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ABSTRACT

We have studied the geographical, structural and temporal
characteristics of anomalies that persist beyond the periods
associated with synoptic-scale variability and have examined
the relationship that these persistent anomalies have to changes
in storm activity. There are three major regions for the occurrence
of persistent anomalies: the north-central North Pacific, the
eastern North Atlantic, and the northern Soviet Union. For each
region, the maximum in the frequency of occurrence of positive
anomalies is approximately co-located with, and has a comparable
value to, the corresponding maxima of negative anomalies. For
sufficiently long durations, the number of events decays nearly
exponentially with increasing durations, resembling the behavior
obtained from a first-order autoregressive process.

Analyses of horizontal structure provide evidence for the recur-
rence of certain preferred anomaly patterns. To a first approximation,
persistent positive and negative anomaly patterns for a region can
be described as opposite phases of the same basic pattern. Most of
the cases appear as unusually strong enhancements of the primary
regional pattern of low-frequency variability. One phase of this
pattern usually resembles blocking; the other, a regional high-
index flow. Systematic changes in the storm paths and in the
locations and intensities of the major surface centers of action
accompany the persistent anomalies. The corresponding vertical
structures display maximum height anomalies in the upper troposphere
and little tilt with height.

Composite time analyses indicate that development rates are
often rapid (full establishment in less than a week). There is
little evidence of an atmospheric precursor until just prior to

onset. Following onset, anomaly centers develop and intensify

downstream from the main center, leading to the establishment of
the persistent anomaly pattern. Intensification occurs with little
evidence of phase propagation. The anomalies often display greater
westward vertical tilts during than following development. Break-
downs occur rapidly. Until just prior to breakdown, the patterns
closely resemble the patterns following development.
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Contributions of transient eddies toward maintaining local,
time-mean balances of heat, vorticity and potential vorticity are then
examined to study how changes in storm activity are related to changes
in the mean flow. Comparisons between corresponding positive and
negative cases show well-defined differences in most heat budget
terms, but few significant differences in most vorticity and
potential vorticity terms. Many of the systematic differences in
the eddy terms appear qualitatively consistent with changes expected
for developing baroclinic waves on a spatially varying mean flow.
Differences in the time-mean diabatic heating appear mainly related
to changes in the storm paths. The results are generally consistent
with similar calculations for climatological-mean flows; thus, the
qualitative relations already established between long-term mean flows
and storm activity also appear in anomalous flows having durations
of a few weeks.

Thesis Supervisor: Professor Frederick Sanders
Title: Professor of Meteorology
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I. INTRODUCTION

A. Background and Statement of Objectives

Weather forecasters commonly use their familiarity with "analogue"

cases in preparing short-range predictions. Observational meteorologists

frequently suggest that there may also be some recurrent flow patterns

that typically persist beyond the periods associated with synoptic-

scale variability. The prototypical example cited is the phenomenon

of blocking, often described as having considerable persistence and

a tendency toward the recurrence of qualitatively similar flow patterns

(Namias, 1947; Elliott and Smith, 1949; Rex 1950 a,b; Sumner, 1954).

The descriptions presented in these studies suggest coherent forms of

low-frequency behavior. Nevertheless, our current understanding of

the nature and characteristics of recurrent persistent flow anomalies

remains quite limited. A challenging problem facing meteorologists

is to determine if these earlier observations can be placed within

a more general and systematic framework.

The close association of persistent flow anomalies with prolonged

abnormal weather conditions suggests that their accurate prediction

is fundamental to skillful extended-range weather forecasting.

Recent estimates (see e.g., Leith, 1978), however, suggest that our

current limit of predictive skill is within the range of durations

attributed to synoptic-scale fluctuations. This present practical

limit is appreciably less than the limits estimated by predictability

theory (Leith, 1978).

Although the reasons for our lack of skill at extended range

forecasting have not been fully elucidated, a multiplicity of con-
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tributing factors can readily be imagined. Indeed, a discussion by

von Neumann (1957) on a strategy for weather prediction anticipates

the intrinsic difficulty of the problem. Von Neumann states that

It seems quite plausible from general experience that in
any mathematical problem it is easiest to determine the
solution for shorter periods, over which the extrapola-
tion parameter is comparatively small. The next most
difficult problem to solve is that of determining the
asymptotic conditions - that is, the conditions that
exist over periods for which the extrapolation parameter
is very large, say near infinity. Finally, the most
difficult is the intermediate range problem, for which
the extrapolation parameter is neither very small nor very
large... On the basis of these considerations, it follows
that there is a perfectly logical approach...to the problem
of weather prediction. The approach is to try first short-
range forecasts, then long-range forecasts of those
properties of the circulation that can perpetuate them-
selves over arbitrarily long periods of time (other
things being equal), and only finally to attempt to
forecast for medium-long time periods...

In many respects, research on large scale atmospheric phenomena

has paralleled von Neumann's prescription. One.focus for study has

been the short period fluctuations; another, the long-term mean flow.

To a first approximation, the behavior of the former conforms with

that expected of disturbances developing as a result of baroclinic

instability (Charney, 1947; Eady, 1949) and decaying by barotropic

and frictional processes; the latter appears to be a response mainly

to forcing by topography and geographically-fixed heat sources and

sinks.

In comparison, our current understanding of the causes and

characteristics of intermediate scale phenomena, or persistent anomalies,

is far more primitive. We do not yet have a generally accepted

theory of persistent anomalies, although there has been much recent
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effort devoted to this problem. A major obstacle hindering our

progress has been.the lack of an adequate empirical description

of the typical characteristics of these features. Moreover, we

do not yet know how changes in storm behaviors are related to

changes in the mean flow accompanying the persistent anomalies.

This hinders our understanding of phenomena such as blocking, where

major deformations of the mean flow are accompanied by significant

changes in the location of, and activity along, storm paths.

The two general objectives of this thesis are, first, to

ascertain systematic behaviors of anomalies that persist beyond the

periods associated with synoptic-scale variability and, second, to

examine the relationship that these persistent anomalies have to

changes in storm activity. The specific objectives are:

1) to determine whether persistent anomalies preferentially

occur in specific geographic regions;

2) to determine whether persistent anomalies are associated

with recurrent flow patterns;

3) to describe typical life cycles of persistent anomalies; and

4) to examine how changes in storm activity are related to mean

flow changes associated with persistent anomalies.

B. Outline of Thesis

Chapter 2 reviews research in this area with emphasis on blocking

studies. The main theme of Chapter 3 is to identify the geographical

distribution of persistent anomalies and to relate this distribution

to other features of the Northern Hemisphere wintertime circulation.

Chapter 4 provides detailed analyses of the structure of persistent
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anomalies and examines evidence for the existence of recurrent, large-

scale anomaly patterns. Chapter 5 furnishes descriptions of time

evolution. Chapter 6 compares the relative roles of mean and eddy

terms in local, time-mean budgets of heat, vorticity and potential

vorticity during persistent anomalous periods. This forms a basis

for examining how changes in storm activity are related to changes

in the mean flow. Chapter 7 consists of concluding remarks and

suggestions for further research.
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II. REVIEW

There is a vast but diffuse body of literature relating to

persistent anomalies, including studies on blocking, teleconnections*

and weather regimes. We will not attempt a comprehensive review of

this research. Rather, our main objectives are to evaluate prior

phenomenological and theoretical studies in order to define the

principal problems requiring further investigation. The majority of

studies in this area have focused on blocking and, accordingly, we

emphasize that subject. Since no review of blocking presently exists,

our discussion is rather thorough; for the more casual reader,

brief summaries of the salient observational and theoretical results

are provided at the ends of the corresponding sections. The last

section more extensively discusses and outlines the primary out-

standing problems.

A. Definitions of blocking

In common with many other terms in synoptic meteorology, "blocking"

has been defined by a number of different criteria. Perhaps the most

frequent use of the term has been to indicate the existence of a

quasi-stationary, persistent and usually strong anticyclone or ridge

located at mid- to high-latitudes (Glossary of Meteorology, 1959).

Some investigators (Rex, 1950a, b; 1951) additionally require the

existence of a "split" in the upper-level westerlies (the occurrence

of multiple maxcima in the zonal wind at fixed longitude and pressure).

An idea implicit in much of the research is that the major deformation

of the westerlies associated with blocking appears to obstruct or

divert ("block") migratory disturbances from their predominantly

*,e will n>ot review teleconnection research in detail, since Wallace
and Gutzlec (1981) provide a good recent summary of the main results.
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eastward movement along the climatological mean storm paths. This

"steering flow" definition of blocking has never been applied directly,

nor adequately evaluated observationally, although Petterssen (1956)

provides a time sequence of frontal analyses to illustrate this

concept (Fig. 2.1).

The most important differences among the various selection cri-

teria center about three factors:

1) the relative importance attached to various structural charac-

teristics of the flow;

2) the variations in emphasis placed on persistence;

3) the types of data used for primary identification (i.e.,

surface synoptic, 500 mb synoptic, 700 mb mean).

The principal criteria that have been used to define blocking can

be sufficiently illustrated by examining those used by Namias (1947),

Elliottand Smith (1949), Rex (1950a,b) and White and Clark (1975).

Namias (1947) associates two characteristics with blocking:

1) A "retardation" of the zonal circulation in a limited sector of

the hemisphere throughout the depth of the troposphere, which moves

westward with time; and

2) a synoptic manifestation of a warm anticyclone in high lati-

tudes and a cold cyclone in lower latitudes. Namias employs 5-day mean

charts at sea level and 10,000 ft. He identifies blocking situations

by large positive pressure anomalies at high latitudes, but applies no

specific objective criterion.

Elliott and Smith (1949) also place most emphasis on the structural

characteristics of blocking; in particular, they define blocking as
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Fig. 2.1

Positions of fronts during two successive
10-day periods:
A) preceding the formation,
B) following the establishment of, a

blocking high (from Petterssen, 1956)
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A state of circulation in which the normal
flow is interrupted in a sector . . . by strong
persistent, meridional-type flow. Synoptically

. a persistent high at high latitudes (is
present) . . . obstructing the normal eastward
progress of migratory cyclones and anticyclones.
The high is linked, as a rule, to simultaneous
abnormally deep depressions either upstream or
downstream or both, which are often trapped in
low latitudes.

For objective criteria they use excessive positive surface pressure

departures (+20 mb) in a band at least 15 degrees longitude wide over

a period of at least three consecutive days.

Rex (1950a) develops considerably more detailed criteria for

identifying blocking patterns. Rex states that

a blocking case must exhibit the following
characteristics:

1) The basic westerly current must split
into two branches.

2) Each branch current must transport an
appreciable mass.

3) The double-jet system must extend over
at least 450 of longitude.

4) The pattern must persist with recog-
nizable continuity for at least ten days.

Blocking is said to be initiated when 1) occurs, and to have dissipated

whenever any of conditions 1) - 4) are no longer met.

White and Clark (1975) investigated blocking situations over the

central North Pacific using monthly mean 700 mb height data.

Consequently, their definition of blocking is somewhat less restrictive

than that of Rex (1950a). They state that

A blocking ridge exists when a sharp tran-
sition in the mid-latitude westerlies from
a zonal type upstream to a meridional type
downstream occurs with an amplitude exceeding
five degrees of latitude.
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For ease of comparison, the different criteria used in investiga-

tions of blocking are summarized in Table 2.1, which also lists the

data sources and primary objectives of each of the studies.

B. Observational studies

The majority of observational studies on blocking were performed

from the late 1940's through the mid-1950's. The primary objectives

of these investigations were to provide synoptic analyses of blocking

cases (Berggren, Bolin and Rossby, 1949; Rex, 1950a) and to establish

a climatology of blocking (Rex, 1950b; Brezowsky, Flohn and Hess, 1951;

Sanders, 1953; Sumner, 1954). Aside from statistical summaries pre-

sented in the climatology studies, quantitative results are quite

limited. The lack of uniformity in the criteria used by different

researchers, as previously discussed, must also be considered in

interpreting and comparing the results cited in this section.

1. Geographical and seasonal variability

The most comprehensive study of the seasonal and geographic dis-

tribution of blocking is that of Rex (1950b). In common with most

blocking studies, Rex concentrated on blocking situations located over

the Northern Hemisphere oceans with most emphasis on North Atlantic

blocking. The less thorough analysis of North Pacific blocking is

primarily a manifestation of the inadequate data coverage that

existed in that region during the period considered (1933-1940, 1945-

1949). Several results obtained by Rex are pertinent; he states that:



Table 2.1

Study Criteria

Namias
(1947)

Elliot and Smith
(1949)

Berggren,

(1949)

Rex
(1950a)
(1950b)
(1951)

Sumner.
(1954)

White and
(1975)

et al.,

Clark

Hartman and Ghan
(1980)

large pressure anomalies
at high latitudes, no
time criterion

excessive positive pressure
departures in a band 150
longitude wide over 3 days

subjectively identified

split westerly flow over
at least 450 of longitude,
sharp transition from zonal
to meridional flow,
recognizable continuity for
at least 10 days.

well formed cellular
structure north of 500 N
subjectively identified,
no minimum time criteria

sharp transition in mid-
latitude westerlies to a
meridional-type flow with
amplitude exceeding 5* of
latitude

continuous high heights in
confined region for at least
6 days

Type of-Study

synoptic-
climatological

climatological

synoptic

synoptic-
climatological

climatological

climat6logical

climatological
budget

Data

5-day mean charts
at sea level and
10,000 feet

daily surface
pressure values
for Jan.-Feb.
1900-1939

mult. level data
for Feb., 1948 case

500 mb z and surface
synoptic charts:
1933-1940; 1945-1949

500 mb and 500 mb -
1000 mb thickness,
1949-1952

monthly mean 700 mb
data, .1950-1970

NMC analyses of z,
T for 10 winters
1965-66 through 1974-75
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1) Blocking activity is most frequently
initiated in two relatively narrow longi-
tudinal zones in the northern hemisphere,
one (Atlantic) centered aloft at 100W
longitude and the other (Pacific) at 150 0 W
longitude.*

2) Both Atlantic and Pacific blocks
normally persist for a period of 12 to 16
days and are relatively stable in position.

3) Regular seasonal and irregular yearly
variations in both Atlantic and Pacific
blocking activity occur. These variations
are strong, in excess of 50%, and in the
case of the seasonal trends are essentially
in phase in both Atlantic and Pacific.

4) Atlantic blocks exceed Pacific blocks
in frequency of occurrence, apparently by a
factor of two to one.

The differences in frequency of occurrence between Atlantic and Pacific

blocks may be due in part to the deficient data coverage over the latter

region during the period considered, as observed by Rex. Note that

although Rex states that the seasonal variations of the frequency

of Atlantic and Pacific blocking are approximately in phase, he

observes in an earlier paper that "it is more usual to find only one

block in the hemispheric flow pattern . . . double blocks are normally

short-lived. One or the other dissipates, leaving a single block

which may persist for several weeks." (Rex, 1950a). Also, any

estimate of duration depends on the particular selection criteria.

In this study, Rex (1950b) insists that

*The longitudes given by Rex refer to the upstream location of the
split in the westerly flow and not to the position of the anti-
cyclone center, which is the usual convention.
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"the pattern must persist with recognizable continuity for at

least ten days " although the particular minimum duration appears

somewhat arbitrary.

Sumner (1954) examines the climatology of blocking for North

Atlantic and western European regions over 1949-1952. Although Sumner

uses substantially different selection criteria than Rex (the

principal differences are that Sumner does not apply a minimum

duration criterion and does not require a split flow, cf. Table 2.1)

his results on the whole confirm Rex's conclusions on Atlantic

blocking. The most serious discrepancy concerns the seasonal variations

of blocking: Rex finds a seasonal maximum in late winter to early

spring and a late summer minimum, while Sumner includes these but also

shows a second maximum in November and a second minimum in January.

Brezowsky, Flohn and Hess (1951), using surface pressure data for the

period 1881-1950, indicate a primary maximum of blocking in late

spring, a minimum in summer, and also a weak secondary maximum in

autumn. It is not clear to what extent differences among the selection

criteria and data sources account for these discrepancies.

The above studies focused on blocking over the North Atlantic and

western Europe. White and Clark (1975) investigate blocking activity

over the central North Pacific. Recall that White and Clark use

monthly mean charts so that they have no values for the duration of

individual features. Their analysis of blocking frequency shows a

pronounced winter maximum and a late spring minimum. This is in

conflict with some of the conclusions given by Rex (1950b) on Pacific

blocking, especially his assertion that the seasonal variations in
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Atlantic and Pacific blocking frequencies are approximately in phase.

The longitudinal distribution of Pacific blocking found by White

and Clark shows a maximum in frequency of occurrence near 170 0W or

about 200 W of the maximum indicated by Rex, despite Rex's use of the

upstream position of the split flow, rather than the ridge axis, to

locate cases. Additionally, White and Clark indicate that the inter-

annual variability in blocking activity appears to fluctuate in

concert with the Southern Oscillation. They associate frequent

blocking activity with below-normal sea surface temperatures over the

central and eastern equatorial Pacific.

2. Structure

Previous studies have concentrated on the horizontal structure

of blocking "patterns" and, indeed, this has been used as the sole

basis for defining cases (e.g., Sumner, 1954; 1959). This emphasis was

no doubt partially motivated by data availability, but it was also

influenced by the primacy of barotropic models in

early theories of blocking (e.g., Yeh, 1949; Rossby, 195.). Apparently

these studies also sometimes affected the choice of horizontal

structural models used for defining cases observationally; an important

objective of Rex's (1950a) study, for example, was to test a theory

by Rossby (195 0)a ccounting for a rapid downstream decrease in the zonal

flow, suggesting a current "split." Although Rex focuses on split

flows, he also observes (Rex, 1950a) that "no sharp distinction may

exist" between these flows and amplified wave patterns not accompanied

by a split flow, which his criteria exclude at the outset.

Nevertheless, there are several suggestions in the literature
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of particular recurrent, persistent flow patterns. Rex (1951) pro-

vides composites of the surface pressure and 500 mb heights for three

winter cases of European blocking. lie notes "a remarkable agreement

in the location and relative orientation of the various features" for

the cases analyzed. A typical aspect of the flow patterns identified

by Rex is an intense warm anticyclone located to the north of a cold-

core cyclone. This is similar to the description of blocking

cases provided by Namias (1947). Sumner (1954) presents flow

patterns typical of Atlantic and European blocking (Fig. 2.2).

White and Clark (1975) compare a mid-Pacific blocking pattern

with a more "normal" winter flow pattern (Fig. 2.3). An

important limitation of these earlier studies is that, owing to

data availability, comparisons are generally carried out over

limited regions.

3. Characteristics of time evolution

Case analyses are described by Berggren, et al., (1949) and

Rex (1950a). In these studies, blocking develops in about a week.

Typical durations for cases are from one to three weeks, with a mean

duration of close to two weeks (Rex, 1950b; Sumner, 1954). In some years,

blocks may persist or recur frequently in the same region for most of a.

season (e.g., Namias, 1964). The primary focus in these studies is on

describing zonal propagation characteristics; little attention has been

given to time evolution in the meridional direction, or to the evolution

of the vertical structure. Early studies suggest that blocking is char-

acterized by a slow westward development (Namias, 1947), which Palmen

and Newton (1969) associate with the successive development of new warm
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Fia. 2.2,

Fig. 2.2b

500 mb height analyses (units: ft.) presenting

examples of typical Atlantic blocking patterns.

a) diffluent pattern
b) meridional pattern (from Sumner, 1954).
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Jon 1955 700 mb h () Jn 195 700 mb ht (ft)
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(a) (b)

Fig. 2.3

Monthly mean maps of the 700 mb heights (units: ft.) for

a)"normal" wintertime flow pattern (Jan. 1955);

b) a Pacific blocking pattern (Jan. 1966).

(from White and Clark, 1975).
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anticyclones to the west of the main ridge. Elliott and Smith (1949)

also describe a situation in which a series of mobile anticyclones appears

to merge with and to reinforce the quasi-stationary blocking ridge. Rex

(1950a), however, finds a trend toward retrogression during the

developing stages and progression in the decaying stages of blocking.

4. Budget studies

There have been few diagnostic analyses of blocking conducted up

until now. Green (1977) summarizes transient-eddy momentum flux cal-

culations over western Europe for July 1976. From these results, he

suggests that transient-eddy vorticity flux divergence occurred in

the region of the blocking anticyclone during this period and

speculates that this mechanism may have played an important role in

maintaining this system. Savijarvi (1977b), however, calculates the

time-mean vorticity budget for a case of strong Atlantic blocking and

finds no clear evidence that transient eddies act to maintain the

block during the period considered.

Hartmann and Ghan (1980) compare vorticity and heat budgets for

blocking and transient ridges for both the Atlantic and Pacific

oceanic regions. In most respects the local balances for the blocking

and transient ridges were similar. In the Pacific the main differences

are associated with reduced eastward advection of relative vorticity

during blocking due to a decreased zonal flow. In the Atlantic

baroclinic mechanisms appear relatively more important for blocking

than.transient ridges.
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5. Summary of observational results

Despite the inconsistencies between studies, several general

observations can be made about the nature of blocking activity:

1) There are strongly favored geographical locations for the

occurrence of blocking. The studies indicate that eastern portions

of oceans in the Northern Hemisphere are particularly favored, and

that blocking of extended duration over continents is rare. Atlantic

blocking appears to be more prevalent than Pacific blocking.

2) The persistence of blocking varies considerably and may

extend for over a month, but the typical duration is about two weeks.

3) There are marked seasonal and annual variations in the inci-

dence of blocking. Since considerable discrepancies exist between

studies it is difficult to make firm generalizations. The data

suggest, however, that Atlantic-European blocking occurs most frequently

in the spring and that Pacific blocking occurs most commonly in winter.

4) Qualitative evidence suggests that there are favored flow

patterns associated with blocking.

5) Strongly systematic zonal propagation characteristics are

not apparent.

C. Proposed mechanisms

In addition to examining past observational research, it is also

useful to examine theories of blocking in order to determine the

current outstanding questions. As for the observational studies,

different investigators have emphasized various aspects of the pheno-

menon. Perhaps the earliest theoretical study of blocking is that of

Yeh (1949). Yeh considers the energy dispersion characteristics of a
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barotropic atmosphere. He suggests that the westward movement of

the breakdown in the zonal flow as described by Berggren, et al.,

(1949) and Namias (1947) can be accounted for by upstream energy

dispersion. Yeh finds that an initial solitary disturbance disperses

more slowly at high than at low latitudes and speculates that this

provides an explanation for the greater persistence of.blocking

highs in these regions.

The first non-linear model of blocking is that of Rossby (1950).

Rossby's model is also of interest as the earliest example of a

geophysical flow system in which multiple equilibrium states may exist

for a fixed external driving. From observations (Berggren et. al.,

1949) indicating that blocking is associated with a rapid breakdown

in the zonal flow, Rossby (1950) suggests that blocking is a geophysi-

cal analogue of a hydraulic jump. He derives a critical zonal speed

above which two possible types of flow may occur, one of which bears

some similarity to "split" westerly flows.

Thompson (1957) derives a prognostic equation for the zonally-

averaged zonal flow in a non-divergent barotropic model. He is able

to reproduce the splitting of a westerly flow into two jets in a

manner similar to that described by Rex (1950a).

Namias (1964) examines blocking activity over Northern Europe

for the period 1958-1960 using 700 mb monthly mean data. He finds that

anomalous North Atlantic sea surface temperatures and a deficient snow

cover over the Scandanavian peninsula are present during the period of



-27-

frequent and persistent blocking. He postulates that blocking results

from a positive feedback between the anomalous atmospheric and surface

conditions in this region. Namias suggests that anomalous sea-surface

temperature gradients lead to altered patterns of cyclogenesis which

then encourage the formation of blocking in certain regions, primarily

by barotropic processes. According to Namias, the long wave patterns

associated with blocking then favor the maintenance of the anomalous

sea-surface temperature gradients. Green (1977), and more recently

Austin (1980) also propose that transient eddies may be important in

maintaining the vorticity anomalies associated with blocking patterns.

White and Clark (1975) investigate blocking over the central North

Pacific using monthly mean 700 mb data for the period 1950-1970. They

determine that the occurrence of blocking is correlated with anomalies

in the sensible heat transfer from the ocean surface and suggest that

baroclinic instability induced by sensible heat exchange is the

mechanism responsible for blocking development. For theoretical sup-

port they apply the results of Haltiner's (1967) analysis of the effects

of diabatic heating on baroclinic instability. Haltiner uses a two-

layer quasi-geostrophic model on a S-plane and includes sensible heat

exchange with a lower boundary having a fixed, prescribed temperature.

In this model, for typical values of the vertical wind shear and for

the wavelengths of interest (~7000 km) perturbations are stable, but

can be destabilized by diabatic heat exchange (parameterized as a

Newtonian cooling) with the lower boundary.

Geisler (1977) criticizes the use by White and Clark of Ilaltiner's

model, since Geisler and Garcia (1977) find that in a continuously-
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stratified model Newtonian cooling acts to reduce the growth rates at

all wavelengths with the greatest reductions occurring at long wave-

lengths. At wavelengths of around 7000 km and a value of the Newtonian

cooling coefficient close to that used by Haltiner (1967), perturba-

tions do not amplify at all. Geisler and Garcia also find that the

unstable modes in their model propagate eastward with a phase speed of
-i

about 1 ms-1 greater than the basic state surface wind, and thus would

not remain geographically stationary for a westerly surface flow.

Egger (1978) proposes that blocking develops through the non-

linear interactions between forced standing waves and a slowly moving

free wave. To test this hypothesis he constructs three simple low

order spectral models (truncated at zonal wavenumber 3 and allowing

only two meridional modes) on a s-plane:

1) the first model is barotropic, includes non-zonal forcing but

neglects wave-mean flow interactions;

2) the second model is similar to the first but allows wave-

mean flow interactions to occur;

3) the third model is a two-level quasi-geostrophic model which

allows for the effects of baroclinicity. Dissipative effects are

neglected in all three models. Steady, stationary forcing is applied

in the form of vorticity sources at (zonal wavenumber, meridional

wavenumber) (1,1) and (3,1). The initial zonal wind is chosen such

that free Rossby wave mode (2,2) will be stationary. In the first

model, this free wave is found to amplify non-linearly and persists

for about a month. More complicated, but qualitatively similar,

behaviors exist in the second and third models. Egger finds that
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blocking does not occur when the vorticity sources are suppressed.

More recently, Egger (1979) includes a weak vorticity damping

(dissipation time scale -20 days) and replaces the fixed vorticity

sources by orographic forcing for a barotropic atmosphere. He then

finds that unless the initial state is very near a blocking configur-

ation, blocking does not subsequently develop.

Egger's studies do not consider the problem of direct external

forcing at the wavelength of interest. This problem has recently

received increased attention, most extensively by Tung and Lindzen (1979a,b).

The basic question Tung and Lindzen consider is why stationary

waves of certain scales are selectively amplified during blocking

situations. They propose that this amplification is due to a resonant

response of the long waves to forcing by topography and land-sea

differential heating.

Tung and Lindzen (1979a) first consider the problem of resonance

of a barotropic, non-sheared, time-varying flow on a s-plane. A

resonant response is obtained when the zonal flow is varied such that

the frequency of a normal mode (Rossby wave in this problem) becomes

equal to the frequency of the forcing (which is zero for stationary

forcing). In the linear theory, amplification continues until equi-

libration is achieved between the forcing and damping. Certain scales

are favored for resonance since:

a) the resonance wind speed U - , can only be
k2+R 2

achieved for certain waves;

b) for the atmosphere, the forcing varies with wavenumber.

For the linear theory, the final amplitude achieved by the damped
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"resonant" response is directly proportional to the amplitude of the

forcing at that wavenumber.

c) damping mechanisms are also scale dependent; in particular,

smaller scales are more severely damped. For reasonable values of the

forcing and with damping by Ekman pumping (damping time scale ~5 days)

wave amplitudes typical of those associated with blocking are achieved

within several days. An examination of the off-resonant response

shows that the wave amplification is not particularly sensitive to

being at exact resonance as long as the period of the free Rossby

wave is greater than roughly twice the damping time scale.

Tung and Lindzen (1979b) extend the previous results to the case

of an atmosphere in which vertical shear of the mean flow is included.

The time behavior is qualitatively similar to that found in the baro-

tropic case. The equilibrium resonant amplitude at the lower boundary

is unchanged, although the resonant wave may now possess a non-trivial

vertical structure. Wave responses to a number of physically realiz-

able profiles are studied in order to determine the most favorable

conditions for resonance. Smaller scale waves (zonal wavenumber k 3)

can be made resonant rather easily by introducing small changes in the

tropospheric wind profile. The behavior of the ultra-long waves (k = 1-2)

strongly depends on the wind structure of the stratosphere; in parti-

cular, a polar night jet maximum at latitudes lower than is typically

observed appears favorable for resonance of these waves.

Tung and Lindzen addressed the problem of the initial development

of large amplitude flow anomalies. Charney and DeVore (1979) attempt

to account for the persistence of these features. They propose that,
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owing to non-linearity, a multiplicity of equilibrium states may exist

for an atmosphere having zonally asymmetric forcing and fixed external

driving, of which more than one of the states may be stable or only

weakly unstable. They suggest that blocking is an example of one of the

atmosphere's meta-stable equilibrium states.

In order to study this problem, Charney and DeVore examine the

properties of a highly-truncated spectral model of a homogeneous

s-plane atmosphere. For the case of topographic forcing three equili-

brium solutions exist for a certain range of external forcing. Two of

the equlibria are stable and correspond to a strong zonal flow having

a small wave amplitude and to a weak zonal flow with a large wave

amplitude, the latter case resembling some blocking flows. The stable

equilibria were subsequently confirmed in grid point model calculations.

Multiple stable equlibria were also found in the spectral model when

the wave field was instead forced directly (simulating zonally-

asymmetric thermal forcing), but were not confirmed in the grid point

model calculations.

Charney and Strauss (1980) extend the analysis of Charney and

DeVore (1979) to a two-layer quasi-geostrophic baroclinic model forced

by topography. Multiple stationary equilibrium states also occur in

this model. As in Charney and DeVore (1979), the equilibrium states

arise from an orographic instability, but the energy for the growth

is now derived from the potential energy, rather than the kinetic energy,

of the mean flow.

In addition to the multiple equilibria studies, recent analyses

of quasi-stationary waves in simple time dependent models have disclosed
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similar pairs of flow states. Reinhold (1981) examines the time-

dependent behavior of a model similar to that used by Charney and

Strauss (1980), but retains two waves in the zonal direction to

simulate the interaction of a baroclinically unstable synoptic-scale

wave with a forced planetary-scale wave. For some parameter ranges

he identifies pairs of persistent states characterized by nearly

opposite phases of the planetary-scale wave.

Kalnay-Rivas and Merkine (1981) conduct time-dependent

numerical experiments with a barotropic channel model to study the

interactions between traveling disturbances and stationary waves

generated by localized topographic forcing. They find that when

vorticity perturbations are repeatedly introduced at certain distances

upstream of the mountain (simulating, for example, recurrent, localized

cyclogenesis), the steady part of the response can, in some cases,

dominate the transient behavior, leading to quasi-steady flow configur-

ations. Their results indicate that, depending on the character and

location of the forcing relative to the topography, there are two

favored quasi-steady flow patterns, corresponding to localized high-

and low-index flows.

McWilliams (1980), in contrast, suggests,that at least some

blocking patterns resemble certain non-linear analytic solutions

obtained to the homogeneous, equivalent barotropic model. These special

free solutions, which McWilliams calls "equivalent modons", are of

permanent form (non-dispersive) and are local (the perturbation is

negligible at large distances from the modon center). In their simplest

form, equivalent modons occur as vortex pairs, somewhat reminiscent of
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the "high-over-low" structures frequently associated with blocking.

We might consider the resonance, equivalent modon, multiple

equilibria and allied theories as presenting internal mechanisms for

persistent anomalies: that is, the behaviors of interest occur even

though external parameters and boundary conditions remain fixed.

Changes in internal parameters (e.g., the mean zonal flow) presumably

related to flow instabilities govern the character of the solutions.

It is useful to consider a recent suggestion by Hoskins (1978) as

an example of a theory in which persistent flow anomalies follow

changes in external conditions.

Hoskins (1978), after Bjerknes (1966), suggests that over tropical

regions anomalously warm sea surface temperature anomalies may lead to

enhanced convection. He proposes that increased convective heating

will be balanced by adiabatic cooling through upward motions, so

that upper-level divergence and therefore forcing of anticyclonic vor-

ticity can be expected over abnormally warm water. To simulate the

effects of convective heating in the tropics on the large-scale flow,

Hoskins forces the linearized barotropic vorticity equation on a sphere

with a prescribed divergence over a region 600 longitude by 30' latitude

centered at 150 N. The basic state in this experiment is the winter-

mean zonally-averaged 300 mb zonal flow. The steady-state solution

gives a stationary wave-train mainly north and east from the source

region with largest responses in the height field at middle and high

latitudes. The height perturbations in these regions somewhat resemble

blocking patterns.
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Discussion of proposed mechanisms

There are an almost bewildering variety of proposed mechanisms

for blocking. Nevertheless, we may identify certain. general

characteristics that, at least in principle, help us to classify*

the different theories:

1) whether or not zonal asymmetries in forcing are funda-

mental to the theory (i.e., a forced vs. a free response). Most

of the theories discussed specify some form of zonally-

asymmetric forcing; the most notable exception being the

equivalent modon theory (McWilliams, 1980).

2) whether the flow anomalies result from changes in external

(boundary) conditions or arise by internal processes. Hoskins

(1978) presents an example of a theory of the former kind;

the multiple-equilibria theories, of which Charney and DeVore

(1978) is the prototype, are of the latter kind.

3) whether the feature and/or the forcing are local or non-

local. Most theories including resonance (including most

multiple equilibria theories) are non-local; Hoskins' (1978) theory

has a local forcing but a non-local (wave) response; the equivalent

modon theory of McWilliams (1980) is local.

*Our objective is to present some general distinctions as a guide to the
subsequent investigation, rather than to develop a rigorous or exhaustive
classification scheme.
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4) whether or not transience (e.g., eddy forcings) plays an

essential role in the dynamics (quasi-equilibrium vs.

equilibrium models). In the theories of Green (1977) and

Austin (1980), transient eddy forcings assume a fundamental

role. Reinhold (1981) also finds that eddy forcings are

important in determining regime-like behaviors in his model.

In contrast, Charney and DeVore (1978) and Hoskins (1978)

obtain equilibrium solutions by assuming that all transient

terms vanish.

For our purposes, the above distinctions are the most useful,

although others may certainly be made (e.g., linear vs. non-linear,

barotropic vs. baroclinic, s-plane vs. spherical geometry). The

following section discusses implications that the above concepts carry

for our research.

D. Discussion

A fundamental objective of this thesis is to generalize blocking

research to the analysis of persistent anomalies. In the past,

blocking has been defined by a nurmber of different methods. Common

to all definitions is a requirement that the flow conform to specified

spatial patterns; most frequently, the central feature is considered

to be a strong, quasi-stationary ridge or anticyclone. This

approach has proved highly useful for isolating certain flow patterns

for study; nevertheless, it also has certain limitations:
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1) Differences between the selection criteria in the various

studies have frequently been motivated by subjective impressions

concerning the importance of particular features. It is unclear to

what extent these differences account for discrepancies among the

results.

2) The long-term mean has not been removed from the data prior

to defining cases. We therefore have an a priori basis for antici-

pating that most persistent, strong ridges or highs will show a

geographic bias toward the climatological-mean ridge positions.

3) The past emphasis on ridges or highs has never been ade-

quately justified and is perhaps misleading. Synoptic case studies

often reveal a persistent large-scale flow pattern without providing

an obvious indication on how to identify a single "key" feature.

We address these issues in Chapter III as follows:

1) by generalizing the method used to define cases and then

testing the sensitivity of the results to changes in the selection

criteria.

2) by determining the geographic distributions using data

from which the long-term mean has been removed and then comparing

the results with similar calculations that include the long-term mean.

3) by providing detailed comparisons between the characteris-

tics of persistent positive anomalies and persistent negative anomalies.

Investigators have frequently remarked that qualitatively

similar large scale flow patterns seem to recur in different blocking

situations. Nevertheless, the evidence presented is not entirely
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satisfying, since we expect some similarity to be forced by the

restrictive definitions adopted in these studies. There have been few

qualitative results, so interpretations are based primarily on

subjective impressions concerning the relative importance of particular

features. In Chapter IV we identify typical structures of persistent

anomalies. An important question addressed is whether subjective

impressions of blocking "patterns" can be associated with a particu-

lar feature (or features) which are objectively derived from obser-

vational data.

We have indicated that there is little concrete information on

the temporal behavior of persistent anomalies. In chapter V we consider

the question of how persistent anomalies evolve in time, placing par-

ticular attention on identifying typical time scales and isolating

systematic propagation characteristics. Major extensions beyond

previous research are analyses of the meridional propagation character-

istics and the evolution of vertical structures during development.

Up until now, the relationship between mean flows and transient

eddies during persistent anomaly periods has been the subject of

considerable speculation but little quantitative analysis. We take

up this problem in Chapter VI, first by examining the association

between persistent anomalies and storm paths and second by evaluating

relative contributions of transient-eddy and time-mean contributions

to local balances of heat, vorticity and potential vorticity.

The results of the analyses in chapters III - VI provide some

basis for addressing the theoretical issues previously raised. Indi-

cations of whetherpersistent anomalies are mainly forced or free
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are provided by analyses of geographic variability (chapter III), spa-

tial scales (chap IV) and propagation characteristics (chap V). Indi-

cations of the relative importance of external and internal processes

are primarily provided by various temporal characteristics, some of

which are examined in chapters III and IV.and are more extensively

studied in chapter V. Questions of localness are addressed through

analyses of structure (chapter IV) and evolution (chapter V). The

issue of the relative contributions by transient eddy and time-

mean terms is the main focus of chapter. VI. Chapter VII summarizes

the results and discusses the theoretical implications of our study.
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III. GEOGRAPHIC DISTRIBUTION

A. Introduction

We now consider .the question of whether persistent anomalies

preferentially occur in specific geographic regions. Following a

brief description of the data set, we outline our method for

defining persistent anomaly cases. We then present the results of

the geographic distribution calculations.

B. Data Set

Data are derived from the National Meteorological Center (hMC)

final analyses of the Northern Hemisphere 500 mb heights. The data

set consists of twice-daily analyses (OOZ and 12Z) for the 14 con-

secutive 90-day winter seasons from December 1, 1963 - February 28,

1964 to December 1, 1976 - February 28, 1977. Data were spatially

interpolated by a 16-point Bessel scheme (Jenne, 1970) from the NMC

octagonal grid to a 5 degree latitude by 5 degree longitude grid over

the region from 20N to 90N. Missing or obviously incorrect analyses

were replaced with linearly-interpolated data. Less than one per cent

of the 500 mb height analyses required replacement.

C. Procedure

We first propose a generalized definition and three alternative

measures of "anomaly." We then describe our method for selecting cases.

1. Anomaly: definition and measures

Meteorologists conventionally define "anomaly" as the deviation

of the value of an atmospheric variable x from its local long term

mean:

* The NMC data set is discussed in Appendix 1
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x' (,O,p,t) = x(X,E,p,t) - x(,0,p,t) (3.1)

where 8 is the latitude, A the longitude, p the pressure and

t the time. The long term mean x is in general a function of both

position and time of year. We will find it helpful to instead con-

sider a generalized definition of anomaly as

x' = s(x-x) (3.2)

where the scaling factor s and the reference value x may be

functions of both space and time. Applying this generalized defini-

tion, we now specify the three alternative measures of anomaly used

in this study.

a. Zonal height anomalies (ZHA)

The zonal height anomaly z* is defined as

z* = sin (z - [zi) (3.3)
sin 8

where the zonal-average height [z is defined by

2T

[z] = z d (3.4)

0

The reference latitude 8r = 450 in all calculations.

The (sin 0)- 1 scaling factor is motivated by a recent study on

atmospheric energy-dispersion (Hoskins, Simmons and Andrews, 1977)
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showing that height field analyses provide a poor indication of the

meridional component of energy propagation. This shortcoming is due

to the latitudinal variation of the Coriolis parameter, which biases

height field responses toward high latitudes. Hoskins, et al. suggest

that quantities like streamfunction or vorticity provide better

indicators of horizontal energy propagation. Note that this normali-

zation is similar to that used in obtaining a geostrophic stream-

function from height data.

Of the three anomaly measures, the ZHA correspond most closely

to the magnitude criteria adopted in most observational studies

of blocking. Recall that in these investigations, climatological

deviations from zonality are retained in the data. Since these

deviations are often considerable, a regional bias may be anticipated

in the results.

b. Temporal height anomalies (THA)

The temporal height anomaly z' is defined as

sin 8r
z' = si(z-z) (3.5)

sin 8

The climatological-mean value z is determined as the local seasonal

trend value. The seasonal trend time series at a point is obtained

by a least-squares quadratic fit to the 14-winter mean time series

for that point (e.g., the first value of the winter mean time series

is the average of the 14 December 1, OOZ values, the second value is

the average of the December 1, 12Z values, etc.).
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Of the three measures, this measure, as a scaled version of

eq. (3.1), is most closely identified with the traditional definition

of an anomaly as the difference between observed and climatological-

mean values. In contrast to ZHA's, there is no a priori reason

for anticipating that high numbers of THA's will be associated with

climatological-mean ridge or trough locations. There is, however,

some basis for expecting that large THA's are more likely in regions

characterized by high temporal variance.

c. Standardized height anomalies (SHA)

The standardized height anomaly z' is defined by
s

(z-z)z' = (3.6)s O

where z is obtained as for the THA's and the local standard

deviation a is determined for the seasonally-detrended data.

SHA's can be considered as THA's scaled for regional variations

in the height variance. Geographic variations in numbers of SHA's

having certain values can occur if there are substantial regional

differences in the shapes of the anomaly distributions (e.g., Gaussian

vs. significantly non-Gaussian).

So far, we have refrained from stating our preference for one

anomaly measure over the others. As suggested above, each of the

measures provides some distinct information on the behavior of the

height fields. In this and later chapters, however, we will

focus primarily on persistent THA's. Our motivation for preferring

THA's to Z-HA's is, as we shall show, that the latter primarily
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reflect the climatological-mean height structure. The long-term

mean structure has been studied observationally (e.g., Blackmon, 1976)

and theoretically (e.g., Charney and Elliassen, 1949; Smagorinsky,

1953) and, although related to our problem, is not our primary interest

here. We prefer THA's over SHA's since, through the geostrophic

relation, fields of the former provide a much better indication of

associated wind and vorticity anomalies, and therefore are more

amenable to direct physical interpretation.

2. Method for defining cases

Our definition of a persistent anomaly is simple

and intuitive: a persistent anomaly is defined at a point if the

anomaly at that point exceeds a threshold value for a sufficient

duration. The method, illustrated in Fig. 3.1, is as follows:

1) Specify a "magnitude" criterion, M, and a duration

criterion, T, where for positive anomaly cases M>O and for

negative anomaly cases M< 0.

2) Define the occurrence of a persistent positive (negative)

anomaly case at a particular grid point satisfying selection

criteria (M,T) if the anomaly at that point remains equal to or

greater (less) than M for at least T days.

3) Define the duration, D, for a positive (negative)

case as the time from which the anomaly first becomes greater

(less) than M to the time when the anomaly next becomes less

(greater) than M at that point.

Note that these criteria act as lower bounds, so that all events

which meet or exceed the threshold values are counted as

persistent anomaly cases satisfying the specified criteria.
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Fig. 3.1. Method for defining cases. See text for explanation.
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The number of persistent anomaly cases occurring over the 14

winter seasons were determined for each point on the 5 degree latitude

by 5 degree longitude grid for the following values of selection

criteria:

1) ZHA:

M = ± 0 m, ± 50 m, ... , 250 m

T = 5 days, 10 days,..., 25 days

2) THA:

M = ± 0 m, ± 50 m, ... , 250 m

T = 5 days, 10 days, ... , 25 days

3) SHA:

M = + 0, 1 0.2, ., 1.0

T = 5 days, 10 days, ... , 25 days

D. Geographic Distributions

The definitions and criteria given previously provide the

basis for performing the geographic distribution calculations. In

describing the results, we place emphasis on features which are

insensitive to changes in or show systematic variations over the values

of the selection criteria. For display purposes, the results have

been lightly post-smoothed by applying a nine-point spatial filter.
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This filter effectively removes fluctuations having wavelengths of

less than -1500 km but does not otherwise affect the general

character of the spatial variability.*

1. Zonal height anomalies

The zonal height anomalies have similar geographic distribu-

tions over a broad range of values of the selection criteria.

Consequently, the basic results will be illustrated with. one set

of representative values.

Fig. 3.2a displays the number of positive anomaly cases

satisfying ( +100 m, 10 days). Major regions having maxima in

the number of cases are centered over the eastern North Pacific

(EPAC) and eastern North Atlantic (EATL), with slightly larger

maxima occurring in the latter area. Fig. 3.2b shows the

corresponding distribution for the negative anomaly cases

satisfying (-100 m, 10 days) and Fig. 3.2c the sum of the numbers of positive

and negative cases. Comparing these maps, we see that for ZHA's,

regions having high numbers of positive anomaly cases and regions

having high numbers of negative anomaly cases are almost mutually

exclusive. Regions with the highest occurrence of negative anomalies

are centered over the western North Pacific (WPAC) near Japan and to

the north of Hudson Bay (HBAY). The maximum number of cases in

WPAC exceeds that of HBAY by a ratio of over two to one and also

exceeds the corresponding EPAC and EATL positive anomaly.maxima.

The relative dominance of the WPAC maximum over all other regional

Shapiro (1970) provides a detailed description of the response
characteristics of the 9 point filter.
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maxima is reproduced throughout the range of selection criteria

and is especially evident at higher values of the magnitude and dura-

tion criteria. By this anomaly measure, then, the strongest and

most persistent anomalies are the negative anomalies over the

western North Pacific, rather than the positive anomalies which

frequent the eastern North Atlantic and eastern North Pacific.

To a great extent, the regional patterns of the ZHA distrib-

utions reflect the structure of the climatological-mean 500 mb

height field. Fig. 3.3a presents the 14-winter season average 500

mb heights and Fig. 3.3b displays the departure of the time-average

heights from their zonal-average values. By comparing these

figures to the corresponding maps for the ZHA distributions (Figs.

3.2a-c), we see that the majority of persistent positive ZHA's

are associated with climatological-mean ridges, while most persis-

tent negative ZHA's occur near the climatological-mean troughs.

The ZHA's have a considerably weaker relation to the distribu-

tion of the standard deviations of the 500 mb heights (Fig. 3.3c),

indicating that regions of persistent large ZHA's are not

necessarily regions of large (temporal) variance. The areas of

maximum variance over the oceans lie roughly halfway between the

major upstream troughs and downstream ridges, with the Atlantic

variance maxima slightly nearer the mean ridge position. The third

maxima over the northern Soviet Union appears near a weak mean

trough downmstream from the major Atlantic mean ridge. Note,

however, that the regions between upstream ridges and downstream

troughs over central North America and east-central Asia are

characterized by relatively small variance.
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Fig. 3.2. Zonal height anomaly (ZHA) geographic
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2. Temporal height anomalies

Fig. 3.4 presents the results of typical geographic distribution

calculations for

a) positive anomaly cases (100m, 10 days),

b) negative anomaly cases (-100m, 10 days), and

c) the corresponding "sum" distribution, obtained by adding
the numbers of cases from the two previous distributions.

The three distributions shown are determined from data that have been lightly

low-pass* filtered to remove brief ( -1-2 day) interruptions by

mobile transient disturbances. The total numbers of cases are

increased by about 50 percent over the unfiltered values, but the

regional characteristics are otherwise almost unchanged. We see that:

1) There are three primary regions for the occurrence of per-

sistent THA: the North Pacific to the south of the Aleutians

(PAC), the North Atlantic to the southeast of Greenland (ATL) and from

the northern Soviet Union northeastward into the Arctic

Ocean (NSU).

2) For each region the maximum in the frequency of occurrence

of positive anomalies is approximately co-located with, and has a

comparable magnitude to, the corresponding maxima of negative

anomalies.

3) There is considerable latitudinal variability in the

number of cases, despite the anomaly normalization, with maxima

occurring near 50N for ATL and PAC regions and near 60N for NSU.

4) The range in the number of cases is substantial: .the three

major regions each have in excess of twenty cases over the 14 winter

season, while parts of Asia, the subtropics and central North

The 17 point filter has a 10% response at periods of about 3 days,
50% at 5.5 days and 90% response at around 13 days.
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Fig. 3.4. Temporal height anomaly distributions for (a) positive
anomaly cases (100m, 10 days); (b) negative anomaly cases
(-100m, 10 days); and (c) the sum of the cases in (a) and (b).
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America have less than two events satisfying these criteria over

the period. Oualitatively similar distributions are obtained if the

raw anomalies are defined as departures from the seasonal (rather

than long-term) means, although the magnitudes of the maxima are

slightly reduced (5%-25%). For relatively large magnitudes and short

durations, ATL and PAC maxima exceed the maximum values over NSU,

while for relatively small magnitudes and long durations the maxima

are comparable.

Whereas the ZHA distributions primarily mirror the structure of

the climatological-mean 500 mb height field, the THA distributions

are closely related to the pattern of variance of the 500 mb heights

(cf Fig. 3.3c). The PAC, ATL and NSU regions identified as having

high numbers of major persistent anomaly cases correspond with the three

major centers of large variance. This relationship is not surprising,

since persistent anomalies can be expected to provide major contribu-

tions to the low-frequency variance (periods beyond 10 days) and, as

Blackmon (1976) demonstrates, the height variance is dominated by low-

frequency components.

Fig. 3.5 further illustrates regional variations in persistence.

The numbers of events y(n) exceeding the threshold criteria (M)

for n or more consecutive days are shown on a semi-logarithmic

diagram for:

a) positive events (50m), for regions having high numbers

of persistent anomalies, obtained by averaging the
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distributions* of the three major persistent
anomaly regions;

b) negative events (-50m) for regions having high
numbers of persistent anomalies, obtained similarly to
a); and, for comparison:

c) positive events (50m) for a region with relatively few
persistent anomalies, centered over North America, and

d) negative events (-50m) for the same region.

We notice that:

1) For durations beyond about 3 days, there are more cases

in the persistent anomaly (PA) regions than in the non-persistent

anomaly (NPA) regions. The ratio of the number of events in the two

regions, y(n) / y(n) , increases with increasing n .PA NPA

2) The distributions for the NPA region form nearly straight

lines, whereas the slopes for the PA distributions vary as a

function of duration.

Since the conditional probability than an event.which has

lasted n. days will last at least n+l days is given by

P(n+l I n) = y(n+l)/y(n) , (3.7)

a linear relationship in this display indicates that the persistence

probability P is independent of the duration n ;

The distribution for a region is determined by combining the distri-

butions obtained at each of 9 points in a 10' latitude by 200 longi-

tude box centered at a point within the region. The combined distri-

butions are qualitatively similar to, and have smaller sampling errors

than, the corresponding distributions at individual points.
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conversely, if the relationship is non-linear, the persistence

probability varies with the duration. Estimates

of anomaly "half-lifes" (the time required for half of the anomaly

events to be terminated) can be obtained from this figure: for

NPA, the half-life is about 1.5 days; for PA, the half-lifes vary

from about 1.5 days at very short durations to around 3.5 days

after about n=6 days, with slightly more positive than negative

cases at long durations. Although the shift in time scales appears

small, the consequences are highly significant: for durations of

about 10 days or longer, roughly an order of magnitude more events

are observed than would be predicted by assuming a single distribution

following the rapid decay rate.

The relatively constant slopes of the PA curves beyond about

5 days suggests that for longer durations y(n) can be approximated

by

y (n) = cse s for 5 < n < 14-days (3.8)

where c and T are constants associated with a slow decay
s s

process. These constants have been estimated by

applying a non-linear least squares fit to the points between

n=6 days and n=14 days. For durations of less than 6 days, residuals

were calculated as the difference between the observed values and

the estimated values for the slow decay process. The residuals
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decayed rapidly and also nearly exponentially. This suggests an empirical

model for y(n) of the form

y(n) = ce n/T + cFe n/,0.5 days < n < 14 days (3.9)

where c , T and c FF are constants associated with the slow ands s F F

fast decay processes, respectively. The values of the constants are

c = 2323, c = 2500, T = 5.1 days, T 1= 1.1 days for the positive cases,
s F s F

and c = 3234, CF= 2153, T = 4.0 days, T = 0.3 days for the negatives F s F

cases. Corresponding values of explained variance are over 99 percent

for both the positive and negative cases. The NA curves, in contrast,

are dominated by a single decay process with a time constant of

about 2 days.

The cumulative distributions in the PA regions can thus effectively

be described as a sum of two simple decay processes whose time scales

lie on either side of the comparable time scale for a region

experiencing few persistent anomalies. Since the constants cF

and c have roughly the same values, at very short durations the

numbers of events contributed by the "fast" and "slow" populations

are about equal. In contrast, durations beyond about 5 days can be

attributed almost entirely to the slow decay population. Comparison

of the time constants also suggests that the positive events are

typically slightly more persistent.
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Many of the qualitative characteristics of these distributions

are insensitive to variations in the magnitude criterion. This is

illustrated in fig. 3.6, which presents results of similar calculations

for the PA regions for values of M ranging between 0 and +200m

for the positive cases and 0 and -200m for the negative cases. The

tendency for relatively steeper slopes at short durations and shallower

nearly constant slopes at longer durations is apparent throughout

this range of criteria, although at large magnitudes the changes

in slopes are relatively smaller. Values for the slow decay time

constant range from about 2 days for M = -200m to over 6 days for

M = +Om. Negative anomalies typically display fewer events at long

durations, particularly for large values of M .

For given magnitude and duration criteria, mean event durations

can easily be obtained from fig. 3.6. For intermediate values of

M(50-100m) and durations of 10 days or longer, mean durations are

around 14-15 days. Perhaps not coincidentally, this is close to the

mean duration of blocking determined by Rex (1950b) using a similar

10-day minimum duration criterion.

Do distributions of anomaly values from the three regions

display multiple modes, perhaps suggesting several preferred states?

Fig. 3.7 displays histograms of anomaly values obtained from the

14 winter seasons of twice daily data for selected points from the

three regions. Compared with normal distributions, these distributions

are more rectangular, with fewer values near the mean and in the

tails. This characteristic appears broadly typical of distributions

throughout the key regions (cf. White, 1980). White (1980) calcu-
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Fig. 3.6. As in Fig. 3.5. for the persistent anomaly regions

for values of M ranging between Om and 200m for

the positive cases and 0m and -200m for the negative.

cases. Solid lines are for positive cases; dashed

lines are for negative cases.
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lates geographical distributions of the skewness and kurtosis (related

to the third and fourth statistical moments, respectively) of the

wintertime 500 mb heights. The skewness roughly measures the asym-

metry and the kurtosis the "flatness" or peakedness of a distribution.

Very crudely, strongly peaked distributions have high kurtosis and

distributions with relatively few events near the mean have low

kurtosis. For reasonable estimates of the number of degrees of

freedom, White's analyses suggest that in all three regions the

distributions are nearly symmetric but may have values of kurtosis

significantly lower than the value for a normal distribution.

White has considered whether distributions with these characteris-

tics might result from the superposition of two normal distributions

with different means. He has argued that if one regime of a bimodal

distribution consists of "blocking" and the other regime consists

of a more "normal" state, then since blocking occurs much less than

half of the time (according to Rex, 1950b), the resulting distribu-

tions should be much more asymmetric than are observed. Our results,

however, suggest that the use of Rex's statistics together with

the assumption of a "normal" state, may be misleading. We find that,

for corresponding criteria, persistent positive anomalies and per-

sistent negative anomalies occur about equally frequently. Thus,

if we associate blocking with persistent positive anomalies (as White

apparently does), then our results suggest there is another phenomenon

corresponding with the persistent negative anomalies which is about

as common. Accordingly, our analyses would lead us to expect

that the distributions would be nearly symmetric, as the observations

indica-te.
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having the same mean and variance are drawn in dashed lines.
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3. Standardized height anomalies

Fig. 3.8 presents geographical distributions for

positive cases (0.4, 10 days),

negative cases 70.4, 10 days), and the

corresponding sum of positive and negative cases,

representative of intermediate values of magnitudes and durations.

The most striking characteristics of these distributions are the

large number of cases over polar latitudes, the relative minimum

in cases at mid-latitudes and the secondary maxima over the subtropi-

cal central North Pacific and subtropical central North Atlantic.

Compared with the ZHA and THA distributions, the SHA distributions

display little zonal variability. Major mid-latitude maxima appear

as southward extensions from the polar maximum to over the PAC,

ATL and NSU regions previously described as having high numbers of

THA's.

We can gain some understanding of the SHA distributions by

examining the relative contributions of different frequency bands

to the total height variance. Following a procedure similar to

Blackmon (1976), we partition the 14 winter seasons of detrended

anomaly data into frequency domains by application of two filters*:

1) a low-pass filter, retaining periods of greater than 10 days, and

2) a band-pass filter, retaining periods between about 2.5

and 6 days.

Detailed. characteristics of the filters are described by Blackmon (1976).
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Fig. 3.9a presents the root-mean-square (rms) heights for

the low-pass filtered data. We see that the mid-latitude SHA maxima

appear somewhat related to the regions of relatively large low-

frequency variance. A more direct relation is indicated in the distri-

bution of the rms heights for the band-pass data (Fig. 3.9b), which

displays zonally elongated mid-latitude maxima extending from the

eastern continents across the oceans in approximate conformance with the

major storm paths (Sawyer, 1970; Blackmon, 1976; Blackmon, et. al.,

1977). In contrast to the low-pass maxima, the regions of relatively

large band-pass variance over the eastern continent - western ocean

regions correspond with relative minima in the SHA distributions1 note

however, that the SHA minima over the central and eastern oceans are

displaced somewhat southward of the maxima in band-pass variance.

We will see in the following chapter that these minima correspond more

closely to nodal lines in the dominant spatial patterns of low-

frequency variability. Similarly, the relative maxima over the central

subtropical oceans appear to be related to secondary centers in these

patterns while the PAC, ATL and NSU regions are associated with the

primary centers.

The above relations suggest that regions with large numbers of

SHiA's are characterized by a relative predominance of low frequency

fluctuations. Indeed, the SHA distributions somewhat resemble distri-

butions for the characteristic time intervals between statistically-

independent values of sea-level pressures (Madden, 1976) and 500 mb

heights (Stefanick, 1981), with regions having high numbers of SHA's

associated with relatively long characteristic time scales.
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pass filtered data; and (b) rms heights for the band-pass

filtered data.



-65-

E. Discussion

The main points to emerge from the previous analyses are:

For the zonal height anomalies (ZHA's),

1) Regions having high numbers of positive anomaly cases and

regions having high numbers of negative anomaly cases are almost

mutually exclusive.

2) The strongest and most persistent ZHA's are the negative

anomalies over the western North Pacific, rather than the

positive anomalies which frequent the eastern North Atlantic

and eastern North Pacific.

3) The regional patterns of the ZHA distributions strongly

reflect the structure of the climatological-mean height fields:

the majority of persistent positive ZHA's are associated with

climatological-mean ridges, while most persistent negative

ZHA's occur near the climatological-mean troughs.

For the temporal height anomalies (THA's):

1) There are three primary areas of high occurrence: the

North Pacific to the south of the Aleutians (PAC), the North

Atlantic to the southeast of Greenland (ATL) and from the

northern Soviet Union northeastward into the Arctic Ocean (NSU).

2) For each region, the maxima in the frequency of occurrence

of positive anomalies is approximately co-located with the com-

parable maxima of negative anomalies.

3) For corresponding magnitude criteria, the numbers of positive

and negative cases in each region are about the same, with slightly

more positive cases at long durations.
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4) The THA distributions are closely related to the pattern

of variance of the 500 mb heights, with the PAC, ATL and NSU

regions characterized by large temporal variance.

5) In persistent anomaly (PA) regions, the probability that

an event which has lasted n days will last at least n+l

days increases up to about n=5 days and is thereafter nearly

constant. For values of M around 50m - 100m and durations

of 10 days or longer, roughly an order of magnitude more events

are observed than would be predicted by assuming a single

distribution following the initial rapid decay rate.

6) Distributions of anomaly values for points within these

regions are nearly symmetric but have fewer values near the

means and in the wings than corresponding normal distributions.

For the SHA distributions:

1i) There are a large number of cases over polar latitudes, a

relative minimum in cases at mid-latitudes and secondary maxima

located over the subtropical central North Pacific and subtropi-

cal central North Atlantic.

2) The mean mid-latitude maxima appear as southward extensions

from the polar maxima over the PAC, ATL and NSU regions.

3) The SHA distributions are somewhat similar to distributions

for the characteristic time interval between statistically inde-

pendent values of sea-level pressure (Madden, 1976) and 500 mb

heights (Stefanick, 1981), with regions having high numbers of

SHA's associated with relatively long characteristic time scales.
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The results obtained here show several areas of broad agreement

with the results described in blocking studies, but also some important

differences. The locations of the PAC and ATL maxima in the frequency

of occurrence of persistent positive TILA are in approximate confor-

mance with the locations of frequent blocking described by Rex (1950b),

Sumner (1954) and White and Clark (1975). Not described in these studies

are the roughly equal numbers of persistent negative anomalies that

occur in these regions, nor the third area of frequent persistent

anomalies centered over the northern Soviet Union. Also, Rex (1950b)

finds that Atlantic blocking exceeds Pacific blocking by a factor

of two to one, whereas our results suggest that persistent positive

anomalies occur about equally frequently in the two regions.

Our results do not suggest a preferred duration for persistent

anomalies, nor indicate any strong periodicities. Rather, for suffi-

ciently long durations, the number of events decays exponentially

with increasing durations. This is similar to distributions obtained

for a first order autoregressive process (Parzen, 1962), suggesting

that many of the persistent anomalies may arise from fluctuations,

sometimes called "climate noise" (Leith, 1973), that are generally

assumed to be unpredictable on long time scales. Nevertheless, there

is some indication in our analyses, also supported by the results of

others (Madden, 1976; Stefanick, 1931), that features in the PAC,

ATL and NSU regions may decay somewhat more slowly than in other

regions. Our results suggest that in the three persistent anomaly

regions, anomalies persisting beyond about 5 days are almost entirely

associated with this slow decay process.
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Our results raise certain questions. We have observed that the

geographical distribution of persistent THA is closely related to that

of the variance. Recall, however, that the THA and variance maxima

are not co-located with the stor n, paths but rather appear somewhat

downstream of the main cyclogenesis regions. What determines

the THA (and variance) distributions? Are they primarily a manifesta-

tion of slowly moving large amplitude baroclinic waves or are other,

more subtle processes involved? In later chapters we will address

this question observationally by identifying the typical characteristics

of persistent anomalous features in these regions. We also noted an

association between the SHA distributions and distributions of

characteristic atmospheric time scales (Madden, 1976; Stefanick, 1981).

In mid-latitudes there appears to be some relationship between these

distributions and the locations of the storm tracks, suggesting the

importance of flow instabilities in determining characteristic

decorrelation times. Nevertheless, certain regions, such as the

central North Pacific, appear to be characterized both by vigorous

and highly transient storm activity and by relatively long characteris-

tic time scales. What, then, determines the relatively great persis-

tence of features occurring in these regions?

F. Conclusion

The results indicate that there are preferred regions for

the occurrence of persistent anomalies. The regional characteristics

of the distributions vary little for moderate changes in the values

of the selection criteria, but vary substantially if different anomaly

measures (e.g., ZHA, THA or SHA) are used. For the THA, there are
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three major favored regions for persistence: the north-central North

Pacific, the eastern North Atlantic and the northern Soviet Union.

For each region, the maximum in the frequency of occurrence of positive

anomalies is approximately co-located with, and has comparable values

to, the corresponding maxima of negative anomalies. For durations

beyond about a week, there are slightly more positive than negative

anomaly cases. At long durations, the number of cases decreases

exponentially for increasing durations, consistent with the distri-

butions obtained from a first-order autoregressive process.

Our results help to sharpen the definition of persistent anomalies,

but also raise further questions. In later chapters we address some of

these questions by providing detailed analyses of persistent anomalies

occurring within the three key regions.
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IV. STRUCTURE

A. Introduction

We noted earlier that in previous investigations blocking was

associated with the recurrence of certain flow patterns. Some

qualitative similarity between patterns, however, appears to have

been forced by the restrictive definitions adopted in those studies.

The objective of this chapter is to identify typical structures

of persistent anomalies. An important question to be addressed is

whether subjective impressions of blocking "patterns" can be asso-

ciated with a particular feature (or features) which are objectively

derived from observational data.

We first provide a detailed analysis of the horizontal structure

at one level (500 mb), and then examine characteristics of the full

three-dimensional structure. Following this, we discuss our results

in relation to several recent theories of long-lived phenomena.

B. Horizontal Structure

The data base for this portion of the study is the same as that

used in Chapter III. As in Chapter III, the data were interpolated

onto a.5 degree latitude-longitude grid prior to.performing calcula-

tions. The following analyses focus on latitude-normalized time

height-anomalies (THA's), which for brevity will be called "anomalies"

in the remainder of this section. In the following discussion, we

will emphasize results based on the selection criteria (+100m, 10 days).

Our previous results indicate that this choice for the duration

criterion ensures that the anomalies persisted beyond the periods

typically associated with synoptic-scale variability. The choice of
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magnitude thresholds of +100m ensures that the anomaly magnitudes are

large relative to the noise level (e.g., observation and analysis

errors). As a sensitivity check, several of the following calculations

were also performed using other key points and different values for

the selection criteria. The results of these calculations were

substantially the same as the results to be described for the

(+100m, 10 days) criteria.

The results of the previous chapter indicate that there are three

regions characterized by high numbers of persistent anomalies: the

North Pacific to the south of the Aleutians (PAC), the North Atlantic

to the west of the British Isles (ATL), and the northwest Soviet Union

(NSU).. Consequently, a large percentage of the Northern Hemisphere

wintertime persistent anomaly cases can be studied by selecting cases

from these regions. For each of these regions, the maximum in the

frequency of occurrence of positive anomalies is approximately co-

located with the comparable maximum of negative anomalies. As a

first step toward selecting independent cases, we identify the point

in each region having the greatest total (sum of positive and nega-

tive). number of cases (the "key" point). For this set of criteria

the three key points are:

1). ATL, 50N 20W (ATL)
(9 positive cases, 6 negative cases);

2)- PAC region, 50N, 165W (PAC)
(7 positive cases, 7 negative cases);

3) NSU region, 60N, 50E (NSU)
(8 positive cases, 6 negative cases).

The case dates and durations are listed in Appendix 2.



-72-

In the following discussion, cases defined at points within one of

these regions are so identified by name (for example, a PAC positive

anomaly case).

Composite or "grand mean" persistent anomaly maps were formed

by first constructing time mean maps for each of the cases defined at

the key points, then averaging the case means, taking each case as

one realization. Grand means obtained by weighting the case means

by the case durations and then averaging gave results nearly

identical to those described below.

Figs. 4.1a and 4.1b show, respectively, composite anomaly maps for

the PAC positive anomaly cases and PAC negative anomaly cases. Com-

paring these maps, we see that, in addition to the anomaly at the

key point, there is a larger scale pattern evident which, to a first

approximation, appears with opposite polarity in the two maps. The

overall impression of this pattern is of a dominant center near the

key point, a center of opposite sign located about 25 degrees of

latitude to the south of the dominant center and a train of anomaly

centers of alternating signs and decreasing magnitudes extending

mostly downstream from the main center. The greatest discrepancies

between the positive and negative patterns are the somewhat smaller

zonal scales and more northward position of the positive pattern cen-

ters relative to the corresponding features of the negative pattern.

The statistical significances of the differences between means

(null hypothesis of equal means), obtained by a two-sided t-test, are

displayed in Fig. 4.1c. The principal centers of the pattern are

associated with statistically significant differences at or above
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the 99% confidence level.

Figs. 4.1d and 4.le present the corresponding composite of the

heights for the positive and negative cases, respectively. The

positive map displays a flow configuration typical of the central

North Pacific blocking patterns described by White and Clark (1975).

The principal features of the negative map are an intensified

westerly flow across the central North Pacific, an amplified ridge

along the west coast of North America and an enhanced trough in the

East. It is interesting that the contrasting flows over the Pacific,

which are often described as the two extreme stages of the index

cycle (Namias, 1950), appear in the present analyses as opposite

phases of a single basic anomaly pattern.

Similar analyses for the ATL cases and for the NSU cases are shown

in Figs, 4.2 and 4.3, respectively. The pattern similarities between

the ATL positive and negative anomaly maps are especially evident

over the eastern North Atlantic, Europe and the Northern Soviet

Union; the most striking discrepancies are in the relative intensity

of the centers near the Aleutians. The ATL positive cases are

typically associated with a strongly enhanced ridge over the eastern

North Atlantic with a branch of westerlies far to the south. This flow

configuration is reminiscent of the Atlantic blocking patterns

described in the classical studies by Rex (1950a,b). The corre-

sponding negative anomaly cases are associated with a single,

intense westerly jet over the North Atlantic. The NSU pattern is

somewhat less extensive, with the dominant center over the western

Soviet Union straddled by weak centers of opposite sign located
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Fig. 4.1. (a) Composite anomaly maps (units;dam) for 7 PAC positive
cases; (b) as in (a) for 7 PAC negative cases; (c) confidence

levels for a two-sided t-test estimating the significance of

the difference in means (a) - (b). Dashed at 95% confidence

level, solid at 99% level; sign is the sign of the difference

(a) - (b); (d) composite 500 mb heights (units:dam) for the

positive cases; and (e) as in (d) for the negative cases.
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Fig. 4.2. As in 4.1 for 9 ATL positive
cases and 6 ATL negative
cases.(C)
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upstream near the British Isles and downstream over Northern China.

The NSU positive cases display a blocking ridge and split westerly

flow over the western Soviet Union. The corresponding negative cases

show a deep trough over the key region.

For all three regions, then, persistent positive anomalies are

associated with blocking ridges. Examination of individual case

means for the PAC negative cases also frequently discloses a

blocking ridge along the west coast. The PAC and ATL negative

cases resemble regional high-index flows. For the PAC and ATL

regions, high- and low-index zonal flows appear as opposite phases

of the same basic anomaly pattern.

Concurrently with our study, Wallace and Gutzler (1981) have

examined temporal correlation patterns between Northern Hemisphere

gridpoints using 15 winters of monthly mean 500 mb NMC analyses.

Two of the outstanding correlation patterns that they describe,

the Pacific-North American (PNA) pattern and the Eastern Atlantic (EA)

pattern, closely resemble our PAC

and ATL patterns. As Wallace and Gutzler point out, these patterns

qualitatively resemble solutions obtained in simple linear models

for forced stationary waves on a sphere (Hoskins, et. al., 1977;

Grose and Hoskins, 1979; Hoskins and Karoly, 1981). Wallace and

Gutzler also note that the PAC pattern appears in other studies on

teleconnections (e.g., Martin, 1953; O'Connor 1969; Dickson and

Namias, 1976).

It is interesting that although Wallace and Gutzler use selection

and data analysis procedures substantially different from ours, the
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points that they choose for constructing the PNA and EA teleconnection

maps (45N 165W and 50N 25W, respectively) are remarkably close to

our key points. Empirical orthogonal function (EOF) analysis* reveals

why both procedures lead to the same key regions.

An EOF analysis of the case mean patterns for a region enables

us to extract the single spatial pattern that best describes the

patterns of both the positive and negative anomaly cases. An EOF

analysis of low-pass filtered data (periods beyond 10 days**)

defines the dominant regional pattern of low-frequency variability.

Fig. 4.4 displays for each of the three regions the principal EOF

patterns calculated from the case data alone and the principal

EOF patterns calculated from the 14 winter seasons of low-pass

filtered data. Examination of the low-pass analyses reveals that the

points selected by Wallace and Gutzler and ourselves correspond to

the main centers of the dominant regional patterns of low-frequency

variability. The principal EOF patterns calculated from the case

data alone and the corresponding principal EOF patterns calculated

from the 14 winter seasons of low-pass filtered data are virtually

identical. This suggests that the cases we selected are predominantly

enhancements of the primary regional pattern of low-frequency variability.

Nevertheless, comparison of the explained variance and cumulative

explained variance for the case and low-pass EOF's (Table 4.1)

indicates that other patterns are also often important in describing

the low frequency behavior of anomalies in this region.

Lorenz (1956) and Davis (1976) .throughly discuss the theory and

methods of EOF analyis. A brief summary of this method is provided

in Appendix 3.

The low-pass filter.described by Blackmon (1976).
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F ISo W ISO 140

(a) (b)

(f) 23

Fig. 4.4. (a) The first EOF of the PAC persistent anomaly cases;

(b) the corresponding first EOF of the low-pass filtered

anomaly data; (c) as in (a) for the ATL cases; (d) as in

(b) for the ATL region; (e) as in (a) for the NSU cases; and

(f) as in (b) for the NSU region.
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Table 4.1

Explained Variance by

Case and Low-Pass EOF's

by Region

PAC

CASE

CUM EX VAR

.54

.68

.75

.81

.85

.88

.90

.91

.92

.93

48
.64
.75
.81
.85
.89
.92
.94
.96
.97

.44

.66

.76

.83

.88

.92

.95

.97

.98

.99

LOW-PASS

EX VAR CUM EX VAR

.21 .21

.15 .36

.12 .48

.09 .57

.07 .64

.06 .70

.05 .75

.04 .79

.03 .82

.02 .84

EX VAR

.54

.14-

.07

.06

.04

.03

.02

.01

.01

.01

.48

.16

.11

.06

.04

.04

.03

.02

.02

.01

.44

.22

.10

.07

.05

.04

.03

.02

.01

.01

.19

.34

.47

.58

.65

.70

.74

.78

.81
.84

.20

.33

.45

.54

.61

.68

.73

.77

.80

.83

EOF

ATL
.19
.15
.13
.11
.07
.05
.04
.04
.03
.03

.20

.13

.12

.09

.07

.07

.05
.04
.03
.03

NSU
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In evaluating predictability experiments, Hollingsworth et al.,

(1980) have determined that anomaly correlations of L0 or greater between

observed and predicted fields correspond quite well with independent

subjective evaluations of useful predictability. By analogy, we

will call two patterns "useful analogues" if their spatial correla-

tions are at or above 60. Table 4.2 presents the spatial correla-

tions between each of the case means and the corresponding dominant

case EOF. We see that over 75% of the spatial correlations have

magnitudes greater than .60. These results clearly demonstrate that

the dominant patterns are not simply manifestations of single, parti-

cularly intense events, but rather reflect the recurrence of certain

preferred anomaly patterns in these regions.

An indication of the direction of meridional energy propagation

can be obtained from the horizontal phase structures of the patterns.

Dickinson (1980), among others, has noted that for Rossby waves,

the phase shifts westward in the direction of energy propagation.

In order to examine the phase structures in more detail, the

500 mb grand mean height anomaly'fields were decomposed into zonal

Fourier components. Expansions were perfor-ed over the zonal

wavenumber band k = 0 - 8 between 20 N and the pole. The expan-

sion for z(X,O) at longitude 1 and latitude e is expressed as

wre X ) f th amltd Cd I)t a (4.1)

th
where ak(6) is the amolitude and qk (6) the phase of the k



-83-

Table 4.2

Spatial Correlations Between

Case Mean Anomaly Patterns

and Case EOF 1 by Region

Region Case Pos. Case Neg. Case-
Number Correlation Correlation

PAC
1 .85 -.76
2 .93 -.57
3 .71 -.48
4 .71 -.75
5 .61 -.88
6 .63 -.64
7 .78 -.82

ATL
1 .87 -.65
2 .74 -.72
3 .68 -.57
4 .69 -.67
5 .73 -.55
6 .41 -.84
7 .67
8 .68
9 .84

NSU 1 .72 -.78
2 .85 -.57
3 .81 -. 64
4 .64 -. 53

5 .77 -. 73
6 .58 -. 47
7 .54 ----
8 .29
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Fourier component at latitude 0 in a coordinate system having

longitude ( as the origin. The reference longitude Q was chosen

as the longitude of the key point used in selecting cases; e.g., 20 W

for the ATL cases, 165 W for the PAC cases and 50 E for the NSU cases.

Fig. 4.5 presents vector plots of the amplitudes and phases

of wavenumbers k = 0 - 8 of the anomaly fields and of the

climatological-mean height field between 20 N and 80 N. Inspection

of these figures reveals that, for each pattern, several Fourier

harmonics are required to account for the composite structure.

Also evident are near or complete phase reversals ,when comparing

positive to negative anomaly patterns for each region. In addition,

phase reversals generally occur between the latitudes of the

anomaly maxima and latitudes about 20 to 30 degrees further south.

We see that most of the major components have no, or small

westward, phase changes between 60 N and 30 N, suggesting that the

net meridional propagations at these latitudes are, if anything,

predominantly southward. The phase relationships between the anomaly

components and the corresponding climatological mean components for

the PAC patterns are somewhat reminiscent of the responses seen

in simple models when crossing through a resonance.

We can gain some insight into the temporal variability of the

patterns by analyzing characteristics of the associated EOF time

coefficients* generated for the 14 winter seasons of the (unfiltered)

The spatial structure is defined by the dominant EOF for the cases.

Similar analyses with the low-pass EOF patterns yielded highly similar

results.
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Fig. 4.5. Vector plots of the amplitudes and phases of zonal

Fourier components k=O - 8 of the grand-mean anomaly fields

and of the climatological mean height field between latitudes

20ON and 80°N. Solid vectors are for the positive cases,

dashed vectors are for the.negative cases and dotted vectors

are for the climatological mean field. The amplitude is

proportional to the length of the vector,
the phase is given by the angle measured in the clockwise

direction between the positive vertical axis through the origin

of the vector and the vector itself (positive angles eastward).

The verticalcomponent of a vector is proportional to the

contribution by that wavenumber to the observed anomaly at the

reference longitude. The scales are adjusted such that the
distance between either vertical tick marks or wavenumber
tick ;arks corresnorv to lO0m wave amolitude.
(a) PAC cases; (b) ATL cases; and (c) NSU casec.
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twice-daily anomaly data. A first indication of the character of the

fluctuations is provided by comparing the relative importance of

the within-season to the between-season (e.g., interannual) variability.

Fig. 4.6 displays for each of the three regions the seasonal means

and standard deviations about the seasonal means of the dominant

EOF. time coefficients. We see that in most years the seasonal means

are not far removed from the long-term mean. We can decompose the

total variance of the EOF time series into a sum of the within-season

variance and the between-season variance. The percentages of the

total variance contributed by intra-seasonal fluctuations are

75% for PAC, 80% for ATL and 87% for NSU. Thus, for all three

regions, most of the variance in the patterns is contributed by

within-season, rather than between-season fluctuations.

Nevertheless, there are a few seasons where the mean value

deviates substantially from zero. The most extreme example is

the persistent negative PAC pattern occurring during the 1976-1977

winter, which was associated with record-breaking weather over almost

all of North America (see e.g., Namias, 1978). Not only is the

seasonal-mean anomaly during this winter the largest we observed, but

the standard deviation about the seasonal mean is smaller than for

any other season. Our analyses suggest that the abnormal circulation

of the 1976-1977 winter can be interpreted as an unusually extreme

and persistent realization of a frequently recurring persistent

anomaly pattern.

So far, we have not explicitly considered the changes in storm

paths associated with persistent anomalies. The variance in geo-
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Fig. 4.6. The seasonal means q and standard deviations about the

seasonal means of the time coefficient of the first case EOF for

each of the regions (units: arbitrary). The seasonal mean is give

by the dot, the vertical bars denote ±1 standard deviation and the

dates refer to. the start of the season (e.g., 76 refers to the

1976-77 winter season). (a) PAC ; (b) ATL and (c) NSU.
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potential heights having periods of roughly 2.5 - 6 days* has

recently been found to bear a close geographic relation to the

major storm paths (e.g., Blackmon, 1976; Lau, 1978). This measure

is reminiscent of indices provided in earlier observational research

on mean storm paths (e.g., the local rate of alternation of cyclones

and anticyclones presented by Pettersen, 1956). For convenience,

we adopt the terminology of Blackmon (1976) and Lau (1978) and call

regions of maximum band-pass height variance. "storm paths."

Fig. 4.7 presents composite averages of the root-mean-square

(rms) bandpass 500 mb heights**for positive and negative cases in

each of the three regions. For the PAC positive cases (Fig. 4.7a),

there appear to be two major Pacific storm paths: one starting over

eastern Asia and curving abruptly northeastward toward the Bering

Sea, and the other beginning over the northern Gulf of Alaska and

dropping sharply southeastward toward the Pacific northwest. A local

minimum in activity occurs near and immediately southeast of the

key region. In contrast, the PAC negative cases (Fig. 4.7b) display

a single, nearly zonally-oriented storm path across the Pacific

at about 40 N, with maxima south and southeast of the key region.

Note that differences between positive and negative cases appear

small in the cyclogenetic region over eastern Asia.

*The periods retained by Blackmon band-pass filter.
**The band-pass heights are not normalized by sine as in the previous

calculations.



Similar analyses for the ATL positive and negative cases,

presented in Figs. 4.7c and 4.7d respectively, display differences

reminiscent of their PAC counterparts. The positive cases' storm

path turns sharply northeastward from eastern North America to

over Iceland and thence southeastward to the Baltic Sea. The

negative cases' path appears comparatively stronger over eastern

North America and, in parallel to the PAC negative pattern, extends

nearly zonally across the Atlantic near 40 N. The NSU positive

cases (Fig. 4.7e) display little transient activity near the NSU

blocking ridge, while the NSU negative cases (Fig. 4.7f) show a well-

defined storm path forming near and downstream of the anomalous

trough- in the key region. Another major difference between NSU

positive and negative cases is evident over the Pacific: the positive

cases have the weakest, and the negative cases the strongest,

activity of any of the patterns.

Thus, corresponding positive and negative cases display sharp

variations in the locations of the storm paths. For the PAC and

ATL regions, intensities of the positive and negative storm paths

appear comparable; if, however, we had normalized the height fields

by sin 8 as in the earlier calculations, the negative maxima would

be larger, since the locations are much further south. The origins

do not appear greatly different when comparing positive and negative

cases for the PAC and ATL regions, but show substantial differences

for the NSU cases. The differences for all three regions support the

notion that blocking is associated with major deviations in the storm

paths.
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(a)
(b)

(c) (d)

(e) **(f)

Fig. 4.7. Composite averages of the rms band-pass 500 mb heights

(units:m) (a) PAC positive; (b) PAC negative; (c) ATL positive;.
(a) AL neaative: (e) NSU positive; and (f) NSU neqative.
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In addition to the 500 mb heights, the horizontal structures

of the 1000 mb heights and of the 1000 mb - 300 mb layer mean

temperatures have been analyzed for a set of cases studied exten-

sively in the following chapters. The cases were extracted from

the 10 winter seasons 1966-67 through 1975-76. Cases were selected

by applying our usual procedure to low-pass filtered* 500 mb

height anomaly data with selection criteria (+100m, 10 days) and

(-100m,10 days). A list of the cases is provided in Appendix 2.

The mean 500 mb height patterns for these cases (not shown) are

generally highly similar to the patterns previously described.

*The low-pass filter ("Blackmon" low-pass filter) removes periods
of under 10 days (Blackmon, 1976).
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Fig. 4.8a and 4.8b display the composite 1000 mb height anomalies*

for 14 PAC positive cases and 9 PAC negative cases, respectively.

In contrast to the 500 mb patterns, the 1000 mb height anomalies

are mainly confined to the key region, with only a weak suggestion

of downstream wavetrains evident. Anomalies of opposite sign to

the main center are located over the central North Atlantic,

reflecting a tendency for the intensity of the Aleutian and Icelandic

lows to vary inversely, as noted elsewhere (Kutzbach, 1970; Van

Loon and Rogers, 19781. The variations in the 1000 mb height patterns

are striking: in the positive cases (Fig. 4.8c) there is a weak

ridge to the south of the Aleutians; the remnants of the Aleutian

low appear as two centers, one located over the Kamchatka peninsula

and the other over the southeastern Gulf of Alaska. The negative

cases (Fig. 4.8d), in-contrast, display a single intense low to

the south of the Aleutians, considerably eastward of the long-term

mean position. Differences between positive and negative means

(Fig. 4.8e) exceed 250m to the south of the Aleutians and 100m over

a small portion of the central North Atlantic. The t-test results for

the significance of the difference between means (Fig. 4.8f) indicate

that a huge area of the central North Pacific has differences

exceeding the 99% confidence level. Additional areas exceeding the

The height anomalies are determined from 11 winter means calculated

by Lau (1979) and archived at NCAR; the anomalies are not

normalized by sine (latitude) as in the earlier calculations.
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99% level are located over a rather large area of southeastern Asia

and the southwest North Pacific, and over smaller parts of the

Pacific northwest and the central North Atlantic.

Fig. 4.9 displays the corresponding 1000 mb - 300 mb layer-

mean temperature* analyses for the same PAC cases. There is a

considerable positive correlation between the temperature anomalies

and the 1000 mb height anomalies, indicating that the magnitudes

of the height anomalies typically increase with height above 1000 mb

with little, if any, westward tilt in the anomaly axes indicated

through the troposphere. The major exception to this relationship

is associated with the center over southeast Asia; the structure

of this feature suggests that it may be a manifestation of a local

response to thermal forcing, as discussed later.

Figs. 4.10and 4.1lpresent similar analyses for the ATL 1000 mb

heights and 1000 - 300 mb layer mean temperatures, respectively.

Compared to the PAC height anomaly patterns, the ATL height anomaly

patterns display more evidence of a wavetrain structure. The

differences between the 1000 mb height patterns are, if anything,

even more impressive than for the PAC cases. In the ATL positive

cases, a surface blocking high is established in the eastern Atlantic;

the Icelandic low has essentially vanished. The negative cases, in

contrast, display an intense Icelandic low displaced somewhat

south of its mean position. The patterns for the temperature anomalies

Derived hydrostatically from the 1000 mb - 300 ub thickness.
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Fig. 4.8. (a) Composite 1000 mb height anomalies for 14 PAC positive
cases (units:m); (b) as in (a) for 9 PAC negative cases; (c)
composite 1000 mb heights for the positive cases (units:m); (d)
as in (c) for the negative cases; (e) (positive-negative) 1000 mb
height differences (units:m); and (f) confidence levels for a
two-sided t-test for the difference between means. Solid lines
are positive differences as expressed in (e),.dashed lines
are where the differences are negative.
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(a) (b)

(c)

(e) . . (f)
Fig. 4.8
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(a)

(c) (d)

(e) (f)

Fig. 4.9. As in Fig. 4.8 for 1000 - 300 rrh layer-mean temperatures

for the same PAC cases. Units are OK in (a) - (e).
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(a) - (b)

(c) (d)

(e) (f)

Fig. 4.10. As in Fig. 4.8 for the 1000 mb heights for 12 ATL
positive cas:es and 12 ATL ne-ative cases.



(b)

(c) (d)

(e) (f)

Fig. 4.11. As in Fig. 4.9 for the 1000 - 300 mb layer-mean

temperatures for the ATL cases.

(a)
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(a) (b)

(c) (d)

Fig. 4.12. As in Fig. 4.8 for the 1000 'b heights for 8 NSU positive

cases and 9 NSU negative cases.
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(a) (b)

(c) (d)

(e) (; .

Fig. 4.13. As in Fig. 4.9 for the 1000 - 300 mb layer-mean

temperatures for the NSU cases-
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again primarily mirror the height anomalies, although the positions

of the temperature anomaly centers associated with the main height

centers appear shifted relatively further westward than for the

corresponding PAC patterns. Also evident in the temperature

analyses are significant centers over Northern Canada and near the

Red Sea which have no clear counterparts in the 1000 mb height fields.

The NSU 1000 mb height anomalies (Fig. 4.12) appear to be primarily

associated with variations in the location and strength of the

Siberian High: the positive cases with a strengthening and west-

ward movement, the negative cases with a weakening and eastward move-

ment. Significant 1000 mb height anomalies having opposite sign to

the main center are located mainly to the southwest and far to the

south of the key region. The temperature anomaly patterns (Fig. 4.13)

display a wavetrain structure similar to the 500 mb height anomaly

patterns described earlier.

For all three regions, then, pronounced anomalies in the patterns

of surface pressure and tropospheric mean temperatures accompany the

persistent 500 mb height anomaly patterns.

C. Vertical Structure

The next stage in our analysis is the description of the vertical

structure of persistent anomalies. Our data base consists of twice-

daily N.M.C. analyses of the geopotential height, temperature and

wind fields at 10 pressure levels (1000, 850, 700, 500, 400, 300, 250,

200, 150 and 100 mb) for the 11 winter seasons 1966-67 to 1976-77.

Using the selection criteria (4100mn, 10 days), 24 cases (15 positive,

9 negative) were chosen from this p iod for more detailed study.
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The case locations, starting dates and durations are listed in

Appendix 2. All of the cases are derived from the three key regions

and are among the most persistent events which occurred during

the 11 winter seasons. In addition to persistence, data availability

was considered in selecting cases. All of the cases had at least 88

per cent of the observations available at all levels, and no more

than 1 missing observation. Missing data were not interpolated,

so that time-averages over the duration of a case are weighted by

the number of available observations. All calculations were per-

formed on a 2.5 degree latitude by 5.0 degree longitude grid. Data

were spatially interpolated to the latitude--ngitude grid as

previously described. Anomalies are defined as departures from the 11 winter

season means. The structures of the mean fields are described

by Lau (1979).

Zonal cross-sections of height, temperature and vorticity

anomalies were prepared at selected latitudes for each case. Exami-

nation of these cross-sections revealed certain typical features,

which we will illustrate first by describing a single case and then

by providing results of composite analyses.

Figure 4.14a presents a longitude-pressure cross-section at 50N

of the time-average geopotential height anomalies for PAC positive

case 2. This case is the most long-lived of those selected. It

is also of interest as an example of concurrent persistent anomalies.

In addition to the major positive anomaly near 160W, the strong nega-

tive anomalies centered near 120W, 20W and 70E all satisfied the

selection criteria for at least part of the 27 day period. They
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Fig. 4.14. Longitude-pressure cross-section at 50ON for PAC case

2 of time-average (a) geopotential height anomalies (units:dam);

(b) temperature anomalies (units: 7 C); and (c) vorticity

anomalies (units: 10- 5 sec - i).
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appear in this figure as a train of anomalies of alternating sign

extending downstream from the center near 160W and having a wavelength

of about 90 degrees longitude. These anomalies share similar verti-

cal structure characteristics: they display little or no tilt with

height, have maxima at about 300 mb (near the tropopause) and are

relatively weak near the surface. The associated temperature

anomalies (Fig. 4.14b) show a consistent thermal structure: through

the troposphere, the positive height anomalies are warm-core and the

negative anomalies cold-core, with a pronounced reversal of the sign

of the anomaly and secondary maxima in the lower stratosphere. These

features are particularly evident for the anomalies near 160W and

120W. Note that the latter center is in a region of dense data coverage

over western North America. The accompanying vorticity anomalies

(Fig. 4.14c) similarly display little vertical tilt, with maximum

-5 -1
departures exceeding 6 x 10 sec in the upper troposphere.

Estimates of typical anomaly vertical structures for cases of

like sign and region were obtained as averages at each level of the

positions and values of the corresponding maxima. Positions were

defined for each case relative to the longitude of the largest

height anomaly at 500 mb (positive displacements eastward). Fig. 4.15

presents the average vertical variations in height anomaly values for

both positive and negative cases for all three regions. The gross

features are highly similar, with anomalies increasing in magnitude

from the surface upward to about 300 mb and decreasing above that

level. Typical magnitudes for the 500 mb anomalies are about 250 m

and thus are substantially larger than the maximum climatological
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mean zonal departures (cf Fig.3.3b) The corresponding position

analyses (Fig. 4.16) indicate that, with the exception of the

NSU positive cases, the axes of the persistent anomalies typically

slope slightly westward with height. Note, however, that none of

the differences between the 1000 mb and 100 mb positions exceed

10 degrees longitude. These observations suggest that the

anomalies are predominantly equivalent-barotropic in vertical

structure.

The average vertical variations in temperature anomaly values

are shown in Fig 4.17. The overall characteristics are consistent

with hydrostatic considerations: the temperature anomalies are

positively correlated with height anomalies in the troposphere and

negatively correlated in the stratosphere. This thermal structure

implies that, near the tropopause, positive anomalies are associated

with anomalously low, and negative anomalies with anomalously high,

static stabilities. A reversal in the static stability anomaly is

evident above 200 mb for all but the ATL positive cases.

The corresponding vorticity anomaly values (Fig. 4.18) display

peaks between 200 and 300 mb. The relation between vorticity and

thermal anomaly structures has a further implication. Hartmann (1977)

shows that for large scale, highly stratified flows (Ro << 1,

Ri " Ro2 > 1), the potential vorticity may be approximated by

P = -(C+f) , where the relative vorticity ( is evaluated on a
9p

constant pressure surface. Near the tropopause (approximately 300 mb),

positive (negative) anomalies are characterized by anomalously low

(high) values of C and . This correlation suggests that
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near the tropopause, positive (negative) anomalies will be associated

with abnormally low (high) values of potential vorticity.
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D. Discussion

Before proceding, we summarize the main aspects of the structure

of persistent anomalies. From the horizontal structure analyses, we

determined that:

1) there is strong evidence for the recurrence of certain

preferred patterns for the persistent anomalies;

2) although apparently real asymmetries exist, to a first

approximation persistent positive and negative anomaly patterns

can often be described as opposite phases of the same basic pattern;

3) the positive phase of the pattern usually resembles

blocking, the negative phase can often be associated with a regional

"high-index" flow. Systematicchanges in storm paths accompany the reanflo changes.

4) the majority of the cases appear to be associated with

unusually strong enhancements of the primary regional patterns of

low-frequency variability. Most of the variance in these patterns is

contributed by within-season, rather than between-season, fluctuations.

51 the persistent anomaly patterns are accompanied by pro-

nounced changes in the location and intensity of the major centers

of action (the Aleutian low in the PAC cases, the Icelandic low in

the ATL cases and the Siberian high in the NSU cases). Concurrent

with the height anomalies, there are large-scale tropospheric

temperature anomalies having patterns mainly in-phase with the

height anomalies.

Thevertical structure analyses showed:

1) maximum height anomaly values near the tropopause;

2) nearly equivalent-barotropic anomaly structures;
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3) typical temperature anomaly magnitudes of about 5
0 C in the

troposphere (positive anomalies warm-core, negative anomalies

cold-core) with low-level maxima;

4) abrupt sign reversals in the temperature anomalies above

the tropopause;

5) vorticity peaks in the upper troposphere; and,

6) abnormally low values of potential vorticity for the

positive cases and high values for the negative cases, with

maxima near the tropopause.

It is interesting that some simple theoretical models do produce

analogues to the persistent patterns we observe. Charney and DeVore

(1979) find in a low-order barotropic channel model tio stable

equilibrium states, one characterized by an enhanced

zonal flow and relatively weak wave perturbations and the

other by a weak zonal flow and a highly amplified wave resembling

blocking. The wave patterns between the two states are nearly anti-

phase. The high- and low-index equilibria correspond, respectively,

to zonal flows above and slightly below the values for linear

resonance of the forced wave. Charney and Strauss (1980)

obtain low- and high-index equilibria in a highly truncated, two-

layer baroclinic model. Recent analyses of quasi-stationary waves in

simple time dependent models (Reinhold, 1981; Kalnay-Rivas and Merkine,

1981) also disclose pairs of flow states.
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A behavior suggestive of multiple equilibria would be the

occurrence of multiple well-separated modes in suitably defined

frequency distributions. If the features identified are manifestations

of multiple equilibria, we might hope that a distribution representing

their behavior would exhibit a multi-modal structure. To construct

such a distribution, we have assumed that the first eigenvector of

the low-pass EOF analyses adequately defines the spatial patterns of

the hypothesized positive anomaly and negative anomaly quasi-

equilibria and then have generated a corresponding time.series from

the daily low-pass filtered anomaly data. From these time series,
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histograms were constructed of the values of the first EOF time

coefficient (Fig. 4.19,). Although each of the distributions are some-

what flatter then corresponding normal distributions, none shows

a strongly bimodal character. Examination of similar distributions

calculated for unfiltered data yields qualitatively similar

behavior.*

These results suggest that, if these patterns are associated

with two quasi-equilibrium states, then it is likely that either.

the means of the states are not well separated or that the time spent

between the two quasi-equilibrium states is not small compared to

the time spent within the states. Alternatively, the forcing may

vary sufficiently between seasons (or perhaps within seasons) to

alter the attractor set and thus preclude simple identification in

long-term statistics.

The horizontal structures of the patterns bear some qualitative

resemblance to solutions of the linearized barotropic vorticity

equation obtained in studies of forced stationary waves on a sphere

(Grose and Hoskins, 1979; Hoskins, 1978; Hoskins and Karoly, 1981).

Hoskins (1978), following Bjerknes (1966), suggests that over

tropical regions warm sea surface temperature anomalies may lead

We have also constructed distributions of the local values of the

geostrophic zonal wind speeds for the unfiltered data for points on a

5 degree latitude by 5 degree longitude grid (results not shown;

results of similar calculations for the height data are displayed in

Fig . 3.7 ). Consistent with the EOF 1 time coefficient distribu-

tions, we were unable to find evidence of bimodality.
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to enhanced convection. He proposes that increased convective

heating will be balanced by adiabatic cooling through upward motions,

so that upper-level divergence and therefore forcing of anticyclonic

vorticity can be expected over the abnormally warm water. To

simulate the effects of convective heating in the tropics on the

large-scale flow, Hoskins forces the linearized barotropic vor-

ticity equation with a prescribed divergence over a region 60' longitude

by 300 latitude centered at 150N. He uses for a basic state a

"realistic" zonally-averaged 300mb zonal flow. Vorticity damping

is included to suppress resonance and to remove extremely strong

gradients occurring near critical lines.

Steady-state solutions to this problem give positive height anoma-

lies centered near 550N downstream from the forcing region.

The ratio of the magnitude of the vorticity oerturbation at 550N

(the "blocking" anticyclone) to that over the source is about 2/5.

If we assume a similar ratio for the positive anomaly cases, then our

data indicate the corresponding tropical vorticity perturbation

-4 -1
is approximately -1.3x10 sec < -f60N , which would

strongly suggest the possibility of inertial instability, even at

mid-latitudes. The reduction in the magnitudes of the vorticity

maxima away from the source region in Hoskins' experiment may in

part be attributable to the strength of the dissipation, although

this does not seem particularly excessive. In fact, Grose

and Hoskins (1979) reported earlier that, in similar experiments

with topographic forcing, the results were insensitive to a doubling

of the drag
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coefficient. Note, however, that even if we assume that the tropical

and mid-latitude vorticity perturbations are comparable, the

absolute vorticity would become negative at latitudes south of about

20 N. It appears that if the source for the positive anomalies

that we observe is anomalous heating in the tropics, then the

vorticity maxima near the source must be weaker than the vorticity

maxima corresponding to the mid-latitude positive anomaly.

Although some theoretical work suggests that this may be

possible (Karoly, 1978 ;.Hoskins and Karoly, 1981), recent numerical

results with a five-layer baroclinic model (Hoskins and Karoly,

1981) are consistent with the earlier barotropic calculations in

showing the maximum vorticity perturbation near the tropical heat

source. The vorticity response in this model appears to be mainly

determined by three effects:

1) conservation of wave action implies that the streamfunction

amplitude A(k, 9) for zonal wavenumber k and meridional wavenumber

k is proportional to £-1/2. This suggests that the streamfunction

maxima will occur near the turning point, which for low total wave-

numbers typically occurs at mid to high-latitudes.

2) the vorticity response essentially increases as the square

of the total wavenumber. For tropical forcing and a realistic

zonally-averaged mean flow Hoskins and Karoly find that the higher

wavenumbers are mainly trapped to the south of the jet maxima.

This, in addition to the coherence of the high wavenumber response over

the tropical source, favors a maximum vorticity response at low

latitudes.
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3) The dissipation on the wave depends on the time away from

the source region. This effect tends to reduce the distant response

mainly for low zonal wavenumbers since they have the smallest

energy propagation speeds.

In the experimental results presented, effects 2) and 3)

apparently dominate over 1), giving the largest vorticity response

near the tropical source.

Whether the apparent discrepancies between our observations and

the results presented by Hoskins and Karoly can be accounted for by

changes in the structure of the basic state or the form or location

of the forcing, or whether more sophisticated approaches are

required, remains to be seen. Recent work in introducing zonal

variations in the mean flow (Simmons, 1981; Branstator, personal

communication) provides some encouraging preliminary results. We

note, however, that any acceptable theory will still have to account

for the strong geographical preferences for the anomaly centers,

as well as the co-location of the positive and negative frequency

maxima.
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The vertical structures suggest clues to possible forcing

mechanisms. Hoskins and Karoly (1981) and Held (1981) indicate

that, away from source regions, the long-time scale response should

have an equivalent-barotropic structure. Held argues that outside

source regions, the only significant responses are from waves

waves with turning points at or below the tropopause, and of

these, destructive interference occurs for all except the external

Rossby wave, which therefore dominates the distant response. The

structure of this mode strongly resembles the vertical structures

we find for the persistent anomalies. In addition to these forced

responses, numerical studies (Simmons and Hoskins, 1978) suggest

that finite amplitude waves arising from baroclinic instabilities

may also attain vertical structures similar to those observed here.

The vertical structures of the patterns do not appear consistent

with certain other forcing mechanisms. Gall, et al., (1979) propose

that ultra-longwaves in the atmosphere may be forced by nonlinear

interactions with cyclone-scale waves. In their model, the maximum

eddy forcing is near the surface. The resulting long wave structures

are characterized by cold-core anticyclones and warm-core cyclones,

in opposition to what we observe. Similarly, Hoskins and Karoly

(1981) present simple arguments indicating that the local response

to near surface heating at mid-latitudes should display strong west-

ward tilts in the anomaly maxima with height, contrary to our

observations. We also note that in the PAC and ATL positive cases,

the subtropical negative anomaly centers are cold-core, with little

or no evidence of tilts throughout the troposphere. This structure
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does not resemble that found by Hoskins and Karoly for the local

response to forcing by a deep heat source, suggesting that local*

thermal forcing is probably not the proximate cause of its existence.

E. Conclusions

Our principal aims in this chapter were to identify and

describe the structure of persistent anomalies. From the hori-

zontal structure analyses we determined that, for each of the three

regions, a certain pattern appeared to characterize the majority

of both the positive and negative anomaly case mean patterns. This

pattern was also identified as the dominant pattern of low-frequency

variability for the region. These results indicate that, first,

persistent anomalies have strongly preferred scales, which are nearly

the same for positive and negative cases and, second, persistent

anomalies have strongly preferred phases, with the most intense

centers typically located near the previously identified key points.

The calculations provide a quantitative basis for describing

the recurrence of certain preferred anomaly patterns. As such,

they support earlier qualitative notions that at least some cases

of blocking are associated with recurrent flow configurations. For

each of the three regions, blocking patterns appeared in our analyses

as the positive phase of the dominant anomaly pattern. For the ATL

and PAC regions, the negative phase of this pattern was characterized

by high-index zonal flows. Thus, for these regions both low- and

high-index zonal flows appear as different manifestations of the

The present structure may still be a manifestation of a forced

response to tropical or subtropical heating, if the source of the forcing

is sufficiently distant that the external Rossby wave response dominates.
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same basic anomaly pattern.

Analyses of vertical structure also revealed a number of highly

typical characteristics. We found that persistent anomalies

have little vertical tilt, with maximum height

anomalies in the upper troposphere. Associated with these depar-

tures were pronounced anomalies in the temperature, vorticity and

potential vorticity fields. In later chapters, we exploit these

distinct structural characteristics in analyzing the problem of the

maintenance of persistent anomalies.
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V. TIME EVOLUTION

A. Introduction

The previous chapters have established the geographical distri-

bution and structural characteristics of persistent anomalies without

regard to their specific temporal behaviors. We now consider the

question of how persistent anomalies evolve in time, placing particu-

lar attention on identifying typical time scales and isolating systema-

tic propagation characteristics. We first study the development of

persistent anomaly patterns by constructing composites from 500 mb

height data, and then briefly consider the vertical structures of the

developing patterns. Following this, we exa.:ine composites of the

breakdown of the persistent anomalies. We then compare our observa-

tions with the behaviors suggested by certain simple theories.

B. Data Set

The data base is that of the previous chapters. For this portion

of the study the winter season is defined as the 120-day period

beginning November 16; extending the data set in this manner allows

us to examine more readily the evolution of events occuring near the

beginning and end of the three month (Dec.-Feb.') period. Anomalies

are obtained as departures from seasonal trend values and are normalized

by sine (latitude) as previously described. Long term seasonal trends

are calculated at each point by the procedure described in Chapter II.

Cases are selected by applying our usual procedure to low-pass filtered

500 mb height anomaly data with selection criteria (+100am, 10 days)

and (-100m, 10 days)*. A list of the cases is provided in Appendix 2.

*Data were filtered with the "Blackmon" low-pass filter (Blackmon, 1976).
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The "key" points are identified by the "maximum number of cases"

criterion described previously. The use of low-pass filtered, rather

than unfiltered, data, as well as the increased length of the period

considered, approximately doubles the number of available cases.

C. Development

We first study the "slow" time evolution of the 500 mb anomaly

patterns by constructing composites from low-pass filtered data.

This provides an overview of the development and allows us to identify

certain subtle features that are partially obscured by high frequency

transients. We then examine corresponding composites constructed from

unfiltered data around certain key times when the patterns rapidly

evolve. Following this, we present additional simple analyses to

provide a more complete view of the developments.

Composites in this sectionare constructed relative to the time

when the low-pass filtered anomaly first reaches the threshold value

at the key point. This time is defined as day zero. Composite analy-

ses cover the thirty day period from 10 days prior to onset (day -10)

to 19 days after onset (day 19). In the following discussion, we

will primarily focus on selected times around day 0.

Fig. 5.1 presents composite anomaly maps and associated confidence

levels for 15 PAC positive anomaly cases at 2 day intervals from 4 days

before onset (day -4) to 6 days after onset (day +6)*. There is little

evidence in these analyses of a precursor until a few days prior to

onset; indeed, at day -4, only a limited region of the northern

Soviet Union to the northwest of the Tibetian Plateau has t-values

*The statistical significances of the composite anomalies are

estimated by a two-sided t-test (null hypothesis of zero mean).
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(a) (a')

(b) (b')

(c) (c')

Fig. 5.1.
for

(a)
are

Time composites of low-pass filtered anomalies (units:m)

15 PAC positive cases at day (a) -4; (b) -2; (c) 0;.

+2; (e) +4; and (f) +6. Corresponding confidence levels

displayed in (a') - (f'). Negative anomaly values are
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(e) (e')

(f) (f')

Fig. 5.1 (cont.)
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exceeding the 99% confidence level. Note that, through day -2, the

mean anomalies over the entire North Pacific north of 20N are not

significantly different from zero. The structure of the. anomaly

patterns prior to (and to a lesser extent following) onset suggests

that the associated wind anomalies are primarily in the zonal compo-

nent,

A single major positive center becomes established over the key

region at day 0. Subsequent to this time, anomaly centers form to

the south of, and in sequence downstream from, the main center. Inten-

sification of these centers occurs with little evidence of phase

propagation. By day +4 the PAC positive pattern is established. The

gross features of the development are strongly reminiscent of the

behavior seen in simple models of energy dispersion on a sphere away

from a localized, transient (e.g., switch-on) source of vorticity

(Hoskins, et al., 1977; Hoskins, 1978). Over the Pacific, however,

the near simultaneity of development, the almost north-south orienta-

tion of the centers- and the absence of tilts in the anomaly axes make

determination of the meridional coLmponent of energy propagation diffi-

cult; indeed, the pattern somewhat resembles a standing wave in the

north-south direction.

Similar maps of the PAC negative anomaly composites and corre-

sponding t-statistics are presented in Fig. 5.2. The pattern of

evolution displays considerable similarity to the sequence seen pre-

viously for the positive cases. At day -4, the largest area of signi-

ficant anomalies is again located upstream over the Asian continent,

with t values exceeding the 99% level over a large region extending
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As in Fig. 5.1 for 13 PAC negative cases.Fig. 5.2.
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(d)

(e')

(r')

Fig. 5.2 (cont.)
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from the Tibetan Plateau eastward to Japan. In contrast to the

positive cases, however, the major area of significant anomalies is now

located principally over and to the south of the Himalayas. Through

day -2, the significant anomalies are mainly confined to this region;

as for the positive cases, anomalies over the northern North Pacific

are not significantly different from zero. A single major center

becomes established over the key region at day 0 and, subsequently,

centers deepen in sequence downstream. The largest discrepancies

between the positive and negative patterns appear from day 4 onwards

over the North Atlantic, where the intense positive anomaly center

seen in the negative cases has no counterpart in the positive cases.

The symmetry in development (with sign reversal) can be evaluated

more readily by constructing difference naps of the evolutions of the

positive and negative cases. Fig. 5.3 displays the composite anomaly

differences (positive-negative) at two day intervals from day -4 to

day +6 and the associated confidence levels for the statistical sig-

nificances of the differences between the means (null hypothesis of no

difference between means). As suggested by the previous analyses,

prior to the development of the main center, the principal differences

between the positive and negative cases appear upstream, primarily

over eastern Asia. At day -2 the southern portion of high differences

extends eastward into the western North Pacific; note, however, that

over the North Pacific north of 20N and east of 170E differences

between the mean anomalies for the positive cases and negative cases

are not statistically significant until day 0. These analyses suggest

that, in 500 mb height data, the most prominent features preceding
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(0')

(b)
(b')

(c) (c')

As in Fig. 5.1 for differences (positive - negative).Fig. 5.3.
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(d) (d')

(e')

(f'

Fig. 5.3 (cont.)
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the development of.the North Pacific anomaly pattern are located

upstream, and are primarily associated with the zonal flow over

eastern Asia and the extreme western North Pacific (relatively stronger

westerlies occur before onset of the positive cases). In contrast,

knowledge of the sign of the anomalies over the central North Pacific

immediately preceding development is likely to be of little value

in distinguishing whether a positive case or negative case will sub-

sequently occur.

Although data used in the above analyses were low-pass filtered,

the main centers appeared to develop quite rapidly. We now examine

similar analyses conducted on unfiltered data for further clues to the

character of this rapid development. The starting dates are identical,

so that the only difference from the previous analyses is the filter-

ing process.

Fig. 5.4 displays the unfiltered composites for the positive cases

at 1 day intervals from day -3 to day 0. The major differences in

evolution are mainly associated with a positive anomaly center located

to the east of Japan at day -3. This center propagates eastward and

intensifies through the period, reaching the key region at day 0. In

advance of this feature, a negative center moves southeastward to the

subtropical central North Pacific by day 0. This sequence of develop-

ment suggests that the initial rapid growth of the main center is

primarily associated with the propagating, intensifying disturbance

which originates in mid-latitudes near Japan. This disturbance slows

up but continues to intensify as it approaches the key region. The

main center over thei subtropical North Pacific also apparently originates
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(a)

(b) (b')

Fig. 5.4. Time composites of unfiltered ano:malies for the same 15
PAC positive cases as in Fig. 5.1 at day (a) -3; (b) -2;
(c) -1; and (d) 0. Corresponding confidence levels are
displayed in (a') - (d') .
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(C) (c )
(C')

(d) (d')

Fig. 5.4 (cont.)
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from a mid-latitude disturbance. Concurrent with these developments,

a larger scale pattern of height rises over the mid-latitude North

Pacific with falls to the south is again evident. Maps following day 0

(not shown) indicate that subsequent developments are qualitatively

similar to those displayed in the low-pass analyses.

Like the filtered analyses, the unfiltered PAC negative evolution

(Fig. 5.5) resembles the corresponding positive sequence. The nega-

tive center to the east of Japan on day -3 in the negative analyses,

however, is considerably more intense than its positive counterpart.

This negative center intensifies and moves eastward to the key region

by day 0; the second negative anomaly center over the East China Sea

on day -2 follows a similar course, eventually merging.with the main

center after day 0 (not shown). An interesting feature in the negative

case composites is the strong positive anomaly center initially near the

key region; the subsequent evolution of this center appears typical

of the breakdown of the PAC positive cases (to be discussed later).

The difference and corresponding t-test results (Fig. 5.6) confirm

our expectations based on the separate positive and negative analyses:

immediately in advance of development, the major differences between

positive and negative cases are associated with the anomaly pattern

over eastern Asia and with the propagating, intensifying mid-latitude

disturbance initially near Japan.

Both the ATL and NSU cases, like the PAC cases, exhibit roughly

parallel positive and negative evolutions. For brevity, then, only

the (positive-negative) difference sequences are presented for these

regions.
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(a ')

As in Fig. 5.4 for 13 PAC negative cases.Fig. 5.5.
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(d')

Fig. 5.5 (cont.)
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(b')

As in Fig. 5.4 for anomaly differences (positive - negative).Fig. 5.6.
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(cd)
(d')

Fig. 5.6 (cont.)



-141-

Fig. 5.7 presents the ATL low-pass composite anomaly differences

and associated confidence levels at two day intervals from day -4

to day +6; Fig. 5.8 shows similar sequences for the NSU cases. Com-

paring these evolutions with the corresponding PAC sequences, we

see that, particularly preceding onset, the developing patterns for

the three regions display several qualitative differences. Neverthe-

less, in several aspects these evolutions do resemble those just

described for the PAC cases. First, the differences between positive

and negative means over the key regions are not significant until

just prior to onset. Second, both the ATL and NSU composites suggest

that energy dispersion occurs downstream from the key region following

the development of the main center. The sequence for the NSU cases

also indicates that the development of the main center is preceded by

a well-defined wavetrain 'upstream with centers initially over the

Atlantic and Europe. The poleward increase in amplitude of. the

successive centers in this pattern qualitatively agrees with predictions

of simple theories of Rossby wave propagation on a sphere (Hoskins

and Karoly, 1981). For all three regions, then, downstream energy

propagation appears to follow (and, at least for the NSU region, also

precedes), the development of the main center, leading after a few

days to the establishment of the persistent anomaly pattern.

Parallel unfiltered ATL composites (not shown) also suggest that,

at least in the negative cases, an amplifying, eastward propagating,

baroclinic disturbance is involved in the initial growth of the main

center. The NSU unfiltered composites (not shown), in contrast, provide

no significant indication of phase propagation immediately preceding

development.
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As in Fig. 5.1 for ATL low-pass anomaly differences.Fig. 5.7.
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Investigators have suggested that blocking over the oceans is

often characterized by the amplification of certain zonal wavenumbers

of the 500 mb heights (Austin, 1980; Colucci, et al., 1981). We have

examined this possibility for our cases by constructing composite

vector time series of zonal Fourier components k=0-6 of the

anomalies at the corresponding "key" latitudes (Fig. 5.9). Consistent

with the time mean composites presented in the previous chapter, we

see that important contributions to the observed anomalies at the key

point are provided by a relatively broad band of components, primarily

wavenumbers k=0-4 . Thus, these analyses do not suggest a strong

dominance by a particular wavenumber in the development of the patterns.

Nor do they suggest a systematic precursor: prior to onset the

amplitudes are small, typically under 10m, and the vectors tend to

have a haphazard orientation with respect to the vertical axis,

indicating a lack of wave coherence locally. Before.the major ampli-

fication most components show some rotation, indicating.propagation.

During the period of'maximum amplification, however, little propagation

is evident for wavenumbers k < 5 consistent with an interpretation

of the development in terms of stationary waves. Wavenumbers 6 and

greater continue to propagate with little change through the event,

indicating that they are not contributing significantly to the

representation* of the stationary pattern.

Simple models of Rossby wave propagation away from a localized

source (Hoskins and Karoly, 1981) suggest that, if the source of the

forcing is in the tropics, shorter wavelengths (roughly, k > 4-5)

*This observation does not preclude the possibility that the propa-

gating short waves may still be important to the underlying dynamics,
as suggested by some recent theories (Green, 1977; Austin, 1980;

Reinhold, 1981).
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Fig. 5.9. Composite vector time series of zonal Fourier components
k = 0 - 6 of the low-pass anomalies at the "key"latitude 0 '.
The amplitude is proportional to the length of the vector. The

phase is given by the angle measured in the clockwise direction
between the positive vertical axis through the origin of the
vector and the vector itself (positive angles eastward); thus
clockwise (counter-clockwise) rotation with increasing time
indicates eastward (westward) propagation. The vertical component
of a vector is proportional to the contribution by that
wavenumber to the observed anomaly at longitude 2. (the reference

longitude) on that day. (a) PAC positive cases; (b)
PAC negative cases; (c) ATL positive cases; (d) ATL
negative cases; (e) NSU positive cases; (f) NSU negative
cases.
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will be trapped equatorward of the poleward side of the jet so that

only the very long wavelengths will appear with significant ampli-

tudes at high latitudes. The low wavenumber predominance of the

observed patterns is consistent with a tropical source, although

alternative mechanisms may also lead to this result. The composite

development, however, is not consistent with certain other simple

models of wave amplification, e.g., free barotropic resonant triad

interactions, since all significant components appear to grow

simultaneously.**

A further indication of the character of the developments is

obtained by examining how the vertical structures evolve in time. For

this purpose, parallel development composites for. the 1000, 700, 500,

300 and 100 mb height anomalies were prepared from unfiltered data

following the precedures described previously. Data at these levels

were available for the 11 winters from 1965-1966 through 1975-1976,

so that the composites were formed from the previously listed cases

(Appendix 2). that fell within this period. For brevity, only the PAC

evolutions are discussed in detail.

Fig. 5.10 presents longitude-pressure cross sections at 45N and

20N of the unfiltered PAC positive composite anomalies at one-day

intervals from day -3 to day 0. We see that, consistent with the

previous 500 mb analyses, the rapid development of the main center

appears to be primarily associated with an amplifying, eastward

propagating mid-latitude disturbance. This feature has pronounced

westward tilts with height during this period, suggesting that a

**Resonant interactions may still be important in particular blocking

cases (Colucci, et al., 1981).
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substantial baroclinic contribution is involved in its amplification.

There are two maxima in the vertical structure, with peaks at 1000 mb

and near 300 mb. A similar structure is observed in numerical studies

of nonlinear effects on growing baroclinic waves of long synoptic

scales (Gall, 1976; Simmons and Hoskins, 1978). Such a structure,

however, may also be partly an artifact of data coverage since, over

this region, data are more plentiful at these levels. Nevertheless,

comparison of the relative positions of the centers at the data-rich

levels suggests that there are pronounced westward tilts with height

throughout the troposphere, and that, at an early stage in the develop-

ment, the maximum anomalies are realized in the upper troposphere.

The corresponding development at 20N indicates that, in parallel

with its mid-latitude positive counterpart, the main negative center

progresses eastward across the Pacific through day 0. Subtropical

negative anomalies are initially confined primarily to the upper

troposphere. Following day 0 (not shown), however, 1000 mb heights

continue to fall over the central Pacific, leading to the establish-

ment of a cold-core negative center with little or no evidence of

tilts throughout the troposphere.

Fig. 5.11 shows similar analyses for the PAC negative cases. In

many respects, the vertical evolution parallels that of the positive

cases. The main center propagates eastward and intensifies through

the period. The associated trough axis initially tilts strongly

westward with height, but becomes nearly vertical by day 0. Double

maxima are also evident in the vertical structure early in the evolu-

tion, giving way to a single major center in the upper troposphere
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by.day 0. The subtropical patterns are initially rather ill-defined,

but a positive center is evident over the subtropical mid-Pacific from

day -2 onwards. By day 0 positive anomalies associated with this

feature extend with little vertical tilt from the surface to above

100 mb.

Similar analyses for the ATL and NSU regions (not shown) also

indicate that maximum amplitudes are reached in the upper troposphere

at an early stage in the development, and suggest predominantly weak

westward vertical tilts in the anomaly axes during amplification.

D. Breakdown

The previous analyses suggest that persistent anomaly patterns

often develop rapidly, with corresponding positive and negative cases

displaying several parallel features. We now briefly examine the

subsequent breakdowns of the patterns for further evidence of

systematic behaviors. Composites for this section are constructed

relative to the time when the anomaly first falls below the threshold

value at the key point. The unfiltered analyses provided no obvious

indication that small-scale, mobile disturbances were systematically

involved in the breakdowns; for this reason, only low-pass composites

are presented.

Figs. 5.12 and 5.13 present, respectively, composite low-pass

analyses for the PAC positive cases and negative cases at two-day

intervals from 4 days prior to breakdown (day -4) to 6 days following

breakdown (day +6). We see that during breakdown the evolutions also

display a number of striking similarities. Up until day -2, the

patterns strongly resemble the PAC composite patterns described

previously. Breakdown then precedes rapidly. By day 0, the main
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centers have moved northwestward to the Bering Sea and have weakened

considerably. These features than remain nearly quasi-stationary

and continue to decay. Anomalies over the key region are not sig-

nificantly different from zero beyond day +2.

Differences between the composite maps immediately preceding

breakdown and the corresponding maps following development may suggest

clues to the cause of the breakdown. Comparison of the maps 2 days

before breakdon with (for example) the maps 6 days after onset,

however, reveals few striking changes. For the positive cases,

the most noticeable difference is the intensification and displacement

of the downstream center to just west of the Washington coastline.

We suspect that this development, which is also reflected in an asym-

metry between the positive and negative case mean composites discussed

in the previous chapter, is at least partly the result of orographic

effects: in particular, the anomalous northerly flow over the Alaska

Range into the Gulf of Alaska in the positive cases is often followed

by intense cyclogenesis off the northwest coast (see Winston, 1955).

The negative cases, in contrast, show little change in the location

or intensity of the downstream center.

Another difference evident in both the positive and negative

cases when comparing post-development with pre-breakdown maps is the

change in sign of the anomaly centers near Japan: whereas at and

following development anomalies in this region have the same sign as

in the key region, immediately preceding breakdown, anomalies in

this area and in the key region are of opposite sign. This change may

be related to variations in the zonal wind over the southwestern
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Fig. 5.12. Composites of the breakdown of the PAC positive cases,
low-pass filtered anomalies (units:m) at (a) day -4;
(b) day -2; (c) day 0; (d) day +2; (e) day +4; and (f) day +6.
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Fia. 5.13. As in Fia. 5.12 for PAC necative cases.
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North Pacific; differences are so small, however, that we are

presently disinclined to attribute much significance to this result.

Similar composite maps for the ATL cases are displayed in

Figs. 5.14 and 5.15. Again, up until 2 days before breakdown the

primary features of the ATL pattern are evident. The subsequent

evolutions of the main centers bear some resemblance to the behavior

seen for the PAC cases. Between day 0 and day 2 these centers have

retrogressed and weakened. At day 4 these centers have drifted slightly

northwest with little change in intensity. There is some indication

in these analyses that, initially, the main center decays and

retrogresses, and, subsequently, changes occur in the remainder of the

pattern. As for the PAC cases, however, slight differences between

corresponding post-development and pre-breakdown maps are evident, but

are.of dubious significance.

Similar sequences for the NSU cases are shown in Fig. 5.16 and

5.17. Comparing these maps to the earlier development composites,

we see that the NSU patterns display somewhat greater differences

than found for either the PAC or ATL patterns. The most striking

change from the earlier maps is the absence of major anomaly centers

upstream of the key region immediately prior to breakdown. The some-

what greater transience of the upstream and downstream NSU anomaly

centers was reflected earlier in the case mean composites, where the

NSU patterns had relatively weaker contemporaneous correlations and

appeared to have a more regional character than their PAC and ATL

counterparts. The subsequent downstream deepening (and also successive

downstream weakening) of the centers in the NSU pattern thus provides



(d)

Fig. 5.14. As in Fig. 5.12 for ATL positive cases.



Fig. 5.15. As in Fig. 5.12 for ATL negative cases.



Fig. 5.16. As in Fig. 5.12 for NSU positive cases.
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(b)

Fig. 5.17. As in Fig. 5.12 for NSU negative cases.
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a preliminary basis for predicting the onset and also the decay of

this pattern several days in advance.

E. Discussion

The results of the previous analyses suggest a number of typi-

cal characteristics in the evolution of persistent anomaly patterns:

1) Development rates are often rapid (full establishment in

less than a week).

2) Over the key region, there is little evidence of an

atmospheric precursor until just prior to onset.

3) Following onset, anomaly centers develop and intensify

in sequence, forming a quasi-stationary wavetrain downstream from

the main center. Intensification occurs with little indication of

phase propagation. This leads to the establishment of the persis-

tent anomaly pattern.

4) Breakdown rates are also often rapid. Until immediately

prior to breakdown, the patterns closely resemble the corresponding

patterns obtained following development.

5) From development through decay, corresponding positive and

negative patterns display striking similarities in their evolutions.

The development of the wavetrains downstream from the main cen-

ters qualitatively agrees with simple time-dependent models of

energy dispersion on a sphere away from a localized, transient source

of vorticity (Hoskins, et al., 1977; Hoskins, 1973). The NSU cases

are also typically preceded by a well-defined upstream wavetrain.

The sequence of development for the PAC cases suggests that the

initial rapid growth of the main center is primarily associated with
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a propagating, intensifying disturbance which originates in mid-

latitudes. The vertical structure of this disturbance somewhat

resembles that found in numerical studies of nonlinear amplifying

baroclinic waves of long synoptic scales (Gall, 1976; Simmons and

Hoskins, 1978).

Horel and Wallace (1981) have recently presented convincing

observational evidence indicating some relationship between tropical

Pacific sea-surface temperature anomalies and the sign of the North

Pacific anomaly pattern. Their work is supported by results obtained

from general circulatidn studies on the atmosphere's response to changes

in external forcing (particularly to tropical sea-surface temperature

anomalies) (e.g., Rowntree, 1972, 1976; Opsteegh and Van Den Dool,

1980; Webster, 1981). The time scales for changes in such forcing,

however, is presumably much longer than the time scales that we

typically find for the development and decay of persistent anomalies.

This suggests that these patterns often, and perhaps primarily, grow

and decay while the external forcing remains nearly fixed. Further

support for the view that the patterns evolve mainly by internal pro-

cesses comes from recent modelling studies by Lau (1981) and Blackmnon

(personal communication), which demonstrate that anomalies in the exter-

nal forcing are not required to produce patterns similar to those

described here.

A possible interpretation for the correlation between tropical

Pacific sea-surface temperatures and the PAC pattern is provided by

Hoskins (1978). He suggests that enhanced convection may, be expected

over an anomalously warm tropical ocean, leading to increased upper
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level divergence and therefore to enhanced forcing of anticyclonic

vorticity. This may be expected to produce an anomalous wavetrain

extending into the extratropics downstream from the forcing region.

Our results, however, suggest that the causal link between

tropical sea-surface temperatures and the Pacific pattern may be

more subtle than indicated by this picture. An intriguing clue is

provided by the significant pattern located upstream over Asia and the

extreme western Pacific preceding the development of the PAC cases.

This pattern somewhat resembles that of composite

pressure anomalies associated with the southern oscillation (see, e.g.,

Troup, 1965), a phenomenon clearly linked to tropical Pacific sea-

surface temperatures (Horel and Wallace, 1981, and refs.). The

structure of this pattern suggests that the associated wind anomalies

are primarily in the zonal flow over both the Himalayas and the south-

western North Pacific. Whether such anomalies will give rise to sig-

nificant anomalous wavetrains remains to be seen; recent theoretical

work (Branstator, personal communication; Karoly, personal communica-

tion), tends to support the idea that relatively modest changes in the

mean flow may give rise to significant anomalous wavetrains, even for

fixed forcings. These mean flow changes may themselves reflect changes

in tropical forcing, or alternatively, may bias the character of the

disturbances forming in the major cyclogenetic region over eastern

Asia and the western North Pacific. The resolution of these issues

is beyond the scope of the present study.

The sequential character of the development of the anomaly

centers favors the view that local or quasi-local sources are asso-
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ciated with their origins. This does not, however, entirely rule out

the possibility of quasi-resonant behaviors. Although the structures

and evolutions of the patterns indicate that the waves are generally

significantly refracted or attenuated before travelling far zonally,

the PAC and ATL patterns, in particular, somewhat resemble standing

meridional modes, suggesting that north-south reflections may

occasionally be important in these regions.

Although our results suggest certain statistical

approaches toward forecasting the evolution of the persistent patterns,

we have not attempted to do that here. On the longer term, a better

approach toward forecasting these features will likely come from a

more thorough understanding of their sources and dynamics; in that

respect, then, our results provide some potentially fruitful direction.
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VI. INTERACTIONS WITH TRANSIENT EDDIES AND THE MAINTENANCE OF
PERSISTENT ANOMALIES

A. Introduction

The relationship between stationary waves and transient eddies is

of considerable theoretical as well as practical interest. Reinhold

(1981) demonstrates that recurrent, persistent flow patterns in a low-

order, time-dependent spectral model often bear little resemblance to

the equilibrium solutions obtained by neglecting transient eddies.

Recent simple theoretical studies (Frederiksen, 1979; Niehaus, 1980)

suggest that the presence of a stationary wave can organize preferred

regions for cyclogenesis. In contrast, Green (1977- and Austin (1980)

propose that persistent large-scale features such as blocking can be

dynamically maintained by forcings due to synoptic-scale eddies.

The analyses of Chapter 4 established that persistent height

anomalies are associated with highly significant anomalies in the

fields of vorticity, temperature and potential vorticity. In this

chapter, we examine the contributions of transient eddies toward

maintaining local balances in these fields in order to address the

question of how changes in the transient eddies are related to changes

in the mean flow. This question is intimately related to the basic con-

cept of blocking; that is, that major deformations of the mean flow are

accompanied by significant changes in storm activity.

Our approach is as follows: We first describe the pro-

cedure for analyzing the budgets. Following this, we review the

differences in the mean flows and storm paths for positive and negative

cases. We then compare contributions by selected terms to the local,
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time mean balances of heat, vorticity and potential vorticity.

The data base for this portion of the study consists of twice-

daily NMC final analyses of geopotential height and temperature at

8 levels (1000, 850, 700, 500, 300, 250, 200, 100 mb) for the

11 winter seasons 1965-66 to 1976-77. All calculations were performed

on a 50 by 50 latitude-longitude grid. Data were spatially interpolated

from the NMC grid to the latitude-longitude grid as described pre-

viously. Missing data were linearly interpolated in time. Winds are

calculated geostrophically. Composites are constructed from the

same cases as in the vertical evolution analyses: case dates are

listed in Appendix 2.

B. Procedure

The procedure for comparing budget fields is straightforward. In

brief: We first calculate the spatial distribution of any one of

+
the fields, say f. , for each of the j=l,2,...,M positive cases,

and similarly determine the corresponding distributions fk for the

k=1,2,..,N negative cases. We then define ensemble averages of f

for the positive cases

and for the negative cases

I (6.2)

where the weighting factors are proportional to the duration of the

particular case.
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Following this, we construct the spatial distribution of the t-statistic

for the difference between means (null hypothesis of no difference

between means), identifying those regions where the differences exceed

certain significance levels. For the selected fields we present maps

of <f+> , <f-> , the difference ( <f+> - <f-> ) and the results of the t-test.

We will sometimes present the linear spatial correlation coeffi-

cient between two fields. Since our primary interest is in comparing

eddy structures, the mean values of the fields at each latitude (the

zonal averages) are first removed before calculating correlations.

The area-normalized correlation of two fields and between latitudes

30 N and 80 N is then defined by

3cS17 r2] X2"7\ Z (6.3)

where the square brackets denote zonal averages, the asterisks depar-

tures from zonal averages, and a(9) is the normalization factor at

latitude

C. Differences in mean flowts and storm paths

The structural characteristics of persistent anomalies have

been analyzed in detail in Chapter 4; our objective here is to briefly

review those features particularly salient to the budget discussion.

We will subsequently focus mainly on the ATL cases. Our rationale is

that:
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1) there is a better balance between the numbers of positive

(12) and negative (12) cases, as well as a larger total number of cases

than for the other regions;

2) there are significant and well-defined differences in storm

tracks associated with the positive and negative cases; and

3) the data coverage over the North Atlantic is superior to that

over the North Pacific.

The latter issue is more crucial here than in our earlier calculations,

since we anticipate that the covariances (and their derivatives)

required in the budget calculations will be more sensitive to data

deficiencies than the mean fields studied earlier. We will, however,

also present summaries of results for the other two regions.

Analyses of the 500 mb heights for the ATL cases are presented

in Fig. 6.1. Figs. 6.1a and 6.1b show composite 500 mb height anomaly

maps for .the 12 positive and the 12 negative anomaly cases, respectively.

As we found earlier in a smaller set of ATL cases (cf. Fig. 4.2 ),

the corresponding positive and negative anomaly patterns are highly

similar, with a major center near the key point, anomalies of opposite

sign over the subtropics to the south of the center, and a train of

anomalies at mid- and high-latitudes extending mainly downstream from

the dominant center. The composite 500 mb heights for the positive

cases (Fig. 6.1c) strongly resemble typical Atlantic blocking patterns;

in contrast, the 500 mb heights for the negative cases (Fig. 6.1d)

are characterized by a regional high index flow. Anomaly differences

(Fig. 6.1e) between the positive and the negative cases are in excess

of 400 m over the North Atlantic; elsewhere, peak anomaly differences
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are around 100 m. The t-test results (Fig. 6.1f) indicate that differ-

ences between means are highly significant over a vast portion of the

North Atlantic; a train of centers of high significance is also

located downstream from the key region. Additional centers exceeding

the 99% confidence level are located upstream over north-central

Canada and over a small region near the Red Sea.

Fig. 6.2a displays the root-mean-square (rms) 500 mb* geopotential

heights in the 2.5-6 day range** for the positive cases. We see that

a broad region of high variability extends northeastward from the

eastern United States to Scandanavia, with maxima over Nova Scotia

and to the southeast of Iceland. The negative cases (Fig. 6.2b), in

contrast, display high variability in a zonally-oriented band extending

across the central North Atlantic, with a single, relatively intense

maximum located to the east of Newfoundland. The differences between

means (Fig. 6.2c) and associated t-test results (Fig. 6.2d) suggest that the

significant changes are primarily associated with the relatively more

northward displacement of the storm paths in the positive cases.

Parallel distributions (not shown) calculated for levels near the

surface (1000 mb) and tropopause (300 mb) show qualitatively similar

characteristics.

**The periods retained with the Blackmon band-pass filter.
The periods retained with the Blackmon band-pass filter.
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Fig. 6.1. (a) Composite 500 mb height anomalies for 12 ATL positive
cases (units:m); (b) as in (a) for 12 ATL negative cases; (c)
composite 500 mb heights for the positive cases (units:m);
(d) as in (c) for the negative cases; (e) (positive-negative)
500 mb height differences (units:m); and (f) confidence levels
for a two-sided t-test for the difference between means.
Negative values are dashed.
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(e) (f)

Fig. 6.1
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(a) (b)

(d)

Fig. 6.2. (a) Composite band-pass 500 mb heights for the positive

cases (units:m); (b) as in (a) for the negative cases; (c)

(positive-negative) differences rms heights (units:m); (d)

confidence levels for a two-sided t-test for the difference

between means. Negative values are dashed.
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D. Budgets

In the following discussions, we will first discuss the character

of the mean fields and then present selected terms from the ATL budget

calculations. At the end of each subsection, we present brief summaries

of the results for all three regions.

1. Heat budgets

Fig. 6.3 displays composite analyses of time-mean temperature fields

at 700 mb, representative of temperature patterns throughout most of

the troposphere (cf. Fig. 4.11). Comparing these analyses with the

corresponding 500.mb height analyses described earlier, we see that

the positive height anomalies are predominantly warm-core and the

negative anomalies cold-core, with the ATL thermal anomaly centers

displaced slightly westward of the corresponding 500 mb height maxima.

The strongest temperature gradients associated with the positive cases

extend in a band from near Nova Scotia northeastward to Iceland. In

contrast, the strongest gradients in the negative cases occur from

eastern North America eastward across the Atlantic near 40 N. Mean

temperature differences between the positive and negative cases exceed

80 C over the northern North Atlantic and are above 50C in several

other regions. Mean temperatures in the positive cases are greater

(less) than those in the negative cases over virtually the entire North

Atlantic north (south) of about 35 N. The t-test results strongly

resemble those obtained earlier for the 500 imb height analyses, con-

sistent with the earlier observation that the tropospheric height and

temperature anomaly patterns are highly positively correlated.



(a) (b)

(c) (d)

(e) (f)

Fig. 6.3. As in Fig. 6.2 for 700 xJmb temperatures (units: O C).
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The time-average thermodynamic equation may be written as

1 4 - v .v!,T '

( frT - ) C (6.4)

where the overbar represents a time-average over the duration of a

case and a prime indicates a deviation from that average. All other

symbols have their conventional meanings. Term HT is a heat storage*

term. Term HA represents the advection of time-mean temperature by the

horizontal component of the time-mean flow. Term HB is the eddy heat

flux convergence. Term HC represents adiabatic temperature changes

associated with time-mean vertical motions; term HD, the effects of the

vertical eddy trensports of heat; and term HE, the time-mean diabatic

heating. In practice, HT, HA, HB, and HC are calculated from the data,

so that the residual, HD + HE, represents a "virtual" time-mean heating.

Lau (1978) suggests that for climatological-mean data, the ratio HE/HD

is typically >2 over the storm track regions. For brevity we subsequently

refer to the residual as the mean diabatic heating.

The composite 700 mb distribution of term HA, the horizontal ad-

vection of time-mean temperature by the time-mean flow, is presented

in Fig. 6.4a for the positive cases and in Fig. 6.4b for the negative

cases. The positive cases are characterized by weak warm advection to

the west of the key region, with slight cold-advection to the east;

*For all of the budgets, the composite storage terms provide neglible

contributions -and so will not be discussed.
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the negative cases, in contrast, display strong cold advection to the

west of the key region, with largest values extending from eastern North

America to the central North Atlantic. Differences between means (Fig.

6.4c) are strongest over the northwest North Atlantic, locally exceeding

over 5oC/day. The difference pattern rather closely resembles the

corresponding difference pattern for 700 mb temperatures described

previously (spatial correlation .67); the t-test analysis for term

HA (Fig. 6.4d) indicates that the major regions of significant diff-

erences are centered over the North Atlantic and western Europe.

Similar maps for term HB, the 700 mab eddy heat flux convergence,

are presented in Fig. 6.5. In contrast to the term HA, the eddy flux

convergence patterns are negatively correlated with the temperature

patterns (correlation between difference fields = -.61); thus, the

direct effect of this eddy term mainly weakens the mean temperature

anomalies by transporting heat down the local temperature gradient.

Hololpainen (1970) and Lau (1979) report a similar relationship for

transient eddies and climatological mean flows. The adiabatic heating

and cooling associated with time-mean circulations induced by the

transient disturbances may, however, partially oppose the direct effect

of the eddy heat flux convergences. We discuss this issue and the

problem of interpreting these and subsequent relations in terms of

energetics in the following section.

Distributions of the time-mean adiabatic term HC (not shown) have

patterns nearly identical to the corresponding mean vertical motion
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Fig. 6.4. As in Fig. 6.2 for 700 rmb analysis of term HIA, the

advection of time-mean temperature by the time-mean flow

(units: OC/day).
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patterns (w) at 500 mb (Fig. 6.6), which display significantly greater

ascent upstream and descent do'mstream in the positive cases.* In

brief, the correlation between HC and T difference fields is slightly

negative (-.06), suggesting that the ahomalous time mean vertical

motions have, if anything, a weak tendency to reduce the temperature

anomaly locally. Similar correlations between HC and T but calculated

instead for the positive cases fields together and for the negative

cases fields together are, respectively, -.35 and -.37, suggesting

this effect acts more directly in the long-tern mean fields than in the

anomaly fields.

Fig. 6.7 displays the distributions for the time mean diabatic

heating term. The principal areas of heating appear to be connected

with the oceanic storn paths. In the positive cases, weak cooling

occurs near and just to east of the key region, likely mainly due to

radiative cooling. In contrast, in the negative cases relatively stronger

warming occurs over and to the south-west of the key region, apparently

associated with increased sensible heat transfers and with enhanced

precipitation accompanying more vigorous storm activity in that area.

This suggests that some asymmetries between positive and negative cases

may be introduced by the dominance of different physical processes

in the two regimes. The correlation between differences in temperature

and differences in diabatic heating is -.23, suggesting that this

term also acts mainly to damp the mean temperature anomalies.

The vertical motions are obtained by a vorticity method as described

in Appendix 4.
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(a)
(b)

.(c)
(d)

Fig. 6.5. As in Fig. 6.2 for 700 mb analyses of term HB, the

horizonEal eddy heat flux convergence (units: C/day).
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(a) (b)

(C) U' " (d)

Fig. 6.6.. As in Fig. 6.2 for 500 mb analyses oft (units: 10- 4 mb/sec-).

The values have been multiplied by -1 so that positive values
correspond with rising motion.
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(o). (b)

(c) (d)

Fig. 6.7. As in Fig. 6.2 for term HE, the time-mean diabatic
heating (units: ' C/day).
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Heat budget calculations for all three regions display quali-

tatively similar results: through the lower and mid-troposphere, dif-

ferences in temperatures between positive and negative cases are

positively correlated with differences in the time mean advection

(typical correlations are 0.60 to 0.70) and are negatively correlated

with differences in the eddy heat flux convergence (typical values

of -.60 to -.70). Differences in the adiabatic cooling and heating

terms show no or only slightly negative correlations with the tempera-

ture differences (.00 to -.20). Differences in the diabatic heating

appear mainly related to changes in the storm paths. In the PAC

cases (not shown), this tendency appears to be enhanced by orographic

effects in the Far West (positive cases have greater precipitation).

Corresponding differences for the eddy terms and the diabatic heating

terms have comparable magnitudes.

2. Vorticity Budgets

Fig. 6.8 displays analyses of the vorticity fields at 300 -mb,

near the level of maximum vorticity anomalies (cf. Fig. 4.17). The

overall patterns closely resemble the structures seen in the height

fields. Peak magnitudes of the vorticity anomalies are about

-5 -1
3 - 4 x 10 sec . Vorticities associated with the positive center (Fig. 6.8a)

are characteristic of values at latitudes about 200 further south.

The vorticity pattern associated with the negative center (fig. 6.8b)

indicates that a band of high vorticity extends eastward from a

region of typically high values over northeastern Canada across the

northern North Atlantic to the key region. The major regions of

significant differences are associated with the vorticity pattern over
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the North Atlantic.

The time-mean vorticity equation can be written as

-& (6.5)

F represents the frictional force; all other symbols have their

conventional meanings. Terms VT, VA and VB have analogous interpretations

to the corresponding terms in the time-average thermodynamic equation.

Term VC represents the effect of time-mean divergence on altering the

time-mean vorticity. Term VD is the vertical advection of time-mean

vorticity by the time-mean vertical motion; VE is the vertical eddy

vorticity flux convergence; VF is the time-average frictional force; and

VG is the time-average twisting term. Terms VT, VA and VB can be

calculated directly from the data. Terms VT, VA, VB and VC contain

all the terms of the time-average quasi-geostrophic vorticity equation,

in addition to certain smaller terms that are readily calculable from

the observations. Scale analysis and observational data suggest that,

at least in the free atmosphere at middle and high latitudes, the

terms in parentheses are relatively small. Thus, to a first approxi-

mation, we may determine VC as a residual of the other three principal

terms.
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Distributions of term TVA (not shown) strongly resemble the

patterns of term VD displayed later (correlations about -.90). In

brief, at 300 mb, the advection of relative vorticity (-v-V T)

generally opposes and exceeds the advection of planetary vorticity

vdf
( ). Typically then, positive (negative) vorticity advection occurs

dy

downstream from the major troughs (ridges) at upper levels. This

balance is consistent with long wave rather than ultra-long wave

scales ( Burger, 1958). At lower levels (below 500 mb) the advection of

planetary vorticity dominates. This structure appears consistent with

trapping of the waves near the tropopause, as discussed earlier.

Fig. 6.9 presents distributions of VB, the eddy vorticity flux

convergence. Although the patterns are noisy with much small-scale

variability evident, comparison of the corresponding maps in Figs. 6.9

and 6.2 suggests predominantly positive vorticity flux convergence to

the north of the storm paths with negative vorticity flux convergence

to the south. This structure is consistent with a maximum of eddy

momentum flux convergence into storm paths, as observed in climatological

studies (e.g., Blackmon, et al., 1977), numerical studies of baroclinic

instability (Simmons and Hoskins,1 9 7 6 ;1 9 7 7; 1978) and as predicted by

recent theories (Held, 1975). The difference map (Fig. 6.9c) and

associated t-test (Fig. 6.9d) indicate that only a small area upstream

of the key region has differences exceeding the 99% confidence leve.

Although we are presently disinclined to attach much significance

to this feature, this pattern is somewhat intermediate between

relations suggested by Green (1977) and Austin (1980) in simple theories

of the forcing of mean flows by transient eddies. Austin suggests
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(c) (d)

(e) (f)

Fig. 6.8. As in Fig. 6.1 for 300 mb -vorticities (units:- 10-5sec - ).
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that for long waves, a forcing of anticyclonic vorticity concentrated

at upper levels will tend to produce a warm-core anticyclone with a

maxima one quarter-wavelength downstream from the forcing maxima. The

location of the maximum anticyclonic forcing we observe, however, appears

more nearly in phase with the maximum anticyclonic vorticity, consistent

with the relationship suggested by Green (1977). Austin's theory

predicts the maxima in the vertical structure of the vorticity response

will occur near the level of largest forcing; above that level, the anti-

cyclone decays with height. We have noted before, however, that

other mechanisms may also produce a similar vertical structure. The

magnitudes of the eddy vorticity forcing we observe are roughly consis-

tent with the magnitudes that Austin's model requires to produce

steady-state vorticity anomalies of the right magnitudes.

;Fig. 6.10 presents distributions for the divergence forcing term

VC. We see that the VC and VB terms have magnitudes of similar order,

although VC is typically larger f(ms values about 50-90% higher). The

difference maps indicate that at upper levels, the positive cases have

relatively greater upstream divergence and downstream convergence, con-

sistent with the greater upstream ascent and downstream descent seen

in the vertical motion patterns. Only very small areas, primarily over

the eastern Atlantic, have differences exceeding the 95% confidence

level.
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(a) (b)

(c) (d.).

Fig. 6.9. As in Fig. 6.2 for term VB, the horizontal eddy vorticity

flux convergence (units: 10-1 2sec) -
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(a) (b)

(c)
(d)

Fig. 6.10. As in Fig. 6.2 for term VC, the vorticity forcing by
time-mean divergence.



-190-

Figs. 6.11a, 6.llb, and 6.11c display, respectively, for levels

from 1000 mb to 100 mb the correlations between vorticity difference

fields and corresponding differences in terms VA, VB, and VC. We' see

that correlations are weak for all terms at all levels. Correlations

for most terms reverse sign between the lower and upper troposphere,

with strongest correlations near the tropopause. At upper levels,

correlation are positive between vorticity and eddy differences and

negative between vorticity and convergence differences.

Values for the rms differences in terms VA, VB and VC are pre-

sented in Figs. 6.11d, 6.11e and 6.11f, respectively. All terms display

pronounced peaks near the tropopause. The 1000-100 mb vertical

averages (not shown) typically resemble the patterns at these levels.

The rms values for VA and VC differences are comparable and generally

exceed VB by about 50-200%. Near the surface, VC exceeds VA,

reflecting weak positive correlations between VA and VB; at upper

levels, VC is usually slightly smaller than VA, reflecting weak

negative correlations between VA and VB (typically about -..3). These

relations appear qualitatively consistent with expectations from

quasi-geostrophic theory (e.g., Holton, 1972): that is, cyclogenesis

(as suggested by the eddy vorticity flux divergence) tends to occur

in regions of mean low-level convergence and upper-level divergence

(upper-level positive vorticity advection) downstream from the major

long wave troughs.
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We have additionally calculated 250 mb distributions of the

eddy flux convergence for an approximate* form of the potential vor-

ticity

(6.6)

and for the quasi-geostrophic pseudo-potential vorticity (Charney,

1973)

Lv -
T T

:r _ .4
(6.7)

The patterns (not shown) are highly similar to the patterns of the

eddy vorticity flux convergences, with maximum positive (negative)

potential vorticity flux convergences near and slightly upstream of

the potential vorticity maxima (minima).

fHartmann (1977) shows that evaluation of the relative vorticity on an

isobaric rather than an isentropic surface is a valid approximation for

large-scale, highly stratified flows.

r r f
iTC
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E. Discussion

The main relations to emerge from the budget analyses are,

For the heat budgets:

1) Through most of the troposphere, differences in temperature

between positive and negative cases are positively correlated with

differences in the time-mean advection, negatively correlated with

differences in the eddy heat flux convergence and mean diabatic

heating and almost uncorrelated with the adiabatic warming accompany-

ing time-mean vertical motions.

2) Differences in the diabatic heating appear mainly related

to changes in the storm paths. In the positive cases weak cooling

occurs near and just to the east of the key region, likely mainly

due to radiative cooling. In the negative cases relatively stronger

warming occurs over and to the southwest of the key region, apparently

associated with enhanced sensible and latent heating.

3) Corresponding rms values for the differences in eddy terms

and diabatic heating terms have comparable magnitudes.

For the vorticity budgets:

1) Correlations between vorticity differences and corresponding

differences in budget terms are small for all terms at all levels.

Correlations for most terms reverse sign between the lower and upper

troposphere. At upper levels, correlations are positive between

vorticity and eddy term differences (the eddies tend to increase

the vorticity anomalies locally) and negative between vorticity and

mean convergence differences (the mean convergence tends to reduce the

vorticity anomalies locally).
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2) Values for the rms differences in all terms display pro-

nounced peaks near the tropopause; vertical average patterns

typically resemble patterns at these levels. The rms values for mean

advection and mean convergence differences generally exceed eddy

differences by about 50 - 200%.

3) Patterns of eddy flux convergences of potential vorticity

and pseudo-potential vorticity at 250 mb are highly similar to the

patterns of the eddy vorticity flux convergences, with maximum

positive (negative) potential vorticity flux convergences near and

slightly upstream of the potential vorticity maxima (minima).

Our results are generally consistent with similar calculations

for climatological mean flows (Lau, 1979; Blackmon, et al., 1978;

Holopainen, 1978) and seasonal-mean flows (Edmon, 1980), suggesting

that the relations between mean flows and storm paths are also estab-

lished for persistent anomalous flows having durations that are short

compared with a season (on the order of a few weeks or less). We are

able to identify well-defined differences between positive and

negative cases in most of the heat budget terms, but find few signif-

icant differences in the vorticity budget terms. This is undoubtedly

partly due to the greater sensitivity of the vorticity calculations

to analysis errors, but may also reflect the less systematic character

of the momentum transports compared with the heat transports in

baroclinic waves as discussed,-for example, by Hoskins (1978). In

many respects, those systematic changes we have identified appear

qualitatively consistent with changes expected for growing baroclinic

waves on a locally varying meran flow.
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There are severe difficulties in determining the importance of

the eddies in maintaining persistent anomalies. The results clearly

point to ambiguities in distinguishing eddy from time-mean effects:

we noted, for example, that differences in the time-mean diabatic

heating appear closely related to differences in the storm paths,

primarily through changes in latent, but also through changes in

sensible, heating patterns. The relations between latent and sensible

heating patterns and storm paths are poorly understood, but are

certainly ar least partly geographically dependent.

Another ambiguity arises from the tendency for the eddies to

drive mean secondary circulations, so that, for example, the eddy

heat flux divergence may indirectly contribute significantly to the

vorticity balance through the time-mean divergence term. Comparisons

of typical values suggest that the magnitudes of these indirect eddy

contributions are of the same order as, although generally smaller

than, the other terms.

We note, however, that even if the eddy terms were much

smaller than the mean terms, the importance of the eddies could not

be ruled out: conceivably, eddy-mean flow interactions might occur

until the flow approaches a "quasi-equilibrium" where the interactions

appear small. The quasi-equilibria need bear no obvious relation to

equilibria calculated by neglecting transient eddies. Reinhold (1981)

finds such a behavior in a low-order spectral model. Even the sign

of the eddy forcing may not indicate the role of the eddies: although

observational studies of the zonal-average circulation (e.g., Starr,

et al., 1970) often suggest that eddies provide positive contributions
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toward maintaining the jet stream, some theoretical studies of symmetric

circulations (Schneider, 1977; Schneider and Lindzen, 1977) obtain

stronger jets by neglecting eddies, suggesting the effect of the

eddies may be inhibitive. Our diagnostic calculations are not intended

to address these problems, nor questions of cause and effect. Rather,

they attempt to ascertain what systematic eddy changes are observed

between widely varying mean states.

Our analyses suggest potential difficulties in attempting to

determine the energetics of persistent anomalies by standard methods

(e.g., Holopainen, 1970). We noted, for example, that correlations

between temperature and vertical motion anomaly fields appear to be

negligibly correlated, although correlations between temperature

fields and vertical motion fields during anomalous periods appear to

have modest correlations. The correlations, apparently due to the

long-term mean circulation, are of the proper sign to suggest a con--

version from standing eddy available potential energy to standing

eddy kinetic energy. Nevertheless, we cannot conclude that the

persistent anomalies are maintained by baroclinic processes; our

opinion is that there may be slight positive conversions, but that

once developed the persistent anomalies are likely to be substantially

less baroclinic than the long-term mean perturbations. Alternative

approaches, perhaps involving a different reference state, may be

required to adequately define the energetics of persistent anomalies.

F. Conclusions

Comparisons of local contributions by selected terms to the

time-mean balances of heat, vorticity and potential vorticity show
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well-defined differences between corresponding positive and negative

cases in most of the heat budget terms, but few statistically-

significant differences in most vorticity and potential vorticity

terms. Many of the systematic differences in the eddy terms

appear qualitatively consistent with changes expected for developing

baroclinic waves on a spatially varying mean flow. Differences in

the time-mean diabatic heating appear mainly related to changes in the

storm paths. The results are generally consistent with similar

calculations for climatological-mean flows. Thus, the relations

already established between long-term mean flows and storm paths also

appear in anomalous flows with durations of a few weeks.
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VII. CONCLUSION

We have studied the geographical, structural and temporal

characteristics of anomalies that have persisted beyond the periods

associated with synoptic-scale variability and have examined the

relationship of these persistent anomalies to changes in

storm activity. Our analyses revealed a number of highly

systematic features.

The geographical distribution calculations indicate that there

are preferred regions for the occurrence of persistent anomalies,

with three favored regions for persistence: the north-central North

Pacific (PAC), the eastern North Atlantic (ATL) and the northern

Soviet Union (NSU). For each region, the maximum in the frequency

of occurrence of positive anomalies is approximately co-located with, and has

comparable values to, the corresponding maxima of negative anomalies. For

durations beyond about a week, there are slightly more positive

than negative anomaly cases.

Our results do not suggest a preferred duration for persistent

anomalies, nor indicate any strong periodicities. Rather, for

sufficiently long durations, the number of events decays nearly

exponentially with increasing durations, resembling the distributions

obtaihed from a first-order autoregressive process. Nevertheless,

the features in the PAC, ATL and NSU regions appear to decay

somewhat more slowly than in other regions. Our results suggest

that in the three persistent anomaly regions anomalies persisting

beyond about 5 days are almost entirely associated with this slow

decay process.
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The results of the geographic distribution calculations

focused our attention on three key regions. We then examined the

structures of persistent anomalies occurring in these regions in

order to determine whether persistent anomalies are associated with

recurrent flow patterns. Our results provide evidence for the

recurrence of certain preferred persistent anomaly patterns. To a

first approximation, the persistent positive and negative anomaly

patterns in a region can be described as opposite phases of the

same basic pattern. The positive phase of the pattern usually

resembles blocking; the negative phase can often be associated with

a regional "high-index" flow. Systematic changes in the storm paths

accompany the mean flow changes.

The majority of the cases appear to be associated with unusually

strong enhancements of the primary regional patterns of low-frequency

variability. Most of the variance in these patterns is contributed

by within-season, rather than between-season (e.g., interannual),

variability. The persistent mid-tropospheric anomalies are accompanied

by pronounced changes in the location and intensity of the major

surface centers of action (the Aleutian low in the PAC cases, the

Icelandic low in the ATL cases and the Siberian high in the NSU cases).

Concurrent with the height anomalies, there are large-scale

tropospheric temperature anomalies having patterns mainly in-phase

with the height anomalies.

Analyses of the vertical structure also reveal a number of

highly typical characteristics. The anomalies display little vertical

tilts, with maximum height anomalies in the upper troposphere.
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Associated with these departures are pronounced anomalies in the

temperature, vorticity and potential vorticity fields.

Our next goal was to ascertain typical life cycles of persistent

anomalies. From growth to decay, the time evolutions of

corresponding positive and negative cases display a number of striking

similarities. Development rates are often rapid, there is little

evidence of an atmospheric precursor until just prior to onset.

Following onset, anomaly.centers develop and intensify downstream from

the main center, leading to the establishment of the persistent

anomaly pattern. Intensification occurs with little evidence of

phase propagation. There is some indication that the anomalies display

greater westward vertical tilts during than following development.

Breakdowns occur rapidly. Until immediately prior to breakdown, the

patterns closely resemble the patterns following development.

We then examined the contributions of transient eddies toward

maintaining local, time-mean balances of heat, vorticity and potential

vorticity in order to study how changes in storm activity are related

to changes in the mean flow. Comparisons between positive and neagative

cases show well-defined differences in most of the heat budget

terms, but few statistically-significant differences in most vorticity

and potential vorticity terms. Many of the systematic differences

in the eddy terms appear qualitatively consistent with changes

expected for developing baroclinic waves on a spatially varying mean

flow. Differences in the time-mean diabatic heating appear mainly

related to changes in the storm.paths. The results are



-201-

generally consistent with similar calculations for climatological-

mean flows; thus, the relations already established between long-term

mean flows and storm paths also appear in anomalous flows having '

durations of a few weeks.

Our analyses provide a basis for addressing the theoretical

issues raised in the review (chapter II). The observations that

persistent anomalies occur mainly in specific geographic regions,

that the spatial scales are large and that much of the development

takes place while the patterns are nearly stationary all favor the

importance of geographically-fixed forcings. Nevertheless, in the

PAC evolutions the rapid development of the main center appears to be

associated with an eastward propagating, mid-latitude dist-urbance.

In some respects, then, the relative roles of free and forced motions

cannot'be considered as completely resolved.

The time scales for changes in external forcing are presumably

much longer than the time scales that we typically find for the growth

and decay of persistent anomalies. This suggests that these patterns

often, and perhaps primarily, grow and decay while the external

forcing remains nearly fixed. Further support for the view that the

patterns evolve mainly by internal processes comes from recent

modelling studies by Lau (1981) and Blackmon (personal communication),

which demonstrate that anomalies in the external forcing are not

required to produce patterns similar to those described here. Nevertheless,

there is convincing observational evidence (Horel and Wallace, 1981)

indicating some relationship between tropical Pacific sea surface tempera-

ture anomalies and the sign of the North Pacific anomaly pattern. The

explanation for this relationship
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remains an important unsolved problem.

The sequential character of the development of the anomaly

centers favors the view that local or quasi-local sources are associ

ated with their origins. This does not, however, entirely rule out

the possibility of quasi-resonant behaviors,. Although the structures

and evolutions of the patterns indicate that the waves are generally

significantly refracted or attenuated before travelling far zonally,

the PAC and.ATL patterns, in particular, somewhat resemble standing

meridional modes, suggesting that north-south reflections may

occasionally be important in these regions.

Our observations provide a basis for more detailed comparisons

with theoretical and numerical modelling results, although we will

not attempt to do that here. Among the fundamental results we

consider as currently unexplained, however, are the geographic distrib-

utions and the nearly constant decay rates for the numbers of persis-

tent events. Comparison of the values for the decay rates with time

scales for other atmospheric processes suggests possible clues: the

values appear comparable with estimates of time scales (Stefanick, 1981)

for fluctuations in the tropical atmosphere, and also for variations

in the zonal flow.

The development of wavetrains downstream from the main centers

followirng onset qualitatively agrees with simple time-dependent

models of energy dispersion on a sphere away from a localized,

transient source of vorticity (Hoskins, et al., 1977; Hoskins, 1978).

The gross horizontal and vertical structures of the patterns resemble

external Rossby wavetrains (Held, 1981), although we have not attempted



-203-

a detailed comparison with theory. The evolution analyses suggest,

however, that the explanation for the initial developments may be

rather subtle. In the PAC cases, an intriguing clue is provided

by the significant pattern located upstream over Asia and the extreme

western Pacific preceding the development. The structure of this

pattern suggests that the associated wind anomalies are primarily in

the zonal flow over both the Himalayas and the southwestern North

Pacific. Whether such anomalies will give rise to significant wavetrains

remains to be seen.

Our results provide no convincing evidence for the occurrence

of multiple quasi-equilibria; neither do they rule out the possibility.

Distributions of several atmospheric parameters hint at, but do not

clearly show, multi-modality. The internal mechanisms for variability

suggested by multiple equilibria theory appear broadly consonant with

observations, as do the nearly symmetric pairs of patterns usually

predicted, although the latter may be generated for spurious reasons

(e.g., resonances in the model that may not have counterparts in the

atmosphere). It is probably fair to say that such models are presently

too crude to provide detailed explanations of atmospheric behavior,

but serve valuable heuristic purposes.

Throughout this thesis we have emphasized symmetries between

positive and negative patterns. This is partly related to what we

regard as a striking result: that by compositing cases with respect

to the sign of the anomaly at a single point, and then comparing

the result to a similar composite for anomalies of opposite sign, we

are able to recover similar significant patterns over a large portion
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of the hemisphere. Nevertheless, asymmetries between patterns are

evident in all the analyses and also require explanation. We have

suggested that some asymmetries may be related to orographic

influences and others to the dominance of different physical

processes in the corresponding positive and negative cases.

Perhaps slight differences in the mean flow structure also

substantially, affect the character of the patterns. Both obser-

vational and theoretical approaches may prove useful in ascertain-

ing the causes of significant asymmetries.

Finally, we note that the relatively small shift in

time scales between persistent and non-persistent anomalies

appears somewhat discouraging from the point of view of

long range forecasting. Nevertheless, we find some encouragement

in the ability of recent theoretical models to qualitatively

replicate important aspects of structure and development. We

are also heartened that the observed features of persistent anomalies

are often rather simple; indeed, in may respects far simpler

than we might have originally anticipated.
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Appendix 1. NMC data set.

The data base for the present study consists of twice-

daily National Meteorological Center (N IC) analyses of geopo-

tential height, temperature and wind fields for the Northern

Hemisphere at 10 pressure levels (1000, 850, 700, 500, 400,

300, 250, 200, 150 and 100 mb). The analyses are products of

the forecast-analysis cycle at NMIC. The "first guess" for

the analyses is the previous (12 hour) model forecast. This

first guess is then updated by observations obtained from the

surface and radiosonde observational networks, aircraft reports,

winds inferred from satellite imagery, etc. The transient data

sources often compose a significant fraction of the total number

of reports: Jenne (1975) presents a typical time in July 1968

in which 48% of the upper-air reports were from conventional

sources (RAOB and RAWIN reports) and 52% were from other sources

(primarily aircraft winds and winds inferred from satellite data).

The latter sources are probably most valuable in filling gaps

over otherwise data-sparse regions such as the North Atlantic

and North Pacific oceans. Over these regions, the NMC analyses

should have an advantage over other analysis schemes that incorpor-

ate only fixed base data.

Up through 1965, the first guesses for both the 0000Z

and 1200Z analyses were based on a 3-level baroclinic model.
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From 1966 through 1972, this model was usually operational at

1200Z; a 6-layer primitive equation model (Shuman and Hovermale,

1968) was operational at 0000Z. Between 1972 and .September

1974 the 6-layer model was used for both analyses. Through the

period, numerous lesser changes in models and procedures also

occurred, some of the most important of which are discussed by

McDonell (1974). Although these changes undoubtedly introduce

changes in the first-guess fields and hence in the analysis fields

over data sparse regions, results obtained by Lau (1978)

and ourselves suggest that systematic changes during this time

are generally small. Throughout this period, the observed

data were incorporated into the analysis . through a successive

correction scheme similar to that described by Cressman (1959).

In September 1974, NMC introduced a global spectral forecast

model together with a Hough function analysis scheme. (Flattery,

1971). As noted by Rosen and Salstein (1980), the Hough scheme

places a strong constraint on the analyzed winds such that they

are essentially non-divergent. This eliminates features such

as the mean meridional cells. Rosen and Salstein indicate, ho<wever,

tha for analyses of mid-atitude waves and transports the. Hough

analyses appear quite acceptable.

Comparison of the NMC schemes with schemes using only

fixed station data (Iau and Oort, 1981) suggests that over

data-rich regions the analyses are highly similar, whereas in
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data-sparse regions the NMC analyses show a more detailed structure.

For our purposes, the incorporation of the additional data sources

in the NMC analyses offsets the possible disadvantages of the

loss of "observational purity" resulting from the combining

of model forecast and observational data.
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Appendix 2. Case dates.

Selection criteria were (100m, 10 days) and (-100m, 10 days)

for all positive cases and negative cases, respectively.

The following cases were used in the horizontal structure

and case EOF analyses. Cases were selected from unfiltered data

for the 14 winter seasons from 1963--64 to 1976-77. The winter was

defined as the 90-day period from 1 December through 28

No.

1
2
3
4
5
6
7
1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
1
2
3
4
5

.6

Reg.

PAC

Loc. Type

50N 165W POS

NEG

ATL 50N 20W POS

Yr.

64
65
68
69
69
72
75
63
70
72
73
75
77
77

64
65
67
67
68
69
73
74
76
66
68
69
71
72
74

12
12

12
1
1

2
1
12
12
12
12
12

1
2

1
2
1
1
1
2
2
12

1
2
12

1
1
1
-I

Day

16

23

3
5

21

17

25
18
12

16
15
15
9
7

20
1
5
31

17
2

17

29

9

7
12

6
16
7
2

February.

Hr.

00
00
00
00
00
12
00
00
00
00
12
12
12
12

12
12
00
00
12
12
12
12
12
12
12
12
00
12
00

Dur.

23.0
11.0
15.0
10.5
12.0
11.5
19.5
16.0
11.0
10.5
14.0
13.0
13.0
15.0

22.0
19.5
10.5
10.5
13.5
10.5
11.5
10.5
17.5
20.5
10.5
13.0
11.5
10.0
12.0
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No. Reg. Loc. Type Yr. Mo. Day Hr. Dur.

1 NSU 60N 60E POS 66 12 17 00 21.0
2 60N 50E 68 12 22 12 17.0
3 65N 55E 69 2 8 12 15.0
4 65N 40E 72 1 14 00 20.5
1 60N 65E NEG 71 12 26 00 15.5
2 60N 45E 75 2 7 00 13.5
3 60N 45E 75 12 31 12 19.5

The following cases were used in the 1000 mb height and 1000-

300 mb layer mean temperature, time evolution and budget analyses. For

the 500 mb time evolutions, cases were selected from low-pass filtered

data for the 14 winter seasons from 1963-64 through 1976-77. For all

other analyses, cases were obtained

through 1975-76. In these analyses

as the 120-day period beginning 15

No. Reg. Loc. Type

1 PAC 45N 170W POS
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1 NEG
2
3
4
5
6
7
8
9
10
11
12
13

from the 11 winters 1965-66

, the winter

November.

Yr. Mo.

64 12
64 12
65 12
66 2
67 12
68 12
68 12
69 1
70 12
71 1
71 2
71 12
72 2
74 2
75 1
63 12
64 1
65 1
67 1
68 2
69 12
70 1
71 2
73 12
75 12
76 1
76 12
77 1

season is defined

Day

10

23

21

10

29

9
31

23

16

17

24

8
16

22

25

16

24

9

30

5

16

28

4

17

16
24

10

1

Hr.

00
12
00
00
12
12
00.
00
00
12

1
12
12
12
00
00
00
00
00
00
12
12
12
00
12
00
00
00

Dur.

10.0
14.0
13.0
25.0
20.5
11.5
15.0
16.5
13.5
10.0
10.5
17.0
11.5
12.5
20.0
17.0
12.5
12.0
12.0
30.0
17.5
25.5
15.5
11.0
12.0
10.5
15.0
52.5
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No. Reg. Loc.

ATL 50N 25W1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
8
9
10
11
12
13

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9

Type

POS

NEG

Yr.

64
64
65
67
67
68
68
69
70
73
74
75
76
63
64
65
66
67
67
69
70
71
72
72
74
74

POS

NEG

1
12

2
1
12

1
12

1
2
1
12
12

1
12

2
12

1
1
2
1
1
1
1
1
1
1

2
12
12
12
12

2
2
1
12
12
12

1
11

1
12

1
2

12

1O. Day

21
-17

1
2

24
20
25
30
24
23
29

3
8
9
13
31
17
18
12

8
8
4
5

30
1

24

3
4
13
17
22
11
17
23
20

3
6
4

29
24

5
21

3
6

16

NSU 60N 60E

Hr. Dur.

12 20.0
00 10.0
00 21.0
12 12.5
12 11.5
00 15.5
00 10.5
12 16.5
12 10.5
12 36.0
12 10.0
00 26.5
00 18.5
12 12.0
12 17.5
12 11.5
00 42.5
00 11.5
12 13.5
00 18.5
00 20.5
00 23.5
12 12.0
12 13.0
00 14.0
00 10.0

12 17.0
00 12.0
12 10.5
00 20.0
00 16.0
12 11.5
12 17.5
00 13.0
12 14.5
12 12.0
12 14.0
12 21.5
00 15.5
12 10.0
12 13.0
00 23.5
12 10.0
00 10.0
12 19.5
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No. Reg. Loc. Type

1 NSU 60N 50E POS
2
3
4
5
6
7

8
1 NEG

Yr. Mo. Day Hr. Dur.

64 12 5
66 12 24
68 12 22
69 2 9
70 2 18
71 1 23
74 1 9
76 12 12
63 12 8

The following cases were used in the vertical structure

Cases were selected from unfiltered data for the 11 winter

seasons 1966-67 through 1976-77.

No. Reg. Loc. Type

PAC 50N
50N

50N

55N
50N
50N

45N

50N

ATL 45N
55N
50N
50N
45N
45N

50N

50N

55N

150W
160W

160W
165W
160W
165W
160W
165W

25W
30W
30W
5W

30W
15W
20W
10W
40W

POS

NEG

POS

NEG

Yr.

67
69

72

73

75
73
77
77

67
68
69
71
73
76
69
69
74

Mo.

12
1

11

12
1

12

1
2

12
12
1
12

2
1

1
2
1

Day

24
6
30
30
25
15

4
.7

24
24
28

4
9
1
6
12

3

Hr. Dur.

17.0
27.0
15.0
16.5
19.5
14.0
22.0
15.0

19.0
14.0
20.5
14.0
18.5
24.0
13.0
13.0
17.5

10.0
13.0
17.0
15.0
12.5
12.5
10.0
10.0
12.5
14.0
13.5
10.5
11.0
12.0

analyses.
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Appendix 3 Emoirical Orthogonal Function Analysis.

The theories and methods of empirical orthogonal function (EOF)

analysis are discussed in detail elsewhere (Lorenz, 1956; Davis,

1976) and so will only briefly be outlined here. The general

problem is to approximate a function of space and time h(x,y,t)

for which data values at M spatial grid points are known over N

consecutive observations by the series •

A

- AA - I q £.
(A. 1)

Choosing the functions of grid position fkj as the dominant m
kj

empirical orthogonal functions yields the smallest sample mean

square error

(y I

(A-2)

which can be obtained from any choice of m functions (Lorenz, 1956).

Additional properties are that the functions are orthonormal

(A. 3)

L

x-

j~

(: ,- F:, - r
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while the time coefficients are uncorrelated at zero lag:

c7 ~ cj.
(A.4)

I
C71 1 V' J

A-=

The empirical orthogonal functions are obtained as eigenvectors of

the matrix

! ,A
(A. 5)

-1
When the elements h.. are anomaly values, N A is a covariance

matrix; if the h.. are further normalized by their standard
-1L

deviations, then N -1A is a correlation matrix. The time coeffi-

cients qik , which play a role analogous to the coefficients of

the sine and cosine functions in the Fourier harmonic analysis

previously discussed, are obtained by solving

(A.6)

ql-ii
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A basic hypothesis of this analysis is that the appropriate

error measure is the sum of squares over all grid points, from which

the criterion (eq. A.2) follows. The choice of equal weighting of

the square error from each grid point can be replaced by other

weightings, such as a weighting proportional to the 50 by 50

tesserra corresponding to the grid point. Calculations have also

been performed using this weighting, with only minor differences

in the results.

EOF 's were determined for each region over M grid points

and N cases: for ATL, N = 15, for PAC, N = 14 and for NSU, N = 14.

The number of grid points, M , is limited by practical considerations;

hence, the analyses were performed over limited regions (50' lati-

tude by 1600 longitude, M = 363) for which the previous analyses

provided the strongest indication of pattern recurrences. The

spatial structure of the first EOF was found to be insensitive to

changes in the location of the boundaries.



-215-

Appendix 4. Vertical motion calculations.

The time-mean motions L- are obtained by integrating the time-

mean divergence with respect to pressure

Z3 J 
(A.1)

where Zl(p) denotes the time-average vertical velocity at pressure

level p and 3(ps) represents the corresponding quantity (assumed

known) at level p . The mean divergences are determined as residuals

from the vorticity balance (eq. 6.5). Following O'Brien (1970),

the divergence in (A.1) is adjusted so that boundary conditions

at lower and upper levels are simultaneously satisfied. The

divergence adjustment is independent of pressure (e.g., the systematic

part of the divergence error is assumed to be uniformly distributed

throughout the column). The adjusted vertical motions are given by

~' 75 ( -VA) - (i t C(&&P 1 . -4-) (A.2)

where 1'(p) is the adjusted vertical motion at level p, w(p) the

usual estimate obtained from eq. A.1, PB and PT the pressures at

lower and upper boundaries, respectively, and wT the independently

calculated value of WT at level pT.

The vertical motion at the lower boundary (850 mb) is

assumed to be composed of three terms:

S(850) = WMy + WF + D (A .3)



-216-

where the first term on the right hand side of (A.3) is due to

the topography, the second due to friction and the third to quasi-

geostrophic divergence.in the surface to 850 mb layer. The

topographic vertical motion is approximated by

r,) .
(A.4)

where h is the height of the local terrain obtained from NCAR

(Jenne, personal communication) on a 2.5 grid. All other symbols

have their conventional meanings.

The frictional term is obtained as

-- - - ) {" (A.5)

The drag coefficient QC is assumed to be a linear function

of the terrain height

- (A.6)

where hmax is the maximum terrain height. The values for the

drag coefficient correspond approximately with the values in

Cressman (1960).

The quasi-geostrophic divergence term is determined by

CO (A.7)

2>oi
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where the divergence is obtained as a residual from the vorticity

balance as described earlier. The weight factor - depends

on the fraction of the layer above the surface

(-'Iu \cJj& 2v UL (A.8)

no. -2~c) )

The upper boundary condition is determined by assuming that

the virtual heating vanishes at 200 mb

-I

(A.9)

This term is generally small except in the descent to the region

east of the Himalayas where its neglect would imply unreasonably

strong 200 mb heating rates.

Recent calculations by White (1981) indicate that large-scale

climatological-mean vertical motions obtained by the vorticity balance

method and by the quasi-geostrophic omega equation (Holton, 1972) are

very similar. The patterns obtained by these methods largely agree

with the vertical velocity patterns implied by cloudiness and

precipitation.

The mean vertical motions obtained above have also been

used to perform an a posteriori check on the adequacy of neglecting

terms involving the time-mean vertical motions. The

neglected terms appear at least an order of magnitude smaller than

the retained terms, suggesting the consistency of our approximations.
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