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Abstract: We develop a simple description of models where electroweak symmetry break-

ing is triggered by a light composite Higgs, which emerges from a strongly-interacting sector

as a pseudo-Goldstone boson. Two parameters broadly characterize these models: mρ, the

mass scale of the new resonances and gρ, their coupling. An effective low-energy Lagrangian

approach proves to be useful for LHC and ILC phenomenology below the scale mρ. We

identify two classes of operators: those that are genuinely sensitive to the new strong force

and those that are sensitive to the spectrum of the resonances only. Phenomenological

prospects for the LHC and the ILC include the study of high-energy longitudinal vector

boson scattering, strong double-Higgs production and anomalous Higgs couplings. We fi-

nally discuss the possibility that the top quark could also be a composite object of the

strong sector.
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1. Introduction

The main goal of the LHC is to unveil the mechanism of electroweak symmetry breaking.

A crucial issue that experiments should be able to settle is whether the dynamics respon-

sible for symmetry breaking is weakly or strongly coupled. LEP1 has provided us with

convincing indications in favor of weakly-coupled dynamics. Indeed, the good agreement

of precision measurements with the Standard Model (SM) predictions showed that the

new dynamics cannot significantly influence the properties of the Z boson, ruling out, for

instance, the simplest forms of technicolor models, which were viewed as the prototypes of

a strongly-interacting electroweak sector. Moreover, the best agreement between experi-

ments and theory was obtained for a light Higgs, corresponding to a weakly-coupled Higgs

self-interaction. Finally, supersymmetry, which appeared to be the most realistic realiza-

tion of a light Higgs with mass stabilized under quantum corrections, received a further
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boost by the LEP1 measurements of gauge coupling constants, found to be in accord with

supersymmetric unification.

The situation has swayed back after the LEP2 results. The lack of discovery of a

Higgs boson below 114 GeV or of any new states has forced supersymmetry into fine-

tuning territory, partially undermining its original motivation. Moreover, new theoreti-

cal developments, mostly influenced by extra dimensions and by the connection between

strongly-interacting gauge theories and gravity on warped geometries, have led the way

to the construction of new models of electroweak symmetry breaking [1 – 6]. Still, the

complete replacement of the Higgs sector with strongly-interacting dynamics seemed hard

to implement, mostly because of constraints from electroweak data. A more promising

approach is to keep the Higgs boson as an effective field arising from new dynamics [7, 8]

which becomes strong at a scale not much larger than the Fermi scale. There has been

various attempts to realize such scenario, including the Little Higgs [2], Holographic Higgs

as Goldstone bosons [5, 6] or not [9], and other variations.

In this paper we want to study the general properties and the phenomenology of

scenarios in which a light Higgs is associated with strong dynamics at a higher scale,

focusing on features that are quite independent of the particular model realization. We

will refer to this scenario as to the Strongly-Interacting Light Higgs (SILH). Of course, in

many specific models, the best experimental signals will be provided by direct production

of new states, while here we concentrate on deviations from SM properties in Higgs and

longitudinal gauge boson processes. Still, we believe that our model-independent approach

is useful. The tests we propose here on Higgs and gauge-boson interactions will help, in case

of new discoveries, to establish if the new particles indeed belong to a strongly-interacting

sector ultimately responsible for electroweak symmetry breaking. If no new states are

observed, or if the resonances are too broad to be identified, then our tests can be used to

investigate whether the Higgs is weakly coupled or is an effective particle emerging from a

strongly-interacting sector, whose discovery has been barely missed by direct searches at

the LHC.

This paper is organized as follows. In section 2, we define the SILH and construct the

low-energy effective theory that describes its interactions with the SM fields. In section 3,

we discuss how this effective Lagrangian is related to specific models previously proposed

in the literature, like the Holographic Higgs and the Little Higgs. Then we describe in

section 4, how the SILH can be tested in collider experiments. In section 5, we extend our

analysis to the case of a composite top quark and finally we summarize our results and

draw our conclusions in section 6.

2. The structure of SILH

2.1 Definition of SILH

The structure of the theories we want to consider is the following. In addition to the vector

bosons and fermions of the SM, there exists a new sector responsible for EW symmetry

breaking, which is broadly characterized by two parameters, a coupling gρ and a scale mρ

describing the mass of heavy physical states. Collectively indicating by gSM the SM gauge
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and Yukawa couplings (basically the weak gauge coupling and the top quark Yukawa), we

assume gSM
<∼ gρ

<∼ 4π. The upper bound on gρ ensures that the loop expansion parameter

∼ (gρ/4π)2 is less than unity, while the limit gρ ∼ 4π corresponds to a maximally strongly-

coupled theory in the spirit of naive dimensional analysis (NDA) [10]. Because of the first

inequality, by a slight abuse of language, we shall refer to the new sector as “the strong

sector”. The Higgs multiplet is assumed to belong to the strong sector. The SM vector

bosons and fermions are weakly coupled to the strong sector by means of the SU(3)×SU(2)×
U(1)Y gauge coupling and by means of proto-Yukawa interactions, namely interactions that

in the low-energy effective field theory will give rise to the SM Yukawas.

A second crucial assumption we are going to make is that in the limit gSM = 0, gρ 6= 0

the Higgs doublet H is an exact Goldstone boson, living in the G/H coset space of a

spontaneously broken symmetry of the strong sector. Two minimal possibilities in which

the complex Higgs doublet spans the whole coset space are SU(3)/SU(2) × U(1) and the

custodially symmetric SO(5)/SO(4).

The gauging of SU(2) × U(1)Y and the non-zero Yukawas explicitly break the Gold-

stone symmetry of the strong sector leading to terms in the (effective) action that are not

invariant under the action of G on the coset space. In particular a mass term for the Higgs

is generated at 1-loop. If the new dynamics is addressing the hierarchy problem, it should

soften the sensitivity of the Higgs mass to short distances, that is to say below 1/mρ. In

interesting models, the Higgs mass parameter is thus expected to scale like (αSM/4π)m2
ρ.

Observation at the LHC of the new states with mass mρ will be the key signature of

the various realizations of SILH. Here, as stated in section 1, we are interested in the

model-independent effects, which could be visible in processes involving the Higgs boson

and/or longitudinal gauge bosons, and which would unmistakably reveal new physics in

the electroweak breaking sector.

As we shall explain below, the σ-model scale f is related to gρ and mρ by the equation

mρ = gρf . (2.1)

Fully strongly interacting theories, like QCD, correspond to gρ ∼ 4π. In that case eq. (2.1)

expresses the usual NDA relation between the pion decay constant f and the mass scale of

the QCD states. On the other hand, the theories we are considering represent a “weakly

coupled” deformation of this QCD-like pattern. For gρ < 4π, the pure low-energy effective

σ-model description breaks down above a scale mρ, which is parametrically lower than the

scale 4πf where the σ-model would become strongly coupled. The coupling gρ precisely

measures how strong the coupling of the σ-model can become before it is replaced by a

more fundamental description. The simplest example of this possibility is represented by

a linear σ-model UV completion of the G/H non-linear theory. In this case the role of mρ

and g2
ρ is played respectively by the mass of the heavy scalar modes and by their quartic

coupling. For instance, in the interesting case in which the Higgs complex doublet spans

SO(5)/SO(4), a simple UV completion could consist of a real scalar Φ in the fundamental

of SO(5) and quartic potential,1 V = −m2
ρΦ

2 + g2
ρΦ

4. However, once the SM couplings are

1Along the same lines we could even describe the SM in the limit of a heavy Higgs boson, using an
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turned on, such a limited UV completion fails to screen the quadratic corrections to the

Higgs mass.

A more interesting possibility arises when the strong sector is composite so that the

corrections to the Higgs mass are screened above the “hadron” mass scale mρ. Moreover

if the underlying theory is a large-N gauge theory, we also expect the hadrons to interact

with a coupling

gρ =
4π√
N

, (2.2)

which becomes weaker at large N . This is also basically the picture that holds in extra-

dimensional constructions where the SM is represented by a weakly-coupled boundary

dynamics while the Higgs sector is part of a more strongly-coupled bulk dynamics. Ex-

amples of this type are the Holographic Goldstones [6] over a slice of AdS5.
2 In these

extra-dimensional realizations, the Kaluza-Klein mass and coupling play respectively the

role of mρ and gρ, while the number of weakly-coupled Kaluza-Klein modes below the

cut-off can be basically interpreted as N . To be explicit, consider a 5-dimensional (5D)

gauge theory with 5D coupling g5 compactified on a circle or orbifold of radius R. We have

mρ = 1/R and g2
ρ ≡ g2

5/(πR). On the other hand, according to 5D NDA, the physical

cut-off of the model is Λ ∼ (4π)2/g2
5 . These relations then imply

(
4π

gρ

)2

= ΛπR ≡ N . (2.3)

Other models that basically fall into our class are Little Higgses [1]. There, the scale

mρ is represented by the masses of the partners of top quark, electroweak vector bosons and

Higgs, the states that soften the quadratic correction to the Higgs mass. In Little-Higgs

models there is more parameter freedom, and the coupling gρ is more accurately described

by a set of couplings that can range from weak (∼ gSM) to strong (≫ gSM). Nonetheless

we shall still find our simplified characterization very useful.

Summarizing, in several models of interest the electroweak-breaking sector corresponds

to a “deformation” of a pure σ-model, where weakly-coupled states appear below the naive

cut-off 4πf . It is useful to focus on the simplest possibility where just one parameter, the

coupling gρ of the new states, characterizes this “deformation”.3

2.2 Constructing the effective action

Under the assumptions of the class of theories defined above, we now want to derive the form

of the most general effective Lagrangian for the SM + Higgs fields. Since we are assuming

analogous σ-model involving only 3 (and not 4) Goldstone bosons, with f = 〈H〉, gρ =
√

λ (the quartic

Higgs coupling), and the physical Higgs mass playing the role of mρ.
2Notice that the AdS geometry only matters for the extrapolation to ultra-high scales. The same low-

energy dynamics of ref. [6] could also be realized over flat space by turning on the suitable boundary terms,

along the lines of ref. [11] (although ref. [11] focussed on the Higgsless limit).
3Our simplified approach based on two parameters (mρ, gρ) is close in spirit to recent studies of two (and

three) site models [12]. The phenomenological goal of our paper is however complementary to that refs. [12]:

while those studies focus on the physics of the new heavy states, our paper focuses on the low-energy effects

in Higgs and vector boson interactions.
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gρ > gSM , it makes sense to focus first on the strong sector in the limit gSM = 0, and to turn

on later the couplings of this sector to the SM vectors and fermions. Indicating by TA and

T a respectively the broken and the unbroken generators of the group G, we parametrize

the Goldstone field by the matrix

U = eiΠ Π ≡ ΠATA. (2.4)

In addition we assume the strong sector features a set of fields with mass of order mρ ,

which we collectively indicate by Φ. By our assumptions, the general form of the action

including quantum fluctuations from scales shorter than 1/mρ must be

L =
m4

ρ

g2
ρ

[
L(0)(U,Φ, ∂/mρ) +

g2
ρ

(4π)2
L(1)(U,Φ, ∂/mρ) +

g4
ρ

(4π)4
L(2)(U,Φ, ∂/mρ) + . . .

]
.

(2.5)

In the action we have kept massive degrees of freedom “integrated in” for purposes that will

become momentarily more clear. One can for instance check that the structure in eq. (2.5)

is obtained in the compactification of a 5D gauge theory with the identification mρ ≡ 1/R

and g2
ρ = g2

5/(πR) (provided the power divergent loops are computed by NDA, while the

log-divergent and finite pieces automatically satisfy the above structure). Moreover this

same structure characterizes the effective field-theory description of the string. For instance

in type I compactified on a T 6 of radius ∼ 1/Ms, we can make the identifications: Ms = mρ

and gs = g2
ρ/2π.

In order to get the truly low-energy effective action we should then integrate out the

Φ’s and also include the quantum fluctuations at scales below mρ. If the structure of the

terms in eq. (2.5) is the most general one, in particular if terms of all orders in derivatives

appear already in the classical Lagrangian L(0), then the presence or absence of the Φ’s

has no impact on the low-energy theory. We shall first concentrate on this case. Later we

shall discuss the more realistic situation where the classical Lagrangian involves at most

two derivatives: in that case the structure of the higher-order terms in the low-energy

action crucially depends on the quantum numbers of the Φ’s. The leading two-derivative

term defines relation (2.1) for the Goldstone decay constant as well as the leading self-

interactions4

m4
ρ

g2
ρ

L0 ≡ f2Tr (DµDµ) + · · ·

= f2Tr

[
∂µΠ∂µΠ +

1

3
(Π

←→
∂µ Π)(Π

←→
∂µ Π) + · · ·

]
. (2.6)

Here Dµ is the Goldstone combination defined in eq. (A.3) of appendix A and Π
←→
∂µ Π ≡

Π(∂µΠ) − (∂µΠ)Π. Once we interpret Π as the Higgs doublet and include gauge covariant

derivatives, we obtain that eq. (2.6) describes the following leading (dimension-6) interac-

tions
cH

2f2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f2

(
H†←→DµH

)(
H†←→DµH

)
. (2.7)

4When the coset generators T A transform as a reducible representation of H, in principle there will be

a different f for each quadratic invariant.
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Here we have made a Higgs field redefinition Hα → Hα + a(H†H)Hα/f2 (with a an

appropriate constant) to write the operator H†H|DµH|2 in terms of the two appearing

in eq. (2.7). The coefficients cH and cT are fixed by the σ-model structure, up to the overall

normalization which depends on the definition of f . For SO(5)/SO(4) one finds cT /cH = 0,

because of custodial symmetry, and for SU(3)/SU(2) × U(1) one finds cT /cH = 1.

From eqs. (2.5)–(2.6) we can deduce the rules to estimate the coefficients of the higher-

dimensional operators in the low-energy effective Lagrangian

1. Each extra Goldstone leg is weighted by a factor 1/f . For instance the addition of

two Higgs doublet legs involves the factor H†H/f2.

2. Each extra derivative is weighted by a factor 1/mρ. When the SM subgroup is weakly

gauged, the replacement ∂µ → ∂µ + iAµ ≡ Dµ is in order; this same rule implies that

each extra insertion of a gauge field strength Fµν = −i[Dµ,Dν ] is weighted by a factor

1/m2
ρ.

The global symmetry G is broken at tree level by the weak gauging of the SM group

and by the weak interactions that underlie the origin of Yukawa terms and Higgs potential.

In section 3, we shall present a more detailed analysis of all the various possibilities. For

our present goal we just need to remark that if no new scale other than mρ is present, and

simple expressions of the Goldstone field are involved, one expects these breaking terms to

satisfy the same field and derivative expansions expressed by rules 1 and 2. Basically, the

selection rules of G and of the flavour symmetry of the SM control the overall size of the

symmetry breaking terms, while rules 1 and 2 determine the counting for Higgs field and

derivative insertions. We can thus formulate rule 3:

3. Higher-dimensional operators that violate the symmetry of the σ-model must be

suppressed by the same (weak) coupling associated to the corresponding renormaliz-

able interaction in the SM Lagrangian (e.g., Yukawa couplings yf and quartic Higgs

coupling λ).

For instance, the shift Hα → Hα + a(H†H)Hα/f2 discussed before induces the operators
(

cyyf

f2
H†Hf̄LHfR + h.c.

)
− c6λ

f2

(
H†H

)3
. (2.8)

The pure σ-model contributions give cy/cH = −1/3 and c6/cH = 4/3 both in the cases

of SO(5)/SO(4) and SU(3)/SU(2) × U(1), with the definitions yf =
√

2mf/v and λ =

m2
H/(2v2), valid up to corrections of order v2/f2.

Of special phenomenological relevance are the operators involving Higgs bosons and

gauge fields, and in particular those involving one or two Higgses and a pair of photons

or gluons like OBB = H†HBµνBµν and Og = H†HGµνGµν . Using the CCWZ construc-

tion [13], we derive, in appendix A, the following general structure of dimension-6 operators

involving Higgs and gauge field strengths, arising by weak gauging of the SM group:

OW = i

(
H†σi←→DµH

)
(DνWµν)i OB = i

(
H†←→DµH

)
(∂νBµν) (2.9)

OHW = i(DµH)†σi(DνH)W i
µν OHB = i(DµH)†(DνH)Bµν . (2.10)
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While, expectedly, operators involving gluons do not arise, it is also manifest that none of

these operators contributes to the process h → γγ (with real photons). On the other hand,

there are contributions to h → Zγ from OHW and OHB . Notice that, using integration by

parts, we could equivalently parametrize the set of operators in eqs. (2.9)–(2.10) by OW , OB

and OZB = H†Bµν(Wµν +Bµν)H and OZW = H†W µν(Wµν +Bµν)H, where Wµν ≡ W i
µνσi.

Again, neither OZB nor OZW contribute to h → γγ. According to counting rule 2, all these

operators have a coefficient of order 1/m2
ρ, as they formally involve two extra covariant

derivatives with respect to a Higgs kinetic term. The absence of Og = H†HGµνGµν and

of operators affecting the coupling between Higgs and photons like OBB = H†HBµνBµν is

due to the Goldstone symmetry. Since the neutral Higgs h is both charge and color neutral,

the gauging of just SU(3)c ×U(1)Q does not break the U(1) generator Th of G under which

the physical Higgs boson shifts. Operators like Og or those leading to h → γγ (like OBB)

explicitly break this shift symmetry and cannot be generated upon the simple gauging of

the SM group described by rule 2. In order to generate these terms, the couplings that

break the symmetry generated by Th must intervene, so that their coefficient must be

suppressed by extra powers of (gSM/gρ). Normally one gets a g2
SM/g2

ρ extra suppression.5

According to the general expression in eq. (2.5), four-derivative operators like those

in eqs. (2.9)–(2.10) can arise at tree level. However in “normal” theories, the classical ac-

tion including the heavy fields Φ involves at most two derivatives. Holographic Goldstone

models and Little Higgs are of this type. To be more specific, these theories correspond

to minimally-coupled field theories where the states have spin ≤ 1, and all vectors are

associated to (spontaneously-broken) gauge symmetries.6 In the case of minimally-coupled

theories, higher-derivative operators like those in eqs. (2.9)–(2.10) can appear in the classi-

cal low-energy action below mρ only if there exists a field Φ with the appropriate quantum

numbers to mediate the corresponding operator. In this respect we remark an interesting

difference between OW , OB and OHW , OHB . Two linearly independent combinations of

OHW and OHB contribute respectively to a vertex that couples an on-shell photon to two

neutral states (a Higgs and a Z) and to a correction to the gyromagnetic ratio of the W .

On the other hand, in minimally-coupled theories photons do not interact at tree level

with neutral states and all gyromagnetic ratios are fixed to be equal to 2. In these theories

OHW , OHB must therefore appear in L(1) and bear an extra one-loop suppression. By

the same argument Og and OBB should also arise at one-loop and moreover, because of

the previous symmetry-based argument, they should be further suppressed by a Goldstone

symmetry-breaking power of gSM/gρ. The operators OW or OB can instead be generated

in minimally-coupled theories by the tree-level exchange of heavy vector fields. We show

5A similar result holds in low-energy QCD. The coupling π2
0F 2

µν vanishes at leading order in αEM , and

gets generated at subleading order in the quark mass mq and also through the chiral anomaly. On the other

hand, π+π−F 2
µν exists at zeroth order in both αEM and mq.

6The latter property sets the rule to count derivatives for massive vector fields through the requirement

that the action for the eaten Goldstones be a 2-derivative one. For instance the gauge symmetry breaking

term (∂µVµ)2 counts like a four derivative object and is discarded from the classical action. Minimal

coupling along with the gauge principle ensures the absence of ghosts at the scale mρ and a milder growth

of the amplitudes at energies above the scale mρ.
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this explicitly in appendix A, in the context of a simplified model with a heavy vector that

resembles both the Little Higgs models with product of gauge groups and the Holographic

Goldstone. Given that all the known examples with gρ < 4π are minimally coupled, in the

following of this paper, we will work under the assumption of minimal coupling.7 Of course

this makes a difference when we consider models at gρ < 4π, as opposed to the genuinely

strongly coupled case gρ ∼ 4π, for which all loops are equally important in the spirit of

NDA.

At the dimension-6 level, there is one last independent operator involving two Higgses

and four covariant derivatives
1

m2
ρ

(D2H†)(D2H). (2.11)

As we show in the appendix A this can be generated at tree level in a minimally coupled

theory by integrating out a massive scalar transforming as an SU(2)L doublet. By the

equations of motion this term can, however, be rewritten as

1

m2
ρ

[
m2

HHα + λH†HHα + yf (FLfR)α
]2

, (2.12)

corresponding to effects that are all subleading to more direct corrections from the strong

sector.

For completenes we should also list the dimension-6 operators involving only covariant

derivatives and field strengths

O2W = (DµWµν)
i(DρW

ρν)i O2B = (∂µBµν)(∂ρB
ρν) O2g = (DµGµν)a(DρG

ρν)a

(2.13)

O3W = ǫijkW
i
µ

ν
W j

νρW
k ρµ O3g = fabcG

a
µ

νGb
νρG

c ρµ. (2.14)

As we show in the appendix A, see eq. (A.11), the three operators in eq. (2.13) can be

generated at tree level through the exchange of massive vectors transforming respectively

as a weak triplet, as a singlet and as a color octet. Their coefficients are therefore in general

of order 1/(gρmρ)
2. The two operators in eq. (2.14) cannot arise at tree level in minimally-

coupled theories. For instance O3W contributes to the magnetic dipole and to the electric

quadrupole of the W . They are thus generally expected with a coefficient ∼ 1/(4πmρ)
2.

2.3 The SILH effective lagrangian

We now basically have all the ingredients to write down the low-energy dimension-6 ef-

fective Lagrangian. We will work under the assumption of a minimally coupled classical

Lagrangian at the scale mρ.

7One may wonder how our results would change in a genuinely higher-spin (higher-derivative) theory

like string theory. To be specific, one could consider, provided it exists, a realization of the Holographic

Goldstone in weakly-coupled string theory and take the limit Ms ∼ mKK ≡ mρ. At first glace we would

expect a drastic change. For instance, it is obvious that a photon can scatter off a dilaton, a neutral scalar,

at tree level. On the other hand, a specific study of the gyromagnetic ratio g [14] of all the high-spin states

of the open string remarkably gives the result g = 2, indicating a close similarity to a minimally-coupled

theory.
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Using the rules described in section 2.2, we obtain a low-energy effective action for the

leading dimension-6 operators involving the Higgs field of the form

LSILH =
cH

2f2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f2

(
H†←→DµH

)(
H†←→D µH

)

−c6λ

f2

(
H†H

)3
+

(
cyyf

f2
H†Hf̄LHfR + h.c.

)

+
icW g

2m2
ρ

(
H†σi←→DµH

)
(DνWµν)

i +
icBg′

2m2
ρ

(
H†←→DµH

)
(∂νBµν)

+
icHW g

16π2f2
(DµH)†σi(DνH)W i

µν +
icHBg′

16π2f2
(DµH)†(DνH)Bµν

+
cγg′2

16π2f2

g2

g2
ρ

H†HBµνB
µν +

cgg
2
S

16π2f2

y2
t

g2
ρ

H†HGa
µνGaµν . (2.15)

We will later discuss the Lagrangian terms that purely involve the vector bosons. The

coupling constants ci are pure numbers of order unity. For phenomenological applications,

we have switched to a notation in which gauge fields are canonically normalized, and

gauge couplings explicitly appear in covariant derivatives. Also, we recall the definition

H†←→D µH ≡ H†DµH − (DµH†)H.

In what follows, we will comment on the operators in eq. (2.15). Let us start with the

operators involving more than two Higgs fields. As previously discussed, by using the Fierz

identities for the Pauli matrices, one can write three independent operators involving four

H fields and two covariant derivatives. Two are shown in our Lagrangian with coefficients

cH and cT . The third operator H†H|DµH|2, can be written in terms of a combination of

cH , cT , c6, cy by a Higgs field redefinition Hα → Hα+(H†H)Hα/f2, or, which is equivalent,

by using the leading order equations of motion. The operator with coefficient cH , as we

will show in section 4, plays a crucial role in testing the SILH in Higgs and vector boson

scattering at high-energy colliders. The operator proportional to cT violates custodial

symmetry and gives a contribution T̂ to the ρ parameter

∆ρ ≡ T̂ = cT ξ, (2.16)

ξ ≡ v2

f2
, v =

(√
2GF

)−1/2
= 246GeV. (2.17)

From the SM fit of electroweak data [16], we find −1.1 × 10−3 < cT ξ < 1.3 × 10−3 at 95%

CL (letting also Ŝ to vary one finds instead −1.7 × 10−3 < cT ξ < 1.9 × 10−3 at 95% CL).

Because of this strong limit, we will neglect new effects from this operator and set cT to zero.

Indeed, the bound on cT suggests that new physics relevant for electroweak breaking must

be approximately custodial-invariant. In our Goldstone Higgs scenario this corresponds to

assuming the coset SO(5)/SO(4). When gSM is turned on, cT receives a model dependent

contribution, which should be small enough to make the model acceptable. In the next

section, we will briefly discuss the size of cT in various models.

The coefficient cy is universal at leading order in the Yukawa couplings, and non-

universal effects will appear at order y2
f/g2

ρ. This is because this term purely originates from
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the non linearity in H of the σ-model matrices. Indeed, the field redefinition mentioned

above precisely generates this universal cy.

The operators proportional to cW and cB are generated respectively by tree-level ex-

change of a massive triplet and singlet vector field as explained in the previous section (see

also eq. (A.11) in appendix A). Their relative importance in 2-to-2 scattering amplitudes

with respect to the operator proportional to cH is (g2/g2
ρ)(cW,B/cH ). Therefore, in weakly-

coupled theories (gρ ∼ g), the two contributions are comparable but, in strongly-coupled

theories (gρ ≫ g), the operators proportional to cW,B give only subleading effects. Since,

as we will show in section 3, realistic models of electroweak breaking without excessive fine

tuning prefer gρ > g, in most cases the contribution from cW,B are subleading with respect

to the one from cH .

A linear combination of the operators with coefficients cW and cB contributes to the

Ŝ parameter of electroweak precision data:

Ŝ = (cW + cB)
m2

W

m2
ρ

, (2.18)

where Ŝ is defined in ref. [16]. Using the SM fit of electroweak data [16], we obtain the bound

mρ
>∼ (cW + cB)1/2 2.5 TeV at 95% CL. (this bound corresponds to assuming a light Higgs

and ∆ρ ≡ T̂ = 0; by relaxing this request the bound becomes mρ
>∼ (cW + cB)1/2 1.6 TeV).

In terms of the parameter ξ defined in eq. (2.17), this bound becomes

ξ <∼
1.5

cW + cB

( gρ

4π

)2
. (2.19)

As we show in section 4, new effects in Higgs physics at the LHC appear only for sizable

values of ξ. Then eq. (2.19) requires a rather large value of gρ, unless cW + cB happens to

be accidentally small.

The operators with coefficients cHW and cHB originate from the 1-loop action L(1),

under our assumption of minimal coupling for the classical action. Although they are

H2D4 terms, like cW , cB , they cannot be enhanced above their 1-loop size by the exchange

of any spin 0 or 1 massive field. In the case of a large N theory where N ∼ 16π2/g2
ρ , these

terms are down with respect to the others by 1/N . Notice that according to this counting

Ŝ ∼ g2Nξ/(16π2), which for ξ ∼ 1 coincides with the usual technicolor result. Recently, it

has been pointed out that walking at small N might be a promissing direction [15].

As discussed in section 2.2, the operators proportional to cγ and cg are suppressed by an

extra power (gSM/gρ)
p with respect to those proportional to cHW and cHB . Moreover, while

cH and cy indirectly correct the physical Higgs coupling to gluons and quarks by O(v2/f2)

with respect to the SM, the direct contribution of cγ and cg is of order (v2/f2)(gSM/gρ)
p.

Their effect is then important only in the weakly coupled limit gρ ∼ gSM . Notice that

from the point of view of the Goldstone symmetry, OBB and Og are like a Higgs mass

term with extra field strength insertions. According to our power counting rules we then

expect their coefficient to roughly scale like m2
H/mρ

4 times the trivial factors of g′2 and

g2
3 . In the simplest models m2

H ∼ (g2
SM/16π2)m2

ρ. We have here assumed this simplest

possibility, which accounts for the extra g2
SM/g2

ρ appearing in eq. (2.15). More precisely, for
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phenomenological purposes, we have chosen gSM as the coupling of the largest contribution

in the corresponding SM loop, i.e., g2
SM = g2 (y2

t ) for the operator involving photons

(gluons), respectively.

Finally, for completeness, we give the dimension-6 Lagrangian for the vectors:

Lvect=− c2W g2

2g2
ρm

2
ρ

(DµWµν)
i(DρW

ρν)i− c2Bg′2

2g2
ρm

2
ρ

(∂µBµν)(∂ρB
ρν)− c2gg

2
3

2g2
ρm

2
ρ

(DµGµν)a(DρG
ρν)a

+
c3W g3

16π2m2
ρ

ǫijkW
i
µ

ν
W j

νρW
k ρµ +

c3gg
3
3

16π2m2
ρ

fabcG
a
µ

νGb
νρG

c ρµ , (2.20)

where the coefficients are dictated by the arguments given in section 2.2. The operators

proportional to c2W , c2B and c2g arise from virtual tree-level exchange of massive vectors,

from the second term in eq. (A.11) of appendix A. The coefficients c2W and c2B contribute

to the electroweak precision parameters W and Y [16]

W = c2W
g2m2

W

g2
ρm

2
ρ

, Y = c2B
g′2m2

W

g2
ρm

2
ρ

. (2.21)

By using the equations of motion for the SM field strengths, these operators can be rewrit-

ten as contact interaction among the electroweak currents. Given that the experimental

bound on W and Y are comparable to that on Ŝ, in the moderately strong coupling regime

gρ > g, the constaints on c2W and c2B are weaker than those on cW + cB .

The Lagrangian terms in eqs. (2.15) and (2.20) include 14 dimension-6 CP-invariant

operators involving only Higgs and gauge fields plus a 15th operator involving Higgs and

fermions, the one associated to cy. This result, albeit in a different basis, agrees with

ref. [17] for the same class of operators.

3. Relating the SILH to explicit models

In this section, we consider a few explicit models that reduce to the effective La-

grangian (2.15) below the masses of the new states. Before reviewing these models we

would like to give a synthetic but comprehensive characterization of the terms that ex-

plicitly break the Goldstone symmetry G. We have already discussed in some detail the

explicit breaking of G induced by the weak gauging of the SM group. Here we will discuss

the various possibilities for the Yukawa and Higgs couplings. We can broadly distinguish

two classes of models: in the first class, the Higgs potential is fully saturated by quantum

effects at the scale mρ, while in the second the quartic coupling is a tree-level effect (or,

equivalently, it arises from quantum corrections at energies higher than mρ). The Georgi-

Kaplan model and Holographic Goldstones are in the first class, while Little Higgses belong

to the second. In what follows we shall work with canonically normalized fields, and in-

dicate by fL,R the SM fermions while by ΨL,R we refer to strong-sector states with mass

∼ mρ.

Class 1. In this class of models, the full Higgs potential arises by one-loop effects involving

SM particles. The dominant contribution is given by the top quark and its explicit form
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depends on the origin of the top Yukawa coupling. We can basically distinguish two

possibilities to generate the Yukawa couplings. The simplest one corresponds to models

with minimal flavor violation [18] in which the only source of breaking of the SU(3)5 global

flavor symmetry of the SM are the Yukawa matrices themselves. This case is realized when

the fermions couple to the strong sector bilinearly

yf f̄LfROS , (3.1)

where OS is some operator of the strong sector, while yf are the SM Yukawa matrices. In

the low-energy effective theory, the above term will give rise to the interaction

yf f̄LfRH Py(H/f) , (3.2)

where Py is a polynomial whose expansion at O(H2) determines the universal coefficient

cy of the effective Lagrangian (2.15). Violations of cy universality will come only at higher

order in yf . By simple power counting, the top-quark contribution to the Higgs potential

has the form

V (H) ∼
m4

ρ

g2
ρ

× y2
t

16π2
× V̂ (H/f) . (3.3)

Then the generic prediction of this class of models is 〈H〉 ∼ f (i.e., ξ ∼ 1) while the

Higgs quartic is λ ∼ y2
t (g

2
ρ/16π

2). An upper bound around mt is thus predicted for the

Higgs mass, in some analogy with supersymmetry. Notice that, in this type of models, it

is mandatory that gρ ≫ gSM in order to have a Higgs mass above the experimental bound.

Notice also that

Ŝ ∼ g2
SM

g2
ρ

ξ , (3.4)

which for maximal strength gρ ∼ 4π and ξ ∼ 1 has the size of an electroweak loop. (By

interpreting N ∼ (4π/gρ)
2, the generic prediction for Ŝ qualitatively corresponds to the

case of N technicolors.) Then the smaller gρ, the more tuning on ξ is needed in order

to satify the experimental bound on Ŝ. These models must therefore largely satisfy our

assumption gρ ≫ gSM . On the other hand, for gρ somewhat less than maximal we must tune

ξ by an amount (gρ/4π)2 < 1. In order to achieve that, we clearly need extra contributions

to the potential, associated to other G breaking couplings, possibly involving only the

heavy states. Provided the extra contributions have different form than the one from the

top quark, we may tune a little bit the quadratic term with respect to the quartic, thus

suppressing ξ.

The second possibility to generate Yukawa couplings is to have the SM fermions couple

linearly to fermionic operators of the strong sector:

yLf̄LOR + yRf̄ROL + h.c. , (3.5)

where yL,R are matrices in flavor space. In the simplest cases, OL,R have definite quantum

numbers under G, and therefore eq. (3.5) formally determines the spurionic quantum num-

bers of yL,R. The possibility of generating Yukawas from the linear couplings of eq. (3.5)

was first suggested in ref. [19] for Technicolor models, and it is the one implemented in
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Holographic Higgs models [6]. Writing eq. (3.5) as a function of the physical states of

the strong sector Ψ, one can see that in these models the Yukawa couplings are generated

through a sort of universal see-saw

mρ

[
yL

gρ
f̄LΨRPL(H/f) +

yR

gρ
f̄RΨLPR(H/f) + Ψ̄LΨR

]
. (3.6)

Notice that for yL ∼ gρ or yR ∼ gρ respectively fL or fR should be considered as part of

the strong sector.8 This remark explains the normalization of the mixing term in eq. (3.6).

The effective SM Yukawa couplings after integrating out the Ψ have the form

yf ∼ yLyR

gρ
. (3.7)

For yL ∼ yR one has yL,R ∼ √
yfgρ, which is a coupling of intermediate strength. If the

polynomials PL and PR are flavor universal so will be the cy coefficient at leading order

in the yL,R. Nevertheless, the exchange of Ψ will give rise to non-universal (H dependent)

corrections to the kinetic terms of fL,R that will scale like y2
L,R/g2

ρ . By going to canonically

normalized fermions one induces then O(y2
L,R/g2

ρ) non-universal corrections to cy. The top

contribution to the Higgs potential receives now, in addition to terms of the form (3.3),

corrections scaling like

V (H) ∼
m4

ρ

g2
ρ

×
y2

L,R

16π2
× V̂ (H/f) . (3.8)

For yL ∼ yR this leads to a Higgs quartic coupling λ ∼ (gρ/4π)34πyt, and therefore a

moderately heavy Higgs boson (∼ 300 GeV) can in principle be obtained.9 For the same

reason the suppression of the coefficients of Og would be yt/gρ instead of y2
t /g

2
ρ. Obviously,

in the particular case in which the right-handed top is a singlet under the global group

G, its contribution to the Higgs potential eq. (3.8) will vanish. The allowed values for

the couplings yL,R strongly depend on the quantum numbers of the mixing operators

OL,R. In the simplest case in which OL = (2, 1), OR = (1, 2) under the custodial group

SO(4) = SU(2)L × SU(2)R, the corrections to Zb̄b and T̂ are expected to be10

δgb

gb
∼ y2

L

g2
ρ

ξ , T̂ =
Ncy

4
R

16π2g2
ρ

ξ , (3.9)

8For instance, for yR ∼ gρ the linear combination of fR and ΨR which is left massless by the second and

third terms in eq. (3.6) has the natural interpretation of a massless composite.
9Whether this can be achieved in practice depends on the specific model at hand. Depending on the

G quantum numbers of yL,R, the potential they generate may or may not trigger electroweak symmetry

breaking. For instance in the model in ref. [6], the Higgs potential terms eq. (3.8) align to the wrong vacuum

〈H〉 = 0. In that model the formally subdominant genuine top contribution eq. (3.3), which has a minimum

at 〈H〉 ∼ f , must therefore be equally important. This is easily achieved by some little tuning of yL and

yR thanks to an accidental numerical suppression of eq. (3.8). The result however is that the Higgs mass is

bounded <∼ mt.
10Notice that bT corresponds to a contribution to the vector boson mass matrix transforming as an object

with custodial isospin Ic = 2. Therefore, yL, being an isospin singlet, will not contribute to bT , while yR,

being a doublet of SU(2)R, will have to enter at least at fourth order.
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where Nc = 3 is the number of colors. The experimental bounds, together with the relation

yt ∼ yLyR/gρ imply ξ < 0.05. The reason of this tight bound is that δgb/gb demands a

small yL, T̂ demands a small yR, while the two couplings are constrained to have a sizeable

product to reproduce yt. A less constrained, and thus less tuned scenario, can arise in the

less minimal case where OL = (2, 2), OR = (1, 1). Now yR is a singlet under the custodial

group and drops out of eq. (3.9). However yL transforms as (1, 2) under SU(2)L × SU(2)R
and therefore

δgb

gb
∼ y2

L

g2
ρ

ξ , T̂ ∼ Ncy
4
L

16π2g2
ρ

ξ . (3.10)

For yL ∼ yt, corresponding to a composite tR (yR ∼ gρ), the bound from δgb/gb is com-

parable to the one from Ŝ, while the one from T̂ is less severe. In this case, however,

the mass of the Higgs is again bounded to be parametrically <∼ mt. A larger yL, and a

possibly heavier Higgs, can remarkably be made compatible with δgb/gb for the special

case in which the theory possesses an additional parity PLR exchanging the SU(2)L and

SU(2)R group within SO(4). In that case, the leading tree-level contribution to δgb/gb

can be naturally set to zero, and one can take yL ∼ √
ytgρ without being in stark conflict

with the bound on T̂ . For this value of yL flavor violating effects are of the order of the

experimental bounds, as we will see in section 5. Of course our previous warnings about

obtaining proper electroweak breaking still apply here.

Apart from the above exceptional case in which OL = (2, 2), OR = (1, 1), other

alternatives for the quantum numbers of OL,R will generically have problems with δgb/gb

and T̂ . We can take yL ∼ yt and yR ∼ gρ in order to reduce δgb/gb, but in this case T̂

comes always too large, T̂ ∼ Ncg
2
ρξ/(16π

2). A possible way to reduce T̂ is to introduce into

the theory custodial partners for the top whose masses mcust will control the breaking of

the custodial symmetry [20]. In this case the contribution to T̂ will have extra supression

factors (mcust/mρ)
2 that can reduce T̂ below the experimental bound for mcust ∼ mt.

11

This possibility implies the presence of extra light fermions that are easily accessible at the

LHC or even at Tevatron.

Class 2. These are models realizing the clever Little Higgs construction by which only

the quadratic term in the Higgs potential is saturated by quantum corrections at the mρ

scale. The Higgs quartic term, in particular, is sensitive to the larger scale Λ ∼ 4πf and is

estimated to be of order λ ∼ g2
SMΛ2/(16π2f2) ∼ g2

SM . We then have

V (H) ∼ g2
SM

16π2
m2

ρH
2 + g2

SMH4 . (3.11)

The minimization yelds the parametric relation v2/f2 ∼ g2
ρ/(16π

2) to be compared to

v2/f2 ∼ 1 for models of Class 1. The relation λ ∼ g2
SM implies that the Higgs mass can

now be above the experimental bound without requiring a large gρ, in contrast to the

models of Class 1. In a related way we have roughly Ŝ ∼ m2
W /m2

ρ = g2/16π2, which

11One must, however, check that these extra states do not have electromagnetic charge Q = −1/3 and

mix with bL, since this would induce large effects on δgb/gb. This can occur, for example, for the assignment

OL = (3, 2) and OR = (1, 2).
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also does not manifestly push towards a large gρ. Now, the result for Ŝ in the Little

Higgs is parametrically the same of a 1-loop electroweak correction, which is typically only

marginally acceptable. Better agreement with the bound on Ŝ can be achieved by using

the flexibility the Litlle Higgs possesses in the strong sector parameters: gρ truly represents

a spectrum of different couplings. In particular we can distinguish a coupling gρ associated

to the extra gauge factors and a coupling gT associated with the mass mT ∼ gT f of the

partners of the top quark. Since Ŝ is controlled by the vector boson mass mρ ∼ gρf , while

the scalar potential tends to be dominated by the top contribution, the expression for Ŝ is

more appropriately

Ŝ ∼ m2
W

m2
ρ

∼ g2

16π2

g2
T

g2
ρ

, (3.12)

showing that there is space to relax Ŝ with respect to its typical one-loop size, making it

numerically acceptable.12 Therefore this class of models prefers a weak coupling in the top

resonance sector but still a somewhat large coupling gρ in the new gauge sector.

Concerning T̂ , if the underlying σ-model does not posses a custodial symmetry, one

will have a significant T̂ ∼ O(v2/f2) ∼ g2
T /16π2 requiring a severe tuning of parameters

and disfavoring large gT even more. But even when the model is custodially symmetric in

the limit gSM = 0, there are corrections to T̂ that are potentially important at small gρ.

This is because SM custodial breaking couplings like yt modify at tree level the structure

of the strong sector Lagrangian, in particular the potential of electroweak triplet scalars

(these effects unlike the Higgs mass are not screened above the scales mT , mρ, and like the

Higgs quartic they formally have tree-level size). If the leading contribution to the mass

of the triplets is controlled by gρ, then, by the isosping argument illustrated before, we

generally expect cT ∼ (yt/gρ)
4 in eq. (2.15), leading roughly to T̂ ∼ y4

t g
2
T /(16π2g4

ρ). This

also favors gρ > gT , yt. A more detailed scrutiny of these effect requires considering some

explicit model, which is beyond the scope of our brief survey.

Notice that the general class of O(g2
SM/g2

ρ) (and also g2
SM/g2

T ) effects including those

we have just discussed, would, for gSM ∼ gρ, induce O(1) violations of the G/H σ-model

structure below the scale mρ. For instance, in addition to cT , the terms of dimension

higher than 6 in the two derivative Higgs Lagrangian would not be those dictated by the

G/H structure. In realistic LH models a weak gT ∼ yt is somewhat favored. Then in the

contribution of the top partners to the Higgs-gluon coupling cg the Goldstone suppression

y2
t /g

2
T is O(1), and this operator is as important as cH and cy in Higgs physics. Notice

however that in the weakly-coupled limit, all anomalous effects in Higgs physics are of order

v2/f2 ∼ (gT /4π)2, which is parametrically like a SM loop effects. Expectedly, the use of

our effective Lagrangian is more motivated, the more strongly coupled the new sector is,

that is the bigger v/f .

In the following, we will give three explicit examples of models with the above charac-

teristics. We will first concentrate on the Holographic Composite Higgs model of [6, 20].

12Notice that if we take gρ
>∼ gT yt/g the vector boson loops dominate the mass term in the potential, in

which case either the relaxation effect saturates or the mass term changes sign thus restoring electroweak

symmetry. Thus we can naturally relax bS down to ∼ (g4/y2
t )/16π2, which can be numerically acceptable.
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Then we move to the Littlest Higgs model [2] and finally to a Little Higgs model with

custodial symmetry [21].

3.1 Holographic composite Higgs model

The Holographic Higgs model [6, 20] is based on a five-dimensional theory in AdS space-

time. This space-time, of constant radius of curvature 1/k, is assumed to be compactified

by two 4D boundaries. One boundary is located at z = L0 (where z labels the extra

dimension in conformal coordinates) and it is referred as the UV boundary, while the other

one is at z = L1 ≫ L0 and it is called the IR boundary. The energy scale 1/L1 sets the

mass gap of the model (the Kaluza-Klein mass ∼ 1/L1 ∼ 1 TeV). The bulk gauge symmetry

SO(5) × U(1)X × SU(3) is broken down to the SM gauge group on the UV boundary and

to O(4)× U(1)X × SU(3) on the IR. The hypercharge is defined by Y = X + TR
3 where X

is the U(1)X charge and TR
3 is the 3rd-component isospin of SU(2)R ∈ O(4).

We will follow the Holographic approach and separate the 5D gauge fields in UV-

boundary fields A(z = L0, x) and bulk fields A(z 6= L0, x). This is the correct separation

to make contact with the theory defined in section 2; the UV-boundary fields can be

associated to the SM gauge bosons, while the bulk states correspond to the new “strong”

sector. Let us analyze this new sector. Since the symmetry-breaking pattern of the bulk

and IR-boundary is given by SO(5) → O(4), we expect four Goldstone bosons parametrized

by the SO(5)/SO(4) coset [6]:

Σ = 〈Σ〉eΠ/f , 〈Σ〉 = (0, 0, 0, 0, 1) , Π =

(
04 H

−HT 0

)
, (3.13)

where H is a real 4-component vector, which transforms as a doublet under the weak SU(2)

group and can be associated with the Higgs. Apart from the Goldstones, the bulk contains

a massive tower of 4D states, the gauge Kaluza-Klein modes. The mass of the lightest

state is given by

mρ ≃ 3π

4L1
, and gρ =

mρ

f
≃ 3π

8

√
g2
5k , (3.14)

where g5 is the bulk SO(5) gauge coupling. In the particular case where the red-shift factor

between the two boundaries L0/L1 is used to explain the hierarchy mW /MP , we obtain

that g2
5k

>∼ g2 ln(L1/L0) ∼ 16 implying that the coupling among resonances is always large.

As we explained before, a large gρ is also needed in these models to guarantee a Higgs mass

above the experimental bound. The interaction between the massive Kaluza-Klein states

and the fields on the UV-boundary (the SM fields) is due only to mass mixing terms.

These terms only respect the SM gauge symmetry and therefore corresponds to an explicit

breaking of the SO(5) symmetry. For the fermion sector, we will follow ref. [20] and embed

the SM fermions in the 5 representation of SO(5). We can again separate each 5D fermion in

a UV-boundary field, to be associated to the SM fermion, plus a bulk field. As in eq. (3.6),

Yukawa couplings are generated in this model through mass mixing terms between the

SM fermions and the heavy fermionic bulk modes. The size of these mixing couplings are

determined by the 5D fermion masses and can be chosen to give the correct SM spectrum.
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Let us calculate the contribution of this model to the coefficients of the effective op-

erators of eq. (2.15). The coefficients cT and cH can be obtained from the kinetic term of

the Goldstone bosons:

Lkin =
f2

2
(DµΣ)(DµΣ)T . (3.15)

In the unitary gauge where Σ = (sin h/f, 0, 0, cos h/f), eq. (3.15) gives

Lkin =
1

2
∂µh∂µh + m2

W (h)

[
WµW µ +

1

2 cos2 θW
ZµZµ

]
, (3.16)

where

mW (h) =
gf

2
sin

h

f
. (3.17)

Eq. (3.16) tells us that ∆ρ = 0 or, equivalently, cT = 0. This is due to the custodial O(3)

invariance of eq. (3.15). The value of cH can be unambiguously computed by comparing

the hWW coupling for canonical fields in eq. (3.16) (neglecting m2
W /m2

ρ corrections) with

the same quantity deduced from our general effective Lagrangian eq. (2.15). This second

step, which requires writing eq. (2.15) in the same field basis as eq. (3.16), is performed in

appendix B. From eq. (3.16) we have

ghWW

gmW
=

1

gmW (h)

∂m2
W (h)

∂h

∣∣∣∣
h=〈h〉

= cos
〈h〉
f

≃ 1 − ξ

2
, (3.18)

and, using eq. (B.3), we find

cH = 1 . (3.19)

The coefficient cy can be similarly deduced from the calculation of the hff coupling. For

the Holographic Higgs model of ref. [20] we have

Lyuk = −mf (h)f̄ f , mf (h) = M sin
2h

f
, (3.20)

where M is a constant. We then obtain

2mW ghff

gmf
=

2MW (h)

gmf (h)

∂mf (h)

∂h

∣∣∣∣
h=〈h〉

=
2 sin(〈h〉/f)

tan(2〈h〉/f)
≃ 1 − 3ξ

2
, (3.21)

that, comparing it with eq. (B.4), leads to

cy = 1 . (3.22)

To obtain the coefficient c6 we must match the hhh coupling obtained from the Higgs po-

tential to eq. (B.5). In the model of ref. [20] in which the Higgs potential can approximately

be written as V (h) ≃ sin2 h/f [α − β cos2 h/f ] (where α and β are constants), we have

4mW ghhh

gm2
H

=
4mW (h)

g∂2
hV (h)

1

6

∂3V (h)

∂h3

∣∣∣∣
h=〈h〉

=
1 − 2 sin2(〈h〉/f)

cos(〈h〉/f)
≃ 1 − 3ξ

2
. (3.23)

From eq. (3.19), (3.23) and (B.5) we get

c6 = 0 . (3.24)
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In the model of ref. [6], in which the SM fermions are embedded in the spinorial represen-

tation of SO(5), we find cy = 0 and c6 = 1.

The coefficients cW,B , c2W and c2B can be obtained respectively from the parameters

Ŝ, W and Y . The parameter Ŝ, at tree level, is given by [6]

Ŝ =
3g2ξ

8g2
5

≃ 27π2

128

m2
W

m2
ρ

. (3.25)

Using eq. (2.18) and eq. (3.25) together with the fact that the O(4) symmetry of the model

implies cW = cB , we obtain

cW = cB =
27π2

256
≃ 1.0 . (3.26)

For the parameters W and Y we obtain

W =
g2

4g2
5

m2
W L2

1 , Y =
g′ 2

4

(
1

g2
5

+
1

g2
5X

)
m2

W L2
1 , (3.27)

where g5X is the bulk U(1)X gauge coupling. Using eq. (2.21), we get

c2W ≃
(

9π2

64

)2

≃ 1.9 , c2B = c2W

(
1 + r2

)
, (3.28)

where r = g5/g5X . The coefficients cHW,HB and cγ,g will not be presented here. They are

generated at the one-loop level and are therefore very sensitive to the details of the 5D

model. Similarly, the non-universal contribution to cy, although generated at tree-level,

depends on the particular structure of the top sector and will be discussed in section 5.

Although the calculations for cW,B and c2W,2B (and therefore Ŝ, W and Y ) are only

valid for gρ < 4π, the predictions for cH , cT , cy and c6 at leading order can be trusted

even in the non-perturbative regime. The coefficients cH and cT are, as we said, completely

determined by the symmetry breaking pattern of the model, while cy and c6 depend only on

the way we embed the SM fermions into the SO(5) group. These coefficients are therefore

independent of the five-dimensional dynamics.

3.2 Littlest Higgs model

The Littlest Higgs model [2] is based on a global SU(5) symmetry and we consider the

version where only a SU(2)L ×SU(2)R ×U(1)Y subgroup of SU(5) is gauged (gL, gR and g′

are the respective gauge couplings). As we are going to show, below the scale of the heavy

new particles, this model can be described by our effective Lagrangian with a SU(3)/SU(2)

coset structure.

It is assumed that a UV dynamics breaks the global SU(5) symmetry down to SO(5).

This breaking is conveniently parametrized in terms of a SU(5) symmetric representation

acquiring a vev of the form

〈Σ〉 =




12

1

12



 . (3.29)
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Among the 14 Goldstone bosons, 3 are eaten in the breaking of the gauge symmetry

SU(2)L × SU(2)R down to the diagonal subgroup SU(2) and we are left with a charged

doublet H1/2, a charged triplet φ1 and a neutral singlet s0 (the subscripts denote the

U(1)Y charges of the fields). These Goldstones are parametrized by

Σ = eiΠ/f 〈Σ〉 eiΠT /f = e2iΠ/f 〈Σ〉 with 2
√

2iΠ =




is H̃ φ

−H̃† −4is H̃T

−φ⋆ −H̃⋆ is



 . (3.30)

φ is a 2 × 2 symmetric complex matrix, H̃ = iσ2H⋆ and f is the decay constant of the

coset model. The interactions of the Goldstones originate from the kinetic term of the Σ

field

L =
f2

2
TrDµΣ†DµΣ, (3.31)

where the covariant derivative accommodates the gauging of SU(2)L × SU(2)R × U(1)Y

DµΣ = ∂µΣ − igL(AL
µΣ + ΣAL

µ
T
) − igR(AR

µ Σ + ΣAR
µ

T
) − ig′Bµ(Y Σ + ΣY ), (3.32)

with

AL
µ = Aa L

µ




σa/2



 , AR
µ = Aa R

µ




−σa ⋆/2



 , (3.33)

Y = diag

(
−1

2
,−1

2
, 0,

1

2
,
1

2

)
. (3.34)

The 〈Σ〉 vev gives a mass to the axial part of SU(2)L × SU(2)R, m2
WH

= (g2
L + g2

R)f2.

While the gauge coupling of the unbroken vectorial SU(2) takes its usual expression 1/g2 =

1/g2
L +1/g2

R. By the construction of the model, when the SU(2)L gauge coupling is turned

off, the gauging of SU(2)R respects a SU(3) global symmetry and the doublet and the

singlet are exact Goldstone bosons while the charged triplet acquires a mass of order gRf .

Below the scale gRf , the Littlest Higgs model has the structure described in section 2 of

a SU(3)/SU(2) σ-model weakly coupled to a SU(2)L × U(1)Y gauge sector. According to

our description we should then identify gρ ≡ gR and the mass of the axial vector is mρ.

After integrating out AR, as it is explained formally in appendix A, as well as the

charged scalar triplet,13 the low-energy effective Lagrangian can be mapped onto the

SU(3)/SU(2) Lagrangian

2f2Tr[∂µΣ†
3∂

µΣ3] +
1

2
f2Tr|Σ†

3∂µΣ3|2, (3.35)

where Σ3 parametrizes the SU(3)/SU(2) coset. This totally fixes the relative coefficient

between the two independent invariants that exist in SU(3)/SU(2) due to the fact that

this coset decomposes into 2 irreducible representations of SU(2).

13At the 1/f2 order, the integration of the scalar triplet is equivalent to the constraint φ⋆ = H̃H̃T

√
2f

.
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The coefficients ci of the corresponding SILH Lagrangian can be computed along the

lines outlined in the previous subsection. The oblique parameters are found to be, in the

limit gρ ≫ g,

Ŝ =
m2

W

2m2
ρ

, T̂ = −m2
W

4m2
ρ

, W =
g2
L

g2
R

m2
W

m2
ρ

, Y = O(v6/f6) . (3.36)

From this and eqs. (2.16), (2.18), (2.21) we deduce that

cW =
1

2
, cB = 0 , cT = − 1

16
, c2W = 1 , c2B = 0, (3.37)

where we have taken cB = 0, since the only gauge fields integrated out form an adjoint of

SU(2). The value of cH can be easily deduced from the hWW coupling at zero momentum:

ghWW = gmW

(
1 − ξ

8

)
, (3.38)

that, together with eq. (B.3), leads to

cH =
1

4
. (3.39)

Notice that the low-energy σ-model, SU(3)/SU(2), breaks custodial symmetry and hence

we obtain a non-vanishing cT coefficient. The source of this custodial breaking is the vev

of the triplet φ. It can always be fine-tuned away, for instance by taking gR ∼ gL. In that

case

cT = 0 , cH =
5

16
, (3.40)

while the other coefficients are unaffected. However, the exact σ-model structure below

the scale mρ is now lost, since the corrections of order gSM/gρ ∼ gL/gR are important.

3.3 Little Higgs model with custodial symmetry

The littlest Higgs model with custodial symmetry [21] is based on the coset SO(9)/(SO(5)×
SO(4)) with an SU(2)L × SU(2)R × SU(2) × U(1) subgroup gauged (gL, gR, g2 and g1 are

the respective gauge couplings). This Little Higgs model will be described, below the mass

of the new resonances, by a SILH Lagrangian with a SO(5)/SO(4) structure.

The global symmetry breaking of this Little Higgs model is conveniently parametrized

by a symmetric representation of SO(9) taking a vev of the form

〈Σ〉 =




14

1

14



 . (3.41)

Among the 20 Goldstone bosons, 6 are eaten in the gauge symmetry breakings SU(2)L ×
SU(2) → SU(2)W and SU(2)R × U(1) → U(1)Y and we are left with a charged doublet

H1/2, a neutral triplet φ0, a charged triplet φ1 and a neutral singlet s0 (the subscripts
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denote the U(1)Y charges of the fields). A convenient parametrization of these Goldstones

is

Σ = eiΠ/f 〈Σ〉 eiΠT /f = e2iΠ/f 〈Σ〉 with 2iΠ =




04 H/

√
2 −φ/2

−HT /
√

2 0 HT /
√

2

φ/2 −H/
√

2 04



 .

(3.42)

H is the real 4-component vector corresponding to the Goldstone doublet, while φ is a real

4 × 4 symmetric matrix and it contains the singlet and the triplets. The kinetic term of

the Σ field generates the interactions among the Goldstones

L =
f2

4
TrDµΣ†DµΣ. (3.43)

Under the unbroken SU(2)W ×U(1)Y , the heavy vector fields transform as a neutral triplet,

a neutral singlet and a charged singlet whose masses are

m2
WH

= (g2
2 + g2

L)f2, m2
BH

= (g2
1 + g2

R)f2, m2
A±

H

= g2
Rf2. (3.44)

The gauge couplings of the unbroken gauge symmetries are given by the usual formulae

1

g2
=

1

g2
L

+
1

g2
2

,
1

g′2
=

1

g2
R

+
1

g2
1

. (3.45)

By the construction of the model, when the SU(2) and U(1) gauge couplings are turned

off, the gauging of SU(2)L and SU(2)R respects a SO(5) global symmetry whose breaking

to SO(4) leaves the H doublet as exact Goldstone bosons while the triplets and the singlet

acquire a mass of order mρ ≡ gρf (we have considered gL = gR ≡ gρ for concreteness).

Hence, the SO(5)/SO(4) σ-model structure below the scale mρ, obtained after integrating

out the SU(2)L × SU(2)R gauge fields that do not couple to fermions and integrating out

as well the heavy triplet and scalar, which amounts to the constraint

φ =
HHT

2f
. (3.46)

The oblique corrections are found to be

Ŝ =
m2

W

m2
ρ

, T̂ = 0, W =
g2

g2
ρ

m2
W

m2
ρ

, Y =
g′2

g2
ρ

m2
W

m2
ρ

, (3.47)

which allow us to identify the coefficients of the effective Lagrangian

cW + cB = 1, cT = 0, c2W = 1 and c2B = 1. (3.48)

The value of cH can be computed, exactly as before, by looking at the hWW coupling at

p2 = 0. We obtain

cH =
1

2
. (3.49)

The factor 2 of disagreement with the value, eq. (3.19), of cH computed in the Holographic

Higgs model simply fixes the relative normalization of the decay constants in the two

models.
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4. Phenomenology of SILH

In this section we analyze the effects of the SILH interactions and study how they can be

tested at future colliders. Let us start by considering the new interaction terms involving

the physical Higgs boson. For simplicity, we work in the unitary gauge and write the SILH

effective Lagrangian in eq. (2.15) only for the real Higgs field h (shifted such that 〈h〉 = 0).

We reabsorb the contributions from cf and c6 to the SM input parameters (fermion masses

mf , Higgs mass mH , and vacuum expectation value v = 246GeV). Similarly, we redefine

the gauge fields and the gauge coupling constants and we make the gauge kinetic terms

canonical. In this way, the SILH effective Lagrangian is composed by the usual SM part

(LSM), written in terms of the usual SM input parameters (physical masses and gauge

couplings), by new Higgs interactions (Lh), and new interactions involving only gauge

bosons (LV ) which, at leading order, are given by

Lh= ξ

{
cH

2

(
1 +

h

v

)2

∂µh∂µh − c6
m2

H

2v2

(
vh3 +

3h4

2
+ . . .

)
+ cy

mf

v
f̄f

(
h +

3h2

2v
+ . . .

)

+

(
h

v
+

h2

2v2

)[
g2

2g2
ρ

(ĉW W−
µ DµνW+

ν +h.c.)+
g2

2g2
ρ

ZµDµν

[
ĉZZν +

(
2ĉW

sin 2θW
− ĉZ

tan θW

)
Aν

]

− g2

(4π)2

(
cHW

2
W+µνW−

µν +
cHW +tan2 θW cHB

4
ZµνZµν−2 sin2 θW cγZFµνZµν

)
+. . .

+
αg2cγ

4πg2
ρ

FµνFµν +
αsy

2
t cg

4πg2
ρ

GaµνGa
µν

]}
(4.1)

ĉW = cW +
( gρ

4π

)2
cHW (4.2)

ĉZ= ĉW + tan2 θW

[
cB +

( gρ

4π

)2
cHB

]
(4.3)

cγZ =
cHB − cHW

4 sin 2θW
(4.4)

LV =−tan θW

2
Ŝ W (3)

µν Bµν − ig cos θW gZ
1 Zµ

(
W+νW−

µν − W−νW+
µν

)

−ig (cos θW κZZµν + sin θW κγAµν)W+
µ W−

ν (4.5)

Ŝ=
m2

W

m2
ρ

(cW + cB) , gZ
1 =

m2
Z

m2
ρ

ĉW (4.6)

κγ=
m2

W

m2
ρ

( gρ

4π

)2
(cHW + cHB) , κZ = gZ

1 − tan2 θW κγ . (4.7)

In LV we have included only trilinear terms in gauge bosons and dropped the effects of

O2W , O2B , O3W . In Lh we have kept only the first powers in the Higgs field h and the gauge

fields. We have defined W±
µν = ∂µW±

ν − ∂νW
±
µ (and similarly for the Zµ and the photon

Aµ) and Dµν = ∂µ∂ν − ¤gµν . Notice that for on-shell gauge bosons DµνAµi = M2
i Ai

ν .

Therefore ĉW and ĉB generate a Higgs coupling to gauge bosons which is proportional to

mass, as in the SM, and do not generate any Higgs coupling to photons. Notice also that the

corrections to trilinear vector boson vertices satisfy the relation gZ
1 = kZ + tan2 θW kγ [23].
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The new interactions in Lh, see eq. (4.1), modify the SM predictions for Higgs produc-

tion and decay. At quadratic order in h, the coefficient cH generates an extra contribution

to the Higgs kinetic term. This can be reabsorbed by redefining the Higgs field according to

h → h/
√

1 + ξcH (see appendix B for an alternative redefinition of the Higgs that removes

the derivative terms of the Higgs — first term of eq. (4.1)). The effect of cH is then to

renormalize by a factor 1 − ξcH/2, with respect to their SM value, the couplings of the

canonical field h to all other fields. Notice that the Higgs field redefinition also shifts the

value of mH (but not of v or mf ).

We can express the modified Higgs couplings in terms of the decay widths in units of

the SM prediction, expressed in terms of physical pole masses (for a review of the Higgs

properties in the SM, see [22]),

Γ
(
h → f f̄

)
SILH

= Γ
(
h → f f̄

)
SM

[1 − ξ (2cy + cH)] (4.8)

Γ(h → W+W−)SILH = Γ
(
h → W+W (∗)−

)

SM

[
1 − ξ

(
cH − g2

g2
ρ

ĉW

)]
(4.9)

Γ (h → ZZ)SILH = Γ
(
h → ZZ(∗)

)

SM

[
1 − ξ

(
cH − g2

g2
ρ

ĉZ

)]
(4.10)

Γ (h → gg)SILH = Γ (h → gg)SM

[
1 − ξRe

(
2cy + cH +

4y2
t cg

g2
ρIg

)]
(4.11)

Γ (h → γγ)SILH = Γ(h → γγ)SM

[
1−ξRe

(
2cy +cH

1+Jγ/Iγ
+

cH− g2

g2
ρ
ĉW

1+Iγ/Jγ
+

4g2

g2
ρ

cγ

Iγ+Jγ

)]
(4.12)

Γ (h → γZ)SILH = Γ(h → γZ)SM

[
1−ξRe

(
2cy+cH

1+JZ/IZ
+

cH− g2

g2
ρ
ĉW

1+IZ/JZ
+

4cγZ

IZ +JZ

)]
.(4.13)

Here we have neglected in Γ(h → W+W−, ZZ)SILH the subleading effects from cHW and

cHB , which are parametrically smaller than a SM one-loop contribution. The loop functions

I and J are given in appendix C.

The leading effects on Higgs physics, relative to the SM, come from the three coeffi-

cients cH , cy, cγZ , although cγZ has less phenomenological relevance since it affects only

the decay h → γZ. The rules of SILH select the operators proportional to cH and cy as

the most important ones for LHC studies, as opposed to totally model-independent oper-

ator analyses [24 – 26] which often lead to the conclusion that the dominant effects should

appear in the vertices hγγ and hgg, since their SM contribution occurs only at loop level.

Therefore, we believe that an important experimental task to understand the nature of the

Higgs boson will be the extraction of cH and cy from precise measurements of the Higgs

production rate (σh) and branching ratios (BRh). The contribution from cH is universal

for all Higgs couplings and therefore it does not affect the Higgs branching ratios, but only

the total decay width and the production cross section. The measure of the Higgs decay

width at the LHC is very difficult and it can be reasonably done only for rather heavy

Higgs bosons, well above the two gauge boson threshold, while the spirit of our analysis is

to consider the Higgs as a pseudo-Goldstone boson, and therefore relatively light. However,

for a light Higgs, LHC experiments can measure the product σh × BRh in many different
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Figure 1: The deviations from the SM predictions of Higgs production cross sections (σ) and

decay branching ratios (BR) defined as ∆(σ BR)/(σ BR) = (σ BR)SILH/(σ BR)SM − 1. The

predictions are shown for some of the main Higgs discovery channels at the LHC with production

via vector-boson fusion (VBF), gluon fusion (h), and topstrahlung (tth). The SILH Lagrangian

parameters are set by cHξ = 1/4, cy/cH = 1 and we have included also the terms quadratic in ξ,

not explicitly shown in eqs. (4.8)–(4.13).

channels: production through gluon, gauge-boson fusion, and top-strahlung; decay into b,

τ , γ and (virtual) weak gauge bosons. At the LHC with about 300 fb−1, it is possible to

measure Higgs production rate times branching ratio in the various channels with 20–40 %

precision [27], although a determination of the b coupling is quite challenging [28]. This

will translate into a sensitivity on |cHξ| and |cyξ| up to 0.2–0.4.

In figure 1, we show our prediction for the relative deviation from the SM expectation

in the main channels for Higgs discovery at the LHC, in the case cHξ = 1/4 and cy/cH = 1

(as in the Holographic Higgs). For cy/cH = 0, the deviation is universal in every production

channel and is given by ∆(σ BR)/(σ BR) = −cHξ.

Cleaner experimental information can be extracted from ratios between the rates of

processes with the same Higgs production mechanism, but different decay modes. In mea-

surements of these ratios of decay rates, many systematic uncertainties drop out. Our

leading-order (gρ ≫ gSM) prediction is that ∆[Γ(h → ZZ)/Γ(h → W+W−)] = 0, ∆[Γ(h →
f f̄)/Γ(h → W+W−)] = −2ξcy, ∆[Γ(h → γγ)/Γ(h → W+W−)] = −2ξcy(1 + Jγ/Iγ)−1.

However, the Higgs coupling determinations at the LHC will still be limited by statistics,

and therefore they can benefit from a luminosity upgrading, like the SLHC. At a linear

collider, like the ILC, precisions on σh × BRh can reach the percent level [29], providing

a very sensitive probe on the new-physics scale. Moreover, a linear collider can test the
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existence of c6, since the triple Higgs coupling can be measured with an accuracy of about

10% for
√

s = 500 GeV and an integrated luminosity of 1000 fb−1 [30].

Deviations from the SM predictions of Higgs production and decay rates, could be a

hint towards models with strong dynamics, especially if no new light particles are discovered

at the LHC. However, they do not unambiguously imply the existence of a new strong

interaction. The most characteristic signals of a SILH have to be found in the very high-

energy regime. Indeed, a peculiarity of SILH is that, in spite of the light Higgs, longitudinal

gauge-boson scattering amplitudes grow with energy and the corresponding interaction

becomes strong, eventually violating tree-level unitarity at the cutoff scale. Indeed, the

extra Higgs kinetic term proportional to cHξ in eq. (4.1) prevents Higgs exchange diagrams

from accomplishing the exact cancellation, present in the SM, of the terms growing with

energy in the amplitudes. Therefore, although the Higgs is light, we obtain strong WW

scattering at high energies.

From the operator OH ≡ ∂µ(H†H)∂µ(H†H) in eq. (2.15), using the equivalence the-

orem [31], it is easy to derive the following high-energy limit of the scattering amplitudes

for longitudinal gauge bosons

A
(
Z0

LZ0
L → W+

L W−
L

)
= A

(
W+

L W−
L → Z0

LZ0
L

)
= −A

(
W±

L W±
L → W±

L W±
L

)
=

cHs

f2
,(4.14)

A
(
W±Z0

L → W±Z0
L

)
=

cH t

f2
, A

(
W+

L W−
L → W+

L W−
L

)
=

cH(s + t)

f2
, (4.15)

A
(
Z0

LZ0
L → Z0

LZ0
L

)
= 0. (4.16)

This result is correct to leading order in s/f2, and to all orders in ξ in the limit gSM = 0,

when the σ-model is exact. The absence of corrections in ξ follows from the non-linear

symmetry of the σ-model, corresponding to the action of the generator Th, associated

with the neutral Higgs, under which v shifts. Therefore we expect that corrections can

arise only at O(s/m2
ρ). The growth with energy of the amplitudes in eqs. (4.14)–(4.16)

is strictly valid only up to the maximum energy of our effective theory, namely mρ. The

behaviour above mρ depends on the specific model realization. In the case of the Little

Higgs, we expect that the amplitudes continue to grow with s up to the cut-off scale Λ. In

5D models, like the Holographic Goldstone, the growth of the elastic amplitude is softened

by KK exchange, but the inelastic channel dominate and strong coupling is reached at a

scale ∼ 4πmρ/gρ. Notice that the result in eqs. (4.14)–(4.16) is exactly proportional to the

scattering amplitudes obtained in a Higgsless SM [31]. Therefore, in theories with a SILH,

the cross section at the LHC for producing longitudinal gauge bosons with large invariant

masses can be written as

σ
(
pp → VLV ′

LX
)
cH

= (cHξ)2 σ
(
pp → VLV ′

LX
)
6H

, (4.17)

where σ(pp → VLV ′
LX)6H is the cross section in the SM without Higgs, at the leading order

in s/(4πv)2. With about 200 fb−1 of integrated luminosity, it should be possible to identify

the signal of a Higgsless SM with about 30–50% accuracy [32 – 34]. This corresponds to a

sensitivity up to cHξ ≃ 0.5–0.7.
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In the SILH framework, the Higgs is viewed as a pseudo-Goldstone boson and therefore

its properties are directly related to those of the exact (eaten) Goldstones, corresponding

to the longitudinal gauge bosons. Thus, a generic prediction of SILH is that the strong

gauge boson scattering is accompanied by strong production of Higgs pairs. Indeed we find

that, as a consequence of the O(4) symmetry of the H multiplet, the amplitudes for Higgs

pair-production grow with the center-of-mass energy as eq. (4.14),

A
(
Z0

LZ0
L → hh

)
= A

(
W+

L W−
L → hh

)
=

cHs

f2
. (4.18)

Notice that scattering amplitudes involving longitudinal gauge bosons and a single Higgs

vanish. This is a consequence of the Z4
2 parity embedded in the O(4) symmetry of the op-

erator OH , under which each Goldstone change sign. Non-vanishing amplitudes necessarily

involve an even number of each species of Goldstones.

Using eqs. (4.14), (4.15) and (4.18), we can relate the Higgs pair production rate at

the LHC to the longitudinal gauge boson cross sections

2σδ,M (pp → hhX)cH
= σδ,M(pp → W+

L W−
L X)cH

+
1

6

(
9− tanh2 δ

2

)
σδ,M(pp → Z0

LZ0
LX)cH

.

(4.19)

Here all cross sections σδ,M are computed with a cut on the pseudorapidity separation

between the two final-state particles (a boost-invariant quantity) of |∆η| < δ, and with a

cut on the two-particle invariant mass ŝ > M2. The sum rule in eq. (4.19) is a characteristic

of SILH. However, the signal from Higgs-pair production at the LHC is not so prominent.

It was suggested that, for a light Higgs, this process is best studied in the channel bb̄γγ [35],

but the small branching ratio of h → γγ makes the SILH rate unobservable. However, in

SILH, one can take advantage of the growth of the cross section with energy. Although we

do not perform here a detailed study, it may be possible that, with sufficient luminosity, the

signal of bb̄bb̄ with high invariant masses could be distinguished from the SM background.

Notice however that, because of the high boost of the Higgs boson, the b jets are often

not well separated. The case in which the Higgs decays to two real W ’s appears more

promising for detection. The cleanest channel is the one with two like-sign leptons, where

hh → ℓ±ℓ±νν jets, studied in refs. [35, 25].

The operator OH is purely generated by the strongly-interacting sector, as indicated by

its ∼ g2
ρ/m

2
ρ coefficient. Also cy and c6, even though they arise from the interplay between

weak and strong couplings, are sensitive to g2
ρ/m

2
ρ and thus indirectly test the non-linearity

of the Higgs sector. Therefore probing the effects of these couplings is crucial for testing

SILH. The operators OW,B, OBB and Og, on the other hand, only depend on the scale of

new physics, not on its strength, as indicated by their ∝ 1/m2
ρ coefficient. Because of this

fact, in the strong coupling limit gρ ≫ gSM , their effects in Higgs decay rates are subleading

with respect to those induced by cH and cy. Indeed the contribution of OW,B, OBB and Og

to amplitudes scales like s/m2
ρ times the SM contribution. While at electroweak energies

this effect is very small, it can become a sizeable at higher energies.

As an example, the operator Og contributes to processes like gg → hh,Z0
LZ0

L,W+
L W−

L

with scattering amplitudes A(gg → hh)SILH ≃ A(gg → hh)SMcgs/m
2
ρ which are, at most,
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of the same order of magnitude of the SM one, for the maximal energy s ≃ m2
ρ, where

the corresponding resonances can be directly produced. Double-Higgs production at the

LHC from Og was recently studied in ref. [25]. Also the operators OW,B can contribute

to high-energy production of Higgs and longitudinal gauge bosons. Indeed, by using the

equations of motion for the gauge bosons, these operators can be rewritten as the product

of a fermionic current times a bilinear in H and can give new-physics effects in q̄q′ →
hZ0

L, hW±
L , Z0

LW±
L ,W±

L W∓
L .

The operators OHW,HB, in spite of their overall 1-loop suppression, are sensitive to

g2
ρ/m2

ρ, indicating that in principle they probe the strong dynamics. Indeed, they induce

corrections to the process h → Zγ and to the magnetic moment anomaly of the W that

are O(v2/f2) relative to the SM contribution. In practice, however, these quantities are

experimentally not well accessible. Therefore cHW and cHB should be tested in vector

boson production, where their contribution relative to the SM is quantitatively similar

(indeed even g2
ρ/16π

2 smaller) to that of cW,B.

The effect of the operators OW,B, OHW,HB can be tested through precise measurements

of triple gauge vertices. At the LHC, the anomalous couplings in eq. (4.5) can be probed at

the level of 10−1–10−2 [36], but at a sub-TeV linear collider the precision can be improved

up to 10−3–10−4 [37, 38]. This is highly competitive with the Ŝ determination at LEP and

can probe values of mρ up to 6–8 TeV.

As discussed in section 1, the signals studied in this paper are important because

they are model-independent tests of a strongly-interacting electroweak-breaking sector in

presence of a light Higgs. However, the first evidence for this kind of new physics at the

LHC may come from production of the resonances at the mass scale mρ. Therefore, it is

useful to compare the indirect effects studied here with the direct resonance production.

As an illustrative example, we consider the case of new spin-one charged resonances ρ±H .

These particles can be interpreted as bound states analogous to the technirho, in composite

models, or as the heavy gauge bosons W±
H in Little-Higgs models. They have mass mρ,

coupling to the strong sector (Higgs and longitudinal gauge bosons) equal to gρ and coupling

to the weak sector (quarks, leptons and transverse gauge bosons) equal to g2/gρ. Indeed,

in the effective theory below mρ, they give rise to the operators OW,B with coefficients of

order g2/m2
ρ. The cross section for the resonant production of ρ+

H is

σ
(
pp → ρ+

H + X
)

=
πg4

12g2
ρ

τdL
ŝdτ

∣∣∣∣
ŝ=m2

ρ

, (4.20)

where τ/ŝdL/dτ is the parton luminosity at an energy equal to the resonance mass. For

2 TeV <∼ mρ
<∼ 4 TeV, we find

σ
(
pp → ρ±H + X

)
=

(
4π

gρ

)2 (
3 TeV

mρ

)6

0.5 fb. (4.21)

– 27 –



J
H
E
P
0
6
(
2
0
0
7
)
0
4
5

The ρ±H branching ratios are

BR
(
ρ−H → µν̄

)
=

1

3
BR

(
ρ−H → bt̄

)
=

2g4

g4
ρ

(
1 +

24g4

g4
ρ

)−1

, (4.22)

BR
(
ρ−H → hW−

)
= BR

(
ρ−H → Z0W−

)
=

1

2

(
1 +

24g4

g4
ρ

)−1

. (4.23)

The resonances are most easily detected when they decay directly into leptons or top quarks.

However, as shown in eqs. (4.22)–(4.23), for large gρ, these decay modes are suppressed

and gauge and Higgs bosons then provide the dominant decay channels (in some specific

models the coupling of ρH to the top can be larger than g2/gρ — see section 3). Notice

that, as gρ grows, the experimental identification of the resonance becomes increasingly

hard, not only because the leptonic signal is suppressed, but also because the decay width

becomes large. Detection of a broad resonance decaying into gauge and Higgs bosons is

experimentally challenging and the study of indirect signals becomes more important in

the region of large gρ.

For order-unity coefficients ci, we have described the SILH in terms of the two pa-

rameters mρ and gρ. An alternative description cane be done in terms of two mass scales.

They can be chosen as 4πf , the scale at which the σ-model would become fully strongly-

interacting in the absence of new resonances, and mρ, the scale at which new states appear.

An upper bound on mρ is obtained from the theoretical NDA requirement mρ < 4πf ,

while a lower bound on mρ comes from the experimental constraint on the Ŝ parameter,

see eq. (2.18).

Searches at the LHC, and possibly at the ILC, will probe unexplored regions of the

4πf–mρ space. Precise measurements of Higgs production and decay rates at the LHC

will be able to explore values of 4πf up to 5–7 TeV, mostly testing the existence of cH and

cy. These measurements can be improved with a luminosity upgrading of the LHC. Higgs-

physics studies at a linear collider could reach a sensitivity on 4πf up to about 30 TeV.

Analyses of strong gauge-boson scattering and double-Higgs production at the LHC can

be sensitive to values of 4πf up to about 4 TeV. These studies are complementary to Higgs

precision measurements, as they test only the coefficient cH and probe processes highly

characteristic of a strong electroweak-breaking sector with a light Higgs boson.

On the other side, the parameter mρ can be probed at colliders by studying pair-

production of longitudinal gauge bosons and Higgs, by testing triple gauge vertices or,

more directly, by producing the new resonances. For fixed mρ, resonance production at the

LHC will overwhelm the indirect signal of longitudinal gauge boson and Higgs production,

at large 4πf (small gρ). However, at low 4πf (large gρ) resonance searches become less

effective in constraining the parameter mρ and the indirect signal gains importance. While

the search for new resonances is most favorable at the LHC, precise measurements of triple

gauge vertices at the ILC can test mρ up to 6-8 TeV. With complementary information

from collider data, we will explore a large portion of the interesting region of the 4πf–mρ

plane, testing the composite nature of the Higgs.
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5. Strongly-interacting top quark

In section 3 we have seen that, in some explicit realizations of the SILH, the top quark is

required to be strongly coupled to the resonances of the electroweak-breaking sector. Here

we want to study, in a model-independent way, the phenomenological implications of this

strongly-coupled top quark, much in the same spirit of section 2 for the case of the Higgs

boson.

Let us first consider the case in which, in addition to the Higgs, the right-handed top

also belongs to the strongly-coupled sector. The low-energy effective Lagrangian can be

written by generalizing the rules 1, 2 and 3 of section 2.2, noticing that each tR leg added to

leading interactions carries an extra factor 1/(fm
1/2
ρ ). We find three dimension-6 operators

suppressed by 1/f2 and involving tR:

ctyt

f2
H†Hq̄LH̃tR + h.c. +

icR

f2
H†DµHt̄RγµtR +

c4t

f2
(t̄RγµtR)(t̄RγµtR) . (5.1)

We are not considering dimension-6 operators suppressed by 1/m2
ρ since their effects are

smaller than those in eq. (5.1) for large gρ. The first term of eq. (5.1) was already included

in eq. (2.15). Nevertheless, here it is only present for the top quark and therefore it violates

the universality of cy. The difference ct − cy can be viewed as originating from an insertion

of H†H/f2 on the tR line. The second term of eq. (5.1) violates the custodial symmetry,

and therefore it generates a contribution to T̂ at the one-loop level

T̂ ∼ Ncc
2
Rv2Λ2

16π2f4
= 0.02 c2

R

(
Λ

f

)2

ξ , (5.2)

where Λ is the scale that cuts off the one-loop momentum divergence. In models in which

Λ ∼ mρ the 95% CL bound T̂ <∼ 0.002 translates, via eq. (5.2), into a severe upper bound

on c2
Rξ. This bound on cR can be easily satisfied in models in which the strong sector

preserves a custodial symmetry under which tR transforms as a singlet. This guarantees

cR = 0 at tree-level. Another possibility to evade the bound on cR is to reduce the scale

Λ in eq. (5.2). This can be achieved in models in which tR transforms non-trivially under

the custodial group as discussed in section 3. In this case Λ ∼ mcust where mcust is the

mass of the custodial partners of the tR. Assuming mcust ≪ mρ we can satisfy the bound

from T̂ even if cR ∼ 1.

Similarly, we can consider the case in which tL and H are strongly coupled. We

have now the following 1/f2 dimension-6 operators in the low-energy Lagrangian involving

qL = (tL, bL):

cqyb

f2
H†Hq̄LHbR +

cqyt

f2
H†Hq̄LH̃tR + h.c. +

ic
(1)
L

f2
H†DµHq̄LγµqL

+
ic

(3)
L

f2
H†σiDµHq̄LγµσiqL +

c4q

f2
(q̄LγµqL)(q̄LγµqL) . (5.3)

The possibility of having a strongly-coupled qL has, however, severe constraints from flavor

physics due to bL. For example, the operator proportional to c4q in eq. (5.3) contributes
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to ∆mB, the mass difference of neutral B mesons

∆mB =
2

3
ξc4qmB

f2
B

v2
θ2
bd , (5.4)

where the angle θbd parametrizes the projection of bL into the d mass eigenstate. From the

requirement that the new contribution to ∆mB does not exceed 20% of the experimental

value, we obtain

ξc4q

(
θbd

Vub

)2

< 2 × 10−3 . (5.5)

Therefore, unless there is a flavor-symmetry reason for having an alignment of bL with

a mass eigenstate more accurate than the corresponding CKM angle Vub, the bound in

eq. (5.5) disfavors a strongly-coupled qL. Thus, we will not further consider this possibility.

Flavor constraints have been studied in detail, e.g. see [39], within the framework of

warped extra dimensions and they apply to holographic Higgs models whose low energy

effective description is described by our Lagrangian (2.15)

5.1 Phenomenology of a strongly-interacting tR

The presence of the operators (5.1) gives non-universal modifications to the couplings of

the top to the Higgs and gauge bosons. In particular, we find that the couplings ht̄t and

Zt̄RtR are given by

ghtt =
gmt

2mW

[
1 − ξ

(
ct + cy +

cH

2

)]
,

gZtRtR = −2g sin2 θW

3 cos θW

(
1 − 3

8 sin2 θW
cRξ

)
. (5.6)

At the LHC the coupling ghtt can be measured in the process gg → t̄th, h → γγ. An

accuracy on ghtt up to 5% can be reached at a linear collider with
√

s = 800 GeV and

L = 1000 fb−1 [29]. The coupling ZtRtR can only be measured with accuracy at future

e+e− colliders. For
√

s = 500 GeV and L = 300 fb−1, one can reach a sensitivity up to

ξcR ∼ 0.04 [29]. Deviations on the SM vertex ZtRtR can also be tested in flavor-violating

processes. For example, one-loop penguin diagrams, mediated by the Z, generates the

effective operator

c̃ij d̄
i
Lγµdj

L f̄γµ(Qf sin2 θW − TfPL)f , (5.7)

where Qf and Tf are the electric charge and the third isospin component of the generic

fermion f , PL is the left chiral projector, and

c̃ij =
cRξαGF V ∗

tiVtjm
2
t

4
√

2π sin2 θW m2
W

ln
mρ

mt
. (5.8)

This operator contributes to many rare ∆F = 1 processes like B → Xsℓ
+ℓ−, B → Xsν̄ν,

Bs → ℓ+ℓ−, K+ → π+ν̄ν, ǫ′/ǫ, etc. The typical experimental sensitivities or theoretical

uncertainties of these processes is no better than 10–20%. To estimate the new-physics

contribution, it is useful to express c̃ij in units of the SM contribution

c̃ij

c̃SM
ij

= cRξf(xWt) ln
mρ

mt
, (5.9)
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where xWt = m2
W /m2

t and

f(xWt) =
(1 − xWt)

2

2[1 − 7xWt + 6x2
Wt − xWt(3 + 2xWt) ln xWt]

≃ 0.34 . (5.10)

This shows that present limits from flavour physics give only a mild constraint on cRξ and,

with improved experimental accuracy, the coefficient cR can potentially lead to observable

signals. It is also interesting to consider effects of cR in rare top decays. By defining θti as

the mixing angle between the current tR state and the mass eigenstates, we find

Γ(t → cZ) =
mt

2π

(
ξcRgθtc

16 cos θW

)2 (1 + 2xZt)(1 − xZt)
2

xZt
, (5.11)

where xZt = m2
Z/m2

t . This gives a branching ratio

BR(t → cZ) = 2 × 10−4 (ξcR)2
(

θtc

Vcb

)2

. (5.12)

Since the LHC is expected to reach a sensitivity on BR(t → cZ) of 2× 10−4 with 100 fb−1,

a signal from cR is possible, but requires a mixing angle θtc larger than the corresponding

CKM element Vcb.

Let us finally comment on possible implications of the operator proportional to c4t.

Analogously to cH for WW scattering, this operator induces a tt̄ scattering that grows with

energy. At the LHC this will give an enhancement of the cross-section pp → tt̄tt̄ where a tt̄

pair is produced by the new 4-top interaction. The coefficient c4t gives also contributions

to flavor processes. For example it contributes to ∆mD, the mass difference of neutral D

mesons:

∆mD =
2

3
ξc4tmD

f2
D

v2
θ2
tcθ

2
tu = ξc4t

(
θtc

Vcb

)2 (
θtu

Vub

)2

2 × 10−11 MeV. (5.13)

For mixing angles of the order of the corresponding CKM elements, this prediction is not

far from the present experimental bound, which is ∆mD < 4 × 10−11 MeV.

6. Conclusions

If the weak scale originates from dimensional transmutation in some new strong sector then

the physics of the Higgs will manifest important deviations with respect to Standard Model

expectations. Technicolor represents the simplest and perhaps most dramatic such possi-

bility: no narrow state can be identified as the Higgs boson. Simple technicolor is however

at odds with electroweak precision tests and largely because of the absence of a light Higgs

resonance. Models where, in addition to the three eaten Goldstone bosons, a light pseudo-

Goldstone Higgs appears in the low-energy theory can fare better in electroweak data for

two reasons. On one hand, a light Higgs screens the infrared contribution to Ŝ. On the

other hand, the vacuum dynamics of the pseudo-Goldstone is determined by extra param-

eters (SM couplings among them) and therefore one can imagine obtaining v2/f2 a little

bit below 1, which is enough to suppress the UV contribution Ŝ ∼ (NTCg2/16π2)(v2/f2)
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below the experimental bound. While work has been done in the past on the effective

low-energy description of Higgsless theories like technicolor, less effort has been devoted to

the construction of an effective theory for the pseudo-Goldstone Higgs. This is of course

partly justified by the actual existence of specific models which allow for a quantitative

description of the resonance sector. Still, we believe that the construction of such an

effective theory is an important task, and this has been the primary goal of this paper.

After its proposal [7] and some work in the eighties [8], the idea of a pseudo-Goldstone

Higgs was recently revived by its realizations in warped compactifications (Holographic

Goldstones) and in Little Higgs models. As we emphasized in this paper, these new

models represent weakly-coupled variants of the original QCD-like proposals. For what

pertains low-energy phenomenology, we found it useful to characterize these theories

in terms of a mass scale mρ and a coupling gρ. In 5D models, these are respectively

the Kaluza-Klein mass and coupling. In Little-Higgs models these are the masses and

self-couplings that regulate the quadratic divergence of the Higgs mass. In the limit

gρ → 4π, these models coincide with a generic strongly-coupled theory [7]. A crucial test

of these theories will undoubtedly proceed through the search for new resonances at the

LHC. This is certainly more true at small enough gρ, where the resonances are narrow.

However, these theories also predict important deviations from the SM in the physics

of the Higgs. These deviations are associated to non-renormalizable operators in the

low-energy description. The study of these indirect effects should nicely complement the

direct searches, especially for large gρ where the resonances become heavier and broader.

Indeed, the leading dimension-6 operators have a coefficient ∼ (gρ/mρ)
2, indicating the

relevance of these effects even when the resonances are heavy provided gρ is large.

Using our simplified description in terms of (gρ,mρ), we have derived the form of the

leading dimension-6 effective Lagrangian. Our description thus encompasses all models

with Goldstone Higgs, although the effective-Lagrangian approach is best motivated in the

regime where gρ is large. Models based on 5D are favored to be in this regime, while in

Little Higgs models there is more freedom (some couplings are favored to be large, others

can be weak). Our effective Lagrangian is shown in eq. (2.15). One can distinguish two

classes of effects, the “new couplings”, which are genuinely sensitive to the new strong

force, and the “form factors” which are basically sensitive to the spectrum. The “new cou-

plings”, described by cH , cT , c6 and cy, are determined by an expansion in the Higgs field,

and test its strong self interaction, characterized by gρ/mρ = 1/f . The rest of the terms

in eq. (2.15), can be basically viewed as higher-derivative dressings of the quadratic (free)

Higgs action: as such they do not test equally well the strongly-coupled nature of the Higgs.

More precisely, the operators proportional to cW , cB , cγ and cg represent genuine “form

factor” effects since they have a 1/m2
ρ coefficient. Remarkably, the coefficients cγ and cg are

associated to a suppression factor ∼ (g2
SM/16π2)(1/m2

ρ) that can be seen as arising from the

product of a strong loop 1/(16π2f2) factor times g2
SM/g2

ρ . This second factor, which deter-

mines the dependence on just mρ = gρf , and suppresses these effects at large gρ, is dictated

by the Goldstone symmetry and by its preservation by both the gluon and photon fields.

The operators OHW and OHB are special in that they have a structure similar to the form
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factors but a coefficient g2
ρ/(16π

2m2
ρ) that depends on gρ, like for the “new couplings”. In

practice, however, they are experimentally less relevant than the “new couplings” at mea-

suring gρ/mρ. Therefore cHW and cHB should be tested in vector boson production, where

their contribution relative to the SM is quantitatively similar (indeed even g2
ρ/16π

2 smaller)

to that of cW,B. In this respect these effects can be practically classified as form factors.

The form factors lead to corrections to SM amplitudes whose relative size scales with

energy like E2/m2
ρ. In particular their effects on the on-shell couplings of a light Higgs are

of order m2
W /m2

ρ = (g2
SM/g2

ρ)v2/f2. On the other hand the effects of the “new couplings”

are of order v2/f2 and thus dominate for a strongly-coupled Higgs sector with g2
ρ ≫ g2

SM .

Our conclusions differ from the widely held expectation that anomalous couplings between

Higgs, photons and gluons should be the most important effect, given that they arise at

one-loop level in the SM. We do find corrections to all on-shell couplings of the Higgs,

including those to photons and gluons, but the origin of these corrections is the Higgs

self-interaction (cH) and Higgs coupling to fermions (cy) and in particular to the top

quark. The measurement of all possible Higgs production and decay channels at the LHC

with 300 fb−1 should allow a test of these interactions with a sensitivity on v2/f2 of

order 0.2. The detection of a deviation from the SM in this range of v2/f2, in the absence

of new light states, and in particular of additional light scalars, would be an indirect

but clear signature of new strong dynamics involving the Higgs. A direct assessment of

the strongly-coupled nature of the Higgs would only be obtained by observing the self

interactions among the Higgs and the longitudinally polarized vector bosons. The way

to study these interactions is the same as in ordinary Higgsless theories: through the

scattering of vector bosons that were collinearly radiated from elementary fermions. In

the Higgsless case, the scattering amplitude among longitudinal vector boson grows like

E2/v2. In our case, the light Higgs fails to fully moderate this growth and the amplitude

behaves like E2/f2. As the Higgs plays the role of a fourth Goldstone, in addition to the

VLVL → VLVL channels we also have strong double-Higgs production VLVL → hh with a

comparable cross section. It is well known that the study of high-energy scattering among

longitudinal vector bosons is not a straightforward task at the LHC. With 300 fb−1, the

expected sensitivity on v2/f2 is between 0.5 and 0.7. Our study further motivates analyses

of WW scattering, even in presence of a light Higgs. An interesting issue which may be

studied is the possibility to detect the reaction of double-Higgs production. Given the

high energy and pT of the b-jets from Higgs decay and the presence of a rapidity gap, it

may be possible to selects these events over the QCD background. Of course the upgraded

luminosity of the second phase of LHC would make a crucial difference in these searches.

Through precise measurements of Higgs physics, the ILC will largely improve the

sensitivity on v2/f2 down to ∼ 0.01, corresponding to 4πf up to 30 TeV. If, at this level,

no deviation from the SM is detected, it will be fair to say that the idea of a composite

light Higgs is ruled out. Measurements of the anomalous triple gauge vertices at the ILC

can test the value of mρ up to 6–8 TeV. This sensitivity is far superior to what has been

reached at LEP, through the measurement of Ŝ (mρ
>∼ 2 TeV), or what can be achieved at

the LHC, through direct resonance production (mρ ∼ 3TeV).

One aspect of theories with a composite Higgs is that the top sector tends to
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couple with intermediate strength ∼ √
gρyt to the strong sector. It is then natural to

consider the possibility that one of the two helicities (tL or tR) goes all the way to being

composite. Moreover, in most of the realistic constructions to generate Yukawa couplings,

a composite tR also has phenomenological advantages, in that it allows to relax some

significant bounds from δρ and the Zb̄b vertex. In section 5, we have therefore extended

our effective Lagrangian to the case of a fully composite tR. Although model dependent,

there are important implications in flavor physics. Remarkably, for f ∼ v and assuming

a mixing pattern that follows the size entries of the CKM matrix, we predict flavor effects

(B → Xsℓ
+ℓ−, K+ → π+νν, t → cZ, ∆mD, . . . ) possibly within future experimental

reach. However, the leading signature of top compositeness is associated to the reaction

of four top-quark production. We plan to perform a detailed study of this and other

implications of composite Higgs and top at the LHC in a future work.
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A. Integrating out vectors and scalars

Here we describe the low-energy action obtained by integrating out fields of mass mρ at

tree level. We shall need the standard CCWZ notation [13] to write terms in the Goldstone

action. The action of g ∈ G on the Goldstone operator Π, defined in eq. (2.4), is given by

gU(Π) ≡ U(g(Π))h(Π, g), (A.1)

where

h = eiξaT a

ξa ≡ ξa(Π, g) (A.2)

is an element of the unbroken subgroup H. Under the group action Π → g(Π) one has then

U → gUh†. If TA and T a are the broken and unbroken generators respectively, we define

U †∂µU = iDA
µ TA + iEa

µT a ≡ iDµ + iEµ (A.3)

with transformations under G

Dµ(Π) → Dµ(g(Π)) = h(Π, g)Dµ(Π)h(Π, g)† (A.4)

Eµ(Π) → Eµ(g(Π)) = h(Π, g)Eµ(Π)h(Π, g)† − ih(Π, g)∂µh(Π, g)†. (A.5)

Notice that for space dependent Π configurations, Dµ and Eµ transform under a local H
symmetry, in particular Eµ transforms like the associated gauge field. Massive multiplets
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fill reducible representations Φ of the unbroken group H. The action of the global group

G is realized through the “local” H tranformations

Φ → h(Π, g)Φ. (A.6)

Using the last 3 equations the most general Lagrangian for the non-linearly realized G can

be written, just by using the rules for a “local” H gauge group [13]. In particular Eµ defines

the H-covariant derivative ∂µ + iEµ on the massive fields Φ.

The weak gauging of GSM is obtained by changing eq. (A.3) to U †(∂µ + iAµ)U ≡
iD̄µ(π,A)+ iĒµ(π,A). Indeed since we treat the gauge fields as spectators in what follows,

we can, without loss of generality, gauge the full H ⊃ GSM . Thus Ēa
µ transforms as the H-

gauge field both under the global G-tranformations and under the genuinely local g ≡ h(x).

It is useful to have the expressions of Ē and D̄ at lowest order in Π

Ēµ = Aµ + Eµ(Π,Dν) = Aµ − i

2
Π
←→
D µΠ + O(Π4) (A.7)

D̄µ = Dµ(Π,Dν) = DµΠ − 1

6

[
Π,Π

←→
D µΠ

]
+ O(Π5), (A.8)

where Dµ = ∂µ + iAµ is the H covariant derivative. (In the last second equality of both

equations we have specified to the interesting case in which G/H is a symmetric space.)

We want to classify the 4-derivative structures that can lead to couplings involving

two Goldstones and two gauge fields. There are 2 relevant structures

O1 = Tr[Fµν(Ē)Fµν(Ē)], O2 = Tr[D̄µD̄νF
µν(Ē)], (A.9)

where Fµν(Ē) = ∂µĒν − ∂ν Ēµ + i[Ēµ, Ēν ]. Substituting eqs. (A.7)–(A.8) into eq. (A.9) we

find that OW and OB emerge by expanding O1, while OHW and OHB emerge from O2. It

is also evident that operators of the above form cannot involve two gluons and two Higgses.

Indicating by D̄µ ≡ ∂µ + iĒµ the full H-covariant derivative, one could write down other

structures like D̄µD̄νD̄
νD̄ν , D̄µD̄µD̄νD̄ν or D̄µD̄µD̄νD̄ν . These are however shown to give

either the same effects at dimension 6 or terms involving at least four Goldstones.

The question remains onto which effects can be generated at tree level in minimally

coupled theories, such as Holographic Goldstones or Little Higgses. One distinctive feature

of OHW and OHB is that they give rise to interactions involving on-shell photons and

electrically neutral states. This cannot occur at tree level in a minimally coupled theory

where photon interactions are purely dictated by covariant derivatives. On the other hand

OW and OB do not lead to any extra interactions for on-shell photons, so that one may

expect them to arise at tree level by integrating out heavy states. This is indeed the case

for both Holographic Goldstones and Little Higgses, which are known to give rise to a

contribution to Ŝ ∝ cW + cB through the exchange of heavy vector states. Let us briefly

outline how this effects come about within our formalism by focussing on the case of a

massive vector V transforming in the adjoint of H. In the ungauged limit we have the

option to choose Vµ to transform like Eµ under G. Then the most general two derivative

G-invariant action is given by

m4
ρL0 = m2

ρDA
µDµ

A − 1

4
(F V

µν)2 +
1

2
m2

ρ(Vµ − Eµ)2, (A.10)
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where F V
µν = ∂µVν − ∂νVµ + i[Vµ, Vν ]. Notice that terms involving covariant derivatives

acting on the homogeneously transforming combination V̂µ ≡ Vµ − Eµ have more than

two derivatives. A limitation to two derivatives, also automatically eliminates the term

(∂µV̂ µ − i[V µ, V̂ µ])2 which would imply the presence of a scalar ghost with mass ∼ mρ.

The gauging of H then amounts to E → Ē in the above equation. According to this change

V will also have to transform under the genuinely local g = h(x) precisely like A. Notice

that the structure we have thus outlined is the same of Little Higgs model with a product

group structure with V playing the role of the vector boson of the second SU(2)′, the one

under which the SM fermions are uncharged. The mass term in eq. (A.10) mimics the

effects of the Goldstone which breaks the gauge group to the, low energy, diagonal SU(2),

under which both A and V transform thus like gauge fields. By integrating out V we find

the following correction to the low-energy effective action

∆L = − 1

4g2
ρ

Fµν(Ē)Fµν(Ē) − 1

2g2
ρ

DµFµν(Ē)
1

∂2 + m2
ρ

DρF ν
ρ (Ē) + . . . (A.11)

where the dots indicate terms more than quadratic in the field strength and with at least

4-derivatives. As we already explained the first term gives rise to OW and OB . The second

term, instead, gives rise to four derivative corrections to pure gauge kinetic terms

O2W =
1

2g2
ρm

2
ρ

(DµW i
µν)(DρW

iρν) O2B =
1

2g2
ρm2

ρ

(∂µBµν)(∂ρB
ρν). (A.12)

Let us consider now the effect of integrating out massive scalars. At the two derivative

level we can have mixings of the type DµΦDµ and ΦDµDµ, where we have suppressed the

indices; we assume, of course that the H-quantum numbers of Φ and the contractions ensure

H-invariance. Integrating out Φ, the leading operators involve then at least 4 derivatives.

At dimension 6, one is then easily convinced that only one term is generated in general

1

m2
ρ

(D2H†)(D2H), (A.13)

which can be induced by the exchange of massive doublets. The other possible contraction

at dimension 6 order, (DµDνH†)(DνDµH), cannot arise from scalar exhange as it involves

a J = 2 part. The more interesting terms arise at dimension 8, and are irrelevant to our

analysis.

B. Effective Lagrangian in the canonical basis

The first term of the effective Lagrangian (4.1) involves Higgs derivative terms that makes

difficult to read off physical effects. At order ξ, we can eliminate these derivative terms by

performing the following non-linear redefinition of the Higgs:

h → h − cHξ

2

(
h +

h2

v
+

h3

3v2

)
. (B.1)

After this redefinition, the corrections to the SM Lagrangian are now given by

Lh= ξ

{
− m2

H

2v

[(
c6 −

3cH

2

)
h3 +

(
6c6 −

25cH

3

)
h4

4v
+ . . .

]
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+
mf

v
f̄f

[(
cy+

cH

2

)
h+(3cy+cH)

h2

2v
+. . .

]

−cHm2
W

(
h

v
+

2h2

v2
+· · ·

)
W+

µ W−µ− cHm2
Z

2

(
h

v
+

2h2

v2
+ · · ·

)
ZµZµ

+

(
h

v
+

h2

2v2

)[
g2

2g2
ρ

(ĉW W−
µ DµνW+

ν +h.c.)+
g2

2g2
ρ

ZµDµν

[
ĉZZν +

(
2ĉW

sin 2θW
− ĉZ

tan θW

)
Aν

]

− g2

(4π)2

(
cHW

2
W+µνW−

µν +
cHW +tan2 θW cHB

4
ZµνZµν−2 sin2 θW cγZFµνZµν

)
+ . . .

+
αg2cγ

4πg2
ρ

FµνFµν +
αsy

2
t cg

4πg2
ρ

GaµνGa
µν

]}
. (B.2)

Eq. (B.2) could also have been obtained from eq. (4.1) by using the Higgs equation of

motion. The Lagrangian eq. (B.2) is in a more suitable basis to compare it with the

effective Lagrangian arising from specific SILH models, and extract the predictions of these

models for the coefficients ci. For this purpose it will be useful the give the Higgs couplings

corrected by eq. (B.2) at order ξ and at zero momentum (or, equivalently, neglecting g2ξ/g2
ρ

corrections). For the hWW , hff and h3 coupling, we have

ghWW = gmW

[
1 − cH

2
ξ
]

, (B.3)

ghff =
gmf

2mW

[
1 − ξ

(cH

2
+ cy

)]
, (B.4)

ghhh =
gm2

H

4mW

[
1 + ξ

(
c6 −

3cH

2

)]
. (B.5)

C. Loop functions for the Higgs radiative decays

Here we give the loop functions describing the Higgs radiative decays in eqs. (4.11)–(4.13),

including the O(αS) corrections coming from matching the SM contribution to the operator
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basis, in the limit of heavy top.

Ig =
1

2
F1/2(xtH)

(
1 +

11αS

4π

)
, Iγ =

4

3
F1/2(xtH)

(
1 − αS

π

)
, Jγ = F1(xWH) (C.1)

IZ =
2(3 − 5t2W )

3tW
[I1(xtH , xtZ) − I2(xtH , xtZ)]

(
1 − αS

π

)
(C.2)

JZ =

[(
1+

2

xWH

)
tW −

(
5+

2

xWH

)
1

tW

]
I1(xWH , xWZ)+4

(
3

tW
−tW

)
I2(xWH , xWZ)

(C.3)

tW ≡ tan θW , xij ≡
4m2

i

m2
j

, i = t,W, j = H,Z (C.4)

F1/2(x) = −2x [1 + (1 − x)f(x)] , F1(x) = 2 + 3x [1 + (2 − x)f(x)] (C.5)

I1(x, y) =
xy

2(x − y)

{
1 +

xy

x − y
[f(x) − f(y)] +

2

x − y
[g(x) − g(y)]

}
(C.6)

I2(x, y) = − xy

2(x − y)
[f(x) − f(y)] (C.7)

f(x) = arcsin2
(
x−1/2

)
, g(x) =

√
x − 1 arcsin

(
x−1/2

)
. (C.8)
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C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of higgsless

electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038].

[5] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson,

Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259].

[6] K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B

719 (2005) 165 [hep-ph/0412089].

[7] D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B

136 (1984) 183.

[8] S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B

199 (1982) 206;

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB513%2C232
http://arxiv.org/abs/hep-ph/0105239
http://jhep.sissa.it/stdsearch?paper=07%282002%29034
http://jhep.sissa.it/stdsearch?paper=07%282002%29034
http://arxiv.org/abs/hep-ph/0206021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NJOPF%2C3%2C20
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NJOPF%2C3%2C20
http://arxiv.org/abs/hep-th/0108005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C085012
http://arxiv.org/abs/hep-ph/0210133
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB669%2C128
http://arxiv.org/abs/hep-ph/0304220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C055006
http://arxiv.org/abs/hep-ph/0305237
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C92%2C101802
http://arxiv.org/abs/hep-ph/0308038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB671%2C148
http://arxiv.org/abs/hep-ph/0306259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB719%2C165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB719%2C165
http://arxiv.org/abs/hep-ph/0412089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB199%2C206
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB199%2C206


J
H
E
P
0
6
(
2
0
0
7
)
0
4
5

T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B

243 (1984) 125;

D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136

(1984) 187;

H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett.

B 143 (1984) 152;

H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984)

216;

M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys.

B 254 (1985) 299.

[9] K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision

tests, JHEP 08 (2003) 050 [hep-ph/0308036].

[10] A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B

234 (1984) 189;

H. Georgi and L. Randall, Flavor conserving CP-violation in invisible axion models, Nucl.

Phys. B 276 (1986) 241.

[11] R. Barbieri, A. Pomarol and R. Rattazzi, Weakly coupled higgsless theories and precision

electroweak tests, Phys. Lett. B 591 (2004) 141 [hep-ph/0310285];

[12] H.-C. Cheng, J. Thaler and L.-T. Wang, Little M-theory, JHEP 09 (2006) 003

[hep-ph/0607205];

R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology

simplified, hep-ph/0612180.

[13] S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 1, Phys.

Rev. 177 (1969) 2239;

C.G. Callan, S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological

lagrangians. 2, Phys. Rev. 177 (1969) 2247.

[14] S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree level

gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529.

[15] D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher

representations versus electroweak precision measurements: predictions for LHC Phys. Rev.

D 72 (2005) 055001 [hep-ph/0505059].

[16] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after

LEP1 and LEP2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040].

[17] W. Buchmuller and D. Wyler, Effective lagrangian analysis of new interactions and flavor

conservation, Nucl. Phys. B 268 (1986) 621.

[18] G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: an

effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036].

[19] D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion

masses, Nucl. Phys. B 365 (1991) 259

[20] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models,

Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048].

[21] S. Chang, A ’littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057

[hep-ph/0306034].

– 39 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB243%2C125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB243%2C125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB143%2C152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB143%2C152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB145%2C216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB145%2C216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB254%2C299
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB254%2C299
http://jhep.sissa.it/stdsearch?paper=08%282003%29050
http://arxiv.org/abs/hep-ph/0308036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB234%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB234%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB276%2C241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB276%2C241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB591%2C141
http://arxiv.org/abs/hep-ph/0310285
http://jhep.sissa.it/stdsearch?paper=09%282006%29003
http://arxiv.org/abs/hep-ph/0607205
http://arxiv.org/abs/hep-ph/0612180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C177%2C2239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C177%2C2239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C177%2C2247
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C3529
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C055001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C055001
http://arxiv.org/abs/hep-ph/0505059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB703%2C127
http://arxiv.org/abs/hep-ph/0405040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB268%2C621
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB645%2C155
http://arxiv.org/abs/hep-ph/0207036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB365%2C259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C055014
http://arxiv.org/abs/hep-ph/0612048
http://jhep.sissa.it/stdsearch?paper=12%282003%29057
http://arxiv.org/abs/hep-ph/0306034


J
H
E
P
0
6
(
2
0
0
7
)
0
4
5

[22] A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the

Standard Model, hep-ph/0503172.

[23] M. Kuroda, F.M. Renard and D. Schildknecht, A unique lagrangian for w±, Z0

selfinteractions containing quadrupole terms. Tests in e+e− → w+w−, Phys. Lett. B 183

(1987) 366.

[24] A.V. Manohar and M.B. Wise, Modifications to the properties of a light Higgs boson, Phys.

Lett. B 636 (2006) 107 [hep-ph/0601212].

[25] A. Pierce, J. Thaler and L.-T. Wang, Disentangling dimension six operators through di-Higgs

boson production, hep-ph/0609049.

[26] V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in

vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075].
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