
Robust Estimation, Regression and Ranking with

Applications in Portfolio Optimization

by

Tri-Dung Nguyen

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Sloan School of Management

May 14, 2009

Certified by. .
Andrew Lo

Harris & Harris Group Professor
Director, MIT Laboratory for Financial Engineering (LFE)

Thesis Supervisor

Accepted by .
Dimitris Bertsimas

Boeing Professor of Operations Research
Co-director, Operations Research Center

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4417374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Robust Estimation, Regression and Ranking with

Applications in Portfolio Optimization

by

Tri-Dung Nguyen

Submitted to the Sloan School of Management
on May 14, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Classical methods of maximum likelihood and least squares rely a great deal on the
correctness of the model assumptions. Since these assumptions are only approxi-
mations of reality, many robust statistical methods have been developed to produce
estimators that are robust against the deviation from the model assumptions. Un-
fortunately, these techniques have very high computational complexity that prevents
their application to large scale problems. We present computationally efficient meth-
ods for robust mean-covariance estimation and robust linear regression using special
mathematical programming models and semi-definite programming (SDP).

In the robust covariance estimation problem, we design an optimization model
with a loss function on the weighted Mahalanobis distances and show that the problem
is equivalent to a system of equations and can be solved using the Newton-Raphson
method. The problem can also be transformed into an SDP problem from which we
can flexibly incorporate prior beliefs into the estimators without much increase in the
computational complexity.

The robust regression problem is often formulated as the least trimmed squares
(LTS) regression problem where we want to find the best subset of observations with
the smallest sum of squared residuals. We show the LTS problem is equivalent to a
concave minimization problem, which is very hard to solve. We resolve this difficulty
by introducing the “maximum trimmed squares” problem that finds the worst subset
of observations. This problem can be transformed into an SDP problem that can be
solved efficiently while still guaranteeing that we can identify outliers.

In addition, we model the robust ranking problem as a mixed integer minimax
problem where the ranking is in a discrete uncertainty set. We use mixed integer
programming methods, specifically column generation and network flows, to solve
the robust ranking problem.

To illustrate the power of these robust methods, we apply them to the mean-
variance portfolio optimization problem in order to incorporate estimation errors into
the model.

2

Thesis Supervisor: Andrew Lo
Title: Harris & Harris Group Professor
Director, MIT Laboratory for Financial Engineering (LFE)

3

Acknowledgments

First of all, I would like to thank Professor Andrew Lo for his continued advice and

support. I am very fortunate to work with Professor Lo and I am thankful for his

flexibility in letting me choose the topic of research in portfolio optimization that I

like most and for introducing to me the world of financial engineering and hedge fund

strategies. The ideas presented in this thesis and in future publications are from or

are strongly influenced by the discussions I have had with Professor Lo. I enjoyed very

much learning his philosophy of doing research, his ways of communicating ideas, and

his teaching methodology and these experiences surely influence my career. I would

also like to thank Professor Lo for his generous funding support for my PhD program.

I would like to thank Professors Roy Welsch and Dimitris Bertsimas for being in

my thesis committee. I am grateful to Professor Welsch for introducing to me the

exciting problems in robust statistical analysis. I also really appreciate the teaching

opportunities that Professor Welsch has given me. I am thankful to Professor Welsch

for his contributions to the third chapter of this thesis. I would like to thank Professor

Bertsimas for asking tough questions and for giving valuable comments when I first

showed him the proposal and for his insights into the problems I faced. This help

makes significant changes in the contents and the quality of this thesis.

I would also like to express my deepest gratitude to Professor Gilbert Strang

for his guidance and encouragement. Professor Strang’s dedication to research and

teaching has influenced my choice to follow an academic career. I was very lucky to

meet Professor Strang and I will never forget about our first research collaboration

during my three week visit to MIT and the subsequent conversations.

I would like to thank Professor Georgia Perakis for her guidance and support

during my first years at MIT. I am thankful for her patience in our robust competitive

pricing paper. I also want to thank Professor Vivek Farias for the advice in the job

search process and in communicating ideas in general.

I would like to thank the ORC staff: Andrew Carvalho, Paulette P. Mosley and

Laura A. Rose and the LFE staff: Sara Salem and Svetlana Sussman for their great

4

help.

I would like to thank Vinh as one of my closest friends. Vinh has been with me

since we were in the same undergraduate program. He is a reliable friend, a very

nice roommate and a very professional colleague. I am grateful to have such a great

friend like him. I am also very thankful to have many great friends at ORC like Ilan,

Kelly, Premal, Rajiv, David, Kostas, Ruben, Dan and many others. I would like to

thank Rajiv for his great help in adding many valuable comments and in editing the

third chapter of this thesis and I would like to thank David for his advice in my job

search. I am also thankful for the friendship with my Vietnamese groups at MIT, in

Boston and in the VEFFA. I would also like to specially thank VEF for the generous

fellowship during my first years at MIT.

Words cannot express my gratitude to my family and I would like to dedicate

this thesis to them. My Father has always been with me in all my journeys. His

encouragement, guidance and support are always the infinite sources of inspiration

for my career. My Father has kept searching for better education for me and I am

sure he is very happy with my fruitful PhD thesis. I would like to thank my Mother,

my brother and sister for their love and continued support. Finally, I would like to

thank my wife for her unconditional love, her caring and her understanding. Thank

you for your patience and for being with me during my toughest time. I specially

thank my daughter, Jennifer, for being so cheerful and inspirational. All my stresses

in work disappear when seeing Jennifer smiling or laughing.

5

Contents

1 Introduction 13

1.1 Motivations for Robust Estimation and Robust Regression 13

1.2 Motivations for Robust Estimation, Regression and Ranking in Port-

folio Optimization . 15

1.3 Contributions . 19

1.4 Thesis Structure . 20

2 Robust Estimation 21

2.1 Introduction . 21

2.1.1 The Outlier Detection and Robust Estimation Problems . . . 21

2.1.2 Literature Review . 23

2.1.3 Model Setting . 26

2.1.4 The Iterative Reweighted MLE Method 27

2.1.5 Our Approach and the Chapter Structure 28

2.2 Minimizing Weighted Mahalanobis Distances 30

2.2.1 Optimization Model . 30

2.2.2 Optimal Solution Properties 32

2.2.3 Numerical Computation . 36

2.3 Numerical Results . 38

2.3.1 Data Generating Processes . 38

2.3.2 Outlier Detection Examples 39

2.3.3 Outlier Detection Accuracy and Computational Time 39

6

2.4 Incorporating Prior Information via Semi-definite Programming Refor-

mulation . 44

2.4.1 Semi-definite Programming Reformulation 46

2.4.2 Existence and Uniqueness of the Newton Raphson Solution and

the SDP Solution . 48

2.4.3 Incorporating Prior Information Example 50

2.5 Conclusion . 51

3 Robust Regression 53

3.1 Introduction . 53

3.1.1 The Least Squares Regression Problem 53

3.1.2 Outliers and the Need for Robust Estimation 54

3.1.3 Literature Review . 54

3.1.4 Contributions . 55

3.1.5 Chapter Structure . 56

3.2 The Least Trimmed Squares (LTS) Regression Problem 56

3.2.1 Formulating LTS as a Nonlinear Programming Problem 57

3.2.2 LTS Reformulation . 58

3.2.3 An Iterative Method for LTS 59

3.2.4 The Concavity of the LTS . 61

3.3 The Maximum Trimmed Squares (MTS) Problem 62

3.3.1 MTS Reformulation as a Semi-definite Programming Problem 65

3.3.2 Performance Guarantee . 66

3.3.3 Robust Regression Algorithm using MTS 68

3.4 Numerical Results . 69

3.4.1 Classical Examples . 69

3.4.2 Examples from Different Contamination Models 71

3.4.3 Extreme Case Example . 73

3.4.4 Robust Regression Accuracy 73

3.4.5 Computational Time . 74

7

3.5 Future Research . 75

3.6 Conclusion . 76

4 Robust Ranking and Portfolio Optimization 77

4.1 Introduction . 77

4.1.1 Literature Review . 78

4.1.2 The Robust Ranking Problem 80

4.1.3 Chapter Structure . 81

4.1.4 Contributions . 82

4.2 Solving the Robust Ranking Problem 82

4.2.1 The Column Generation Algorithm 82

4.2.2 Solving the Constraint Generation Problem 83

4.2.3 Solving the Relaxed Problem 85

4.2.4 Extension to Control Conservative Levels 85

4.2.5 Extension to Allow Group Ranking 87

4.3 Robust Ranking Models for Portfolio Optimization 88

4.3.1 Model I: Robust Max Weighted Ranking with Nonnegative Weight

Constraint . 89

4.3.2 Model II: Robust Max Weighted Ranking with Risk Constraint 90

4.4 Numerical Results . 91

4.4.1 Computational Time . 91

4.4.2 Empirical Study . 92

4.5 Conclusion . 97

5 Future Directions 100

A Appendices 102

A.1 Proof of Theorem 1 . 102

A.2 Proof of Theorem 5 . 103

A.3 Proof of Theorem 6 . 104

A.4 Stock Universe for Robust Ranking Empirical Tests 107

8

List of Figures

2-1 An example showing how a few outliers can deteriorate the maximum

likelihood estimators. It shows that MLE works well if the model

assumption is correct and does NOT work well if the model assumption

is incorrect. 23

2-2 Model setting (Input, Output and Assumptions) for our robust esti-

mation method. 26

2-3 Three examples demonstrating how our robust estimation technique

performs under different contamination models. They show our tech-

nique can detect outliers and recover the distribution of the majority

of the observations nicely. 40

2-4 An example showing how the data generated from the Fully Indepen-

dent Contamination Model looks like. 41

2-5 An example illustrating the effect of incorporating prior information

into the robust estimators. 52

3-1 An example demonstrating how a single outlier can grossly deteriorate

the least squares estimator. 54

3-2 An example demonstrating the Maximum Trimmed Squares idea and

performance when we want to identify the worst three points. 63

3-3 An example demonstrating the Maximum Trimmed Squares idea and

performance when we want to identify the worst eight points. 64

3-4 An example demonstrating the Maximum Trimmed Squares idea and

performance when we want to identify the worst 11 points. 64

9

3-5 Three classical examples demonstrating the performance of our robust

regression technique. 70

3-6 Two examples demonstrating the performance of our robust regression

technique with data generated from the One Sided Contamination Model 72

3-7 An example to demonstrate our robust regression technique can iden-

tify outliers no mater how extremely they are located. 73

4-1 The constraint generation problem is reformulated as a network flow

problem. 84

4-2 The network flow problem when the conservative level is incorporated 87

4-3 The network flow problem when allowing group ranking in the uncer-

tainty set. 88

4-4 Computational time for solving the relaxed problem and the constraint

generation problem. 93

4-5 An empirical test showing that post earning announcement does indeed

have valuable information. 96

4-6 Performance comparison between robust ranking and its non-robust

counterpart for Model I . 98

4-7 Performance comparison between robust ranking and its non-robust

counterpart for Model II . 99

A-1 Figure demonstrating a geometrical intuition for the proof of Theorem 2106

10

List of Tables

2.1 Computation time of our robust estimation technique for different

problem sizes under the Fully Independent Contamination Model . . 42

2.2 Outlier detection accuracies of our robust estimation technique for dif-

ferent problem sizes under the Fully Independent Contamination Model 43

2.3 Computation time of our robust estimation technique for different

problem sizes under the All Direction Contamination Model 43

2.4 Outlier detection accuracies of our robust estimation technique for dif-

ferent problem sizes under the All Direction Contamination Model. . 44

2.5 Computation times of our robust estimation technique for different

problem sizes under the First Quadrant Contamination Model. 44

2.6 Outlier detection accuracies of our robust estimation technique for dif-

ferent problem sizes under the First Quadrant Contamination Model. 45

3.1 An iterative algorithm for Least Trimmed Squares regression 60

3.2 Robust regression algorithm via Maximum Trimmed Squares 68

3.3 Average trimmed absolute residuals for different problem sizes under

the Two Sided Contaminated Model. 75

3.4 Average computational time for different problem sizes under the fully

contaminated model. 76

4.1 Computational time for running the constraint generation algorithm

with different problem sizes. 92

4.2 Risk and return characteristics for different portfolios (equal weighted

versus lowest SUE and highest SUE portfolios). 95

11

4.3 Risk and return characteristics for different strategies (robust versus

non-robust). 97

4.4 Risk and return characteristics when adding additional information. . 97

A.1 List of assets in our sample. 107

12

Chapter 1

Introduction

1.1 Motivations for Robust Estimation and Ro-

bust Regression

The mean-covariance estimation and linear regression problems are the central parts

in multivariate statistical analysis. They appear in many applications where we want

to parametrize data that arrives from many different application domains such as

in economics, finance, e-commerce and engineering. For example, in finance, the

covariance matrix between assets’ returns is estimated to model their risk.

When dealing with a large data set, we often want to find statistical and math-

ematical models to simplify its representation. One of the first questions that we

often ask is whether we can fit the data with a normal distribution. This involves the

estimation of the mean and the covariance matrix of the normal distribution. The

mean and the covariance matrix are often estimated using the classical method of

Maximum Likelihood Estimation (MLE) by assuming the data follows a multivariate

normal distribution. It is well documented that even a single observation that deviates

from the normal distribution could distort the MLE estimators (See [35, 20, 28] and

our example in Subsection 2.1.1). In fact, under the normality assumption, the log

likelihood function contains the sum of the squared Mahalanobis distances. If outliers

are present, the squared Mahalanobis distances from them dominate those from the

13

good observations. Therefore, the mean and the covariance matrix are pulled toward

the outliers. Since outliers appear occasionally in practice, many different techniques

for outlier detection and for robust estimation have been developed recently as we

will show in the literature review Subsection 2.1.2.

From the data, we also often want to study the relationship between different

attributes and this is often done through regression analysis. In this case, linear

regression with the method of least squares is the most common class in practice

because it is very simple to compute and to explain the results. However, it is well-

known that the least squares fit can be grossly influenced by outliers as we will show

in Subsection 3.1.2. This issue again motivates the development of many different

techniques for robust regression.

There is an extensive literature in robust estimation and robust regression as we

will review in Chapters 2 and 3. In fact, the robust estimation and regression are

among the most popular problems in the robust statistics community. The robust

mean-covariance estimation is often viewed in the context of outlier detection since

if we can detect outliers, we can use the maximum likelihood estimators on the re-

maining observations for the mean and the covariance matrix. On the other hand,

if we can find the robust mean and the robust covariance matrix, we can classify

outliers as those whose Mahalanobis distances are abnormally large. This view mo-

tivates the development of many different methods that aim to find the best subset

of observations which satisfy some criteria such as having the minimum covariance

determinant or the minimum volume [34, 36, 37]. However, the methods proposed

suffer either from computational complexity when the problem size increases or from

giving up desirable properties. In Chapter 2, we take a different approach, where

we find the optimal probability of occurrence for all the observations, such that at

the optimal solution, outliers are set with smaller probabilities and can be detected.

Our robust mean-covariance estimators have the following properties: First, they are

affine equivariant. Second, they are computationally efficient even for large problem

sizes. Our method also makes it easy to incorporate prior belief into the estimators.

We test the accuracy of our method for different contamination models, including

14

the most recently proposed ones. We found our method to be faster than the Fast-

MCD method [36] for high dimensional data while still obtaining the same levels of

accuracy.

The robust linear regression is often conducted via least trimmed squares, which

minimizes the sum of the k smallest squared residuals. Least trimmed squares has

desirable properties and forms the basis on which several recent robust methods are

built, but is very computationally expensive due to its combinatorial nature. In Chap-

ter 3, we reformulate least trimmed squares as a minimization problem of a concave

function over a convex set. We then introduce the “maximum trimmed squares”

problem, an “almost complementary” problem that maximizes the sum of q smallest

squared residuals, in direct pursuit of the set of outliers rather than the set of clean

points. Maximum trimmed squares (MTS) can be formulated as a semi-definite pro-

gramming problem, which can be solved efficiently in polynomial time using interior

point methods. In addition, under reasonable assumptions, the maximum trimmed

squares problem is guaranteed to identify outliers no mater how extreme they are.

1.2 Motivations for Robust Estimation, Regres-

sion and Ranking in Portfolio Optimization

In mean-variance (MV) portfolio optimization, we want to allocate wealth among

different assets to maximize some utility functions on the portfolio return and port-

folio risk [27]. The inputs for the portfolio optimization model typically include the

expected returns and the covariance matrix, which need to be estimated from histor-

ical returns and sometimes through a factor model. There have been many critiques

about the poor performance of the MV portfolio optimization model due to estima-

tion errors on the mean and the covariance matrix such as the papers by Michaud [30]

and Chopra & Ziemba [15]. In order to demonstrate the mean-variance estimation

challenges and the effect of estimation errors on the optimal portfolio, we will show

a very simple example. Suppose today’s date is 01/01/2009 and we want to form a

15

portfolio of two assets: Goldman Sacks stock and Microsoft stock. We also suppose

the following simple utility maximization model is used:

max
ω

ωtµ− λ

2
ωtΣω

s.t. ωte = 1

Here, ω is a vector of the percentages of wealth to be allocated into the assets, µ and

Σ are the estimated expected return and covariance matrix and λ = 1 is our choice

for the risk aversion ratio.

If we look back at one year historical returns of the two assets and find their

sample estimates, we would get µ =
[
−70.8%, −50%

]
and Σ =

61% 21%

21% 23%

 and

this would produce an optimal portfolio ω =
[
−45%, 145%

]
.

Now suppose we exclude one single observation on 10/09/2008, we would obtain

new estimates for the expected return and the covariance matrix and a new corre-

sponding optimal portfolio as follows: µ =
[
−61%, −47%

]
, Σ =

60% 21%

21% 23%

 and

ω =
[
−28%, 128%

]
This simple example shows us that the estimation of (µ,Σ) is very sensitive to

the inclusion of a only a few observations while a small change in (µ,Σ) could lead

to significant changes in the optimal ω. Notice that we could have more or less

severely sensitive results depending on our choice of the objective function and the

constraint set. However, it is clear that, in general, it is a very difficult task to

estimate the input parameters µ and Σ while the optimal solutions are very sensitive

to the changes in the inputs because optimization models often produce optimal

solutions at the corners of the feasible space. In fact, many researchers including

Michaud [30] and Chopra & Ziemba [15] have shown that the mean-variance optimal

portfolio performs poorly out-of-sample. Since then, the problem has attracted the

attentions of researchers from many disciplines and there have been many different

techniques for incorporating estimation errors into the MV portfolio optimization

16

model. These methods range from robust optimization approaches by Goldfarb &

Iyengar [18], Tütüncü & Koenig [40] ..., Bayesian approaches by Jorion [21], Black &

Litterman [11], and robust estimation approaches by Welsch & Zhou [44], DeMiguel

& Nogales [16]... There are many other methods such as resampling by Michaud [29],

using ordering information by Almgren & Chriss [1], or using random matrix theory

by Laloux et al. [24, 25], Burda et al. [13], Pafka and Kondor [31] ...We refer the

readers to the complete review by Brennan et al. [12] and the references therein for

detail. These methods present many nice ideas for tackling the portfolio optimization

problem. However, our tests in [12] show that none of the methods work well for

different data sets. The empirical data sensitivity issue shown in the aforementioned

example motivates us to find the answers for the following questions of interest:

1. First, which historical return period should we use for estimating the mean and

covariance matrix? Should we use one year data, two year data or any other

window lengths?

2. Second, how do we identify influential observations from the data? (This might

not be an easy task if the number of assets is large)

3. Third, once we have identified the influential observations, should we include or

exclude them in our estimates?

4. Fourth, how do we find estimators (µ,Σ) that represent the majority of the

data?

5. Fifth, since the estimation of the expected return is too difficult, can we avoid

it?

6. Finally and most importantly, how do we find optimal portfolios that are robust

against estimation errors?

We believe that our robust estimation methods would provide the answers for

questions 2 and 4. In Chapter 4, we will present the robust ranking method that

could provide the partial answers for questions 5 and 6. We have not found the

17

complete answers for all the above questions in this thesis. However, we believe ro-

bust estimation alone will not solve the problem since the part of data which are

treated as outliers from the robust statistics view actually contains the observations

that should be given more careful analysis. Instead, we believe robust estimation in

combination with other techniques such as robust optimization would be very pow-

erful. Nevertheless, our method of using mathematical programming models for the

robust estimation and robust regression would make the inclusion of robust estima-

tion into portfolio optimization models easier. We will have a discussion about future

directions in Chapter 5.

We also propose another method of robust ranking for portfolio optimization. We

notice that the estimation of the expected return is a very difficult task and a small

error in the estimation could lead to significant change in the optimal portfolio. We

can avoid the estimation of the expected return by using the assets’ ranking. Using

ranking is very relevant in portfolio construction because managers usually have pref-

erences on their assets. They might prefer one stock or one sector of stocks more than

others. These preferences are usually expressed in the form of ranking. In addition,

ranking usually contains uncertainty and it is more common to see the ranking to be

expressed in an uncertainty set rather than point estimates. For example, it is more

common to predict an asset to be in the top 5, top 10 or bottom 5, bottom 10 but

not to say an asset to be the best one, the 5th best or the worst one. This means

the ranking is often expressed as a discrete uncertainty set. The robust ranking then

becomes a mixed integer minimax problem. We will present the problem formulation

and the solution approach using column generation and network flows in Chapter 4.

For empirical tests, we use post announcement earning drifts to obtain the ranking

uncertainty set for the stocks in the DJIA index in the period from 2000 to 2007.

We show our robust ranking method produces portfolios with smaller risk and higher

Sharpe ratios compared to their non-robust counterparts.

18

1.3 Contributions

• We present a mathematical programming model for the robust estimation prob-

lem. The complexity of our algorithm is O(n3), which is independent of the

problem dimension.

• We show the mathematical programming model to be equivalent to a semi-

definite programming model so that many types of additional constraints can

be added without much increase in the computational complexity.

• We show the Least Trimmed Squares regression problem to be equivalent to a

concave minimization problem.

• We introduce the idea of “Maximum Trimmed Squares” (MTS) to solve the

robust regression problem. We show that the MTS is guaranteed to detect

outliers. In addition, we show that the MTS is equivalent to a semi-definite

programming model and can be solved efficiently using interior point methods.

• We develop a generic robust ranking model and use the constraint generation

method to solve the general robust ranking problem.

• We show that the problem can be solved efficiently with large classes of objective

functions by using a network flow model.

• We apply our robust ranking model to portfolio optimization and use post

announcement earning drifts to obtain the ranking uncertainty set. We also

provide computational results to demonstrate the algorithm performance and

show empirical tests to demonstrate how our robust ranking method produces

portfolios with smaller risk and higher Sharpe ratios compared to their non-

robust counterparts..

19

1.4 Thesis Structure

This thesis consists of papers on robust estimation in Chapter 2, robust regression

in Chapter 3 and robust ranking in Chapter 4. Each of the three papers is self-

contained and can be read separately without the need for reading other papers.

Nevertheless, as we have presented in Section 1.2, the development of the three papers

was motivated from the same problem of how to incorporate estimation errors into

the mean-variance portfolio optimization problem. Each of the chapters will have

its own literature review, mathematical model and computational results. Finally,

the three papers are connected back in Chapter 5 when we discuss about the future

directions from our work on robust estimation, regression and ranking.

20

Chapter 2

Robust Estimation

2.1 Introduction

2.1.1 The Outlier Detection and Robust Estimation Prob-

lems

Outlier detection is one of the most common problems that appears in many different

application domains which involve statistical data analysis, such as in health care,

engineering, data mining, image processing and fraud detection. There has been a rich

literature with many different methods for outlier detection. Most of these methods

were evolved from the fields of computer science, data mining and robust statistics. In

robust statistics, the outlier detection problem and the robust covariance estimation

problem are interchangeable. If we can detect outliers, we could use the maximum

likelihood estimators for the location (the mean) and the covariance matrix. On the

other hand, if we can find the robust location and the covariance matrix, we could

classify outliers as those whose Mahalanobis distances are abnormally large. The

covariance estimation problem is a central part of multivariate analysis. It appears

in many applications where we want to parametrize multivariate data. For example,

in finance, the covariance matrix between assets’ returns is used to model their risk.

The covariance matrix is classically estimated using the Maximum Likelihood

Estimator (MLE) by assuming data follows multivariate normal distribution. Let

21

R ∈ Rm×n be a matrix of size m× n that contains n observations in n columns, each

of size m. Under the normality assumption, the Maximum Likelihood Estimators for

the mean and the covariance of these m attributes are:

µ̂MLE =
1

n
R ∗ e

Σ̂MLE =
1

n
(R− µ̂MLEe

t)(R− µ̂MLEe
t)t

=
1

n

n∑
i=1

(Ri − µ̂MLE)(Ri − µ̂MLE)t

where Ri is the column vectors of size m for observation i and e is a column identity

vector of size n of all 1.

The above estimation is based on the assumption of normality for all the obser-

vations. It is well documented that even a single observation that deviates from the

normal distribution could deteriorate the MLE estimators of the mean and the co-

variance matrix . In Subfigure (a) of Figure 2-1, we generate 1000 observations that

follow a normal distribution. The 95% confidence ellipsoid is drawn using the MLE

estimators. Subfigure (a) shows that, if the observations follow a normal distribution,

the MLE estimators fit the data very well. However, if we introduce only a few new

observations as shown in Subfigure (b), the new MLE ellipsoid is changed signifi-

cantly and it does not represent the majority of the data very well. In fact, under the

normality assumption, the log likelihood function contains the sum of the squared

Mahalanobis distances. If outliers are present, the squared Mahalanobis distances

from them dominate those from the good observations, which pull the location (the

mean µ̂MLE) and the scatter (covariance matrix Σ̂MLE) toward the outliers. This

example shows that we need robust estimators that can represent the majority of the

data better. There is a whole literature on methods to deal with outlier removal.

In the next section, we will review the current approaches for outlier detection and

robust covariance estimation in the field of robust statistics.

22

(a) When assumption is correct (b) When assumption is Incorrect

Figure 2-1: An example showing how a few outliers can deteriorate the maximum
likelihood estimators. In Subfigure (a), the data follows a normal distribution and
hence the MLE ellipsoid fits it very well. In Subfigure (b), we introduce only a few
observations which could change the MLE from the red ellipsoid (the smaller one) to
the blue ellipsoid (the larger one). The outliers pull the location and the scatter of the
MLE ellipsoid toward them. This example shows that MLE works well if the model
assumption is correct and does NOT work well if the model assumption is incorrect.

2.1.2 Literature Review

There is an extensive literature on outlier detection and robust covariance matrix

estimation. In fact, the outlier detection problem has evolved mostly in the fields of

computer science, data mining and robust statistics. For the most recent development

in outlier detection techniques in general, we refer the readers to the Chandola et al.

review in [14]. Our focus is on the robust statistics side, where we care more about

the robust estimation of the parameters via outlier detection.

The most common approach for outlier detection is to use the classical MLE

estimators on the entire data set to compute the Mahalanobis distances for all the

observations and finally remove those with unexpectedly large distances (e.g. those

with d2 > χ2
0.95,m). However, this approach does not work well because the outliers

have already created a strong bias in the MLE estimators. Thus, the Mahalanobis

distances are very much different from those if we used the true parameters, i.e. the

MLE parameters, which come from the good observations only.

The next stream of research on robust statistics modifies the MLE by using dif-

ferent functions on the Mahalanobis distances, other than the squared Mahalanobis

23

distances, so that the log-likelihood function is less affected by outliers. Examples of

these functions include the Huber functions, Turkey’s biweight functions, etc. (see

[20] or [28] for more detail). This class of estimators is called the M-Estimator. The

S-Estimators are those which result from the generalized maximum likelihood esti-

mators, where the objective functions contain the scales. There are other types of

estimators, such as the MM or GM estimators. The problem in using these lies in

the computational complexity when the number of observations or the dimension

increase.

For one dimensional data, the most common approach is to use the median as an

estimator for the location and the median absolute deviation (MAD) as the estimator

for the standard deviation. For higher dimensional data, the affine equivariant prop-

erty is sacrificed for speed by using the pair-wise correlation estimation approaches.

The most advanced one is probably the bivariate winsorization method proposed by

Khan et al. in [22] which improves the one-dimensional Huber winsorization by taking

into consideration the orientation of the bivariate data. Pair-wise approaches would

improve the computational efficiency. However, they face the problem of arriving at

a non-positive definite and non-affine equivariant covariance matrix which is undesir-

able. This could be serious in finance because the risk could be negative due to the

the matrix being non-positive definite.

A completely different approach for robust covariance estimation is the shrinkage

estimator proposed by Ledoit and Wolf in [26]. This approach basically shrinks the

MLE estimator toward some known matrices, such as the identity matrix, to minimize

the expected distance to the true covariance matrix. This approach is appealing for

applications where the number of observations n is not significantly larger than the

number of parameters to be estimated m(m+1)
2

. However, this approach does not really

try to remove outliers and the effects caused by outliers is still present in the shrinkage

estimators.

The last and probably the most advanced robust covariance estimators are the

Minimum Volume Ellipsoid (MVE) and the Minimum Covariance Determinant (MCD)

proposed by Rousseeuw in [34]. The MVE approach aims to find the subset whose

24

covering ellipsoid has the smallest volume while the MCE approach aims to find the

subset whose corresponding MLE covariance matrix has the smallest determinant.

Both of thee iterative methods that move from one subset to another improving sub-

set until a local optimal solution is found. These approaches also start at many

different starting points with the hope that one of them might arrive at the global

optimal solution. However, these methods face computational complexity and local

optimum. The Fast-MCD by Rousseeuw and Driessen [36] is an improvement of the

MCD where the observations are cleverly divided into subsets to reduce the number

of iterations. However, the Fast-MCD is not really fast for high dimension problems

and is still facing the local optimum.

Our approach is the result of two ideas: First, instead of viewing observations as

two separate sets of good observations and outliers, we view all observations as good

observations except that each of them has a different probability of occurrence. This

normalized probability is proportional to the probability densities of the observations,

given the true parameters. If we can find the probability of occurrence for each

observation, we then can simply treat those with very small probabilities as outliers.

Using this idea, we can transform the combinatory nature of the outlier detection

problem into a continuous problem. Second, we observe that the robust covariance

estimation problem is closely related to semi-definite programming (SDP) through

linear matrix inequalities. SDP has emerged since the development of the interior

point method. It provides the tools to model nonlinear constraints in one-dimensional

space as linear matrix inequalities in a higher dimensional space. SDP also provides

an excellent tool for relaxing combinatorial problems (see [41] and [42] for examples).

In fact, we will show that the robust estimation problem can be reformulated as an

SDP problem.

Our approach has the following features: First, it has all the good properties of the

current best approaches, which include a) affine equivariant b) works fast for large n

and c) performs well even for high dimensional data. Besides, it is easy for our method

to incorporate additional belief into the estimators. It turns out that our method not

only meets the above objectives but also performs slightly more accurately than the

25

Figure 2-2: Model setting for our robust estimation method: A majority of the obser-
vations (the red dotted ones) follow a normal distribution with unknown parameters.
The rest of the observations could follow any random process. The task is to find the
distribution that represent the majority of the observations.

Fast-MCD for our tested contamination models.

2.1.3 Model Setting

Input: The input is any multivariate data R of size (n×m). For example, in Figure

2-2, we generate 1000 data points in two dimensional space and hence n = 1000 and

m = 2.

Assumption: A majority of the observations follow a normal distribution with un-

known parameters, i.e. there is a majority subset S such that Rj ∼ N (µ,Σ), ∀ j ∈ S

with |S| = n̄ > n
2
, where S, n̄,µ,Σ are unknown. For example, in Figure 2-2, the

red dotted observations are those that belong to the majority while the blue crossed

points are those we called the outliers (or anomalies).

Output: We want to recover the set of good observations S and to estimate µ,Σ.

26

2.1.4 The Iterative Reweighted MLE Method

In the maximum likelihood estimation, we want to find the parameters (µ,Σ) that

maximize the likelihood of obtaining the sample data R.

max
µ,Σ

n∑
i=1

log [f (Ri | µ,Σ)]

Under the normality assumption, the closed form solutions (µe,Σe) are expressed as

follows:

µe =
n∑
i=1

1

n
Ri

Σe =
n∑
i=1

1

n
Rt
iRi − µteµe

We notice that all the observations are viewed equally important in the formulas

for (µ,Σ). This means the MLE estimators are influenced by both good and bad

observations. The weighted MLE method avoids this issue by putting weights ω to

the observations with the hope that bad observations are set with smaller weights.

max
µ,Σ

n∑
i=1

ωilog [f (Ri | µ,Σ)]

The corresponding closed form solutions (µw,Σw) are expressed as follows:

µw =
n∑
i=1

ωiRi

Σw =
n∑
i=1

ωiR
t
iRi − µtwµw

If we knew the right weight, we could use the weighted MLE method to eliminate

the effects of bad observations. However, in practice we do not know the right weight

since we do not know which observations are good and which ones are bad. The

iterative reweighted MLE method resolves this issue by updating the weights inversely

proportional to the Mahalanobis distances di from the observations to the weighted

27

mean and rescaled by the inverse weighted covariance matrix.

di = (Ri − µw)Σ−1
w (Ri − µw)t

One popular way to reset ωi from di is to notice that di follows a Chi squared dis-

tribution and hence we can take only observations that belong to the 95% confidence

interval by setting the weights as follows:

ωi =

1, if di ≤ χ2
m,0.95

0, otherwise

The problem with the iterative reweighted MLE method is its slow convergence

and its trap into local optimal solutions. In the next Subsection, we will show our

approach of using a mathematical programming model to resolve the issues faced by

the iterative reweigted MLE method.

2.1.5 Our Approach and the Chapter Structure

The outlier detection problem is essentially a combinatorial problem where we want

to find a subset of observations such that the normal distribution with parameters

that come from the MLE estimators of that subset would classify all the observations

in the subset as normal and the remaining observations as outliers. Suppose there

are k outliers out of n observations, there would be
(
n
k

)
possible subsets to be tested.

This combinatorial nature of the problem makes it very challenging to solve. We

avoid the combinatorial characteristics of the outlier detection problem by viewing

all the observations as good ones except each of them have a different probability of

occurrence. We introduce a probability measure on all the observations and formulate

an optimization problem whose objective function is designed to make sure outliers

are set with smaller weights at the optimal solution. This idea is similar to the idea

used in weighted least squares or the iterative bivariate-winsorization approaches.

Once we have introduced a probability measure x on the observations, we can find

28

the corresponding weighted MLE estimators:

µ̂rob =
n∑
i=1

xiRi

Σ̂rob =
n∑
i=1

xi(Ri − µ̂rob)(Ri − µ̂rob)t

Given these parameters, we can find out the corresponding Mahalanobis distances

di as well as the actual probability of occurrence of the observations given the truth

parameters
(
µ̂rob, Σ̂rob

)
.

di = (Ri − µ̂rob)tΣ̂
−1

rob(Ri − µ̂rob)

Prob(Ri) = (2π)−m/2
∣∣∣Σ̂rob

∣∣∣−1/2

exp(−di
2

)

Ideally we would like to find the probability measure x on the observations such that

xi = Prob(Ri) and the distances di are as small as possible. However, it is very

difficult to find x that solves the system of equations due to the high non-linearity of

the system and the sensitiveness of the exponentials. Instead, we just want to find

an approximation on x such that xi is inversely proportional to the corresponding

Mahalanobis distances di. From that, we can set all observations with smallest xi to

be outliers.

We relax the exponential constraints xi = (2π)−m/2
∣∣∣Σ̂rob

∣∣∣−1/2

exp(−di

2
) and intro-

duce a loss function L(x, d) such that by minimizing the loss function, we naturally

arrive at optimal solution x∗, d∗ where xi is inversely proportional to di.

In this Chapter, we will first show our choice of the loss function L(x, d). The

choice of the loss function and the corresponding optimization model are presented in

Subsection 2.2.1. Since the optimization model in the current form is highly nonlinear

and nonconvex, we will not solve it directly. Instead, we will show some interesting

properties of the optimal solution and will prove that the optimization problem is

equivalent to solving a simpler system of non-linear equations in Subsection 2.2.2.

We will then show the Newton-Raphson algorithm for finding out the solution of the

29

system of equations in Subsection 2.2.3. The Newton-Raphson algorithm turns out to

perform very well where the convergence is achieved within less than 10 iterations even

for very large problems. This is quite surprising because the equivalent optimization

model seems to be very hard to solve. It turns out that under our choice of the loss

function, we can reformulate the optimization problem as a semi-definite program-

ming (SDP) problem which can be solved efficiently using interior point methods. We

will show this SDP reformulation in Section 2.4. The SDP reformulation not only

helps us explain the well-behaved property of the Newton-Raphson algorithm but

also provides us the means to add prior knowledge to the robust estimation problem.

We also show an example on how prior information can be incorporated and its effect

on the estimator in Subsection 2.4.3. Finally, we show the performance of our robust

estimator with different contamination models and compare it with the current most

advanced method of the Fast-MCD in Section 2.3.

2.2 Minimizing Weighted Mahalanobis Distances

2.2.1 Optimization Model

Consider the general optimization model for the robust estimation problem in Model

1. In this optimization model, the first two constraints represent the weighted MLEs

given the probability measure x. The third constraint corresponds to the equation for

the squared Mahalanobis distances. The fourth constraint specifies the normalization

of the weights x, while the firth constraint restricts the non-negativity of the weights.

While the constraint setting is straightforward, the choice of the loss function needs

to fulfill several objectives: First, the loss function should be designed such that

those observations with larger distances are set with smaller weights at the optimal

solution. Under this setting, the outliers are those with the smallest weights. Second,

the loss function should be designed such that the total of the Mahalanobis distances

is small at the optimal solution such that the log likelihood function is large. Third,

the choice of the loss function should make the optimization problem computationally

30

tractable.

Model 1 : General Optimization Model for Robust Covariance Estimation

min
x,d,µ̂rob,Σ̂rob

L(x, d)

s.t µ̂rob =
n∑
i=1

xiRi

Σ̂rob =
n∑
i=1

xiRiR
t
i − µ̂robµ̂

t
rob

di = (Ri − µ̂rob)tΣ̂
−1

rob(Ri − µ̂rob)
xte = 1

x ≥ 0

The loss function would be any function of the following type:

L(x, d) =
n∑
i=1

f(xi, di),

where f(xi, di) is a monotonically nondecreasing function of xi and di. The mono-

tonicity will ensure that observations with larger di are set with smaller weight xi to

drive the objective function low. In the minimal sum of the squared residuals loss

function, we have L(x, d) =
∑n

i=1 di. However, this loss function is non-robust be-

cause it does not distinguish between the weights for outliers and good observations.

The most natural and typical loss function is L(x, d) =
∑n

i=1 xidi. However, this loss

function turns out to be equal to m, the problem dimension, and there is nothing to

optimize (the proof is skipped for the purpose of clarity but it is available from the au-

thor on request). Instead, in our formulation, we will choose L(x, d) =
∑n

i=1 x
2
i (di+1)

because of the following reasons: The first and the foremost reason is that, f(xi, di)

does satisfy the monotonically nondecreasing properties with respects to xi and di.

Another very important reason is that with this loss function, the problem can be

cast into a SDP problem and can be solved efficiently as we will show in Subsection 4.

The choice of x2
i (di+1) instead of x2

i di is for the purpose of convenient reformulation.

We have the following corresponding robust estimation formulation:

31

Model 2 : Our Optimization Model for Robust Covariance Estimation

min
x,d,µ̂rob,Σ̂rob

n∑
i=1

x2
i (di + 1)

s.t µ̂rob =
n∑
i=1

xiRi

Σ̂rob =
n∑
i=1

xiRiR
t
i − µ̂robµ̂

t
rob

di ≥ (Ri − µ̂rob)tΣ̂
−1

rob(Ri − µ̂rob)
xte = 1

x ≥ 0

We notice that in the third constraint, we have changed from equality to “≥”

without changing the optimal solution since the optimization problem would drive

the distances small so that the equality would naturally be satisfied.

2.2.2 Optimal Solution Properties

We will rewrite the robust estimation slightly to study its optimal solution prop-

erties. Notice that the reformulation in this Subsection is only for the purpose of

understanding the optimal solution. This Subsection does not study the model from

the computational point of view.

Theorem 1. Let vi =

 1

Ri

 and Z =

 1
∑n

i=1 xiR
t
i∑n

i=1 xiRi

∑n
i=1 xiRiR

t
i

 =
∑n

i=1 xiviv
t
i ,

then the constraint di ≥ (Ri− µ̂rob)tΣ̂
−1

rob(Ri− µ̂rob) is equivalent to di + 1 ≥ vtiZ
−1vi.

The proof for Theorem 1 is in the Appendix. At the optimal solution, we always

have di + 1 = vtiZ
−1vi to drive the objective function to minimum. Therefore, the

problem can be rewritten as.

Theorem 2. Let x∗ be the optimal solution. Then, x∗j > 0, ∀ j.

Proof. Let’s define hij = vtiZ
−1vj and let x be a feasible solution and consider a

perturbation ωj = xj + ε, ω−j = βx−j, where the indexes −j denote those indexes

32

Model 3 : Equivalent Optimization Model for Robust Covariance Estimation

min
x

f(x) =
n∑
i=1

x2
i v
t
i

(
n∑
i=1

xiviv
t
i

)−1

vi

s.t xte = 1

x ≥ 0

other than j. We set ε = (1−β)(1−xj) such that the constraint ωte = 1 is preserved.

We have:

S ≡
n∑
i=1

ωiviv
t
i

= (xj + ε)vjv
t
j + βx−jv−jv

t
−j

= βZ + (1− β)vjv
t
j

⇒ S−1 =
1

β

(
Z−1 − 1− β

β

Z−1vjv
t
jZ
−1

1 + 1−β
β
vtjZ

−1vj

)
Thus, the perturbed Mahalanobis distances gj, g−j and perturbed objective function

satisfy:

gj + 1 = vtjS
−1vj

=
1

β

(
hjj −

1− β
β

h2
jj

1 + 1−β
β
hjj

)
=

1

β

hjj

1 + 1−β
β
hjj

g−j,−j + 1 = vt−jS
−1v−j

=
1

β

(
h−j,−j −

1− β
β

h2
−j,j

1 + 1−β
β
hjj

)

33

f(ω) = ω2
j (gjj + 1) + ω2

−j(g−j,−j + 1)

=
(
(1− β)2 + β2x2

j + 2β(1− β)xj
) 1

β

hjj

1 + 1−β
β
hjj

+ β2x2
−j

1

β

(
h−j,−j −

1− β
β

h2
−j,j

1 + 1−β
β
hjj

)
= βf(x)− (1− β)

(
x2
−jh

2
−j,j +

β

β + (1− β)hjj
(hjjxj − 1)2 − 1

)
⇒ f(ω)− f(x)

1− β
= −f(x)−

(
x2
−jh

2
−j,j +

β

β + (1− β)hjj
(hjxj − 1)2 − 1

)

Suppose there exist x∗j ≤ 0. We consider a perturbation on x∗ and let β approach

1. We have:

f(ω)− f(x)

1− β
= −f(x∗)−

(
(x∗−j)

2h2
−j,j +

β

β + (1− β)hjj
(hjjx

∗
j − 1)2 − 1

)
≤ −f(x∗) ≤ −x∗tx∗ ≤ − 1

n
< 0

Therefore f(x∗) is not optimal. Thus, we can remove the constraint x ≥ 0 and the

optimal solution always satisfies x∗ > 0.

Theorem 3. At the optimal solution, we have: f(x)+
∑n

k=1 x
2
kh

2
k,j−2hjjxj = 0 ∀ j.

Proof. With xj > 0, ω is feasible when β is in a vicinity of 1. Thus, at the optimal

solution, the left hand side must approach zero when β approaches 1 , i.e.

f(x) + x2
−jh

2
−j,j + (hjjxj − 1)2 − 1 = 0

⇔ f(x) +
n∑
k=1

x2
kh

2
k,j − 2hjjxj = 0

Remark: Once we have removed the sign constraint x ≥ 0, the result of
∑n

k=1 x
2
kh

2
k,j−

2hjjxj being constant for all j can be proven by setting the derivative of the La-

34

grangian function L(x, λ) =
∑n

k=1 x
2
kv

t
kZ
−1vk − λ(xte− 1) equal to zero:

0 =
∂L(x, λ)

xi

=
∂
∑n

k=1 x
2
khkk

∂xi
− λ

= 2xihi −
n∑
k=1

x2
kh

2
ik − λ 1

Notice also that we can solve either the system of n equations 2xihi −
∑n

k=1 x
2
kh

2
ik −

f(x) = 0, ∀ j with n variables or the system of (n+1) equations of 2xihi−
∑n

k=1 x
2
kh

2
ik−

λ = 0, ∀ j and xte = 1 with (n + 1) variables. In our numerical approach shown in

Section 2.2.3, we choose to solve the former system of equations as it is smaller.

Theorem 4. Affine Equivariant Property: Let x be an optimal solution that

corresponds to data R. Consider the affine transformation Y = A ∗ R + b ∗ et where

A ∈ Rm×m is a non-singular matrix, b ∈ Rm is a column vector and e is the column

identity vector of size n of all 1. We will prove that x is also an optimal solution for

Y .

Proof. We have the corresponding location and covariance matrix for data Y given

1We have used the following results:

∂Z

∂xi
= viv

t
i

∂Z−1

∂xi
= −Z−1viv

t
iZ
−1

∂hkk

∂xi
= −vt

kZ−1viv
t
iZ
−1vk = −h2

ik

35

the weight x:

Ȳ =
n∑
i=1

xi(A ∗Ri + b)

= A ∗ µ̂rob + b

ΣY =
n∑
i=1

xi(A ∗Ri + b− Ȳ)(Ri ∗ A+ b− Ȳ)t

= A ∗ Σ̂rob ∗ At

The distances corresponding to data Y and weight x are:

d′ij = (Yi − Ȳ)tΣ−1
Y (Yj − Ȳ)

= (A ∗Ri + b− Ȳ)tΣ−1
Y (A ∗Rj + b− Ȳ)

= (Ri − µ̂rob)tAt
(
A ∗ Σ̂rob ∗ At

)−1

A(Rj − µ̂rob)

= (Ri − µ̂rob)tΣ̂
−1

rob(Rj − µ̂rob) = dij, ∀ i, j

From here we can show h′ij = hij, ∀ i, j (the proof detail is skipped). Thus, the

system of equations f(x) +
∑n

k=1 x
2
kh
′2
k,j − 2h′jjxj = 0, ∀ j still satisfied. Hence, x is

also an optimal solution for the data Y . Another way to prove is as follows: Since

d′j = dj, the optimal value of the optimization problem corresponding to data R is

equal to
∑n

i=1 x
2
i (d
′
i + 1) which is the objective value of the optimization problem

corresponding to data Y taken at the weight x. Thus, the optimal value of the

optimization problem corresponding to data R is always greater than or equal to that

corresponding to data Y . Under the same argument, the reverse is true. Thus, the

optimal value of the two problems are the same and hence x is an optimal solution

for both problem.

2.2.3 Numerical Computation

We use the Newton-Raphson method to solve the system of equations:

Γj(x) = f(x) +
n∑
k=1

x2
kh

2
k,j − 2djxj = 0, ∀ j (2.1)

36

The corresponding Jacobian matrix can be calculated as follows:

Jj,i =
∂Γj
xi

= −2xjd
2
ji + 2dj1[i=j] + 2dji

n∑
k=1

x2
kdkjdki

−2xid
2
ji − 2xidi +

n∑
k=1

x2
kd

2
ki, ∀ j, i (2.2)

The Jacobian matrix can also be written in the following form:

J = −(X+X ′)·D ·D+2∗diag(D)+2∗D ·(D∗diag(x2)∗D)−2∗D+e∗(x2)t∗(D ·D),

where X = x ∗ et, D is a matrix of element hji, the dot product · is the element-

wise matrix multiplication while the ∗ operation is the usual matrix multiplication.

diag(D) is the diagonal matrix of diagonal elements of D and diag(x) is the diag-

onal matrix of elements from vector x. This vectorization procedure can make the

algorithm run faster in Matlab.

Algorithm 1 Newton Raphson method

1. Set k = 0 and start with xkj =
1

n
, ∀ j

2. Find Γj(x
k) according to Equation 2.3 and Jacobian matrix J(xk) according Equation 2.2

3. Set xk+1 = xk − J(xk)−1Γ(xk) and k = k + 1
4. If ‖Γ(xk)‖ ≤ 10−6, go to step 5, otherwise back to step 2
5. Set x∗ = xk.

In the case we know the pre-specified number of outliers p, we set those p observa-

tions with the smallest weights x∗j as outliers once we have found x∗. Otherwise, we

could find the weighted maximum likelihood estimators µw,Σw and the correspond-

ing Mahalanobis distances dj. We can then set those observations that are outside the

95% confidence interval, i.e. those with di ≥ χ2
m,0.95, to be outliers. In our numerical

results, we assume we do not know the number of outliers p. The robust location and

covariance matrix are then set as the MLEs for the non-outlier subset.

37

2.3 Numerical Results

2.3.1 Data Generating Processes

Fully Independent Contamination Model (FICM)

We use the popular contamination model by Alqallaf et al. [2]. In this model,

observational data is generated by setting X = (I − B)Y + BZ, where Y and Z

are multivariate normal random variables and B is a diagonal matrix whose diagonal

elements come from independent Bernoulli random variables with the probability of

success equal to (1− p). Let the distribution for Y be that of the good observations.

Then an observation is in the good set if B is equal to zero (with probability of pm).

Otherwise, the observation is contaminated by Z in at least one attribute.

All Direction Contamination Model (ADCM)

In this model, we have good observations concentrated in the center while outliers lie

randomly surrounding good observations by setting their Mahalanobis distances larger

than those from the good observation. From the true covariance matrix Σ and the

true location µ, we generate n samples Ri from the multivariate normal distribution

N(µ,Σ). Let the Mahalanobis distances from the center µ to these samples be

di = (Ri−µ)tΣ−1(Ri−µ) and let dmax = max(di). We make sure the last k samples

among n samples to be outliers by setting: Rj = µ+(1.05+ξj)
√

dmax

dj
(Rj−µ), ∀ j ≥

n−k+1, where ξj are some nonnegative random numbers. This step essentially scales

up the last k samples such that their distances to the center µ become (1.05+ξj)
2dmax.

Notice that the higher the expected value of (1.05+ξj)
2, the clearer we can distinguish

between outliers and non-outliers and the easier the algorithm can detect outliers. In

our simulation, we set ξj to be uniformly distributed in the range [0, 0.5].

First Quadrant Contamination Model (FQCM)

This model is basically the same with the ADCM model except that outliers lie only

in the first quadrant relative to the location. We also use the same method shown

38

in the previous subsection except that, in the last step, we set: Rj = µ + (1.05 +

ξj)
√

dmax

dj
|Rj − µ| , ∀ j ≥ n − k + 1. The absolute operation essentially set all the

outliers to be in the first quadrant of the coordinates relative to the location µ.

2.3.2 Outlier Detection Examples

We present three examples to demonstrate our robust estimators under different con-

tamination models and for different choices of the true locations and covariance ma-

trices. In the first example (the first plot shown in Figure 2-3), we use the FICM

model where the data were generated from:

X =

1− b1 0

0 1− b2

 ∗ N
1

1

 ,
 1 −0.5

−0.5 1

+

b1 0

0 b2

 ∗ N
4

4

 ,
1 0

0 1

In order to produce 25% contamination, we set b1 and b2 as independent Bernoulli

random variables with the probability of success equal to 1 −
√

0.75. The data in

the second plot is essentially the same with that in the first plot except that the

covariance matrix of Y was changed to

 1 0.5

0.5 1

. The data in the third plot in

Figure 2-3 was generated from the FQCM model with the true distribution being:

N

1

1

 ,
 1 0.5

0.5 1

 . We can see that in all the three examples, our robust esti-

mators recover the location and the covariance matrix very well.

2.3.3 Outlier Detection Accuracy and Computational Time

We check the accuracy of our robust estimators with the number of observations n

ranging from 100 to 5000 and the problem dimension m ranging from 2 to 50. For

each problem size, we generate K sample paths where K is equal to 20 for n ≤ 500

and K = 10 for n ≥ 1000. The sample paths are generated with fixed random

seeds in Matlab so that they can be regenerated for future comparison. Each sample

path corresponds to a matrix of size n × m data generated from the FICM model

with Y comes from m-multivariate normal distribution N(0, I) and Z comes from

39

(a) FICM I (b) FICM II

(c) FQCM

Figure 2-3: Three examples demonstrating how our robust estimation technique per-
forms under different contamination models. They show our technique can detect
outliers and recover the distribution of the majority of the observations nicely. In
the first plot, 1000 points were generated from the fully independent contamina-
tion model, where the Bernoulli random variables have probabilities of success of
p = 1 −

√
0.75 such that the expected percentage of non-contaminated observations

is 75%. The expected percentage of observations being contaminated in one at-
tribute is p(1 − p) while that of observations being contaminated in both attributes
is (1 − p)2. In this example, we have 750 good observations which are the red, dot-
ted points. The contaminated observations are the blue, crossed points. The larger
ellipsoid (in blue) contains 95% of the observations that are conformed with the clas-
sical MLE covariance, i.e. those points whose distances d are less than or equal to
χ2

0.95,2: dj = (Ri − µMLE)tΣ−1
MLE(Ri − µMLE) ≤ χ2

0.95,2. The smaller ellipsoid (in red)
contains 95% of the observations that are conformed with the robust covariance Σ
and the robust location R̄, i.e. those points whose distances d are less than or equal
to χ2

0.95,2: dj = (Ri − R̄)tΣ−1(Ri − R̄) ≤ χ2
0.95,2. Similarly, in the second plot, 1000

points were generated from the fully independent contamination model but using a
different covariance matrix with the same contamination parameters. In the third
plot, 1000 points were generated from the first quadrant contamination model with
750 good observations and 250 outliers.

40

m-multivariate normal distribution N(4e, I), where I is the identity matrix and e

is the column identity vector of size m of all 1. The Bernoulli random variables are

independent with the probability of success being 1 − m
√
p such that the probability

of having a non-contaminated observation is p where p is a uniform random number

in the range [0.75, 0.95]. Figure 2-4 shows an instance generated by the FICM model

with n = 1000 andm = 2. Notice that although we use the identity matrix to generate

the sample data, the affine equivariant property implies that we can transform the

data to any type of covariance matrix we want and still be able to obtain the same

results.

Figure 2-4: An example showing how the data generated from the Fully Independent
Contamination Model looks like with n = 1000 and m = 2. The red dotted points
are good observations and the blue crossed points are contaminated observations.

By keeping track of the realization of the Bernoulli variables, we record those

contaminated observations. For each sample path, we run our robust estimation

algorithm to find out those observations that lie outside the 95% confidence ellipsoid

and set those as outliers. The accuracy of the method is calculated as follows:

Accuracy = 1− E1 + E2

n

where E1 is the number of unidentified outliers and E2 is the number of good obser-

vations that are misclassified to be outliers. We record the average accuracy over K

sample paths.

41

Table 2.1 shows the average computation time (in seconds) for different problem

sizes. 1 We can see that when n increases, the computation time increases at the rate

of O(n3). This is what we expected because the Newton-Raphson algorithm takes

around 7 iterations for most of the simulations. Each iteration takes O(n3) operations

to compute the Jacobian matrix and its inverse to find a new direction. It is also very

interesting to see that the computational time for each fixed n is almost the same for

all problem dimensions, i.e. the numbers in each column are about the same.

100 200 500 1000 2000 5000
2 0.0265 0.146 1.286 6.74 31.78 364.49
5 0.0235 0.140 1.149 6.11 30.82 386.83
10 0.136 1.170 6.13 29.72 351.26
20 1.103 5.48 29.86 355.57
30 5.09 28.75 332.66
50 304.35

Table 2.1: Computation time of our robust estimation technique for different problem
sizes under the Fully Independent Contamination Model. The top row is for the
number of observations n while the first column is for the problem dimensions m.
The numbers in the table show the average computation time (in seconds).

Table 2.2 shows that, overall, the accuracy is around 93% which is quite high.

Notice that since the distribution of Y and Z are not very far from each other, there is

a crossover between the good observations and the contaminated observations simply

because of chance.

We obtain similar computational time for the FQCM and the ADCM models

compared to that from the FICM model as shown in Tables 2.3 and 2.5. The average

accuracy is around 97% for the ADCM model and around 90% for the FQCM model

as shown in Tables 2.4 and 2.6.

We also compare the computational time between our algorithm and the Fast-

MCD using the FICM, ADCM and FQCM models. We used the LIBRA library (see

[43]) for the Fast-MCD algorithm. it is not clear about the exact formula for the

1All the computation was done through Matlab version 7.3.0.298 (R2006b) under the Linux
2.6.15-51-amd64-xeon system. Notice that all the test data was generated randomly in Matlab using
fix seeds such that they can be regenerated for testing with other techniques. Matlab codes for the
algorithm and for generating test data are available on request.

42

100 200 500 1000 2000 5000
2 93.45% 90.35% 94.14% 95.02% 94.68% 94.87%
5 93.95% 93.2% 93.77% 94.39% 94.48% 94.29%
10 93.53% 93.72% 93.81% 93.525% 93.88 %
20 93.27% 92.29% 92.77% 92.45%
30 92.27% 92.85% 91.71%
50 91.01%

Table 2.2: Outlier detection accuracies of our robust estimation technique for differ-
ent problem sizes under the Fully Independent Contamination Model. The top row
contains the numbers of observations n while the first column contains the problem
dimensions m. The numbers in the table show the average detection accuracies which
measure the percentage of the accurately classified points over n.

100 200 500 1000 2000 5000
2 0.035435 0.15149 1.1415 7.2779 39.597 418.01
5 0.023327 0.15311 1.4436 7.0569 36.595 469.4
10 0.1653 1.293 7.1696 34.935 547.12
20 1.4099 6.661 34.822 1044.9
30 6.4929 33.61 563.68
50 819.02

Table 2.3: Computation time of our robust estimation technique for different problem
sizes under the All Direction Contamination Model. The top row is for the number of
observations n while the first column is for the problem dimensions m. The numbers
in the table show the average computation time (in seconds).

complexity of the Fast-MCD. However, its complexity grows exponentially when we

increase the problem dimension m and grows linearly when we increase n. On the

other hand, the complexity of our algorithm is O(n3) which is independent of the

problem dimension m. Therefore, our method outperforms the Fast-MCD signifi-

cantly when either n is small or m is large. For large n and small m, the Fast-MCD

algorithm is faster than ours. We also compare the accuracies between our algorithm

and the Fast-MCD. We found the two methods produce about the same levels of accu-

racy at around 93% for data generated from the FICM model. For the ADCM model,

our method produces an average accuracy of around 97% while that of the Fast MCD

is around 92.5%. For the FQCM model, our method produces an average accuracy of

around 90% while that of the Fast-MCD is around 94%. In conclusion, overall, both

method produces around the same levels of accuracies. The Fast-MCD algorithm is

43

100 200 500 1000 2000 5000
2 96.60% 97.23% 97.48% 98.19% 97.86% 97.31%
5 96.00% 94.80% 99.01% 96.31% 98.32% 97.28%
10 97.83% 97.77% 96.02% 97.44% 95.07%
20 96.45% 97.79% 97.24% 97.14%
30 95.43% 98.40% 96.36%
50 95.60%

Table 2.4: Outlier detection accuracies of our robust estimation technique for different
problem sizes under the All Direction Contamination Model. The top row contains
the numbers of observations n while the first column contains the problem dimensions
m. The numbers in the table show the average detection accuracies which measure
the percentage of the accurately classified points over n.

100 200 500 1000 2000 5000
2 0.047549 0.27515 1.5284 9.6296 51.118 662.31
5 0.04619 0.22515 1.8701 9.0582 58.188 667.62
10 0.2346 1.8062 9.5765 50.899 618.47
20 1.6024 10.205 46.112 613.42
30 9.197 41.011 586.26
50 558.34

Table 2.5: Computation times of our robust estimation technique for different problem
sizes under the First Quadrant Contamination Model. The top row are for the number
of observations n while the first column is for the problem dimensionsm. The numbers
in the table show the average computation time (in seconds).

more favorable for problems with large number of observations and smaller problem

dimensions. Our method is more favorable for high dimension problems or small

numbers of observations.

2.4 Incorporating Prior Information via Semi-definite

Programming Reformulation

Our robust covariance estimation model is most attractive in the way it can incor-

porate additional constraints into the optimization model. In general, we can add

constraints as long as they do not add additional complexity to the model. We will

show that the robust covariance estimation problem can be reformulated as a semi-

definite programming problem, any SDP-like constraints can be added to the model.

44

100 200 500 1000 2000 5000
2 91.45% 91.23% 92.30% 94.56% 93.20% 93.09%
5 90.25% 88.03% 91.40% 90.42% 91.91% 90.93%
10 90.73% 89.19% 87.11% 88.31% 85.49%
20 90.95% 89.96% 89.68% 89.04%
30 87.86% 88.27% 87.20%
50 85.68%

Table 2.6: Outlier detection accuracies of our robust estimation technique for different
problem sizes under the First Quadrant Contamination Model. The top row contains
the numbers of observations n while the first column contains the problem dimensions
m. The numbers in the table show the average detection accuracies which measure
the percentage of the accurately classified points over n.

These constraints could be additional beliefs that we have on the location, the co-

variance matrix and the observations. This capability is very important in many

applications such as in finance where one strategy is distinguished from others by the

capacity of the managers to incorporate their beliefs into the model. For example,

we might have a strong belief that the mean (location) µ̂rob lies within some known

ellipsoid E(c, S) such that (µ̂rob−c)tS−1(µ̂rob−c) ≤ 1. Then we can add the following

constraint into the model: 1
∑n

i=1 xiR
t
i − ct∑n

i=1 xiRi − c S

 � 0

In finance, we might want to restrict the expected return to be non negative and

this can be done by setting µ̂rob ≥ 0. We might have additional information that

the correlation between two assets is positive or negative. If we knew an observation

Ri to be in the good set, we can set di < 0.975. We can even add a constraint like

observation i has a higher probability of being a good observation than observation

j does by setting xi ≥ xj. We might add constraints on the shape of the covariance

matrix. For example, in order to make sure the dispersion (the covariance matrix) is

not so flat, we can set the minimum eigenvalue of the covariance matrix to be greater

than some bound or the ratio between the maximum eigenvalue and the minimum

eigenvalue to be within some ranges. We skip the mathematical formulation for these

45

constraints for the purpose of clarity. The detail is available from the author on

request.

2.4.1 Semi-definite Programming Reformulation

We have already shown that solving the optimization model is equivalent to solving

the system of nonlinear equations. The optimization model is nonconvex in vari-

ables (x, d) and is highly nonlinear in the inverse of Σ̂ and in the term R̄R̄t in

the constraints, and it seems very difficult to solve. However, we will show in the

computation results that the system of equations can be efficiently solved using the

Newton-Raphson method. It has been shown experimentally that it often takes fewer

than 10 iterations for the Newton-Raphson to converge to ||Γ|| ≤ 10−6 for even large

scale problems with n as high as 10000 and m can be up to hundreds. These re-

sults seem conflicting. However, we can show that the optimization model is actually

equivalent to a semi-definite programming problem in a different space and can be

solved efficiently. By showing the reformulation of the robust covariance estimation

as a semi-definite programming problem, we not only explain why we can simply use

the Newton-Raphson method to solve an equivalent system of equations but we can

also incorporate many different types of prior beliefs by adding additional constraints

to the model as long as the constraints can be transformed into SDP forms and do

not increase the problem complexity. We will first show how we can reformulate the

problem in SDP form. Let yi = x2
i (di + 1), the objective becomes

∑n
i=1 yi, while the

46

Mahalanobis distance constraint can be reformulated as follows:

di ≥ (Ri − R̄)tΣ−1(Ri − R̄)

⇔ yi − x2
i ≥ x2

i (Ri − R̄)tΣ−1(Ri − R̄)

⇔

 yi − x2
i xi(Ri − R̄)t

xi(Ri − R̄) Σ

 � 0

⇔

 yi − x2
i xiR

t
i − xiR̄t

xiRi − xiR̄
∑n

i=1 xiRiR
t
i − R̄R̄t

 � 0

⇔

 yi xiR
t
i

xiRi

∑n
i=1 xiRiR

t
i

−
 x2

i xiR̄
t

xiR̄ R̄R̄t

 � 0

⇔

 yi xiR
t
i

xiRi

∑n
i=1 xiRiR

t
i

−
 xi∑n

i=1 xiRi

[xi ∑n
i=1 xiR

t
i

]
� 0

⇔

1 xi

∑n
i=1 xiR

t
i

xi yi xiR
t
i∑n

i=1 xiRi xiRi

∑n
i=1 xiRiR

t
i

 � 0

Notice that this constraint is a typical SDP constraint where all the terms in the

SDP matrix are linear functions of the decision variables x, y. The corresponding

SDP reformulation is shown in Model 4:

Model 4 : Semi-definite Programming Model for Robust Covariance Estimation

min
x,y

n∑
i=1

yi

s.t

 1 xi
∑n

i=1 xiR
t
i

xi yi xiR
t
i∑n

i=1 xiRi xiRi

∑n
i=1 xiRiR

t
i

 � 0, ∀ i

xte = 1

x ≥ 0

Remark 1: We did not show every step in the above proof. The detail is similar

to the proof of Proposition 1 shown in the Appendix. The SDP problem can be solved

47

by interior point methods using standard software packages like the SDPT3 [39]. If

k is known, we sort the weights xi and take the smallest k weights as outliers. If k is

unknown, we only take those observations whose Mahalanobis distances are smaller

than χ2
m+1,0.95 as good observations.

2.4.2 Existence and Uniqueness of the Newton Raphson So-

lution and the SDP Solution

In Subsection 2.2.3 and Section 2.4, we present two different approaches for solving

the robust estimation problem. In the first approach, we prove that the optimal

solution of the robust optimization model 2 satisfies a system of equations. We then

use the Newton Raphson method to solve the system. Our numerical results show the

Newton Raphson method behaves well. However, we did not present any theoretical

result about the existence and uniqueness of the optimal solution. In the second

approach, we prove that our robust optimization model 2.2.3 can be transformed

into the semi-definite programming model 4. However, we did not show whether the

original model and the SDP model are equivalent in the sense that the set of solutions

produced by these models are the same. In this Subsection, we will bridge the gaps

by showing all the methods lead to the same unique solution.

First, we prove that the original robust optimization model 2 is equivalent to

the simplified model 3. This is done by noticing the inequality constraint of di ≥

(Ri − µ̂rob)tΣ̂
−1

rob(Ri − µ̂rob) to be always tight at the optimal solution. Therefore, we

can replace d, µ̂rob, Σ̂rob from the original model by their functions of x and arrive at

the simplified model.

48

Original Robust Model 2

min
x,d,µ̂rob,Σ̂rob

n∑
i=1

x2
i (di + 1)

s.t µ̂rob =
n∑
i=1

xiRi

Σ̂rob =
n∑
i=1

xiRiR
t
i − µ̂robµ̂

t
rob

di ≥ (Ri − µ̂rob)tΣ̂
−1

rob(Ri − µ̂rob)

xte = 1

x ≥ 0

Simplified Model 3

⇔ min
x

n∑
i=1

x2
i v
t
i

(
n∑
i=1

xiviv
t
i

)−1

vi

s.t xte = 1

x ≥ 0

We then prove that the constraint x ≥ 0 is redundant and can be removed. There-

fore, we can use the KKT conditions to arrive at the following system of equations:

Γj(x) = f(x) +
n∑
k=1

x2
kh

2
k,j − 2djxj = 0, ∀ j (2.3)

In Subsection 4, we show that each of the constraints yi ≥ x2
i v
t
i (
∑n

i=1 xiviv
t
i)
−1
vi is an

SDP-typed constraint. This implies the level sets of the function x2
i v
t
i (
∑n

i=1 xiviv
t
i)
−1
vi

are convex. The level sets of the objective function are therefore convex. Since the

objective function is also a continuously differentiable function, the KKT conditions

are necessary and sufficient conditions. Therefore, the simplified model is equivalent

49

to the system of equations. We then use the Newton-Raphson method to solve that

system of equations.

In addition, by introducing the additional variable yi to the simplified model, we

arrive at the semi-definite programming model:

min
x,y

n∑
i=1

yi

s.t

1 xi

∑n
i=1 xiR

t
i

xi yi xiR
t
i∑n

i=1 xiRi xiRi

∑n
i=1 xiRiR

t
i

 � 0, ∀ i

xte = 1

x ≥ 0

We can see the set of optimal solutions of the simplified model and the set of

optimal solutions of the SDP model are exactly the same. In addition, since the

objective function for the simplified model is a non-linear continuously differentiable

function and the constraint set is a bounded simplex, there exists an unique solution.

Therefore, the solutions from the Newton-Raphson method and the SDP model are

exactly the same.

2.4.3 Incorporating Prior Information Example

In this example, we demonstrate the effect of having prior information to the robust es-

timator, which could produce a breakpoint smaller than 50%. In Figure 2-5, we gener-

ate 1000 points from the following two normal distributions: N

1

1

 ,
 1 0.5

0.5 1

and N

5

1

 ,
 1 0.5

0.5 1

 with 400 points from the first distribution and 600 points

from the second. Suppose the 400 points are good observations. Since the good ob-

servations account for only the minority, typical robust methods without any prior

information should find the parameters that correspond to the majority of 600 points.

However, if we have additional information that the true location R̄ lies within the

50

ellipsoid:

(R̄− µprior)tΣ−1
prior(R̄− µprior) ≤ 1,

where µprior =

1

1

 and Σprior =

0.5 0

0 0.5

 , then we could recover the good obser-

vations and find the robust estimators corresponding the 400 points.

2.5 Conclusion

In conclusion, we have studied the robust covariance estimation problem via outlier

detection. Our approach is different from others in the way we introduce a prob-

ability measure on the observations and in the design of an optimization problem

on that measure such that outliers are set with smaller probabilities at the optimal

solution. This optimization problem was proven to be equivalent to solving a system

of nonlinear equations. We use the Newton-Raphson method to solve the system.

The algorithm behaves very well computationally because the optimization model

turns out to be equivalent to a semi-definite programming problem. This SDP re-

formulation is very flexible such that we can incorporate prior belief into the robust

estimators by adding additional constraints into the optimization model. We believe

that using SDP is a promising choice for robust statistics applications since they both

closely involve matrix operations. We demonstrate our robust estimators through dif-

ferent examples. We also compare our method with the Fast-MCD method in terms

of accuracy and computational time for different contamination models at different

problem sizes. Overall, our estimators are slightly more accurate and the algorithm

runs much faster than the Fast-MCD for large problem dimensions.

51

Figure 2-5: An example illustrating the effect of incorporating prior information into
the robust estimators. There were 1000 points generated from a mixture of two
normal distributions. The 400 red dotted points are considered good observations
while the 600 blue crossed points are considered outliers. The largest ellipsoid (in
blue color) is the ellipsoid that contains 95% of the observations using the MLE
estimators. The second largest ellipsoid is that one that contains 95% of the good
observations using the robust estimators. The smallest ellipsoid represents the prior
belief that the location must be contained in this ellipsoid. Since the number of good
observations accounts for only 40% of all observations, a robust method without
prior information would classify the majority of 600 points as good observations.
However, with the additional knowledge that the truth location is within the ellipsoid
(R̄ − µprior)tΣ−1

prior(R̄ − µprior) ≤ 1, the robust estimator can recover up to 98.5% of
the good observations. (notice that the two distributions cross over such that there
are some unclassifiable points and there is no way to recover 100% good observations.)

52

Chapter 3

Robust Regression

3.1 Introduction

3.1.1 The Least Squares Regression Problem

Let X ∈ Rn×p be the data matrix of realizations for the independent (explanatory)

variable and y ∈ Rn be the vector of realizations for the dependent (response) variable.

Least squares regression assumes:

y = Xβ + ε

where β ∈ Rp is some unknown coefficient vector and ε ∈ Rn is a vector of i.i.d.

realizations for an error term which is normally distributed with mean 0.

In ordinary least squares, we estimate β as the minimizer of the sum of squares:

β̂LS = arg min
β

(y −Xβ)t(y −Xβ)

Taking the derivative of the objective function and setting it to zero, we get:

β̂LS =
(
X tX

)−1
X ty

53

3.1.2 Outliers and the Need for Robust Estimation

It is well-known that the least squares fit can be grossly influenced by outliers. Figure

3-1 for instance, shows a case where the fit is pulled towards a single outlier. The

red dashed line shows the least squares fit using all observations. The blue solid line

shows the least trimmed squared (LTS) fit where the the outlier is excluded. We can

see the dashed line does not fit the majority of the data as well as the solid line.

Figure 3-1: An example demonstrating how a single outlier can grossly deteriorate
the least squares estimator. The outlier pulls the least squares line of the subset
without the outlier from the solid line to the dashed line. This example shows that
least squares does not work well under the presence of outliers. In general, least
squares performs poorly if the model assumption is incorrect, i.e. if the residuals do
not follows a normal distribution.

We will review different methods for handling outliers in the next Subsection.

3.1.3 Literature Review

An intuitive approach for outlier detection is to use the classical least squares estima-

tor on the entire data set and then remove those observations with unexpectedly large

squared residuals. However, this approach does not work well because the outliers

have already corrupted the least squares fit such that the squared residuals we are

comparing are significantly different from those computed using the robust regression

54

fit.

Researchers have developed several methods to work around this. Holland and

Welsch [19] use the iterative reweighed least squares procedure where the weights are

set inversely proportional to the squared residuals until convergence occurs. Rousseeuw

[34] proposes least median of squares (LMS) regression, which minimizes the median

squared residuals, and was originally computed by the PROGRESS algorithm. The

least trimmed squares problem was presented in 1987 by Rousseeuw and Leroy [35].

They show that LTS and LMS have desirable properties, including affine equivariance,

the highest breakdown possible (50%), asymptotic normality etc. These methods and

other methods such as M-Estimates, L-Estimates, MM-Estimates, S-Estimates, and

R-Estimates are documented in standard robust statistics textbooks by Huber [20]

in 2004, Maronna et al. [28] in 2006.

Since least trimmed squares has very desirable properties and forms the basis

for several algorithms that followed, there has recently been interest in making the

procedure more computationally feasible. The Fast-LTS was discovered by Rousseeuw

and Driessen [37] in 2006 and is probably the best one in practice. This method can

be viewed as a combination of a gradient method and a genetic algorithm. From the

Operations Research community, Ziouta and Avramidis [45] in 2005 and Bertsimas

and Shioda [5] in 2007 present mixed integer programming (MIP) models for the

classification and robust regression problems. Ziouta and Avramidis allow the number

of outliers in the least trimmed squares problem to be unknown by adding a penalty

term to those trimmed observations. The corresponding MIP model is very complex

such that the authors can only test with small problems sizes with p ≤ 3. Bertsimas

and Shioda use powerful MIP models for classification and regression. However,

these models assume the data follows a special structure in the training, validation

and testing sets in order to reduce the complexity of the MIP formulations.

3.1.4 Contributions

• We show the least trimmed squares regression problem to be equivalent to a

concave minimization problem. This result is very important as it motivates the

55

application of mathematical programming, especially concave minimization, to

the robust regression problem. Traditionally, the robust regression problem is

viewed as a mixed integer programming problem and hence there is a hesitation

in studying this problem from the mathematical programming view as it is well-

known that integer programming does not scale well. On the other hand, by

showing the problem to be equivalent to a concave minimization problem under

a very simple cardinality constraint, there is a good chance that we can apply

future developments in nonlinear concave optimization to this problem.

• We introduce the idea of “Maximum Trimmed Squares” (MTS) as one way to

exploit the nice structure of the problem, i.e. concave objective and cardinality

constraint, to solve the robust regression problem. We show that the MTS is

guaranteed to detect outliers. In addition, we show that the MTS is equivalent

to a semi-definite programming model and can be solved efficiently using interior

point methods.

3.1.5 Chapter Structure

The rest of this Chapter is organized as follows. In section 2, we review least trimmed

squares and reformulate it into a nonlinear programming problem with a concave

objective function and a convex constraint set. In section 3, we introduce maximum

trimmed squares and prove two theoretical results about it. In section 4, we provide

numerical results, and lastly, in section 5, we conclude the Chapter.

3.2 The Least Trimmed Squares (LTS) Regression

Problem

We have seen that outliers can strongly corrupt the least squares fit due to their dom-

inant effect on the objective function. Least trimmed squares attempts to mitigate

this problem by minimizing the sum of the smallest k squared residuals rather than

the complete sum of squares. Here, k is a threshold such that the ratio (1 − k/n)

56

represents the percentage of outliers among all the observations. We usually know

k based on some prior knowledge we have about the data or we could set the ratio

k/n = 0.75 as a typical value. In this Chapter, we assume we already know k/n.

3.2.1 Formulating LTS as a Nonlinear Programming Prob-

lem

Let zi be the indicator for whether observation i is a good observation or not. Then, it

is easy to see that the least trimmed squares estimation problem can be reformulated

as the following mixed integer programming problem:

min
β,z

n∑
i=1

zi(yi − xiβ)2︸ ︷︷ ︸
g(z,β)

s.t. zte = k

zi ∈ {0, 1}

where yi is the response variable and xi is the row vector explanatory variable for

observation i.

We turn this into a nonlinear programming formulation as follows: Let (z∗, β∗)

be an optimal solution of the LTS, i.e. (z∗, β∗) minimize g(z, β) under the constraint

{zte = k, zi ∈ {0, 1}}. Then z∗ must be an optimal solution of g(z, β∗) under the

same constraint set. We notice that, once we fix β = β∗, z∗j = 1 for the smallest k

values (yj − xjβ)2 at the optimal solution (in the case of ties, we choose the largest

among those tied by randomly picking).

It follows that when β is fixed, the integral constraints zi ∈ {0, 1} can be relaxed

to 0 ≤ zi ≤ 1 without losing the optimality. In general, β is not fixed. However, the

problem of minimizing g(z, β) such that {zte = k, zi ∈ {0, 1}} is equivalent to:

57

min
β

min
z

n∑
i=1

zi(yi − xiβ)2︸ ︷︷ ︸
g(z,β)

s.t. zte = k

zi ∈ {0, 1}

Hence, on solving the inner optimization problem, β is treated as fixed, so we

can replace the integral constraint in general and rewrite the LTS formulation as the

following nonlinear programming problem:

min
β,z

n∑
i=1

zi(yi − xiβ)2︸ ︷︷ ︸
g(z,β)

s.t. zte = k

0 ≤ zi ≤ 1

We notice that the objective function is neither convex nor concave and it is quite

hard to analyze its structure and to solve it efficiently. In the next Subsections, we

will show how the model can be reformulated to a new form with fewer decision

variables, a concave objective function and the same constraint set.

3.2.2 LTS Reformulation

We reformulate the problem here by rewriting min
β,z

g(z, β) as min
z

(min
β
g(z, β)) and

solving the inner problem in closed form. In particular, suppose we already know the

indicator variables zi. Let Z ≡ D(z) be the diagonal matrix with diagonal elements

equal to z. Then, g(z, β) can be written as (y −Xβ)tZ(y −Xβ) and the constraints

are merely true statements since a feasible z is already known, so the solution to the

optimization problem is:

58

β̂LTS =
(
X tZX

)−1
X tZy

Thus, the total trimmed squared residuals, or g(z, β) is:

f(z) = εtLTSZεLTS

=
(
y −Xβ̂LTS

)t
Z
(
y −Xβ̂LTS

)
= ytZy − ytZX

(
X tZX

)−1
X tZy

The problem is thus reformulated as follows:

Model 5 : Least Trimmed Squares Reformulation

min
z

ytD(z)y − ytD(z)X
(
X tD(z)X

)−1
X tD(z)y︸ ︷︷ ︸

f(z)

s.t. zte = k

0 ≤ zi ≤ 1

This model is less complicated than the original one because we have removed the

variable β from the model while still keeping the constraint set unchanged. In the

next Subsection, we will present an iterative procedure to solve LTS with this new

formulation.

3.2.3 An Iterative Method for LTS

The standard gradient method is to set those k indicators zi with the smallest first

order partial derivative to one. We iteratively perform this step until the solution is

stable. The partial derivatives are found as follows:

59

∂f(z)

∂zi
=

∂
(
ytZy − ytZX (X tZX)

−1
X tZy

)
∂zi

= y2
i − 2

∂(ytZX)

∂zi

(
X tZX

)−1
X tZy − ytZX

∂
(

(X tZX)
−1
)

∂zi
X tZy

= y2
i − 2yixi

(
X tZX

)−1
X tZy + ytZX

(
X tZX

)−1
xtixi

(
X tZX

)−1
X tZy

= (yi − xi
(
X tZX

)−1
X tZy︸ ︷︷ ︸

β(z)

)2 (3.1)

Remark: It is interesting to see that the gradient for an observation j is exactly

the squared residual of that observation. This result actually makes sense because, by

definition, the gradient is the relative change of the objective function given a small

change in the decision variable. The change in the objective function when adding a

new observations is exactly the squared residual of the new observation.

We have the following iterative algorithm:

Input: Data X ∈ Rn×p, y ∈ Rn, k ∈ R.
Output: Robust regressor β∗.

Algorithm: 1. Set t = 0 and start with random z0.

2. Find derivatives ∂f(z)
∂zi

at zt according to Equation 3.1.

3. Set zt+1
i = 1 for those indices i, for which ∂f(z)

∂zi
is among

the smallest k derivatives and set zt+1
i = 0 otherwise.

4. If zt+1 = zt, go to step 5, otherwise, set t = t + 1 and go
back to step 2.
5. Set β∗ to be the least squares regressor for the set of
observations j with ztj = 1.

Table 3.1: An iterative algorithm for Least Trimmed Squares regression

We keep iterating from one subset to a better subset. At each step, the new subset

contains the k observations with the smallest squared residuals.

60

3.2.4 The Concavity of the LTS

We will show the objective function of the LTS problem is concave by proving ∂2f(z)
∂z2
�

0, where the notation � (or �) denotes the negative (or positive) definite of a matrix.

From the result in the previous Subsection, we have:

∂f(z)

∂zi
= (yi − xiβ(z))2 (3.2)

In order to find the second derivatives ∂2f(z)
∂zi∂zj

, we will first find ∂β(z)
∂zi

as follows:

∂β(z)

∂zi
=

∂
(

(X tZX)
−1
X tZy

)
∂zi

=
(
X tZX

)−1 ∂(ytZX)

∂zi
+
∂
(

(X tZX)
−1
)

∂zi
X tZy

=
(
X tZX

)−1
(yix

t
i)−

(
X tZX

)−1
xtixi

(
X tZX

)−1
X tZy

=
(
X tZX

)−1
xti(yi − xi

(
X tZX

)−1
X tZy)

=
(
X tZX

)−1
xti(yi − xiβ(z)) (3.3)

From equalities 3.2 and 3.3, we have:

∂2f(z)

∂zi∂zj
=

∂(yi − xiβ(z))2

∂zj

= −2(yi − xiβ(z))xi
∂β(z)

∂zj

= −2(yi − xiβ(z))xi
(
X tZX

)−1
xtj(yj − xjβ(z))

= −2(xiεi)
(
X tZX

)−1
(xjεj)

t

⇒ ∂2f(z)

∂z2
= −2M

(
X tZX

)−1
M t � 0

where M = Xdiag(ε). The last inequality is due to the fact that (X tZX)
−1 � 0.

Thus, the objective function f(z) is a concave function on the decision variable z.

Thus, the LTS problem is in fact a concave minimization problem. The concavity

property is the part that makes the LTS problem very hard to solve in general. In the

61

next section, we will show how we resolve this difficulty by considering the “almost

complementary” problem of the LTS. We call this the “Maximum Trimmed Squares”

problem since this problem aims to find the worst subset of observations instead of

trying to find the best subset as the LTS does.

3.3 The Maximum Trimmed Squares (MTS) Prob-

lem

We notice that the objective function in the LTS problem is concave and hence is

very hard to solve in general. We also notice that the outlier set would be the set

with large total squared residuals. Hence, instead of trying to find the non-outlier

set, we could try to find the outlier set. We could get around this concavity problem

by trying to maximize this concave objective.

The least trimmed squares regression problem with k good observations and the

maximum trimmed squares regression problem with q bad observations are formulated

as follows:

LTS

min
z

f(z)

s.t. zte = k

0 ≤ zi ≤ 1

MTS

max
z

f(z)

s.t. zte = q

0 ≤ zi ≤ 1

Figure 3-2 illustrates the idea of using maximum trimmed squares. In this figure,

100 points were generated randomly with the first 90 blue dotted points following

a linear model. The least squares regression line corresponding to the blue dotted

points (the blue solid line) fits those 90 points very well. The last 10 red crossed

points were generated to be far above and below the blue solid regression line.

62

For any 3 points from the entire data set, there is a corresponding least squares

fit, 3 residuals, and a sum of total squared residuals. The maximum trimmed squares

problem with q = 3 aims to find the worst 3 points whose sum of squared residuals is

maximized. The circled points are the 3 optimal points found by the MTS problem.

The red dashed line is their corresponding least squares regression line. We observe

that all these 3 points are outliers. This example shows MTS did a great job in

detecting outliers. Figures 3-3 and 3-4 show the output of the MTS problem for

q = 8 and q = 11 respectively. We can see that, in each cases, the MTS can identify

many outliers.

Figure 3-2: An example demonstrating the Maximum Trimmed Squares idea and
performance when we want to identify the worst three points. In this figure, 100 points
were generated by using the two sided contamination model with 10 outliers. The
blue solid line is the LTS regression line that corresponds to the 90 good observations.
The circled points are those detected when running maximum trimmed squares with
q = 3 worst points. The red dashed line corresponds to the regression line of these q
worst points.

63

Figure 3-3: An example demonstrating the Maximum Trimmed Squares idea and
performance when we want to identify the worst eight points. In this figure, 100 points
were generated by using the two sided contamination model with 10 outliers. The
blue solid line is the LTS regression line that corresponds to the 90 good observations.
The circled points are those detected when running maximum trimmed squares with
q = 8 worst points. The red dashed line corresponds to the regression line of these q
worst points.

Figure 3-4: An example demonstrating the Maximum Trimmed Squares idea and
performance when we want to identify the worst 11 points. In this figure, 100 points
were generated by using the two sided contamination model with 10 outliers. The
blue solid line is the LTS regression line that corresponds to the 90 good observations.
The circled points are those detected when running maximum trimmed squares with
q = 11 worst points. The red dashed line corresponds to the regression line of these
q worst points.

64

3.3.1 MTS Reformulation as a Semi-definite Programming

Problem

In this Subsection, we will show that the MTS problem can be reformulated as a semi-

definite programming problem and hence it can be solved efficiently using interior

point methods (see [42]). The MTS problem is:

max
z

ytD(z)y − ytD(z)X
(
X tD(z)X

)−1
X tD(z)y︸ ︷︷ ︸

s

s.t. zte = q

0 ≤ zi ≤ 1

This optimization problem is equivalent to:

max
z, s

s

s.t. s ≤ ytD(z)y − ytD(z)X
(
X tD(z)X

)−1
X tD(z)y

zte = q

0 ≤ zi ≤ 1.

The constraint s ≤ ytD(z)y − ytD(z)X (X tD(z)X)
−1
X tD(z)y looks highly non-

linear in variable z. However, we can use the Schur complements (see [42]) to rewrite

it in the form of a semi-definite programming constraint,

s ≤ ytD(z)y − ytD(z)X
(
X tD(z)X

)−1
X tD(z)y

⇔

ytD(z)y − s ytD(z)X

X tD(z)y X tD(z)X

 � 0

⇔ −sE +
n∑
i=1

zi

 y2
i yixi

yix
t
i xtixi

 � 0

⇔ −sE +
n∑
i=1

ziVi � 0

65

where E is a matrix of size (p + 1) × (p + 1) with all elements equal to zero except

the first row first column element to be equal to one and Vi =

 y2
i yixi

yix
t
i xtixi

 =yi
xti

[yi xi

]
are given. We have transformed the nonlinear constraint into a semi-

definite type constraint. The optimization problem thus becomes:

Model 6 : Maximum Trimmed Squares Optimization Model for Robust Regression

max
z,s

s

s.t. −sE +
n∑
i=1

ziVi � 0

zte = q

0 ≤ zi ≤ 1

3.3.2 Performance Guarantee

The “maximum trimmed squares” problem possesses desirable properties. First, it

is equivalent to a semi-definite programming problem and can be solved efficiently

using interior point methods. Second, the way the MTS identifies outliers is quite

intuitive, as shown pictorially.

However, there are still some theoretical issues we need to address. The first issue

is whether the MTS problem will produce integer solutions zj and what we should do

if it doesn’t. The second issue is that the MTS problem is not totally complementary

to the LTS, i.e. the worst set found by the MTS is not a complement set of the good

set that the LTS is supposed to find. This non-complementary property should be

the case since a hard problem like the LTS cannot be solved by simply complementing

the result from an easy problem like the MTS.

Theorem 5 will show that there will be at most (p + 1) non-integer zj and hence

the first issue can be resolved if we allow the inclusion of these non-integer decision

variables to be in the worst list. Theorem 6 will show that in the worst case, when

66

outliers are distributed in some specific directions or in some adverse locations, the

MTS problem can identify at least one outlier at a time. Hence, no mater how

adversely the outliers are located, we can perform an iterative procedure to remove

outliers one at a time.

Theorem 5. At most (p+1) decision variables zi are non-integer in the MTS problem.

Proof sketch. The detail proof is in the appendix. We only show the main idea here.

We apply the Karush-Kuhn-Tucker [23] conditions and complementary slackness to

the MTS problem and show that those non-integer solutions zj correspond to a system

of equations with (p + 1) degrees of freedom. Hence the number of equations must

not exceed (p+ 1), in other words, the number of non-integer decision variables is at

most (p+ 1).

Definition 1. For any k, we define B(k) = LTS(X, y, k) to be the least trimmed

squares solution. For any set of observations S, we define w(S) to be the smallest

width between two parallel planes that contain all the observations S.

Assumption 1. The set of good observations G and the set of outliers X are distin-

guishable from each other in the following “strong robust sense”:

a. G ≡ LTS(X, y, k) where k = |G| is the cardinality of the set G.

b. For any set of observations S with cardinality (k+1), then w(S) ≥ w(G)
(

1 +
√

p+1
2

)
.

Theorem 6. The MTS problem would identify at least 1 outlier under Assumption

1.

The detail proof for this theorem is in the Appendix. The intuition here is that, if

this result does not hold, then good observations need to be sufficiently close to each

other such that the sum of squared residuals of any subset of these good observations

together with an outlier would be small enough, and hence no outlier would be iden-

tified in the optimal MTS solution. The assumption on the separability between the

good observations is intuitive. The scale factor of
√

p+1
2

separability seems to be high

for large p. However, this factor is only for a guaranteed theoretical result. In most

cases in practices, these assumptions don’t need to hold in order for the theorem to

be valid.

67

3.3.3 Robust Regression Algorithm using MTS

So far, we have noticed that we can remove at least one outlier by solving the MTS

problem, which can be done very efficiently through interior point methods. However,

since the MTS is not complementary to the LTS, the MTS with a budget of (q = n−k)

might not be able to remove all (n− k) outliers at a time. Instead, it should remove

at least one outlier and other good observations at the same time. The percentage

of outliers and good observations removed by the MTS depends on how the outliers

are located. In the case when outliers are distributed randomly around the good

observations, the MTS is expected to find the majority of outliers. In the worst

case when outliers are distributed adversely in one particular direction or location,

it is possible that only a small fraction of outliers are removed at a time. Hence, we

might have to run the MTS iteratively several times before we are able to remove all

outliers. The choice of the number of times to run the MTS and the budgets for each

run should depend on how adversely the outliers are placed.

Input: Data X ∈ Rn×p, y ∈ Rn.
Optional Input: The number of outliers k and the number of times M to run

the MTS. If k is not given, we set k = 0.1 ∗ n which means
we expect about 10% of the observations are outliers. If M is
not given, we set M = 4 by default. If we know the outliers
are randomly distributed, we should set M small. If we know
outliers placed in a nearly worst case manner, we should set
M = k.

Output: The robust regressor βrob.

Algorithm: 1. Set q = d k
M
e.

2. For j = 1 to M {
Let: W = MTS(X, y, q) be the outliers detected and

(X, y) = (X, y)\W be the remaining set.
}

3. Find the least squares coefficients β0 for the remaining set.
4. Perform the iterative algorithm shown in Table 3.1 until
β0 converges to βrob.

Table 3.2: Robust regression algorithm via Maximum Trimmed Squares

68

3.4 Numerical Results

3.4.1 Classical Examples

Figure 3-5 shows the results for three classical examples presented in the Rousseeuw

and Leroy book [35] pages 24, 25 and 28 respectively. The dashed red lines are the

least squares fits using ordinary least squares and the blue solid lines are our robust

regression fits. Our robust regression fits is exactly the same with the LTS fits in these

cases. We can see that our robust regression lines fit the majority of the data much

better than the least squares lines. In the first example, the contaminated observation

is created on purpose to demonstrate the difference between least squares and our

technique. The second example is a real example where the number of international

phone calls (in 10 millions) were collected for consecutive years. The figure suggests

an increasing trend. However, the observations for the years 1964-1970 seem to be

off the trend of the majority. It turns out that these observations were recorded

in minutes rather than the number of phone calls. This example shows that our

robust technique can help detecting such human errors. The third example is a study

of the relationship between the stars’ temperatures and their light intensities. The

robust estimator on the majority helps figuring out an underlying phenomenon in

astronomy where a new model is needed to distinguish the four giant stars with the

highest temperatures from the rest.

69

F
ig

u
re

3-
5:

T
h
re

e
cl

as
si

ca
l

ex
am

p
le

s
d
em

on
st

ra
ti

n
g

th
e

p
er

fo
rm

an
ce

of
ou

r
ro

b
u
st

re
gr

es
si

on
te

ch
n
iq

u
e.

T
h
es

e
ex

am
p
le

s
ar

e
ta

ke
n

fr
om

R
ou

ss
ee

u
w

an
d

L
er

oy
’s

b
o
ok

“R
ob

u
st

R
eg

re
ss

io
n

an
d

O
u
tl

ie
r

D
et

ec
ti

on
”

p
ag

es
24

,
25

,
28

re
sp

ec
ti

ve
ly

.
T

h
e

re
d

d
as

h
ed

li
n
es

ar
e

th
e

le
as

t
sq

u
ar

es
li
n
es

w
h
ic

h
ar

e
p
u
ll
ed

to
w

ar
d

th
e

ou
tl

ie
rs

.
T

h
e

b
lu

e
so

li
d

li
n
es

ar
e

ou
r

ro
b
u
st

re
gr

es
si

on
li
n
es

w
h
ic

h
co

in
ci

d
e

w
it

h
th

e
L
T

S
li
n
es

fo
r

th
es

e
ex

am
p
le

s.

70

3.4.2 Examples from Different Contamination Models

We use the following two contamination models. In the One Sided Contamination

Model (OSCM), we generate X ∈ Rn×p randomly and β ∈ Rp randomly. We set the

first k error terms εj, j ∈ [1, .., k] as independent standard normal random variables.

We set the last n− k error terms as independent chi squared random variables with

5 degrees of freedom. We then set y = Xβ + ε.

In the Two Sided Contamination Model (TSCM), we generate X ∈ Rn×p

randomly and β ∈ Rp randomly. We set the first k error terms εj, j ∈ [1, .., k] as

independent standard normal random variables. We set the last n− k error terms as

independent chi squared random variables with 5 degree of freedom. We then set the

sign of these n− k variables randomly such that the outliers lie on both sides of the

true regression line. Finally, we set y = Xβ + ε.

In Figure 3-6, we show our robust fits in blue color and the corresponding least

squares fits in red color. The red points are contaminated observations while the blue

points are good observations. The circled points are those that our method identifies

as outliers. It is clear that our robust estimators fit the majority of the data much

better than the least squares estimators do.

71

F
ig

u
re

3-
6:

T
w

o
ex

am
p
le

s
d
em

on
st

ra
ti

n
g

th
e

p
er

fo
rm

an
ce

of
ou

r
ro

b
u
st

re
gr

es
si

on
te

ch
n
iq

u
e

in
w

h
ic

h
d
at

a
ar

e
ge

n
er

at
ed

fr
om

th
e

O
n
e

S
id

ed
C

on
ta

m
in

at
io

n
M

o
d
el

(s
h
ow

n
on

th
e

le
ft

)
an

d
th

e
T

w
o

S
id

ed
C

on
ta

m
in

at
io

n
M

o
d
el

(s
h
ow

n
on

th
e

ri
gh

t)
.

T
h
e

go
o
d

ob
se

rv
at

io
n
s

ar
e

th
e

b
lu

e
d
ot

te
d

p
oi

n
ts

.
T

h
e

co
n
ta

m
in

at
ed

ob
se

rv
at

io
n
s

ar
e

th
e

re
d

cr
os

se
d

p
oi

n
ts

.
T

h
e

re
d

d
as

h
ed

li
n
es

ar
e

th
e

le
as

t
sq

u
ar

es
li
n
es

w
h
ic

h
ar

e
p
u
ll
ed

to
w

ar
d

th
e

ou
tl

ie
rs

.
T

h
e

b
lu

e
so

li
d

li
n
es

ar
e

ou
r

ro
b
u
st

re
gr

es
si

on
li
n
es

w
h
ic

h
co

in
ci

d
e

w
it

h
th

e
L
T

S
li
n
es

fo
r

th
es

e
ex

am
p
le

s.
T

h
e

ci
rc

le
d

p
oi

n
ts

ar
e

th
os

e
ou

tl
ie

rs
d
et

ec
te

d
b
y

ou
r

al
go

ri
th

m
.

72

3.4.3 Extreme Case Example

In Figure 3-7, we show an extreme example where 10 outliers are located in extreme

locations such that the least squares estimator is totally distorted. The red points

(10 of them) are contaminated observations while the blue points (200 of them) are

good observations. Our robust fit is the blue solid line and the corresponding least

squares fit is the red dashed line. The circled points are those outliers identified by

our method. We can see that our robust regression line fits the majority of the data

very well.

Figure 3-7: An example to demonstrate our robust regression technique can identify
outliers no mater how extremely they are located. This example shows an extreme
case with 10 outliers located in extreme locations that pull the least squares regression
line close to themselves. The good observations are the blue dotted points. The
contaminated observations are the red crossed points. The blue solid line is our robust
fit which coincide with the LTS fit. The circled points are those outliers detected by
our algorithm.

3.4.4 Robust Regression Accuracy

We check the accuracy of our robust estimators with the number of observations n

ranging from 100 to 5000 and the problem dimension p ranging from 2 to 50. For

each problem size, we create 10 sample paths. Each sample path corresponds to a

73

data matrix of size n×p generated from the TSCM model. For each sample path, we

run our robust estimation algorithm to find out those k observations with smallest

trimmed distances. The robust fit is the corresponding least squares fit applied to

those k observations. Once we have found an estimator β̂, we find the corresponding

distances dj = yj − xjβ̂. The objective value corresponding to β̂ is the norm of k

smallest squared distances.

d̄ =

√∑n
j=1 zjd

2
j

k

where zj equal to 1 if j is among those k observations with smallest d2
j .

Figure 3.3 shows the average trimmed distances using our robust fit, compared to

the true fit(those that are found by least squares regressors on the non-contaminated

subset) and the least squares fit. We found that the average trimmed distances from

our regressors is around that of the true regressors and much smaller than that of the

least squares regressors. It is also interesting to see some instances where our robust

fit produces smaller trimmed distances than the true fit. This occurs because our

contamination model can produce observations with smaller distances than some of

the non-contaminated observations (i.e. when the chi squared random variable with

5 degree of freedom is smaller than a standard normal variable).

3.4.5 Computational Time

Figure 3.4 shows the average times taken by our algorithm. The algorithm took less

than 1 hour for all problems with dimension p ≤ 20 or n ≤ 2000. The longest instance

was for n = 5000 and p = 50 which took around 2.5 hours. Although 2.5 hours is

quite long for that case, the computational time of our algorithm scales well when we

increase n and p and our robust regression method is a polynomial time algorithm

since the MTS problem is equivalent to a semi-definite programming problem and can

be solve efficiently using interior point methods (see [42]). This polynomial complexity

property is a significant improvement compared to existing methods like the Fast-

74

100 200 500 1000 2000 5000
2 0.76 0.70 0.73 0.74 0.74 0.73

[0.77, 4.71] [0.71, 3.07] [0.73, 3.30] [0.74, 3.36] [0.74, 3.62] [0.73, 3.74]
5 0.73 0.7164 0.7173 0.72 0.72 0.74

[0.75, 4.30] [0.73, 3.50] [0.72, 3.78] [0.73, 3.67] [0.73, 3.75] [0.74, 3.41]
10 0.67 0.72 0.71 0.72 0.74 0.74

[0.72, 3.34] [0.74, 3.55] [0.73, 3.54] [0.73, 3.55] [0.75, 3.36] [0.74, 3.42]
20 0.57 0.66 0.70 0.73 0.72 0.73

[0.65, 4.13] [0.70, 3.93] [0.72, 4.33] [0.74, 3.52] [0.73, 3.30] [0.73, 3.54]
30 0.68 0.71 0.71 0.72

[0.71, 4.14] [0.73, 3.77] [0.73, 3.36] [0.73, 3.46]
50 0.70 0.70 0.73

[0.73, 3.95] [0.72, 3.51] [0.74, 3.45]

Table 3.3: Average trimmed absolute residuals for different problem sizes under the
Two Sided Contaminated Model. The top row is for the number of observations n
while the first column is for the problem dimensions p. The numbers in the table

show the average trimmed distances d̄ =

√∑n
j=1 zjd2j
k

where dj = yj − xjβ and zj are
the indicator variables for whether observation j is among those k observations with
smallest squared distances d2

j . The ranges below these numbers correspond to the
best (i.e. if we know all the contaminated observations) and the worst distances (i.e.
if we use least squares regression).

LTS or mixed integer programming formulations for large scaled problems. It is a

shortcoming for our research not to include a comparison between our method with

the Fast-LTS. The reason is that Matlab can only handle cases where the number of

observations n is less than 20, 000 due to Matlab’s limitation in memory allocation.

3.5 Future Research

For future research, we plan to implement our method in other languages such as R or

SAS to avoid the memory limitation of Mallab so that large scale simulations can be

done. In addition, currently we use SDPT3 to solve the semi-definite programming

problem. We plan to implement our own interior point methods to exploit the special

structure of the problem.

75

100 200 500 1000 2000 5000
2 1.87 2.50 10.34 35.1 245.1 1645.5
5 1.77 3.25 13.64 42.1 231.9 2459.8
10 1.86 4.74 20.28 66.0 428.4 2910.8
20 4.22 9.30 39.78 118.1 600.6 3530.1
30 64.52 214.2 959.0 4960.2
50 494.9 1943.6 9211.2

Table 3.4: Average computational time for different problem sizes under the fully
contaminated model. The top row is for the number of observations n while the
first column is for the problem dimensions p. The numbers in the table show the
computational time in seconds.

3.6 Conclusion

We have presented a method for robust regression using the idea of “maximum

trimmed squares” where the worst subset of observations with the largest sum of

squared residuals are found by solving a semi-definite programming problem. The

maximum trimmed squares problem is formulated to resolve the difficulty in the con-

cave objective function of the least trimmed squares regression problem. The max-

imum trimmed squares problem can identify many outliers in a single call if these

outliers are distributed randomly around the good observations. In the worst case

when outliers are located adversely in one particular direction or location, we can

iteratively solve the maximum trimmed squares problem where, at each step, at least

one outlier is removed. We have tested our method with different data sets and found

our method produced fast and highly accurate results.

76

Chapter 4

Robust Ranking and Portfolio

Optimization

4.1 Introduction

Ranking problems are common in real life, where there is a comparison and an evalua-

tion process involved, for example, in sports and in asset selection. A ranking between

two objects simply provides information about which object is preferable among the

two. In portfolio construction, managers often have preferences on the assets they

are investing. They might prefer one stock (or one sector of stocks) more than other

stocks (or other sectors). The ranking on the assets could arrive from individual

preferences or from empirical evidence. There is an extensive literature on account-

ing anomalies such as the post earning announcement drift [3] and Fama-French risk

factors [17] that can be used to select stocks and to obtain their ranking. The main

advantage of using ranking over the traditional mean-variance portfolio construction

is in avoiding the estimation of the expected returns, which is a very challenging task.

Although the idea of using ranking is quite intuitive and it is easy to build trading

strategies from a given ranking, the ranking itself needs to be estimated and there is

uncertainty associated with the estimation. Hence, we often see the ranking expressed

in the form of confidence intervals. For example, it is more natural for a manager to

believe an asset to be in the top five (ten) or in the bottom five (ten) rather than

77

to claim it to be the best (or the worst) one. In addition, ranking could arrive from

many different sources (e.g. each analyst could comes up with a ranking) and there

is always uncertainty associated with ranking. This motivates us to develop a robust

ranking model where we want to find the optimal policy (e.g. the portfolio weights)

to maximize some objective function even for the worst realization of the ranking

within the uncertainty set. This robust ranking model is a minimax mixed integer

programming problem and is often very hard to solve. We apply the column genera-

tion method where constraints are efficiently generated using a network flow model.

We show that the robust ranking model can be solved efficiently through numerical

results. We also apply the robust ranking model to portfolio optimization where the

ranking uncertainty set is obtained from post announcement earning drifts. In the

next Subsection, we will review the existing literature related to our robust ranking

model and portfolio optimization.

4.1.1 Literature Review

The traditional Markowitz mean-variance portfolio optimization framework [27] aims

to find the optimal portfolio to maximize some objective functions whose input pa-

rameters including the mean and the covariance matrix. Many researchers include

Michaud [30] and Chorpa and Ziemba [15] have shown the poor out-of-sample per-

formance of the mean-variance optimal portfolio due to estimation errors on the

expected return. Due to this drawback, many practitioners have used nonparametric

ranking methods for portfolio optimization. The main advantage of using ranking

is to avoid the difficult task of estimating the expected return. Almgren and Chriss

[1] use assets’ ranking instead of assets’ returns to model the portfolio optimization

problem. Although the ranking that Almgen and Chriss used was easy to obtain,

it is still prone to estimation error. We present a robust ranking model in which

the ranking is allowed to be in an uncertainty set. This research is along the line of

the robust optimization approaches which are very prevalent. The earliest work on

robust optimization was Soyster [38] in 1973. The key for an attractive robust model

is to ensure the construction of the uncertainty set to be intuitive and capture well

78

the uncertainty nature of the parameters while the problem is still computationally

tractable. Ben-tal and Nemirovski [4] and Bertsimas and Sim [6] presented a series

of papers on robust optimization with different frameworks for controlling the con-

servative levels for different problem structures. Since then, the robust optimization

frameworks have been applied to many different applications such as in inventory

control and in dynamic pricing (see [7], [32] and [33] for examples). For the most

updated theory and development of the field, see Beyer and Sendhoff comprehensive

review in [9].

In the field of robust portfolio optimization, Goldfarb and Iyengar [18] and Bien-

stock [10] develop different frameworks for the uncertainty sets. Goldfarb and Iyengar

use a factor model for the assets’ returns and then the uncertainty arrives naturally

from the estimation of the parameters of the factor model. This construction leads

to a first norm uncertainty set for the returns and a second norm uncertainty set for

the covariance matrix. Finally, they transform the robust model to a SOCP problem

which is computationally tractable.

Bienstock, on the other hand, constructs the uncertainty set around the level of

deviations of the assets’ returns from their expected values. These deviations are

both in terms of the number of “misbehavior” assets as well as their total returns.

This model becomes a mixed integer optimization problem. Bienstock then uses a

decoupling technique to solve it efficiently.

Our robust model is different from all the aforementioned methods due to the

difference in the parameter space of the problem. Since the parameter in the ranking

problem is the ranking itself, which is discrete, the uncertainty set in our case is dis-

crete. This combinatorial characteristic makes the problem very difficult to solve in

general. We exploit the nice property of the ranking and apply the column generation

method to solve the robust ranking problem. The constraint generation process is

done through solving a transportation problem. Our method of controlling the con-

servative level is also different from the earlier works. We incorporate the deviation of

the rankings from a nominal ranking into the objective function itself. This method

in effect creates a non-uniform uncertainty set where the rankings that are further

79

from the nominal ranking are penalized more than those that are closer.

4.1.2 The Robust Ranking Problem

Consider n objects with a ranking R = (R1, R2, . . . , Rn), which is a permutation of

the set {1, 2, . . . , n}. For example, in the case Ri = i, ∀ i ∈ {1, 2, . . . , n}, object i

is ranked ith in the set. We want to find a weight vector ω that belongs to some

generic constraint set P(ω) to maximize some generic objective function f(ω,R).

An example of the constraint is P(ω) = {ω | ωte = 1} to make sure the weights are

normalized. If the ranking R is known, the problem becomes:

max
ω

f(ω,R)

s.t. ω ∈ P(ω)

In this case, the optimization problem can be solved easily for many classes of ob-

jective function f and constraint set P . However, in many situations, the ranking is

unknown. Instead, we assume that we only know the ranking belongs to some known

polytope of the form U(R) =
{
R ∈ Π(1, 2, . . . , n) | Ri ∈ Si, ∀ i ∈ {1, 2, . . . , n}

}
,

where Π(1, 2, . . . , n) is the set of all the permutations of the set (1, 2, . . . , n) and Si are

subsets of the set {1, 2, . . . , n}. For example, Si could be confidence intervals [li, ui]

such that li ≤ Ri ≤ ui. The robust ranking problem aims to find the weight vector ω

to maximize some objective function f(ω,R) for the worst realization of the ranking

R:

Model 7 : General Robust Ranking Model

max
ω

[
min

R∈U(R)
f(ω,R)

]
s.t. ω ∈ P(ω)

This problem is very challenging to solve in general because the set U(R) is

typically a very large discrete set. Even if we know the weight vector, solving for

the worst realization of the ranking would be a combinatorial problem and could be

80

very difficult. We will show that, for a large class of the objective function f and the

constraint set P , we can solve this robust ranking problem efficiently by using the

column generation algorithm.

4.1.3 Chapter Structure

This Chapter aims to solve the robust ranking problem in general. We will provide the

general conditions of the objective function and the constraint set for the algorithm to

work. However, since the computation performance depends on the specific objective

function f(ω,R), we will provide the algorithm for the general objective function

but demonstrate its usage, its intuitions, as well as its performance through the

specific objective functions in the robust portfolio optimization problem. We will show

how to apply the column generation method to solve the robust ranking problem in

Subsection 4.2.1. This method iteratively solves the relaxed robust ranking problem

with a smaller ranking uncertainty set and then adds the worst possible ranking

corresponding to the relaxed optimal weights to the relaxed uncertainty set. The

algorithm stops when the relaxed uncertainty set is stable.

For this algorithm to work, we need to find efficient methods for generating addi-

tional constraints and to solve the relaxed problem. The constraint generation prob-

lem is analyzed in Subsection 4.2.2 and the relaxed problem is analyzed in Subsection

4.2.3. We extend our robust ranking model to control the degree of conservatism in

Subsection 4.2.4 and to allow group ranking in Subsection 4.2.5. We show how to

apply our robust ranking model to portfolio optimization in Section 3.

We present numerical results in Section 4.4 with the overall computation time

and the number of iterations in Subsection 4.4.1. In Subsection 4.4.2, we present an

empirical study where we apply our robust ranking model to the universe of stocks

in the Dow Jones Industrial Average Index. The ranking uncertainty set is obtained

from the post earning announcement drift as shown in Subsection 4.4.2. We show

the procedure for running an out-of-sample test in Subsection 4.4.2 and the empirical

results in Subsection 4.4.2. Finally we conclude our Chapter in Section 4.5.

81

4.1.4 Contributions

• We develop a generic robust ranking model and use the column generation

method to solve it. This process involves the transformation of the constraint

generation problem, which is a combinatorial problem, into a network flow prob-

lem such that constraints can be generated efficiently.

• We combine results from post announcement earning drifts and our ranking

model to portfolio optimization and perform empirical tests. We also provide

computational results to demonstrate the algorithm performance.

4.2 Solving the Robust Ranking Problem

4.2.1 The Column Generation Algorithm

Let δ(ω) = min
R∈U(R)

f(ω,R). The robust ranking model 7 can be rewritten as follows:

max
ω,δ

δ

s.t. δ ≤ f(ω,R) ∀ R ∈ U(R)

ω ∈ P(ω)

This new model has a simpler objective function compared to the original robust

ranking formulation. However, the set of constraints is much larger. This reformu-

lated model motivates us to apply the constraint generation method. In this method,

we relax the robust ranking problem with a smaller set of constraints and solve for

the relaxed optimal solution. We then check if all the constraints are satisfied. This

is done by solving a subproblem of finding the worst realization of the ranking that

corresponds to the relaxed optimal solution and check if the worst ranking is already

in the relaxed ranking list. If not, we add the violating constraints to the relaxed

constraint set. This process is done until no more constraints are violated. The formal

procedure of the constraint generation method is shown in Algorithm 1:

82

Algorithm 1 : Column Generation Method for The Robust Ranking Problem

• Initialization step:
Find initial weight vector ω(0), set the relaxed uncertainty set Ur ≡ ∅ and set
k = 0.

• Iterative steps:
a. Solve the constraint generation problem:

Rworst = argmin
R∈U(R)

[
f(ω(k),R)

]
.

b. If Rworst ∈ Ur, terminate the algorithm. Otherwise, add Rworst to the
relaxed uncertainty set Ur.
c. Set k = k + 1 and solve the relaxed problem:

ωk = argmax
ω

[
min
R∈Ur

f(ω,R)

]
d. Go back to step a.

In order to apply the constraint generation method, we need to make sure that we

can solve the constraint generation problem and the relaxed problem efficiently. In

the next two Subsections, we will show the general conditions for these two problems

to be computationally tractable.

4.2.2 Solving the Constraint Generation Problem

The constraint generation problem is often difficult to solve because of its combina-

torial structure. Nevertheless, it is very interesting to notice that for a large class of

objective function f(ω,R), which is separable in R, we can transform the constraint

generation problem into a transportation problem. Let f(ω,R) =
∑n

j=1 gj(ω, Rj),

then the cost between source i and sink j in the transportation problem is gj(ω, j)

if j ∈ Si, where Si is the list of possible ranks that object i can have, and is infinity

otherwise.

The transportation network has n source and n sink nodes with a flow of +1 in

each source node and −1 in each sink node. Figure 4-1 shows an example of 3 assets

83

A1

A2

A3

R1

R2

R3

1

1

1

1

1

1

g1

g2

g1

g2

g3

g1

g2

g3

∞

Figure 4-1: The constraint generation problem is reformulated as a transporta-
tion problem. The path connecting source node i to sink node j implies
that asset i is assigned to rank j. Suppose the uncertainty set is: U(R) =
{R ∈ Π(1, 2, 3) | R1 ∈ {1, 2}, R2 ∈ {1, 2, 3}, R3 ∈ {1, 2, 3}}. This means asset 1 has
the first or second ranking while assets 2 and 3 have all the possible ranking. Since
asset 1 cannot be in the third rank, the cost of the flow from asset 1 to rank 3 is
set to infinite. The total cost of the network flow problem is equal to the objective
function f(ω,R).

with the ranking uncertainty of:

U(R) = {R ∈ Π(1, 2, 3) | R1 ∈ {1, 2}, R2 ∈ {1, 2, 3}, R3 ∈ {1, 2, 3}} .

A path from source i to sink j implies that object i has the actual rank j. The cost

between source i and sink j is gj(ω, rj) for j ∈ Si and is infinite otherwise. We want

to find the minimum cost of this transportation network. The optimal solution of

this problem is always a binary solution. We can use the auction algorithm or the

network simplex algorithm to solve this problem efficiently (see [8], for example, for

detail).

Remark: In order to transform the constraint generation problem to a network

assignment model, the uncertainty set must have the permutation property. That is

an object is assigned to one and only one rank. We extend this restriction for the

case of group ranking where many objects can obtain the same rank in Subsection

4.2.5.

84

4.2.3 Solving the Relaxed Problem

The relaxed problem is equivalent to:

max
ω,δ

δ

s.t. δ ≤ f(ω,R), ∀ R ∈ Ur

ω ∈ P(ω)

For a small set Ur, this problem is computationally tractable for many classes of

objective function f(ω,R). For example, if f(ω,R) is a concave function and P(ω)

is a convex set in ω, the relaxed problem is a convex optimization problem. Notice

that even when the objective function is non-convex, it might be still possible to

transform the relaxed problem into a convex optimization problem. For example, we

will show in Subsection 4.3.2 that, although the Sharpe ratio objective function in the

robust portfolio optimization problem is non-convex, we can exploit its homogeneous

property and transform the relaxed problem into a quadratic programming problem

which can be solved efficiently.

4.2.4 Extension to Control Conservative Levels

One of the main criticisms for robust optimization is its over-conservatism at its opti-

mal solution. The robust optimal solution usually corresponds to the cases where the

parameters take extreme values in their boundary instead of corresponding to some

nominal ranking R̄ that we expect most. We propose a model where we incorporate

the deviations of the parameters from their nominal values into the objective function

itself. This protects the regions of parameters that are closer to the nominal value

more than those that are further.

Here, γ ≥ 0 and γ|R− R̄| represents the belief about how far the actual ranking

could go from the nominal ranking. If γ is large, we have a strong belief that the

actual ranking will be around the nominal ranking and we want the robust model to

protect that region more. If γ is small, then the actual ranking could be anywhere in

85

Model 8 : Robust Max-Sharpe Portfolio Optimization Model with Non-Uniform
Uncertainty Set

max
ω

[
min

R∈U(R)

[
f(ω,R) + γ|R− R̄|L1

]]
s.t. ω ∈ P(ω)

the uncertainty set. In other words, γ can be viewed as the ‘concentration’ parameter

to represent how ‘dense’ the uncertainty set U(R) is surrounding the nominal ranking

R̄. The new objective function has been changed to:

f ′(ω,R) = f(ω,R) + γ|R− R̄|L1 =
n∑
j=1

g′j(ω, Rj)

where g′j(ω, Rj) = g(ω, Rj) + γ|Rj − R̄j|. Hence, the new objective function is still

separable and the constraint generation problem can be transformed into a network

flow model. The column generation algorithm is still the same. However, we need

to modify the transportation model to adjust this change in the objective function.

Figure 4-2 shows the model in detail. We penalize the objective function if the realized

ranking Ri is different from its nominal ranking R̄i. For example, if the actual rank

of object 3 is 1 (or 2) instead of its nominal value 3, we would include a penalty of

2γ (or γ) into the objective function. Hence, the cost of assigning asset 3 to rank 1

(or 2) has been changed from g1 to g1 + 2γ (or g1 + γ).

The choice of γ can be done through cross-validation. The set of possible can-

didates for γ can be found by comparing the relative values of the optimal value

f(ω∗,Rworst) of the robust model when γ = 0 and the corresponding deviation

|Rworst − R̄|L1. Then we can set:

γ = α ∗ f(ω∗,Rworst)

|Rworst − R̄|L1

for some choice of α. With α = 1, we treat the risk of being at the boundary of

the uncertainty set and the risk of changing from the nominal value equally. Letting

86

A1

A2

A3

R1

R2

R3

1

1

1

1

1

1

g1

g2 + γ

g1 + γ
g2

g3 + γ

g1 + 2γ

g2 + γ

g3

∞

Figure 4-2: The network flow problem when the conservative level is incorporated

α < 1 would mean we are more conservative. Letting α > 1 would mean we believe

more in the nominal value.

4.2.5 Extension to Allow Group Ranking

So far, we have assumed there is a complete ranking for all the objects. However,

in many situations, objects are ranked into groups or tiers where there is no ranking

information between those objects within the same group. For example, instead of

having n different ranks for n assets, we can use only 10 ranks and divide assets into

deciles. We can extend the robust ranking problem to allow robust group ranking

easily. The uncertainty in this case comes from the fact that some assets might not be

in their predicted tiers. Let K be the number of tiers. The algorithm for solving this

problem is still unchanged. However, we need to modify the transportation model to

be a network flow model with n source and K sink nodes. Let us take an example

with n = 4 assets and K = 2 tiers. Asset 1 is predicted to be in the first tiers. Assets

2 and 3 are either in the first or the second tier. Asset 4 is in the second tier. The

corresponding network flow model is modified according to Figure 4-3.

We have presented the general robust ranking model, its computational method

using the column generation algorithm and its extensions. In the next section, we

will show how to apply our robust ranking model to portfolio optimization.

87

A1

A2

A3

A4

R1

R2

1

1

1

1

2

2

g1

g1

g2

g1

g2

g2

Figure 4-3: The network flow problem when allowing group ranking in the uncertainty
set.

4.3 Robust Ranking Models for Portfolio Optimiza-

tion

In this Section, we will apply our generic robust ranking model to portfolio optimiza-

tion. We will show different choices of the objective functions and the constraint

sets. We will present their computational performance in Subsection 4.4.1 and their

empirical results in Subsection 4.4.2.

Consider a portfolio optimization problem where an investor forms a portfolio out

of n assets to maximize some objective function. In the traditional Markowitz mean-

variance portfolio optimization framework, we want to find the optimal portfolio to

maximize some objective function whose input parameters include the mean and the

covariance matrix. Many researchers include Michaud [30] and Chorpa and Ziemba

[15] have shown the poor out-of-sample performance of the mean-variance optimal

portfolio due to estimation errors on the expected return. The main advantage of

using ranking is to avoid the difficult task of estimating the expected return. Most

88

trading strategies that are based on ranking are formed by putting the top ranked

assets into the long side and the bottom ranked assets into the short side. This

strategy would perform very well if the ranking information is correct and would

perform poorly if the reverse is true. Hence, the risk of these portfolios is usually

very high. Our robust ranking models allow the ranking to be in some uncertainty

set and then find the best portfolio that performs well even for the worst realization of

the ranking within the uncertainty set. In order to obtain the ranking uncertainty set,

investors often use their intuition as well as quantitative methods to make inferences

about the assets’ ranking. For example, some investors might believe that assets

belonging to one sector will outperform those in other sectors. Investors might also

use well-documented accounting anomalies such as the post earning announcement

drift (see Ball and Brown in [3]) or the Fama and French factors in [17] as the means

to rank assets. Once we have obtained the ranking uncertainty set, we could apply

our general robust ranking model. The choice of the objective function f and the

constraint set P(ω) could vary from investor to investor. We present two possible

models in the next Subsections.

4.3.1 Model I: Robust Max Weighted Ranking with Nonneg-

ative Weight Constraint

max
ω

[
min

R∈U(R)
ωtR

]
s.t. ωte = 1

ωt ≥ 0

In this model, we want to find the optimal portfolio weight ω to maximize the

average ranking ωtR for the worst realization of the ranking R that lies in the uncer-

tainty set U(R). The constraints ωte = 1 and ωt ≥ 0 are for the normalization and

short-selling restriction respectively. In this case, the objective function f is separable

89

in ranking and hence we can apply the constraint generation method.

f(ω,R) = ωtR =
n∑
j=1

gj(ω, Rj),

where gj(ω, Rj) = ωjRj.

4.3.2 Model II: Robust Max Weighted Ranking with Risk

Constraint

max
ω

[
min

R∈U(R)
ωtR

]
s.t. ωtΣω ≤ 1

In this model, we want to find the optimal portfolio weight ω to maximize the average

ranking for the worst realization of the ranking R that lies in the uncertainty set

U(R). The constraint set ωtΣω ≤ 1 allows the total portfolio risk to be bounded

above. This model is very similar to a mean-variance portfolio optimization model

except that we use the ranking R in the place of the expected return µ. This robust

model is a hybrid between a nonparametric model using ranking and a parametric

model using the covariance matrix. The main criticism for using the mean-variance

portfolio optimization is in the estimation error from the expected return but not

from the covariance matrix. Hence, we could retain the good features from the mean-

covariance model by adding the risk constraint to the robust ranking model.

We can show that Model II is equivalent to:

max
ω

[
min

R∈U(R)

ωtR√
ωtΣω

]
s.t. ωte = 1

This model looks like a max Sharpe version. In fact, if we could transform a rank-

ing into the equivalent returns, we could have a mapping from the ranking uncertainty

set into a discrete expected return uncertainty set and then Model II would be exactly

90

the robust max Sharpe model. For example, suppose we decide to use the Almgren

and Chriss method [1] to transform the complete ranking R1 ≥ R2 ≥ ... ≥ Rn into

the equivalent returns c, where c1 ≥ c2 ≥ ... ≥ cn. Then, for any asset i with ranking

information li ≤ Ri ≤ ui, its return ri belongs to the set {cli , cli+1, ..., cui
}. Thus, the

uncertainty set for the returns is constructed as follows:

U(r) =
{
r | ri ∈ {cli , cli+1, ..., cui

}, ∀ i ∈ [1, 2, . . . , n]
}

The robust max Sharpe portfolio optimization problem can be formulated as:

max
ω

min
r∈U(r)

∑n
i=1 ωiri√
ωtΣω

s.t. ωte = 1

In addition to the max Sharpe objective function, it is also possible to do robust

ranking for many other types of objective functions in the portfolio optimization

problem such as a quadratic utility function.

4.4 Numerical Results

4.4.1 Computational Time

Table 1 shows the total solving time (in seconds), the average solving time for the

relaxed problem and for the constraint generation problem and the number of itera-

tions that the algorithm takes to converge to the optimal solution. We can see that

the algorithm finds the optimal solutions very fast. For example, with N = 100 and

k = 20, the algorithm converges in only 136 iterations even though the size of the

uncertainty set is very large.

We also record the time for solving the relaxed problem and the constraint gen-

eration problem through iterations in Figure 4-4. We can see that the constraint

generation problem takes about the same time in every iteration. This is because

the transportation model does not change through iterations. The relaxed problem

91

Number of assets 10 20 20 50 75 100 100
ui − li 4 4 10 10 10 10 20

Number of iterations 8 13 38 44 61 68 136
Average time solving the

constraint generation problem 0.14 0.19 0.19 2.26 11.97 23.85 28.82
Average time solving
the relaxed problem 0.41 0.46 0.5 1.26 4.17 5.79 7.36

Total time 4.59 9.11 27.9 156.5 987 2017 4921

Table 4.1: Computational time for running the constraint generation algorithm with
different problem sizes. We used Matlab to run simulations. We used Sedumi for
solving the relaxed problem and use Matlog for solving the constraint generation
problem. All the computation results were produced by an Intel Pentium 4, 2GHZ
and 256 MB of RAM computer. Notice that the solutions found were optimal. If we
allow ε-violation on the constraint generation problem, the algorithm is expected to
run much faster.

takes longer time through iterations because the number of constraints increases by

1 through each iteration. However, we can see that the increase is not significant.

4.4.2 Empirical Study

We apply robust ranking into portfolio optimization where the ranking is obtained

from the standardized earning surprise. We first test the common belief about post

announcement earning drift. We then compare the performance of the robust models

with their non-robust counterparts. We test these models with stocks in the Dow

Jones Industrial Average Index during the period from 2000 to 2007.

Post Earning Announcement Drift

Ball and Brown [3] were the first to document the post earning announcement drift

effect. The authors define the standardized earning surprise as follows:

SUEt =
Ea,t − Ee,t
σ(Ea − Ee)

,

where Ea,t and Ee,t are the actual earning and the average analysts’ estimates on

earning for period t. The authors show that a simple portfolio with a long side of

92

Figure 4-4: Computational time for solving the relaxed problem and the constraint
generation problem.

the highest SUE assets and a short side of the smallest SUE assets would earn

significant returns with high Sharpe ratio. This results provide us a method to rank

assets according to their SUEt as we will show in Subsection 4.4.2.

Data Collection

• Stock Universe: We construct our portfolio from stocks in the Dow Jones

Industrial Average Index. We avoid possible errors with the database as much

as possible by a) keep only those stocks with consistent earning records (every

March 31st, June 30th, Sep. 30th and Dec. 31st) and b) removing those stocks

whose issuing companies has merged or split or changed their names. This

results in a set of 14 stocks in the period from 2000 to 2007. 1

• Earning Information: The estimate earnings and actual earning are retrieved

from the IBES database from the Wharton School of Business (WRDS).

• Stocks’ Returns: The stocks’s returns are retrieved from the CRSP database

1It is arguable that our choice of replicating the DJIA stock universe would contain survivorship
bias. However, it is our main interest to study the relative performance of our robust models
compared to their non robust counterparts

93

from the Wharton School of Business (WRDS).

• Time Frame: Our data starts from 2000. Since the CRSP and IBES only

provide data up to 2007, our test results end in 2007.

Trading Strategy Implementation

Our trading time periods start right after the quarter earning announcement and

we hold our trading position until the end of that quarter before a new portfolio is

formed. Suppose we are at time t, that is the beginning of a quarter, we look back

for 1 year and find the Dow Jones Industrial Average constituents that are in the

index for the entire year. (this should provide a subset of the all the constituents at

time t). We find the earning estimates by analysts for the last quarter and average

them to obtain Ee,t. We also find the actual earning announced by the stock issuing

companies for the last quarter to obtain Ea,t. We then find the standardized earning

surprise as SUEt = Ea,t−Ee,t

σ(Ea−Ee)
, where σ(Ea − Ee) is the historical standard deviation

of the discrepancy between the estimated and actual earnings. We rank SUEt of all

the stocks selected and obtain a ranking R̄ = {R̄1, R̄2, ..., R̄n}. The uncertainty set is

set equal to: U(R) = R | (R̄i − li) ≤ Ri ≤ (R̄i + ui) for different choices of widths l

and u. We run the robust models to obtain the robust portfolio weights wt. Since we

hold this portfolio for the next quarter, the portfolio return for quarter t+ 1 is wttrt+1

where rt+1 is the return of the assets in quarter (t+ 1)

Empirical Results

First, we test whether the post announcement earning has any drift to stocks’ re-

turns. This is done by simply comparing between a portfolio of the highest ranked

SUE stocks, another portfolio of the lowest ranked SUE stocks and the equal weighted

portfolio. This comparison is shown in Table 4.2 and Figure 4-5. We can see the high-

est ranked portfolio outperforms the equal weighted and the lowest ranked portfolios

(in terms of the expected returns and the Sharpe ratios). This implies that the post

announcement earning does have drift on the stock returns in this case.

94

Model Mean Returns Standard Deviation Sharpe Ratio
Equal Weighted portfolio 0.0795 0.1797 0.4424

Lowest SUE portfolio 0.0413 0.2033 0.2030
Highest SUE portfolio 0.1177 0.1829 0.6439

Table 4.2: Risk and return characteristics for different strategies. Rows 2, 3 and 4
show that the high SUE portfolio indeed outperforms the equal weighted portfolio
and the low SUE portfolio. This implies that the post earning announcement does
contain drift to the stocks’ returns.

Next, we compare the performances between non-robust portfolios and robust

portfolios in Table 4.3. The third and the fourth rows show the comparison between a

non-robust portfolio of simply using the nominal ranking and a robust portfolio using

Model I where the uncertainty set is set as U(R) = R | (R̄i−2) ≤ Ri ≤ (R̄i+2). Rows

5,6,7,8,9 show the comparison between a non-robust portfolio and robust portfolios

using Model II. The differences between the robust portfolios in rows 6,7,8,9 are in

the way we construct the uncertainty sets. These sets are all constructed with the

forms U(R) = R | (R̄i − wi) ≤ Ri ≤ (R̄i + wi) where the widths w range from 1 to

4. In all cases, we can see clearly the robust portfolios have smaller risks (standard

deviations) compared to their non-robust counterparts. The expected returns for

these portfolios fluctuate around their non-robust counterparts. This is because our

way of constructing the uncertainty sets was very simple and we did not use any

additional information. Introducing the uncertainty sets would either a) reduce the

value of the information we have in the ranking or b) make the ranking less sensitive

to estimation errors or both. In fact, we can see both of these effects in this empirical

example.

Finally, we test the performance of our robust models on varying the correctness

of the uncertainty sets. We construct two portfolios: the first one with an additional

‘good information’ and the second one with an additional ‘bad information’ reflected

in the uncertainty sets. These uncertainty sets are constructed as follows: U(R) =

R | (R̄i−1+wi) ≤ Ri ≤ (R̄i+1+wi), where wi = ±1. Let RT be the truth ranking of

the stocks in the next period. The first portfolio is set closer to the truth ranking RT

while the second portfolio is set further from RT compared to the nominal ranking

R̄. In the first portfolio, we set:

95

Figure 4-5: This figure shows that post earning announcement does indeed have
valuable information. The blue curve (the middle one) is for the equal weighted
portfolio of 14 assets that are extracted from the Dow Jones Industrial Average Index.
The black curve (the lowest one) is for the equal weighted portfolio of the lowest SUE
assets. The red curve (the top curve) is for the equal weighted portfolio of the highest
SUE assets.

w
(1)
i =

1, if R̄i < RT i

−1, if R̄i > RT i

0, otherwise

In the second portfolio, we set w
(2)
i = −w(1)

i . Table 4.4 shows the comparison

between a robust ranking portfolio without any additional information and the two

portfolios we have just constructed. We can see clearly that having additional good in-

formation (shown in the fourth row) produces a better portfolio than the one without

it while having additional bad information (shown in the fifth row) could downgrade

the portfolio. Hence, in practice, the uncertainty set should be set carefully. The

confidence interval for each assets could be different from others. This is the point

when beliefs from both quantitative analysts, fundamental analysts and managers

should be put together to construct a good uncertainty set.

96

Model Mean Returns Standard Deviation Sharpe Ratio
Equal Weighted portfolio 0.0795 0.1797 0.4424

Non-robust (I) -0.0475 0.2859 -0.1661
Robust (I) 0.0906 0.1744 0.5194

Non-robust (II) 0.2173 0.2740 0.7931
Robust (II), ±1 0.2387 0.2694 0.8861
Robust (II), ±2 0.1962 0.2392 0.8200
Robust (II), ±3 0.2471 0.2166 1.1408
Robust (II), ±4 0.1528 0.2189 0.6984

Table 4.3: Risk and return characteristics for different strategies. Rows 3 and 4 show
that a non-robust and a robust portfolio using Model I. Rows 5,6,7,8,9 show a non-
robust portfolio and 4 robust portfolios using Model II. The uncertainty sets for the
robust portfolios in rows 6,7,8,9 were constructed as U(R) = R | (R̄i − wi) ≤ Ri ≤
(R̄i + wi) where the widths w range from 1 to 4. We can see that robust portfolios
have smaller risk compared to their non-robust counterparts.

Model Mean Returns Standard Deviation Sharpe Ratio
Equal Weighted portfolio 0.0795 0.1797 0.4424

Robust (II), ±1 0.1977 0.2405 0.8220
Robust (II), ±1 + good information 0.3377 0.3131 1.0787
Robust (II), ±1 + bad information 0.1308 0.2528 0.5176

Table 4.4: Risk and return characteristics for different strategies. Rows 4 is for a
robust portfolio whose uncertainty set is around the nominal ranking R̄ but skew
toward the true ranking. Row 5 is for another robust portfolio whose uncertainty set
is skewed in the opposite direction compared to the nominal ranking. We can see that
the ‘closer’ the uncertainty sets to the actual ranking, the better the corresponding
robust portfolio performs.

4.5 Conclusion

In conclusion, we present a robust ranking model and apply the column generation

method to solve the problem. The construction of the uncertainty set and the method

for controlling the degree of conservatism are intuitive. We exploit the special char-

acteristic of the ranking to ensure that constraints are generated efficiently through

solving a network flow model. Our method works for a large class of objective func-

tions. We show computational performance of the algorithm for the specific case of

robust portfolio optimization. We found the algorithm performs very fast even for

moderately large problem sizes. Our idea of using the column generation method is

applicable in other robust models whose uncertainty sets are discrete as long as we

can find an efficient method to generate constraints. For empirical tests, we use the

post announcement earning drift to construct the ranking uncertainty set. We test

97

Figure 4-6: Result for model I: This figure compares the performance of the robust
ranking model 1 versus its non-robust counterpart. The blue curve shows the cu-
mulative quarterly returns of the equal weighted portfolio. The black curve shows
that of the non-robust model where the uncertainty set is equivalent to a nominal
ranking. The red curve shows that of the robust model. We can see the robust curve
out-performs the non-robust curve.

our robust models for stocks in the DJIA index in the period from 2000-2007 and

found the robust portfolios produce smaller risk and higher Sharpe ratios compared

to their non-robust counterparts.

98

Figure 4-7: Result for model II: This figure compares the performance of the robust
ranking model 2 versus its non-robust counterpart. The blue curve shows the cu-
mulative quarterly returns of the equal weighted portfolio. The black curve shows
that of the non-robust model where the uncertainty set is equivalent to a nominal
ranking. The red curve shows that of the robust model. We can see the robust curve
out-performs the non-robust curve.

99

Chapter 5

Future Directions

Robust optimization or robust statistics (or a combination)?

We have worked with both robust optimization and robust statistics and we found

each of them has attractive properties as well as limitations. One of the interesting

questions is whether we should use robust optimization or robust statistics in general

and in financial applications in particular. We conjecture that the choice of which

one to use depends significantly on the assumptions on the data generating processes.

We also believe that a combination of robust optimization and robust statistics would

lead to strong methods for financial applications. We find this topic very interesting

and worth pursuing further.

Robust Estimation and Regime Switching in Portfolio Optimization:

It is clear that stock returns do not follow a normal distribution. It is possible that

the returns follow a regime switching model where the majority of the observations

follows a normal distribution while the rest follows some other random process. We

could use robust estimation and robust regression to estimate these regimes. Once

we have found the regimes, we could produce the corresponding optimal portfolios.

Applying OM/OR techniques to robust statistical analysis and other

combinatorial problems:

We plan to continue the success of applying mathematical modeling and optimiza-

tion methods to robust statistics. The most popular tools that the robust statistics

community uses are heuristic methods and there is a great opportunity for apply-

100

ing mathematical programming as an alternative. One example that we found quite

intriguing is that the PROGRESS algorithm which had been used for solving the

robust regression problem for quite a long period of time is essentially equivalent to

the simple gradient method. This can be seen directly when we model the problem

as a nonlinear knapsack problem. In addition to robust statistics applications, we are

also searching for other areas especially those combinatorial problems where heuristic

methods or rules-based methodologies are used currently. The favorite optimization

tool that we would rely on is semi-definite programming since it is so powerful in re-

laxing combinatorial problems as well as in transforming highly non-linear problems

into linear matrix inequalities.

Portfolio optimization and other financial applications:

There are many possible research directions related to the portfolio optimization

problem. Our work in [12] has shown that none of the current methods perform

well on empirical data. We know that financial data doesn’t really follow normality

assumptions and we want to see how much this affects existing models. We also

plan to test how my robust ranking method would work compared to other portfolio

optimization methods. We also plan to test how my robust covariance matrix would

work for portfolio optimization where we use the robust covariance matrix instead of

the maximum likelihood counterpart.

101

Appendix A

A.1 Proof of Theorem 1

Theorem 1: Let vi =

 1

Ri

 and Z =

 1
∑n

i=1 xiR
t
i∑n

i=1 xiRi

∑n
i=1 xiRiR

t
i

 =
∑n

i=1 xiviv
t
i ,

then the constraint di ≥ (Ri− µ̂rob)tΣ̂
−1

rob(Ri− µ̂rob) is equivalent to di + 1 ≥ vtiZ
−1vi.

Proof. We have:

di ≥ (Ri − µ̂rob)tΣ̂
−1

rob(Ri − µ̂rob)

⇔

 di (Ri − µ̂rob)t

(Ri − µ̂rob) Σ̂rob

 � 0 (A.1)

⇔

 di Rt
i − µ̂

t
rob

Ri − µ̂rob
∑n

i=1 xiRiR
t
i − µ̂robµ̂

t
rob

 � 0

⇔

di + 1 Rt
i

Ri

∑n
i=1 xiRiR

t
i

 �
 1 µ̂trob

µ̂rob µ̂robµ̂
t
rob

⇔

di + 1 Rt
i

Ri

∑n
i=1 xiRiR

t
i

 �
 1

µ̂rob

[1 µ̂trob

]

⇔

1 1 µ̂trob

1 di + 1 Rt
i

µ̂rob Ri

∑n
i=1 xiRiR

t
i

 � 0 (A.2)

102

⇔

di + 1 1 Rt

i

1 1 µ̂trob

Ri µ̂rob
∑n

i=1 xiRiR
t
i

 � 0

⇔ di + 1 ≥
[
1 Rt

i

] 1
∑n

i=1 xiR
t
i∑n

i=1 xiRi

∑n
i=1 xiRiR

t
i

−1 1

Ri

 (A.3)

⇔ di + 1 ≥ vtiZ
−1vi

Notice that we have used the Schur complements (see [42]), in A.1 and A.3 while

the general theorem for A.2 is the following: X − vvt � 0 ⇔

1 vt

v X

 � 0. This

result can be shown by noticing that

 1 0

−v I

1 vt

v X

1 −vt

0 I

 =

1 0

0 X − vvt

A.2 Proof of Theorem 5

Theorem 5: At most (p+1) decision variables zi are non-integer in the relaxed

problem.

Proof. Consider the maximum trimmed squares problem:

max
z

f(z)

s.t. −z ≤ 0

z ≤ 1

zte = q

Let α ∈ Rn, β ∈ Rn and γ ∈ R be the Lagrangian multipliers for the constraints

−z ≤ 0, z ≤ 1 and zte = q correspondingly. The KKT and the complementary

slackness require the following conditions hold:

103

∂[f(z)−αt(−z)−βt(z−1)−γ(zte−q)]
∂zi

= 0, ∀ i

ziαi = 0, ∀ i

(zi − 1)βi = 0, ∀ i

(zte− q)γ = 0

α ≥ 0, β ≥ 0

We have:

0 =
∂ (f(z)− αt(−z)− βt(z − 1)− γ(zte− q))

∂zi
= (yi − xiβ(z))2 + αi − βi − γ

Let S be the set of all non-integer zi. This means 0 < zi < 1, ∀ i ∈ S and hence

αi = βi = 0, ∀ i ∈ S by the complementary slackness conditions. Therefore,

(yi − xiβ(z))2 = γ, ∀ i ∈ S

By a small randomization on the original data (X, y), we can make sure that the

system of equations (yi − xiβ(z))2 = γ hold for no more than (p + 1) observations

(yi, xi) (since the systems has (p+ 1) degrees of freedom on β(z) and γ). This means

the cardinality of the set S is less than or equal to (p+ 1). In other words, there are

no more than (p+ 1) non-integer solution zi.

A.3 Proof of Theorem 6

Theorem 6: The MTS problem would identify at least 1 outlier under Assumption

1.

Proof. Suppose that the reverse is true, that is maximum trimmed squares problem

104

identifies points P1, P2, ...Pp+1 which are all good observations and suppose the opti-

mal value of the MTS is f ∗. Let h = w(G) be the width between the parallel planes

that contains all the good observations. Then f ∗ ≤ (p + 1)
(
h
2

)2
because the total

squared residuals for P1, P2, ...Pp+1 is at most (p + 1)
(
h
2

)2
. Let X be an outlier. We

choose a set of (p− 1) good observations G1 such that the plane CD passing through

these points and X would classify all remaining good observations to be in one side

of that plane (see Figure A-1)

Let D be the vertical distance from point X to the robust regression line of the

good set G and let d = D− h
2
. According to our assumption on G to be a good subset

in the “strong robust sense”, we must have d ≥
√

(p+1)
2
h. Let H be the distance

between any good observation G2 to the plane CD, then the sum of squared residuals

for the subset of X, G1 and G2 is at least min
(
H2

2
, d

2

2

)
. We will show the proof for

this result later but suppose for now that this result is true. Then, because the subset

of X, G1 and G2 is not the optimal MTS solution, we have:

(p+ 1)

(
h

2

)2

≥ min

(
H2

2
,
d2

2

)

Since d ≥
√

(p+1)
2
h, the following inequality must true:

(p+ 1)

(
h

2

)2

≥ H2

2

⇒
√

(p+ 1)

2
h ≥ H

This means we can find a pair of parallel planes with a width of
√

(p+1)
2
h that con-

tains all the good observations and the outliers X. This contradict to our assumption

for G to be the good subset in the “strong robust sense”.

Let MN be the regression plane that corresponds to the points G1 G2 and X and

let r1, r2 and r3 be their corresponding residuals. The only result left for us to prove

is r2
1 + r2

2 + r2
3 ≥ min

(
H2

2
, d

2

2

)
.

105

There are two cases. The projection of G2 on the plane CD either lie within or

outside the convex hull of the points X and G1. In the former case, we can prove

that r2
1 + r2

2 + r2
3 ≥ H2

2
and in the later case, we can prove r2

1 + r2
2 + r2

3 ≥ d2

2
. We only

show the proof for the former case here. We have:

(H − r2)2 ≤ max(r2
1, r

2
3) ≤ r2

1 + r2
3

⇒ r2
1 + r2

2 + r2
3 ≥ (H − r2)2 + r2

2 ≥
H2

2

Figure A-1: Figure demonstrating a geometrical intuition for the proof of Theorem 2

106

A.4 Stock Universe for Robust Ranking Empirical

Tests

The following table shows the list of stocks we used in our empirical test:

Symbols Company Names
‘AA’ Alcoa Incorporated
‘BA’ Boeing Corporation
‘C’ Citigroup Incorporated

‘CAT’ Caterpillar Incorporated
‘GE’ General Electric Company
‘GM’ General Motors Corporation
‘IBM’ International Business Machines
‘INTC’ Intel Corporation
‘JNJ’ Johnson & Johnson
‘KO’ Coca-Cola Company

‘MCD’ McDonalds Corporation
‘MRK’ Merck & Company
‘MSFT’ Microsoft Corporation
‘UTX’ United Technologies

Table A.1: List of assets in our sample.

The remaining 16 assets in the DJIA index were not included for various reasons.

The companies with symbols ‘AXP’, ‘DD’, ‘DIS’, ‘MMM’, ‘PG’, ‘XOM’ were not

included because they missed the earning estimates for September 2000. The com-

panies ‘HD’, ‘HPQ’, ‘WMT’ were not included because their earning announcements

were on a different time scale than the rest, i.e. their announcement were at the end

of April, July, Oct. and Jan. while the rest are at the end of March, Jun., Sep.

and Dec. (at least this is what we saw on the Wharton database). The companies:

‘AXP’, ‘JPM’, ‘BAC’, ‘CVX’, ‘KFT’, ‘PFE’, ‘VZ’ were not included because either

they have merged/split or changed their name in the last 8 years which might cause

the Wharton database not to record their earning and returns properly.

107

Bibliography

[1] R. Almgren and N. Chriss, Optimal portfolios from ordering information, Journal

of Risk (2006).

[2] F. Alqallaf, S.V. Aelst, V.J. Yohai, and R.H. Zamar, A model for contamination

in multivariate data, (2005).

[3] R. Ball and P. Brown, An empirical evaluation of accounting income numbers,

Journal of Accounting Research (Autumn 1968), 159–178.

[4] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems

contaminated with uncertain data, Mathematical Programming 88 (2000).

[5] D. Bertsimas and R. Shioda, Classification and regression via integer optimiza-

tion, Operations Research 55 (2007), no. 2, 252271.

[6] D. Bertsimas and M. Sim, The price of robustness, Operations Research 88

(2002).

[7] D. Bertsimas and A. Thiele, A robust optimization approach to inventory theory,

Operations Research 54, no. 1.

[8] D. Bertsimas and J.N. Tsitsiklis, Introduction to linear optimization, Athena

Scientific, Belmont, MA, 1997.

[9] H.G. Beyer and B. Sendhoff, Robust optimization - a comprehensive survey, to

be appeared (2007).

108

[10] D. Bienstock, Experiments with robust optimization, ISMP 2006, Rio (Aug.

2006).

[11] F. Black and R. Litterman, Global portfolio optimization, Financial Analysts

Journal (Sep.-Oct. 1992).

[12] T. Brennan, A. Lo, and T.D Nguyen, Portfolio theory, To be appeared (2007).

[13] Gorlich A. Jarosz A. Burda, Z. and J. Jurkiewicz, Signal and noise in correlation

matrix, Physica A (2004).

[14] V. Chandola, A. Banerjee, and V. Kumar, Outlier detection: A review, Technical

Report (2007).

[15] V.K. Chopra and W.T. Ziemba, The effect of errors in means, variances and co-

variances on optimal portfolio choice, Journal of Portfolio Management (Winter

1993).

[16] V. DeMiguel and Nogales F., Portfolio selection with robust estimates of risk,

LBS working paper, submitted for publication (2006).

[17] E.F. Fama and K.R. French, Common risk factors in the returns on stocks and

bonds, Journal of Financial Economics 33 (1993), no. 1, 3–56.

[18] D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper.

Res. 28 (2002), no. 1.

[19] P.W. Holland and R.E. Welsch, Robust regression using iteratively reweighted

least-squares, Communications in Statistics: Theory and Methods 6 (1977), 813–

827.

[20] P.J. Huber, Robust statistics, John Wiley and Sons, New York, 2004.

[21] P. Jorion, Bayes-Stein estimation for portfolio analysis, Journal of Financial and

Quantitative Analysis 21 (1986), 279–292.

109

[22] J. Khan, V.S. Aelst, and R. Zamar, Robust linear model selection based on

least angle regression, Technical Report, Department of Statistics, University

of British Columbia (2005).

[23] H.W. Kuhn and A.W. Tucker, Nonlinear programming, Proceedings of 2nd

Berkeley Symposium (1951), 481–492.

[24] Cizeau P. Bouchaud J.-P. Laloux, L. and M. Potters, Noise dressing of financial

correlation matrices, Physical Review Letters.

[25] Cizeau P. Potters M. Laloux, L. and J.-P. Bouchaud, Random matrix theory and

financial correlations, International Journal of Theoretical and Applied Finance

3 (2000), no. 3, 391–397.

[26] O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional co-

variance matrices, Journal of Multivariate Analysis 88 (Feb. 2004), no. 2, 365–

411.

[27] H. Markowitz, Portfolio selection, Journal of Finance 7 (Mar. 1952), no. 1, 77–91.

[28] R.A. Maronna, R.D. Martin, and V.J. Yohai, Robust statistics: Theory and

methods, John Wiley and Sons, New York, 2006.

[29] R.O. Michaud, Efficient asset management, Harvard Business School Press,

Boston, Massachusetts, 1998.

[30] , The Markowitz optimization enigma: is ‘optimized’ optimal?, Financial

Analysts Journal 45 (Jan.-Feb. 1989), no. 1, 31.

[31] S. Pafka and I. Kondor, Noisy covariance matrices and portfolio optimization ii,

Physica A 319 (Mar. 2003), no. 1.

[32] G. Perakis and E. Adida, A robust optimization approach to dynamic pricing and

inventory control with no backorders, Mathematical Programming: Series A and

B 107 (2006), no. 1, 97 – 129.

110

[33] G. Perakis and A. Sood, Competitive multi-period pricing for perishable products,

Mathematical Programming: Series A and B 107 (2005), no. 1, 295 – 335.

[34] P.J. Rousseeuw, Least median of squares regression, Journal of the American

Statistical Association 79 (1984), 871–880.

[35] P.J. Rousseeuw and A.M Leroy, Robust regression and outlier detection, John

Wiley and Sons, New York, 1987.

[36] P.J. Rousseeuw and K. van Driessen, A fast algorithm for the minimum covari-

ance determinant estimator, Technometrics 41 (1999), 212 – 223.

[37] , Computing lts regression for large data sets, Data Mining and Knowledge

Discovery 12 (2006), 2945.

[38] A.L. Soyster, Convex programming with set-inclusive constraints and applications

to inexact linear programming, Oper. Res. 21 (2007).

[39] K.C. Toh, M.J. Todd, and R.H. Tutuncu, Sdpt3 version 4.0 (beta) – a matlab

software for semidefinite-quadratic-linear programming, (2006).

[40] R.H. Ttnc and M. Koenig, Robust asset allocation, Annals of Operations Re-

search 132 (2004).

[41] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review 38

(1996), no. 1, 49–95.

[42] , Applications of semidefinite programming, Applied Numerical Mathe-

matics: Transactions of IMACS 29 (1999), no. 3, 283–299.

[43] S. Verboven and M. Huberty, Libra: a matlab library for robust analysis, (2004).

[44] R. Welsch and X. Zhou, Application of robust statistics to asset allocation models,

Forthcoming in REVSTAT (2007).

111

[45] G. Zioutas and A. Avramidis, Deleting outliers in robust regression with mixed

integer programming, Acta Mathematicae Applicatae Sinica 21 (2005), no. 2,

323–334.

112

