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ON INITIALIZATION OF PRIMITIVE EQUATION MODELS

William K-F. Grant, Jr.

Submitted to the Department of Meteorology on January 22, 1971 in partial

fulfillment of the requirements for the degree of Master of Science.

ABSTRACT

Initialization procedures for primitive equation models based on

the balance equation and the dissipative-iterative schemes developed by

Nitta and Hovermale are examined. A simpler scheme, actributed to

Okamura, and modified by Rivas, is also studied. A non-linear, shallow-

water-equation model is used to numerically generate artificial data

which simulates a balanced, initial state. This balanced state is then

perturbed to simulate the effect of observational errors. Numerical

experiments are performed to compare the recovery of balance by the

various initialization procedures. Four iterative schemes and the con-

sistent solution of the balance equation are compared. The common

practice of restoring the mass field during the iterative process is

shown to significantly decrease the rate of convergence of these schemes.

However, the methods converge quite rapidly if the mass field is allowed

to adjust freely. The high degree of balance recovered as a result of

this adjustment far compensates for the possible increase in error of

the adjusted fields. This error is considerably reduced by using an

approximate form of the gradient wind equation to simply correct the

geostrophically derived winds in data-sparse areas. The Okamura-Rivas

scheme is shown to be significantly more efficient in decreasing the

computation required for convergence and in achieving a more stable,

balanced state. In the numerical experiments, the Ok.,mura-Rivas scheme

required an order of magnitude less computation than tL_e balance-equation

approach.
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1. Introduction

It has long been known that the use of observed data directly in

initial fields for numerical simulation, by primitive equation modelsI

of atmospheric motion predicts gravity-inertia oscillations in excess of

those observed in the atmosphere (Richardson, 1922). Such initial fields

contain excessive imbalances between Coriolis and pressure forces, which

arise primarily from measurement errors. Actual imbalance can and does

occur in the atmosphere, but it is doubtful that the present sampling

network can yield an acc rate measure of the excess.

The fact that observed large-scale motions do seem to pass through

a succession of quasi-balanced states suggests that these motions are

subject to a process by which this equilibrium is maintained. It is

generally accepted that the mutual adjustment between mass and velocity

fields, under the influence of the earth's rotation and gravity, is the

primary process which maintains this quasi-geostrophic balance. The

adjustment process has been extensively studied (Rossby, 1937-1938a,

1937-1938b; Cahn, 1945; Bolin, 1953; Phillips, 1963). The dispersive

character of gravity-inertial waves is fundamental to the maintenance of

a balanced state by the adjustment process. A primitive equation model

contains implicitly the adjustment mechanism as well as the capability

to propogate gravity-inertial waves. However, the effect of erroneous

imbalances in initial data is to excite gravity-inertial waves which

strongly distort the initial tendencies of the dependent variables in

a numerical forecast. It is this latter property which predominated in

1The term "primitive equation model" is used here generically to
mean any thermo-hydrodynamic model in which the hydrostatic balance
relation replaces the prognostic equation of vertical motion.
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Richardson's early experiment and discouraged further attempts to formulate

primitive models for some time.

The theory of diagnostic balancing of initial data centers on the

fact that gravity-inertia waves are characterized by divergence in the

flow field. Thus they may be eliminated by purging the initial fields of

their divergence, thereby reducing the chance of numerical propogation.

Geostrophic balance satisfies the requirement for non-divergence but dis-

torts the representation of curved flow. Charney (1955) first formulated

"the" balance equation by explicitly removing divergence and its time

derivations from a prognostic divergence equation. Phillips (1960)

recognized that a small amount of divergence is needed in initial flow to

properly represent the vertical motion. He suggested that a consistent

estimate of the divergent wind field could be determined from the quasi-

geostrophic omega equation and added to the non-divergent wind field

determined by the balance equation. This suggestion has been extended,

by several authors, to develop quite complicated initialization proced-

ures. (See Hinklemann, 1961; Miyakoda, 1963; and Krishnamurti and

Baumhefner, 1966 for example.)

The balance equation, by itself, is a mixed, hyperbolic-elliptic

equation. It is easily solved only in the special case that it is

purely elliptic. This restriction creates an ellipticity constraint on

the mass (or pressure) field which may require its modification before

the balanced winds may be determined from it. Flows which violate the

ellipticity constraint are perfectly legitimate in the atmosphere.

Miyakoda (1960) states that the region around an anticyclone, especially

in front of a typhoon, may be hyperbolic. The treatment of this region
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determines the prediction of the typhoon path. Artificial modification of

this anticyclone, in order to make the region elliptic, may seriously

affect the numerical forecast. The ellipticity constraint does not arise

when the balance equation is part of a complete set of balanced equations

in a filtered model (Charney, 1973). But for primitive equation models,

it is solved independently to achieve balance in the initial data. The

artificial modification of the data, which may be imposed by the ellip-

ticity constraint, is a disadvantage of this approach. Nitta and Hovermale

(1969) state that, in addition, the initialization prccedures with

filtered equations cannot produce a balanced flow whicn is in perfect

agreement on the state of mutual adjustment for the primitive forecast

equations. Nevertheless the balance equation approach has traditionally

been adopted for initialization in such forecasts.

It is known that certain finite-difference, marching procedures

selectively reduce the amplitude of high frequency oscillations. Miyakoda

and Moyer (1968) first suggested an alternative approach to initialization

using this property. The technique uses the primitive equations directly

to march forward one step and then return to the initial time by reversing

the time step. If this procedure is repeated in an iterative manner the

high frequency gravity-inertial waves are eventually damped out. Miyakoda

and Moyer originally suggested that the divergence should be explicitly

set to zero after each time step to insure a balanced state. Nitta and

Hovermale (1969) suggested that this restriction was not necessary. They

proposed that the mutual adjustment properties of a particular model,

which are uniquely implied in its mathematical representation, are suffic-

ient to attain balance. Since the primitive equations are used directly
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in the iterative process, the state of balance should be completely

consistent with the model. A variation of this technique has been at-

tributed to Okamura 2. A simpler dissipative scheme is used and fewer

evaluations of the time variation of the variables are made.

In this paper, we will introduce a more flexible version of

Okamura's scheme, suggested by Rivas 3 , which enhances its effectiveness

without altering its simplicity. We will describe numerical procedures

used in the balance equation approach and the iterative approach to

initialization. The numerical properties of three iterative methods will

be examined in some detail. The results of numerical experiments designed

to compare the balance Lquation approach and the different iterative

techniques will also be presented.

2See the appendix of Nitta (1969).
3 Personal communi-ation.
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2. The Balance Equation Approach

A general divergence equation in pressure coordinates can be

written as follows (Haltiner, 1971):

C 8 A

where 6 is the two dimensional. divergence on a constant pressure surface

and all other symbols are in common usage. The bracketed terms are lab-

eled A, B, C, D in decreasing order of magnitude for large scale motions.

If term A alone is retained the equation becomes a statement of geostro-

phic balance for constant f. If term A is scaled as unity, term B is of

1
order Rossby number, (Ro - for large scale motions), and terms C and

D are respectively one and two orders of magnitude smaller. The balance

equation, as proposed by Charney (1955), is obtained by neglecting terms

C and D and assuming that the velocity is non-divergent, V = k x V'.

This -yields:

:'0 2.1

where V is a horizontal gradient operator on a constant pressure surface.

Numerical and analytical techniques for solving this type of equation are

most thoroughly developed for the case when it is purely elliptic. A

general, second order, partial differential equation for the unknown 5:

FZ p00 S 2.2
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is elliptic if:

SJ0 * -t >O 2.3

where the subscripts indicate partial differentiation and r = Exx'

s = xy, t YY = C, p = qx' =y If the stream function, 4, is consid-

ered known from the observed velocity field, the balance equation is

solved to obtain the geopotential field, 4, and is elliptic. In this case

equation 2.1 is written in the notation of 2.2 as follows:

with the ellipticity condition always satisfied:

On the other hand, if 4 is taken directly from the data and equation 2.1

is solved for 4 equation 2.2 is written:

Frr,; , f z,~ v; ;0) ,2r -') = t0 2.5

The ellipticity condition is not trivally satisfied:

r-i c - Fin foe (u o 2.o12') th-s, eesor

?o. 2.6

Substituting from equation 2.1 this becomes:

3 .f> . O 2.7
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If f is constant the ellipticity condition is:

v$~ >o. 2.8

Houghton and Washington (1969) have demonstrated that the solution

for 0 yields more accurate results in the tropics for large scale motion

while solution for 4 is preferred in extratropical regions. Thus the

constraint of the ellipticity condition may apply to isolated regions of

the geopotential field over a substantial portion of the globe. It should

be emphasized that this restriction is primarily non-physical in nature

in that it arises from inadequate numerical techniques for solving the

general form of the balance equation.

In extratropical latitudes, the balance equation is usually solved

by rewriting equation 2.1, after Petterson (1953) and Bolin (1955), as

follows:

where A = xx- yy and B = 2 xy are deformation terms. The positive or

negative sign of the radical is applicable in the northern or southern

hemisphere respectively. A procedure for solving equation 2.9 for 1P,

called the cycle-scan method by Miyakoda (1956, 1960) and Shuman (1957),

consists of evaluating each side successively:

Q = -'f 2.10

.2.11



S12
Here (i,j) are indices of discreet grid points in (x, y) space and we

have assumed that f is constant. The ellipticity condition for this case,

Equation 2.8, also guarantees that the right hand side of 2.10 is real. A

geostrophic approximation for 4, or one derived from a previous forecast,

is usually used to estimate A2 and B2 initially in 2.10, the cycle step.

The scan step inverts equation 2.11 to determine a corrected * field. The

process is then repeated using the corrected * to determine A2 + B2 in the

cycle step. The procedure is repeated until the * input to a given cycle

step agrees with the i output of the next scan step to within predefined

limits.

Miyakoda (1960) discusses the necessity of maintaining integral

properties in the consistent formulation of the finite difference algor-

ithms for the V2 operator and the deformation terms of the cycle step.

Convergence of the cycle-scan method depends more critically on this for-

mulation than on the precision of the method used to invert equation 2.11

in the scan step, since the cycle step restates the inversion problem with

a better estimate of Qij at each scan. The basic requirement is that suc-

cessive values of $ converge.

More complicated simultaneous solutions of the balance equation and

the omega equation couple the vertical variation of the flow field for

discrete levels. As mentioned earlier, thes techniques are more compati-

ble with balance equation models than primitive equation models. In this

paper we will apply our techniques only to one layer barotropic models.

The simplified treatment of the balance equation approach as outlined

above will be sufficient. In the next section we will examine the itera-

tive approaches which use the primitive equations themselves to determine

a more compatible initial scate.
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Three techniques for iterating a damped time scheme around the

initial time will be studied. For simplicity of notation, let us adopt

the following general form for a set of primitive equations:

3.1

where U is a column vector of the dependent variables and 5 is a matrix

differential operator which contains no explicit time derivatives. Equa-

tion 3.1 states that the operation of T on the state U is equivalent to

the local time derivative of that state. Using this notation we may

readily convert Equation 3.1 into its finite difference equivalent. For

example, a simple Euler marching scheme may be represented as follows:

/ - U. F I = ( F) 3.2

where the elements of U are now discreet values of the dependent vari-

ables at the time T(At) and F is the finite difference equivalent of J'dt.

The spatial derivatives in " have been replaced by finite differences and

the time increment is absorbed. We will use the symbol, -, to denote

the conversion from continuous to discreet variations, dCt F.

The first method (NH1), uses an Euler-backward time scheme, as sug-

gested by Nitta and Hovermale (1969), in the following steps:

+ ;3.3a

3.3b

6A ) C'I A 313 c
- 3.3d
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Equations 3.3a-b represent a single forward time step using the Euler-

backward scheme. In 3.3c-d the Euler-backward step is reversed to return

to the original time, but the state U(V+1) may have different elements

than U , as denoted by the superscript. A recursion relation between

successive values of U can be obtained by combining equations 3.3:

) ) 3.4

The second method (N112), also suggested by Nitta and Hovermale

(1969), uses a modified Euler-backward time scheme in a similar manner

for each iteration:

- 1  F 3.5

U U -FI / 3.5c

3.5fW" g'- FT) 3.5d6U_ F! 3.5e

Again we have explicitly returned to the initial time by reversing the

direction of the modified Euler-backward time step in 3.5d-f. The re-

cursion relation for successive values of U at the initial time is:

'-. 3.6



. 15 .

The third method uses a simple Euler time scheme:

-" (') 3.7a

S U -- FI. 3.7b

The (v-+) value of U is obtained by linear combination of U and U ,

which again both represent different states at the same initial time:

- - U 3.8

where n is a scalar number. This method is attributed to Okamura (Nitta,

1969), who suggested that n = 2 would maximize the damping properties of

the method, as will be seen. Rivas 4 has suggested that the method may be

more adaptible to the requirements of a specific model if n is allowed to

take on a finite sequence of values which are repeated during the itera-

tion process. The added flexibility of this suggestion will become more

apparent as we proceed. The recursion relation for this Okamura-Rivas

(OR) method is:

Let us now examine the stability requirements of these methods.

iwt
Consider a single barmonic wave of frequency w in time, U = Ue , where

U is a function of position only. Time differencing cai be expressed

explicitly for this wave:

r onal commun ic t) 3 .10

4Personal communication.
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The respective recursion relations become:

U " ) [ I - , a ( ) ", -e

1 / a

(NH1) 3.lla

(NH2) 3.11b

(OR) 3. 11c

The damping factor, R, for each of these methods can be determined for

the single wave case:

v /- 1- 06 ( 4 t-) 4 1

/ : /-(W 410 '0- 41

(NH1) 3.12a

(NI12) 3.12b

(OR) 3.12c

Stability of the iterative methods requires that IR< 1, which places a

restriction on the size of the time increment, At:

A/ .

(NH1) 3.13a

(NH2) 3.13b

(OR) 3.13c

Here it is assumed that n is held constant in the OR method. To apply

this type of a restriction to a method using actual data, which may con-.

tain a combination of many wave motions, we must obtain from physical

considerations an upper limit to the significant gravity-wave frequency

/2= /- nr ) )



. 17 .

range. This frequency, say 5 ma, which is dependent on the model char-

acteristics as well as the physical nature of the data, can then be used

to obtain an upper limit on the size of At by 3.13. From 3.13c it is now

apparent that Okamura's choice of n = 2 minimizes the restriction on At.

Figure 1A shows the variation of IRI with the quantity (wAt) for a single

oscillation as in Equations 3.12. Note that the NH1 and the OR(n>2)

methods exhibit the undesirable property that the dampling factor in-

creases at the very high ends of the frequency range allowed by 3.13.

This can be corrected in the OR method by allowing n to repeatedly take

on a sequence of values during the iterative process. The total damping

factor for a sequence, say of 1, 1.6, 4, is the prodtut of the damping

factors at, each n of the sequence. Therefore the damping is retained at

high frequencies when n < 2 while also strongly damping mid-range freq-

uencies when n > 2. Thus the OR scheme can be adapted to a greater sel-

ectivity in its damping properties to suit a specific model. Figure lB

compares the damping for an equal number of operations of F on U. The

methods used and the relevant total damping factors are shown. Note

that when n passes through the sequence 1, 1.6, 4 the damping is very

similar to the case when n is constant at 2 in the OR. method, except

that damping at the high frequency end of the range is retained. Thus

the condition 3.13c can be obtained for some equivalent n where a seq-

uence is used. The numbers in this sequence shown were specifically

chosen to correct the sharp rises in the single-n curves shown in figure

1A.

The operation of F on U in each time step represents a very comp-

lex one for sophisticated models although it is not necessary that F be
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Figure 1A

Damping properties of the iterative schemes

/. -

NH1

0.7 --
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NH1: R = 1-(wAt) 2 + (WAt)

NH2: R = 1-(wAt) 2 + (wAt)6

ORa; n=l: R = 1-(wAt) 2

ORb; n=2: R = 1-2(wAt)2

ORc; n=4: R = 1-4(wAt) 2
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Figure 1B

Relative efficiency of iterative schemes: F applied 12 times

1.O

0.?

1.14

0.7

/1?"!\
aS-- t

I.') A t7

NHI: v=3; R3= [1-(wAt) 2 + (wAt) 4 ] 3

NH2: v=2; R2 = [1-(wAt) 2 + (w At)6] 2

OR1: n=2; v=6; R = [1-2(wAt)2] 6

OR2" n=l, 1.6, 4; v=2; R= {[1-(wAt)] 2[1-1.6(At) 2 ]

[1-4 (At) 2 ] 2
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formulated explicitly. This operation primarily determines the cost of

these iterative techniques in terms of computer utilization. Since the

number of F operations is the same for all methods in Figure lB, these

curves provide an estimate of the relative efficiency of these schemes.

Another important consideration in designing a specific model for the

computer might be storage requirements. A rough estimate of the require-

ments of these methods is the number of sets of the dependent variables,

U, which must be stored separately. Table 1 compares the three methods

onthe basis of these practical considerations.

Table 1

Method #U matrices per iteration #F operations per
iteration

NH1 2 4
NH2 3 6
OR 3 2

In order to examine the convergence of these schemes, let us tem-

porarily assume that a given model possesses a non-trivial, steady state

solution. As the number of iterations increases all non-zero frequency

motions are damped and the steady state solution is approached:

z2-- 4 /JT -
- ; -O L /J 3.14

where J may be replaced by the symbols I, II, III to distinguish differ-

ent numerical values for the dependent variables in the state U obtained

by the different methods. These states must satisfy the recursion

relations as follows:

UI (z .F F) x) (NHl) 3.15a
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vx2 Ir F-F3 L (NH2) 3.15b

(OR) 3.15c

The error after the vth iteration for the jth method, x(V ) , is defined
J

as:

(9) ()K, =/jj-U ,

and the iterations converge if and only if:

/4 xr - 3.16

In terms of a suitable matrix norm, denoted by the symbol, ( ) j , these

criteria become:

4

(NH1) 3.17a

(NH2) 3.17b

(OR) 3.17c

The evaluation of Equations 3.17 may be very complex for sophisticated

models, but necessary criteria may be derived by using the trace prop-

erty of the matrices:

7i ( F', v- < oa

7- ( F - "/ 4) < 0 ,

(NH1) 3.18a

(NH2) 3.18b

(OR) 3.18c7-,e( ,F') <o.

= (JC 4 n F-2 87
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Further analysis is more easily performed with a specific model. For

simplicity, consider a linear barotropic system on a flat, rotating

plane (f-plane) given by the following equations:

dtC)

3.19a

3.19b

3.19c

where (u, v) are the deviations of the horizontal velocity components

from a basic state of rest, = gh' is the deviation ot the geopotential

about a mean value H, and f is a constant Coriolis pa---meter. In the

notation of 3.2 a centered, second-order finite difference representation

u
of F for the state U = (V) is:

0

o
-i-/

/
O

-- k
-4 0 I 3,20

where (V ,V ) are the x and y centered differences, B
x y

and As = Ax = Ay. Because we have chosen , y, and H

exponents of F are particularly simple:

-f 7g

/_11 V-rr V7

, K.. c F ,

At
= fAt, 7 = 2As '

constant the higher

/b "

F-4 Fft. ,

I,



.23.

where ' z// a. e- , and V + 3.21

Consider now a simple harmonic wave of mode (p, q) in (x, y) space:

S = /c") e 3.22

where x = jAs and y = mAs. The finite difference operators (Vx, Vy)

become (1, k), where 1 = 2i sin pAs and k = 21i sin qAs. For this simple

case F becomes an algebraic matrix:

Note also that the trace of F2 is simply expressed and is always less

than zero for this mode:

The necessary conditions for convergence, 3.18, now become:

2 / ) < 0, or -t < 1 (NHl)

? Wo(/ - re; //<0., <Z (INH2)

20.1n <ao , " (OR)

We.obtain explicit restrictions on At for the first two methods by

expanding a:
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(NH1) 3.24a

(NH2) 3.24b

For the OR method the necessary condition that n > 0 is rather obvious,

but it seems to be insufficient for our purpose. We may easily correct

this by noting the analogy between the right hand sides of 3.24 and

those of 3.13a-b. If we maximize the quantity in braces we will obtain

the following conditions necessary for convergence:

< + (4+S) (NHI) 3.25a

/< (4 1r (NH2) 3.25b

Since the conditions 3.13a-b are both necessary and sufficient it would
2H

seem that 3.25a-b are also and that wmax = [ + 2] . Since wmax is

not dependent on the iterative method, we may assume that the necessary

and sufficient condition for covergence of the GR method is analogous to

3.13c:

A4* < L ;LJ (OR) 3.25c

Note the similarity between the max derived by numerical analysis and

that which is determined from perturbation analysis for surface gravity-

inertial waves in a linear barotropic model.

The physical signifizance of the convergence of the iterative

methods can be carried one step further in the case of this model. By

Equations 3.15 the steady-state Uj must be a solution of a complete set

YZ;,

brp' L ~e ' ~7Q4 S- ) -,I.~ rl (
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of homogeneous equations:

X

V g

(NH1) 3.26a

(NH2) 3.26b

(OR) 3.26c

In our model the determinant of F2 is always zero for the case of a

single mode (p, q,). The resulting non-trivial solution is in geostrophic

balance, in finite difference form, provided the conditions 3.25 are

satisfied for each method:

J_

j ,_UC t

.2 A

Geostrophy is also the analytical solution for steady-state motion by

perturbation methods for this model.

Now let us consider the case where a model does not have a non-

trivial steady state solution. The inclusion of variable Coriolis par-

ameter or map factors are significant cases where this may occur. These

iterative methods will presumably approach a trivial state if continued

long enough. For such models it will be necessary to terminate the

iterative process before the meteorologically significant motions are

also damped out. These techniques would then be most effective for

motions in which there is a large gap in frequency between gravity-iner-

tial waves and meteorologically significant waves.

dn/'~m
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Although the preceding analysis is much simplified by our model

choice, it is intended that the conditions 3.25 may be useful as a first

guess for more complex models in the same manner that similar arguments

are used in restricting the size of At for marching schemes. It should

also be emphasized that these procedures do not contain any restriction

equivalent to the ellipticity constraint of the balance equation approach.

One further point is of significance. Nowhere in the above analysis

is it required that the geopotential field or velocity field be fixed

while the other is allowed to reach balance. This further restriction

may be imposed by restoring the initial geopotential field, for example,

after each iteration. The conditions 3.25 remain the same, and the pro-

cedure converges to a steady-state geostrophic balance, but the numerical

values of the fields would naturally be different. As will be seen from

the numerical experiments, this procedure is somewhat questionable. It

is important to remember that these iterative methods implicitly rely on

the adjustment process, particular to a given model, to seek a state of

balance.
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4. Design of Numerical Experiments

To test the various initialization techniques a non-linear, shallow-

water model is used, defined by the following equations:

/V- 4.la

where h is the height of the free surface, and (u, v) are the horizontal

-4 -1velocity components. The Coriolis parameter, f=10 sec , is constant.

The actual numerical model is derived from the flux form of these

equations:

e "- ) 4.2a

_ d_. _ _ii 4.2b

d-44: 
4.2c

where c = gh. In order to avoid non-linear instability, an energy-con-

serving scheme is chosen to evaluate the right hand sides of Equations

4.2, following the method developed by Lilly (1965), Bryan (1966), and

Rivas (1971). The finite-difference.equations at a grid point (i, j)
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.Y K)- -4

-X 0 V f~r)i-~l t~

1443wrhv - D d or

rth ad a w 4.3

where the average and difference operators are defined as follows:

ox A'%

4.4a

4.4b- ,I  ,
jS(is] rb )

Analogous definitions are made for the y-direction, and Ax=Ay=As=250 km.

To formulate the energy equation we use the following relationships:

(de V-

d -)

vz;/ ?P~y.

The definitions 4.4 and their use in Equations 4.3 are chosen such that

the total energy, summed over a finite grid, is changed only by a flux

through the boundaries or by sources and sinks:

are:

d it e
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= Boundary terms + sources - sinks.

This formulation conserves the total energy aside from truncation errors

in a marching scheme.

The purpose of our numerical experiments is to compare the iterative

and balance-equation solutions to an artificially generated initial state

which is as closely in balance as possible. The velocity and height

fields of the balanced data will be altered or perturbed by various

methods and the initialization techniques used to restore balance. We

will be interested in whether the unperturbed balance is recovered by the

initialization. We will also compare the height variation at an arbitrar-

ily chosen, fixed point, P, as a forecast is made from the unperturbed

and initialized data.

The initial, balanced state is itself generated by integrating the

model for a finite time, T, with an artificial source -erm, S(x, y, t),

added to Equation 4.1c. The integration is started at rest with a level

surface at 3 km. A leapfrog marching procedure is used with a forward

Euler step every 24 leapfrog steps to avoid the separation of fields at

odd and even steps. The spatial variation of the source function is a

double sine wave in x and y:

where L = 4000 km. It is convenient to visualize the state produced as a

checkerboard pattern of highs and lows extending periodically over the
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infinite f-plane. Numerical computations are made on a rectangular grid

which extends one wavelength of the source function in the x-direction

(east) and half a wavelength in the y-direction (north). Therefore we are

concerned only with the unit cell of the checkerboard pattern consisting

of one low and one high. The boundary conditions are periodic,but the

north-south boundaries are matched diagonally to preserve the checker-

board periodicity. The grid specifications and boundary conditions are

shown in Figure 2. Equations 4.3 are evaluated in the interior region

enclosed by solid lines. The unit cell also includes the boundary points

connected by dashes. Note that with periodic boundary conditions, the

total energy is changed by the source term only. Also the source

adds no net mass (geopotential) to the system due to its sinusoidal

variation.

The strength, S(t), of the source function is chosen such that the

resulting state of balance will assume the role of a meteorologically

significant wave. The ueviation of the free surface from its mean height

is shown in Figure 3A. The contours are drawn at 6 decameter intervals,

the low is 34 dekameters below the mean height, and the high is 15 deka-

meters above it. The associated velocity fields (not shown) are anti-

cyclonic around the low and cyclonic around the high with a maximum speed

of about 30 m/sec.

The balance of these initial fields is critically dependent on the

time variation of the source term. The field shown in Figure 3A is gener-

ated with the following form:

5(-t) -2-F u* 7 4.5
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Figure 3A

Height deviation field of reference state

Contours labelled in dekameters;
Low and high centers labeled in meters.
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where the integration is terminated at time, T = 8 days, and

A = 1.01 x 10 m2 /sec 2 is the integrated strength. This sinusoidal form

was found to yield the most balanced state. However, it is also necessary

to add the source in very small increments (At = 5 min) in order to

minimize the generation of imbalances in the state produced. Figure 3B

indicates the degree to which balance is achieved. The variation at the

point P, where i = 4, j = 4, is shown, on a very expanded scale, as a

forecast is made from the initial state. The leapfrog scheme is again

used with At = 12 min. Note that the amplitude of the gravity waves is

only about 0.2 meters. This indicates a very high degree of balance.

Similar attempts to gen-rate initial data were made using an exponential

form and a linear form for the source strength. The integrated strength

was the same. The resultant forecasts showed gravity waves with ampli-

tudes about 25 and 100 times greater, respectively.

The initial fields generated by the sinusoidal variation of the

source strength serve as a reference balance which we seek in our initial-

ization procedures. The initial fields and the 48-hour-forecast fields

are used as standards in computing rms departures of the velocity and

height over the interior region.

The balance-equation initialization follows "Scheme C" of Miyakoda

(1960). Successive over-relaxation is used to invert equation 2.11. A

geostrophic first guess for the stream function, 4, is obtained from the

geopotential field. Following Miyakoda's suggestion, the i-field

obtained from each scan is compared to the average of the two previous

V-fields to test for convergence. The procedure is stopped when i,j

agrees to within four significant digits at all points.
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The iterative techniques are carried out as in Section 3. The NH1

technique uses an Euler-backward time scheme as in Equations 3.3, while

NH2 uses a modified Euler-backward scheme as in Equations 3.5. Two

versions of the Okamura-Rivas scheme will be examined, using the Euler

time step as in Equations 3.7. For the first version (ORl), the scalar

n in Equation 3.8 has the value 2 for each iteration. In the second (OR2),

n scales through the sequence 1, 1.6, 4 successively as the iterations

proceed. The option of restoring the geopotential field after each

iteration is incorporated into the iterative methods. The exercise of

this option will be seen to have a significant effect on the convergence

rate of the iterative apiroaches.
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5. Results

5.1 Introduction

By carefully applying artificial forcing to a shallow-water-equation

model, as described in Section 4, initial geopotential and velocity fields

have been generated which are in balance for all practical purposes. This

state assumes the role of a synoptic wave in our idealized system. If

we integrate forward in time, again using the leapfrog schemes described

in Section 4, but with the source term removed, this synoptic wave is

approximately stationary. This steady-state flow, regardless of its sim-

plicity, represents the meteorologically significant motion in our system

and will serve as the reference state. Note that the amplitude of the

synoptic wave is about 250 meters in the mean, and the maximum wind speed

is about 30 m/sec.

In order to introduce initial imbalances, which represent the

effect of observational errors, the reference fields are perturbed in some

way. For our first experiment, we assume the "observed" geopotential Eield

contains no error, but that the error in the velocity field is very large.

Therefore we will use directly the geopotential field of the reference

data and perturb the balance by replacing the velocity field by one which

is geostrophically determined from the geopotential field. The perturba-

tion is quantitatively evaluated by determining the rms departure of the

perturbed velocity field from the reference velocity field over the
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interior region of the grid:

where the primes denote the perturbed fields. The various initialization

techniques can then be applied to the perturbed state in order to evaluate

the reduction in this rs velocity error. Since we propose to allow the

geopotential field adjust during some of our experiments we will also

measure the departure of the height field from the reference height field

in a similar way:

[i ' £ 5.lb

The rms errors in the height and velocity fields will measure the extent

to which the reference fields are recovered by a given initialization

procedure but not the extent to which the original balance is restored.

In order to evaluate the balance achieved after initialization, we will

measure the amplitude of gravity waves at a point P, arbitrarily chosen

to be the grid point i = j = 4, as a forecast is made from the initialized

state. In Figure 3B the reference forecast at this point showed a height

variation with less than 0.2 meters amplitude. This variation is of

negligible consequence to our 250 meter synoptic wave. Any oscillation

of the height at P which has a significantly larger amplitude will be

interpreted as residual gravity-inertial waves arising from imbalance

which has not been eliminated from the perturbed state by the initializa-

tion procedure. Although the amplitude of gravity waves at a single
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point may not represent those of the entire grid we are interested chiefly

in relative comparisons. We also measure the rms errors in the height and

velocity fields after a 48-hour forecast. The 48-hour fields forecasted

from the reference state are used as standard (unpriued) fields in

Equations 5.1.

To directly simulate observational errors, we will also perturb

the initial fields by adding a field of normally distributed random num-

bers to the balanced fields. The mean and standard deviation of these

random numbers can be specified to represent typical errors in atmospheric

measurements. The remainder of this experiment proceees as in the case

of the geostrophically perturbed state. A further attempt was also made

to correct to geostrophically determined field by means of an approxima-

tion based on the gradient wind equation. The justification of this

correction is perhaps best left for later discussion.

In the results to be given here, four iterative methods are compared

both to the balance-equation initialization and among Ltemselves. They

are the Nl1, NH2, OR1, and OR2 methods described in detail earlier. Note

that the NHl and OR1 schemes do not damp the highest frequency gravity

waves while the NH2 and OR2 methods do provide sufficient damping at this

frequency. The damping properties of these methods were shown-in Figure 1.

In order to maximize the damping of each of the iterative methods

the time increments used were separately determined to be the maximum, in

whole minutes, for which that method remained stable ucing the non-linear,

shallow-water model. Table 2 compares these experimentally determined

values' to the upper limits of the linear stability criteria as expressed
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Table 2

Method At (nonlinear) At (linear)

NHl 16 min 17 min

NH2 22 min 24 min

OR1 16 min 17 min

OR2 17 min --

Leapfrog 12 min 17 min

(forecast)

in 3.25. A similar comparison is also made for the leapfrog forecast

scheme. Note that the iterative schemes in general sem to adhere more

closely to the linear criteria than does the leapfrog scheme. An exact

linear criterion for the OR2 method is not readily available. In this

case the sequence, 1, 1.6, 4, of the values for n in Equation 3.8, was

chosen by graphical inspection of Figure 1 to specifically correct the

lack of damping at very high frequencies in OR1, while providing more

efficient damping at intermediate frequencies. This sequence is not

necessarily an optimum one but is used to illustrate the improvement

which can be achieved in the Okamura-Rivas scheme by allowing n to vary.

In applying the four iterative methods a significant difference

will be seen between the case where the geopotential field is restored

after each iteration and the case where the geopotential field is freely

allowed to adjust with the velocity field. This difference is examined

in the results of initializing the geostrophically perturbed state.
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5.2 Initialization of the Geostrophically Perturbed State.

The geostrophically determined velocity field departs from the

reference velocity field by an rms error of 7.7 m/sec. Figure 4A shows

the height variation at the point P as the forecast proceeds without

further initialization. The gravity waves generated by the geostrophic

perturbation have a maximum amplitude of about 125 meters and are suffic-

ient to strongly distort the synoptic wave, which has a 250 meter

amplitude. After 48 hours the rms velocity error is about 8 m/sec while

an rms error of 29 meters has developed in the height field. Since

initial imbalances cause distortions of the initial tendencies it is the

amplitude of the height variation that better represents the amount of

imbalance in the perturbed state.

If the ellipticity condition, 2.8, is everywhere satisfied, the

balance-equation can be solved witho.it altering the geopotential field.

Our reference state is of sufficient amplitude to cause the ellipticity

constraint to be violated at a few points around the perimeter of the

high. A correction is made to the geopotential field to satisfy the

ellipticity condition. The left hand side of expression 2.8 is evaluated,

at all grid points, as follows:

where .ij is the average geopotential of the four grid points adjacent.

to (i, j). At those points where x.i < 0, the value of .ij is decreased
13 13
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Figure 4A

Height forecast at (4, 4) after geostrophic perturbation
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by the following formula:

5.2b

subject to the restrictions that:

t1"4l 5.2c

-- X d  5.2d

(As) z

where a is a small non-negative number. After replacing with 4ij

at the relevant points, new xij are calculated at all points. The

process is then repeated until all xij are non-negative, hence the ellip-

ticity condition is everywhere satisfied. In the present case, with

a = 0, this process is repeated 5 times. The height field is corrected

at a total of 8 interior grid points and the maximum change is 0.5 meters.

The resulting rms error in the height field is about 0.09 meters.

After 28 cycle-scans of the balance equation the stream function

converged to our specifications (Section 4). The rms ielocity error was

reduced to 0.7 m/sec. Figure 4B shows the residual gravity waves in a

forecast made from the initialized state. The vertical scale here is

8 times that of Figure 4A. The maximum ampli.ude is about 3 meters.

After 48 hours the rms velocity and height errors are 1 m/sec and 1.5 m

respectively. The balance equation does provide a significant restoration

of both the initial fields and their state of balance, in this case.

In additional experiments, we-varied the strength of the source

used to generate the reference state.* Stronger flow patterns do not
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affect the iterative initialization methods, but the ellipticity con-

straint on the balance-equation procedure is violated at an increasingly

large number of points. The procedure for "correcting" the geopotential

field described in Equations 5.2 becomes insufficient to satisfy the

ellipticity condition as this number increases. Therefore we were unable

to obtain solutions to the balance equation for sources that were about

20% stronger. We will return to this point in later experiments.

For each of the iterative methods, 150 iterations were performed.

If we assume that each evaluation of equations 4.3 is equivalent to one

time step in a forward forecast, and use the leapfrog time increment, the

equivalent time traversed in 150 iterations is 5 days for the N~I method,

7.5 days for NH2, and 2.5 days for the OR methods. This represents a

considerable equivalent forecast, especially for the NH methods. Figure 5A

shows the decrease in the rms velocity errors for each method as the

number of iterations increases. Here the reference geopotential field is

restored after each iteration. The horizontal lines represent the rms

errors of the geostrophic perturbation and the balance-equation initial--

ization. A considerable decrease in the rms velocity errors is shown.

After 150 iterations this error is reduced to 2.7 n/sec (NH), 1.8 m/sec

(NH2), 1.3 m/sec (OR1), and 1.1 m/sec (OR2). However, 150 iterations

do not seem sufficient to cause any method to converge to a steady value

of the rms error.

Figure 5B shows the same kind of plot where the geopotential fields

are allowed to adjust. Only the small area shown in the upper left corner

of Figure 5A has been represented in Figure 5B to better resolve the
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Figure 5B: Reduction in rms velocity error, Geopotential field adjusts
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Figure 5C: Increase of rms height error, as geopotential field adjusts 47.
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different methods. Only 30 iterations are shown. In this case the geo-

potential field is altered during the initialization process. Figure 5C

shows the resulting increase in the rms height error. Again only the

interesting portion of the variation is shown. The immediately obvious

result of allowing the geopotential field to adjust is that the rms errors

converge very rapidly to steady values, but these values represent a sig-

nificant departure from the reference state. All four methods reach a

steady rms velocity error of about 6.9 m/sec and create a steady rms height

error of 46 meters. These values remain steady throughout the full 150

iterations. To compare the convergence rates we estimate the number of

iterations required to reach the steady values: 40 (NH ), 15 (NH2),

15 (ORI), and 12 (OR2). The equivalent time traversed during these iter-

ations is 32 hours (NIil), 18 hours (NH2), 6 hours (ORI), and 5 hours (OR2).

These equivalent times are murh shorter than those where the geopotential

field is restored. Note that the variation of n in the OR2 method causes

a variation in the smoothness of the error curves in Figures 5B and 5C.

Figures 6A, 6B, 6C and 6D compare the forecasts of the height at P.

The upper curves show the forecast after initialization when the geo-

potential field is allowed to adjust while the lower curves show the same

forecast.for the case ir which the geopotential is restored after each

iteration. The scale is the same as that of Figure 4B. Note that in all

cases, 150 iterations are not sufficient to completely damp the gravity

waves generated by the geostrophic perturbation if the geopotential field

is restored. The maximum residual amplitudes are 10m (NH1), 7m (NH2),

5m (ORI), and 4m (OR2). The OR methods, in particular, are quite
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Height forecast at (4, 4) after NH1 initialization
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Figure 6B

Height forecast at (4, 4) after NH2 initialization
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Figure 6D

Height forecast after OR2 initialization
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effective in reducing the amplitudes but not as effective as the balance

equation. It is also disturbing that we have not better recovered the

balance by using the iterative techniques.

When the geopotential field is allowed to adjust a quite different

forecast is also obtained from all the iterative initialization methods.

The amplitude of the oscillation increases from about 0.2m to 1Om after

NHI initialization and from 1.4 to 200m after OR1 initialization. The

height variation after OR1 initialization exceeds our scale beyond 20

hours and the plot is discontinued. These excessive oscillations are

probably due to aliasing of very high frequency oscillations which are

not eliminated by the NIl and OR1 methods. On the other hand, the NI12

and OR2 methods completely eliminate these oscillations from the forecast

if the geopotential field is allowed to adjust. This attainment of

balance more than compensates for the initial increase in the rms errors.

The high frequency oscillations can also be eliminated with the NHI and

OR1 methods by decreasing At but this would also decreaze their efficiency.

According to Equations 3.12 the damping decreases as the square of ttie

time increment. Therefore, if we halve the time increment, for example,

to maximize the damping of the highest frequency waves, the number of

iterations required to reach steady values of the rms errors is increased

by a factor of about 4.

The rms height and velocity errors remain virtually constant auring

the 48-hour forecast from the initial balance recovereA By the NH2 and

OR2 schemes. The final height error is still 46m and the velocity error

is about 6.7 m/sec for both methods. Since the balance is restored these

rms errors now accurately reflect the net effect of t:esT two methods.
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It is now apparent that only by completely allowing the geopotential

field to adjust are we able to reach a state of balance in a reasonable

number of iterations. It should be emphasized that the OR2 method is

about 3 times more efficient than NH2 due to the fewer number of operations

needed in each iteration. The rms height error increases by 7.5m (NH),

18m (NH2), 21m (ORl), and 12m (OR2, n = 1) in the first iteration of each

method. If we attempt to correct these errors by restoring the geopoten-

tial field we create a significant reversal of this adjustment of the

height field. Therefore, by restoring the geopotential field, we also

restore a significant portion of the original imbalance. This effect

accounts for the slow convergence of the iterative methods when the geo-

potential field is restored.

The amount of error generated as both fields adjust is determined

by the amount and nature of the imbalance which exists in the perturbed

state. Due to the curvature and strength of the reference flow, the

geostrophic approximation seems to have rather stronglj perturbed the

original balance. In making this approximation we have not utilized the

fact that we do have measurements of the velocity field. We will now

perturb both reference fields with random errors which simulate the effect

of actual observational errors.

5.3 Initialization of a Randomly Perturbed State

The reference state is now perturbed by adding a normally distrib-

uted random error field of zero mean to the geopoter.tial and velocity
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fields. Three separate experiments are performed with different rms

values of the height error. For Case I, no error is introduced in the

height field. For Cases II and III this rms error has the values 5 and

10 meters, respectively. In all three cases, an rms error of 3 m/sec is

added to each component of the velocity field. The forecasts from the

perturbed state showed that the effect of this perturbation is similar

to that shown in the upper curve of Figure 6C. The amplitude of the

oscillations are about 250 meters (Case I), 350 meters (Case II), and

425 meters (Case III), after 48 hours. In all three cases the synoptic

wave in the reference state is completely obliterated by these oscilla-

tions. The perturbing influence of the random errors is predominately

concentrated in smallscales, whereas the geostrophic perturbation pre-

dominantly affects larger scales of our system.

Only the NH2 and OR2 iterative methods are applied in these

experiments and their behavior is very similar to that shown in Subsection

5.2. The geopotential field is allowed to adjust in all cases and 150

iterations are again performed. Both methods converge rapidly to nearly

steady rms errors ir the height and velocity fields although these errors

slightly decrease as the iterations proceed. The small scale gravity

waves are again eliminated by both methods, although a very large scale

oscillation remained with an amplitude of a few meters crd a period which

exceeds the 48 hour forecast interval. These slight departures from the

previous experiment are believed to occur because the ;amples of random

numbers selected slightly alter the character of our synoptic wave, causing

it to oscillate very slowly. These effects do not represent a lack of
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balance or a significant alteration of the convergence properties of

these iterative methods.

Since a good balance is again achieved by both techniques, we are

most interested in the size of the rms departures from the reference state

after initialization. These errors are listed in Table 3 for all three

cases. Two effects are noticeable here. First the adjusted errors are

Table 3

RMS error RMS error in Adjusted Adjusted rms
in height velocity Method rms height velocity
perturbation perturbation error error

Case I
NH2 6.4m 2.0 misec

0 m 4.2m/sec OR2 6.2 2.0
Case II

NH2 6.5 1.9
5 4.2 OR2 6.3 1.8

Case III
NH2 6.6 1.9

10m 4.2 OR2 6.5 1.8

smaller than those of the initialization of the geostrophic perturbation,

namely, 46m and 6.8 m/sec. The second is that the adjusted height errors

seem relatively insensitive to the variation of the height perturbation.

Both effects are again a result of allowing the geopotential field to

reach balance with the velocity field as determined by the adjustment

process. The adjustment process distributes the energy of impulsive

imbalances between gravity wave energy and the total energy of the synoptic

flow. The relative distribution of this energy depends on the scale of

the imbalance. The actual dependence is determined by the ratio of this
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scale and the Rossby radius of deformation, which, in turn, depends on

f(Rossby, 1937-38b; Bolin, 1953; Charney, 1973). But f is constant in

our system. The energy of small scale imbalances, as produced by random

height errors, is converted more into gravity wave energy which is then

dissipated by the iterative methods. Thus the residual error of the

synoptic wave is less.

The current tendency in primitive-equation modeling, in order to

utilize advances in computer technology as well as growing resolution of

atmospheric observations, is to decrease the size of the space increments.

This results in anincreased limitation on the size of the time increment

necessary for stability of both marching procedures and our iterative

techniques, however, the damping characteristics of the iterative methods

change relatively to correctly adapt to the decreased time increment,

Even if the error in measurements does not significantly decrease, the

scale of initial random imbalances in observed data will decrease. The

iterative procedures should respond favorably to this trend to decrease

the scale of imbalances.

In contrast, the ellipticity constraint on the balance equation

becomes excessively stringent as the spatial resolution is decreased. For

example, we rewrite the ellipticity condition, 2.8, in the following form:

h- < 5.3

where h is again the average height of the four grid points adjacent to

a central point whose height is h. In this form the ellipticity condition

is a restriction on the difference, Ah, for a given As. Note that the
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restriction depends on the square of As. If we halve the space resolution

of a model, the ellipticity constraint is 4 times as restrictive. In our

-4 -1
system As = 250 km and f = 10 sec . The difference, Ah = 8 meters, at

a grid point is sufficient to violate the ellipticity constraint. For

a space increment of 125 km, the ellipticity condition is

violated at a point where Ah = 2 meters! As was noted in the geostrophic

perturbation case, this violation of the ellipticity constraint occurs

at a large number of points for stronger amplitude reference states.

Experiments with As = 125 km also confirmed that the g2opotential field

could not be corrected by the procedure in 5.2, even where random height

errors of small magnitude were used to perturb the standard reference

state.

Also with As = 250 km, the ellipticity condition is violated at a

large number of points where the height field is perturbed by random

errors of Case III. The procedure in 5.2 again failei to correct the

geopotential field. For Case II the ellipticity condition was satisfied

everywhere, by the procedure in 5.2, but, even so, the balance-equation-

solution procedure did not converge. It is pertinent to remark here that

the simultaneous adjustment of the geopotential and velocity fields is

not possible in the framework of the balance equation approach.

In discussing random errors we have tacitly assu~d that the

decrease in spatial resolution is justified by the density of observations.

In data sparse regions it is often easier to obtain accurate height fields

from a few data points than to obtain accurate velocity fields. The

geostrophic approximation is often used. In the next experiment we will

ln1_____~~_1_1~_11__L . i
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briefly describe a simple method for correcting the geostrophic winds by

utilizing an approximation to the gradient wind equation.

5.4 Gradient Wind Correction of the Geostrophic Velocity Fields

The gradient wind equation may be expressed as follows:

V 2  5.4a

where V is the gradient wind, Vg is the geostrophic wind, and r is the

radius of curvature of the streamlines. This equation. is strictly valid

only for circular steady flow. The solution for V better approximates

the curvature effects of the flow than does the geostrophic wind. However,

the equation is quadratic in V and is subject to a restriction, similar

to the ellipticity condition on the balance equation, so that the solution

is real:

V 0 5.4b

If we assume that the right hand side of Equation 5.4 1' is small compared

2
to Vg we may write V = V (l+) and neglect terms of the order of c . We

obtain then an approximation for E:

S= fr+2 5.4c
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The evaluation of 6 at each point of the field involves the estima-

tion of the radius of curvature r:

- - 5.4d

where y' = - is the slope of the streamline, (x, y) = constant:
dt

- y/ 5.4e

and

" . . . 5.4f

Combining Equations 5.4d-f, we obtain an expression for r in terms of

the stream function:

5.4g

Since r is only used to evaluate F, we may approximate i by the geostrophic

stream function. With this approximation and the resulting computation of

e over the entire field we may determine y everywhere. In the regions

where the constraint 5.4b is not satisfied, i.e., where r is large and

negative, c is no longer a small number. In these regions no correction

of the geostrophic wind is made since the curvature is small.

This correction procedure was applied to the geostrophicaily

perturbed state before initialization. The resultant rms error in the
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corrected velocity field is 3.8 m/sec as compared to 7.7 m/sec for the

purely geostrophic error. A forecast directly from the corrected state

showed gravity waves with a maximum amplitude of 12 meters as compared

to 125 meters in the forecast from the uncorrected state.

The OR2 method was applied for 150 iterations with the geopotential

field allowed to adjust. Rapid convergence occurred as in previous ex-

periments. The forecast after initialization also showed that gravity

waves had been eliminated. The departure of the adjusted rms errors are

compared to those after initialization of the uncorrected state in Table 4.

Table 4

Perturbation Adjusted rms Adjusted rms
height error velocity error

Geostrophic 46 m 6.7 m/sec

Gradient 5.5 m 2.9 m/sec

This simple correction does seem to significantly decrease the departure

of the adjusted fields from the reference state. However, these very

encouraging results may be enhanced by the circular symmetry of our flow

system (refer to Figure 3A) and its steady-st-te character.
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6. Summary and Conclusions

The balance equation approach, as represented in this study, provides

adequate, but not complete, balance in the initial state for a primitive

equation forecast. However this approach depends very critically on the

ellipticity condition, which, in its simplest form, is a restriction on

the maximum amount by which a given height can differ from the average

height of the neighboring field. We have reported that this restriction

is severely violated around strong anticyclones and wi en the resolution of

a model is increased. More importantly the ellipticity condition is

violated by measurement errors typical of those occurring in atmospheric

observatigns, even for moderate circulations modeled at moderate resolu-

tion. The failure of the "correction" procedure in Eqoations 5.2, to

satisfy the ellipticity constraint in these cases merely emphasises the

limited means available for solving the general form of the balance

equation.

The iterative technique, on the other hand, is not restricted. The

primary criticism of this technique has been the excessive amount of com-

putation required to reach a state of balance. Two results of this study

have indicated that this amount of computation can be substantially

decreased. Firstly, the simpler Okamura-Rivas schemes reduce the amount

of computation per iteration by a factor of 2 over the NH1 scheme and 3

over the NH2 scheme. The variation of n in the OR2 scheme further reduces

the number of iterations required for convergence by virtue of its

increased efficiency in damping at intermediate frequencies, but the more

important effect of this flexibility is the increased damping of the high
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frequency waves. It is this latter effect which increases the stability

of the initial balance with respect to the primitive forecast for which

the iterative technique is designed. In our experiments, the OR2 scheme

is more than an order of magnitude faster than the balance equation

approach.

The second result of this study is the reduction of the number of

iterations required for convergence when the initial fields are allowed

to adjust. The number of computations can be decreased by a factor of

more than 10 over the method in which the mass is restored. The slow

convergence of the restorative-iterative method results from the partial

restoration of the original imbalance at each iteration. The more

important effect of allowing the mass field to adjust is that the state

of balance attained fully realizes the compatibility of using the

primitive equations directly in the iterative process. These features

far outweigh the error in the mass field incurred as a result of its

adjustment. Nevertheless this error is a real problem.

Winninghoff (1973) has suggested a scheme for partial restoration

of the mass field to reduce this error, but this again compromises the

practical efficiency of the technique as well as its compatibility with

the primitive forecast. Our experiments, in which random errors of 10m

and 4.2 m/sec (rms) were introduced in the height and velocity fields,

respectively show that the errors, after using the iterative technique

for adjustment, are only qbout 6.5m and 2.9 m/sec. These errors are

typical of real atmospheric measurements. We conclude that, where the

density of observations is sufficiently high to justify the assumption

~I1~L~~
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that measurement errors are random, the observed fields of both velocity

and mass should be used to reduce the error incurred in allowing both

fields to adjust during the iterative procedure. The smoothing incorpor-

ated in conventional analysis techniques may also help to reduce the error

in observed fields. In data-sparse regions the geostrophic approximation

may be necessary. In this case the gradient wind correction described in

Equations 5.4, may considerably reduce the initial wind error. In our

experiment this correction of the initial wind field had the effect of

reducing the adjusted rms height error from 46 to 5.5m. Another method

to improve the initial estimation of the wind field could-be to solve the

balance equation on a coarse grid in data-sparse regions and then inter-

polated to finer resolution. In any case, we conclude that the best

procedure is to first obtain a good estimate of the initial fields and

then apply the iterative techniques, allowing the free adjustment of the

mass field.

This study has been limited in some important areas. The effect of

the iterative schemes on the model which includes the variation of the

Coriolis parameter and terms accounting for the earth's curvature should

be determined in further study. These features do not permit the

existence of a non-trivial, steady-state flow. The rapid convergence

shown here when the initial fields are allowed to adjust may help to

decrease the damping of slow frequency synoptic waves, since fewer

iterations are required. In particular, the flexibility of the variable*

parameterization in the Okamura-Rivas scheme may aid in this respect.

We have not fully exploited this capability in this study. The ultimate
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test will naturally be the use of the iterative technique in operational

forecasts using sophisticated models and real data. But it is hoped that

sufficient evidence is given here to indicate that, when the adjustment

process is allowed to freely act, the iterative technique, and particu-

larly the Okamura-Rivas scheme, can provide a viable alternative to the

balance equation approach to initialization.
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