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ABSTRACT

VERTICAL HEAT TRANSPORT MECHANISMS IN LAKES AND RESERVOIRS

by

KATHLEEN ANN HURLEY

Submitted to the Department of Civil Engineering on 13 June 1977 in

partial fulfillment of the requirements for the degree of Master of

Science.

As the demands on the world's water supplies increase, the neces-

sity of protecting and enhancing the quality of water resources, while

utilizing them as efficiently as possible, becomes more apparent. This

can only be accomplished if the physical, chemical and biological pro-

cesses affecting a water body are understood. Since the temperature
structure of a water body has an important influence on all three types

of processes, it is of fundamental concern.

The physical processes affecting the temperature structure of lakes

and reservoirs are described. If a lake or reservoir is horizontally

stratified, it can often be treated as one dimensional. The sensitivity

of the one-dimensional, variable area M.I.T. Reservoir Model (Ryan and

Harleman (1971)) to through-flow, vertical diffusivity, extinction

coefficient for short wave solar radiation and model time step is

examined. A dimensionless parameter which is a measure of the relative

importance of advection and diffusion as heat transport mechanisms is

defined. The sensitivity studies indicate that when the influence of

advection is small, the representation of vertical turbulent diffusivity

is not adequate.

The wind is a major cause of turbulence. Laboratory studies on the

rate of entrainment from a stagnant lower layer by a turbulent upper layer

are reviewed. Ocean and lake models that include the influence of the

wind are examined. The M.I.T. Reservoir Model is modified to include the

influence of the wind via an iterative heating-wind mixing procedure. The

wind mixing algorithm is based on the rule that the rate of change of

potential energy of the water column by entrainment is equal to the rate

of kinetic energy input by the wind. The iterative procedure minimizes

the accumulation of errors in the computation of the heat input. The

sensitivity of the modified model to element thickness, time step and

onset of stratification is examined. Good agreement between predictions

and observations is obtained when the modified model is applied to an

actual lake.

Thesis Supervisor: Donald R.F. Harleman
Title: Professor of Civil Engineering
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CHAPTER I

INTRODUCTION

Population growth and industrial expansion are placing increasing

demands on the world's water supplies. Wastes from these sources have

traditionally been disposed of in water bodies, often the same water

bodies that provide water supplies. With the recognition that water

bodies have a finite assimilative capacity, and that there are a limited

number of sources of water supply, there has been a growing awareness

of the need to protect and enhance the quality of water resources while

utilizing them as efficiently as possible.

A water quality parameter of wide-spread interest is water temper-

ature. A series of examples illustrates the importance of this parameter.

One of the better known effects of temperature on the chemistry of a

water body is the dependence on temperature of the solubility of oxygen,

sulfides, calcium and carbon dioxide. Fish and aquatic plants cannot

survive in water the temperature of which is not within a specie-specific

tolerance range. The tolerance range may vary with stage in the life-

cycle. Thus the temperature determines the plant and animal life that

might be found in a given water body. The efficiency of a thermal power

plant is directly related to the temperature of the intake water used to

cool the condensers. Hence, it is desireable to use water that is as

cool as possible for this purpose. The temperature of the return flow

from the condensers, with or without intermediate cooling, is a function

of the intake water temperature. The primary cause of density gradients

is temperature gradients. Density gradients play an important role in

influencing the patterns of movement of water and pollutants in a water



body by limiting the extent of withdrawal layers and by inhibiting trans-

port across density interfaces. When a water body is stratified, the

deeper water is isolated from the atmosphere and replenishment of the

oxygen in the lower layers cannot take place. Decomposition of organic

matter may deplete the oxygen, creating anoxic conditions that foster the

growth of anaerobic microorganisms thereby producing unpleasant tastes

and odors.

1.1 Stratification Cycle

In temperate climates, lakes and some reservoirs experience sea-

sonal changes in their degree of stratification. In early spring, a lake

is isothermal at about 4 0C, the temperature of maximum water density.

During the spring, a lake begins to warm, with the water near the surface

warming faster than the deeper water due to differential absorption of

short wave solar radiation. Evaporation, conduction, and net long wave

radiation from the water surface continually cool the surface. If the

surface temperature drops below the temperature of the water just beneath,

the water column is unstable and convective currents restore stability

by establishing an isothermal mixed layer. Wind induced mixing also

contributes to the formation and maintenance of a mixed upper layer. As

the lake continues to heat, two distinct regions evolve. The warm, upper

region, called the epilmnion, is generally turbulent and isothermal. The

cooler lower region, called the hypolimnion, is generally quiescent with

the temperature decreasing with depth. If the lake is deep enough, the

hypolimnion temperature asymptotically approaches 40 C. The zone of trans-

ition from one region to the other is called the metalimnion and is

characterized by a steep temperature gradient. The thermocline

I~I~IE--YIII-~YI^-Y I~-1 Lil~l~---^L~--II.^I I~____~__



is defined as the location at which the temperature gradient is a maximum.

This nomenclature is illustrated in Figure 1.1. By late summer, the

lake attains its maximum heat content and begins to cool. The thermocline

descends as convective mixing penetrates to greater depths. As the

thermocline descends, the temperature gradient in the metalimnion de-

creases, until the lake becomes isothermal.

1.2 Stratification Criterion for Reservoirs

Reservoirs differ from lakes in that reservoirs are man-made

impoundments, and thus the timing, magnitude and elevation of outflows

can be selected. In lakes, these choices are not available. Not all

reservoirs exhibit the horizontal stratification cycle of lakes described

above. Some reservoirs are isothermal or exhibit both longitudinal and

horizontal stratification. Others become weakly stratified only during

parts of the summer. Factors influencing reservoir stratification include

the ratio of inflow rate to reservoir volume (the inverse of residence

time), reservoir depth, outlet position and the magnitude of short wave

solar radiation incident on the reservoir. Vertically mixed reservoirs

with short residence times are frequently termed "run-of-the-river"

reservoirs since their main use is for power generation and not water

storage. "Run-of-the-river" reservoirs do not exhibit thermal stratifica-

tion, while deep reservoirs whose primary function is to store large

spring river flows for release during the summer and fall generally become

stratified. The most important parameter characterizing a reservoir as

"run-of-the-river", weakly stratified, or stratified has the form of a

densimetric Froude number. This densimetric Frounde number, expressing

the ratio of inertial gravitational force, is a measure of the ability of
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through-flow to disturb the density structure of a reservoir from its

gravitational equilibrium state. In reservoirs with horizontal isotherms,

the through-flow is not sufficient to disturb the gravitational equilib-

rium state. Consequently, the densimetric Froude number is expected to

be small. In "run-of-the-river" reservoirs, the through-flow has completely

upset the gravitational structure and thus the densimetric Froude number is

expected to be large. In weakly stratified reservoirs, neither force

dominates and the densimetric Froude number is expected to have an inter-

mediate magnitude.

Orlob (1969) has proposed the following criterion for the presence

of horizontal isotherms in reservoirs

0IF < 1 (1-1)
D hV go i

where L = reservoir length, Q = volumetric discharge through the reservoir,

h = mean reservoir depth, V = reservoir volume, p0 = reference density

(1000 kg m-3), o = average density gradient in the reservoir (10- 3 kg m-4),

and g = gravitational acceleration. For weakly stratified reservoirs,

1 1
IFD \ , while for "run-of-the-river" reservoirs, IFD -. The scope of

this work will be confined to lakes and stratified reservoirs in which

F <1
D *

1.3 Wind Tilt Criterion for Lakes and Reservoirs

During periods of high winds, lakes and stratified reservoirs tend

to have tilted isotherms. Sverdrup (1945) gives the inclination (is) of

the water surface due to the wind as



i = 4xx10 7
s h

where h = mean water depth (m) and W = mean maximum wind speed (m/sec).

The inclination of the thermocline is related to the inclination of the

surface by

i i
t s Ap

where Ap is the density difference between the hypolimnion and the

epilimnion. Therefore the maximum vertical displacement of the thermocline

by the wind is

L
dt i

t t2

where Lt = average length of the lake or reservoir in the thermocline region

in the direction of the wind (m).

w I

Figure 1-2 Effect of Wind on the Thermocline



If the calculated maximum displacement of the thermocline is larger

than the depth of the epilimnion, the hypolimnion is uncovered at one end

of the lake or reservoir and the assumption of horizontal isotherms, and

thus the one-dimensionality of the system, is no longer valid. The criteria

for wind effects not destroying the one-dimensional temperature structure

of a lake or reservoir is

hm > 4x10 -7W2  _ Lth > h- (1-2)m h Ap 2

where h is the epilimnion depth in mid-summer.m

Equation (1-2) can be used to calculate the maximum wind speed that

will not invalidate the assumption of one-dimensionality for a given water

body. For an average-sized lake in the mid-Atlantic states (Lt = 5x10
3 m,

h = 11 m, h = 6 m and A = 0.0028) winds greater than 14 m/sec cause the
m p

hypolimnion to be uncovered. For a large lake, such as Lake Michigan

(L = 3x105 m, h = lxl2 m, h = 15 m and = 0.0032) winds greater than
m p

9 m/sec invalidate the assumption of one-dimensionality.

1.4 Objectives of this Study

The formulation of an effective management program that permits

efficient utilization of a water body for a variety of purposes while

maintaining the quality of the resource is not an easy task. Hydrodynamic,

chemical and biological processes influencing the behavior of the water body

must be understood. Since the temperature structure of a water body has an

important influence on all three types of processes, effective water quality

planning requires the capacity to predict the temporal and spatial variations



in temperature under alternative development plans.

The scope of this work will be limited to lakes and reservoirs that

satisfy the criteria for horizontal stratification given above (Equations

(1-1) and (1-2)). This allows the three dimensional problem to be

reduced to a one-dimensional, variable area problem. The objectives of

this study are two-fold:

1) to develop a one-dimensional, variable area mathematical model

of the time-dependent vertical temperature structure of lakes and

reservoirs,

2) to examine the relative influence of the vertical heat transport

mechanisms, including advection, diffusion, the penetration and absorption

of solar radiation, and wind mixing, on the temperature profile.



CHAPTER II

HEAT TRANSFER PROCESSES IN LAKES AND RESERVOIRS

A useful numerical model of a system must be based on a clear under-

standing of the major physical processes influencing the system. Pro-

cesses affecting the temperature structure of a lake or reservoir can be

conveniently divided into two categories - surface heat transfers and

internal heat transfers. Heat transport mechanisms in these two categories

are reviewed below.

2.1 Surface Heat Transfer

The ability to predict the transient temperature structure of lakes

and reservoirs depends strongly on an accurate knowledge of the heat fluxes

through the water surface. These fluxes are shown schematically in

Figure 2-1.

s a br e c

sr ar

Figure 2-1 Heat Transfer Mechanisms at the Water Surface

where:
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s -= incident solar radiation (short wave)

Osr = reflected solar radiation

a = incident atmospheric radiation (long wave)

ar = reflected atmospheric radiation

br = long wave radiation from the water surface

4e = evaporative heat flux

Oc - conduction (sensible heat flux)

Methods for estimating the above components of the total heat flux

are well-established for a natural water surface and will be discussed

below. The heat fluxes due to direct rainfall and the heat contained in

the evaporated water can be neglected because they are generally much

smaller than the other fluxes, and they tend to cancel each other in the

long term averages. Heat fluxes will be given in joules/m2-day.

2.1.1 Net Solar Radiation, sn, (short wave)

Incident Solar Radiation

The radiation emitted by the sun reaches the earth's surface after

passing through the atmosphere where it undergoes scattering, reflection

and absorption by the air, dust and clouds. Consequently radiation reach-

ing the earth is composed of both short and long wave components and is

partly direct and partly diffuse. Short wave radiation can be evaluated by

a) direct measurement by pyrheliometer

or b) empirical formulae. Details of these formulae can be found in



The general form is

=s = sc(1.0-0.65C2) (2-1)

where Psc = clear sky solar radiation and C = fraction of the sky covered

by clouds. sc is a function of latitude and time of year. Plots of sc

can be found in Hamon, et. al. (1954). Direct measurement is essential

when accuracy greater than approximately 15% is required.

Reflected Solar Radiation

Approximately 5-10% of the incoming solar radiation is reflected by

the water surface. Since solar radiation can not be estimated with great

accuracy, moderate errors in the reflected radiation are not important.

The following table derived from the U.S.G.S. Lake Hefner study (1959) is

sufficient in most cases.

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

9srNs% 9 7 7 6 6 6 6 6 7 7 9 10

The net incident solar radiation, sn, can be approximated by

=sn = s-sr = 0.94 sc(1.0-0.65C
2 ) (2-2)

2.1.2 Net Atmospheric Radiation, an, (long wave)

Atmospheric radiation is primarily due to emission of absorbed solar

radiation by water vapor, carbon dioxide and ozone in the atmosphere. The

emission spectrum of the atmosphere is highly irregular, thus a precise

analytic description is infeasible and empirical relations are used. Most

formulae for atmospheric radiation have been derived for clear skies and the

influence of clouds is included as a separate term. The basic equation for

Wunderlich (1972).



incident atmospheric radiation, a, from a clear sky is

a = cEGT (2-3)a a

where E = average emittance of the atmosphere (dimensionless)

a = Stefan-Boltzmann constant = 4.9x10 - 3 joules/m2-day-OK 4

T = air temperature (absolute)

Various expressions and dependencies for c have been proposed. Brunt (1932)

proposed a dependency only on vapor pressure

E = a+bvd (2-4)

where e is vapor pressure and a and b are empirically determined constants.

Swinbank (1963) and Idso and Jackson (1969) have proposed forms with a

dependency only on absolute temperature. Swinbank's form is

= 0.398x10 -5T 2.
1 4 8

ak

where T = air temperature OK
ak

which he rounds to

= 0.92xl0-5T2  (2-5)
ak

for convenience. Idso and Jackson's form is

C = [1.0-0.26/exp{7.77x10 -5(T )}] (2-6)
c

where T = air temperature 0C.
a

c



These two temperature dependent formulas are almost identical for air

temperatures higher than 100C. Below 4.50C, Idso and Jackson's formula

gives results in better agreement with measurements.

Brutsaert (1975) derived a dependence of the average emittance of

the atmosphere, E, on both vapor pressure and absolute temperature based

on the assumptions of exponential profiles for temperature, vapor pressure.

pressure and density. He approximated the emissivity of the atmosphere by

fitting a power function through data points based on actual atmospheric

measurements and calculations. His formula is

1/7
= 1.24( -) (2-7)

T
ak

where e is in millibars.

Mermier and Seguin (1976) report good agreement between measurements and

Equation (2-7). Regression analysis of monthly mean data over a wide range

of climatic conditions indicate that the vapor pressure, e, is proportional

17.8
to T . Thus Brutsaert's formulation implies that the emissivity, C,

ak
is proportional to T , which is not very different from Swinbank's

ak

equation. The two equations are compared for various values of relative

humidity in Figure 2-2.

The presence of clouds can increase atmospheric radiation due to

diffuse reflection from the clouds. The incident atmospheric radiation,

an, is given by

Sac (l..O+kC 2 )  (2-8)

where a = atmospheric radiation from a clear sky
ac
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C = fraction of the sky covered by clouds (range 0 to 1)

k = dimensionless constant

The value of k depends on the type of clouds present. Wunderlich (1972)

suggests an average value of k = 0.17.

A value of 3% is usually accepted as the reflectance of a water

surface to long wave radiation. The formula for net atmospheric radiation

is

an 0.97UT4 (1.0+0.17C2)
an a

where the value of E depends on the formula used. Brutsaert's formula is

recommended, making the complete formula

S5.9x0 /74 2
5.9x0-3 e (1.0+0.17C2) (2-9)

an T aa

2.1.3 Back Radiation from the Water Surface, br' (long wave)

Water radiates as a near black body. The deviation from ideal black

body behavior is due to reflection at the air-water interface. The

emissivity of a water surface is known relatively precisely, but due to the

formation of a thin surface skin, the actual surface temperature is usually

known to ±0.250 C. Back radiation is given by

br = 0.97o(Ts+273.)
(2-10)

br = 5.9x10-3(T +273.)

where T = water surface temperature C.s



2.1.4 Evaporative Heat Flux

Evaporation from a water surface results from forced (wind driven)

convection and free (buoyancy driven) convection. For water bodies with

no artificial heat input, forced convection dominates. Most evaporation

formula are based on Dalton's law of mass transfer, modified to allow for

the effect of the wind. The general form is

E = pF(W )(e -e z )  (2-11)

where

E = mass flux (mass/area-time)

p = density of water

W = windspeed at height z

F(W ) = wind speed function for mass flux including both free
and forced convection effects (length/time-pressure)

e = saturated vapor pressure at the temperature of the water
surface

e = vapor pressure at height z

In order to convert from a mass flux to a heat flux, it is necessary to

multiply Equation (2-11) by the latent heat of vaporization, L .
v

L = (2493.-2.26T )x103 joules/Kg (2-12)

where T = water surface temperature, 0C.
s

The evaporative heat flux, 4e, is given by

S =  LvE (2-13)

25



A wind speed function of the form

F(W ) = a+bW (2-14)
Z z

where a,b = constants

has been found to give acceptable results. Rohwer's (1931) formula of

this type is

F(Wz) = 0.000308+0.000185Wz m/s-mmHg (2-15)

where z, the measurement height for the wind speed, is 6 inches above the

water surface, and the units of wind speed are meters per second. The

formula for evaporative heat loss is

e = (0.000308+0.000185W)p(e -e )(2493.-2.26T )x103  (2-16)

2.1.5 Conductive Heat Flux

Bowen (1926) related the conduction heat flux to the evaporative mass

flux by equating the eddy diffusivity of heat and mass. The conduction heat

flux, c, can be related to the evaporative mass flux by the Bowen ratio, R

(Ts-Tz )
= RE 269.1 ( z E (2-17)

c (e -e )

where

o
T = water surface temperature C

T = air temperature at height z °C
z

e = saturation vapor pressure of water at Ts (mm Hg)



e = vapor pressure of the air at height z (mm Hg)

2.1.6 Equilibrium Temperature

The net heat flux into a water body is given by

n = Osn+~an ~breOc (2-18)

The water temperature at which there is no net heat transfer across the

surface is called the equilibrium temperature, TE. At this temperature,

the short and long wave radiation heat inputs are exactly balanced by the

heat losses from evaporation, conduction and back radiation. TE, which

is solely dependent upon the meteorological conditions at a given site, can

be used as an indicator of whether a water body is heating or cooling on a

given day. A water body with a surface temperature Ts greater than TE will

have a net heat loss and thus will tend to decrease in temperature, while

a water body with a surface temperature Ts less than TE will have a net heat

gain and thus will tend to increase in temperature. The equilibrium temper-

ature incorporates all the external influences upon ambient temperatures.

It can be calculated by setting 4n = 0 and TE = Ts in Equation (2-18) and

solving iteratively for TE.

Figure 2-3a shows that the daily equilibrium temperature varies

greatly from day to day at a given site. The seasonal trend in TE  can be

seen clearly in Figure 2-3b, which shows monthly averaged equilibrium

temperatures. Monthly averages can be computed in two ways. First, the

daily equilibrium temperatures can be averaged over a month. Alternatively,

the meteorological conditions can be averaged over a month and the

equilibrium temperature associated with the average weather conditions
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computed. Both methods give essentially the same results. The trend in

equilibrium temperature is often represented by a sine function (shown in

Figure 2-3 ) of the form

2Tr
n = a+bsin 2g- t (2-19)

where t is the day of the year.

It should be emphasized that the use of this approximation implicitly

averages the meteorological conditions over a period of approximately one

month and does not give the equilibrium temperature for any given day.

2.1.7 The Linearized Heat Flux Equation

It is a common practice to simplify the expression for the net heat

flux (Equation 2-18) using the concepts of equilibrium temperature and

surface heat exchange coefficient, K. The linearized heat flux equation

developed by Edinger and Geyer (1965) is

n = -K (Ts-TE) 
(2-20)

The surface heat exchange coefficient is defined as the incremental

change in net heat exchange induced by an incremental change in surface

temperature

K = - n (2-21)
3T
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Figure 2-4 Variation of Heat Transfer Coefficient K with Water
Surface Temperature T
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Note that the slope may be defined at any value of Ts, above or below the

equilibrium temperature. Charts for evaluating K, which depends both on

the meteorological conditions and on Ts, can be found in Ryan and Harleman

(1973).

Since the computation of TE requires the iterative evaluation of the

components of the net heat flux, the linearization has not simplified the

task of evaluating the net heat flux. However, the linearized heat flux

equation is generally used in conjunction with Equation (2-19) to provide

an analytical expression for the seasonal trend in the net heat flux.



2.2 Internal Heat Transfer

2.2.1 Internal Absorption of Solar Radiation

The absorption of solar radiation is not solely a surface phenomenon.

Short wave radiation can be transmitted to depths of the order of 3 to 30

meters, depending on the clarity of the water, while longer wave radiation

is absorbed very near the surface. Dake and Harleman (1969) have shown that

it is convenient to separate incoming solar radiation (insolation) into the

longer wave portion, B, which is absorbed near the surface, and the remain-

ing portion, 1-8, which is absorbed internally. The insolation at any depth

z is described by the equation

S= (1-),sne -Z (2-22)

where n is the extinction coefficient of solar radiation in water. Values

of n and can be obtained from field measurements. is typically in the

range 0.4 to 0.5. q can be related to the Seechi disk depth, dD by the

simple formula

-1
S= 1.7/dD (meters- 1 ) (2-23)

Equation (2-19) is not accurate near the surface (depth <n/3).

If a detailed description of the radiation flux near the surface is

required, Snider and Viskant (1974) have shown that the summation of at

least three exponential terms is needed. This is important for laboratory

experiments with shallow depths (<0.5 meter), but for field applications

(resolution on the order of 1 meter) Equation (2-19) is adequate. On the

basis of Snider and Viskant's experiments in the laboratory a value of



8 0.55 is appropriate.

2.2.2 Advection Due to Through-Flows

The change in a physical quantity at a point due to the movement of

water is called advection. The energy budget of a lake or reservoir is

increased by heat entering with incoming water and is decreased by heat

leaving with outgoing water. Within a water body the flow patterns due to

inflows and outflows redistribute heat as the water moves. Elder and

Wunderlich (1968) have shown by dye tests in Fontana Reservoir that the

horizontal velocity profile of an inflow may be approximated by a Gaussian

curve, although the dependence of the standard deviation is not known. The

outflow horizontal velocity profile may also be treated as Gaussian. Koh

(1964) and Kao (1965) have suggested expressions for the outflow standard

deviation. Horizontal water movements due to inflows and outflows may cause

vertical displacements of water as the continuity condition is satisfied.

2.2.3 Seiching and Wind Mixing

Wind stress acting on a water surface induces currents that drive

water downwind. As a consequence of the currents and the return flows the

isotherms are tilted. When the wind stress stops, the isotherms return to

a horizontal position, overshoot and set up an oscillatory motion called

seiching. In some cases seiching may be severe and the system can not be

treated as one dimensional.

Mixing is associated with the wind induced currents. When a lake is

unstratified, the wind may cause the water to circulate through the entire

depth of the lake, but when a lake is stratified, the induced currents are

confined by the thermocline, leaving the hypolimnion relatively unaffected.



Thus in a stratified lake, wind stress at the surface may not directly

create turbulence in the hypolimnion. Turbulence in the hypolimnion is

only created indirectly by such mechanisms as degradation of internal waves

and internal seiches and by water withdrawal.

2.2.4 Convective Mixing

Another type of large scale water movement occurs when a density

instability develops. The denser upper water sinks, resulting in

turbulence and mixing and the elimination of the instability. This type of

turbulence is called convective mixing.

2.2.5 Diffusivity

Molecular diffusion transports heat whenever temperature gradients

are present. Although molecular diffusion is generally small, it is often

included in numerical models for computational convenience.

Turbulent diffusion transports heat whenever temperature gradients

and turbulence are present. The causes of turbulence are varied and some-

times ill-defined. Sources include convection, wind mixing, entrance mixing

of tributaries, fish and people swimming, boats and precipitation.



CHAPTER III

SENSITIVITY OF THE M.I.T. RESERVOIR MODEL TO VARIOUS PARAMETERS

The major distinction between lakes and reservoirs is that lakes

have negligible inflows and outflows while the flow through reservoirs is

significant. Thus, the relative importance of heat transport mechanisms

may be different in reservoirs and lakes.

To ascertain which heat transport mechanisms must be understood and

modeled in detail, so as to predict the vertical temperature structure of

a lake or reservoir, it is necessary to investigate the sensitivity of the

vertical temperature profiles to the magnitude of the various transport

mechanisms in a given mathematical model.

In this chapter, the M.I.T. Reservoir Model, described below, is

used as the basic mathematical model for the investigation of the sensi-

tivity of predicted temperature profiles to various transport mechanisms.

Parameters which are examined include through-flow, vertical eddy diffu-

sivity, the time step corresponding to the time scale of the transient

meteorology, and the extinction coefficient of solar radiation in water.

The emphasis of this chapter is not on verification or prediction, but

rather on the relative influence of the parameters.

3.1 The M.I.T. Reservoir Model

The M.I.T. Reservoir Model is a one-dimensional, time dependent,

variable area model based on the absorption and transmission of radiation,

diffusion, convection, and advection due to inflows and outflows. A detailed

description and a user's manual are given by Ryan and Harleman (1971).



The basic heat transport equation in the vertical direction is

obtained by considering heat and mass flow through an internal control

volume taken as a horizontal slice of the water body. The model schemati-

zation is shown in Figure 3.1. The slice has a thickness Az and a

horizontal area A(z). River inflow enters the element at the upstream

end and outflow leaves through the downstream end. The basic heat transport

equation for an internal element is

Bu.T* Bu T z
aT 1 Ea 3 T 1 i o 1 z

S+ (QT) = zz] + (3-1)
3t A Dz v A 3z az A A pc Dz

where T is the temperature at depth z, A = area of the element, B = width

of the element, ui = horizontal inflow velocity, T. = temperature of the

inflow, u = horizontal outflow velocity, Q = vertical flow rate, z

internal short wave solar radiation flux per unit horizontal area (see

Equation (2-19)), E = vertical turbulent diffusion coefficient, assumed

constant with depth, c = heat capacity of water and p = density of water.

The quantity pcT represents the heat per unit volume and it is assumed that

pc is constant. The equation is solved using an explicit finite difference

scheme.

To satisfy the surface boundary condition, the governing equation for

the surface element includes in addition to the terms for the intermediate

layers, the heat fluxes due to surface phenomena, i.e. back radiation,

evaporation, conduction, atmospheric radiation, and the portion of the solar

radiation which is absorbed at or near the surface,

[ + - -4 -P 1 (3-2)
pcAz sn an br e cs
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Figure 3-1 Schematization and Control Volume for Mathematical
Model
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Equations (2-9), (2-10), (2-16) and (2-17) are used to compute the fluxes.

It is assumed that there is no heat flux to or from the earth through the

bottom or sides of the lake.

Horizontal velocities are computed from inflow and outflow rates,

assuming Gaussian velocity distributions about the entry and exit eleva-

tion. The width of the Gaussian outflow profile is a function of the

vertical stratification and is computed with a modified Kao equation (1965).

There is a built-in cut-off value of the gradient which restricts the with-

drawal layer to the hypolimnion. When there are multiple outlets at

different elevations, the velocity profiles are superposed. Entrainment

of lake water by inflowing river water is included as an option. The river

water is mixed with water from the surface elements in a user specified

ratio, changing both the temperature and volume of the inflow. Inflows are

assumed to enter the main water column centered at the elevation at which

the density is equal to the inflow density. The width of the Gaussian

inflow velocity profile is fixed. When entrance mixing is considered, the

outflow velocity from the surface layer due to the entrainment into the in-

flowing river water is computed also.

Vertical velocities are computed from the continuity equation for

each element. Thus

aQV
u AzB-u AzB = Q-[Q +- Az] (3-3)

where

= B(u.-u 
)

z 1 o



z z
Qv(z,t) = B ui (z, t)dz-B u (z,t)dz (3-4)

o o

The approach taken in the M.I.T. Model in selecting a constant

vertical diffusion coefficient is to subordinate the importance of

turbulent diffusion and to take all other known forms of heat transport

into account as accurately as possible, including the turbulent mixing

induced by inflows as they enter the main water body. Molecular diffusion

is included as a minimum, depth-independent value for the diffusion

coefficient for computational convenience in the numerical scheme and for

use in connection with laboratory experiments, where turbulence is generally

absent. If marked discrepancies occur between the predicted profiles and

measured profiles, an allowance for turbulent diffusion is made by uni-

formly increasing the value of the diffusion coefficient. It has been found

that in general a value for the diffusion coefficient of fifty (50) times

molecular diffusivity gives acceptable results in reservoirs. At times when

there is a net cooling at the surface, convection due to density instability

plays an important role in determining the temperature profile. Whenever a

density instability exists, elements adjacent to the instability are mixed

to eliminate it in such a way that thermal energy is conserved. This is a

modification of the model described by Ryan and Harleman (1971), which checks

for instabilities using the temperature profile. The technique used for

locating density instabilities with the temperature profile is incorrect for

temperatures below 40C, while the technique involving the density profile is

correct to 00C. When convection eliminates near surface temperature



gradients, the choice of a vertical diffusion coefficient has little

effect on the temperature distribution in the surface mixed layer. Under

these conditions the diffusion coefficient has its primary effect in the

hypolimnion.

The choice of element thickness and time step is subject to the

numerical stability constraint

At < 1
2 2

(Az)

An additional numerical constraint is the requirement that the through-flow

through an element during a time increment must be less than the volume of

the element. This constraint need not influence the choice of element size

or time step, however, because the model has an internal provision for sub-

dividing any time step in which this numerical stability constraint is

violated. The model provides a sufficient number of sub-time steps to

satisfy the constraint. The predicted profiles are not sensitive to the

element thickness for element sizes in the range 0.6 meters to 2 meters.

3.2 Through-Flow

Internal flow patterns in a stratified reservoir may play an important

role in transporting heat. The velocity distribution is influenced by

inflow and outflow conditions and by the temperature (density) distribution.

The vertical flow rate at a given elevation, Qv(z,t), is a function both of

the magnitude and location of the inflows and outflows and is given by

Equation (3-4).

Figure 3-2, taken from experiments done by Ryan and Harleman (1973)

in the M.I.T. Reservoir Flume, illustrates the influence of flow rate and
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outlet elevation on the temperature distribution. A submerged outlet draws

the warmer surface water down at a velocity proportional to the flow rate.

When the thermocline is at the elevation of the outlet, the strong tempera-

ture gradient results in a very narrow withdrawal layer which prevents

further downward development of the interface.

The vertical transport of heat by advection is often large enough to

dominate the transport of heat by diffusion, especially when the reservoir

has a deep outlet. By non-dimensionalizing the governing equation,

Equation (3-1), the relative influence of heat transport by advection

compared to heat transport by diffusion in a given lake or reservoir may be

determined. If the scaling parameters selected are Q, the discharge rate,

D, the depth at which the outlet is located, A, the horizontal cross-sec-

tional area at the depth of the outlet, E, the vertical diffusivity and

o/pc the non-dimensional governing equation 
is

u. T u T

3T, 1 AE 1 a T, D i i* D o *

t, + Az T  = [] AE + [ /2 ]  [ ]  L,
t v * DQ A* az az* Al/2 L* A/2 L

+

Non-dimensional variables are indicated by an asterisk. Two dimensionless

quantities are obtained. The quantity /2 is a geometric shape factor.
A1/2

AE
The quantity is the ratio of the rate of heat transport by diffusion

AE

to the rate of heat transport by advection. When - << 1i, advection
QD

AE
dominates diffusion, while when >> 1, diffusion dominates advection.

QD

When is of the order of one, the transport mechanisms are competitive.
QD



A comparison of model predictions for two reservoirs with different outlet

conditions illustrates the use of this parameter.

The outlet of Fontana Reservoir, located on the Little Tennessee

River in North Carolina, is approximately 60 meters beneath the surface.

9 3
The reservoir has a volume of 2x10 9 m and an average outflow rate of

8x106 m 3/day. Applying Orlob's criteria for stratification, Equation

(1-1), to the reservoir gives IFD = 0.01, therefore a one dimensional model

is applicable. Predicted and measured profiles in Fontana Reservoir,

Figures 3-3 and 3-4 (from Huber and Harleman (1968)), show that the role of

advection in transporting heat vertically downward dominates over diffu-

sion. An increase in the diffusion coefficient by a factor of 100 results

in very little change in the predicted temperature profiles. With E equal

2 AE -4
to molecular diffusion (.0125 m /day), AE = 7x10 , while with E equal to

100 times molecular diffusion, AE = 7x10- 2 , indicating that in both cases
QD

advection dominates diffusion.

A second, hypothetical reservoir located in the mid-Atlantic states

has a volume of 2x108 m3 , a surface outlet (D .5 m) and an average

release of 5x105 m3/day. Predicted temperature profiles accounting for

inflows and outflows are essentially the same as predicted profiles

neglecting inflows and outflows. Figures 3-5 through 3-8 show that, when

there is no through flow, increasing the diffusion coefficient by a factor

of 50 results in large differences in the predicted temperature profiles.

The figures should be read by relating pairs of curves, A and C or B and D,

having equal values of the extinction coefficient. With E equal to molecu-

lar diffusion, AE - .15, while with E equal to 50 times molecular
QD
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AE
diffusion, QD = 7.5, indicating that in both cases diffusion is important.

QD

It is important when predicting the temperature structure of a deep

reservoir or lake to know the magnitude and elevation of the inflows and

outflows. In water bodies with surface outlets there may be little down-

ward transport of heat by advection, especially if the flows are small, and

thus accurate knowledge about the other heat transport mechanisms is impor-

tant.

3.3 Vertical Diffusivity

The M.I.T. Reservoir Model has the option of including a depth

independent vertical turbulent diffusivity, which may be any arbitrary

multiple of molecular diffusivity. As shown in Figures 3-3 and 3-4, when

the model is applied to a reservoir with through flows, the predicted

profiles are relatively insensitive to the value of the turbulent diffu-

sivity within the range of one to one hundred times the molecular value.

However, when the model is applied to a lake, with no through flow as in

Figures 3-5 through 3-8, the predicted profiles are so sensitive to the

value of the vertical diffusivity that choosing a value of vertical diffu-

sivity greater than molecular amounts to tuning the profiles to the data in

some average sense. Therefore, in lakes it is important to represent the

effects of turbulence on the temperature profile. This can be done with a

time-varying depth-dependent turbulent diffusion coefficient or with an

explicit time-dependent wind mixing scheme. These approaches will be

discussed further in Chapter V.

The heat content of a water body can be computed from the temperature



0

C,5
LU

10I

LU 15

20

Figure 3.5

0

5

10

15

20

Figure 3.6

Comparison of Predicted Temperature Profiles Using
Different Diffusion and Extinction Coefficients

Comparison of Predicted Temperature Profiles Using
Different Diffusion and Extinction Coefficients

A 50x molecular diffusivity
-i

n = 1.0 m

B 50x molecular diffusivity

n = 0.125m-1
S= 0. 125 m

C molecular diffusivity
-i

' = 1.0 m-1

D molecular diffusivity

fl = 0.125 m-1
fl = 0.125 m



0

LU

25

201

Figure 3.7

V)

LU
H-

8 12 16 20 24 28 C

Comparison of Predicted Temperature Profiles Using

Different Diffusion and Extinction Coefficients

-. -'-I I-

5-

10

-T-

O-
J 15 -

20

I

C - D-

I I
OCTOBER 22, 1974

I 1 I I I I II I

8 12 16 20 24 28 C
Figure 3-8 Comparison of Predicted Temperature Profiles Using

Different Diffusion and Extinction Coefficients

A 50x molecular diffusivity
-i

n = 1.0 m-1

B 50x molecular diffusivity

S= 0.125 i-1

= 0.125 m

C molecular diffusivity
-i

n = 1.0 m-1

D molecular diffusivity

n = 0.125 m-1
S= 0.125 m

_ I L I I C I ITI I



profile and the area-depth relationship. Figures 3-5 through 3-8 indicate

that by changing the vertical diffusivity (or the extinction coefficient)

large differences in the predicted heat content can be caused without

influencing the surface temperature very much. Figure 3-9 shows the time

history of the heat content of the lake in case A and case C. The differ-

ence in heat content is due to different values for the surface heat fluxes

that are functions of surface temperature, e.g. evaporation, conduction and

back radiation. In order to determine the relative importance of each of

these fluxes in causing a difference in heat content, consider the differ-

ence in heat content between case A and case C. The upper solid line in

Figure 3-10 shows the time history of the difference in the heat content

for the two cases. The difference between the combined evaporative and

conductive heat losses and the difference between the back radiation heat

losses for case A and case C have been computed. As expected from conserva-

tion of energy considerations, the sum of the cummulative difference in

evaporation, conduction and back radiation losses is equal to the differ-

ence in heat content. Figure 3-10 indicates that the difference in heat

content is principally due to the difference in the evaporative-conductive

heat losses. The small difference between the predicted surface tempera-

tures is due to the fact that the surface temperature is primarily deter-

mined by the meteorological conditions. Persistent small differences in

surface temperature can account for large variations in the heat content.

3.4 Extinction Coefficient

The reciprocal of the extinction coefficient is a measure of the depth

of penetration of solar heating. In clear water short wave radiation is
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transmitted to large depths, causing deep heating and small gradients

while in turbid water, the depth of penetration is small and steep gradients

develop. The extinction coefficient for distilled water is .03/m and for

Lake Tahoe, noted for its exceptional clarity, it is .08-.1/m. Turbid

lakes may have extinction coefficients of the order of 1-2/m.

Pairs of temperature profiles computed with no advection, A and B

or C and D, having equal diffusivities and extinction coefficients of

0.25/m and 1/m are shown in Figures 3-5 through 3-8. These values are

characteristic of the range of values observed in nature. As is the case

for diffusivity, the value of the extinction coefficient influences the

heat content of a lake, without causing significant differences in the sur-

face temperature for the reasons mentioned previously. It is important,

therefore, to use a value of the extinction coefficient determined by field

measurements using the Sechi disk.

3.5 Time Step

Meteorological data is usually available as daily averages or as

three hour averages. Since the cost of running a model is directly related

to the number of time steps in the calculations, the sensitivity of the

predicted profiles to the time scale of the transient meteorology is of

interest. Figure 3-11 compares a temperature profile predicted using daily

averaged meteorology and a corresponding model time step of one (1.0) day

with the profiles predicted for that day using three hour averaged meteorol-

ogy and a model time step of three hours (0.125 day). It shows that the

model feels the influence of diurnal meteorological fluctuations only near

the surface. This is in accord with observations. Long-term simulations of
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the surface temperature using different time steps corresponding to differ-

ent averaging periods for the meteorology are shown in Figure 3-12. The

computed variation in surface temperature over a day is between 2-30 C.

Thus, unless diurnal temperature fluctuations in the upper 2-4 meters of

a water body are of specific interest, the use of daily averaged meteoro-

logical inputs with a corresponding time step is adequate.

3.6 Summary

AE
A dimensionless parameter, , which is a measure of the relative

QD

importance of advection and diffusion as heat transport mechanisms has been

defined. When deep outlets release substantial flows from a reservoir, the

temperature structure is dominated by advection; thus in this case it is

more important to model advection than it is to represent the vertical

diffusivity accurately. When there is little through-flow, as in a lake,

or the only releases from a reservoir are from surface outlets, vertical

diffusivity becomes significant and the representation of the vertical

diffusivity governs the predicted temperature profile. Thus, when vertical

diffusivity is a significant heat transport mechanism, it is important to

model sources of turbulence other than convection, especially during the

early part of the heating season when convective mixing is generally absent.

The major source of turbulence which has been omitted thus far from the

M.I.T. Reservoir Model is wind mixing. The remainder of this investigation

will focus on the development of a mathematical representation of the

influence of wind mixing.



CHAPTER IV

REVIEW OF LAKE AND RESERVOIR MODELS

Mathematical models for the time-dependent thermal structure of

lakes and reservoirs range from phenomenological descriptions of the

general seasonal behavior (Hutchinson (1957))to numerical models that

calculate the temperature distribution and flow pattern in a water body

at intervals of a minute or less. Numerical models of water bodies can

be divided into three groups depending on the length of the time step

used. Models having a time step of a month (Beard and Willey (1970),

Goodling and Arnold (1972), Burt (1974)), use time averaged data and are

useful for predicting seasonal trends over the course of a simulation

lasting several decades. However, they can not provide information about

daily transient variations in the temperature structure. Models

requiring a time step of the order of seconds or minutes provide a

wealth of information about short term fluctuations in the flow pattern

and surface configuration. They solve the Navier-Stokes equations (in

two dimensions (Robert and Street (1975) or three dimensions (Spraggs and

Street (1975))), the continuity equation and a heat flux equation

simultaneously. These models are primarily concerned with the flow

pattern and the surface configuration since it is the flow equations and

not the heat flux equation that necessitates the short time step. These

models are too expensive to use for long term simulations of the tempera-

ture structure of a water body. Models having a time step of a day

strike a balance between the two extremes just mentioned. They can be



used to predict transient temperature variations but not internal flow

patterns. They are, in general, inexpensive enough to use for simula-

tions lasting a decade.

In this chapter, numerical models with a time step of the order

of one day will be reviewed. The review will be limited to models

applicable to lakes and to reservoirs which satisfy the stratification

criteria

HV ' r
g az

and

4x-7W2 L
h > 4x10 W P th >
m h Ap 2

where h is the epilimnion depth in mid-summer. (see Chapter I).
m

Although no lake or reservoir has completely horizontal isotherms at all

times during the year, for practical purposes, a time dependent, one-

dimensional vertical temperature distribution is sufficient to define

the thermal structure of water bodies that satisfy these criteria.

Current one-dimensional models can be categorized into two classes, those

that do not account for through-flow and thus are only applicable to

lakes, and those that do account for through-flow and thus can be applied

to reservoirs. Several models in each category will be presented in

this section, starting with lake models.
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4.1 Lake Models

4.1.1 Rahman and Marcotte Model

Rahman and Marcotte (1974) schematize lakes as having two dis-

tinct regions, an isothermal surface layer and a stratified diffusion

layer beneath it (see Figure 4-1). Since the upper layer is isothermal,

the heat exchange at the surface causes a uniform temperature change

over the depth of the mixed layer. The governing equation for the sur-

face layer is

aT Qn
s _ n (4-1)

at p cz

where T is the surface temperature, ps is the density of the water in

the surface layer, c is the heat capacity of water and zs is the depth

of the surface layer. Qn, the net heat flux into the surface layer, is

the difference between the net surface heat flux, n, and the heat flux

into the diffusion layer, described below. It is assumed that all short

wave radiation is absorbed in the surface layer.

The depth of the isothermal layer is assumed to vary linearly

with time from a depth of 0 meters in January at ice melt to a depth of

100 meters in October. This restricts the model as formulated to lakes

deeper than 100 meters, or the model must be stopped before October.

The isothermal layer depth assumption is not representative of field

data, since isothermal conditions are observed through March. The

approach implies that the thermocline forms in all lakes at the same



time and descends at the same rate, regardless of the latitude and

climate.

In the subsurface layer, heat transport occurs only by molecular

diffusion. The penetration of short wave radiation is neglected, a

reasonable assumption when the surface layer is deep, but not realistic

at the start of the year when the surface layer is only a few meters

deep. The governing equation for the diffusion layer is

T 3 aT
- [E(z,t) ] (4-2)

t = -z 3z

where E(z,t) is molecular diffusivity. Its weak dependence on T(z,t)

is considered. As a boundary condition, the temperature at the top of

the diffusion layer is set equal to the surface layer temperature. The

temperature at the bottom of the diffusion layer is held constant, a

reasonable assumption only if the lake is very deep. The rate of heat

transfer from the surface layer to the diffusion layer varies with time

and is related to the variation of the surface temperature with time.

The non-linear partial differential equations are solved using

a similarity technique. The heat transport mechanisms eliminated by the

initial assumptions of this model cannot be added to it easily because

of the solution technique, so the primary criticism of this model is

its inability to accommodate other heat transport mechanisms.



Figure 4-1 Schematic of Temperature Profile Computed
by Rahman and Marcotte Model

4.1.2 Sundaram and Rehm (Cornell) Model

Sundaram and Rehm (1973) constructed a model of the temperature

structure of deep lakes based on the interaction between wind-generated

turbulence and the stratification of the water body. The interaction

appears in the expression for E(z,t), the eddy diffusivity. The eddy

diffusivity is taken as the product of the eddy diffusivity in the

absence of stratification, E', given by

E' = cu, (4-3)

where c is a coefficient that depends on the lake (for Lake Cayuga

c = 2.82x10- 2 m) and u = /To-p = friction velocity due to the stress

exerted by the wind, and some function of the stratification. Sundaram
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and Rehm suggest

-n
E(z,t) = E'(1+GRi) (4-4)

where Ri, the local Richardson number is

2 3p
gz

Ri =
u

and c is an empirical constant equal to 0.1 and n is an empirical

constant equal to 1. In the model, eddy diffusion is entirely respon-

sible for the vertical transport of heat. Advection and the penetration

of short wave radiation are neglected. The governing equation in the

model is

-T -- [E(z,t) D]
at 3z az

Some restrictions on the applicability of Equation (4-4) are made.

First, after the formation of a thermocline, the water below the thermo-

cline is sheltered from the effects of the wind by the steep density

gradient. Thus, Equation (4-4) is valid only above the thermocline,

defined as the depth at which E attains its minimum value. In the hy-

polimnion, the value of E is set equal to the minimum value predicted by

Equation (4-4). This value is constant with depth but not with time.

When convective mixing occurs because of density instabilities,

convection is the dominant turbulent mechanism. It is not related to



the wind speed. In order to account for convective mixing, a large

constant value of E, say Em, is introduced into the eddy diffusivity-

depth relation in those regions where there is a density instability.

Equation (4-4) is matched to the value of Em at the depth separating

the stable and unstable parts of the profile so that E remains a

continuous function of depth.

The neglect of the change in area with depth in the governing

equation introduces a distortion in the vertical scale of the predicted

temperature profile, which makes direct comparison of predicted and

measured profiles difficult. Bedford and Babajimopoulis (1977) present

a method to empirically relate the eddy diffusivity for a model with a

constant area-depth relation to the eddy diffusivity for a model with

variable area-depth relation, so that the same profile is obatined in

both cases.

In the literature, there is not agreement on the form of the eddy

diffusivity. Henderson-Sellers (1976) examined five proposed expressions

for the neutral eddy diffusivity and suggests a dependence of E' on the

wind shear and the current structure. Newbold and Liggett (1974) have
-3

suggested that the values a = 1.76x10-3 and n = 0.5 be used in Equation

(4-4). At present, it is concluded that there is no generally satis-

factory specification of the turbulent diffusivity as a function of depth

and time.
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4.2 Reservoir Models

4.2.1 Orlob and Selna (WRE) Model

Although there are a number of important differences, the Orlob

and Selna Model (1970) and the M.I.T. Reservoir Model (Ryan and

Harleman (1971)) are conceptually very similar since both include the

effects of the absorption and transmission of radiation, advection due

to inflows and outflows, convection and diffusion. The governing

equation is derived by considering an internal control volume as shown

in Figure 3-la. In the notation of this report, the governing

equation of the Orlob and Selna model for an internal element is:

Bu.T BuT
T 1 1 3 AT in o 1 z
T+ a Q T - AE(z,t) + (4-5)-t A Az v A z z A A pc az

where E(z,t) is the eddy diffusivity. The other parameters are as

previously defined. The equation is solved using an implicit finite

difference scheme.

Inflows are assumed to enter the water column at the elevation at

which the density is equal to the inflow density. Horizontal velocities

are computed from inflow and outflow rates, assuming a uniform velocity

throughout the inflow or withdrawal layers. The width of the inflow or

withdrawal layer, w, is computed based on Debler's (1959) critical

densimetric Froude number criteria



1/2

Q ( o = 0.24
2 3p

Bw -g 3z

Q is the flow and B is the element width at the outlet or inflow level.

The value of w obtained is subject to the restriction that the layer

can not extend through physical boundaries or the thermocline.

Vertical velocities are computed from the continuity equation for

each element.

Orlob and Selna include convective mixing as a mechanism separate

from "effective" diffusivity. Mixing is induced whenever there is a

density instability. The elements adjacent to the instability are mixed,

conserving the thermal energy of the system, until the instability is

eliminated.

The "effective" diffusion coefficient can have a significant

influence on the predicted profiles when the through flow is small. In

general it is a function of space and time and cannot be determined

independently of the environment. For an existing lake or reservoir,

it can be determined using measured temperature profiles and solving

Equation (4-5) for E. This approach has been applied to a number of water

bodies and a characteristic shape, but not scale, can be discerned for

the summer stratif[cation period. The approximation to the general shape

suggested by Orlob and Selna is

-6z

E(z,t) = E (t)e z ' zT (4-6a)



E(z,t) = E(zT,t) z > zT (4-6b)

where E (t) is the diffusion coefficient at the surface, zT is the depth

at which the thermocline is located and 6 is a decay coefficient. The

values of Eo(t) and E(zT,t) depend on the particular reservoir. zT

is computed from the temperature profile and is defined as the depth at

which the second derivative of T with respect to z is zero. 6 is

uniquely determined by the ratio E(zT,t)/Eo(t) and the depth zT.

Reported values of Eo are of the order of one hundred (100) to one

thousand (1000) times the value of molecular diffusivity (0.012 m2/day).

In an earlier version of the model, Orlob (1969) suggested another

form for the "effective" diffusion coefficient based on the stability of

the profile.

E(z,t) = E (t)e z < zE (4-7a)

-8 1.3 -. 7
E(z,t) = 1.5x10 m /sec S zE < z < zH (4-7b)

-4  2
E(z,t) = 2.5x10 m /sec z > zH (4-7c)

1 Ap
where S = stability of the water column = . z is the depth at

p Az E
-6 -1

which S = 10 m while zH is the depth at which S =

-8 1.3 1/.7
1.5x10 m e) . The value of 6 is such that

-4 2
2.5x10 m /sec



-8 1.3 -.7

e 6zE = 1.5x10 m /sec (10- 6 ) . In the absence of better data
o

from field observations in the lake or reservoir being considered, Orlob

-4 2
suggests setting E = 2.5x10 m /sec and 6 = 0. Both forms of the

"effective" eddy diffusivity are shown in Figure 4-2.

Orlob noted that the use of Equation (4-7) may not give an

accurate representation of the temperature profile in the hypolimnion

for the following reasons. If the value of E at the thermocline is used

for the value of E(zT,t), E is too small in the hypolimnion. Heat is

trapped in the surface layers and not enough heat is transported down-

ward by turbulence. If the value of E(zT,t) is selected such that the

surface temperature is represented accurately, the temperature at the

thermocline is too high while the temperature in the hypolimnion is still

too low. He concludes that Equation (4-7) is applicable only to res-

ervoirs in which advective flows are the dominant vertical heat transport

mechanism in the deep regions and thus an accurate representation of the

eddy diffusivity is not critical.

It should be mentioned that improperly treated advection may appear

in the diffusion coefficient. It is suggested therefore that before an

empirical diffusion coefficient is resorted to, advection as well as

known sources of turbulence such as convection and wind mixing be treated

as quantitatively as possible. The necessity of using values of E deter-

mined from measured profiles weakens the predictive value of a model when

there is no field data for a specific lake or reservoir available.

Values of E derived for other lakes should be used with caution since
O
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each lake has a different internal circulation pattern influencing E.

When there is field data on the temperature structure available for

computing E(z,t), the extrapolation of the derived "effective" diffusion

coefficient to periods other than the calibration periods removes the

causal relationship between sources of turbulence and turbulent diffu-

sion.

Parker, Benedict and Tsai (1975) report that this model is sensi-

tive to the choice of the layer thickness for layer thicknesses in the

range 0.6 meters to 2.0 meters. In general they found that the thicker

the layers, the higher the temperature over the entire profile. Thus

the choice of the element thickness must be made with care, based on a

knowledge of observed profiles and on a consideration of the numerical

stability criterion that the through-flow through an element during a

time increment must be less than the volume of the element.

4.2.2 Imberger Model

The Imberger, Patterson, Hebbert and Loh (1977) model is based on

surface heating and cooling, the absorption and transmission of radia-

tion, inflows and outflows, diffusion and wind mixing. Lakes and res-

ervoirs are schematized as a series of horizontal elements with differ-

ent cross-sectional areas and thicknesses. A Lagrangian formulation is

employed to keep track of the elements, eliminating the numerical

dispersion intrinsic to Eulerian models. Because of the Lagrangian

scheme, inflow corresponds to an insertion of volume and outflow to a

reduction. Those elements experiencing a change in volume shift the



elevation of the elements above them. The volume of each element is

kept within specified bounds by splitting or combining elements on the

basis of volume as necessary. Vertical velocities are not computed

since vertical advection of the fluid is associated with the motion of

an element, not with the motion of fluid across the horizontal element

boundaries.

Outflow is apportioned to the elements surrounding the outlet

elevation assuming a cosine bell velocity distribution

w(H-z)u = u (cos + 1) (4-8)
max w

where H is the total depth of the water body and z is the depth of the

element. u is determined from conservation of mass. w is a measure
max

of the withdrawal layer thickness and depends on the parameter R =

FGr / 3  F, the densimetric Froude number, is Q/(NL 2 ) , while Gr, the

Grashoff number, is N L /v2 .  Q is the discharge, L the width of the
1/2

outlet opening, N the Brunt-Vaisala frequency (8 and v the

kinematic viscosity. Two regimes are distinguished

1F 1/2
R 1 w =2LF

(4-9)

R > 1 w = 2LGr 1 / 6

Inflow is assumed to enter the water column at a depth such that

the local Froude number is one. The inflow is distributed over the

elements surrounding the inflow level using the cosine bell velocity



distribution given by Equation (4-8) with the layer thickness parameter

for inflows given by

Q e
w (1 - -) (4-10)

e L

Here Q is the inflow. e is a function of the parameter R and has the

values

R < 1 e = 0.57 LR 2/3(t')
(4-11)

R 1 e = 0.44 LR /2(t')

where the dimensionless time t' = tN/Gr /6 . The development of

Equations (4-9), (4-10) and (4-11) can be found in Imberger, Thompson

and Fandry (1976).

The representation of turbulence and mixing is composed of two

parts. The influence of the wind is patterned on the Kraus and Turner

(1965) mixed layer model for the ocean. The Kraus and Turner model is

discussed in detail in Chapter V. In order to account for the long term

effects of sporadic mixing events in the hypolimnion, a time varying,

depth-independent eddy diffusivity is applied to the hypolimnion. The

magnitude of the eddy diffusivity depends on the reservoir geometry, the

stratification, the magnitude of the inflow and the wind speed. During

periods with little inflow, the eddy diffusivity may be of the order of

molecular diffusivity of heat, while during periods of high flow, it may

be as large as one thousand (1000) times the molecular diffusivity.



During normal flow conditions, the value of the eddy diffusivity is of

the order of the numerical dispersion of an Eulerian solution technique,

thus the gain in using a Lagrangian scheme to compute the temperature

profile is negligible. However, when the concentration of a tracer,

such as salinity, is being computed, the Lagrangian scheme is superior

since the molecular diffusivity of mass is two orders of magnitude

smaller than the molecular diffusivity of heat.

Of the models discussed above, the author has easy access to and

is most familiar with the M.I.T. Reservoir Model reviewed in Chapter

III. Although treatment of wind induced mixing is missing in the pre-

sent version of the model, it treats other heat transport phenomena in

a correct causal manner. It will be used as the basis for the rest of

the work in this report in which the objective is a model equally

applicable to lakes and reservoirs.



CHAPTER V

REVIEW OF WIND MIXING

The influence of the wind in mixing the upper portion of a water

body is an example of the general problem of the development and deep-

ening of interfaces between fluids of different densities and the related

problem of mass or heat flux across the interface. In the literature,

this problem has been approached empirically, analytically and experi-

mentally. In this chapter, results from all three approaches will be

reviewed. Laboratory experiments investigating the mechanisms of mixing

across density interfaces, in conjunction with observations in nature,

have led to the development of models of the influence of the wind in

the establishment and deepening of the thermocline in water bodies,

usually in the ocean. Ocean models of this sort which do not consider

Coriolis effects, and thus can be applied conceptually to smaller water

bodies, will also be reviewed. In addition, an alternative approach to

the representation of wind mixing, the use of a depth and time dependent

turbulent eddy diffusivity will be examined.

5.1 Laboratory Studies

Numerous experiments have been performed to study directly the

formation of mixed layers by turbulence and the rate of entrainment

across the resulting density interface. These experiments provide

evidence that the entrainment velocity, ue, is related to the density

stratification. In the lab, turbulence can be generated by mechanical
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stirring or by the application of a shear stress that induces a mean

turbulent flow. Experimental results for entrainment rate do not seem

to be dependent on the manner in which turbulence is generated. The

experimental results are applicable to the formation and deepening of

an isothermal surface layer in lakes by the action of the wind.

Turner (1968) generated turbulence with a grid located a fixed

distance from an interface between two layers of water with different

densities. It should be noted that although the use of a grid is a

convenient way to generate turbulence, it fixes the scale of the eddies.

In order to study the influence of the molecular diffusivity on the rate

of entrainment, Turner conducted experiments in which the density differ-

ence was due to the inclusion of salt in the bottom layer and experiments

in which the density difference was due to a temperature difference.,

The molecular diffusivity of heat is approximately two orders of magni-

tude greater than the molecular diffusivity of mass (salt). Using an

overall Richardson number based on the stirring frequency, n, and the

length scale of the grid (and hence the eddies), k, he found for both

sets of experiments, for Ri = gA < 1i,n pn2
pin

e ac Ri (5-1)
nT n

dH
where nk is a scaling velocity, ue, the entrainment velocity, is dt

H is the depth of the mixed layer and Ap is the density difference

between the upper and lower layers. For Rin > 1, a different relationn
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is obtained when the density difference is produced by salt,

u -3/2

ec Ri (5-2)
n n

His results are shown in Figure 5-1.

Kato and Phillips (1969) generated turbulence by applying a stress

with a rotating plastic cover on the surface of saline water with a

linear density stratification in an annular tank. The results were

consistent with Equation (5-1). Kato and Phillips defined an overall

Richardson number Ri* = gApH where u, is the friction velocity due

to the surface stress /To/P , H is the depth of the mixed layer, and

Ap is the density jump at the interface, and found

2
e -1 pu*

- 2.5Ri = 2.5 (5-3)
u* gApH

The constant 2.5 has an uncertainty of about 30%. Although Kato and

Phillips define the overall Richardson number differently than Turner

and use a different scaling velocity, this only affects the propor-

tionality constant, the functional dependence was not altered. If the

initial stratification is linear, p(z) = p o-z, Equation (5-3) implies

that depth of the mixed increases as

15tp 1/3

H(t) = u ( o) (5-4)

Moore and Long (1971) applied a shear stress by injecting and

withdrawing fluid from an annular flume. They examined entrainment in
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systems with either salt or temperature induced linear stratification.

Their results agree with Equation (5-1).

Wu (1973) provided a shear stress by passing wind over a flume

containing two layers of water of different density. He obtained the

relation

e -1
= 0.23Ri, (5-5)

u*

The constant of proportionality is much smaller than that found by Kato

and Philips because in Wu's experiment, the flow induced by the wind

was confined to a thin surface boundary layer in the upper layer due to

scale effects.

For small Richardson numbers all the investigators found the same

functional dependence of the entrainment rate on the Richardson number,

regardless of the molecular diffusivity of the substance responsible for

the density stratification, namely

e -1
- Ri (5-6)

u *

where u** is a scaling velocity and Ri** is an overall Richardson

number based on the scaling velocity u**.

Turner originally explained the difference in the functional

dependence he observed at large Rin for heat and mass in terms of an

energy balance.



To explain the difference between the results with mass and with heat

Turner (1968) states:

"an element of heavy fluid in the form of a sheet
... is lifted out of the interface by a large eddy of
the stirring motion, an action which involves a certain
amount of mechanical work. If the velocity of ejection
and the molecular diffusivity are high enough, this
element becomes indistinguishable from its surroundings
before it can fall back, and all the work done in lift-
ing it appears as potential energy. This is the case
for heat, so an energy argument is applicable. For the
same velocity of ejection and a much lower diffusivity,
on the other hand, a heavy sheet of fluid can fall back
to the interface before it has diffused into its surround-
ings. For salt, therefore, only part of the work done
remains permanently as potential energy, and the rest
is dissipated in wave-like motions near the interface".

In the salt case, it is clear that an additional parameter, Km

the molecular diffusivity of the substance responsible for the density

stratification, must be included in the analysis. An additional

dimensionless group can be formed from the parameters. The grouping

gApY1
Ri P = (5-7)** e pKmUI

where Pe = Peclet number = Ul 1/Km, and u1 and 91 are the velocity scale

and the length scale of the energy containing eddies near the interface,

is the appropriate choice. A function of the form

e -1
= Ri**f(Ri**Pe) (5-8)

U1



has the necessary features to describe Turner's experimental results and

is consistent with the phenomenological description given above.

Ri**Pe expresses the balance between buoyancy, which is tending to

return an element of fluid to the interface, and diffusion, which causes

it to merge with the turbulent layer. Ri**Pe is small when Ri** is

small or K is large. Pe effectively had two different values in

Turner's experiments, most of the difference being due to the difference

in the value of K for heat and mass.
m

The experimental work can be summed up as follows:

(1) An energy argument based on the conversion of kinetic to

potential energy can be applied to entrainment across temperature induced

-1
density interfaces because a Ri I dependence holds,

(2) For large Pe, the basic rate of entrainment in the buoyancy

-3/2
controlled turbulent regime is proportional to Ri 3 / 2

Turner showed that Equation (5-3) is equivalent to making a state-

ment about the rate at which the potential energy per unit horizontal

area of the density field is increased by entrainment. In time At, a

layer of thickness AH = u e At and density p+Ap is entrained and replaced

by fluid with density p; the density difference is distributed throughout

the upper mixed layer. The center of mass of the entrained fluid is

therefore raised by H/2. The change in potential energy per unit area

is

A(P.E.) ApAHgH Apu AtgH(5-9)
A 2 2



Manipulating Equation (5-3) gives

A(P.E.) AAu egH 2.5 3
At 2 2 pu A (5-10)

The rate of work per unit area done by shear on the fluid below

is T u where u is the fluid velocity. A representative value for

velocity in the tank experiments is the friction velocity u = /--.

Thus the rate of work done by the shear stress is approximately

Tou A = pu*A (5-11)

Equation (5-10) states that the rate of change of potential energy is

equal to the rate of work done by the shear stress. This can also be

rewritten in a form which expresses the ratio of the rate of change of

potential and kinetic energies.

2.5pu A
= 1 (5-12)

2 ApgHAue(1/ 2 )

In Equation (5-11), there is no depth dependence of the rate of

work done by the surface shear stress. In experiments in which turbu-

lence is generated by other means, Crapper and Linden (1974), Linden

(1975) and Long (1975) have shown that the kinetic energy of the

turbulence decays with depth. In those cases, the rate of change of

potential energy due to entrainment is equal to the rate of work done

at the interface.



5.2 Emperical and Analytical Studies

Blanton (1973) has shown a correlation between the stability,

i.e. the square of the Brunt-Vaisala frequency., N2 =g - where
p az '

g = gravitational acceleration and p = density, and the entrainment

velocity, (the rate at which the thermocline moves downward) in various

lakes. Although the results exhibit wide scatter because the correla-

tion was developed without reference to the wind conditions, the correla-

tion confirms that the rate of entrainment is a function of the

Richardson number.

Phillips (1966) formulated the momentum equation for the develop-

ment of flow in a stratified water body exposed to a wind stress at the

surface. In order to solve the momentum equation it is necessary to

assume similarity of velocity profiles in the water. Hansen (1975)

asserts that in principle, the velocity in the surface layer can be

related to the shear stress. He treats the case of flow in a deep two

layered lake. Since the wind action tilts the isotherms, the lake is

viewed in two dimensions. Making the assumptions:

i. uniform density in the upper layer,

ii. sufficient lake length for fully developed flow,

iii. Coriolis forces can be neglected,

iv. horizontal pressure gradients are small,

v. the Boussinesq approximation holds.

Hansen solves the momentum and continuity equations and shows that



ue -1= 2.2Ri, (5-13)
U*

gApH
where Ri*, the overall Richardson number is defined as Ri, = 2

Pu,
H is the depth of the upper layer and Ap is the density difference

between the layers. Equation (5-13) agrees with Equation (5-3) deduced

from laboratory experiments.

5.3 Bulk Ocean Models

Kraus and Turner (1967) developed a time dependent, one-dimension-

al model of the development of the seasonal thermocline in the ocean that

includes wind mixing, surface heating and cooling, and the transmission

and absorption of short wave solar radiation in the wind mixed layer.

Advection is not considered. Their model is based on an energy argument

which relates the change in potential energy of the water column to the

input of kinetic energy by the wind. The potential energy changes both

by changes in density due to heating and cooling and by entrainment of

cooler water into the wind mixed upper layer. The model assumes (as

discussed in Section 5.1) that the rate of kinetic energy input per unit

area available for changing the potential energy per unit area is given

by

3
To = pu, (5-14)

where u* is the friction velocity and T is the surface shear stress

due to the wind. Convective mixing of density instabilities is an
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intrinsic part of the computation of the mixed layer depth. The lower

region of the water remains at the initial temperature or the tempera-

ture of the mixed layer when it last reached the given depth. No verti-

cal diffusion of heat was considered.

Denman (1973) expanded the Kraus and Turner model to include up-

welling and considered the absorption and transmission of short wave

solar radiation in the lower layer. Niiler (1975) considered the rate

of production of turbulent kinetic energy: i) by shear at the mixed

layer interface, ii) by the breaking of surface waves, and iii) by

atmospheric pressure perturbations over the waves. He finds that the

dominant rate of energy input at the mixed layer interface is ToU ,

confirming Kraus and Turner's (1967) depth independent relationship

given in Equation (5-14). Haney and Davies (1976) made simplifying

assumptions in the solution for the mixed layer depth and computed the

temperature profile in the lower region using an arbitrary vertical

diffusion coefficient. Kim (1976) kept convective mixing of unstable

density profiles distinct from the deepening effect of the wind in order

to distinguish between modes of deepening and shallowing of the mixed

layer.

5.4 Lake Models

Rather than solving the governing equations derived in a model

such as the Kraus and Turner (1967) model numerically, Stefan and Ford

(1975) use an alternating heating-mixing algorithm to represent the

influence of the wind in the formation of the thermocline. The model is



intended primarily for application to lakes rather than reservoirs since

advection is not considered. Because of the simplicity of the mixing

algorithm, it will be described in detail.

The water body is schematized as a number of variable area,

horizontally homogeneous elements. Surface heat transfer is considered,

as well as the absorption and transmission of short wave solar radiation.

The input of heat and wind energy are treated separately, even though

they occur simultaneously. During each time step, the change in water

temperature in each element due to heat input through the water surface

is computed. The mixing algorithm is then applied to the updated tem-

perature profile. During mixing, all changes in the density profile are

associated with entrainment.

The mixing rule is based on the ratio of the turbulent kinetic

energy input by the wind to the potential energy of the isothermal wind

mixed layer relative to the element immediately below it. As shown in

Figure 5-2, the summed potential energy of the ith elements above the

jth element is defined as

P.E. = g C A(i)Az(p(j,t)-p(i,t))D(i,t) (5-15)
i

th
where i runs through the elements above the jth layer

A(1) = area of the ith element,

p(i,t) = density of the ith element at time t,

p(j,t) = density of the element immediately below the mixed

layer at time t,
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Figure 5-2 Illustration of the Sensitivity of the Stefan and
Ford (1975) Wind Mixing Algorithm to Element
Thickness



Az = thickness of an element

D(i,t) = distance between the ith element and the jth element
at time t

Since the mixed layer is assumed to be isothermal, it can be shown that

P.E. gAPVmAz = gApAHAz 2 (5-16)

th
where m = the number of i elements in the mixed layer, mAz = depth of

the mixed layer = H, Vm = volume of the mixed layer = AH, where A is

the average cross-sectional area of the mixed layer, and Ap = density

difference between the mixed layer and the jth element immediately below.

A measure of the energy input by the wind is;

K.E. = TuA At =pu A At (5-17)
o * surface * surface

Stefan and Ford state that when the energy ratio K.E./P.E. has

a critical value, it is equivalent to the overall Richardson number

relationship developed by Kato and Phillips (1969). Citing the work of

Linden (1973), the critical ratio is taken as

K.E.E - 1 (5-18)
P.E.

Substituting Equations (5-16) and (5-17) into Equation (5-18) gives

pu A At
K.E. surface 1 (5-19)

P=1 (5-19)
P.E.

ApgHAH(1/2)



Comparing Equation (5-19) and Equation (5-12), the analogous form of the

Kato and Phillips relationship, it can be seen that the two equations

are equivalent, within the accuracy of Kato and Phillips empirical con-

stant, under the conditions that: i) there is no variation of area with

depth; A = Asurface , and ii) in each time step, after heating is applied

to the profile, the depth of the mixed layer is zero. Then H = O+AH =

AH = u At.
e

The mixing algorithm states that if K.E./P.E. < 1, there will

be no mixing, while if K.E./P.E. > 1, layers will be mixed one by one,

and the ratio rechecked after mixing each layer, until the ratio becomes

< 1 (see Figure 5-2).

Because of the mixing algorithm employed, the mixed depth must be

sensitive to the choice of element thickness. Consider the example

illustrated in Figure 5-2. If the ratio K.E./P.E. is slightly greater

than 1, the next element is mixed. Suppose that the element size is

halved and the case run again. It is probable that mixing only the

first of the two elements corresponding to the original thicker element

would be sufficient to make the energy ratio less than 1. This locates

the bottom of the mixed layer at a different depth than in the other case,

and results in a different value for the temperature of the mixed layer.

Stefan and Ford use a rather small distance increment, 0.25 meters, so

the difference in the mixed depth and surface temperature is small. When

typical field size elements of 1 to 2 meters are used, the problem may

become more apparent.



An additional question raised by the mixing algorithm involves

the approximation of the simultaneous input of wind and heat energy.

Should heating or mixing be treated first? Predicted profiles are

sensitive to order chosen, so some sort of iterative procedure would be

indicated.

5.5 Variable Eddy Diffusivity Models

Attempts have been made to incorporate the influence of the wind

in the temporal and vertical variations of eddy diffusivity. In general,

measured temperature profiles have been used to tune predicted profiles

by varying the eddy diffusivity with depth and time. Using this

technique, Jassby and Powell (1975) show that beneath the thermocline

the value of the eddy diffusivity is generally only 10 to 40 times the

value of molecular diffusivity. Sweers (1970) finds a range for eddy

diffusivity in the hypolimnion of various lakes of from 1 to 100 times

the value of molecular diffusivity. In the epilimnion, the values are

typically several orders of magnitude larger. In retrospect, this

approach is not predictive.

Weigel (1964) reports that the eddy diffusivity in the surface

region of the ocean has been considered to be a function of the wind

strength. Computed values have shown considerable scatter and he

proposes that one reason for the scatter is that eddy diffusivity is

related more closely to the wave spectrum generated by the wind than to

the wind itself. Thus not only are the wind strength and variability

important, but the fetch and duration are also important. This technique



requires considerably more input data than do existing lake and reservoir

models.

Henderson-Sellers (1976) has analyzed several empirical-analytic

expressions for the eddy diffusivity in a lake. He follows the approach

of Sundaram and Rehm (1971) and expresses the eddy diffusivity as the

neutral eddy diffusivity, E', multiplied by a function of a stability

parameter having the form of a Richardson number. He recommends a form

of the neutral eddy diffusivity which is a function of the wind shear

and the current structure. This requires a current model to be coupled

with the temperature model of a lake, expanding greatly the scope of

the problem.

Spalding and Svenson (1976) compute turbulent exchange coeffi-

cients from a turbulence closure model which solves the momentum

equations and equations for the turbulent kinetic energy, K, and the

dissipation of turbulent kinetic energy, E. The model is not verified

for buoyancy affected flows.

At present it is concluded that there is no generally satisfactory

specification of the turbulent diffusivity as a function of depth and

time.



CHAPTER VI

MODIFICATION OF THE MIT RESERVOIR MODEL TO INCLUDE WIND MIXING

In reservoirs, the dominant vertical heat transport mechanism is

advection. By accounting for this mechanism, the M.I.T. Reservoir Model

is able to predict temperature profiles in reservoirs in good agreement

with measurements. In lakes, a dominant vertical heat transport mechanism

is diffusion. At present, there is no generally satisfactory representa-

tion of the vertical eddy diffusivity as a function of depth and time.

The M.I.T. Reservoir Model assigns an arbitrary constant value of the

order of 50 to 100 times molecular diffusivity to the vertical eddy diffu-

sivity. Sensitivity studies in Chapter III have shown that the predicted

temperature profiles for a lake are very sensitive to the value of the

vertical eddy diffusivity. The agreement between measured and predicted

temperature profiles in lakes is not satisfactoy.

In this chapter, wind mixing concepts discussed in Chapter V will be

incorporated into the M.I.T. Reservoir Model in place of the arbitary

vertical eddy diffusivity. Molecular diffusivity is retained for compu-

tational convenience and for application of the model to laboratory mea-

surements where turbulence is absent. Bulk ocean models cannot be used

directly as lake models because lakes exhibit a variation of horizontal

cross sectional area with depth which the bulk ocean models do not

consider. The goal is a single model applicable to both lakes and reser-

voirs.



6.1 Proposed Numerical Formulation

In order to incorporate the influence of wind mixing directly into

the governing equation for T(z,t), Equation (3-1), it would be necessary

to express the wind mixing in terms of an eddy diffusivity. However, the

demonstration by Kraus and Turner (1967) of the formation of an isothermal

upper layer due to wind mixing is inconsistent with the Fickian diffusion

term in Equation (3-1). For example, if w'T' represents the turbulent

transport of heat, the Fickian analogy requires

w'T'
aT

E =

aT
and E becomes indeterminant as 3z + 0 in the isothermal upper layer.

An alternative, following the integral equation approach of Kraus and

Turner's ocean thermocline model, was considered. The resulting equations

for a lake or reservoir are much more cumbersome due to the presence of

the through-flow terms and the variation of cross sectional area with depth.

An iterative numerical approach in which heating and mixing in a given

time step are carried out sequentially is adopted. The algorithms for the

heating and mixing steps are described in detail below.

Conceptually, the sequential heating-mixing procedure is as follows.

In each time step, the temperature profile from the previous time step is

incremented by the various heat inputs. The wind mixing rule is then

applied and the depth and temperature of the wind mixed layer are computed.

The surface heat flux is recomputed using the temperature of the wind mixed

layer. This quantity is averaged with the surface heat flux computed



using the surface temperature from the previous time step to obtain a new

value for the surface heat flux. The temperature profile from the previous

time step is reincremented by the various heat inputs using the new value

of the surface heat flux. These steps are repeated until there is no

change in the surface heat flux from one iteration to the next. This

procedure is illustrated in Figure 6-1. Because of the necessity of

dealing with heating and mixing separately and alternately, an implicit

or iterative scheme for the computation of the heat input is required to

avoid the accumulation of errors. This also avoids the problem of obtain-

ing different results when the system is heated and then mixed or mixed

and then heated.

6.1.1 Heating Algorithm

The equation governing the input of heat remains unchanged from the

present model. Setting the eddy diffusivity, E, equal to the molecular

diffusivity of heat, a, Equation (3-1) becomes

DT 1 a iT BuiTi Bu0 1 z
+- A z (QvT )  - (A ) + (6-1)

3t A az v A z z A A pc 3z

The surface layer has an additional term due to surface heat exchange,

sn +an -brO e c
pz(6-2)

pcAzs

In each time step At, Equations (6-1) and (6-2) are solved with an

explicit, forward difference technique. All terms involving temperature

are evaluated using the temperature from the previous time step, that is
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Figure 6-1 Schematic of Iterative HeatingWind-Mixing
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T(z,t) = T(z,t-l)+AT(z,t-l)

where AT(z,t-1) Tzt- At. In particular, the surface heat fluxes

at time t are computed by inserting T (t-l) into the appropriate

equations in Chapter II. A detailed description of the explicit finite

difference formulation of Equation (6-1) can be found in Ryan and

Harleman (1971).

6.1.2 Wind Mixing Algorithm

During a given time interval, the potential energy of the water

column is altered by changes in density due to heating or cooling and by

the re-arrangement of the density profile as fluid is entrained into the

wind mixed layer. This can be expressed as

h e
d(PE)d(PE)

PE(t) = PE(t-1) + d At + d At (6-4)
dt dt At (6-4)

where the superscript h refers to heating and the superscript e refers to

entrainment. The use of Equation (6-1) in the heating algorithm accounts

for the change d(PE) At. Experiments discussed in Chapter V on the
dt

rate of entrainment from a stagnant lower layer by a turbulent upper layer,

in the absence of heating and cooling, have shown that the rate of change

of potential energy is equal to the rate of working of the shear stress

due to the wind, or

d(PE)e At = u 3 AAt (6-5)
dt

(6-3)



The wind mixing rule is based on Equation (6-5). It is assumed that in

each time step, a steady state is reached in which Equation (6-5) is

exactly satisfied. It is applied to the temperature profile after it has

been incremented by Equation (6-1).

Since the shear stress is assumed constant over the time interval,

the right hand side of Equation (6-5) is known. The problem is to

compute the mixed layer depth that is associated with the given change

in potential energy. In the context of the M.I.T. Reservoir Model,

which schematizes a water body as a number of horizontal elements of

thickness Az, the depth of the mixed layer, H, must be expressed as

H = NAz (6-6)

where N is the number of elements of thickness Az included in the mixed

layer. Although N need not be an integer, the suggested technique will

first take N to be an integer and later its fractional part will be

determined. Because of the model structure, N cannot be less than 1.

For an arbitrary initial temperature distribution in a constant

area system, N is found as follows (see Figure 6-2). First, the top

element, element 1, is mixed with the element below it, element 2.

The change in potential energy of this profile relative to the original

profile is

d(PE) e  = AgAz(p( 2) (1))Az (6-7)

The index refers to the element number, with 1 being the surface element.

d(PE)N is compared to Apu*At and if
N=2
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Figure 6-2 Schematic of Wind-Mixing Algorithm
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e 3
d(PE)N=2  < Apu At (6-8)

the next element is included in the wind mixed layer. In general, for

N elements in the wind mixed layer, the difference in potential energy

between the wind mixed temperature profile and the initial temperature

profile is

N
e -

d(PE) = AgAz(p (i) -p . ) Az (6-9)
i=2

where P(i) is the average density of the wind mixed layer when it

incompasses i elements. N is incremented until

d(PE)e Apu At (6-10)
N

In the example this occurs when N = 4. To this point the mixing part of

the algorithm corresponds to the one proposed by Stefan and Ford (1975).

e 3
Since equality of d(PE)N and Apu At is required by the mixing

rule, N in general will not be an integer. The above technique identifies

the smallest integer greater or equal to N, call it M. The non-integer

fraction of N can be found as follows. The energy available for mixing

a portion of element M is known since the increase in potential energy

due to mixing down through element M-1 is known and the total energy

available for use by mixing is known. The difference is the energy

available for mixing a fraction of element M. Call this amount of energy

AM. There is a depth increment AH such that



= ApAHg (M2 )Az(6-11)

where Ap is the density difference between the mixed layer of M-1

elements and element M (element 4 in the example). Solving for AH

AH (M (6-12)
(M-1)Az

g 2

The fraction of element M that can be mixed is AH/Az. The depth of the

wind mixed layer is now determined.

The temperature of the isothermal mixed layer is

(M-1)T Az+T AH
T =(M-1) (M (6-13)

(M-1)Az+AH

where T(i) is the average temperature of the wind mixed layer when it

encompasses i elements. T is the temperature of elements 1 through

(M-1) and a fraction of element M. In the context of the discretized

model, however, an element cannot have more than one temperature

associated with it. The average temperature of element M is

T = AT + TM) (1 AH (6-14)
MAZ (M) Az

where TM  is the average temperature and T(M)  is the temperature of

element M before the initiation of wind mixing.

Implicit in the above derivation is the assumption that the

horizontal cross-sectional area of the water body does not change with

depth. In lakes and reservoirs, the area is generally a function of the



depth, so the following argument for the appropriate area to use in

Equation (6-5) is made. Entrainment can only occur in those parts of

the water body where the water depth is greater than the thickness of

the wind mixed layer. In the shallow regions, the bottom stress

dissipates the turbulent energy without increasing the potential energy

of the system. It is assumed therefore that the area over which the wind

induced shear stress generates turbulent energy used for entrainment is

equal to the area of the next increment of depth to be entrained (see

Figure 6-3). Otherwise, the procedure is unchanged.

When horizontal cross-sectional area variations are considered, the

average temperature of layers 1 through M-1 is

M-1

T M-1T A Az (6-15)
M-1 T( )A (6-15)

A (i)Az
i=l i)

th
where T(i) is the average temperature of the i element from the surface

and A(i) is the area of the element. The temperature of the isothermal

wind mixed layer of depth H is

M-1
I TA(i) Az+T(M) A(M) AH

T= - (6-16)

M-1
A Az+A(M ) AH

i=1l

The depth of the wind mixed layer is

H = (M-1)Az+AH (6-17)
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6.1.3 Behavior of the Wind Mixing Algorithm in the Absence of Wind

It is instructive to investigate the behavior of the wind mixing

algorithm during periods when there is no wind. Two situations can be

distinguished according to whether the water body is heating or cooling

on a given day. First suppose that the system is heating and that there

is a stable density profile. Since the wind speed is assumed to be zero,

T is zero and u, is zero. Thus the energy input by the wind, the
o

right-hand side of Equation (6-5), is zero. The mixing algorithm begins

by mixing elements 1 and 2. The change in potential energy due to mixing

e e
elements 1 and 2, d(PE) 2 , will be positive. Since d(PE) e > 0, theN=2' N=2

algorithm will proceed to search for the fractional part of element 2

that will satisfy the equality. The only value that will satisfy the

equality is AH = 0. Thus, in this case, when there is no wind, the

profile is not altered from that obtained by heating alone.

The second possibility is that there is no wind, the water body is

cooling, which results in an unstable density profile. Again, the energy

input by the wind, the right hand side of Equation (6-5), is zero. The

mixing algorithm begins by mixing elements 1 and 2. The change in

potential energy due to mixing elements 1 and 2, d(PE)N 2 will be
N-2

negative. Since d(PE)N= 2 < 0, the algorithm will continue and will add

element 3 to the mixed layer. Eventually the increments to the change in

potential energy will become positive and the magnitude of d(PE)N will
e

decrease as N increases. For some value of N, d(PE)N=M will be greater

than 0 and the algorithm will search for the fractional part of element

M that makes the equality hold. The center of mass of the mixed layer



will be at the same elevation as the center of mass of the corresponding

elements before mixing. The density instability has been eliminated with-

out changing the potential energy of the water column.

6.2 Choice of the Surface Shear Stress Coefficient

The expression for the turbulent kinetic energy input contains the

surface shear stress due to the wind. A specific relationship between the

shear stress and the wind speed has not been discussed previously. In

this section, the shear stress coefficient, C , which relates the wind

speed, W , at elevation z, and the shear stress, To, by

= Cp . W2
0 z air z

will be defined.

The majority of the work that has been done on the determination

of the shear stress from the wind speed has been done at sea where the

fetch is very long or in the laboratory, where the fetch is very short.

Wu (1971) has shown that the observed deviation between the two types of

data can be attributed to the difference in fetch. Since the fetch over

inland water bodies is between the two extremes, expressions derived for

either extreme may not be appropriate for use in conjunction with a lake

model. Wu suggested an equation for determining the wind stress coeffi-

cient, C , that is independent of the fetch length based on Froude scaling

1 1 1
-KIn ( 2 (6-18)

C 1/2 K 0.011C F
z z



where F = W/ gz , z is the wind measurement height, Wz is the wind speed

at z, and K is the Karman constant = 0.41. The factor 0.011 is obtained

from a relation between the shear velocity and the dynamic roughness of

the water surface at equilibrium with the wind.

Other investigators have developed different equations for the

shear stress coefficient for use in lakes. Based on measurements in

lakes, Van Dorn (1953) has suggested the following expression for the

shear stress coefficient.

-3
= 1.0 x 10 -

- 5.6 ) xl0 - 3

= 1.0 + 1.9(1 ) x10
W

10

W10 < 5.6 m/s

W10 > 5.6 m/s
10

(6-19)

Bengtsson (1973) suggests

C10
= 1. x 10 - 3

=1.1 x 10 W10 < 18 m/s10 (6-20)

Shear stress coefficients derived from ocean data are occasionally

used for lakes, also. Wu's (1969) expression for the ocean shear stress

coefficient is

-1/2 -3
1.25 W x 10

10

1/2= 0.5 W
W10

= 2.6 -3
=2.6 x 10

-3
x 10

W10 <i Im/s

1 < W10 < 15 m/s

W10 > 15 m/s
10

100

C1 0

C1 0

Cl0

C1 0

C10

(6-21)



There is significant scatter of the data and hence of the curves

used to fit the data (see Figure 6-4).. Wu's equation for the shear

stress coefficient over inland water bodies, Equation (6-18) is

recommended.

Wu (1975) has shown that the shear stress coefficient for pul-

sating winds are smaller than those for steady winds. If this were not

so, the use of wind data averaged over different time intervals would

result in different values for the total kinetic energy input by the wind

in a given day. The kinetic energy input is proportional to the third

power of the wind speed. The wind speed fluctuates over the course of

a day. Since averaging the cube of the fluctuations is not equivalent

to cubing the average wind speed, a greater kinetic energy input is

obtained when meteorological data is averaged over shorter time periods.

A reduction coefficient that makes the kinetic energy input in a day

computed using wind speeds averaged over three hour time intervals

comparable to the kinetic energy input computed using the daily

averaged wind speed for a given location can be calculated by taking

the ratio of the mean of the daily averaged wind speed cubed and the

mean of the three hour averaged wind speed cubed.

6.3 Sensitivity Studies

In this section the sensitivity of the M.I.T. Reservoir Model

with wind mixing is examined. The effect of the inclusion of wind

mixing on the stratification period is investigated, as well as the

influence of the element size and the time step on the predicted

temperature profiles. All figures are from simulations of the hypothet-

101



46,

4

x 10-3  WU LAKES EQUATION (6- 18)

VAN DORN EQUATION (6- 19)

BENGTSSON EQUATION (6- 20)

-- WU OCEANS EQUATION (6- 21)

S2
LU

0 5 10 15

WIND SPEED AT 10 METERS, W10, IN METERS PER SECOND

Figure 6-4 Shear Stress Coefficient, C1 0 , vs. Wind Speed W10

20



ical lake described in Chapter III beginning with isothermal (80C)

conditions in early April.

As can be seen in Figure 6-5, the inclusion of wind mixing has

a significant influence on the predicted temperature profiles. For

example, the predicted depth of the thermocline on May 7 with wind

mixing is 7 meters, while without wind mixing it is only 1 meter.

Later in the year, the influence of the wind in mixing the water body

in the spring is still evident in the increased heat content of the

lake. Wind mixing has only a small effect on the surface temperature

since the surface temperature is primarily determined by the meteoro-

logical conditions.

6.3.1 Element Thickness

Figure 6-6 shows temperature profiles calculated using several

values for the thickness of the elements. The dependence of the pre-

dictions on element size is of interest because the computation time

required is related to the number of elements. There is a trade-off

between resolution and expense. The profiles predicted using 0.61

meters and 1.22 meters as the element thickness are almost identical,

except when, as is the case for the profile predicted for May 7, the

thinner element size locates a step in the profile in the middle of

one of the thicker elements. When a large element thickness of 2.44

meters is used, the temperature predicted in the region of the thermo-

cline is consistently higher than the predicted temperature using

thinner elements.
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6.3.2 Time Step

The time step appears explicitly in the expression for the

change in potential energy, Equation (6-5). In order to remove the

diurnal effects of the meteorological conditions and to investigate

only the effects of the time step, it is necessary to use the daily

average meteorological conditions with sub-day time intervals. It

should be emphasized that using daily average meteorological conditions

with sub-day time steps is not representative of the conditions over a

day. This case is included solely as a check on the dependence of the

mixing scheme on the time step. Figure 6-7 shows that the predicted

profile using a 1 day time step and the profile predicted for the end

of the same time period using a time interval of three hours are in

general within 0.30C of each other and that the difference in depth of

the mixed layer is less than 1.5 meters. Hence the mixing scheme is

not strongly dependent on the time step.

Diurnal effects are felt to the depth of the mixed layer, which

varies over time. The primary diurnal fluctuation, however, occurs in

the top 2-3 meters. The diurnal fluctuation is 1.5 - 3.00 C, similar

to the range obtained when wind mixing is not considered.

6.3.3 Onset of stratification

The action of the wind may destroy weak stratification and cause

circulation throughout the lake. Based on a comparison with case C in

Chapter III, the inclusion of wind mixing shortened the predicted

period of stratification in the hypothetical lake used in the sensi-
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tivity studies by 29 days. The criteria for defining the presence of

stratification was the existence of at least a 2
0C temperature differ-

ence between the top and bottom elements in the lake. The yearly aver-

age surface temperature was reduced by only 0.03
0 C by the inclusion of

wind mixing, while the maximum surface temperature for the year was

decreased by 0.70C. The most dramatic change occured for the minimum

surface temperature. The inclusion of wind mixing eliminated the large

oscillations in the surface temperature predicted during January

through March (see Figure 6-8). Eliminating the winter oscillations

caused the predicted minimum temperature to increase from -2.00C to

4.20C. The M.I.T. Reservoir Model does not consider the latent heat of

fusion, so predicted temperatures below 0
0 C have no physical signifi-

cance. The density dependence on temperature is correctly modelled

below 40C, so predictions in the range 0 - 40C are realistic. From

May through September the inclusion of wind mixing had little effect

on the predicted surface temperature. The largest influence on the

surface temperature was found during those parts of the year when the

stratification is weak.

6.3.4 Summary

Unless diurnal effects are of specific interest, a time step of

1 day gives satisfactory results. When meteorological data averaged

over time intervals of less than 1 day are used in conjunction with

sub-day time interval, the shear stress coefficient should be different

than the shear stress coefficient used with daily averaged wind speeds
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in order that the same amount of kinetic energy is input for both

cases in a given day. Decreasing the time step while using daily

averaged meteorological conditions is not physically reasonable and

does not significantly alter the predicted profiles.

When there is little or no through-flow, the element thickness

should be of the order of 1 meter.

The inclusion of wind mixing substantially shortens the period

of stratification predicted for a water body.
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CHAPTER VII

APPLICATION OF THE MATHEMATICAL MODEL TO LAKE ANNA

7.1 Description of the Lake

Lake Anna, shown in Figure 7-1, is formed by a dam on the North

Anna River. The lake is located in central Virginia, 41 miles northwest

of Richmond and 40 miles east of Charlottesville. At a design elevation

of 250 ft. above sea level, Lake Anna has a surface area of 9,600 acres,

a volume of 10.6x109 ft3, and an average depth of 25 ft. The maximum

depth at the dam is 70 ft. The lake receives an average annual inflow of

about 270 cfs. The lake elevation is maintained by radial gates at the

dam. The outflow rate equals the inflow minus the rate of evaporation

from the lake surface (estimated at about 60 cfs average).

Continuous lake temperature measurements have been taken in the

Lake Anna since August 1974. A continuous monitoring system measures lake

temperatures at hourly intervals at six stations (surface, mid-depth and

bottom) and three additional surface locations. In addition, intensive

temperature surveys were conducted at about two month intervals (the

intervals between intensive surveys varied between one and three months).

These intensive surveys measured the detailed vertical temperature

distribution at 17 stations in the lake at various times of the day.

Beginning in April 1974, a meteorological station at Lake Anna made

hourly measurements at an elevation of 15 meters of air temperature, dew

point temperature, wind speed and short wave solar radiation.

Water releases from surface and subsurface radial gates were
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monitored, and daily release rates were available for a one year period.

Inflow rates were not available.

This data base was considered ideal for a check of the accuracy of

the M.I.T. Reservoir Model with wind mixing. For molecular diffusivity,

the ratio of the rate of heat transport by diffusion to the rate of heat

AE
transport by advection, QD , has a value of .15 so Lake Anna can be

considered more a lake than a reservoir (see Section 3.2).

The objective of this chapter is to determine whether the mathe-

matical model incorporating wind mixing will yield acceptable results for

a field application.

7.2 Inputs to the Mathematical Model

7.2.1 Hydro-meteorological Data

Certain data were available on an hourly basis and other data on a

daily basis. The program was run with a time step of one day and all

hourly data were reduced to daily averages.

The input requirements of the model include daily averaged values

of the air temperature, relative humidity at 2 meters, wind speed at 2

meters, cloud cover, and total daily short wave solar radiation. Air tem-

perature and wind speed were averaged over the day to obtain daily values.

Relative humidity was computed hourly and then averaged. Radiation was

summed. Because cloud cover was not measured, it had to be calculated

indirectly through a comparison of the measured daily short wave radiation

and the values developed by Hamond, Weiss and Wilson (1954) for 100% of

possible sunshine, using the empirical formula
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s( = .sc(1.0-0.65C2) (7-1)

where 4s = incoming solar radiation (measured short wave)

4sc = clear sky incoming solar radiation

C = cloudiness ratio (fractions of unity)

The model uses cloud cover to compute daily values for long wave radiation

from Wunderlich's (1972) modification of Swinbanks' (1963) clear sky

formula

4a = 0.937x10-5Ta6 (1.0+0.17C2 ) (7-2)

where 4 = long wave radiation (atmospheric radiation)
a

a = Stefan Boltzman constant

T = air temperature OK, 2 m above water surface
a

C = cloudiness ratio

Changes internal to the model were made to adjust vapor pressure

and wind speed values from those measured at 15 meters to corresponding

values at 2 meters, based on the assumption of logarithmic profiles. For

wind speed, the conversion equation is

2
Pn(2,)

w2 =w 5  z (7-3)

z

where z', the roughness height for the wind speed profile is .001 meters.
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For vapor pressure the conversion equation is

2

(ea -e) = (e -e) (7-4)a s a s 15
2 15 Zn 1)

where z', the roughness height for the vapor pressure profile is .000067

meters.

The model also requires daily inflow and outflow rates as input

data. Inflow rates were not available, but since the measured surface

level of the lake remained approximately constant, the inflow was set equal

to the sum of the outflows. The temperature of the inflow water was

estimated by assuming it was at equilibrium temperature.

7.2.2 Geometric Data

Table 7-1 lists the areas and length of Lake Anna.

Values at intermediate elevations are found by linear interpolation in the

program. The average widths were computed by dividing the area by the

length at each elevation. These values are also included in Table 7-1.

7.2.3 Other Program Parameters

The value of the surface absorption fraction, 0, (see Equation

(2-22)) was set equal to 0.5. The value of the absorption coefficient,

n, was computed from Sechi disk depths using Equation (2-23). The Sechi

-i
disk depths were 2 to 3 meters, so n was taken as 0.75 m . A vertical

grid spacing of 1.22 m was used.
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Table 7-1: Lake Anna Areas and Widths

Elevation Above Sea Level
(ft.) (m)

180

190

200

210

220

230

240

250

Length = 8650 m

54.9

57.9

61.0

64.0

67.1

70.1

73.2

76.2

Area

(m2 )

2977,000

2977,000

5310,000

7477,000

9361,000

1168,000

14360,000

17388,000

Width

(m)

343

343

613

864

1080

1350

1660

2010
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7.3 Comparison of the Predictions with Measured Field Temperatures

In this section, the predicted lake surface temperatures and the

vertical temperature distribution with and without wind mixing are compared

with measured values. For the predictions without wind mixing, the eddy

diffusivity is set equal to 50 times molecular diffusivity. This value

was selected to give a best fit to the measured profiles. The initial

isothermal temperature was taken as 80C, the isothermal temperature to

which the predictions return, approximately, at the beginning of every

April in a ten year simulation with regional meteorological data with no

wind mixing. For the predictions with wind mixing, the diffusivity is set

equal to molecular diffusivity. The initial temperature is taken as 100C,

the isothermal temperature to which the predictions return after a year

when wind mixing is considered. In the following figures, predicted values

are indicated by solid lines and measurements by points. Measurements

from three of the continuous temperature monitoring stations located along

the center line of the lake are included.

Figure 7-2 indicates that the agreement between measured and pre-

dicted surface temperature is generally good with respect to absolute

value and the transient behavior, regardless of whether wind mixing is

included. However, when wind mixing is not included, the surface tempera-

ture prediction is less satisfactory with respect to rapid transients

during the winter months. This may be caused by predicted periodic weak

stratification during the winter. The inclusion of wind mixing eliminates

the weak winter stratification, removing the rapid transients.
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Figures 7-3 through 7-6 indicate that agreement between measured

temperature profiles and predicted temperature profiles with wind mixing

is good. Without wind mixing, the agreement is poor. The profiles for

May 7 and August 15 show the characteristic step in temperature at the

bottom of the wind mixed layer. The predicted profile for July 10

exhibits two steps, reflecting the time history of the wind.

Most of the through-flow is released from a surface outlet. On

rare occasions, when the surface outlet can not spill enough water to

release all the inflow, flow is also released from a bottom outlet.

Because of the outlet configuration, advection is expected to have a small

role in transporting heat. This was checked by computing temperature

profiles setting the inflow and outflow equal to zero. These profiles were

essentially the same as the profiles predicted using flows.

Although the available weather data set extends for over two years,

the predicted profiles during the second year could not be used to verify

the model. Short wave solar radiation data for April of the second year

was unavailable. This is the critical period for establishing the tem-

perature of the hypolimnion for the rest of the year. Since the tempera-

ture is influenced by convective overturn on days with a negative net heat

flux into the water body, the data gap could not be filled with a typical,

constant value.

7.4 Sutmnary of Field Results

It has been demonstrated that the mathematical model including wind

mixing is capable of reproducing field measurements of the surface tem-

perature of a lake with an accuracy of the order of 10C and is capable
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of determining the depth of the thermocline with an accuracy of the

order of 1 meter. The data input required by the model consists of

data which would normally be available during the planning or design

stage of a proposed impoundment.
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