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ABSTRACT

DISTRESS AND FAILURE OF PAVEMENT STRUCTURES

by

JOHN FAYI ELLIOTT

Submitted to the Department of Civil Engineering
on September 19, 1969 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

A highway pavement structure is considered as part
of a system made up of different interacting socio-
economic and structural parts.. To effectively analyze
the behavior of such a system, each phase of its socio-
economic and structural parts has to be separately examined
and later meaningfully integrated through the use of models
so as to get a realistic picture of performance in an
operational environment. This study uses the above systems
approach as a basic framework within which the structural
aspects of the problem are considered. The performance
.of a pavement structure in an operational environment is
examined from the primary and ultimate response behaviors.
Two mechanistic models are developed to predict the
distress and eventual failure of the structure in a given
load and temperature environment.

The first model treats the structure as a three-
layer linear viscoelastic system in which the mechanical
properties of the materials in the layers are represented
by linear hereditary integral operators of the creep type.
The sensitivity of this model to rate effects is established
by considering its response to a stationary, repeated and
moving load.

The second model establishes the link between the
primary and ultimate responses by associating through the
use .of time-dependent memory functions the developed
stresses and deformations to the degree of damage
accumulated in a given period of time.
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A simple illustration of the use of the madels -to.
predict the progression of damage in a pavement structure
under repeated loading is presented.
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I. INTRODUCTION

A pavement's function as a highway component is

manifold. It is designed and constructed to provide safe,

durable, smooth and economical highway surfaces which

would make possible the swift and convenient transportation

of the individual and his commerce. The present design

of such facilities is based largely on experience ex-

pressed in the form of correlations between soil type,

traffic, base course character, and thickness. Although

these methods have met with reasonable success in the

past, the rapid increases in the number of heavy axle

loads and in the variety of subgrades that must support

them have outrun past experience. Therefore, a design

method that combines theory with empiricism to a lesser

degree is needed.

The development of a rational method analysis

of any system must include certain procedures of which

the selection and analysis of a model (or prototype) for

realistic input parameters constitute a major part. From

the results of such an analysis, an intelligent comparison

of the predicted and observed output parameters can be

made. The degree of discrepancy between these will

then result in the determination of the extent of modi-

fication to be made on the originally selected model. After

a sufficient number of executions of these comparison

cycles, the results predicted by the model and those

observed from the prototype should ideally converge.
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To provide such a prototype for design, it is

necessary that the pavement be first rationally analyzed;

knowledge of the design ftgntions and failure mechanisms

of the pavement must be secured. This study considers the

failure aspect of the problem with a view to identifying

the pertinent failure mechanisms.

An initial review of current knowledge in this area,

has revealed that the performance of a pavement structure

in a given traffic and climatic environment may be defined

as its ability to provide an acceptable level of Ser-

viceability*, with a specified degree of Reliability* for

an assumed level of Maintainability*. The impairment or

loss in the ability to provide the necessary services in

a given locale may then be considered as the 'failure'

of the pavement. When viewed in this light, 'failure'

becomes a loss in performance; it is the extent to which

the pavement has failed to render itself serviceable, (i.e.,

the serviceability level has decreased by a critical amount

from an initially acceptable state); it results from an accu-

mulation of damage over a given time period.

Since the response of the structure to imposed

loads is not only time, but also temperature dependent,

'physical failure' excluding slipperiness, can be considered

as .occurring over a range of stress-strain-time - and tempera-

ture conditions. The failure age of the pavement within such

a context is then, the time

Defined in Appendix (B). 8



during which performance deteriorates to an unacceptable

level as determined by the users.

Society's perceptions as regards to how well a

pavement is performing its stated functions are determined

by the users of the highway, and the highway engineers.

The user assesses or evaluates the performance of the

pavement from factors such as operational costs, comfort,

convenience and safety. These factors are intangible

or difficult to quantify, because a person's judgment

as to the type of service he is receiving from a highway

is highly subjective. It depends on the one hand on the

vehicle and its physical requirements and on the other

by the individual using the vehicle, his physical and

psychological needs. For example, the conclusions

arrived at (as regards the adequacy of the structure)

from someone driving a jeep would not be the same as that

for the same person or someone else driving a heavily-

loaded intercity truck, nor for an intercity traveler

and a man visiting his neighbor on the next block.

The relative importance would also be different

for a person who has been accustomed all his life to

muddy-rural roads and one who has been accustomed to

paved city-streets. Therefore, it will be impossible in

such a framework to define failure precisely and a

performance evaluation, if any, may be expected to be

highly subjective.
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From the engineers' viewpoint, other and more

significant' factors have to be considered in the evaluation

of pavement adequacy. They have to evaluate performance

from a careful consideration of the objective physical

parameters that affect the response behavior of the

facility.

In this respect, factors such as the frictional

characteristics, the type of geometric design, the mechan-

ical properties of materials in the layers, the extent of

deformation and cracking, etc., of the pavement under

load and environment are pertinent. It is therefore

apparent that.a system of correlation is needed to trans-

late the subjective conclusions of the users to the physi-

cally objective manifestations of such conclusions. From

such a mechanism, the performance history of a pavement

in a given environment can be obtained and realistic

maintainability assessments can be made. Since there may

be many combinations of variables that can satisfy certain

performance requirements, the most suitable can be chosen

after the optimization of the Serviceability-Reliability-

Maintainability characteristics of the problems at hand.

This brief discussion of failure shows that

failure is a many-sided problem. It is the result of a

series of interacting complex processes none of which

is clearly understood. Therefore, in order to present an

integrated comprehensive picture of failure, each of its

components has to be studied in detail.- From such studies,
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methods may be developed for analyzing the effect that

each component has on the behavior of the structure.

Finally, all of these methods may be grouped together in

a meaningful way so that for any given environment, the

performance history of a pavement can be predicted. In

such a framework, the failure of a pavement may be con-

sidered as a function of its rideability, safety, and

structural integrity. This study investigates 'failure'

from the "Structural Integrity" viewpoint and it must be

emphasized that this is only one aspect of the 'failure'

problem.

I. The Structural Tntegrity of the Pavement

The structural integrity of a pave'ment may be

defined as its ability to resist destruction and functional

impairment in a particular traffic and climatic environ-

ment, Indicators or measures of structural integrity may

therefore be expressed in the primary and ultimate re-

sponse modes of the structure using Hudson et al.'s chai-

acterization (Figure 1). In the primary response regime,

one can use factors like the magnitude of developed stress,

deflection, strain and permanent deformation, whereas in

the ultimate response mode, the extent of rupture, disin-

tegration and distortion can be utilized.

Since it is known that parameters like the speed

of loading, temperature, position of the load, previous

subgrade type, etc., affect the response behavior of the

facility, it should be equally obvious that these factors



will also affect its structural integrity as defined above.

Q In .other words, the indicators of structural in-

adequacy are the manifestations of the physical failure

of the facility, in the particular load, temperature and

material property environment. It is therefore pertinent

to ask whether analytical modes, mathematical or other-

wise could be found to account for the manner in which a

particular load-temperature-material property-environment

would affect the performance of the layered structure. To

the writer's knowledge, no such all-inclusive model is in

existence at the present time (1969).

This study attempts to analyze the progression of

failure within a pavement structure by linking its primary

and ultimate response behavior through the use of two mathe-

matical models of the prototype - a primary response model

and a cumulative damage model.

It has been observed in the field that deflection

accumulates with the number of load repetitions and the

magnitude of this variable also changes depending on area

of interest, on speed of loading and temperature. The

response behavior of these models must therefore be time-

and-temperature dependent. To represent such behavior,

the structure is assumed to be composed of three layers,

each of which may possess time and temperature dependent

properties.

In the primary response mode, therefore, cumulative

Q effects can be accounted for and the permanent -----------

12



deformation can be predicted. The model is capable of

reflecting the influences of the rate of loading, the

magnitude of the applied loading, material properties and

changes in the depth of the layers on the indicators of

structural integrity, for arbitrarily selected load bound-

ary/conditions. The conditions investigated in this study

are:

a) a stationary load,

b) a repeated load, and

c) a moving load.

The influence of the rate of loading, its magni-

tude and number of repetitions is also presented and dis-

cussed.

Under the combined destructive action of the

traffic and the weather, several distress mechanisms

develop within the structure and propagate either inde-

pendently of each other or through interacting complex

processes to produce eventually any or.all of these broad

groups of distress:

a) disintegration,

b) distortion, and

c) fracture (rupture).

In order to trace the path of such mechanisms from the

time of initiation, through propagation to that of global

manifestation, a simple but general cumulative damage

model is developed. This model is directly related to the

primary response model with which it must be combined

13



so as to predict the conditions under which ultimate dis-

tress is most likely to occur. In other words, the accu-

mulation of damage within the structure over a given time

period is assumed to be commensurate with a particular

internal load, energy , stress or strain state to be de-

termined from the load boundary conditions on the primary

model.

Although it is realized that field behavior results

from a series of interacting complex processes, and that

all failure mechanisms must be analyzed in order to pre-

sent not only a realistic but also a totally comprehensive

picture of failure behavior, only the distress occurring

as a consequence of the growth of fatigue cracks has been

investigated. The motivation for doing this stems from

the fact that an extensive amount of work has been done

experimentally on the fatigue behavior of paving materials.

This makes it possible, to a certain extent, to adopt

certain assumptions as to the manner of damage propagation

in this mode of loading. The damage model is, however,

flexible enough to allow for the influence of the other

failure mechanisms provided that the pertinent failure

parameters are identified. For these reasons, the work

presented in this thesis must be considered only as a

necessary and significant initial step in the area of

failure. It is not all-inclusive.

The study is presented in five broad sections.

The discussion begins with a close study of the conditions



governing the initiation, propagation and attainment of

critical size of the defect area in engineering materials

under arbitrary loading histories. It provides the back-

grouhd work necessary for the development of the cumulative

damage model.

Having established the conditions governing the

physical failure of engineering materials in general, the

pavement system is investigated with a view to identifying

the variables which affect its performance and subsequently

bring about ultimate distress in a given environment. On

the basis of the conclusions arrived at, the primary and

cumulative damage models are developed.

In the section following this development, the sensi-

tivity of the primary model to pertinent variables is esta-

blished; an example is then presented of the use of the damage-

model in predicting the fatigue life of the asphaltic con-

crete in the surface layer of a pavement structure. The

subsequent sections discuss the advantages and disadvantages

of the developed models and suggestions are made for future

work.
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II. 'FAILURE' OF ENGINEERING MATERIALS

The intensive interest that has developed over the

past several years concerning the accumulation of damage

in engineering materials and structures has its roots in

the following questions:

a) the problem of the life prediction of an engi-

neering material or structure under an arbi-

trary load history in a given environment,

b) the amount and distribution of damage in the

material or structure under the arbitrary

loading spectrum mentioned above and,

c) the manner and rate of accumulation of damage

In order to determine the conditions governing

the failure of a pavement structure in a rational manner,

the physics of failure must be known for the materials which

are preconditioned and prestressed from heavy rolling to

establish definite density and strength requirements for

each layer. This chapter presents a concept of damage by

examining the processes of fracture and flow in solid mate-

rials, It describes what the damage is, how it manifests

itself and which parameters can be employed to describe it.

Several observations are made about the distribution

and propagation of damage within a material that is under

an arbitrary loading history. Some well known theories

and criteria which have been postulated for the

16



failure of engineering materials are discussed. The damage

of materials in a repeated loading environment is closely

examined.

Concept of Damage

Damage may be defined as a structure-sensitive pro-

per y of all solid materials; structure sensitivity is

imparted to it through the influence of defects in the form

of microscopic and macroscopic cracks, dislocations and

voids which may have been artificially or naturally intro-

duced into the material, thereby rendering it inhomogenous.

Characteristically, structure sensitive phenomena involve

processes which grow gradually and accelerate rapidly once

an internal irregularity or defect size exceeds a certain

limit. Damage may therefore, be said to occur in a similar

fashion.

The progression of damage in an engineering material

or enginering structure may occur under the application of

uniaxial or multiaxial stationary or repeated loads. The

damage progression has been categorized by two different

conditions: ductile and brittle. The ductile condition

is operative if a material has undergone considerable plas-

tic deformation or flow before rupture. The brittle con-

dition, on the other hand, occurs if localized stress and

energy concentrations cause a separation of atomic bonds

before the occurrence of any appreciable plastic flow.

Note here that no mention is made of a ductile or a brittle

material per se. According to von Karman ( 2), this implies



that failure is not in itself a single physical phenomenon,

but rather a condition brought about by several different

processes that may lead to the disintegration of a body

by the action of mechanical forces. Damage may therefore

progress within a material under the different mechanisms

of fracture and flow depending on the environmental stress,

strain and temperature cdonditions. For instance, low

carbon steel exhibits fibrous and shear types of fracture

at room temperature, below -800C brittle fracture occurs

and integranular creep fracture is dominant in slow strain-

ing at 6000C and above ( 3 ). A material may, therefore,

have several characteristic strength values, when several

fracture mechanisms operate at different critical levels

of the stress or strain components.

Though the mechanisms of damage initiation and

propagation in both failure modes are different, they

have three major points in common:

a) a particular combination of stress or strain

concentration is required to create a defect

nucleus,

b) a different combination of stress or strain

quantities is then required for the propagation

In the brittle mode localized stress and energy concen-
trations create cracks which grow within the material
and upon becoming of significant size propagate rapidly.
In ductile materials however, the defects are disloca-
tions, which move slowly until a critical velocity is
attained; then plastic flow results.



of the defect and,

c) a critical combination of stress and strain

concentrations is required for the transition

from relatively slow to fast propagation to

catastrophic failure.

The distribution and progression of damage in solid

material is in itself a random process which is both spatial

and temporal. Hirata ( 4) working on glass panes, and

Joffe ( 5) on pyrex-glass filaments concluded that the dis-

tribution of internal cracks must be spatial by demon-

strating considerable variability in the breaking strength

values of these materials. Yokobori ( 6) in his investi-

gation of the creep fracture of copper undqr a uniaxial

load, demonstrated a considerable scatter in the values of

time to fracture of a group of specimens taken from the same

stock.. Further evidence of these random processes is to

be found in the works of Yokobori on fatigue fracture (6),

creep fracture and ductile fracture (7) (8), brittle

fracture (9 ) and yielding in steel (9 ).

.The above concepts of damage progression to failure

suggest that an engineering material or structure can fail

under a given system of external loadings when either of

the following two criteria is satisfied:

The distribution of internal flaws is such that;

1) excessive deformation is attained (usually for

ductile behavior), or

0



2) a fracture threshold is reached under an arbi-

Strary loading history (usually for brittle

behavior).

From the foregoing discussion, it should be evident

that the fracture of an engineering material is a statis-

tical process brought about by the interaction of several

complex mechanisms.

Accordingly, over the years several reasons have

been advanced as explanations for the observed behavior of

'damage' in an engineering material, and based on such

explanations several theories have emerged. Researchers

have approached the problem both deterministically and

statistically from the molecular and macroscopic levels.

On the molecular basis, the differences between the frac-

ture mechanisms involved are emphasized, since at this

level, the material is essentially discontinuous.

On the macro level, the criteria for fracture are

basically similar, and utilize the concepts of continuum

mechanics, The fracture laws are generally based on either

local or global energy, stress or strain concentrations

within the material.

Theories like the Eyring rate process (10) developed

for viscous materials, Gnauss theory (11) for viscoelastic

materials and Weibull's theory (12) for brittle materials

have attempted to explain on the basis of a statistical

model some of the phenomena observed when materials like

* metals, textiles, concrete and others fracture under

20



applied stress. The basic assumption is that an assembly

of unit damage processes grows in a probabilistic way to

yield an observed macroscopic effect with temperature fluc-

tuations and activation energy distributions playing a

significant role.

Weibull (12) studied the manner that probabilistic

postulations about the size of the specimen would affect

the fracture strength of a material that fails in a brittle

manner. He assumed that the probability of failure P(a )

of a unit volume as a function of applied stress a is
c

given by

P() = 1-exp[-c/o )m ]  (1)

where ao and m are constants dependent on material charac-

teristics.

ao relates to some inherent ultimate strength

m relates to material inhomogeneity.

Using this approach he showed that the strength of

a specimen of volume V is proportional to ao0V- /m

Though this result has met with some success,

Frenkel and Kontorova (13) claim that Weibull's approach

is devoid of physical reasoning because of his assumption

for P(ac). They assumed that the specimen had flaws dis-

tributed in it in a Gaussian manner and obtained;

p(O) - exp [-(a - )/2U2] (2)

where i = mean strength of specimen of volume, V.

21
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v m strength variance of specimen of volume, V.

From the above equation for P(ac) they determined that the

strengths of specimens with volume V (with many flaws) is

given to a first approximation by

Strength = - (2v).2  (log nV - 2VH (3)

where n = number of flaws/cubic centimeter.

Such statistical theories have a significant advan-

tage over deterministic concepts, because they account for

the role of chance in the behavior of materials. The

Griffith theory (14) for instance, which states that the

reason for the'ldifference between the observed and calcu-

lated strengths is the presence of internal,flaws predicts

the tensile strength of materials that fracture in a brittle

manner under uniaxial and biaxial loading conditions in

terms of single-crack length, a surface energy and a

set of elastic constants. However, if the distribution of

flaws is random, then the formulation of the problem is

necessarily statistical.

Despite its shortcomings, the Griffith theory has

been used quite successfully to predict the occurrence of

brittle fracture in many materials among which are glass,

cast iron, rocks, asphalts, and polymers. One suspects that

one reason for this may be the balancing of experimental errors.

Continuing in the deterministic domain, Nadai (15)

has demonstrated that previous experience with glass,

22.



metals and concrete for instance indicates the existence

of no universal criterion to mark the end of damage pro-

gression in the form of fracture and flow. The failure

theories demonstrate that the degree of success of a

given criterion depends upon the material with which it

is!associated. While it may work well for a particular

class of materials, it may fail often quite hopelessly to

predict conditions of failure for another class.

An example of this is evident in the use of the

maximum shear stress theory, (15),distortional theory,

(15) the octahedral shear stress theory, (15) all of

which work very well for metals and can be justified on

an atomic scale because of the mode of crystal slip in

a polycrystal. However, their applications to the failure

of materials such as sand, gravel and clay are questionable

because the shear stress necessary for slip in such mate-

rials depends also on hydrostatic pressure. For these

materials, the more densely packed the particles, the

harder it is to cause them to slide over one another.

Coulomb treated this as a simple frictional resistance

that is proportional to pressure. He postulated that

plastic deformation will start on a slip plane through

the material when the normal stress on the plane pro-

duces a frictional component which when coupled with the

molecular cohesive strength of the material results in

the shear resistance of the plane. The outcome of this

was the Mohr-Coulomb theory (16), which has met with

23



reasonable success in soil mechanics. Although, the crite-

rion neglects the influence of the intermediate principal

stress-on failure, Bishop (17) and others have deemed it

a satisfactory first approximation for three-dimensional

situations as well.

Parameters of Damage in the Repeated Loading Mode

In many materials, the initiation, progression and

ultimate manifestation of distress in the form of fractu-

ring under a repeated load occurs under the action of two

separate processes: crack initiation and crack growth which

are governed by different criteria. In metals, this be-

havior has been attributed to localized slip and plastic

deformation (18), and to the cyclic motion of dislocations.

In commercial alloys, the presence of inclusions, flaws,

cracks, and stress raisers creates cracks. In polymers

and asphaltic mixtures, the cracks initiate from air holes,

inhomogeneities and probably molecular chain orientations

and molecular density distributions (20).

Regardless of the process of crack initiation, the

mechanism of crack propagation has been explained by

many researchers from a consideration of the energy bal-

ance at the crack tip which deforms as cycling progresses.

The total input energy can be divided into that which is

stored, that which is responsible for creating new sur-

faces and that'. required to deform molecular segments

plastically. The rate of crack propagation is therefore

a function of the energy balance. The propagation is slow

~~__



when a considerable amount of plastic deformation occurs

at the crack tip which as a result of this becomes "blunted".

It is fast when the released portion of the.stored energy

exceeds the energy demand for creating new surfaces.

In polymeric and metallic materials the crack tip

is/cyclically "blunted" and resharpened during the cyclic

deformation (18 )(31 ). For metals several investigators

have assessed the rate of damage progression by measuring

crack length as a function of number of cycles (21)(22).

For SAE 1020 steel, Forest (23) has shown that the

progression of damage is exponential in character (Figure

2). When the stress level is high, the damage propagation

is rapid, but as lower stress levels are approached, the

crack grows slowly with the number of cycles of load, and

crack acceleration precedes subsequent failure of the

specimen. It was also observed that when the stress level

is below the endurance limit, the cracks either did not

form or had their growth arrested.

Erickson and Work (21) discovered that the history

of load application had a significant influence on the

progression of damage, On the application of a high pre-

stress followed by a low stress the degree of damage created

was greater than when the application was vice versa,

The authors explained this occurrence by suggesting that

on the first few cycles of load application, a certain

number and distribution of crack sites form depending on

the stress level, and the application of subsequent loads

25



merely causes propagation from these sites.,

In.order to handle the problem of life prediction

for any material in a given repeated load environment,

several phenomenological and molecular theories have

appeared in the literature,

In some of the molecular theories developed the

statistical mechanics principles and kinetic reaction rates

comcept have been utilized. Coleman (24) and Machlin (25)

employed the Eyring rate process theory to study respectively

the fatigue dharacteristics of nylon fibers and metals.

The general expression obtained by Coleman for fatigue life

is of the following form (24):

s .cos.e.ch .BP

te(P'q = AJ ( iq)
0

8 = constant strain level at. fracture

t = time to failure

A,B = constants related to energy

J ( iq) = Zeroeth order.hyperbolic bessel function
0

loading function = a(t) = P + q sin wt. P>q

The theory implies that for every material a constant

strain level exists at which fracture will occur, but a

variety of experimental results shows that this is not the

case. Moreover, it does not account for progressive inter-

nal damage as only failure conditions are represented.

Mott (26) and Orowan (3) have presented fatigue theories

for metals which take into account the fact that plastic

deformation and strain-hardening Occurs.during fatigue.

26
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Mott's theory attributes the formation of microcracks to

the occurrence of dislocation within the material. Orowan's

assumes the presence of a plastic zone within Which a crack

forms and propagates. Both these theories have given good

agr ement with experimental results at times. The discre-

pancy observed is mainly due to the fact that damage is a

stochastic phenomenon while the theories are deterministic

in nature. To increase their accuracy a statistical approach

is needed.

Despite the fact that several molecular mechanisms

have been shown to be operative during fatigue growth in a

material, one suspects that the process itself may not be that

fundamental in nature. Therefore, instead of searching for

molecular theories, a possible coherent picture can be found

from the continuum mechanics apDroach (with certain reservations).

This has been the motivation behind several phenom-

enological theories of cumulative damage - the Miner theory

(27 ), Corten and Dolan's ( 22). and Valluri's (28 ) to name

a few. The underl-ying concept in these theories can be

illustrated by the work of Newmark ( 29).

In this approach, it is assumed that when a material

is in a given load and climatic environment the degree or

percentage of internal damage D i is at any time commensurate

with the appropriate number of load repetitions-N i . (i.e., for

O<Di<l, o<N.<Nf). With this assumption, a damage curve

exists for every constant stress or strain repeated mode

I
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of loading. Since damage in effect implies that a loss in

original capacity can result from either the creation and

growth of plastic zone or the initiation and propagation

of cracks, the strain developed in the material under load,

the crack length, and the rate of crack growth can all be

use as damage determinants.

The above reasoning is currently utilised in constant

amplitude stress or strain fatigue tests. If a constant

stress amplitude test is taken as an example, the resulting

percentage of damage (Di) vs. the number of load repetitions

(Ni) curves for various stress amplitudes may be plotted

up as shown in Figure 3.

The higher the stress level, the fewer the number

of load application to failure. When cycle ratios (-) are
N

utilised in place of number of cycles (N) as abcissa, two

different plots of damage (D.) vs. cycle ratios (.) may
N

result depending upon the constitution of the material.

The damage law operative in Figure 4 is interaction,

free, i.e., the fraction of damage instituted in the material,

at all levels of stress is the same for a given cycle ratio,

Figure 5, however, illustrates the direct opposite of such

a law. In this figure, the damage law is not dependent on

a given cycle ratio, the fraction of damage varies directly

with the stress level. Several damage theories fall into

one or the other mode of damage accumulation depending

on the consittution of the material.
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Generally speaking, the combined effects of damage

and recovery processes resulting from microstructural

changes imply that the damage curve should have different

forms for different stress levels and loading histories.

Some damage theories, such as those of Miner and Williams,

assume a unique degree of damage caused by a stress cycle-

ratio (a) applied at any time. Williams' theory (30)

makes a similar assumption but with respect to time-ratios

t
( ), where t = elapsed time from start of experiment, and

T is time to failure, In both theories a linear summa-

tion of the ratios results, at failure, with the follow-

ing expressions:

n n
i.e. . (-) = 1 (Miner) and (5)

i=l Ni

n .. t.
EZ( - ) = 1 (Williams). (6)

i=1 Tfi

with

n. = number of cycles applied at stress
1

level-S.

Ni = number of cycles to failure at stress

level-S i

t i = elapsed time'of application of strain

rate level-R i

T = elapsed time to failure at strain

rate level-R.
1
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Both theories have a major shortcoming in that prior history

and sequence of events cannot be accounted for. Despite this

shortcoming, Miner's theory has been successful when applied

to rate-insensitive materials. Williams' theory had similar

success when used for rate-sensitive materials. In Corten

and Dolan's theory (22) the damaging effect under a stress

cycle is considered dependent on the state of damage at any

instant, and the expression for damage is

D = mrNa (7)

where

N = number of cycles

r = coefficient of damage propagation which is

a function of stress level

a = damage rate at a given stress level which

increases with number of cycles

m = number of damage nuclei

The Corten and Dolen. approach is a rational attempt

to modify Miner's theory. The determination of the signi-

ficant parameters 'm' and 'rt, however, requires the per-

formance of a considerable number of experiments. In the

simplest case, where the loading history can be character-

ized by two sinusoidal stress conditions, the parameters

'r' and 'm' may take on many different values depending upon

the absolute magnitudes of the two sinusoids and their

relative relationships. In addition, rate effects cannot

be adequately accounted for. Consequently in terms of
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usefulness over a wide class of materials and circumstance,

the Miner theory is preferable,

Several researchers (31).(32)(33) have related the

rate of crack growth to the localized energy and elastic

stress conditions existing at the crack tip. The expres-

sion obtained when this fracture mechanics approach is

used can be given in general form, as-

dc = Ack a (8)
dN

where

A,k,k are constants and

c = crack length,

a = stress at tip of crack,

N = number of load cycles.

The constants k,£, are dependent on the properties

of the material tested, and on the boundary conditions of

the problem in question (31)(32)(33). Lin (34) noted

that when £=2'0 and k=1'0, the plastic zone-size ahead of

the crack tip is small in comparison with the crack length

and specimen thickness. Paris and Erdogan (32) found that

the use of values 2'0 and 4'0 for K and k respectively

yielded good agreement with experimental results. Paris

(78) by considering the energy dissipated per cycle of

load application as being proportional to the plastic

zone-size ahead of the crack tip found

dc dW
aN BENi



where

dW - A (AK) 4  A c2 a4

Ir-1  1

W = 'energy dissipated

A = constant
1

c = crack length

a = stress at crack tip

K = stress-intensity factor = 2cH

It is evident that these analyses have attempted to

take rate effects into account in an indirect manner.

When conditions of fracture are brittle in nature, then

these analyses are accurate, However, in the presence of

tearing action, the property of the material changes with

time and thereby affects the corresponding response behavior

to application of load, .and such analyses cannot account

for this kind of behavior, Despite these shortcomings,

analyses of this type are attractive in the sense that the

fatigue process has been linked to microphenomena on a

phenomenological basis.

In order to take rate effects, order effects and

prior history effects into account Dong (35) postulated

a cumulative damage theory to predict the life of a mate-

rial under any arbitrary loading history, His assumptions

were:

1) the material is undergoing an arbitrary loading

history

2) life has full value at zero history and zero



value at failure,

3) temperature conditions are isothermal, and

4) damage and recovery processes can be accounted

for.

The mathematical expression obtained is

r; / - •=t
I(t) = f[Yij(r)] (10)

where

£(t) = life remaining in the material at time

-t,--after damage -has accumulated dur-

ing -w< <t,

T = generic time,

t = present time,

any set of variables that can be used

to describe loading history,

fl ] = damage functional.

This theory can account folr the effect of prior

history and sequence of events in damage behavior because

the damage functional represents an infinite series ex-

--pansion of hereditary integrals of the non-linear type.

t
r

L(t) L.+

+ 4.I ,kd...e,. de

S33
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where

L = life at zero history,

tf = time to failure,

= linear damage kernel,

8i = non-linear damage kernels for i>l, and

the rest of the expression represents cumulative

damage which is zero for t=O and equal to one at

failure, when t=tf,

The damage behavior of any rate-dependent or rate-

independent material can be predicted under any arbitrary

loading history using this approach. In the fatigue load-

ing mode however, it can be shown that when a special form

is chosen for the linear kernel , the Miner and Williams

theories are recoverable (35'). This shows that the inabil-

ity of Miner and Williams's theories to demonstrate the

influence of prior history and sequence of events on fail-

ure is due to the restrictive form of their damage kernels.

The above discussion on the damage created within

a material in the repeated loading mode lends much credence

to the general proposition that its manner of accumulation

is a consequence of the fact that engineering materials

and structures are inhomogeneous. Under load, various

regions of stress concentration exist within the material,

and because of its inhomogeneous nature, a distribution

of strengths is created such that some regions are weaker

than others. When the strength of a weak region is exceeded

it is quite possible that a crack may initiate and cause

I_~_ _ _ _



a redistribution of stresses with attendant crack formation

in other regions. As the load is repeatedly applied they

propagate and -grow to a size which eventually renders the

material or structure unserviceable. When this event

occurs, fatigue damage is completed.

In light of the several important observations that

have been made in regard to cumulative damage in the repeated

loading mode, there are a few substantial points to remem-

ber in the course of developing a cumulative damage theory

for any material or structure:

a) Damage is a function of the inherent inhomoge-

neity of materials and structures; its initi-

ation, progression, and attainment of a criti-

cal magnitude are therefore stochastic pro-

cesses,

b) For a given temperature, damage sites are nu-

cleated under unique stress or strain condi-

tions within the material. They propagate

under stress or strain states different from

initial conditions until a critical state is

reached.

c) The state of damage at any time is a function

of the material property and load history.

i.e., damage is not unique, it is a function

of stress level and microstructural changes

within the material.
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d) Assumptions have to be made regarding the manner

in which damage propagates, and regarding the

parameters utilized to delineate its progres-

sion.. The damage surface is essentially ex-

/ponential in most materials, but the charac-

teristics of the surface have to be determined

from the stress and microstructural conditions

existing in the material under load. For

instance, if stress, strain, time and tempera-

ture conditions within the material are such

that brittle fracture is warranted, then the

rate of damage accumulation is one of fast

growth to failure. If a tearing kind of frac-

ture is warranted, gradual accumulation of

damage is experienced.

The next question that arises in view of the basic

premise of this investigation is the possibility of develop-

ing a cumulative theory of damage for pavement structures

composed of different engineering materials, utilizing the

basic concepts of damage progression presented above. Such

a theory may be able to bridge the rather wide gap between

states of loading in the field and the relatively simple

experiments on a mathematical model of the structure. The

ability of the structure to adjust itself to these loadings

should yield in symbolic terms, with some degree of reli-

ability, the relationships between the external loadings
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and the physical constants which measure the Icompetence

of the system To. do this, it will be ne.cessary to know

how a pavement fails in practice.. The information thus

collected must be interpreted in the light of the failure

mechanisms governing the performance of the materials

comprising the pavement. When this is done, an adequate

failure theory will be9in to emerge. To this end the

performance of a pavement structure in a repeated loading

environment is examined in the next chapter within the

context of internal damage development.
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III. CLASSIFICATION OF PAVEMENTS OBASED ON MECHANICAL

'RESPONSE AND IDENTIFICATION OF THE PARAMETERS. OF DAMAGE

The response of a pavement structure in a given

load and climatic environment has been divided for the pur-

poses of analysis, into the primary response and ultimate

response modes-- (See Chapter I). This approach allows

the categorization of pavement systems according to their

manner of resisting structural impairment in the given

environment. It further helps to identify and clarify the

parameters responsible for internal damage progression.

The classification consists of three separate categories

of pavement systems: the frictional type, the flexural

type and the frictional-flexural type. Before discussing

the delineation of the mechanics of such a categorization,

it is necessary that the concept of. damage be first pre-

sented.

Figure 6 is a simplified two dimensional simulation

of the variation in the performance level of a pavement

structure with increasing time or number of load repeti-

tions in a given environment, The figure simply demon-

strates that the performance level of the structure

diminishes in some manner until extensive repair is

needed ( i ).

The curve indicates that under the combined

stochastic action of traffic and the weather, pockets of

_ __



.local distress are created within the system - the primary

response. These propagate in a manner which depends upon

the composition of the materials in the layers, and bring

about a loss in structural integrity with the passage

of /time. The base level BL represents an unacceptable

level of performance as determined by users of the

facility and characterises the time at which the extent

of rupture and disintegration become intolerable -- the

ultimate response. At any instant of time ti, Pi repre-

sents a level of performance, and associated with it is

the degree of damage Di which has developed within the

structure over the period of time t = 0 to t = ti ,

Using the base line BL as a base of operations

for the facility, the figure demonstrates that at zero

time, or zero history of load applications, Pi and Di

have values equal to 1.0 and 0.0, respectively. This

means that initially the life remaining in the facility

is one hundred percent of its full value. At anytime

ti under the combined destructive action of the traffic

and the weather, irrnal damage develops and the remaining

life is less than the initial value.

The integrity level of the structure at any instant

t. is therefore 1.0 minus the amount of damage accumulated
1

within that time.



i.e. P(t1 = -Dii

or 1 = Pi(ti. + Di (t.) (12)

In view of the discussion on damage in Chapter II,

the concepts of serviceability, reliability, and maintain-

ability discussed in Chapter I, and the observations of the

properties of paving materials (36 ), it is obvious that

the quantities Piand Di are probabilistic in nature. Thus,

depending on the temporal and spatial distributions of

damage within the structure the real instantaneous per-

formance level will be on, below, or above the drawn

curve, This means that each point on the curve has a

probability of occurrence and a frequency distribution

of values associated with it and this fact must always

be acknowledged.

The preceding discussion was conducted in the two-

dimensional domain, with the intent of illustrating pre-

cisely and clearly in a simple mathematical way, the manner

in which damage accumulates in a pavement structure in a

given traffic and climatic environment. The real picture

is, however, more complex. The observed response of

the structure depends on rate effects (36 )(37 ), the

position and magnitude of the applied load (38 ), climate

(39 ), materials type (38 ), previous traffic history (38 ),



temperature (38 ), and constructional variables ( 41 ).

It -can therefore be linear or non-linear depending upon

the manner in which these variables combine. If the system

behavior can be characterised as linearly or non-linearly

elastic, plastic or viscoelastic, the response'will have

similar characteristics. Then at any point ti in time a

'performance surfacet which is a function of these variables

exists such that its inverse is a 'damage surface'.

i.e. P (Rj,Xj,Y ,M,H ,T,C...) = 1-D (Rj,X ,YjM,HjTC.,o)

where Pj

RJ

X  Y.

M

HJ

C

D.
3

= portion of surface utilized by time t

= rate effects

= coordinates of load

= material properties

= previous traffic history

= constructional variables

= portion of damage surface utilized by time t

Within this context, at any instant, and at some

point on the surface, a prediction of the percentage of

total life already used and that remaining within the

structure can be made. Therefore, the damage surface as

well as the performance surface is n-dimensional with
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.construction, maintenance, load and environmental para-

meters playing a significant role in its determination.

The development of such a surface is not immediately

possible. This, however, does not mean that the problem

is intractable, because the possibility of reducing 'n'

may exist. In fact such a technique is used in the

development of yield surfaces for metals. The yield

surface is postulated to be a function of the stress

tensor, its derivatives, and a work hardening term (42 ).

However, because of the difficulty experienced in develop-

ing the surface certain approximations are made and the

yield surface is expressed only as a function of either

a stress or strain tensor. The pavement area does not

preclude the application of a similar technique, and the

initial stages in the development of such an approach to

the damage problem is discussed in this thesis.

All the significant factors that have a role to

play in internal damage progression can be generally

accourted for, providing that they are translated, through

the properties of the layer materials and the response

behavior of the pavement structure for a given quality

of construction and maintenance operations, into stress

and strain quantities. In other words, the magnitude

and type of the stress and strain concentration (tensile

or shear) within the pavement structure is a function of



not. only the characteristics of the applied load but

also of the spatial distribution of layer material pro-

perties and local defects. A knowledge of the material

properties yields information on the kind of structural

responseto expect. From such information postulations

can be made about the manner of internal damage progression.

This technique takes into consideration the two most

significant structural properties - material properties

and response behavior - which reflect the influence of

all the others. It can therefore be used to classify

pavements into three broad groups - the frictional

group, the flexural group and the frictional-flexural

group - so that the stress-strain parameters of damage

progression in each group can be identified.

The frictional-type pavement is composed of granular

materials in which load transfer occurs at interparticle

contact points by purely frictional action. The deform-

ation that takes place under load is purely of the shear

or flow type, and for each application of the load a

permanent deformation results. Such pavement structures,

generally require a thin type of wearing course which

can deflect conveniently with the rest of the structure

under repeated loading. In order to protect the under-

lying materials, the wearing course should possess good

ductile properties as opposed to brittle properties



since toughness in .this case is more important than

tensile strength. Howe.ver, when the deformation becomes

excessive, cracks' may appear in the isurface 'due to the

randomly distributed cumulative shear action in the sub-

grade, Therefore, in a frictional-type pavement, damage

can be considered to develop as a result of shear action.

Consequently the damage parameter must somehow be asso-

ciated with shear stresses and shear strains,

In a flexural-type pavement, the materials in the

layers are capable of resisting -the applied load

through the action of tensile stresses which develop as

a result of the flexing action. This implies that

bending is the only mode of deformation and upon the

repeated application of load, repeated flexing results.

In such a pavement, fatigue action is very important,

and though the overall shear support of the components

is adequate, cracks develop very early due to the accumu-

lation of tensile strains. These propagate slowly or

rapidly in a random manner depending on the properties

of the layer materials and the rate. of the repeated

flexing action. The fatigue properties of the materials

in the layers are therefore a prime concern during the

design stage of such facilities. Damage in such pave-

ments is propagated in the fatigue loading mode under

the action of tensile stresses and tensile strains.
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The third type of pavement posseslses both frictional

and. flexural. materials, Its :structural integrity. under

repeated load is impaired by the destructive tensile and

shear action that is manifested within the layer-com-

ponents, It is conceivable that if one action tensile or

shear should dominate in creating damage within the struc-

.ture, the failure would occur in that mode, On the other

hand, it is also possible that both actions may play a

significant role during the life of the facility depending

upon the environmental conditions. The damage parameter

is, therefore, associated with both tensile and shear

stresses and strains.

The above classification of pavements accounts for

all types of pavements currently in existence ( 40 ). It

also makes possible the tractability of the damzage pro-

gression within such structures. One can generally say

that the damage 'build-up' occurs in three different modes.

When the behavior of the pavement structure is completely

frictional, damage initiates and progresses by plastic

or shear flow until the appearance of surface cracks termi-

nates or aggravates the situation. When flexural behavior

is pertinent the damage, initiation and progression occur

by the development and growth of internal cracks, under-

the action of tensile stresses and strains, However,
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in the .frictional-f.lexural type of pavement, the' damage

initiates and progresses by shear flow and/or by crack

growth. Consequently a pavement str.ucture may show signs

of distress either from the independent action of excessive

deformations, the isolated actibn of 'fatigue', or from

both failure mechanisms working together, -This indicates

that in order to analyze the response behavior of a

pavement structure and predict the failure behavior, a

number of models which would account for such behavior

inagiven traffic and climatic environment should be

developed.

At the present time, three such models seem to be

appropriate:

a) A model is needed for the representation of the

linear and non-linear behavior of paving

raterials,

b) The pavement system must be modeled in terms of

the geometrics of the applied load and the

structure so that the utilization of the former

model within such a framework will aid in the

prediction of the developed stresses and strains

in a given environment and,

c) A model that must be capable of handling linear

and non-linear damage behavior.
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Finally in order to achi.eve .realistic predictions,

it is. essential to. combine these models in a probabilistic

manner, since the progression of damage as has been demon-

strated is stochastic in nature.

In this study, only the linear and deterministic

aspects of pavement behavior are investigated as a first

approximation. Two models are developed: the first

accounts for the primary structural response as defined

in Chapter I by using models 'a' and 'b' above to pre-

dict the magnitude of the developed stresses and dis-

placements under stated boundary conditions; the second

establishes the link between the primary apd ultimate

response behaviors through the use of model 'ct. Although

model tct - the cumulative damage model - is general ehough

to treat failure in any mode, the example presented con-

siders only failure in fatigue. This failure mechanism

is used because of the availability of experimental data

in the literature,

1, Pavement Models for Primary response.

All models that have been developed for the analysis

of stresses and displacements of pavement structures fall

into two principal categories: those concerned with the

elastic analysis of a half space and those concerned with

the viscoelastic analysis. These analyses, in general,

have been based on the assumption that the half space



1s :composed of

a) a linear elastic, homnogeneous, and isotropic

material of semi-infinite depth, and,

b) a system of layers, each of which may be linear

elastic or viscoelastic, homogeneous, isotropic

and in general weightless.

It has been assumed on occasion that either continuity of

displacements (free friction) or absence of shear stresses

exist at the interfaces of the layers.

The simplest model, the homogeneous half-space, is

one in which no change in material properties occurs

with depth or with horizontal extent. Boussinesq (43 )

initially solved the problem of a point load on a homo-

geneous half-space in 1885, His work was subsequently

modified by various authors ( 44) ( 45), until Alvin

and Ulery (46 ) presented a comprehensive table for the

stresses and displacement at any arbitrary point in a half-

space. under a uniformly distributed circular load, for

arbitrary Poisson's Ratio.

The homogeneous half-space has, since that time, been

used extensively by several investigators as that repre-

senting a layered pavement structure. The shortcomings of

such an assumption are readily obvious. Though the model

is relatively simple to use, it lacks the capability of
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.accounting. for. the thickness -of the layers and the quality

of the materials employed in the cons-truct.ion.of a real

pavement structure. In order to account for these. variables

in the matematical model, semi-infinite. bodies composed

of distinctly different materials in layered form are used

and the distribution of the stresses and displacement

induced in them by a variety of load and displacement

boundary conditions are analyzed.

The analyses of layered half-space systems can be

categorized in two groups; those involving rigorous

elastic theory., and those involving plate behavior of the

top layer. These two analyses are significantly different

as result of the dissimilarity of the boundary conditions

-used.

Westergaard (47) developed the initial solutions

for an elastic plate resting on an elastic subgrade which

could undergo only vertical displacements or provide

vertical reactions (a Winkler foundation). Since then,

several modified forms of his method have appeared in

the literature.

The first solution for both a two-layer and a three-

layer system using the elastic theory was given by Bur-

mister (48). He obtained his solution by assuming the

existence of a stress function involving Bessel functions

and exponentials from which he was able to develop and
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Dresent .the :genera]. equations and soLution.for both two

and three.-layered systems, with the constant s. for the top-

layer also evaluated.

The use of a layered elastic sy.stem as a mathematical

model for a pavement structure has been quite extensive,

and several of the presently available design methods for

flexible pavements are indeed based upon such analyses

( 49). This model takes care of the shortcomings of the

homogeneous half-space. The thickness of the layers

and the properties of the materials from which the layers

are made are shown to be significant in the calculation

of the developed stresses and displacements.

The model is based upon the assumption that each

layer is composed of a linear elastic material, and

the elastic constants of the linear elastic material, and

the elastic constants of the layers are the only pro-

perties that enter into the analysis. This has resulted

in several discrepancies when models of this type are

used either to predict the performance of a real pave-

ment or to evaluate the suitability of different materials

for use in the pavement structure. Among these are the

incapability of the model to account for rate effects, and

the accumulation of deflection.

It has been shown that the majority of conventional

paving materials are not purely elastic, and their
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mechanical response is generally time [depenident (36) (38).

This indicates' that :the' response of such materials

depends upon their entire loading history. To account

for this time dependency, use is' made of the theories of

linear viscoelasticity for both the' characterization of

the paving materials and the development of mathematical

model for stress analysis in pavement structures (50 ) (51)

(52 ).

The viscoelastic models for the analysis of stress

and displacement in a pavement structure differ from

those of layered elastic systems only in the material

characterization used for each layer. The'.geometry,

boundary conditions and loading functions are exactly

similar in the two models. Such similarities between

the models have resulted in the development of a techni-

que, known as the correspondence principle, whereby the

solutions to the elastic problems can be used to obtain

the viscoelastic solutions of the same problem.

The technique of solution presented in the initial

parts of the primary model development in this thesis

is that of Ashton and Moavenzadeh ( 54). Parts of their

work have therefore been used.intact to keep the necessary

continuity of the presentation. The analysis of the

stresses and displacement in a three-layer system is



formulated. following Burmister's. approach,.. The' formu-

lations are. first presented for elastic systeems and then

for viscoelastic systems. for the stated b:oundary condi-

tions. A detailed description of the' model is given in

Chapter IV.

2, Model on Ult'imate' Response Mode.

The pavements discussed in this section belong to

the frictional-flexural group and are therefore representa-

tive of many current pavement sections. In this type of

structure 'fatigue' damage occurs in the surface layer

which by. our classification, behaves in a flexural

manner. The culmination of this kind of action is the

appearance of alligator .crack patterns randomly distri-

buted on the .surface of the structure. This subsequently

leads to the rapid deterioration of the entire pavement

structure due to either the resulting relatively large

increase in the transmitted stresses or the penetration

of water into the underlying materials.

The occurrence of fatigue in pavements has been

observed or noted for a considerably long period of time.

Porter (55 ) in 1942 observed that pavements do in fact

undergo fatigue, In 1953, Nijboer and Van der Poel (56 )

related fatigue cracks to the bending str.esses caused by

moving wheel loads. Hveem ( 57) also correlated the
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per'formance of- flexible pavements with *defle:ctions

under. various repeated axle loads . The AASHO & WASHO

tests (39 ) confirmed these observations by relating the

cracking and initial failure of pavements. to repeated
/ -

loading of the type discussed by. Seed.d et., al. (58)

The field observations of this kind of behavior led

to the laboratory investigation, Many researchers have

conducted laboratory experiments so as to: determine the

fatigue properties of paving materials and to investigate

the possibility of extrapolating laboratory results to

existing field conditions, To this end, Hennes & Chen

(59 ) conducted tests on asphalt beams resting on steel

springs and subjected to sinusoidal deformation with a

variety of constant amplitude magnitudes. They discovered

that as the frequency of applications is increased, the

creep-rupture compliance of the material decreases. On

the conduction of similar tests by Hveem (57 ), on beams

cut from actual pavements the same results were obtained.

Monismith ( 60) in his tests on asphalt beams

supported on flexible diaphragms mounted on springs under

constant stress amplitudes discovered that increases in

the stiffness of the material resulted in corresponding

increases in fatigue life, Saal and .Pell (61 ) conducted

similar tests. from which the tensile strain to failure
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(ET ) versus the number of cycles to failure, or fatigue

life (Nf) rilation, was found to be Nf = 1.44 x 10-16

(1/sT) 6 They further found that this expression does not

vary with. temperature, rate of loading and type of

asphalt. These results are not surprising since one should

expect such factors to affect the developed stresses and

not the strains through the stiffness of the material. For

the mixtures tested, no endurance limit was observed up

108 applications, as is to be expected, since the mode

of failure is one of crack initiation and propagation to

failure at each stress level. The general conclusion

arrived at by several authors from such tests indicate

that the fatigue life of an asphaltic paving material

is a function of several variables - the tensile strain level

Fig7 (62 ) to which the specimen is subjected, the

amount .of asphalt, the age of the mixture, temperature, the

stiffness of the mixture, its density and void ratio.

Mode of Loading: Another important factor in such tests is

the mode of loading. In controlled-stress tests for example,

fatigue life increases not only as the stiffness of the sample

increases, but also as the temperature decreases. However,

in strain-controlled tests, the fatigue life decreases as

stiffness increases; for this test, at low



temperatures no change "is observed in fatigue life and

as temperature increases the fatigue life inc-reases as

well ( 63) (6 4:) ( 65). Controlled stress and strain be-

havior can be explained froma consideration of either the

time t'emperature superposition principle 'or the amount

of energy stored in the sample when such tests are performed.

In controlled stress tests the minimum energy stored per

load repetition can be achieved by minimizing deflection

and causing a resultant increase in fatigue life. In

controlled strain tests the reverse is true. This implies

that for a specimen of a given initial stiffness and

initial strain, failure under a controlled stress mode

of loading will occur sooner. Therefore, when extrapolating

laboratory results to field conditions such considerations

have a significant role to play, In other words, what is

the mode of loading in the field? Is it controlled stress,

controlled strain or a mode between the two extremes?

Answers to such questions have been obtained by Monismith

( 67) who through the use of a mode factor suggested that

for surface layers less than 2" thick., the controlled

strain mode of loading results, while for those layers

6" thick or greater, the controlled stress mode of loading

is applicable. For thickness between these, an intermediate

mode 'of loading is appropriate.
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Tests have also been performed on granular and other

paving materials so as to determine the significant char-

acteristics of their behavior under repeated loading--(Fig. 8)

(58) (66). The results of such tests generally indicate

the importance of the duration of stress application

ani rate of deformation, the frequency of load application

(67), the type of aggregate and percentage of material

passing the number 200 sieve (58), the void ratio (58),

degree of saturation and confining pressure and stress

level on the response behavior of the soil when measured

by a quantity called the resilient modulus (the resilient

modulus is defined as the diviatoric stress divided by

the recoverable strain).

For untreated granular materials, Monismith et- al.

(58) suggested an expression to define the influence of

stress conditions on the modulus of resilient deformation.

M - - Krn or K(O)n' (13)r 3
r

where

M = Resilient Modulusr

K = constant

8 = a +o a+ a (principal stresses)
1 2 3

I2 n, n = constants

~I~_~



ad = repeated axial deviator stres.s

E = resilient, axial strain corresponding .to- a
r

specific number. of load applications,

Although this is an empirical expression it, however,

points up the 'important fact .that .the 'response .of granular

and treated materials in pavement sections depends upon

the characteristics of the applied loading, the material

and the existing confining stress. Since the stresses

due to load vary in both the vertical and horizontal

directions in a pavement section, the influence of stress

on resilience must be. properly accounted for to adequately

predict the deformation characteristics of the pavement

section. The model or method used for the determination

of the developed stresses in the pavement must account

for this observed behavior,

It would appear, therefore, from the foregoing review

that one would first determine the fatigue properties

of the pertinent layer materials under conditions re-

presentative of moving traffic and environmental conditions

before using a cumulative damage theory.

Several authors have used the elastic theory as a

first approximation to predict the observed behavior of

asphaltic, granular, and the untreated granular material

in a moving traffic environment. The results have not

been successful because of time and temperature dependent
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behavior of paving materials. The viscoelastic analysis

discussed in the following section would provide a better

means of evaluating the stresses in the pavement sections.

Another important development from the laboratory

results is the attempt to make use of the experimental

results to predict the occurrence of fatigue damage in

a real pavement structure, To this end, the fracture

in the field has been attributed to tensile action in

the bottom of the pavement Fig. 9 (67), and the damage-

determinant has been labelled as the tensile strain level.

In general, the results of controlled-strain tests have been

represented, after statistical analysis, as:

N = K(1/S)n (14)

N = service life (number of load applications

to reach a particular level of damage).

s = magnitude of the tensile strain repeatedly

applied,

n = constant

K = constant dependent on:

a) temperature

b) asphalt stiffness

c) asphalt source

d) aggregate characteristics

1_~_~_ I__~~~___~_ __ ___ _



SThis re:sult was,: how ever, obtained, from simple

.loading te.sts in which the load condition remains un-

.changed throughout .the li of the ispecimen. Since the

real :loading conditi.on represents a spectrum of load

magnitudes: repetitively applied in a random fashion,

compound loading .considerations must be made. Deacon

and Monismith ( 69), suggested a modification of the

usual Miner ts theory of linear summation of cycle ratios.

They point out that such an approach has the desirable

features of procedural simplicity., a wide range of appli-

cability to different types. of compound loading, minimum

data requirements, preferably of a simple loading

nature, a theoretical basis and predictive accuracy.

Their analysis, however, is rather difficult to interpret.

Also, the sequence of events and prior history cannot be

accounted for in such an approach as was indicated in

Chapter II.

To summarize the foregoing discussion, it would appear

that if the tensile strain level in the surface layer is

the damage determinant, then a mechanism of ascertaining

the strain under various wheel load magnitudes is desired.

Using this model and a cumulative. damage theory in which

the fatigue characteristics have. been represented, the

prediction of the probable servicel life can be made by

determining the time or the number of load repetitions

_ ~__~_



.at which the. degr.ee. of damage in th:e. :surface layer reaches

uni.ty .. .The. models -de.veloped to: do this are pres'ented and

discussed in the. next two' chap.ters.
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.IV.' THE, PRIMARY MODEL:

:Statement: .of, :the 'Problemt and- the Method o0f Solution

The geometrical model that was seleclted as repre-

sentative of the pavement for this investigation is a

multi-layered, semi-infinite half space consisting of three

distinct layers as shown in Figure 10 , It is assumed

that each layer has distinct material properties which

can be characterized as linear elastic - or linear visco-

elastic.depending on the problem that is being considered.

The variables of interest are the components of the

stress tensor-and "the displacement vector .at any point

in the system. The load is considered to be uniform,

normal to the surface, and acting over a circular area.

The following load conditions are considered,

1, A stationary load is applied and maintained at
the same region of the surface for an infinite
period of time,

2. The same load of step . is then repeatedly
applied with a specified frequency to the same
area on the surface of the pavement.

3. The single wheel load of step 1 is made to
travel at a constant velocity V along a straight
path on the surface of the system (Figurell ).

For each of these loading conditions, the components

of the stress tensor and the displacement vector induced

at any point in the system can be. de.termined. The expres-

sionsso obtained for the normal vertical deflection
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are presented in detail for loading .conditions. 2 and 3.*

Those: de.t:ermined for the. -other. components. of the'

stress tensor and displacement vector under .loading

condition 1 - are also presented in.. detail. This is in

keeping with the assumption that these variables can be

utilized as indicators of structural integrity in the

Primary Response Mode of the system.

The problem in general, excluding the stationary

loading case, is a dynamic problem and the inertial

terms, if significant should be.added to the. equations

of motion. The effects of the inertial termsS however,

become of significant importance when the velocity V

of the motion is of the order of magnitude of the dis-

tortional or the dilational wave velocity of the medium.

For linear viscoelastic materials (70 ) the distortional

velocity is v = (we)/)1/2 where G{O} and f are respectively

the initial value of the shear relaxation modulus and the

density of the material. When V/v << 1, the inertial

terms are negligible and the analysis can be conducted

in a quasi-static condition, This condition is assumed

applicable to..the problem.discussed..in this study.

.*This does not in any way detract from the generality

of the method to be presented, as the other stress

and deflection variables can be. de.termined in the same

manner.
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In order .to obtain the viscoelastic solution .for

the 'stres.ses: and displacements; for the. various loading

conditions considered, the correspondence principle is

utilized. This principle states that if the elastic con-

stants in the elastic solutions. to a given .boundary

problem are replaced by operator forms of the stress-

strain relations, then the viscoelastic solution will be

obtained.

The above principle was used by Ashton and Moaven-

zadeh ( 54) to obtain the viscoe'lastic solution for the

stresses and displacements induced ina three layer visco-

elastic system subjected to a stationary .load. It was

then subsequently modified, in this work by- using the

principles of the response of initially relaxed linear

systems to imposed excitations to obtain the solutions

for the moving and repeated load history conditions.

This method of analysis has been selected largely

because the viscoelastic behavior of the system materials

can be realistically represented by stress-strain relations

of the linear and non-aging type, such as hereditary

integrals. The steps involved in its application to a

boundary value problem as the one considered in this

thesis can be concisely stated as. follows:

I



l. --The. elasti-c .solution for the surface ideflection
of the system due to a stationary applied load
is first .obtained (54 ).

2. The "correspondence principle" is applied to the
above solution in the form of hereditary inte-
grals. for the stress-strain relations, to obtain
the viscoelastic solutions (54 ),

3, The expressions for the surface ideflection due
to the repeated and moving loads are then deve-
loped through the use of Duhamel's superposition
integral for linear systems ( 71).

Elastic Formulation

The elastic analysis for layered systems has been

formulated by several authors using basically Burmister's

approach. An explicit statement of the constants in-

volved is presented in reference ( 72) for the three-layer

system.

In the following analysis, Poisson's ration has been

taken equal to 1/2 in each layer (bulk modulus infinite).

This assumption has been made because of the simplifica- ?

tions that result in the numerical computation.

Assuming an axi-symmetric load distribution, the

solution to the equations of stress-strain relationships,

equilibrium, compatibility, strain-displacement for a

general incompressible symmetrical elastic body can be

written in terms of a stress function in the following

form.

( c
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Str.ess: Components.:

a = 1 5,-V .-az -Zz

or
ar]

2

ao  E.5v --
az r ar

Trz = .5V2 _
ar az 2

(.vertical s:t.re.ss)-

(radial stress)

(circumferential stress)( 17)

(shear stress)

Displacement Components:

... 5 1w = l5[ • 1
-E ar2  r rE Br r Dr

u a1.5 2

E 3r3z

(vertical displacement)

(radial displacement)

where

V= +
• r 2 r 3r 9z 2

If the stress function t is chosen in the following

= mz -mz=J0 (mr)[Ae - Be0
+ Cemz - Dze - mz ]

_~~~ 2~_..

( 15)

( 16 )

( 18)

( 19)

( 20)

form

a[.5.v2

(21)



the. .compatibility. equation .V2B = 0 is identically satis-

fied.

The expressionsl for stresses and displacements can

be., found by substituting equation (21 ) into equations

(15) through ( 20).

Boundary Conditions

The boundary conditions for the 'lower layer are

that all stresses and displacements go to zero when z

becomes infinite. This results in A = C = 0, for this

layer as is evidenced by the form of 4. At the surface,

the boundary conditions are that the shearing stress

must be zero

rz = 0 ( 22 )

and that the normal stress is given, for a uniform circular

load of magnitude q and radius a as

z
z=-H

1

-= -qa Jo(mr) Jl(ma)dm

It will be convenient to use an incremental load
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' = - J o (mr)J (ma) ( 4)
z=-H

and then integrate the final expressions from o toi *

with respect to m, and multiply this result by qa, which

will then yield the same result.

The remaining boundary conditions involve the con-

tinuity at the interfaces between the layers. At each

interface four conditions must be imposed. Assuming

continuity of the displacements, vertical stress, and

shear stress across an interface, the boundary conditions

between layers i and i + 1 are

wI = wi+1  (vertical displacement) (25 )

u. = ui+l (radial displacement) (26 )

0 z = (vertical stress) (27)

T = T (shear stress) (28 )rzrz i+l

o' is not a real stress since it does not have dimen-z

sions of stress. However, its use in this context is

obvious.

I II _ __ _ ~_~.~~ __ _
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For an.n - layer system, equations (25 ) to (28 )

yield 4n-4 equations. In addition, the two equations

(22 ) and (23 ) are available for the surface layer, and

-the two constants in the bottom layer are zero. Thus a

total of 4n-2 equations in 4n-2 unknowns must be solved.

For a three-layer system this will be ten equations in

ten unknowns.

The values of these constants can then be substitu-

ted into the expressions for the stresses and displace-

ments. These expressions can be rewritten in terms of

geometry and the elastic constants in the following sim-

plified form for each layer.

18

' = J (mr)J (ma) 2 ( 29)
Z. 0 9, 3i,j

j=1

18

E 2 .ca
2,ie 1Ji

' = J (mr)J (ma)1 ( 30)rz. 1 9

Z O.c
j=1
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p' = J (mr)J 1 (ma) j=1
r. o 9

1

j= 3

J .(mr)J (ma)
1 1

mr

J (mr)J (ma)

m

c
J= l

j=19z
r=i

18

-9

4 , i.ij, .a~3 1,

OJ i,j

E O.a.
3 1,j

3=l

u J:.(.mr)J. (ma.)
S 1 1

m

6,i,j i,.j/Ei

9

-1
3 aj

4
S,,j k=1 ki,j m,k

m=L .. ,.6
i=l...3
j=l., .18

a =
3,3 23J j=1...18
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s5,i j i,j/E i4, i ,. ( 32)

where

( 33)

( 34)

( 35)



. = 0 J = 10.18 ( 36 )

and the Amk's are defined in Table 1. ( 72)
/ I

To obtain the elastic solution under a uniform cir-

cular load, the above stresses and displacements must be

integrated from zero to infinity with respect to m, and

multiplied by qa. For example, the normal stress at any

off-set r is given, for a uniform circular load of radius

a and intensity q, as follows.

18

z. = qa Jo (mr)Jl (ma)J1 -dm (37)

1=1

Viscoelastic Formulation

For the viscoelastic case, the time variation of the

loading must be specified. In this case, the normal stress

boundary condition will be taken as

z = qa f co(mr)J (ma)dm H(t) (38)
z=-H q

I I I _
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where H(t) is the Heaviside step function such that

H(t) = 1 t>.

H(t) = 0 t<O

Again the incremental load

( = J (mr)J (ma)H(t) ( 39)
z=-H

1

will be considered, and then the final result will be

integrated from 0 to o with respect to m, and then

multiplied by qa, to yield the viscoelastic solution

under a uniform load.

Since in the elastic solutions, equations (29 ) to

(37 ), the Bessel functions appear as multipliers to the

summation-over-summation terms, and since these Bessel

functions vary only with m for a given geometry, it will

be useful to treat the elastic solutions in the following

forms.

Define:
18

Ski ji.H(t)

k i(mt) = = (40 )
9

= Oj i j

j=l
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where

Pij = ij.

Bi =  i. ./E
1,a 1Al 1

(m)

(m)

= J0 (mr)J (ma)

= J (mr)J (ma)

(41)

( 42)

( 43)

(44)

Then the time-varying elastic

az. (t) = qa

ci o
T (t) a f C

r (t) = qa1 0

solutions are given as follows:

( 45)

(t ,m)dm

i,(m)

(m)M +(tm) +
1 mr

( 46 )

4 1
(t, ,m) ]d

= qa o
o m

= a i
o0

(mn)

m

( 48 )

(t,m)dm
( 49 )

wi(t)

ui(t)

( 47)

(m) (t,m)dm

SI(m)2 ,i

,i ( t , m ) d m
5~

6,i



The Application of the, CCorrespondence- Princ.iple: In order

to obtain the viscoelastic solution, all that is needed

is to obtain the corresponding (ki(t,m) for the visco-

elastic case, since the O j(m) terms do not vary in

time. But the k i(t,m) terms for the elastic case are

in a form which permits the formulation of an integral

equation for the viscoelastic solution as a function of time

for a given value of m. From the solution of this equation

for appropriate m, the total solution can be obtained by

numerical integration of the equations ( 45) to ( 49).

Since each layer of the system is assumed to be in-

compressible, then one constitutive relationship is suffi-

cient to define the viscoelastic equation of state of each

layer. This constitutive equation is assumed in terms of

a viscoelastic equivalent to the elastic compliance. That

is, for the ith layer,

DD (t-T)

(equiv.) = [D (0)( ) ( ( 50)
E. (equiv.) ri o 3

In the following, D (t) will be denoted simply by D.(t)r. 1

since it is clear from the context what is implied.
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By substituting the above operator expressions

each elastic constant, the integral equation for 4 ki (t$m)

for the viscoelastic case can be written as

9

Z o (m)

Jt

[ t k (m 
)

dT +
aT

18

j= kij (m) Bi (t)
k,izj i,j

in which c .(t)1,j is a three-fold convolution integral

of the following form [for a11,j = 1/E EtE Ev)

elastic case]

t
a (t) =1, 'Jo+ D s(t-T) a

T o+

aD (p)
D (X-p) v
uap

+ Du (X)D (0)dX + D t(T)Du(0)D v(0)d

+ Ds(t)D t(0)Du(0)D (0)

1 (t)2,j3 = o+0o+
D (t-) --- 1 . dE + D (t)a
w w

with Dw (t)w = D2 (t) and 1=j for j<9, and D (t) =w

and 1 = j-9 for j>9.D (t)

Bk i(mt)ai (0)]

(51)

in the

dp

and

(52)

a .(t)
3 ,j

(0)

(53)

~_

for

Dt ( t - ) -  I x
Bko+



8ij (t) = aij(t) for.k <5 4

(t W. (c)
.(t) .(t-) . dE + D.i(t)ai (0) for k > 4

o1 1,

(54)

The solution of the integral equation (51) is fully

described in Appendix I (71). In order to formulate

solutions for the repeated and moving loads, it will be

necessary to introduce the principle of the response- of

linear systems to imposed excitations.

The response of linear systems to imposed excitations

A linear system may be defined as one whose mechanical

behavior can be adequately described by a set of linear

differential or linear integral equations, Physically,

this means that the response of the system is directly

proportional to the magnitude of the agent causing it. A

purely linear elastic material is considered a linear system,

because its response is directly proportional to the input

function. The 'constant' of proportionality, between the

input and output (response) functions of the system, is

defined as a material property "variable" or a "system

function". This function is a property of all linear

systems, and when input functions of known geometrical

and time configurations are coupled with it, the desired



7 (

system responses are subsequently obtained.

Linear Systems: Considering the input function to a linear

system to be given by I(t), and the output function by 0(t),

with the additional assumption that the system is initially

relaxed (i.e., there is no initial stored energy), the

system function h(t), can be defined using linear inte-

gral operators like the Laplace or the Fourier transform

(73), Besides the use of integral operators differ-

ential operators may al'so be used. When integral

operators such as the Laplace transform are used, the

relationship between the input function and the output

function is given by

.h(s) 0(s) (55)
I(s)

h'(s) (s) (56)

0(s)

where from equations ( 55 ) and ( 56 )

[h(s)][h'(s)] = 1

h(s) is the s-multiplied transform of h(t),

O(s) is the Laplace transform of 0(t),.

I(s) is the Laplace transform of I(t)

S is the Laplace transform parameter
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The relaxation function of a linear viscoelastic

material is an example of a system function, It may be

determined from a uniaxial relaxation test in which a

constant strain, E(t) = SoH(t), is applied to a cylin-

drically shaped specimen. of the linear material and the

time variation of the stress c(t) is measured. The

relaxation function, Er(t) , is defined as Er(t) =(t)
r H(t)

0

The input function for this example is the constant

strain, s(t) = SoH(t), and the output function is the

time varying stress, c(t), In the Lap.lace domain the

relationship between Er (t), a(t), and E(t) is given by

E'r(s) O- ( (.57)
C(S)

where E' (s) = s-multiplied transform of Er(t),

r(s) = Laplace transform of o(t) and

C(s) = Laplace transform of E(t)

The equations ( 55) to ( 57) illustrate that when the

input function is.a unit step function (i.e. I(t) or

s(t) = H(t)), the response function is the same as the

system function.

When a specimen of this material is subjected to

general time varying strain, c(t), the sytem function

- -- --



Er(t), can be used to obtain the time varying stress re-

sponse o(t).

In the Laplace domain,

S a(s) = E r (s) es) = s Er(s) :(s) .... (58 )

which once inverted into the -time domain,

results in the well-known Duhamel Integral (74 ),

f(t) =  Er(t-T)t(T) dT ( 59 )
3 T

This expression could be obtained directly in the

time domain by using the Boltzman superposition principle

( 74).

The above operations therefore disclose the signi-

ficant fact that the system function can be used to obtain

theresponse function of a linear viscoelastic material,

when the input function is any time varying load, These

same techniques can be used, but with a slight modifica-

tion, for the response analysis of structures composed of

linear viscoelastic materials.

The System Function for. Linear Structures

In most cases, linear materials are used in struc-

tures in such a way that the resulting equations describing
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the response of the structure to mechanical excitations

are linear. In such cases, the structure can be considered

as a linear system and its response to a general time-

va ying load may be evaluated from its response to a step

loading, To elaborate on this point a little further, one

can within this framework define two important functions

which play a major role in the response mode of the linear

system.

The first of these may be called the Response

Function of the structure. It is the response of the

system to a step loading (i.e., a load whose magnitude is

constant with respect to time) of magnitude other than

unity, When the step load has unit magnitude, then the

response of the structure may be called a System Function,

which is dependent on the material properties as well

as the geometric features and boundary conditions of the

structure or system.

Consider an initially relaxed linear structure with

a step response SR(t) (i.e., the response to a load whose

magnitude is a constant with respect to time), According

to the definitions given above, SR(t) is a system function

for a unit load input UF(t) = H(t), and a Response Function

for a load of any other magnitude, UF(t) = UF H(t). The
0

response P (t) of this structure to any other time-varying



load P(t) with a time configuration other than that of

a step load, can be obtained by superposition through the

-use of the Boltzmann principle as follows:

T_= t

if SR(t) = L UF(T)] = Ls UF (60)
2 ' = 0 2

where SR(t) = system function = Ls when,
2

UF(t) = H(t) and a response function when

UF(t) = UF H(t).

then,
=t

P S(t) = SR(t-T) - P(T)dT (61 )

where Ps(t) = response of system to load P(t), with

time configuration different from that

of a step load, with SR(t) defined as

above whichever is appropriate,

cs
Ps(t) becomes a Characteristic System Function, L 2

under any mode of loading (repeated, moving, or otherwise),

when SR(t) in equation (61 ) is the same as the System

Function -L2' There are, therefore, three important

functions to be reckoned with when a linear structure

is being analyzed - The System Function, The Character-

istic System Function and the Response Function.

The repeated-load response of the three layer visco-

elastic system investigated in this study was obtained

L' is an integral operator of the relaxation or creep type.
s
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through the use of equation ( 61) with

Ps(t) = the repeated load response

.BR(t) = the Response Function of the system,

and

P(t) = the time-configuration of the repeated

load.

To obtain the Characteristic System Function for the

moving load, the same equation was utilized but this time

with the following changes,

Ps (t) = the Characteristic System Function,

SR(t) = L2 = the System Function, and

P(t) = time configuration of the moving load.

Application to Moving Load Problem

This section illustrates the technique of application

of the principle just discussed, towards formulating the

solution for the normal deflection at any point in the

three-layer linear viscoelastic structure shown in

Figure 11.

The analytical expression arrived at for the normal

deflection at any point of the three-layer linear elastic

half-space that is under a uniformly distributed stationary

load is given on the next page.

__ _.._



•i(m)
-W(R,Z,t) = qa Ye(t,m)dm

m

( 62 )

where (i (m) = J(mr) J (ma) = Bessel functions

..e (t,m) = material property constant of

elastic response,

q = intensity of load,

a = radius of the loaded area,

m = dummy variable and,

We(R,Z,t) = elastic normal deflection at time t,

for a point with coordinates R,Z.

The derivation of the above equation was discussed in the

earlier parts of this chapter. When the correspondence

principle is applied to this elastic solution, a visco-

elastic solution for the normal deflection is obtained.

In this solution, the viscoelastic response is given by

the viscoelastic counterpart, v (t,m), of the elastic

system response, Ye(t,m), The viscoelastic solution

may therefore be written as

W (RZ,t) = qa C (m) Tv (t,m)dm
0 m

( 63 )

The subscript 'e' and 'v' respectively refer to elastic

and viscoelastic. response.
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where, q,a are defined as previously and
m

W (R,Z,t) = viscoelastic normal deflec-

tion at time t, for a point

with coordinates R,Z

-In this formulation (equation (63)) the variable

controlling the response of the system to a step load of

unit magnitude is 4 v(t,m) - the System Function that pro-

ducing the excitation is e1 (m). The term 'qa' is merely

a multiplier. W (R,Z,t) is the Response Function of the

system. The moving load solution at any point in the

system can be obtained by utilizing equation (61) in which

SR (t) is now the System Function - ~ (t,m).
v,

Moving Load Solution

In equation (63), which is the stationary load

solution for the vertical deflection, the step incremental

load (m) is the product of two Bessel functions. If the

stationary load were to move with a constant velocity V

along a straight path on the surface (Figure 11), then the

argument R in the function Jo(mR) should become R-Vt where

R is the offset distance of the load at zero time. The

incremental load exciting the system will now have the

form Jo(m(R-Vt}) JI(ma). Since J3 (ma) is a constant and

does does not enter the integration over the time variables,

it can be dropped from the loading function. Therefore the

incremental load exciting the system will hereafter be

referred to as Jo(m{R-Vtl) for simplicity.
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Using the concept of the response of linear systems

.to imposed -excitations, the characteristic system function

for the moving load pmo(tm) may be obtained from the

system function V (t:,m) (due to the stationary load) and

the excitation J (m{R-Vt}) as
0

_mo(t,m) - J (m{R-Vt}) .v(t-T ,m) dT (64)
0- a- 0 v

The vertical deflection (at any point in the system) due

to the moving load can then be expressed as:

WM (R,Z,t) = a J(ma mo (tm)dm (65)

an expression which is obtained after makming the appro-

priate. substitution in equation (63). The deflection

which results from loading the system in the manner des-

cribed above, is caused by a superposition of effects as

shown in Appendix (D). The integral on the right hand

side of equation (65) can be numerically evaluated using

Simpson's rule. The same approach can be utilized to

obtain the other components of the stress tensor and

deflection vector at any point in the system.

Page (SC)

I__ _



Method of Evaluation oF To'in Load S'S'outi'bn

There are two steps involved in this method of

evaluation:

a) the integral (64) is first evaluated and,

/ b) the results obtained in (a) are later used

to evaluate integral (65)

The integral (64) is evaluated using a finite

difference method of integration after the system function

'v(t,m) has been represented by a series of exponential

terms. The reason for this choice of series of exponential

terms is the fact that p (t,m) is either a monotonically

increasing or decreasing function of time -- a property

also possessed by exponentials. i (t,m) has this time-

behavior because it is a rational function of viscoelastic

functions which are themselves monotonically increasing

or decreasing in time. Furthermore, an expansion of the

type mentioned above has been suggested by Schapery (53)

and many others to represent creep and relaxation functions

which are similarly monotonically increasing or decreasing

functions of time.

The numerical experiments performed in a computer

(IBM 360/40) have shown very good agreement between the

actual values of v (t,m) and those calculated using the

exponential, series

n m -t
E G e i

i=i i

I I
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representation, The coefficients G. of this series are

-determined using the least squares, curve-fit method dis-

cussed in Appendix (II) of reference (71). Tables (AII-1)

and (AII-2) and Figures (AII-1) and (AII-2) of Appendix

(AII), show the comparison of the results obtained.

The integral (65) is evaluated using Simpson ts

rule and a parabolic interpolation. The method of para-

bolic interpolation is described in detail in Reference

(71), The Pmo(tm) terms are first evaluated for each

time ti for 13 values of m, and an interpolation is

performed so as to obtain ninety-one values of the integral

expression, for m varying between o. and 9m (and spaced

0,1m apart) . Each of these ninety-one values is multi-

plied by the corresponding Bessel term

Ji(ma)
m

in equation (65) and the integral is evaluated. The

result so obtained is a normalized result for the deflec-

tion due to a moving load, This is achieved by using a

factor H1, (i.e,, the height of the first layer) to reduce

the geometrical variables of the system to dimensionless

terms, and dividing the functions WM(RZ,t) by a factor of

.qH1DCRP3 (in Which ., and.H. .are. defined a.s. pre.viously.,. ..

/The values of pmo(t,m) from 9m+c'o were not included since,
when the integral expression was evaluated, this portion

of integral made a negligible to WM(R,Z,t).
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DCRP3()s the magnitude of the creep function of the third

layer at infinity). The use of dimensionless parameters

greatly reduces the volume of computational work, and

simplifies the input to the computer program written. to

evaluate the integral,

The Repeated Load Soiution

The vertical deflection Ws(RZ,t) obtained from

the stationary load is a response function of the system.

Since the system is linear, the vertical deflection due

to a repeated load Q(t) will be given by

WR(R,Z,t) = f)WS(R,Z,t-T)dT (66)
o-

The time configuration used for Q(t) in this

study is shown in Figure (12). This usage does not place

any restriction on the method, as any other time-configura-

tion can be chosen. The h&lf-sine wave with rest periods

was selected largely because of its realistic simulation

of the load application on a three-layer viscoelastic

pavement structure,

The following definitions apply to Figure 12,

T = time at the beginning or at the end of the

repeated load application,

T(J) = T(J-1) + duration of loading (for J (even)

i.e., J = 2,4,,..)

DP-~~~-~~~~~- ~~l-----P----- -



T(J+l) = T(J-1) + period of loading (for J (even)

i.e.. J=2,4,...,)

Q(t).=. the time configuration of the exciting

f..orce where

f sin wt for T(J-l)<t<T(J)
Q(t) =

o. for T(J)<t<T(J+l)

Method: of Evaluation of Re peated Load Solution

To facilitate computation non-dimensionalized terms

are utilized in the computer program that was written to

evaluate the integral (66), The function WS(R,Zt) is

non-dimensionalized by a factor qHIDCRP3(c), where q

is as defined previously, H1 is the height of the first

layer, and DCRP (c) is the magnitude of creep function

of the third layer at infinity. Equation (66) can be

written as
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S .... WS(RZ.t-.). d
WR(R ,Zt) =w sin t ()

qHDCR
P 3

W cos WT W, (R,Z,t-T) dTiS

(67)

where

W= the dimensionless deflection factor

due to the stationary load,

W= the dimensionless deflection factorR

due to the repeated load.

If the function W~ (R,Z,t-T) is approximated by

the Dirichet series

n

Z G.e - (t - ) S i
i=l

using a least squares curve method (71), the G.'s are the

coefficients determined from the set of simultaneous

equations which result when the.6i's are chosen in a

particular way (53). Equation (67) then becomes

t
W1(R,Z,t) = W c

n
E G.e

i=l

Ll -(t-T)6
os WT E G.ie idr

i= 1

-t 6 i

o

T6.
cos u e dTu
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The integral cos wTe 1 dT can be expressed as

a sum of integrals, o When this is done, equation (68)

becomes

n -tS L t
WR(R,Z,t) = G.e E cos e d (69)

i=1 J=2 t.

for j even.

This expression can be evaluated after L repetitions

of load at any specified frequency. The same technique

is utilized to obtain the solutions of the other stress

and displacement variables of the system.

The next chapter discusses the development of the

cumulative damage model,
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V. THE GENERAL CUMULATIVE DAMAGE THEORY

A cumulative damage theory is developed to account

for the progressive deterioration of a pavement system in

different failure modes. This theory utilizes the basic

concepts presented by Dong (35) in his theory of cumulative

damage.

It is assumed that a fixed distribution of weak

regions exist within the structure and that damage in the

form of cracks, and/or 'plastic' zone formations progresses

from each region in the same manner. The theory is there-

fore deterministic in its approach and if the statistical

method is to be used the necessary modifications must be

made. The basic assumptions and the mathematical formu-

lation of the general theory are:

1. The materials in the structure and the

structure itself are subjected to an arbitrary load

history in the form of a stress tensor, a strain tensor,

or their derivatives.

In the most general case, all these tensors can be

independent functions in the functional responsible for

causing damage in the structure. For our discussion,

only a simple case is considered, i.e., the functional

causing damage is a function of the history of the tensor

Oiij - which can be of the stress or strain type.

2, The materials in the structure are non-aging, and

temperature conditions are isothermal.

~~_~ _~__~~___~_~ ~_
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3, The accumulation of damage and its recovery

can be accounted for.

4, The life remaining in the structure has full

--value at zero history of loading, and no value at failure.

When these assumptions are made, the damage functional

may be written in the following form:

s=S

A ij(S) = F d j(s) 70 )
ds

where A..(S) is the concentration or intensity of damage

in a given volume, at any 'S',

F is a functional of damage in the form of the deriva-

tive of ) (s)with respect to 's',

s is the generic value of ,S', and

S is the value of a parameter which represents

the unit in which damage is accumulated. (e.g., number

of load repetitions, time, etc.). S is non-decreasing with

time,

The expression (70) indicates that at any instant 'S',

the degree of damage accumulated in the material depends

on the rate of change of .ij(s) with respect to 'st in the

interval -m<s<S,

The functional, F, can be expanded into an in-

finite series of hereditary integrals as follows:
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S SS

Aij(S) = 8ij(S-s )-as (s )ds +
_0 1 .0-OO

as1
i() ( Kl(s2)dslds2as22

+ • . ... ( 71 )

where ij and BijK1 are damage kernels.

Sij(s1), )Kl(S2) are arbitrary histories of the

damage tensors.

The above expression can be written in one-dimensional

form, for ease of discussion and use, with no loss of

generality:

S SS

A(S) = >l(S-sl),- O (sl)ds1 j 2 (S-sl, S-s 2 ) (@.(S)
_oo S _oo~o T,-
-1

S S
a (s )ds ds + I BN(S-Sl. ,S-s N )

as 2 2 1 2 .

S1 ,I... 230 (s N )dsl..dsNas 1s1 N
( 72)

The set of integrals illustrates that a cause Cn

applied at any instant S modifies the effect produced

by a cause Ck applied at an instant Sk, providing n<k. The

contribution of the increment 90 (s ) to the damage -

accumulation is given by the damage kernel Bl(S-S),

___1~ ~

ijKl(S-slS-s2)
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that for a combination a@ (sl) a8 (s 2 ) is given by

.B2(S-s2S-2) and so on,

1 (. ) is a linear damage kernel and' is thus

independent of the magnitude of ~ (sl ), and the manner

in which it is applied, When convolved with a~((s )

however, history-effects are present in the results ob-

tained, The kernel therefore represents physical linearity.

The kernels 2(  ).. BN ( ), are non-linear

kernels. They depend on the history of the application

of the quantity ® (sl) .... a (sn) . As a result of

this, these kernels account for any physical nonlinearity

that a material might display under an arbitrary

loading history.

The arguments (S-sl, S-s2".S-sn) in the Bi functions

for i>l, are symmetrical with respect to each other; this

insures that the equations will be form-invariant with res-

pect to s, and consequently guarantees material symmetry.

Using the damage functional as defined above, the

life remaining in a given region of the material or structure

at any time for which the independent variable causing the

damage has a value Q(S) is given by

1R(S) = L + A(S) ( 73)

where 1 (S) = value of life in a given region of theR material at any 'S',

L = value of life in a given region of the
material or structure at zero history of loading.
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A(S) = the concentration of damage in a given
region at any 'S'

In normalized form we will have

1(S) + A() 1.0 + A((74)
L Af Af

1(S) = value of life at any S in percent of total
life of the structure or material

Af = maximum concentration of damage in a given
volume of the material or structure

Equation (74) indicates that at zero history of

loading, the life remaining is one-hundred percent of its

full value. At failure, it is zero percent and at any

other time between zero history of loading and time of

failure life is at some percentage between zero and hundred.

i.e., 1(0) = 1.0 for S = 0, no loading

1(Sf) = 0.0 for S = Sf, failure

0.0 < 1(S) < 1.0 for 0<S<Sf

Implicit in the use of the damage functional

is the fact that a damage curve, a failure curve, a damage

surface or a failure surface, each depending on the

choice of (one-dimensional, two-dimensional, or three-

dimensional-respectively), is not necessarily unique.

Various histories may yield different failure

curves or surfaces. Linear and non-linear damage
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behavior can be handled. Finally, and most importantly,

for a given damage surface or curve, the effect of the

sequence of events and prior history can be accounted for,

-(See equation 80).

The discussion above gives very generally the frame-

work within which the cumulative damage theory has been

developed. The manner in which it may be utilized to analyze

the failure of pavement systems (as a result of crack forma-

tions by repeated loading) is described below.

Determination of )
In Chapter III, pavement systems were broadly

classified according to their manner of resisting structural

impairment in a given traffic and climatic environment.

This approach helped to identify the pertinent stress br

strain quantities which can be monitored so as to predict

damage progression in each classification.

In a frictional-type. pavement, the damage para-

meter 0 is associated with shear stresses and shear

strains, since cumulative shearing action is responsible

for the type.of damage that occurs. The magnitude of

(O at any time is commensurate with a certain percentage

of damage concentration in a given volume. Information

on this magnitude therefore yields information on the

progression of damage.

In a flexural-type pavement, the materials in the

layers respond to load application by flexing. Their



performance is therefore dependent on their capability

of resisting tensile stresses by flexure. Damage in such

pavements propagates in the fatigue-loading mode and O

is associated with tensile stresses and strains. Here

again, the magnitude of the developed stresses and strains

is equivalent to a particular concentration of damage.

Therefore by monitoring the developed stresses and

strains the progression of damage can be predicted.

The third type of pavement is impaired by the des-

tructive cumulative tensile and shear action that is mani-

fested within the layer components. The damage parameter

& is therefore associated with both tensile and shear

actions. In the literature survey of the 'fatigue-behaviort

of frictional-flexural pavement, however O was shown to

be associated only with the tensile strain at the bottom

of the surface layer,

In order to develop a damage progression model

for different pavement structures, the primary model (dis-

cussed in chapter IV), may be utilized to determine the

accumulation of the critical stresses and strains which develop

within such a facility under a given repeated load application.

The damage model can then be used to predict the number of

the load repetitions to failure after the appropriate kernel

functions (Bi's.) have been determined (see next section for

determination of kernels). If the damage accumulation is

attributed to the development of shear strains within the

structure, then the damage concentration factor
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c/2.

-AS)} yields the size of the 'plastic' - zone within the
Af

structure at any instant. If the damage progresses under

the action of tensile stresses and strains the damage con-

cent ration factor IA(S)) is then, equivalent to the crack

distribution at any instant.

One important fact to realize here is the flexibility

of the damage model as presented, The model can be used to

determine the progression of .damage within the whole struc-

ture if the kernel functions are representative of the damage

behavior of the whole pavement structure (i.e., the damage

behavior of the individual layers, interact to produce uni-

que 8.-functions which are combinations of the damage kernels

for each layer). The same model may also be used to investi-

gate the damage that takes place in each layer, if the appro-

priate (i's) are used. This capability is an added advantage

in that if the surface.layer for example is known to exhibit

fatigue under loading, the B-functions for fatigue can be

determined and the service life on the structure in this

mode of response can be predicted. The kernel functions

therefore change depending on the mode of failure being

investigated, and on the mechanical properties of the

materials in the structure.

The Determination ofBi'ts

The linear kernel function Bl(s) is a curve. The

other functions 81(s l ,s 2 . .,s i ) il are surfaces. For

example $2 (s1,s2) is a three-dimensional surface;
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B3(sls2,S3 ) is a four-dimensional surface and so on.

The functions 10 2$ .3 can be determined by

setting up careful experimental loading programs for a

pavement structure,

Let us consider for this discussion a frictional-

flexural pavement system. This structure may be assumed

to have adequate shear support so that the predominating

factor of damage propagation is tensile action. In other

words, cracks form early within the flexural surface

material and propagate to failure in fatigue.

The fatigue properties of the material in the surface

must be determined. As discussed in Chapter III, if this

material is asphaltic concrete, it can be assumed that the

tensile strain at the bottom of the surface layer is the

damage determinant and 81 can be determined as follows:(35)

For the linear portions of the damage theory, the

life remaining in the material can be represented as,

N

1(N) = 1 + B1(N-) T n (75)
00 Th

where ET(n) is the tensile strain as a function of the
number of repetitions. -i or N.

Several loading programs of the constant repeated

load type can be conducted on the surface of a pavement

structure, using plate loading tests, and the tensile strain

developed at the bottom of the surface layer can be measured.
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With failure in fatigue defined as the number of repetitions

S--at which the surface deflection exceeds a particular value

or as when tension cracks appear on the surface, a curve

of ET vs, N can then be plotted, In other words a fatigue

failure curve as shown schematically in Figure 13, can be

obtained,

Assuming that this curve is unique .for other loading

programs, the B1 - function can be determined for loading

programs which are arranged to produce a constant level of

sinusoidal strain at the bottom of the structure.

At failure, therefore, fbr all such loading programs,

N *

l(Nf) = 1 + 1l (Nfn) d ( 76)

where Nf is the number of repetitions to failure.

ET(n) = EfH(n), where Ef is the failure strain

and H(F) = 0 for n<0,

1 for -n>0,

Equation ( 76) therefore yields at failure,

0 = 1 + 8 1 (Nf)Ef (77)

1
Bl (Nf) P- -Figure 14 ( 78)

Ef

*The portion of the integral from -Co to 0 .is assumed to
be zero since the sbructure is undisturbed in this time period.
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For different values of Ef and Nf a curve of

S1-(N) can be traced. The kernel function is therefore the

negative inverse of the failure curve. The sequence of

events can be handled for all other types of strain which

develop at.the bottom of the structured Figure 15 contains

some hypothetical strain history programs.

For program 1i,

ET(N) = E1 H(N) + E2,H(N-N1 )-H(N-N2) (79

and the life remaining in the structure at any number of

load repetitions, N, is given by

1(N) = Bl(N)El + E2 [(N-Nl) - 2(N-N2) (80 )

and for program 2,

ET(N) =(E 1 + E2 )H(N) - E2 H(N-N ) (81 )

and,

1(N) = BI(N)(E 1+E 2 ) - B1(N-N1)E 2
(82 )

The two results are obviously not the same at any N indicating

the importance of the order of the application of the load.

The De.termination o.f . 2

It was mentioned before that the kernel functions

6i ( ) for i > 1 are symmetrical with respect to their
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arguments; with this provision, the surface 82 in Figure

16 , is symmetrical about a vertical plane bisecting the

positive sl and s2 axes, In order to determine the shape

of the surface for any material or structure, only that

portion which is on one side of the vertical bisecting

plane is needed, An experiment should therefore be

devised to create loading paths 1 and 2 as shown in figure

Path 1 will yield the curve B2(SlS 2 ) for any arbitrary but

equal values of sl and s2, and path 2 will yield the curve

82(sl-t , 2 ) for any value of s2 and arbitrarily 
fixed

values of st. The:.-whole surface can therefore be evaluated
1

t I
for arbitrary values of s1, in the function a2(Sl-S1, s2 )

The four dimensional hypersurface 3 can b'e evaluated using

the same technique if 83(S -st SS) is evaluated for arbi-
3 a 2135)

trary values of s{ and.s'(35).

If the fatigue damage behavir can be described by

the expression given below,

N N N
A(N) (N-N1) -a (N1 )dN1 + (N-N1,N-N2)

A @N
f o 1I  0

2 (N1) -( (N2) dN dN2 (83)
3N 3N

1 2

wA(N) --
where A(N) - the damage concentration factor

Af

N = the number of load repetitions
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then. the curve 81 and the surface 82 can be determined

-by. -using the damage determinant in the following manner:

If the following histories of the are considered,

O (N) = K1 H(N)* (84)

O (N) = K2H(N) (85)

at failure, when they are individually substituted into

equation (83), they• give:

1.0 K1 1 (f) + K 1 2 (Nfl N ) for equation (84)- (86)
1 1' 1

and

1,0 = K2 1 (N ) + K22 (N N2) for equation (85)- (87)
2 2 2

with N o = -number of repetitions at failure.

By performing such experiments for different values of

K1 and K2 and knowing 1 ( ) from the previous section,

the curve 82 (N,N) can be determined for any N, If in

figure 16 we replace s1 and s2 by N1 and N2 then 82(N1,N2 )

is the curve traced on the surface by the vertical bisecting

plane of the positive N1 and N2 axes.

To determine the rest of 'the surface B2(N2,N1-N)

another experiment has to be performed with the following

0 history.

) (N) = K3H(N) + K4 H(N-N) (88)

*H(N) = Heaviside step function, K1 and K2 are constants.

K3, K4 are constants.
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when.this history is substituted into equation ( 83) the

following expression is obtained at failure.

2
-1.0 = K3 1 (Nf) + KB 1 (Nf-N) + K 3 2 (Nf ,Nf)

+ 2K3K482(Nf,Nf-N I ) + K 82(Nf-N1 ,N -Nf )  (89)

In the above equation every s-value, except 62(Nf,Nf-Nl )

is known, Therefore, the performance of several experi-

ments with O- histories like that in equation (88 )

should yield the curves 2 (N, N-N1 ) for any arbitrary N1.

The above process is tedious and becomes cumbersome

as the 'it in B.( ) increases, To use the non-linear

theory with many terms, therefore, becomes very difficult.

However, approximations can be made to reduce the number

of terms in order to make possible the conduction of a

reasonable number of experiments depending on the domain

of interest and the range 'of load magnitudes applied on

the material or structure,

Comments .on..the Determination. .o.f .. I .and . 2.

In the above two sections, only failure conditions

have been utilized to determine the kernel functions 1

and 02' However, a more logical procedure would be one

in which the damage behavior of the material or structure

in question can be identified from its conception to its

final destructive stage, so that 81 and *2 may be
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determined more directly, In this manner, the parameter

responsible for damage is closely monitored with the

number of load repetitions in a specially prepared specimen

-until failure -occurs, -During the--conduction of the experi-

ment, the compliance of the specimen can be related to the

crack length at each number of load repetition. This may

be done for several loading rates and the compliance versus

crack length curve plotted. From this latter curve the

crack length at any instant for any of several loading

programs can be predicted by measuring the compliance of

the specimen at each load repetition.

Such a technique can be utilized to measure the

fatigue properties of the material in the surface layer of

the pavement, by utilizing a specially prepared beam

specimen. A plot of the ratio of the crack length C(N)

at any instant to the final, crack length Cf C(N)

versus the number of load repetitions N- will then repre-

A( N)sent the damage curve --A(N)-, for each loading program.
(8) A(N)

Using the equations (86) to (89) with inserted
Af

for the value of unity on the left hand side of the equations,

and N for Nf on the right hand side, B2 can be calculated easily.

The experimentalinformation necessary for the calcu-

lation of the non-linear damage Kernel B2 using any of the

suggested approaches is not available at the present time

(1969). To obtain such information it is necessary to

conduct a very large number of experiments as indicated above
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cwith carefully selected loading programs. In the absence

of such information use is made of what is now available

to obtain the linear damage kernel 1 for a pavement

-structure. The damage behavior is predicted as a first

approximation using the failure curve in the manner

previously discussed, An example of the use of such an

approach is presented in the next chapter.
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VAl

VI - APPLICATIONS OF DEVELOPED MODELS

Introduction

In the previous sections, two models were

developed to account for the primary and ultimate response

behaviors of pavement structures. The primary response

model describes the behavior of the physical system when

it is subjected to load inputs under isothermal conditions.

The system responses or output functions obtained from

the primary model are measurable quantities such as the

developed deformations and stresses. When these primary

responses attain a limiting value, distress in the form of

rupture, disintegration or distortion occurs. The system

performance can therefore be estimated by monitoring (over

time) the values of the output functions in terms of the

number of load applications.

The second model which has been called the cumulative

damage model establishes the link between the primary and

ultimate responses of the pavement structure. This model

relates the level of the developed deformations and stresses

to the internal damage concentration in a given volume.

By identifying or monitoring the manner in which the internal

damage develops, the amount of life remaining in the struc-

ture after a given number of load repetitions can be

predicted. The damage model therefore not only describes

the performance of the structure under load, but also
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yields information about the limiting value of a critical

output function or functions causing the type of distress

investigated.

In order to be representative of a pavement struc-

ture, the primary model must be able to account for the

obse ved pavement performance in terms of significant

pavement parameters. These parameters may be grouped

under three separate headings: a) the mechanical proper-

ties of the materials in the layers b) the loading

characteristics and c) the geometric parameters.

Within such a framework, under heading a) the quality

of each layer and that of the combination of layers are

important. Equally important, are the trade-offs between

the quality and the thickness of the layers.

Under heading (b), the pertinent parameters are the

magnitude of the load, its duration, (static, repeated or

moving), and the frequency of the repetition.

Under heading c), the thickness of each layer, the

offset distance of the load, the location of the point of

interest, and relation between the thickness of the layers,

are all known to be significant in determining the system

response.

The followihg presentation is therefore divided into

three broacd sections. A discussion is first presented on

the dimensionless system parameters, which describe the

pavement system. Then the capabilities of the primary model

are discussed with the aid of several pavement structures.
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Finally, an illustration of the use of the cumulative

damage model to predict the fatigue-failure of a flexural-

frictional pavement system is presented.
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1. Dimesionle's* Syttem t Paramete'rs:

A dimensionless system is defined as a three layer

pavement structure with a given set of material properties

in each layer. (Figure 17). For the examples presented

each layer is assumed to be incompressible -- i.e., Poisson's

ratio = 0.5. The material in each layer is represented

by a dimensionless creep function of the types shown in

Figures 17 through 21. As shown in these figures, when a

layer is elastic, its creep function does not vary with

time.

For ease of computation and use, the normalising

factor for the creep function of all the systems is the

value of the creep function for the third layer at infinite

time. This means that if the third layer is elastic, its

dimensionless creep function has a value equal to unity.

If it is viscoelastic, its asymptotic value is unity. Each

of these functions has been approximated by a Dirichlet

n -ta.
series Y Aie where the ai's are fixed and

i=l

Ai 's are determined using a least squares curvefit method1

described in (71). This type of representation has been

chosen because most of the available published data on the

properties of the paving materials are presented in and are

easily convertible to the creep form.

All the components of the stress tensor at any point

in the three-layer pavement system are expressed in terms
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of the intensity of the load. For the components of the

displacement vector, the normalising factor is the product

of the intensity of the load q, the creep function of the

-third layer at infinity D3 (m), and the height of the first

layer H1.

The geometric variables considered are: the offset

distance of the load R, the height of the first and second

layers, H1 , and H2 respectively, the depth of interest Z,

and the radius of the loaded area A -- all of which are

represented in dimensionless forms in terms of the height

of the first layer HI -- See Figure 17.

In addition all times are dimensionless and are

expressed in terms of an arbitrary time factdr. The vari-

ables representing the period and the duration of the

loading are also dimensionless. In all the examples

presented the arbitrary time factor is equal to ten.

The use of dimensionless terms is desirable because

it greatly facilitates the oomputation and execution time

of the computer programs written to determine the developed

stresses and displacements.

2. The Primary Response Model

The response of the primary model is discussed in

two sections: First, the influence of the mechanical

properties of the layers on the system response of various

pavement systems is discussed. Second, the influence of

the loading and geometric variables on the response of two

pavement systems are considered.
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The, Mecanical Properties of' the LayerMateri-1s

In this section five different systems were

selected to investigate the effect of the mechanical

properties of the materials used in each layer on the

response of the pavement. The material in each layer is

assumed to be linear, homogeneous and isotropic.

System No. 1 is composed of completely elastic

materials (Figure 18). System No. 2 is completely visco-

elastic (Figure 17). Layer one in System No. 3 is assumed

to be viscoelastic and the second and third layers are con-

sidered elastic (Figure 19). System No. 4 is assumed to be

partially viscoelastic by considering that only the third

layer is viscoelastic (Figure 20). Finally, System No. 5

is assumed to be similar to System No. 3 but with the

spectrum of the creep function of the first layer shifted

to the left in one case and to the right in the other

(Figure 21), to permit the determination of the influence

of viscoelastic properties on the pavement response.

System No. 2 (Figure 17) is used as the basis for

comparison. In this system each layer is viscoelastic and

the creep compliance function of each layer has the same

value at infinite time. This provision serves as a check

on the results of the static loadin condition. At very

large times, the creep functions of the three layers have

the same value; the system acts as a homogeneous elastic

half-space and Boussinesq's elastic solution should thus

be obtained.

112

--



The creep functions in each layer of System No. 1

correspond to the values of the creep functions in the

corresponding layers of System No, 2 at zero time in

non-dimensionalized form, Towever, when they are trans-

lated/into dimensionless creep functions, the initial

values for System No, I no longer coincide with those for

System No, 2, The creep functions for dimensionless

System No. 3 are obtained by using the same technique, but

this time the first layer of System No. 2 is kept visco-

elastic. System No. 4 is obtained from System No. 3 by

performing shifts in the spectrum of the creep function as

was previously mentioned.

In dimensionless form, therefore, Systems 2 and 4

have the same initial values for the creep functions of

the materials in their layers. Systems 1, 3 and 5 also

have the same initial values for the creep functions of

the materials in their layers.

Before presenting the results in detail the effect of

the time-temperature superposition is briefly discussed.

This principle states that short time effects obtainable at

high temperatures are convertible by superposition on the

time scale to long time effects at a fixed lower temperature

(79). This implies that though the creep functions for the

viscoelastic layers in the systems considered in this study

are presented for a fixed temperature over a broad range of

time, the spectrum of temperatures encountered in the field

are, however, represented. Therefore results obtained at a
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given time and -a fixed temperature can be transferred

through the use of a shift factor, to results at other

temperatures (79). The analysis therefore considers

temperature effects implicitly.

The output functions or system responses utilised

to investigate the influence of the mechanical properties

of the layer materials are the vertical deflection, the

vertical stress and the shear stress developed at the first

interface -- that between layer 1 and layer 2 -- for

System Nos. 1, 2, 3, 4 and 5 under the application of a

stationary load.

The results of the stationary load are used for

most of the discussion because the repeated and moving

load solutions are obtainable from the stationary load

response by the superposition principle. Consequently,

any effect observed for the stationary load as far as the

material variables are concerned must also be observed in

a general form for the repeated and moving loads.

Since conditions on the axis of the load are usually

the most severe the offset distance factor for the vertical

stress and vertical deflection are set equal to zero and

that for the shear -stress is set equal to one because the

shear stress on the axis of the loaC is zero. Conditions on

the first interface are used for discussion because at the

surface the shear stress factor is zero and the vertical

stress factor is unity under the load and zero elsewhere.
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Vertica' Deflttion:

Figure 22 presents the vertical deflection under

the center of the loaded area on the first interface for

Systems 1 through 4. It can be noted from this figure that

when the system is elastic, the response -- vertical

defle'ction -- does not vary with time. It was mentioned

before that the zero time value of the creep functions for

System 1 and 3 are the same; therefore at zero time (not

shown because of the logarithm scale) the two systems

undergo the same magnitude of deflection. However, as the

load is maintained, System 3 continues to deflect due to

the viscoelastic characteristics of its top layer. This

indicates that the stiffer the surface material, the lesser

would be the deflections of the pavement.

Systems 2 and 4 have the same initial values of

deflection. System 2, however, accumulates more deflection

than System 4. The reason for this is that the upper two

layers of System 4 are considerably stiffer than those.of

System 2. Since the third layers of both systems possess

the same mechanical properties, the discrepancy in results

must be due to the uppermost layers, which supports

Burmister's conclusion that when better quality materials

are used in the base and surface course of the pavement, the

pavement provides a blanket effect around the subgrade.

All the systems shown in Figure 22 are elastic at

long times with System 4 displaying the least deflection

and System 2 the greatest. In terms of stiffness, at long
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times, System 2 is the weakest of all the systems and,

therefore, deflects the most. Since Systems 2 and 3 are

later used to investigate the influence of the loading

conditions and geometric variables on the mechanical

response, it will be worthwhile to examine them more

closely at the present time.

For very small values of time, System 2 is stiffer

than System 3. Therefore, at short loading times the

deflection for System 2 is less than that for System 3 when

loads of the same magnitude are used. With the passage of

time, however, System 2 becomes less stiff when compared to

System 3. From-the shape of the deflection curves, this

occurs at dimensionless time of approximately one. When

this event occurs, the deflection on the first interface

of System 2 exceeds that of System 3 and continues to do so

until it reaches a plateau.

For the stress (Figure 26), however, System 3 con-

sistently displays higher values .of developed stresses than

System 2 except at very short times where the stresses of

System 2 are greater than those for System 3 (not shown in

figure), The reason for this behavior is that the two

lower layers of System 3 are elastic and have stiffness

values which do not change with time. The stresses deve-

loped on the first interface of System 3 increase consider-

ably with time because of the rigidity of the bottom two

layers. The lower layers of System 2 offer no such

resistance;- therefore, the stresses developed are not as
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great as those for System 3.

Figure 23 illustrates that the spectrum of the creep

function has a significant influence on the system

response. The curves presented are for the vertical

deflection factor of Systems 3 and 5 on the first interface,

and under the center of the loaded area.

The creep functions of the two different first layers

assumed for the System 5 have the same initial and final

values as the creep function of the first layer of System 3

(Figures 19 and 21), but their time dependent behavior is

not the same. Curve A of System 5 is obtained by shifting

the creep function of the first layer of System 3 to the

left, while Curve B is obtained by shifting the creep func-

tion in layer 3 to the right. The vertical deflection

factors obtained for these curves also have followed similar

shiftings as shown in Figure 23. This indicates that by

adjusting the mechanical properties of the materialsin the

first layer, keeping those in the lower layers fixed, the

system response can be controlled. This demonstrates that

in the selection of asphaltic mixtures for the surface

course of a pavement one should be concerned with the form

of the creep function over large time intervals rather than

relying upon the initial or an arbitrarily selected time

value of the creep function. If for instance minimal

deflections are desirable during the transient response

period, the vertical deflection curve for System 5 _curve B

would seem appropriate and the paving material should be
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designed in such a manner that a rather flat spectrum of

retardation time functions would result.

Vertical ' Stress:

Figure 26, shows the curves obtained for the

vertical stress factor on the first interface for Systems

1, 2, 3 and 4 (Figures 17 through 20). The stresses

similar to vertical deflection start with the same initial

values for Systems 2 and 4, and for Systems 1 and 3.

However, while the stress on the first interface of

System 2 (Figure 19) increases with time that on the System

4 (Figure 20) decreases. This may be due to the fact that

the stiffness of the upper two layers of System 4, remain

fixed while that of the lower layer decreases with time.

The overall effect is to cause a decrease in the stresses

on the first interface. For elastic System 1, the stresses

remain constant with time as expected'.

In Figure 26, the stresses developed on the first

interface of System 3 exceed those of System 2. This is

not surprising, for reasons depending on the differences

of the mechanical properties in the layers of both systems.

These.reasons have been previously discussed. The influence

of the spectrum of the creep function on the vertical

stresses developed in the first interface are shown in

Figure 27 for System 5. As is noted in this figure, the

pattern is similar to that of variations of deflection with

the creep spectrum.



Shear Stress:

Figure 28 shows the effect of the mechanical

properties of the layer-materials on the shear stress

developed on the first interface directly under the edge

of the loaded area. The effect is almost similar to

that for vertical stress except for System 4, for which

the shear stress slightly increases with time while the

normal stress showed a slight decrease. The reason for

this may be due to the fact that the deflection on the

interface under the axis of the load is increasing,

causing an increase in the curvature of the interface.

This would definitely cause an increase in the shear stress

because such stresses, as Burmister shows, are deflection

dependent (80). Figure 29 shows the shear stress deve-

loped at the interface for the two creep functions assumed

for System 5. As can be seen, the spectrum of the creep

function has the same effect on shear stress as it did on

the vertical stress.

In order to demonstrate the capability of the primary

response model in determining the radial stress and radial

deflection, typical curves for these-components are pre-

sented in Figure 24 and 25 for the first interface of

Sy.stem 2.

The results obtained thus far indicate that the

nature of the system response depends upon the mechanical

characteristics of the materials in the layers. The inter-

action between the material properties of each layer pro-
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duces what may be called a system function which is not

only a function of the location of the point of interest,

but of the kind of the response function being investigated

(i.e. a stress or a deformation output.)
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Loading Condit'ions :

-Only -three system responses -- the vertical

stress, the vertical deflection and occasionally the

shear stress -- will be used to investigate the effect

of the loading conditions and geometric variables.

The results for other components of stress and displace-

ment are not presented in order to avoid the-lack of

clarity associated with the handling of numerous variables.

What is presented is a clear illustration of what the

model is capable of doing using the components of stress

and displacements that are frequently discussed in the

pavement literature.

The, stationary loading condition: For the stationary load-

ing condition, the magnitudes of the components of the

stress and displacement factors generally increase with

the increase in dimensionless time for all systems, as

shown in Figures 22, 26 and 28 for vertical deflection,

vertical stress, and shear stress respectively.

It is interesting to note that for both Systems 2 and

3, the magnitude of all the three responses tend towards an

asymptotic value at a value of dimensionless time correspond-

ing to that when the dimensionless dreep compliance func-

tions become asymptotic. The system response therefore

depends on the response characteristics of the layer

materials. The extensive variation in stress and deforma-

tion with time under the constant load for both systems, is
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a marked. contrast to the constant distribution (of these

quantities) exhibited by a structure with elastic proper-

ties. This phenomenon may have an important influence in

the design of such structures. The rational design of the

structural components (especially those exhibiting visco-

elastic response) should, therefore, utilize the complete

history of the stress and displacement distribution,

rather than a single value of these components.

At values of dimensionless time greater than one

thousand, the magnitudes of the stress and displacements

components are equal to those obtained when the system

behavior is elastic i.e., the mechanical properties of the

materials in the layers are equivalent to those of the given

creep functions at infinity.

This capability serves as a check on the validity of

the viscoelastic representations, since the results thus

obtained are comparable to those acquired by other authors

for elastic systems having the appropriate properties.

The model can therefore account for the manner of variation

of all the pertinent stress and deflection factors at any

point in three-layer pavement structure for this boundary

condition.

The repeated loading condition: For this loading condition,

the influence of the duration and period of the loading on

the response of Systems 2 and 3 was investigated using the

vertical deflection on the surface directly under the center

of the loaded area, the vertical stress on the first inter-
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face but with offset distance factor equal to one.

The stress on the first interface was selected

because on the surface the value is unity and repeated

applications of the load do not cause accumulations. At

the first interface, however, the stress develops with

time, as already observed, under-a constant load condition.

The shear stress on the first interfac.e at the offset

distance factor of unity was chosen because the magnitude

of shear stress under the load is zero.

A load repetition is considered to be completed at

the end of the period of the loading (see Figure 12) and

the magnitude of the stress or deflection factor is mea-

sured at this time. The results which are presented for a

dimensionless period of 0.05 and durations of the loading

equal to .005, .01 and .02 can be noted in Figures 30

through 32; the stress and deflection factors of the

systems increase with increasing number of load repetitions.

Figure 30 shows the results obtained for the vertical

deflection on the surface. The magnitudes of the deflection

factor for System 3 are consistently lower than those for

System 2. This indicates that System 2 behaves more

viscously; a result which is evident from the dimensionless

creep compliance functions for this. system (Figure 17). The

reason for this difference was discussed in the section on

the influence of the mechanical properties of the layer

materials on the response of the system.

Figures 31 and 32 show the curves obtained for the
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vertical stress and shear stress factors on the first

interface. The stresses developed in System 3 are con-

sistently higher than for System 2. This is because of

the fact that for the same load the system that is more

stiff will develop the greater stresses for the same

value of deflection. An examination of. the creep functions

for System 2 and 3 in Figures 17 and 19 respectively shows

System 3 to be more st.iff.

For each system, the greater the duration of the

loading the greater is the developed stress or deflection

factor. This indicates that the severity of the structural

response is directly related to the duration of the loading,

The longer the load remains on the system, the greater is

the damaging effect.

The moving°-load boundary condition: Figures 33 through 36

illustrate the manner in which the Systems 2 and 3 respond

to the application of a moving load travelling with a

constant velocity along a straight line on the surface (See

Figure 11). The curves in Figures 33, 34, 35 are for the

vertical deflection on the surface. The vertical stress

and the shear stress on the first interface are shown in

Figures 36 and 37 respectively.

The curves indicate that the system response in terms

of stress and deflection factors is not symmetrical with

respect to time. The viscoelastic behavior of the systems is
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such that there is a time-lag between the observance of

a response and the time of application of the agent

causing it. Therefore, at the time when the load is

--directly over the point of interest, the magnitudes of the

response in terms of stress and deflection factors are

not at the maximum. In addition, it must be noted that the

maximum value of either a stress or deflection factor is

obtained not before but after the load has passed over the

point. However, when all the layers in the system are

elastic, no such lag effects are observed, as shown in

Figure 34. This figure presents the results obtained for

dimensionless System 2 which is converted into a homogene-

ous elastic system with the creep properties of all the

layers being equal to that of the viscoelastic system at

infinity.

This technique in fact serves as a check on the

moving load analysis, because its elastic solutions should

match those obtained from the stationary load-analysis at

the pertinent offset distances. The degree of agreement

between the solutions obtained through both methods of

analysis is seen to be satisfactory. In order to ensure

the accuracy of these solutions, they were rechecked

using the homogeneous half space solutions of Alvin and

Ulery (46). The results compared well with the tabulated

values. The observed time-lag in the viscoelastic res-

ponses is also velocity dependent. The greater the

velocity of the moving load, the smaller the time lag. This

125



velocity dependence is discussed using the solutions

obtained for the vertical deflection of Systems 2 and 3.

Figure 33 shows the curves so obtained for the vertical

deflection of System 2. It is seen that the peak

deflection of the system increases with decreasing

velocity factors, indicating that the longer the load

remains within the region of influence the greater is the

damaging effect that it has on a point of interest within

the structure. It is also interesting to note that the

lag in response time increases with decreasing velocity

factors for the same reasons as above.

The same behavior is displayed by System 3.

Figure 35 is presented to show the difference between the

magnitudes of the response for both systems. As observed

before, the deflection for System 3 attains a maximum

value lower than those for System 2. This is so because

System 3 is stiffer than System 2.

The results obtained for the vertical stress and

shear stress factors on the first interface of System 2 and

3 also show a consistent behavior as indicated in Figures

36 and 37 respectively. In the case of the shear stress

factor, however, there are two peaks in the curve. This

indicates that as the load approaches the point the shear

stress builds up to some limiting value and starts to

decrease. At the time when the load is directly over the

point, the shear stress is zero. However, the superposition

of effects from previous loads actually prevent the total
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shear stress from going to zero. The effect of the

decrease is to cause a marked reduction in the shear

stress. As this load moves away from the point, the

shear stress builds up again to a maximum peak and de-

cre ses.

TheI eometric Variables

The Height Factor of the Second Layer: The influence

of this variable on the system response is investigated

using the vertical deflection factor on the surface of

Systems 2 and 3 when they are subjected to repeated

loading. The surface vertical deflection factor .is

selected over the deflection or stress in any other

location so as to obtain a better indication of the

influence of this variable on the response of the system.

Figure 38 illustrates that for both systems the

deflection increases with the number of repetitions for

a fixed value of the height factor. The deflection

factors for a given number of repetitions, however,

decrease with increasing H2 /H 1 *indicating that the

thicker the system, the lower are the deflections. An

alternative method of lowering surface deflection as

has been discussed already is to have stiffer materials

in the layers.

The dependence of the surface vertical deflection

factor on the height factor of the second layer is more

marked for System 3 than for System 2. For System 3,

this marked dependence is displayed at every load repeti-
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tion. At lower numbers of load repetition, the dependence

is pronounced. At higher levels, it is absent. This is not

surprising when the mechanical properties of System 2 are

taken into account (Figure 17). Since all the creep func-

tions tend toward the same value at long times, one would

expect the system to become homogeneous eventually. When

this occurs, the deflection at the surface is independent of

H2/H1 because the system is a semi-infinite homogeneous mass.

The Depth Factor: The influence of this factor is investigated

using the vertical deflection and vertical stress factors

under the center of the loaded area. The shear stress factor

is investigated at the first interface but at an offset dis-

tance factor equal to one. The curves so obtained for both

Systems 2 and 3 are shown in Figures 39 through 41.

There is a marked reduction in vertical deflection

through the layers as shown in Figure 39. The reduction is

greater as the number of load repetitions increase. For

points within the third layer, an increase in the number of

repetitions does not cause significant increase in the

deflection. However, this effect is more severe for points

that are nearer to the point of load application. Figures

40 and 41 show that a similar effect is displayed in the

case of the vertical and shear stress factors.

In Figure 41, for the shear stress factor, it is shown

that the first interface of both systems undergo a more

severe damaging effect than the second interface.

The radius factor: The effect of this variable was investi-

gated using the vertical deflection factor on the first
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interface directly underneath the load. The curves

generally indicate that as the radius of the loaded area

is increased, the deflection is accordingly increased.

Again System 2 deflects more than System 3 for reasons

previously discussed.

The damaging effect on the first interface increases

considerably with the increase in the size of the loaded

area confirming the rather obvious result that for a

given period and duration bf loading heavier loads do

more damage than lighter ones.

The offset distance factor: Figure 43 indicates that the

surface deflection factor decreases with increasing offset

distance for both Systems 2 and 3. This result is what

is expected because the effect of the applied load is

more severe near the point of interest. Figure 44 illus-

trates that the vertical stress factor on the first

interface displays a similar behavior.

Permanent deformation: The preceding discussion has

served to emphasize the fact that the physical character-

istics of the pavement system include among other things

geometric measurements such as thickness, arrangement of

the component layers and the basic properties which

characterize material behavior. The system response

consequently involves the behavior of the physical struc-

ture when it is subjected to load and climatic inputs.

When these act on the system a condition which describes

the mechanical state results. Measurable quantities such
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as the deformation and stress are then acquired. These

quantities.have been used in this dissertation to

represent the primary responses of the system as described

by the Hudson et al chart (Figure 1.0). When they attain

a limiting value, distress in the form of rupture, distor-

tion, or disintegration occurs in the ultimate response

mode.

One such form of distress is the permanent deforma-

tion which results from the shear displacements of a

roadway structure. This deformation can be estimated using

curves like those presented in Figure 43. Using this

procedure, the potential for rutting type distress can be

investigated for different systems under different

loading conditions.

3. The Damage Model

The limiting response of a pavement structure has

been described conceptually as a function of the degree

of cracking, distortion and disintegration (Chapter I).

Through the use of a mechanistic model such as the primary

response model, the distress function can be expressed

as continuously increasing with time until a limiting

performance criterion is attained. When this level is

reached then the failure of the roadway structure will be

said to have occurred. For this study, distress in the

form of fatigue is investigated.

In order to use the damage theory, the following

steps are taken.
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1. The temporal variation of the tensile strain

on the underside of the surface layer of the

selected three-layer pavement structure is

determined by utilising the' mechanistic model

discussed in the previous section.

2. The tensile strain function ET(N) so obtained

from the above step, is inserted into the damage

equation:

A(N) SA(N = ( N- n ) - 9E (n) dn

3. The above integral is evaluated for any N,

and the life used or remaining in the structure

is predicted using equation (75). When

1(N) = 0, the surface of the facility will have

a given distribution of cracks, and failure in

fatigue will have resulted.

Performance criterion: The performance criterion utilised

in this case is a phenomenological factor which describes

how well the pavement is accomplishing its objective of

resisting the impairment that results from fatigue action.

The study makes use of a damage concentration factor,

A(N)/Af, (e.g., distribution of cracks in a given volume)

and a life factor 1(N), all of which are related to the

level of tensile strain at a critical point of the struc-

ture. The distress function A(N)/Af yields at any instant
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of time the degree of damage that has been caused by the

formation of fatigue cracks due to a particular number of

load repetitions. From this information, one can predict

how well the structure is performing by estimating the

remaining life, using the equation given below

1(N) = 1 + A(N)/A

Failure Criterion: The failure criterion of the structure

may be designated as a point on the distress curve.

When the distress function exceeds a set value defined by

this point, failure is said to have occurred. As far as

the damage theory is concerned, limiting distress has

occurred when 1(N) = 0.0 or A(N)/Af =-1.0 in equation 91.

The fatigue curve of the surface layer is assumed to

be that utilised by Monismith et al (68) for MORRO Bay.

pavement. The failure curve in fatigue is given by the

expression

N = 8.78 x 10-l 1 4.46 (92)
ET

where N = number of repetitions at failure ET = tensile

strain at failure. From the previous discussion on the

determination of the linear damage kernel 1, the follow-

ing expression is obtained for 81

1/4.46 1/4.46

1 = -( ) (N) (93)
8.78

The plotted curve is shown in Figure 46..
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The foregoing techniques were utilised in the

dimensionless System 6 (Figure 45) (whose creep functions

are obtained .from AASHO road test results (81)) to

predict the occurrence of distress in the surface layer

when the structure is subjected to repeated loading of

the type shown in Figure 12. The surface layer is composed

of asphaltic concrete, the second laye.r has gravel, the

third layer clay.

The tensile strain obtained when this is done is

shown in Figure 47. The function was calculated using

the following formula:

UR
ET - where

aR

ET = tensile strain

UR = radial deflection

R = cylindrical coordinate

Several plots of radial deflection factor versus the number

of load repetitions were obtained for points within the

vicinity of the point of interest. For this example,

four points were chosen at R/H 2 = 0.05, 0.10, 0.15, 0.20.

A curve is drawn for radial deflection factor versus offset

distance factor for each load repetition. The shapes of

these curves at R = 0.1 yield a curve for the tensile

strain as a function of the number of load repetitions.
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Figure 48 illustrates the manner in which damage

progresses when the duration of the applied load is

one-tenth of the period. Failure does not occur until

15105 repetitions of the load. This value is extrapolated with

the assumption that the rate of damage growth is constant

S7after 10 repetitions because of the space and time

limitations on the computer. Failure will occur sooner

if the assumption is unwarranted.

To find out what will happen if large strains were

to develop, a tensile strain function with strain magni-

tudes of the order of one to six percent was assumed

(Figure 49). For such a development of strains, failure

occurs at approximately ten thousand repetitions of the

load (Figure 50), indicating that the level of strain

determines the number of load repetitions that the struc-

ture can withstand.

This example though simple serves to illustrate the

basic ideas of the cumulative damage model. The analysis

can be done for complicated load applications by using

the principles of the response of linear systems to

imposed excitations. It is conceivable that packaged

computer programs for different configurations of load

applications can'be written and the response of the system

to such loads evaluated. The main aim here, however, is

to show how the linear damage model may be utilised. As
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has been illustrated, this method of approach yields

not only the number of repetitions to failure but the

manner in which that number is attained. The results

i-ndicate that the degree of internal damage and rate of

growth at any instant depend on the characteristics of

the applied load for given material properties. If the

layer materials should change, different results will be

obtained. As is indicated in the section on the primary

model, a stiffer material will produce lesser deflections

and strains. In addition, the height of the layers could

be increased to produce the same effect. Therefore, the

optimum combination which may be utilised to sustain the

imposed loads may be obtained by a trial and error method

of approach.
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VII - CONCLUSIONS

In this study, two models have been presented to

account for the primary and ultimate response behavior

of a three layer linear viscoelastic system which can be

considered as representative of a pavement structure in

a given traffic and climatic environment.

The models can be used as a first approximation

to rationally account for two of the currently observable

factors responsible for the physical distress of such

structures. On the one hand, the primary model may be

employed to estimate the permanent deformation resulting

from repetitions of load at a specified frequency; on

the other hand, with the damage model, the fatigue life of

the structure may be predicted.

The primary model is capable of identifying the

indicators of structural inadequacy by predicting the

magnitudes of the stresses and displacements induced at

any point in the system due to load applications of the

type considered in the study. When these magnitudes

exceed allowable values set by experimental observation

for the layer materials, macroscopic distress in the form

of extensive cracking, and disintegration will result. The

analysis can be made for different system geometries,

different load characteristics, and different material

properties which may be functions of both time and fixed
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temperature. Consequently, it is possible to account for

the influences of parameters such as the radius of the

loaded area, the system geometry, the system properties,

and the load configuration on the mechanical response of

the system.

The systems framework within which this work has

been undertaken is significant and points a direction in

which future research and developmental plans in pavement

technology should proceed. As suggested in the first

chapter, a significant effort should be undertaken to

-develop reliable models for the assessment of the appropri-

ate maintainability, reliability, and serviceability

requirements of a particular pavement structure. To

this end, some of the initial considerations in the develop-

ment of such a program have been satisfied by the models

presented.
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VIII - SUGGESTIONS' FOR FUTURE WORK

The models which have been utilised to analyse the

response behavior of pavement systems are linear and

--deterministic in nature. In the development of the primary

mod l, for instance, inertia and edge effects are neg-

lected. It is assumed that the. layer materials are linear,

-homogeneous, and isotropic, etc. For the damage model,

only the linear aspects of damage behavior have been con-

sidered. The validity of such assumptions must, therefore,

be further investigated. In this respect, two major areas

of investigation seem to suggest themselves.

First, research must be conducted to develop

realistic characterization methods for the materials

employed in the building of pavement structures. Environ-

mental actions have varying degrees of effect, some of

which have already been discussed, depending on their

history, distribution, and variation. A thorough study of

environmental effects on roadway performance should,

therefore,-yield valuable information on the degree of

linearity and uniformity of layer materials. From such

studies, appropriate non-linear and stochastic models can

be postulated. In addition, the need for laboratory

testing of the paving materials under compound loading

programs of the type encountered in the field cannot be

over-emphasised. The results of such tests will aid in

the development of damage kernels other than the linear
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-type for-distress under repeated loading. Methods of

extrapolations to field conditions can then be postulated

and tried out.

A second major area for further investigation is the

-determination of realistic inputs other than material

_proerties into a suitable model for the stress and

deformation analysis. This would require a proper identi-

fi6ation of the space and time characteristics of the

applied loads, and appropriate failure criteria for existing

pavement structures. The model used should, therefore,

incorporate layers that are finite and not infinite in

horizontal extents.

With such an approach, edge effects can be accounted

for. The model, as was mentioned before, should also pos-

sess realistic material properties. To this end, the

viscoelastic analysis presented in this study is an

improvement over currently used elastic ones, i.e., rate

and accumulation effects have been accounted for, the rut

depth can also be estimated. However, only distress in

the form of fatigue has been considered. The other types

of distress can be approached in a similar manner once they

have been identified. Finally, the effects of inertia

should also be investigated.

The above observations indicate that the actual

model would be complex, since the interaction of all the

aforementioned effects, some independent and some not so,

must be accounted for. Similar techniques as the one used
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.in this study to connect a degree of cracking to a

level of strain will have to be instituted to get a

more realistic picture of performance. After all this is

done, the.problem can be attacked using the systems

_analysis approach discussed in Chapter I.

To conclude this section, it may be worthwhile to

mention that the damage-model as presented is one dimen_

--sional. However, the possibility of multi-stress or strain

behavior during damage propagation does exist, as borne

out by the discussions on failure in Chapter II.

It may be true in the case of damage propagation under

fatigue that a single one-dimensional stress or strain,

rather than a tensorial quantity, governs the propagation.

The only way to verify such suspicions will be to judi-

ciously observe damage progression in real pavement struc-

tures so as to define a critical energy, stress or strain

combination at failure. Once this has been done, the

model can be modified accordingly. The next phase of the

work should consider the application of stochastic methods

to the present analysis so as to achieve more realistic

response predictions.
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_,APENDIX A

-Definitions of Symbols

Pi performance level at time t=t.
1

Di degree of damage accumulated from zero history

of load application to time t=t i

ij -a set of variables or a tensor responsible for

causing damage

t(t). life remaining in a material or structure

(at time t) where it is under an arbitrary

loading history

B ( ) linear and non-linear damage kernels

ij ( ) linear and non-linear damage kernels

Hij( ) a tensor responsible for causing damage
1j

BL an unacceptable level of performance

MR Resilient Modulus

v distortional velocity

ar' 0' 0 Z,' rZ stress components in cylindrical

coordinates

w, u displacement components in cylindrical

coordinates

V2  the Laplacian Operator

V(m, t) system function

D (t) creep function

Er(t) relaxation modulus

SR(t) response function
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UF(t) input function

-A(-S), Ai-(S) damage concentration

A ('S)A(S) damage concentration factor
Af

-(N) -life remaining after N repetition

_L / full life
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APPENDIX B

Definitions

PAVEMENT :

SERVICEABILITY:

RELIABILITY :

As used in this study, it is the composite

of the surface, base, and subgrade layers,

i.e., the entire structure,

The ability of the pavement to serve

mixed truck and automobile traffic. In

practical terms, it is a subjective value

determined from a user's conception or

perception of the level of competence at

which the pavement is executing its

multi-purpose functions. ( 39)

a. Spreading the wheel load to match the

supporting power of the subgrade,

b, Providing traction and a smooth

riding surface.

c. Protecting the subgrade from deter-

ioration caused by the ravages of the

climatic conditions.

The probability that the pavement will

perform its stated functions satisfactorily

for a given period of time under a given
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set of environmental conditions. It

accounts for the variability and uncertainty

often encountered in nature and therefore

automatically considers the role of

chance in the design process ( 76 ).

MAINTAINABILITY: The characteristics (both qualitative and

quantitative) of material design and in-

stallation which make it possible to

meet operational objectives with an opti-

mum expenditure of maintenance effort"

(manpower, personnel skill, test equipment,

technical data, and maintenance support

facilities under operational environmental

conditions in which scheduled and un-

scheduled maintenance will be performed.

A More Precise Definition-

Quantitative: The probability that an item will be

restored to specified conditions within

a given period of time when maintenance

action is performed in accordance with

specified procedures and available

resources ( 77),
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'APPENDIX D

Derivation of the Moving 'Load Solution

The* Load 'Appication

The technique that was utilized to obtain the solu-

tion to the integral expression (65) is described below in

detail. Consider a load q(t) applied to the surface of a

linear viscoelastic system. If the density function of -the

load is (1,t) then the load will be given by

q(t) = p'(X,t) di (AI-1)

where

1= coordinates referred to an arbetrarily

fixed system of coordinates, as distinct

from that of the linear system

t = time variable

Let response to a given density function

p(X,t) = &( -Xo)H(t-T) ' (AI-1)

where

p(7-Xo) = the dirac delta function repre-

senting the spatial variation of

the density function

H(t-To) = the Heaviside step function repre-

senting the temporal variation of

the density function
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Xo = the distance of the load from the origin

of a fixed system of coordinates as

distinct from that of the linear system**

= the time of the application0

be given by

Y (X ,t) = f(X )g(t-To ) (Al-3)

where

f(x) = the spatial part of the response and,
0

g(t-1 o ) = the temporal part of the response.

The response to the load q(t) in equation (Al-1) is

then given by

Yp(Xo,t)dX (A1-4)

If the load is applied in such a way that its density

function has the following form,

The linear system-coordinates are related to those of the
arbitrarily fixed coordinate system through the equation

Ri = XRo-Xilwhere R0 = initial distance of load from
point of interest

Ri = distance from point of interest
at any Xi

** f(X ) can also be a function of time if Xo 
= X(T).

In That case, y'(X ,t) = y (t)
0o p
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---6(- xI-) -H(t- )  - ItH--2)]

+ 6(- 2 ) H(t-r) - H(t-T3)1

+ ec c.. 0 &. + ... . + (Al-5)

- H(t-.TN)

then for very small values of AT = .Ti+1 - T1 , the discrete

application above corresponds to the continuous application

of a moving load. The response for this case is given by

= f(X I) [g(t-T I )

+ f(X 2 )[g(t-T2 )

+ .....

- g(t - T2)]

3

i.e. at any tN,
N-l

YP (tN) = jpl N i=1 f(Xi)

+ f(XN)

)] (Al-7)

g(O)

For the total load the full response is given by

-2

Ypl (t N ) d X

For the problem considered in this

analogous to Jo(mk(R-VTi

study, f(Xi)

(Al-9)
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(t)Ypl

+ f(XN-I ) [(t-T_1) + f(XN)g(t-T N ) (Al-6)

(Al-8)

- --

s(xN) NH(t- N ) ]

[g(t-t i ) - g(t-t i +



g(t--ri) to Pv(t-Timk) (AI-1O)

and

y(tN) to 1mo(tN,mk) (AI-11)

The value of the integral for mo(t,m), equation

(64) is obtained using a finite difference technique as

the one described above, for 91 values of m spaced 0.1

apart with 0 < m < 9.

The integral for the moving load equation (65) is

then evaluated using Simpson's Rule and the range 0 to 9.

The rest of the integral from 9 to C made a negligible

contribution to. the results.

In the finite difference technique, .accuracy is a

function of the size of the interval AT and increases with

the number of time intervals in a curve whose slope de-

creases with time and approaches a zero value. However,

the computation time increases exponentially with the num-

ber of time intervals. A compromise therefore had to be

effected between the computation time and the accuracy. A

value of AT = 0.5 was deemed reasonable after choices

AT = 10,5,2.5,0.5 and 0.25.
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