrete and valuable information on the depths of the fracture zones. This

type of information is of great utility in geothermal field development. Especially for

large three-dimensional problems, the method is a comparatively rapid and efficient

means of exploring the effects of different models of small scale heterogeneity within

the earth. The results also clearly show the value of shear wave observations in de-

tailed resolution of subsurface seismic properties, particularly for the resolution of

anisotropy.
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Parameter Background Value (GPa) Perturbation (GPa)

A 21.49 -8.34

11.86 -1.49

Table 4.1. Background Lame parameters and perturbations for the fracture zone in

the model in Figure 4-12 with randomly oriented, gas-filled fractures.

Parameter I Background Value (GPa) Perturbation (GPa)

C11  45.21 -18.6

C22 = C33 45.21 -4.19

C23 21.49 -4.19

C13 = 012 21.49 -8.80

C44 11.86 0.0

C55 = C66 11.86 -2.29

Table 4.2. Background elastic constants and perturbations for the fracture zone in

the model in Figure 4-12 with gas-filled vertical fractures oriented perpendicular to

the receiver array. The parameters 011, C22, and C33 are all equivalent to A + 2y in

an isotropic medium, while 012 = C13 = C23 = A and C44 = C55 = C66 = Y
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Parameter IBackground Value (GPa) I Perturbation (GPa)

C11= C33 45.21 -4.19

C22 45.21 -18.6

C13 21.49 -4.19

C23 = C12 21.49 -8.80

C55 11.86 0.0

C44 = C66 11.86 -2.29

Table 4.3. Background elastic constants and perturbations for the fracture zone in the

model in Figure 4-12 with gas-filled vertical fractures oriented parallel to the receiver

array.

Parameter I Background Value (GPa) Perturbation (GPa)

Cx1 = C22 45.21 -12.4

C33 45.21 -4.19

C13 = C23 21.49 -6.50

C12 21.49 -7.80

C44 = C55 11.86 -1.15

C66 11.86 -1.29

C16 = C26 0.0 3.60

C36 0.0 2.31

C45 0.0 1.15

Table 4.4. Background elastic constants and perturbations for the fracture zone in the

model in Figure 4-12 with gas-filled vertical fractures oriented at 450 to the receiver

array. In an isotropic medium or in a transversely isotropic material in a coordinate

system where one of the coordinate axes parallels the axis of symmetry, C16, C26, C36,

and C45 are all zero.
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Parameter Background Value (GPa) Perturbation (GPa)

A 21.49 -0.836

11.86 -1.01

Table 4.5. Background elastic constants and perturbations for the fracture zone in

the model in Figure 4-12 with randomly oriented, water-filled fractures.

Crack density Parameter Background Value (GPa) Perturbation (GPa)

= 0.14 A 23.6 -3.33

it 23.6 -3.33

= 0.004 A 23.6 -0.10

Y 23.6 -0.10

Table 4.6. Background Lam6 parameters and perturbations for the fracture zone

model for the Badia location H markers. The marker H1 marker was assigned a crack

density of 0.004 throughout the model, whereas the computed synthetics applied a

crack density of 0.14 to the H2 and H3 markers north of the 1.4 km latitudinal line

(Figure 4-28).
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Figure 4-1: Discretization scheme for implementation of the Ray-Born algorithm.
A two-dimensional example is shown for clarity, though the actual implementation
includes three-dimensional scattering lattices and background models. All lattice
points outside the boundary of the inhomogeneity are assigned zero perturbation
values, while those points inside the boundary can be assigned non-zero perturbations
to density or any of the elastic constants Cuj. As the incident wavefront encounters
a lattice point, that particular point becomes a secondary source.
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Figure 4-2: Diagrammatic illustration of the ray coordinates 71 and 72 and ray-
centered coordinate basis vectors el, e2, and e3. The ray coordinates correspond to
the azimuthal and declination take-off angles, 71 and 72, respectively. At each point
P on the ray, the two basis vectors el and e2 are located in the plane tangent to
the wavefront, while the third vector e 3 is tangent to the ray, forming a right-handed
coordinate system valid in the vicinity of the ray ((erveny, 1985).
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Figure 4-3: Spherical coordinate system. The scattered wavefields from the elastic
sphere are calculated for receiver distances sufficiently distant that the P-wave dis-
placement will be observed entirely on the radial component e, and the S-wave will
appear only on the ee component. The shear wave has only a ee component due to
the symmetry of the problem for a plane P-wave incident along the z axis.
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Figure 4-4: Receiver configuration for the computation of wavefields scattered from
an elastic sphere. The sphere is located at the origin of the coordinate system and
the incident plane P-wave is propagating in the downwards vertical direction so that
the direction 900 corresponds to forward scattering, and 2700 is the direction for back
scattered waves. The angles given here are equal to the angular coordinate 0 in
Figure 4-3 minus 900 and are used for reference in the synthetic seismogram plots.
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Figure 4-5: Ray-Born radial component synthetic seismograms for the scattering from
a compressional plane wave vertically incident on a sphere showing scattered com-
pressional waves. Since the amplitudes of the scattered waves increase dramatically
with increasing frequency, the scale of the different plots was changed to allow the
different waveforms to be observed. A) Ratio of compressional wavelength to sphere
diameter rp = 18, frequency f = 0.25 Hz. B) n, = 4.5, f = 1 Hz. Plotting scale
multiplied by 0.1 relative to the r, = 18 plot.
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7p = 18 plot.
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Figure 4-6: Discrete wavenumber radial component synthetic seismograms for the
scattering from a compressional plane wave vertically incident on a sphere showing
scattered compressional waves. All plot scales for a given frequency are the same as in

Figure 4-5 so that waveforms may be directly compared for the Ray-Born and discrete

wavenumber methods. A) Ratio of compressional wavelength to sphere diameter

77P = 18, frequency f = 0.25 Hz. B) 7, = 4.5, f = 1 Hz.
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Figure 4-6: C) rp = 1.8, f = 2.5 Hz. D) r, = 0.9, f = 5 Hz.
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Figure 4-7: Ray-Born theta component synthetic seismograms for the scattering from
a compressional plane wave vertically incident on a sphere showing scattered shear
waves. All plot scales are the same as those applied in Figure 4-5, so that the wave-
forms from the Ray-Born and discrete wavenumber solutions may be directly com-
pared for amplitudes for both shear and compressional wave scattering. A) Ratio of
compressional wavelength to sphere diameter 77p = 18, frequency f = 0.25 Hz. B)

77P = 4.5, f = 1 Hz.
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Figure 4-7: C) r, = 1.8, f = 2.5 Hz. D) ,p = 0.9, f = 5 Hz.
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Figure 4-8: Discrete wavenumber theta component synthetic seismograms for the

scattering from a compressional plane wave vertically incident on a sphere showing
scattered shear waves. All plot scales for a given frequency are the same as in Fig-

ure 4-5 so that waveforms may be directly compared for the Ray-Born and discrete

wavenumber methods and for shear and compressional wave scattering. A) Ratio of

compressional wavelength to sphere diameter r, = 18, frequency f = 0.25 Hz. B)

qp = 4.5, f = 1 Hz.
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Figure 4-8: C) 77, = 1.8, f = 2.5 Hz. D) q, = 0.9, f = 5 Hz.
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Figure 4-9: Comparison of the amplitudes of compressional waves scattered from the

sphere with 1% velocity perturbations with different values of incident wavelength
to sphere diameter ratio r indicated. Forward scattering is in the direction 900 and
back scattering is at 2700.
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Figure 4-10: Comparison of the amplitude spectrum of the impulse response of the
sphere and the amplitude spectrum of the incident wave at 0.25 Hz (i = 18). Dashed
lines show impulse response spectra computed by the discrete wavenumber method
for side scattering (00) and forward scattering (900) (Figure 4-4) . The solid line gives

the impulse response of the incident wavelet. Convolution of the wavelet and impulse
response, corresponding to multiplication of these frequency domain responses, yields
the scattered waves. The rapid increase of the sphere impulse response with frequency
near 0.25 Hz shifts the effective principal response frequency of the scattered waves to

a slightly higher value. The result is a larger amplitude scattered wave than for simple

Rayleigh scattering at 0.25 Hz due to the w2 dependence of the radiation patterns

(see Appendix B).
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Figure 4-11: Comparison of the amplitudes of compressional waves scattered from the
sphere with 50% velocity perturbations with different values of incident wavelength
to sphere diameter ratio i, indicated. Forward scattering is in the direction 900 and
back scattering is at 270 0.The error in the Ray-Born solution is only slightly worse
than for the 1% inhomogeneity.
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Figure 4-12: Background model used to calculate synthetic seismograms including the

effect of a thin fracture zone. Receivers are indicated by the black diamond symbols,
and the position of the source is shown. This model cross-section is contained in the

x - z plane, and the y axis is perpendicular to the figure.
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Figure 4-13: Transverse component background displacement field from a cross-line
point source for the earth model shown in Figure 4-12. Since only SH-waves are radi-
ated in this coordinate plane by the source vector, the radial and vertical component
synthetic seismograms contain no signal. Main reflections are identified as follows
(prime indicates free surface multiple): (A) S to S reflection from interface 1. (B) S
to S reflection from interface 2. (C) S to S reflection from interface 3.
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Figure 4-14: Transverse component scattered field from the cross-line source for the
fracture zone containing isotropic, randomly oriented, and gas-filled fractures (Fig-

ure 4-12). These seismograms are plotted at a scale 2.5 times larger than Figure 4-13
to show the details of the scattered wave.
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Figure 4-15: Transverse component total wavefield from the cross-line source for the
fracture zone model in Figure 4-12 containing isotropic, randomly oriented, and gas-
filled fractures. Arrows mark the positions of the scattered waves from the fracture
zone, and main reflections from background model are identified in Figure 4-13.
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Figure 4-16: Vertical (above) and radial (below) component synthetic seismograms
from an explosion source for the background model in Figure 4-12. The main reflec-
tions are identified as follows (prime indicates a free surface multiple): (A) P to P
reflection from interface 1. (B) P to P reflection from interface 2. (C) P to P reflec-
tion from interface 3. (D) P to S reflection from interface 1. (E) P to S reflection
from interface 2. (F) P to P reflection from interface 3. (G) P to S reflection at free
surface, followed by S to S reflection at interface 3.
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Figure 4-17: Vertical (above) and radial (below) component total wavefield synthetic
seismograms from an explosion source for the fracture zone containing isotropic, ran-
domly oriented and gas-filled cracks (Figure 4-12). Arrows mark the positions of
scattered P-waves on the vertical component and scattered S-waves on the radial
component.
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Figure 4-18: Transverse component total wavefield from the cross-line source for the
fracture zone model in Figure 4-12 containing anisotropic vertical fractures oriented
perpendicular to the receiver array. The fractures are gas-filled. Arrows mark the
positions of the scattered waves from the fracture zone.
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Figure 4-19: Vertical (above) and radial (below:
seismograms from an explosion source for the
vertical fractures oriented perpendicular to the
filled (Figure 4-12). Arrows mark the positions
component and scattered S-waves on the radial

component total wavefield synthetic
fracture zone containing anisotropic
receiver array. The fractures are gas-
of scattered P-waves on the vertical
component.
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Figure 4-20: Transverse component total wavefield from the cross-line source for the
fracture zone model in Figure 4-12 containing anisotropic vertical fractures oriented
parallel to the receiver array. The fractures are gas-filled. Arrows mark the positions
of the scattered waves from the fracture zone.
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Figure 4-21: Vertical (above) and radial (below) component total wavefield synthetic
seismograms from an explosion source for the fracture zone containing anisotropic
vertical fractures oriented parallel to the receiver array. The fractures are gas-filled
(Figure 4-12). Arrows mark the positions of scattered P-waves on the vertical com-
ponent and scattered S-waves on the radial component.
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Figure 4-22: Transverse (above) and radial (below) component total wavefield from
the cross-line source for the fracture zone model in Figure 4-12 containing anisotropic
vertical fractures oriented 450 to the receiver array. The fractures are gas-filled.
Arrows mark the positions of the scattered waves from the fracture zone.
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Figure 4-23: Vertical (above) and radial (below) component total wavefield synthetic
seismograms from an explosion source for the fracture zone containing anisotropic
vertical fractures oriented 450 to the receiver array. The fractures are gas-filled (Fig-
ure 4-12). Arrows mark the positions of scattered P-waves on the vertical component
and scattered S-waves on the radial component.
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Figure 4-24: Transverse component total wavefield from the cross-line source for the

fracture zone model in Figure 4-12 containing isotropic, randomly oriented and water-

filled fractures. Arrows mark the positions of the scattered waves from the fracture

zone.
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Figure 4-25: Vertical (above) and radial (below) component total wavefield synthetic
seismograms from an explosion source for the fracture zone containing isotropic, ran-
domly oriented and water-filled fractures. Arrows mark the positions of scattered
P-waves on the vertical component and scattered S-waves on the radial component.
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Figure 4-26: Map showing the location of the Lardarello geothermal field in Italy.
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Figure 4-27: East-west cross-section of the background earth model used to compute
the synthetic seismograms for the Badia 1A VSP data. Sedimentary units are present
in both layers over the L horizon, while the rock below is metamorphic. The seismic
properties of the metamorphic zone are relatively homogeneous so that it may be
represented by a single velocity. Compressional wave velocities and densities are
indicated in the figure, and shear wave velocities were chosen so that the V,/V, ratio
was xv3.
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Figure 4-28: Contour maps of the three surfaces used in the modeling of the Badia 1A
VSP data. The positions of the Badia 1A well, the zero offset source position (0) and
A offset source position (A) are all indicated. A) L1 interface.
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Figure 4-28: B) L interface.
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Figure 4-28: C) H marker.
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Figure 4-29: Positions of geophones and the deviated Badia 1A well. The geophones
are plotted in all three coordinate planes. A) Geophone positions for the zero offset
source.
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Figure 4-29: B) Geophone positions for the A offset source.
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Figure 4-30: Trace normalized data from the zero offset source (above) and the A
offset (below). The data were normalized so that the first arrival had unit amplitude.
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Figure 4-31: Upgoing wavefields for the zero offset source (above) and the A offset
(below). The data from Figure 4-30 were median filtered, then low-pass filtered to
obtain these sections. The signal from the H marker is found between the lines
indicated on these plots. Note that the zero offset plot is scaled by a factor of three
compared to the A offset seismograms, showing that the H marker event is much
stronger in the A offset data.
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Figure 4-32: Ray paths for a fan of rays initially in the north-south vertical plane.
All three coordinate planes are plotted, and the L1, L and H markers are shown
in the appropriate north-south cross section. When the rays encounter the L1 and
L horizon, the irregular interfaces bend the ray paths so that they have a strongly
three-dimensional propagation showing the complexity of wave propagation in the
Lardarello region. In a one-dimensional earth model, these rays would have no east-
west components. To completely illuminate the H marker, similar fans of rays were
traced over all azimuths from both source positions. A) Ray fan from the zero offset
source.
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Figure 4-32: B) Ray fan from the A offset source.
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Figure 4-33: Contour plots of total travel time from the zero offset source to the H2
marker and then to the receiver. Each contour line bounds a Fresnel zone as described
in the text. A) Total travel time for receiver 30. B) Total travel time for receiver 70.
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Figure 4-34: Contour plots of total travel time from the
marker and then to the receiver. Each contour line bounds
in the text. A) Total travel time for receiver 22. B) Total

A offset source to the H2
a Fresnel zone as described
travel time for receiver 62.
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Figure 4-35: Synthetic seismograms for the H marker model described in the text.
The results for both the zero offset source (above) and A offset (below) are shown.
The arrival is marked as in the data in Figure 4-31. The downgoing wavefields were
also ray-traced, allowing the synthetics results to be processed exactly as were the
field data.
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Figure 4-36: The result of subtracting the synthetic upgoing wavefields (Figure 4-35)
from the processed data (Figure 4-33) for the zero offset data (above) and A offset
data (below). Lines indicate the same time interval as in Figures 4-33 and 4-35.
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Chapter 5

Summary and Conclusions

The further one pursues knowledge, the less one knows.

-Lao-tzu

In this thesis we have developed two basic theories of elastic wave interaction

with anisotropic fractured media. The first approach was to include a distribution

of fracture orientations in the calculation of effective elastic moduli, while the second

advance was the application of elastic wave scattering theory to the study of localized

zones of fracturing instead of homogeneous layers. Both approaches have specific

advantages which allow more realistic representations of the fractured medium. The

first method is an improvement in that it eliminates the oversimplification which

represents the fractures as a set of perfectly parallel cracks. In contrast, our study of

scattered waves still applied the simple model of crack orientation, instead allowing for

a geometrically complex fracture zone which for many important research problems

is an important step. At the same time, the results reveal certain ambiguities in

the elastic behavior of an elastic material containing cracks which will be difficult to

resolve using seismic observations.

In Chapter 2, for example, we developed an inversion for the parameters control-

ling the crack orientation distribution function in a uniaxially stressed rock sample

which yields a unique value for crack density but a more ambiguous result for the
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aspect ratio distribution. The forward model for crack orientations was obtained

by consideration of the closure of penny-shaped cracks under uniaxial stress, which

will depend on the orientation of the crack with respect to the applied stress axis.

Assuming that the initial prestress distribution of cracks is isotropic, the stressed dis-

tribution of crack orientations can be expressed in generalized spherical harmonics.

This in turn allows an evaluation of the effective elastic constants which appear govern

the velocities in the rock. Inversions of velocity data from samples of Barre granite

(Nur and Simmons, 1969) show that the crack density is uniquely and easily deter-

mined with results essentially the same as those obtained by Sayers (1988a, 1988b)

using a curve fitting algorithm. However, our method also gave an estimate for am,

the maximum value of the aspect ratio distribution included in the model of crack

closure. This parameter is strongly dependent on the model aspect ratio distribution

chosen and controls the details of the velocity variation with direction. An initial

model for permeability variation in the stressed, anisotropic rock was also considered.

This model showed some promise, but is also a simplification in its representation of

the crack system for the purposes of fluid flow.

In Chapter 3 the emphasis of the thesis changed to the scattering of elastic waves

from anisotropic inclusions. Substitution of perturbations of the elastic moduli and

density into the elastic wave equation led to an expression of the scattered wavefield

as a perturbation to the background wavefield which would propagate in the absence

of the variations in material properties, the classic Born approximation. The effects

of a perturbation to density are expressed as a single force secondary source, while

a perturbation to any of the 21 independent elastic constants results in a moment

tensor secondary source. We derived the radiation patterns for a point perturbation

to any of the elastic constants, Rayleigh scattering, and these are summarized in

Table D.1.

After this derivation, we examined the application of this scattering theory to

a localized region of fracturing. This can be viewed as a canonical problem with a
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solution that gives some good intuitive guidelines for developing an understanding

of the elastic wave scattering from larger, more complex regions. In this case, the

Hudson theory for fractured media provides some very natural values for the pertur-

bations, as the effective elastic constants for a fractured material are expressed as a

sum of the background Lame parameters from the unfractured background medium

and correction terms of first and second order in crack density. These correction

terms were substituted into the equations for Rayleigh scattering radiation patterns,

and resulting patterns were computed for various directions of plane wave incidence.

Both isotropic and anisotropic fractured zones were considered. For P and S-wave

incidence, the scattering from an isotropic region will have an equal amplitude dis-

tribution with respect to the direction of the incident wave. The results clearly

demonstrate, however, that the scattering due to an incident shear wave contains the

most information on aligned fractures, as the theory predicts that the amplitude of

the scattered wavefields, both P and S, will vanish for an shear wave incident with po-

larization parallel to the plane of fracture orientation. Mathematically, this happens

because for vertical fractures aligned perpendicular to the x axis, the Hudson theory

predicts that the perturbation SC44 = 0. Since the strain due to a vertically propagat-

ing shear wave polarized in the y direction will not multiply any other perturbations

in the expression for the Born secondary source (equation 3.11), the source terms are

all zero, and no scattered field is generated. Physically, this can be understood as

occurring because the particle displacement is entirely parallel to the fractures and

is only minimally affected by a relatively thin zone of fracturing. Scattering from an

incident plane compressional wave will also show variation with direction, but to a

much lesser degree. It is important to remember that with the Born approximation,

the vanishing of the scattering for shear waves incident on anisotropically fractured

regions will not change as the fracture zone becomes larger. Even though Rayleigh

scattering results will not apply, the secondary source term in the Born approxima-

tion is controlled by the strain due to the incident wave and will therefore always be
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zero when the perturbations interacting with the strain component generated by the

propagating wave are zero.

The application of the Born approximation to larger fractured regions is the basis

of Chapter 4. A Ray-Born algorithm was applied to the computation of the scattered

wavefields from arbitrary regions of inhomogeneity. We outlined the method for a

fully anisotropic medium and presented applications to isotropic background media

with anisotropic perturbations due to the presence of aligned fractures. Two funda-

mental restrictions are required in the use of the Ray-Born method resulting from

the approximations involved. The first is due to the use of asymptotic ray methods

for the calculation of Green's tensors representing seismic wave propagation in the

background medium. This requires that this background be smooth relative to a

wavelength. In contrast, the Born approximation imposes the constraint that the

wavelength be much longer than the scale of the heterogeneity.

The practical meaning of "much longer" in the application of the Born approx-

imation is generally not well understood (Beydoun and Mendes, 1989), and so we

addressed this question before applying the algorithm to general models. By compar-

ing the Ray-Born results to those of a full waveform solution obtained by a discrete

wavenumber technique, we showed that results with about 15% accuracy in ampli-

tude, often better, can be obtained as long as the wavelength is four to five times

greater than the scale length of the perturbed region. The waveforms match fairly

well also. For shorter wavelengths, the general trends of amplitude for forward scat-

tering are predicted by both methods, but the Ray-Born results for the back scattered

waves show two important failures. First, the amplitude continues to increase with

increasing frequency of the incident wave, and, second, the Ray-Born method obtains

only a single scattered pulse. In contrast, the full waveform approach shows that the

true solution should reach a constant amplitude with two independent reflected waves

from the front and back of the sphere.

Using these guidelines, we apply the Ray-Born computations to a layered earth
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model containing a thin but laterally extensive fracture zone. The notions of shear

wave scattering from anisotropic zones developed in Chapter 3 are confirmed here, as

the reflected arrivals for shear wave incidence show a strong dependency on orienta-

tion of the polarization with respect to the fractures. Even for the larger, continuous

fracture zone, no scattered shear waves are predicted when the incident wave is polar-

ized parallel to the fractures. In contrast, we also confirm that the reflected waves due

to an incident P-wave show almost no variation for different directions of observation

since the incident wave is almost vertical in all cases. The use of compressional waves

may be for the inference of the properties of the crack-filling material, as P-wave

scattering from liquid-filled cracks is vanishingly small compared to scattering from

gas-filled cracks.

The last application of the Ray-Born method is to the modeling of data from a VSP

survey at the Badia 1A well in the Lardarello geothermal field. This location contains

several fracture zones which are of importance for development of the geothermal

resources. We presented a completely isotropic model for three fracture zones closely

spaced in depth which was able to adequately match the observed scattered waves

from below the depth of the well, even though some other well observations suggest

the presence of vertical fractures. It was impossible to develop an anisotropic fracture

model which could generate scattered signals as strong as those present in the VSP

data set. Through the analysis of Fresnel zones for the scattering of waves from the

fracture zones, we infer that the density of fracturing should increase significantly to

the north of the Badia 1A well site.

5.1 Implications for Fracture Analysis with Seis-

mic Data

The results from the two basic approaches to fracture modeling applied in this the-

sis allow some conclusions in regard to the practical analysis of fractured regions
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through seismic exploration. An estimate of fracture orientations should be possible

using different techniques. We can model the effects of aligned fractures on seismic

velocities for a simple model of parallel cracks using the Hudson (1980, 1981) theory

or for a more complex model allowing for a distribution of orientations by averaging

the Hudson results over orientation. Chapter 2 shows that it is possible to invert

for parameters describing this distribution from velocity measurements. Fracture ori-

entation for regions sufficiently small that velocities cannot be practically estimated

can be determined from the properties of scattered shear waves. Therefore, it seems

reasonable to conclude that either velocity or reflected wave information can pro-

vide useful constraints on the orientation of subsurface fractures, as well as the more

commonly applied polarization analyses (e.g., Crampin et al., 1986).

On the other hand, inference of a more detailed description of the crack shapes

and sizes may be an elusive goal. This information, while not a strong influence on

seismic properties, is probably very important in controlling rock properties such as

permeability and conductivity. The results from Chapter 2 imply that even in the well

controlled laboratory setting we could not obtain a unique description of the crack

aspect ratio distribution. Mavko and Nur (1978) showed that it is possible to develop a

crack model with a tapered crack shape which gives exactly the same results for elastic

properties as the more commonly applied penny-shaped crack models (O'Connell and

Budiansky, 1974; Kuster and Toks6z, 1974; Hudson, 1980). Schoenberg and Douma

(1988) examined the extreme case of parallel joints of infinite extent and determined

that a joint model can produce the same elastic behavior as a crack model. Details

of cracks in real rocks may sometimes lead to an underestimate of crack density,

as the complicated nature of crack surfaces will have asperities and other features

which tend to prop open parts of cracks. This will reduce the compliance of an

individual crack from the idealized model of a simple ellipsoidal void. Therefore,

we must conclude that a detailed picture of the fractures beyond orientation in the

subsurface will be difficult to obtain without a priori geologic knowledge which can,
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for example, eliminate a joint model from consideration.

The implications of the results of Chapters 3 and 4 for the design of field experi-

ments are important. Modeling of the waves reflected from a thin fracture zone shows

that P-wave data will yield almost no information on anisotropic fracture alignment,

which curtails the conclusions possible from the analysis of the Badia 1A VSP data.

Therefore, if seismic data are to be used to attempt to locate and study fracture

zones in the subsurface, the experiment should include the best quality shear wave

data possible. In addition, a single source polarization will not be sufficient, as it is

the variation of scattering with polarization direction relative to fracture orientation

which signals the presence of aligned fractures. The ideal experiment would include

at least two source polarizations. If it is of importance to make an estimate of the

fluid filling the cracks, then comparison of P and S-wave scattering amplitudes will be

of use, due to the sensitivity of P-wave scattering to pore contents. A large reflection

observed on the shear wave data which is small or absent from compressional wave

data suggests a liquid filled fracture or porous zone. Likewise, equal amplitude P and

S-wave events indicate that the pore filling fluid is probably a gas.

5.2 Future Work

Wave propagation in fractured media is a complex problem for many reasons. The

existence of aligned cracks alone introduces an effective anisotropy which significantly

complicates data analysis relative to more ordinary isotropic materials. We have

shown that even zones of anisotropy due to fracturing which are too thin to generate

shear-wave splitting can generate shear wave reflections which could not be recorded

in a purely isotropic medium. Research involving wave propagation must take into

account such phenomena in order to begin to develop methods for interpreting the

structure of the medium.

The first step which can be accomplished using existing ray-tracing algorithms is
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the application of the Ray-Born method of Chapter 4 to anisotropic background me-

dia. At least in principle, this can be done using ray tracing techniques for anisotropic

media (e.g., Gibson et al., 1991), though the effects of shear wave singularities and

the accompanying numerical difficulties in ray tracing will make the problem more

difficult. In addition, the numerical code will have to include the possibility of three

types of incident waves as well three scattered waves. This extension will allow the

inclusion of transversely isotropic media above or below the fractured zone such as

is commonly found in sedimentary regions, and it will be possible to examine the

effects of varying intensities of fracturing by taking a uniformly fractured medium as

the background model. Perturbations to this background will allow an examination

of the waves reflected from a zone of more or less intense fracturing.

The far more difficult problem is to develop a means of relating a more complex

and realistic description of crack geometry to effective elastic properties. Cracks in

rocks clearly are not penny-shaped and often intersect in complex patterns. While

the theories developed to date can account for general trends in elastic behavior, it

would be advantageous to have a theory which allows a unique relationship of crack

shapes to elasticity. Unfortunately, the theoretical results discussed above suggest

that this is not a likely development.

This thesis has demonstrated some distinct advances in the understanding of wave

propagation in fractured media, however. We have shown the possibility of invert-

ing for fracture orientations from velocity data, and have introduced an method for

computing elastic wave scattering including the effects of localized anisotropic re-

gions. In addition, we suggested a way to relate information on fracture orientation

to directional variations of permeability. These methods allow the remote delineation

of fractured regions in the subsurface along with the estimation of some important

properties of the fracture zones, and future adaptations will allow the consideration

of models of even greater complexity and realism.
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Appendix A

Effective Elastic Constants for

Fractured Media

Hudson (1980, 1981) presented a theory for the effective moduli of a homogeneous,

isotropic medium containing cracks by considering the scattering from ellipsoidal

inclusions with the assumption that the incident wavelength is much longer the the

size of the ellipsoids and that there is only a dilute concentration of cracks, thereby

deriving a single scattering approximation. In addition, it was assumed that the

cracks were of low aspect ratio. In other words the cracks are "penny-shaped", with

two equal semi-axes being much larger than the third. When the cracks are parallel,

the resulting composite material is transversely isotropic with an axis of symmetry

perpendicular to the crack orientation. If the cracks are vertical and perpendicular

to the x axis, the following expressions for the effective constants may be written

(Crampin, 1984):
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C COo  (A.1)

(Ao + 2o)2U1 1  Ao(A 0 + 2jo)U1l Ao(Ao + 2Ao)Ux1

0o(Ao + 2po)Un A2U 11  A2Ul1

Ao(Ao + 2jo)Ull A2U 1 1  A2U 11

Y 0

333

(Ao + 2po)qU12 AXqU1
2
1 AoqU21

Aoq U212 Ao+2to Ao+2po
AoqU 1  A oqU2 A0q U12

0 1 o+ 2 Ao Ao+2po

15 0

XU3

xu 3

where

q = 15 +28 +28
Yo +  Po

3Ao + 8poX = 2Po
X0 + 2po

Here Ao and po are the the Lam6 parameters of the unfractured background medium,

and is the crack density na3 . In this expression n is the number density of cracks

and a is the radius of the cracks.

The parameters Un and U33 are related to the Lame parameters of the material

filling the cracks. For cracks filled with a material with Lame parameters A1 and t 1

low compared to those of the matrix medium, they are given by

4 Ao + 21Lo 1
Un Ao+ (A.2)

16 Ao + 2o 1
U33

3 30Ao + 4po 1 + M
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K, + 4/3/1 A0 + 2to

7rapo Ao + Po

4M 1 Ao+2Po
M=

raepo 3A0 + 410

In these expressions, a is the aspect ratio of the cracks, the ratio of the small semi-axis

to large semi-axis. As K and M both vanish when the stiffnesses of the crack-filling

material go to zero, the aspect ratio will have no effect on the effective elastic constants

for cracks which are empty or filled with a material with very low bulk modulus, such

as a low pressure gas.

In this configuration, with the x axis serving as the symmetry axis, the three

elastic waves are not simply categorizable in terms of polarizations. However, the

phase velocities in a given direction can be determined using Christoffel's equation in

the form (Musgrave, 1970)

(rjk - V 2
3jk)gk = 0, (A.3)

Cijkl
rjk - nin.

The ni are the components of the unit vector N in the desired direction for the

phase velocity vector, and the summation convention is applied. There are in general

three different eigenvalues V2 corresponding to the squared phase velocity for two

quasi-shear waves and the quasi-compressional wave. This equation also yields the

polarizations g, the eigenvectors, of the three waves. When the symmetry axis of

a transversely isotropic medium is vertical, the three waves are a true SH wave, a

quasi-SV wave and a quasi-P wave. The latter two waves have polarizations which

are contained in a vertical plane, but are not exactly the same is a true SV or P-

wave in an isotropic medium. Phase velocity expressions for waves in the transversely

isotropic medium are given in Chapter 2 (equations 2.10 to 2.12).

Hudson (1980, 1981) also extended these relationships to media with a purely

random distribution of cracks, an isotropic effective medium. In this case the Lame
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parameters of the composite material are

- ,o + yo[-( (3U3 + 2U)+ 2 ) Ao + 8Po (3U33 + 2U11)2] (A.4)

= to + S(L

(3_ + 20)2 2 2poA A -9o + (3U33 + 2U1l)

+2 + U1
2
1  Po (A 3  Do+ 8o (3U33 + 2U11)2 (A.5)

81p2(Ao + 2po) 3 15) Ao + 2po
=Ao + SA.

As for the anisotropic example, this is an expansion to second order in crack density.

Other theories for the effective moduli of both anisotropic and isotropic materials

with cracks have been presented. For example, Nishizawa (1982) presented an inter-

ative numerical scheme for the evaluation of the effective properties of an anisotropi-

cally fractured medium which in principle can incorporate fairly high crack densities

and aspect ratios ranging from very flat, ellipsoidal cracks to spherical pores. This

approach is an extension and improvement of the results of Anderson et al. (1974).

Douma (1988) examined and compared the two approaches and showed that the

Nishizawa (1982) and Hudson (1980, 1981) methods give similar results for aspect

ratios up to 0.30, assuming a crack density of 0.05. This suggests that the Hud-

son (1980, 1981) theory gives a good representation of the elastic behavior of the

model of a homogeneous, isotropic matrix containing aligned, ellipsoidal cracks. In

regard to the isotropic material with randomly aligned cracks, some disparity appar-

ently exists between the numerous results which have been published. While most of

the results agree to first order in crack density (e.g., Toks6z et al., 1976; Chatterjee et

al., 1978; O'Connell and Budiansky, 1974; Hudson, 1980), the results for the second

order term differ. These differences are not easily reconciled and depend on large part

on the statistical assumptions built into the models (Hudson, 1980).
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Appendix B

Derivations of Radiation Patterns

for Rayleigh Scattering

In Chapter 3 the derivation of the most general expression for Rayleigh scattering

due to an anisotropic obstacle was presented (equation (3.12)). Here we present the

derivations of explicit equations for the radiation patterns for a perturbation to an

example of each of the five general categories of elastic constants from section 3.2.2

using the spherical coordinate expressions presented in Appendix C. Patterns for all

21 independent constants are summarized in Appendix D.

B.1 Single dipole

Equation (3.11) shows that a perturbation to 6SC1

with a single dipole oriented along the x-axis:

SC11l°1 0
bM= 0 0

0 0

results in a moment tensor source

0

0 .

0

(B.1)

We consider an incident compressional plane wave with displacement given by

UO(x,t) = Apei( t- k , x)
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p = sin 0o cos 0oex + sin 00 sin 0oey + cos Ooez

ko = -pa

The two angles 0 and €o are the two spherical coordinate angles (Figure 3-2). Uti-

lizing equation (3.12) for the far-field displacement and equation (B.1) for the SM 1l

gives the scattered field vector:

bu(x, t) = 6VC 1 14Eo(0, 0)[G l,lex + Go,, 1ey + Go,,ez]

= 6V6Cl1c 1[Ol(Go - ex)].

Here GO without subscripts indicates the Green's tensor. The strain °1 = u 1 due

to the incident wave is

1,1 = -ikA sin 2 00 COS 2 oei  (B.3)

00 = t-k,.x

k = Ikal

Spherical coordinates provide a natural reference frame for expressing the radiation

patterns for a source at the origin, since the radiated compressional waves will only

have a radial component er of displacement, vertically polarized shear waves (SV) will

only have a 0 component ee, and horizontally polarized shear waves (SH) only have

a € component e¢ (Figure 3-2). Substituting for &1(Go - ex) in spherical coordinates

(Appendix C), we derive the following scattered displacement field for the incident

compressional wave:

Sbu(x, t) = SVCul(-ikA sin 2 0 cos 2 0o)s (B.4)

-ikei+ -ipei e

-ikeie
-eO sin 0 cos 4 sin 0( 1

47r2 pr

P3 = t-k.x

k = -p

ka = IkoI.
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The individual components may be written

SuP(x,t) = -(bV6C 1 A sin2 0 COS2 0o) sin2 0 COs 2

4rpa4  r
2 ,i(wt-rl )

buP(x,t) = -(6VC1Asin 2 0 cos2 0o) e3 sin0cos0cos 2  (B.5)
47rpa#3 r

u (x, t) = +(6V6C11 A sin2 00 cos 2 0o) W e( sin 0 cos sin
0 4rpap3 r

The P, SV and SH fields are given by bu,, Sue and Sbu, respectively. No scattered

field is generated for incidence in the y - z plane.

The polarization of an incident SV-wave is defined to be in the eo direction (Fig-

ure 3-2) for a given wave normal direction p. The displacement associated with this

plane wave is

uo(x,t) = ApSV e i(wt- k p.x) (B.6)

pSV = excos0ocos o + eycos 0osin o - ezsin0o.

The vector pSV giving the direction of shear displacement is the unit vector e0 ex-

pressed in Cartesian coordinates (Ben-Menahem and Singh, 1981). For this wave the

incident strain u0,1 associated with the moment tensor source is

u 1, = -ikA sin 0 cos 00 cos2 oei , (B.7)

and the components of the scattered field are

bus~(x, t) = -(6VC11A sin 00 cos 0O cos 2 o) r sin 2 0 cos2

buSV(x,t) = -(6VbC 11A sin 00 cos 00 co 2  sins2 (B.8)
0 X 47pp r

2 ei(wt- n/l)
SusV(x,t) = +(V6C1A sin00o cos 00 cos2 40) sin 0 cos sin .

47pp r

Therefore, we see that the P and SV incident waves have the same directional variation

of the radiation pattern, though the dependence on incidence angle is different. The

scattered field vanishes for incidence in the x - y and y - z planes. In addition, the
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quantities multiplying the angular terms are different. For 00 = 7r/4, the scattered

amplitudes due to an incident SV wave are larger by a factor of a/f due to the

different weighting coefficients.

Finally, we can consider the scattering due to the 6C11 perturbation in the case

of an incident SH wave. Define the incident polarization to be in the direction of e¢

(Ben-Menahem and Singh, 1981):

u(x, t) = ApSHei(wt- k ' x) (B.9)

pSH = - sinoex + cos 0oey.

The strain component for this wave is

u,, = +ikpA sin 00 sin 0o cos qoe i', (B.10)

and the scattered waves are

w2 ei(wt-rla)
uSuH(x,t) = +(6V6C 1Asin0ocos 0 sino)4 2p 3 eitr sin 2 0 COs 2

47rpa 3  r

W2 ei(wt-r/0)
SuSH(x, t) = +(SVSCIA sin 0o cos qo sin qo) r sin 0 cos 0 cos2 (B.11)

0 47rpp4  r
w2 e(wt-rf/)

bUSH(x, t) = -(6V0C1 1A sin 0 cos qo sin Lo) 4  sin cos sin .
47rpp4  r

The relative amplitude of scattering due to SH incidence will be similar to that due to

an incident SV wave. There is no scattering predicted for an incident wave in either

the x - z or y - z planes. In these cases, u = 0, and so the moment tensor is also

identically zero.

B.2 Two dipoles

As an example of this category of elastic constant scattering, we consider a pertur-

bation to SC13. Again applying equation (3.9), the moment tensor source is

6C13C°3 0 0

M = 0 0 0 . (B.12)

0 0 C13611
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The total scattered field will be that due to a superposition of two dipoles, one

oriented along the x-axis, the other along the z-axis, proportional to the c°3 and

E 1x components of the strain tensor, respectively.

The general expression for the scattered field in this case can be written

Su(x, t) = bV6C13[f33 (0, 0)(a 1(Go -ex)) + E 1(0, 0)(0 3(Go ez))]. (B.13)

Considering first the incident compressional plane wave, and applying the displace-

ments given by equation (B.2), the strain components in the source are

U0,1 = -ikoA sin2 O cos2 oea

U0, = -ik, Acos2 o0 eiO,. (B.14)

Using these expressions in the equation for the scattered field and again applying

spherical far-field equivalents for a1(Go -ex) and 03(Go -ez) (Appendix C) yields

W2 ei(wt-r/a)
Su(x,t) = -(VC13A) 4 r

x [cos 2 O0 sin 2 0 Cos 2  1 + sin 2 00 Cos2 q 0 cos 2 0]
w2 ei(wt-r/)

buP(x, t) = -(VX6C 13A) 4  34rpa#3 r
x [cos 2 Oo sin 0 cos 0 Cos 2  -_ sin 2 80 COS 2 o sin 0 cos 0] (B.15)

w 2  ei(wt-r/l)
u5(x, t) +(6V6CI3A) [cos2 00 sin 0 cos q sin q].

4irpa$3 r

Next examining the SV wave incident displacement, given in equation (B.6), the

appropriate strains are

u, = -ikpAsin 0ocosocos2 
0oeti

U,3 = +ikA Asin 00 cos Ooei p. (B.16)

Substituted into equation (B.13), the resulting scattering in spherical coordinates is

u2 ei(wt-r a)
u (X , t) = -(6V6C 1 3AA )

4  3
Ssin cos [- sin 2 cos + cos cos

x sin 0 cos 0[- sin2 0 COS2 0 + COS2 00 COS2 0]
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SuV(x, t)

SuV(x, t)

2  
6 i(wt-r/P)

= -(6V6C 1 A) 4 4
47rpp r

sin 0o cos 00 sin 0 cos 0 [- cos 2 _- cos2 0o] (B.17)

w2  i(wt-'l/)
= +(6VSC 1 3A) 4  4  sin 00 cos 0o[sin 0 cos 0 sin q].

4rpp r

The SH incident wave has the displacement given in equation (B.9), and the

resulting strains are

u, = +ikpAsin Oo sino 0 cos 40eiV

U0 = 0.
3 ,3 (B.18)

Since the u °,3 strain is identically zero, the scattering takes a simpler form than for

incident P or SV waves and includes only a SM 33 dipole source:

Su H(x, t)

SuH(x, t)

w 2 ei(wt-rl/ca)
= +(SVSC 1 3A)4 3  r [sin 00 cos o0 sin o0 cos 2 0]

47rppC r

, 2  i(wt-r/)

-(SVSC 13A)4rp 4  [sin0ocos osin o sin0cos0] (B.19)
47 pp r

bu4(x,t) = 0.

Therefore, there is no SH to SH scattering for a perturbation to SC13, and an SH

wave will pass by the obstacle generating no scattering.

B.3 Double couple

An example of a perturbation leading to one double couple radiation pattern is SC6 6 .

In this case, the moment tensor is

0

SM = 2e12bC66

0

2E° 2 C 66 0

0 0

0 0

and the scattered field is given by

Su(x, t) = SVSC12(u, 2 + 0, 1 )[ 2 (G ex + 01(Go ey].

(B.20)

(B.21)
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For the incident compressional wave,

2eC2 = u1,2 + U2, 1 = -ikx, sin2 0o sin 2qoAe i~v,

and so the scattered field is

(B.22)

w2 ei(wt-rl/a)
= -(6V6C 66A) 4 [sin 2 0 sin 2o0 sin2 0 sin 20]

47rpa r
,2 i(wt-rlO)

= -(bVbCA)4p 3 r [sin 2 0 sin 2o0 sin 0 cos 0 sin 2q](B.23)

,2 ei(wt-r1O)
= -(sVCA) 4p r [sin 2 0 sin 2o0 sin 0 cos 2].

4-Vp6A) 3 r

Note that no scattering is obtained when the incident signal propagates in either the

x - z or y - z planes. In this case, the perturbation is undetectable.

If the incident wave is an SV-wave, the incident strain is

2°2 = -ik sin 0o cos 00 sin 2qoAei'4, (B.24)

and the scattering is

w2 ei(wt-r/l)
= -( 6 VSC66A) 4  [sin 00 cos 00 sin 2o0 sin2 9 sin 20]

4rppa3 r
w 2 ei(wt-r1O)

= -(6VCA) r
4x pp4 r

x [sin 0 cos 00 sin 2¢0 sin 0 cos 0 sin 2¢] (B.25)
w2 ei(wt-rlP)

= -(SVsCA) 2  [sin 00 cos 00 sin 2o sin 0 cos 2¢].
4 rpp4 r

Again there is no scattering for the incident wave travelling in the x - z or y - z

vertical planes, but the scattering is also absent for vertical and horizontal incident

signals.

Finally, for incident SH-waves, we have

2r2 = -ikp sin 0o cos 2 0oAe i'. (B.26)

The scattered waves are

buH(x, t)
w 2  ei(wt-r/a)

= -(bVbC,,A) 3 [sin o0 cos 2q0 sin 2 0 sin 2¢]
47rppa r
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6uSH(x,t) = -(SVSC66A)W e [sin 00 cos 2o0 sin 0 cos 0 sin 241 (B.27)
4rpO4 r

w2 e i(wt-r/O)
US~H(x, t) = -(6V6C66A) 4 sin 00 cos 2 o sin 0 cos 24].

(h 474pp r

For the incident SH-wave, the 6C66 perturbation causes no scattering for vertical

incidence, and for incident waves propagating in the vertical planes at 0 = 7r/4 and

00 = 3r/4. In both of these cases, the c°2 strain associated with the SH-wave vanishes.

B.4 Double couple and a dipole

The radiation pattern equivalent to that of superposition of a dipole and a double

couple is generated by a perturbation to SC14. For this perturbation, the dipole is

oriented along the x-axis, and the double couple moment tensor elements are SM 23 =

SM32:
2Oc36C1 4  0 0

6M = 0 0 0?1 6C 1 4  (B.28)

0 E16C14  0

and the general scattered field is given by

6u(x, t) = 6VSC 4[( ,3 + u°,2) 1(G ex) + (u, 1)(02 (Go ez) + 03(Go ey))]. (B.29)

For the incident compressional wave, the strain components of interest are

E01 = -ik, sin2 00cos2 OoAeiv .

2c03 = -ik, sin200sin ¢oAe iV", (B.30)

and the scattered field is

u(Xt) = -w 2  ei(wt-r/a)
uP(xt) = -(6V6C 4A) 4 4

rl 47 pa 4 r

x [sin 2 0 Cos 2 0o sin 20 sin 4 + sin 200 sin 4o sin 2 0 cos 2 4]

w2  ei(wt-r1 /)
SuP(x, t) = -(SV6C 14A) 3

47pa O 3 r
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x [sin 2 0o Cos 2 0o COs 20 sin 4 + sin 200 sin 0o sin 0 cos 0 cos 2 0] (B.31)
w2 ei(wt-r/P)

UP(x, t) = -(SVC14A) 4 fl
4x pop r

x [sin 2 00 Cos 2 0o COs 0 COs 0 - sin 200 sin q0 sin 0 sin q cos q].

Because of the superposition of a dipole and a double couple source, the dependence of

the radiation pattern on the incidence direction is more complicated than for the C66

perturbation, and there are no vertical planes of incidence for which no scattering is

generated. However, the vertically incident plane wave will not generate any scattered

fields.

For an incident SV-wave, the strains are

11 = -ik cos 0 sin 00 cos2 OoAe i '

-ik cos 200 sin koAe i , (B.32)

and the scattered fields are

u V(X, t)

SuV(x, t)

6u V(x,t)

w2  ei(wt-r/acr)
= -(bVbCl4A) 2

C 4A)pa 3  r

x [sin 0o cos 90 cos2 qo sin 20 sin € + cos 200 sin €o sin2 0 cos 2 €]

w2 ei(wt-r/)
= -(6VbC14A)

47pp# r

x [sin 0o cos 8o cos 2 ko cos 20 sin €

+ cos 280 sin 0o sin 0 cos 0 cos2 q] (I

w 2 ei(wt-r/fl)
= -(bVSC 14 A) 4  r

x [sin 0 cos os 2 
0o cos 0 cos €

- cos 200 sin 0o sin 0 sin 0 cos 0].

3.33)

In this case, there is no set of incidence directions for which scattering is absent, since

the e 1 and o3o strain tensor components do not vanish in the same directions.

Lastly, the appropriate strains associated with an SH-wave are

C1 = +ik6 sin 90 sin 0o cos OoAet¢
o

2c°3 = -ik cos 0o cos €oAei', (B.34)
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and the scattered displacement fields are given by

= -(V6C 14A) 3  r
4 pfla r

x [- sin 00 sin 0o cos 0o sin 20 sin q + cos 0o cos 4o sin2 9 cos2 0]

w2 ei(wt-r/P)
= -(SVSC 4A) 4

4 [- sin sin r

x [- sin 0 sin O0 cos O0 cos 20 sin 4

(B.35)+ cos 00 cos qo sin 0 cos 0 cos2 q]
w 2 ei(wt-r/')

= -(sVSC 1 4A) 4rp34  r
4xpp r

x [- sin 00 sin o cos o cos 0 cos 0 - cos 00 cos 4o sin 0 sin 0 cos 0].

In this case, there is no scattering when the incident SH-wave travels in the y - z

vertical plane, where e = 603 = 0.

B.5 Two double couples.

As an example of this final category of scattering source representations, we consider

the perturbation to 6C45. The moment tensor for this perturbation is

0

0

6VC45 2co3

0 SVSC 4s2E 3

0 6SVC 45 2E3.

SVSC 452e 3 0

Here we write the general scattered field as

Su(x, t) = SV6C 45[(u, 3  )( (G e) +

3(Go -ex)) + (u, 3 + u0,1)( 2 (Go - e) + 03(Go ey))].

The strain components induced by an incident compressional wave are

2e 3 = -ik, sin 200 cos ¢oAe iV" a

= -ika sin 200 sin OoAei'P,
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(B.37)

(B.38)



and the scattered displacements are

SuP(-xt) = -(6VC4,5A)42r wr4 (sin 20o sin 20)[sin(O + Oo)]
W2 ei(wt-r/)

2 ei(wt-r//3)

8uP(x, t) = -(V6C 45 A) sin 20o cos 0[cos(O + 0o)].
47r pap r

All scattered fields vanish for both vertical and horizontal incidence in this case.

SV-wave incidence yields the following strain components:

2E3 = -ike cos 200 cos OoAe i*6

2E°3 = -ikp cos 200 sin oAe iO' .  (B.40)

The displacements generated by the SV-wave are

w2 ei(wt--a)
SuSV(x, t) = -(6VC4sA) W cos 20o sin 20[sin( + 0o)]

rt 44  ppa 3  r
w 2  ei(wt-r/3)

6uSV(x,t) = -(VSC 45A)4 cos 20o cos 20[sin( + Oo)] (B.41)
4pp r

w2  ei(wt-r//3)
u4SV(x, t) = -(V6C 45 A) 4 cos 200 cos 0[cos(4 + €o)].

4x7rpp 4  r

In this case, the scattered fields vanish when the incident wave propagates 0o = r/4

or 00 = 3r/4.

Considering next the SH-wave incidence, we have for the incident strains

2M3 = +ik g cos 00 sin qoAeit6

23 = -ik 3 cos 0o cos ¢oAek. (B.42)

The scattered displacement fields are

w2  ei(wt-r/a)
uSH(x, t) = -(6VSC 45A) cos 00 sin 20[cos(4 + €o)]

47rpa3 r

6uSH(x,t) = -(S6VC 45A) w 3) cos 0o cos 20[cos(4 + o0)] (B.43)
4rpp4  r

w2  ei(wt-r/)
6uSH(x,t) = -( 6SVC45A) 4 4  cos 0 cos 0[- sin(¢ + 0o)].

47rppO r

In this case, the scattered fields vanish for a horizontally incident wave.
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Appendix C

Spherical Coordinates in the

Development of Radiation Pattern

Equations

Spherical coordinates allow a relatively straightforward expression of the components

of the scattered field in a given direction. Utilizing the spherical coordinate system

shown in Figure 3-1 and expressing the Cartesian components in terms of spheri-

cal coordinates (Ben-Menahem and Singh, 1981), the following relationships can be

derived. They provide far-field approximations which can be used in the derivation

of the radiation patterns given in the text and Appendix D. This approach was also

employed by Ben-Menahem and Gibson (1990) to consider the special case of a trans-

versely isotropic inclusion with a vertical axis of symmetry.

a aa = sin 8 cos ~-

a- = sin 0 sin € a (C.1)
y dr

= cos 0az ar
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Expressing the Cartesian basis vectors in spherical coordinates yields also

0 0
exW- = [er sin2 O Cos 2 q + e sin cos Cos 2  e - COS in ] ,

O 0
ey = [er sin 2  si n n2 + e sin cos 0 sin 2 + e sin 0 cos sin ]

-0 a

ez = [er cos20 - eo sin 0 cos 0]- ,yz dr

ex +T - [er sin 2 sin O + ee sin 2 cos 0 + eo cos 2q] sin O-, (C.2)
dy 8x2r '

e + e- = [er sin 20 sin 0 + eo cos 20 sin + e cos 0 cos]- ,

ez T + [er sin 20 cos 0 + ee cos 20 cos - e, cos 0 sin ]OrOx Oz Or'

In deriving the radiation patterns for the scattered displacement fields, expressions

such as
aG -ex0G ' (C.3)

Ox

for example, occur. Using the far-field Green's tensor

e-iker e-iker
G = erer 2+ (eoeo + eoeo) (C.4)

4rc 2pr 47ra2pr

and equations (C.2), these partial derivatives may be written as

0G ex OG
eOx = [er sin 2 Cos2 + eo sin O COS2 0 - e sin 0 cos q sin ]-. (C.5)

This approach allows all radiation patterns to be written in a straightforward manner.
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Appendix D

Radiation Patterns for

Perturbations to the Elastic

Constants

The components of the scattered displacement field due to a perturbation to any

one of the 21 elastic coefficients SCIj can be derived using the techniques described

in the text and Appendix B and expressed in the following form for an incident

compressional plane wave:

W2 ei(wt-r/ a )

Su,(x,t) = -(S6VCijA) Er

,2 ei(wt-rlP)
Suo(x,t) = -(6V6CijA) Eir (D.1)

w2 ei(wt--rlP)
bSu(x,t) = -(6V6CijA) 4  r E P

41pp r

Here SV is the volume of the perturbed region, SCrJ is the elastic constant perturba-

tion, and A is the amplitude of the incident wave. Material properties of the back-

ground medium are P and S-wave velocities a and f, respectively, and density p. The

scattering coefficients E P , EoP and Eop are functions of the angular coordinates 0, €, 80

and q0 defining the direction of propagation of the scattered and incident waves, as
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well as the P and S-wave velocities of the background material. The scattered fields

for an incident SV-wave have the same form as those given in equation (D.1), with

scattering coefficients indicated by E y , ES V and E~V. For an incident SH-wave, the

superscript is replaced by SH.

The scattering coefficients for the different elastic constants are given in Table D.1

in the form of a 3 by 3 matrix for each constant. In the matrices, a row corresponds

to an incident wave type (P, SV, or SH), and a column corrsponds to a scattered wave

type. An interesting type of "antisymmetry" is apparent in the scattering coefficient

matrices where the off-diagonal ij element of each matrix has the same form as the ji

element with the roles of the incidence and scattering direction angles reversed. For

example, for C11, the P to SV coefficient is

E P = sin 2 o0 Cos 2 0 sin 0 cos cos2 , (D.2)

and the SV to P coefficient is

S 1
EV = sin 80 cos 90 cos 2 0 sin2 8 Cos 2 €. (D.3)

Note that in the fraction preceding the angular terms, aC 2 is replaced by ,3a2, another

aspect of the "antisymmetry".
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TABLE D.1. SCATTERING COEFFICIENTS FOR THIE ELASTIC CONSTANTS.

INCIDENT SCATTERED WAVE

WAVE P SV SH

p 1 sin 2 0o cos2 0o sin 2 0 cos 2 4 sin 2 0o cos 2 o sin cos 0 Cos2  sin 2 Oo cos 2 0o sin 0 sin 4 cos

bC 1 1  SV - sin 00 cos 00 cos2 o sin 2 0 cos2  sin 00 cos 00 s2 0 sill 0 os COS Sin 0 COS COS2 0 sin 0 sin COS

1 2 0cos2

SII p sinl 00 sin c0 cos 40 sill2 BCOS2 ~ -sin 0 Sin 00 COS 0 sin 0 cos 0 cos sin o sin do cos #o sin 0 sin coso

p 2_ sin 2 0o sin 2 0o sin2 sin 2 1P sin 2 00o sin 2 o sin 0 cos sin 2  1sin o sin2 o0 sin 0 sin 0 cos

6C 22  SV d sin 00 cos 00 sin2 'o sin2 0 sin 2 o sin o os0 sin 2  sin 0 cos o sin2  o sin sin sin cos

SH - sin O sin o cos do sin2 0 sin2  sin O sin o cos o0 sin 0cos 0 sin2 J - sin 0o sin do cos o sin 0 sin ¢cos

P k cos 2 0o cos 2 0 -( cos 2 0 sin 0cos 0

6C3 3  SV -- sin o0 cos 00 cos2 0 j sin Oo cos O0 sin 0 cos 0 0

SIt 0 0 0



P - sin 2 00 sin 0o sin 20 sin sin 2 00 sin 4o cos 20 sin k sin 200 sin Qo cos 0 cos

bC 44  SV cos 2o0 sin 0o sin 20sin cos20o sin 4o cos20sin 4 cos 2 00 sin 0o cos 0 cos

SH 7 cos 0o cos 0o sin 20 sin 1 cos 0o cos o cos 20 sin cos 0o cos cos 0 cos 

p ! sin 200 cos o sin 20 cos sin 200 cos co cos 20 cos # i sin20o cos €o cos 0 sin o

6C55 SV cos 20o cos o0 sin 20 cos cos 200 cos o0 cos 20 cos cos 200 cos o cos 0 sin 4

SH I cos Oo sin sin 20 cos cos 0o sin €o cos 20 cos4 cos 0o sin €o cos 0 sin €

P I sin2 Oo sin 20o sin2 0 sin 20 1i sin2 00 sin 2o0 sin 0 cos 0 sin 2 1- sin2 Oo sin 20o sin 0 cos 20

6C 66 SV sin Oo cos 0o sin 2 sin 2 0sin 2 sin 0o cos Oo sin 24o sin 0 cos 0 sin 20 sin Oo cos Oo sin 20o sin 0 cos 20

Sl 7 sin 0o cos 2o sin 2 0 sin 2q -- sin 0o cos 2qo sin 0 cos 0 sin 20 sin 0o cos 20o sin 0 cos 20
1 '60.. .1



P sin 2 8o sin 2 0 sin2 0o sin 0 cos 0 1 sin2 Oo cos 2~o sin 8 sin 0 cos 0

.[sin 2 0o cos 2 0 + cos 2 0o sin 2 01] [sin 2 o cos2 0 + cos2 0o sin2 ~j

6C 1 2  SV T sino cos0osin2 0 'T sin 00 cos 0 sin 0 cos 0 sin ocos ocos 2o sin0sin cos

*[sin2 0o cos 2  + cos
2 40 sin 2 

01 O[sin
2 o cos2 0 + COS2 0 sin 2 ]

SH .- sin 0o sin o cos o sin 2 0 cos 2o sin 0o sin o cos ko sin 0 cos 0 cos 2o -F sin 0o sin o cos o sin 0 sin 2o

P d[cos2 Go sin2 0 cos2 4 sin cos 0[cos2 0o cos 2 q - cos2 0o sin 0 sin 0 cos 4

+ sin 2 00 cos 2 o cos 2 0] - sin 2 00 Cos 2 0o]

6C13  SV =-- sin 0o cos 0o - sin 0o cos 00o sin 0 cos 0 sin 0o cos Oo sin 0 sin 0 cos k

.[cos2 0o cos 2 0 - sin 2 B cos 2 C] (cos2 b + cos2 0o]

SH - sin 00 sin o cos o cos 2 0 sin 00o sin 0o cos o0 sin 0 cos 0 0

P I [cos 2 0o sin 2 0sin 2 b 1 [cos 2 0o sin 0 cos 0 sin2 4 cos2 Oo sin 0 sin 4 cos 4

+ sin 2 00 sin 2 ,o cos 2 01 - sin 2 00 sin 2 o sin 0 cos 01

C23 SV [- sin 00 cos 00 sin2 0 sin2 - sin 00o cos o sin 0 cos 0 - sin 00 cos 00 sin 0 sin cos

+ sin 00 cos 00 sin 2 r0 cos2 0] [sin2 4, + sin 2 2

SH r sin 00 sin 4o cos 4o cos2 0 - sin 0o sin Oo cos ,o sin 0 cos 0 0



P I-[sin 2 0o cos 2 Oo sin 20 sin 1 -rIsin2 0o cos 2 0o cos 20 sin 4+ 1sin2 0o Cos2 o cos 0 cos 4i-

+ sin 200 sin 4o sin2 0 cos 2 0] sin 200 sin 4o sin 0 cos 0 cos2 ] sin 200 sin ~o sin 0 sin 0 cos 0]

6C 1 4  SV jsin 0o cos 00 cos 2 o sin 20 sin 0 [sin do cos 0o cos2  o cos 20 sin ' [sin do cos 0o cos' 2o cos 0 cos

+ cos 20o sin Oo sin2 0 cos 2 '] + cos 200 sin 0o sin 0 cos 0 cos2 ] - cos 200 sin do sin 0 sin ' cos ']

SH s- sin 0 sin o cos o sin 22 ssin Ain o cos 4o cos 20 sin ' - [ n cos 'A cos 0 cos 'SH -- sin 0o sino 1o cos W sinL sino

+ cos 0o cos Ao sin 2 0 cos 2 k] + cos 0o cos 'o sin 0 cos 0 cos 2 ] + cos 0o cos 0o sin 0 sin cos]

P 1[sin 2 00o cos 2 'o sin 20 cos 2 [sin 2 O cos2 O cos 20 cos A - -[[sin 2 0o cos 2 Ao cos 0 sin'

+ sin 2 00 cos 'o sin 2 0 cos 2 +] + sin 2 00 cos 'o sin 0 cos 0 cos2 ] sin 2 00 cos oa sin 0 sin ' cos ']

6C 15  SV [r(sin 0o cos 00 cos 2 'o sin 20 cos S in cos o cos 20 csos 'A -2 C[sin Oo cos Oo cos 2 o cos 0 sin

+ cos 2 0o cos 'o sin 2 0 cos 2 q] + cos 200 cos o sin 0 cos 0 cos 2 '] + cos 2 00 cos ,o sin 0 sin ' cos 0]

SH - [sin 0o sin a cos sin 20 cos -[sin 6o sin o cos Aon cos 20 cos 1 -[sin 00 sin 'o cos 'o cos 0sin '

+ cos 00 sin qo sin2 0 cos2 ] + cos 0o sin o sin 0 cos 0 cos 2 ] + cos 0o sin 0o sin 0 sin 0 cos ]

P sin2 00 sin 2 0 sin 2 O0 sin 0 cos 0 1 sin2 0 sin 0

-[cos 2 0o sin 20 + sin 2 o cos 2 '1 "[cos2 40 sin 24 + sin 20o cos 2 ] .[cos2 0o cos 24 - sin 2o sin 4 cos ']

bC16  SV - sin 0o cos 0o sin2 0 sin 0o cos 0o sin 0 cos 0 , sin 0o cos 0o sin 0

.[cos2 'o sin 2' + sin 2o cos 2 * "[cos 2 0o sin 24 + sin 20o cos 2 0] -[cos 2 'o cos 24 - sin 20 sin ' cos ']
SH sin sin 2 [cos 2Ao cos 2 ' sin 0o sin 0 cos 0[cos 20 cos2 ' -- sin 0 o sin 0[sin 00 cos o cos 2,

- sin o0 cos 0o sin 20] - sin o cos o sin 20] + cos 20o sin 0 cos 0]



P s sin 0o sin 0[sin 20o sin 2 0 sino sin 0o sin 0[sin 200o sin 0 cos 0 sin 4 sin 4o cos o[sin 200 sin 0 sin 4

+ sin 2' o sin 4o sin 20] + sin 2 Oo sin 4o cos 20] + sin 2 Oo sin 4o cos 0]

6C 24  SV 0. sin 4o sin o[cos 20o sin2 0 sin 4 y sin 4o sin 0[cos 20o sin 0 cos 0 sin 4 1 sin ~o cos 0[cos 20o sin 0 sin 4

+ sin 0o cos 0o sin do sin 20] + sin 00 cos 00 sin 0o cos 20] + sin o00 cos o sin 4) cos 0]

SH 0- cos do sin 0[cos 0 sin sin cos o sin [cos Oo sin 0 cos 0 sin cos )o cos 0[cos 0o sin 0 sin 4

+ sin 0o sin 4)o sin 20] + sin Oo sin 0o cos 20] + sin o sin Oo cos 0]

P -[sin 20o cos do sin 2 0sin 2 4) l.[sin 20o cos Oo sin 0 cos 0 sin 2 4 sin 0[sin 200 cos 4 cos 4

+ sin 2 Oo sin 2 Oo sin 20 cos 0] + sin 2 Oo sin 2 o cos 20 cos ] - sin 2 0o sin 2 0o cos 0]

6C 25  SV -p[cos 200 cos 4o sin 2 0 sin2  ~ y[cos 20o cos 0o sin 0 cos 0 sin2  sin 0[cos 20o cos Oo sin 0 cos 4

+ sin 0o cos 00 sin 2 Oo sin 20 cos 4] + sin 0o cos 0o sin2 2o cos 20 cos 4] - sin 0o cos 00 sin2 4) cos 0]

SH -- sin 0o[o[- os 000 sin2 sin sin - os 0 sin 0 cos 0 sin2 - sin Sin [- cos 0o sin 0 cos

+ sin Oo cos 4o sin 20 cos 4] + sin 00 cos 4 cos 20 cos 4] + sin Oo cos o cos 08]

P ! sin' 0o sin 2 0[sin2 do sin 24 ) sin2 o sin 0 cos O[sin 2 o sin 24) sin 2 0o sin 0[sin 2 4O cos 24

+ sin 20o sin2 4] + sin 20o sin 2 ] + sin 20o sin 0 cos 0]

6C 2  SV sin o cos Oo sin 2 0[sin o s i n  sincos[sin sin 220 2r sin 0o cos 0 sin 0[sin2 o co s 2

+ sin 2)o sin2 ] + sin 2)o sin2 (] + sin 2)o sin 0 cos ]

SH F sin 0o sin2 0[sin 40 cos 40 sin 24 sino sin 0 cos[sin cos o sin 2 sin 0o sin 0[sin 4)0 cos 4)0 cos 2

+ cos 2o0 sin2 0] + cos 2o sin 20] + cos 20o sin 0 cos 0]



P [co 2 o sin 20 sin [cos 2 C cos 20 sin (cos2 0 co cos ]0 CoS

+ sin 20 sin o cos2 0] - sin 2 0 0 sin 4o sin 0 cos 0]

bC3 4  SV r[- sin 0 cos 0o sin 20 sin 4 - jsin0 cos 0o cos 20 sin - 7[sin 0o cos 0o cos0 cos

+ cos 200 sin o cos2 0] + cos 200 sin o sin 0 cos 0]

SH -[(cos 0o cos o cos 2 0] r[- cos o cos o sin 0 cos 01 0

[cos 2 0o sin 20 cos -[cos 2 0o cos 20 cos [- cos 00cos0 sin 4 ]

+ sin 20 cos Oo cos 2 0 - sin 200 cos o sin 0 cos 0]

6C 35  SV 7--y[- sin Oo cos Oo sin 20 cos 4 - -(sin Oo cos Oo cos 20 cos 4 0-[sin Oo cos Oo cos 0 sin 4]

+ cos 20o cos 4?o cos2 01 + cos 20o cos qo sin 0 cos 0]

SH CO[- cos 0o sin 4o cos2 0] p [cos Oo sin Oo sin 0 cos 01 0

P 7[cos2 0 o sin 2 0 sin 24 ? sin 0 cos 0[cos2 0o sin 24 -o[cos2 Oo sin 0 cos 20]

+ sin2 o sin 24o cos 2 0] - sin 2 0o sin 2]ol

6C36 SV - sin 0o cos Oo[- sin2 0 sin 24 -O sin 0o cos 0o sin 0 cos 0 - [sin 0o cos 0o sin 0 cos 241

+ sin 200 cos2 0] [sin 24 + sin 240]

SH .[sin o cos 20o cos2 0] -F[sin 0o cos 2 o sin 0 cos 0]



P p sin 20o sin 20 [sin(Co + 4)] -,sin 2 0o cos 20 [sin(oo + 4)] sin 2 0o0 cos 0[cos(Oo + 0)]

bC4 5  SV cos 2 0o sin 20[sin(Oo + 0)] T cos 2 0o cos 20[sin(oo + 4)] cos 20o cos O[cos(o + 4)]

SH - cos 0o sin 20[cos(€o + 4)] cos Oo cos 20[cos(Oo + 4)1 pcos 0o cos 0[- sin(Co + 4)]

P p[sin2 Oo sin 20o sin 20 sin 4 -- [sin 2 0o sin 20o cos 20 sin 4 1 [sin 2 o sin 24o cos 0 cos 4
+ sin 20o sin 0o sin 2 0 sin 24] + sin 200 sin 4o sin 0 cos 0 sin 24] + sin 200 sin 0o sin 8 cos 24]

6C46  SV [sin 0o cos Oo sin 2¢o sin 20 sin 4 [sin 0o cos 80 sin 20o cos 20 sin [ -[sin Oo cos Oo sin 20o cos O cos 4

+ cos 200 sin qo sin2 0 sin 24] + cos 20o sin 0o sin 0 cos 0 sin 2)] + cos 200 sin 0o sin 0 cos 2]

SH '[sin Oo cos 24o sin 20 sin 4 *[sin 0o cos 240 cos 20 sin 4 '[sin Oo cos 24o cos 0 sin 4

+ cos 0o cos 4o sin2 0 sin 24] + cos Oo cos Oo sin 0 cos 0 sin 2)] + cos Oo cos 4o sin 0 cos 24]

P 3[sin 2 0o sin 20o sin 20 cos 4 12 [sin 2 0o sin 240 cos 20 cos [- sin2 Oo sin 24o cos 0 sin 4
+ sin 20o cos 4o sin 2 0 sin 24] + sin 20o cos 4o sin 0 cos 0 sin 24] + sin 20o cos 0o sin 0 cos 24)

6C5o SV F-j[sin Oo cos Oo sin 240 sin 20 cos 4 7[sin Oo cos 0o sin 20o cos 20 cos 4) ~[- sin Oo cos Oo sin 20o cos 0 sin 4

+ cos 200 cos o sin 2 0 sin 20] + cos 200 cos Oo sin 0 cos 0 sin 20] + cos 200 cos o sin 0 cos 2]

SH '[sin Oo cos 20o sin 20 cos 4 y[sin Oo cos 240 cos 20 cos 4 - ~-sin 0o cos 20o cos 0 cos 4
- cos 0o sin 4o sin 2 0 sin 24] - cos 0o sin 4o sin 0 cos 0sin 24] + cos 0o sin 4o sin 0 cos 2)



Appendix E

Density Contributions to

Scattering by Fractured Volumes

In principle, the contribution to scattering radiation patterns of density changes due

to fracturing will add to and change the results derived considering only the per-

turbations to elastic constants. However, the amplitude of scattering due to density

fluctuations is sufficiently small compared to that created by changes in the elastic

properties that it may be neglected. This can be shown by direct comparison of the

maximum amplitudes of the scattered fields.

The size of the density perturbation is based on the total volume of voids within

the rock. Since the cracks are modeled as oblate spheroids, the volume of an individual

crack is 47ra 2 h/3, where a and h are the radius and half-width of the crack. Given

the aspect ratio
h

= - (E.1)
a

of the crack, the volume can also be expressed as

v = 4 ra 3 (E.2)

Therefore, the total volume of porosity within a unit volume sample of the rock is

v = -7re (E.3)
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where crack density e = na3 , and n is the number density of cracks. When the

cracks are empty, the density perturbation is negative, and is given by multiplying

the above volume of crack space by the density of unfractured rock. Using the crack

density 0.05 and rock density 2.70 g/cm3 considered in the text, this perturbation is

-8.48 x 10- 5 g/cm3 for a = 10- 4 . This value of aspect ratio is typical of that used

to model changes in elastic properties of rocks using this crack model under pressures

typical of the upper crust (e.g., Gibson and Toks6z, 1990; Cheng and Toks6z, 1979;

Feves and Simmons, 1976).

Considering the forms of equations (3.21) through (3.24), the maximum ampli-

tudes of the various radiation patterns are the same except for the factors presented

in Table E.1. Expressing all quantities in units of kilograms, kilometers and seconds,

and using the density perturbation derived above and isotropic elastic parameter per-

turbations in Table 3.1, the maximum amplitudes of the radiation patterns for each of

the incident and scattered wave fields are presented in Table E.2. It is clear that the

scattered displacement field due to the density change is always at least 3 orders of

magnitude smaller than that due to the perturbations to the Lame parameters A and

y. Therefore, the effects of density can be neglected to assess the principal effects

in the scattered fields due to the presence of the randomly oriented cracks. Since

the perturbations to the various elastic constants, except 6C 44, are of the same order

of magnitude as those to the isotropic parameters (Table 3.1), the same conclusions

will hold for the aligned crack volume. The exception to this conclusion is for the

case of a shear wave polarized parallel to the crack plane. Since the effects of the

elastic constants will vanish in this case, the scattering due to density variations will

dominate. It must be remembered, however, that the scattered field generated by a

shear wave polarized perpendicular to the crack plane will still reflect the magnitude

of SC 55, which is non-zero, and will be several orders of magnitude larger than the

scattering in the former case. This shows that the change in the scattered displace-

ment field with variation of the polarization of an incident shear wave will still be
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very significant.

This analysis is based on the assumption that the variations in elastic properties

are caused only by the small aspect ratio cracks modeled by the Hudson (1980, 1981)

theory. In some geological examples, it is possible that the heterogeneous zone will

include an increase in porosity due to more equidimensional pores as well as the fine

cracks. If this is true, then the overall pore volume will become much larger, and

density changes will become more important and will mask the effects of the elastic

constant perturbations to some extent since density causes significant back scattering

(e.g., Wu and Aki, 1985b). However, as is shown in the examples of radiation patterns

presented in the text, the variations in radiation with incident shear wave polarization

should still be observable and will yield observations that cannot occur in the isotropic

case.
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INCIDENT SCATTERED PERTURBED PARAMETER

WAVE WAVE bp SA Jb
P P

P S26

S S

S P _ 26

S p 2a

Table E.1. Unique terms in radiation patterns expressions controlling maximum

amplitude of scattered wave fields for a perturbation to one of the isotropic

parameters.

INCIDENT SCATTERED PERTURBED PARAMETER

WAVE WAVE bp j bA j
P P 1.51 x 106 7.53 x 109 2.71 x 109

P S 5.29 x 106 1.78 x 1010

S S 5.29 x 106 1.67 x 1010

S P 1.51 x 106 5.07 x 109

Table E.2. Numerical values for the maximum amplitude factors in Table E.1 using

parameter values given in the text.
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Appendix F

Overview of Dynamic Ray Tracing

The ray method is a high frequency asymptotic approach to the calculation of syn-

thetic seismograms (Karal and Keller, 1959; Cerven" et al. 1977; Ben-Menahem and

Beydoun, 1985). A rapid, flexible computation of the asymptotic wavefield results

from the high frequency assumption applied to the wave equation, though the result-

ing equations are not able to model such features as diffraction or caustics. Indeed,

the high frequency assumption requires that the medium be smooth compared to the

seismic wavelength for the solution to be valid (Ben-Menahem and Beydoun, 1985).

The two principal parts of the ray tracing procedure are computation of travel times

and computation of amplitudes, the kinematic and dynamic ray tracing problems,

respectively. In order to facilitate computation of the wavefield at a specific receiver

point, we apply the paraxial method. We briefly describe the better known aspects

of these procedures below.

Substitution of the ray series solution

00oo

uk(Xi, t) = e- i(t -
(X1 )) j(-iW)-u()(xi) (F.1)

n=O

into the equation of motion (4.1) yields the transport equation, and ultimately two

sets of ordinary differential equations of the following form for the characteristics of
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the eikonal equation (Cerveny et al., 1977; Cervenyr, 1985):

dxi
dr
dpidr = 2i. (F.2)dT

The forms of the right hand sides ali and a2i are given in many references for both

isotropic (Cerven', 1985) and anisotropic media (Cerven', 1972). These six simul-

taneous equations are then integrated to obtain the ray path and travel time of the

wave corresponding to the particular ray, solving the KRT problem.

The effect of geometrical spreading on amplitudes of the waves is obtained from the

DRT. Explicit analytic formulae for the partial derivatives &xi/O(yj can be obtained

both for isotropic (Cerven'ret al., 1974) and anisotropic media (Gajewski and Pienaik,

1990), yielding an additional twelve simultaneous equations which must be integrated

along the ray path. Alternatively, the partial derivatives may estimated numerically

by tracing additional auxiliary rays with take-off angles slightly perturbed from those

of the original central ray where the geometrical spreading value is desired. For

an accurate, stable solution through this finite difference technique, in general four

auxiliary rays must be traced corresponding to perturbations of ±0 and ±+.
For the special case of an isotropic earth model, the introduction of ray-centered

coordinates qj allows considerable simplification of the computation of the geometrical

spreading (Cervenr, 1985) (Figure 4-2). The three basis vectors of the ray-centered

coordinate system at a general point P along the ray are the unit vector t tangent

to the ray, and two additional unit vectors contained in the plane perpendicular to

the ray at the point P. The tangent vector t is always known, since its components

are simply (vp1 , vp 2, vp3), and simple and numerically inexpensive procedures for

obtaining the two vectors el and e2 are discussed by several authors (e.g., (ervenr,

1985; ervenr and Hron, 1980; Penaik, 1979). This coordinate system is clearly

only regular in the vicinity of the ray, since the curvature of the ray will lead to the

intersection of coordinate planes at some distance from the ray.
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Expressing the eikonal equation in ray-centered coordinates, Cerven, (1985) shows

that the Jacobian J(r) is given by the determinate of the second order matrix Q

aqi
IJ qi (F.3)

Subscripts given by upper case letters range in value from 1 to 2. Four simultaneous

differential equations are integrated to determine the different components of the

matrix Q, and these in turn depend on the matrix P:

1 dQ
P = v d (F.4)v2 dr

Therefore, a total of eight differential equations are integrated to determine the geo-

metrical spreading, as compared to the twelve which must be utilized when Cartesian

coordinates are employed. In addition to the reduction of the overall number of equa-

tions, the forms of the right hand sides of the equations are somewhat simpler and

thereby reduce computational complexities.

In application of ray methods to any wave propagation problem, one of the prin-

cipal difficulties lies in determining the take-off angles of the ray connecting a given

source and observation point, two-point ray tracing. In anisotropic media, difficulties

arise because the ray and the corresponding slowness vector, the quantity actually

specified to initiate ray tracing, have significantly different directions which in general

can not be identified prior to ray tracing. In isotropic media, the effects of model ge-

ometry lead to similar difficulties. For the Ray-Born method, where rays are needed

from the true receiver positions to all scattering points in the lattice, application of

a two-point ray tracing algorithm would be very difficult and time consuming. We

circumvent this difficulty by utilizing paraxial ray tracing techniques. This approach

takes information from the central ray, which serves as an axis, and projects it us-

ing quantities obtained by the DRT to nearby observation points ((erven', 1985;

Cervenr et al., 1984; Beydoun and Keho, 1987). In particular, the travel time at

points near the ray is obtained by expanding the time T on the ray in a Taylor series,
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retaining terms up to second order:

() = r(x') + (x - x) - p + (x x)TN(x')(x - x') (F.5)
2

Nij (x')= 02= T

axioxj x/

The components of the slowness vector p(x') are as usual pi = r/Oxi, x' is a point

on the central ray, and x is the desired observation point. The matrix N is evaluated

in Cartesian coordinates by rewriting it as

Nij(x') = pi k (F.6)
5~Yk axi

The same paraxial correction to travel time can be utilized in ray-centered coordinates

by introducing the transformation matrix H from the ray-centered coordinate system

to Cartesian coordinates with components ((erveny, 1985)

Hi = -a. (F.7)

As each column of this matrix corresponds to one of the basis vectors t, el and e2 of

the ray-centered coordinates, this matrix is always known during the DRT procedure.

The paraxial travel time then takes the form

r(X) = r(x') + (x - x'). p + (X - x')TH(x')M(x')HT(x')(x - x'). (F.8)

The partial derivative matrix M is

M11 M12 -17

M M 2 1  M 2 2  (F.9)

1 ev 1 v 1 &v

- vT Tql 7Toq2 7 ft, j

M = PQ-1

The knowledge of wavefront curvature can also be used to correct polarization vectors

as well. For an isotropic medium, the compressional wave polarization is always in

the direction of the wavefront normal, which is also parallel to the slowness vector.
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Therefore, a straightforward correction for compressional waves is (Gajewski and

Penaik, 1987)

ti(x) = t(x')v(x') - Nik(X)(Xk - xk), (F.10)

Corrections for the shear polarization vectors are also available (Cerven' et al., 1984):

gi,(x) = el(x') - Nkl(x) v(x) Pi(X ) elk(X) (x - x. (F.11)3 3 3 3 3 1uL~ ~I1C~L~
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