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ABSTRACT 
 
Surface effects on pool boiling heat transfer and the critical heat flux are well documented but 
poorly understood.  This study investigates the pool boiling characteristics of various fluids, and 
demonstrates that surface effects can drastically alter the nucleate boiling heat transfer 
coefficient as well as the critical heat flux.  Changes in surface morphology and surface 
chemistry are suspected to be the primary factors influencing pool boiling heat transfer.  The 
relative impact of surface properties is shown to depend strongly upon the working fluid.       
 
To evaluate the effects of chemical constituency and surface texture on the pool boiling of water, 
nanoparticle thin-film coatings are applied to nickel and stainless steel substrates using the layer-
by-layer assembly method.  This study shows that such coatings, with thicknesses on the order of 
one micron or less, are capable of enhancing the critical heat flux of water up to 100%, and 
enhancing the nucleate boiling heat transfer coefficient over 100%.  Through the use of thin-film 
coatings, the importance of nanoscale surface texture, porosity, and chemical constituency on 
boiling mechanisms is revealed. 
 
Low surface tension dielectric fluids, including a recently developed fluorinated ketone with a 
low global warming potential, are tested to determine their pool boiling heat transfer capabilities.  
The potential for nanoparticle-based pool boiling enhancement in well-wetting dielectric fluids is 
investigated.  The role of surface wettability and adhesion tension on the incipience of boiling, 
nucleate boiling, and critical heat flux are considered.  Results indicate that the low global 
warming potential fluorinated ketone may be a viable alternative in the cooling of electronic 
devices.  Additionally, results demonstrate that enhancement of boiling heat transfer is possible 
for well-wetting dielectric fluids, with 40% enhancement in the critical heat flux using dilute 
suspensions of aluminum or silica nanoparticles in the fluorinated ketone.  
 
 
THESIS SUPERVISOR:  Lin-Wen Hu, Ph.D., PE 
TITLE:  Associate Director and Principal Research Scientist, MIT Nuclear Reactor Laboratory 
 
THESIS SUPERVISOR:  Jacopo Buongiorno, Ph.D. 
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NOMENCLATURE 
 
 

Symbol 

 

 Units 

A121 Hamaker constant J 

As surface area  m2 

C constant - 

D wire diameter m 

D diffusion coefficient m2/sec 

Dc cavity diameter  m 

d particle diameter m 

dbr breakthrough bubble diameter m 

g gravitational acceleration  m/s2 

heff effective heat transfer coefficient W/(m2 K) 

hfg heat of vaporization  J/kg 

I current  A 

I scattered intensity W/St 

I0 nominal intensity W/St 

K Zuber constant - 

k Boltzmann constant J/K 

keff effective thermal conductivity W/(m K) 

kf fluid thermal conductivity W/(m K) 

ks solid thermal conductivity W/(m K) 

L wire length  m 
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l separation distance m 

Lc characteristic length m 

NA active nucleation site density  m-2 

n refractive index - 

q″ heat flux  W/m2 

q″CHF critical heat flux  W/m2 

R electrical resistance  Ω 

Ra surface roughness m 

Rc critical bubble radius m 

R* dimensionless heater radius - 

r Wire radius m 

rc cavity radius m 

r roughness factor - 

T temperature  ºC or K 

T0 nominal temperature  ºC 

Tsat saturation temperature  ºC 

Tw wall temperature  ºC 

t0 Critical polymer layer thickness m 

V volume  m3 

ΔT temperature difference  ºC 

   

α temperature coefficient of resistance  K-1 

β dynamic receding contact angle degrees 
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γ groove angle degrees 

γsv solid-vapor interfacial tension  N/m 

γsl solid-liquid interfacial tension  N/m 

δe equivalent macrolayer thickness  m 

ε porosity - 

ζ deviation ratio - 

η dynamic viscosity kg/(m sec) 

θ scattered intensity angle degrees 

θ contact angle, apparent contact angle degrees 

θA static advancing (advanced) contact angle  degrees 

θeq static equilibrium contact angle degrees 

θI intrinsic contact angle degrees 

θR static receding (receded) contact angle degrees 

κ hot/dry spot constant - 

λ wavelength m 

υfg liquid-vapor specific volume change m3/kg 

ρf liquid density  kg/m3 

ρg vapor density kg/m3 

σ surface tension N/m 

± σ uncertainty  - 

φ heater inclination angle degrees 
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Abbreviation 

Bi Biot number  

CFC Chlorofluorocarbon  

CHF Critical heat flux  

CVD Chemical vapor deposition  

EXPSAM Exponential sampling  

FC Fluorocarbon  

GWP Global warming potential  

HCFC Hydrochlorofluorocarbon  

HFC Hydrofluorocarbon  

HFE Hydrofluoroether  

IGBT Insulated-Gate bipolar junction transistor   

LbL Layer-by-Layer  

PAH Poly(allylamine) hydrochloride  

PTFE Poly-tetrafluoroethylene  

SEM Scanning electron microscope  

SPS Sodium poly(styrene sulfonate)  
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1. INTRODUCTION 

1.1.  Motivation 
 Pool boiling is characterized by several regimes with distinguishable heat transfer and 

hydrodynamic properties. Free convection is the primary heat transfer mechanism for surface 

temperatures just above the saturation temperature of a liquid, prior to boiling incipience.  As the 

surface temperature increase, the onset of nucleate boiling occurs.  Nucleate boiling is a very 

effective heat transfer mechanism due to the high heat transfer associated with the latent heat of 

vaporization and the increase in convection due to bubble motion. Therefore, it is desirable to 

operate thermal-fluid systems in the nucleate boiling regime. 

 Heat transfer systems that operate in the nucleate boiling regime are limited by a critical 

heat flux (CHF), at which a vapor film envelopes the heated surface, severely inhibiting heat 

transfer.  In film boiling, which results from exceeding the CHF, a thin film of vapor forms at the 

boiling surface, preventing the re-wetting of the surface. As a result, there is typically very poor 

heat transfer since the primary modes of heat transfer from the surface are conduction and 

radiative heat transfer through the vapor. Therefore, at the point of CHF, a surface will undergo a 

rapid temperature excursion.  For many materials, this results in surface failure, or “burn out.”  It 

is crucial that systems such as nuclear reactors operate below the critical heat flux, lest a severe 

accident occur.   

 Refrigeration units, many power electronic devices, and other systems depend on the high 

heat transfer coefficient associated with nucleate boiling to operate as designed.  Therefore, 

raising the upper limit of nucleate boiling could allow for higher safety margins, higher rates of 

heat transfer in existing systems, or a reduction in the size of future systems while maintaining 

the same heat transfer capability.  Buongiorno et al. concluded in their analysis that a 32% 

increase in CHF would allow for a 20% power density uprate in pressurized water reactors, 

thereby improving the economics for electricity generation [1]. 

 The nucleate boiling heat transfer coefficient dictates the operational temperature of a 

boiling surface for a given fluid saturation temperature at a given heat flux.  Devices such as 

power electronics are highly sensitive to slight increases in temperature.  It is therefore desirable 

to increase nucleate boiling heat transfer in two-phase cooling systems to optimize the 

performance and operating lifetime of such devices.  An overreaching goal of thermal-fluid 
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scientists has been to find a cost-effective means of enhancing CHF and nucleate boiling heat 

transfer. 

 Studies in two-phase heat transfer over the past several years indicate that the addition of 

nano-sized (1 nm-100 nm) particles to base fluids can dramatically increase CHF and alter other 

boiling parameters such as nucleation site density, bubble diameter, bubble departure frequency, 

and so forth.  These “nanofluids,” as they are referred to in the literature [2], consist of particles 

such as metal oxides, metals, or allotropes of carbon added to base fluids such as water.  Kim et 

al. summarize findings from various nanofluid boiling experiments, describing that nanofluids 

can achieve up to 200% enhancement in CHF for pool boiling, and that CHF enhancement 

occurs at very low loadings (≤0.1% by volume) [3].  For the heat transfer coefficient, some 

studies report enhancement, some deterioration, and some no change for boiling in dilute 

nanofluids [3].  Characterization of these dilute nanofluids shows insignificant changes in fluid 

properties such as thermal conductivity, viscosity, etc.  Kim et al. report that boiling in 

nanofluids deposits a porous coating of nanoparticles upon heater surfaces, increasing surface 

wettability and resulting in CHF enhancement [4].  Changes in the boiling behavior for dilute 

nanofluids can therefore be attributed to surface modification imputed by nanoparticle 

deposition. 

 Modifying surfaces to augment boiling heat transfer and CHF is not a new concept.  In 

1962, Berenson observed that increasing surface roughness affects nucleate boiling heat transfer, 

enhancing the heat transfer coefficient up to 500%-600% [5].  Webb summarizes a number of 

surface treatments explored from 1931 onward, including mechanical treatments to increase 

surface roughness along with coatings to alter surface morphology [6].  Webb also states that 

very porous surfaces show enhancement of CHF.  Hwang and Kaviany have demonstrated 

increases in CHF up to 96% for pool boiling of n-pentane using thin, uniform microparticle 

coatings on heater surfaces [7].  Kim et al. have reported enhancement for both nucleate boiling 

heat transfer and CHF in FC-72 using microparticle coatings on wires [8]. 

 Despite in depth investigations of pool boiling heat transfer and CHF over the past 

seventy years, there is still considerable debate over what causes the boiling crisis and what 

parameters have the greatest influence upon it. Although Berenson notes in his 1962 paper that 

the addition of wetting agents to fluids has some effect on critical heat flux, he concludes that, 

“The maximum nucleate-boiling burnout heat flux is essentially independent of surface material, 
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roughness and cleanliness [5].” The recent studies in boiling using nanofluids, which show that 

porous deposits of nanoparticles result in significant CHF enhancement, seem to provide 

irrefutable proof that surface characteristics have a direct effect on CHF.  Investigation into the 

specific surface parameters that affect CHF and nucleate boiling heat transfer will help reveal the 

physical mechanisms and reveal optimal means of enhancement in a wide range of applications.  

 Although various methods have been tested for modifying boiling surfaces over the 

years, one should note that the predominant focus has been on microscale modification of 

surface parameters.  The recent work in the field of nanofluids has led to an interest in the 

nanoscale modification of surfaces and its effect on nucleate boiling heat transfer and CHF.  

Boiling deposition of nanoparticles on surfaces has been proven to enhance CHF, but the 

predominant focus has been with water as the working fluid.  This work comprises two 

independent studies, the results of which provide insight into the general mechanisms of boiling 

heat transfer.  Nanoparticle thin-film coatings applied to boiling surfaces are investigated for the 

development of carefully engineered surfaces with water as the working fluid.  Boiling 

deposition of nanoparticles is investigated in non-aqueous systems, specifically, to determine the 

potential for nanoparticle-based surface enhancement in well-wetting dielectric fluids. 

 

1.2.  Objectives 
1.2.1. Nanoparticle Thin-Film Coatings for Pool Boiling Heat Transfer  

Enhancement  

 Nanoparticle thin-film coatings applied to boiling surfaces offer a means to carefully 

control parameters such as wettability, while introducing additional effects such as porosity.  The 

thin-film thicknesses are typically on the order of one micron or less, thereby introducing 

minimal thermal resistance.  This study investigates the heat transfer properties of various 

polymer/SiO2 thin-films applied to nickel wires for saturated pool boiling in water at 

atmospheric pressure.  The objective is to obtain pool boiling curves for wires coated with these 

thin-films, and compare the relative enhancement in heat transfer, if any, to bare wire cases.  

Relative changes in both the nucleate boiling heat transfer coefficient and critical heat flux are 

examined.  The objective of this study is to demonstrate the performance of thin-film coatings in 

boiling heat transfer applications for two-phase water systems, and interpret from this the general 

mechanisms which affect nucleate boiling heat transfer and CHF.    
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1.2.2. Nanoparticle-Based Enhancement of Pool Boiling Heat Transfer in Low       

Global Warming Potential Dielectric Fluids   

 The objective of this study is to investigate a new low global warming potential 

fluorinated ketone, C2F5C(O)CF(CF3)2, for the two-phase cooling of high power density 

electronics, and determine whether nanoparticle-based surface enhancement is applicable to the 

fluid.  First, the study compares the pool boiling heat transfer properties of the fluorinated ketone 

to the perfluorocarbon FC-72, a fluid widely used in electronics cooling.  Next, the feasibility of 

dispersing silica and aluminum nanoparticles in the fluorinated ketone for boiling deposition of 

nanoparticles is explored using various techniques.  Lastly, boiling tests are conducted using the 

nanoparticle/fluorinated ketone dispersions to assess the enhancement in nucleate boiling heat 

transfer and CHF achieved with the fluid for such a method.  The results of these tests using the 

fluorinated ketone are important in understanding effects of surface parameters on boiling heat 

transfer, since boiling interactions are largely dependent on the fluid/surface combination.   
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SECTION I: 
NANOPARTICLE THIN-FILM COATINGS FOR POOL 

BOILING HEAT TRANSFER ENHANCEMENT 
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2. PREPARATION OF NANOPARTICLE THIN-FILM COATINGS 

2.1.  Background on Nanoparticle Thin-film Coatings 
 Nanoparticle thin-film coatings have been developed and utilized in the fields of 

materials science and chemical engineering for several decades.  Thin-film coatings offer a 

means to alter optical and wetting properties of surfaces without adding any appreciable 

thickness to the substrate.  Layer-by-layer (LbL) deposition offers a simple means of applying 

conformal thin-film coatings to many substrates.  The LbL method is an aqueous chemical 

method that involves adhesion and adsorption of subsequent layers onto a surface by alternating 

the charge of the deposited particles.  Iler presented the layer-by-layer deposition method in 1966 

as a means of forming thin-films of inorganic colloidal particles on glass substrates [9].  Through 

pH adjustment, Iler was able to prepare aqueous dispersions of cationic alumina and anionic 

silica.  By immersing his glass substrate in one dispersion following the other, Iler was able to 

build multilayers of silica and alumina on the surface.  Iler noted that the resulting coatings 

altered the optical and wetting characteristics of the original glass substrate.   

 

 
Figure 1:  Layer-by-layer Assembly Method for Constructing Thin-film Coatings.  Species of alternating 
charge adsorb onto the surface, with the process repeated until the desired number of bilayers is reached.  
 

 

 Decher and Hong later demonstrated the ability to construct multilayer using charged 

polymers [10].  More recently, Lee et al. have demonstrated the ability to construct nanoparticle 

thin-film coatings of carefully controlled thickness and composition by changing deposition 

conditions such as pH [11, 12, 13].     Figure 1 shows the general assembly process by which 

multilayers are constructed on a surface.  The deposited bilayers can consist of nanoparticle-
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nanoparticle, polymer-polymer, or nanoparticle-polymer bilayers.  Therefore, a wide range of 

coatings may be developed.  Film thickness, porosity, texture, chemical constituency, and to 

some degree roughness may be carefully controlled through the use of thin-film coatings.  

Therefore, optical properties such as refractive index and reflectivity, along with properties such 

as wettability, may be altered by application of thin-film coatings.  Table 1 summarizes various 

types of thin-film coatings found in literature that have been prepared using the LbL method. 

  

 

 
Table 1:  Summary of Various Thin-film Coatings Investigated in the Literature† 

Ref Subst. Adhesion 
Layer 

Cationic 
Species 

Anionic 
Species 

Additional 
Treatment 

Film 
Thickness 

Effect on 
Wettability 

Intended 
Application 

[9] Glass - γ-AlO(OH) 
Fibrils  
(5-6 nm)  

SiO2 
particles  
(70 nm) 

- 425 nm 
(5 bilayers) 

Increase 
(hydrophilic) 

Analytical 
Techniques 

[11] 
[12] 

Glass, 
Silicon 

- TiO2 
particles 
(7 nm) 

SiO2 
particles  
(22 nm) 

Calcination 
at 550 ºC 

2 nm- 30 nm 
per bilayer 
(depends on 
assembly 
conditions) 

Increase 
(hydrophilic) 

Anti-
reflection, 
Anti-fogging, 
Self-cleaning 

[13] Glass, 
Silicon 

Five 
bilayers 
PAH/PSS 

AP-SiO2 
particles 
(16 nm) 

SiO2 
particles  
(8-24 nm) 

- ~15 nm per 
bilayer 
(depends on 
assembly 
conditions) 

Increase 
(hydrophilic) 

Analytical 
Techniques 

[14] Glass, 
Silicon 

PAH/SPS 
or 
PAH/PAA 

PAH SiO2 
particles 
(7 nm) 

Calcination 
at 500 ºC 

~150 nm  
(20 bilayers) 

Increase 
(hydrophilic) 

Anti-
reflection, 
Anti-fogging 

[15] Glass, 
Silicon 

PAH/SPS PAH SiO2 
particles 
(50/20nm
+ 20nm) 

Calcination 
at 550 ºC; 
CVD of 
fluorosilane 

28 nm per 
bilayer 

Decrease 
(hydrophobic) 

Anti-
reflection, 
Water-
repellant 

[16] Glass, 
Silicon 

- PAH PAA, 
SiO2 

Low pH 
bath; 180 ºC 
cross-linking; 
CVD of 
fluorosilane; 
micro-pipette 
FITC-PAH 

N/A Hydrophilic 
patterns on 
hydrophobic 
surface 

Patterned 
surfaces, 
Planar 
microcanals 

†PAA=poly(acrylic) acid; PAH=poly(allylamine) hydrochloride; SPS=poly(styrene sulfonate); CVD=chemical   
vapor deposition; Fluorosilane=1H,1H,2H,2H-perfluorodecyltriethoxysilane; AP=3-Aminopropyl-functionalized; 
FITC-PAH=poly(fluorescein isothiocyanate allylamine hydrochloride).  “Analytical techniques” refers to any 
application used for further study of surface adsorption phenomenon and assembly conditions. 
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(a) 

 

(b) 

 
Figure 2:  (a) Anti-fog Properties of a TiO2/SiO2 Thin-film Coating.  The lower portion of the glass slide on 
the left is coated, whereas the slide on the right is not coated.  The anti-fogging property results from the 
coating having a higher wettability than the untreated glass.  (b) Anti-reflective properties of a TiO2/SiO2 
Thin-film Coating.  The left side of the glass slide is not coated, whereas the right side is coated.  Source: Ref. 
[11], reproduced with permission of the American Chemical Society, © 2006. 
  

 

Current applications of thin-film coatings are primarily focused on creating anti-fog, anti-

reflection, and self-cleaning coatings [14].  Glass windshields on automobiles, windscreens on 

planes, and optics in lasers, cameras, and other sensitive equipment could all benefit from the 

anti-fog and anti-reflection properties afforded by certain thin-film coatings.  Hydrophobic 

coatings have applications for water-repellant surfaces, anti-fouling surfaces, microfluidic 

channels, and biosensors [17].  Figure 2a shows anti-fogging properties attained on a glass slide 

using a TiO2/SiO2 thin-film coating.  Figure 2b illustrates the anti-reflection properties achieved 

with the same TiO2/SiO2 coating. 

 Considering that prior studies in boiling have demonstrated the importance of surface 

chemistry, texture, and wettability and their effect on the nucleate boiling heat transfer 

coefficient and CHF, nanoparticle thin-film coatings offer a means to develop optimal surface 

characteristics for boiling heat transfer.  By carefully controlling surface conditions, such 

coatings can help aid in understanding the mechanisms that affect nucleation and CHF.  This 

study investigates the effect of surface parameters on pool boiling in de-ionized water through 

the use of nanoparticle thin-film coatings consisting of SiO2/polymer bilayers.  Application of 

these coatings to A286 stainless steel plates in addition to nickel wires allows for investigation 

into the general adhesion characteristics of these coatings on metal substrates and better 

characterization of their properties.  With the SiO2/polymer coatings, the effects of film thickness 
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and wettability on the boiling heat transfer are investigated by carefully controlling these 

properties.  

 

2.2.  Preparation of Solutions and Nanoparticle Colloidal Dispersions 
 Three varieties of thin-film coatings were prepared using the LbL assembly, following a 

procedure similar to that used by Bravo et al. [15].  The prepared coatings will be described as 

hydrophilic (sessile water drop contact angle <90º), superhydrophilic (sessile water drop contact 

angle ≤3º), or hydrophobic (sessile water drop contact angle >90º).  The assembly process for all 

three coating types required aqueous solutions of sodium poly(styrene sulfonate) (SPS, nominal 

Mn=70,000 g/mol) and poly(allylamine) hydrochloride (PAH, nominal Mn=70,000 g/mol) and a 

silica nanoparticle dispersion.  One solution of PAH was prepared to a concentration of 10 mM 

(on a repeat-unit basis) by carefully weighing out 0.4685 g of granular PAH chips and adding 

them to 500 mL of ultra-pure de-ionized water (>18.2MΩ, Millipore Milli-Q).  The PAH was 

dissolved using a magnetic stirrer.  The resulting pH of the PAH solution was acidic, and was 

reduced further to a pH of 4.00 by titrating with 1 M aqueous hydrochloric acid.  A second 

solution of 10 mM PAH was prepared by adding 0.4685 g of PAH to 500 mL of de-ionized 

water.  The solution was titrated to pH 7.50 using 1 M aqueous sodium hydroxide.  A 10 mM 

solution of SPS was prepared by weighing out 2.062 g of SPS powder and adding to 500 mL de-

ionized water.  The SPS solution was titrated to pH 4.00 by using 1 M aqueous hydrochloric 

acid.  Lastly, a silica nanoparticle dispersion was prepared by first adding 0.1 M NaCl to pH 9.00 

buffer solution and then adding 0.03 wt.% of both 24 nm silica particles (Ludox TM-40) and 

50nm silica particles (Polysciences microspheres). 

   

2.3.  Application and Processing of Thin-film Coatings 
 Thin-film coatings were applied to nickel wires (99.98% pure, metals basis) and flat 

plates made of A286 stainless steel.  Prior to the coating process, substrates were aggressively 

cleaned by sonicating in acetone to remove any dirt, grease, or other materials that could 

interfere with adhesion of the thin-film coatings.  To ensure uniform adsorption and assembly of 

subsequent layers, five bilayers of PAH (pH 4.00)/SPS (pH 4.00) were deposited on the nickel 

wire and stainless steel substrates using the layer-by-layer assembly process.  These five bilayers 

of PAH/SPS serve as an adhesion layer, assuring that subsequent layers deposited in the LbL 
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process adsorb uniformly and adhere properly.  The adhesion layer also ensures that aside from 

roughness, the coating will not be impacted by the substrate used.  The deposition process 

involved immersion into the 10 mM PAH solution (pH 4.00), followed by several rinses in ultra-

pure de-ionized water, and then immersion into the 10 mM SPS solution (pH 4.00), followed by 

several more rinses in de-ionized water.  The process was then repeated five times.  Figure 3 

illustrates the technique used to apply the adhesion sublayers for the thin-film coating, where the 

PAH (pH 4.00) serves as the cationic species, and the SPS (pH 4.00) serves as the anionic 

species. 

 To facilitate the coating process, a Zeiss HMS Programmable Slide Stainer, shown in 

Figure 4, was used to immerse the nickel and stainless steel substrates in the solutions and rinse 

baths.  The dipper enabled automation of the layer-by-layer assembly process so that the 

substrates did not have to be moved manually.  To deposit the adhesion layers and subsequent 

PAH/SiO2 bilayers, the automated dipper immersed the substrates in each solution for ten 

minutes, with immersion in three rinse baths between each coating.  During the application 

process, substrates were electrically isolated from dissimilar metals to avoid galvanic effects 

which could potentially interfere with the layer-by-layer assembly. 

 

 

 
Figure 3:  Layer-by-layer Process for Assembling Adhesion Sublayers and Subsequent PAH/SiO2 bilayers.   
For the five adhesion bilayers, PAH (pH 4.00) serves as the cationic species and SPS (pH 4.00) serves as the 
anionic species.  For subsequent bilayers, PAH (pH 7.50) serves as the cationic species and SiO2 (pH 9.00) 
serves as the anionic species.  Illustration courtesy of Erik Williamson.  
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Figure 4:  Zeiss HMS Programmable Slide Stainer.  The dipper allowed automation of the coating process, 
which was especially helpful since application of 5 adhesion bilayers + 40 PAH/SiO2 bilayers takes over 24 
hours.  The substrates, attached to a mechanical arm, were immersed into the black bins which contained the 
prepared solutions and rinse water. 
 

 
 

2.3.1. Hydrophilic Coatings 

 Hydrophilic coatings were prepared on nickel wires and stainless steel plates by first 

applying the five PAH (pH 4.00)/SPS (pH 4.00) adhesion bilayers described above.  Following 

application of the adhesion bilayers and three hours of drying in air, the substrates were 

immersed in the other PAH solution (pH 7.50), followed by three rinses in de-ionized water, and 

then immersed in the colloidal dispersion of SiO2 nanoparticles (pH 9.00), followed by three 

more rinses.  For these bilayers, the PAH (pH 7.50) acts as the cationic species, and the silica 

nanoparticles act as the anionic species.  Immersion in the PAH (7.50) and SiO2 baths was 

repeated until the desired number of bilayers was deposited on the substrates.  After the layer-by-

layer assembly process was complete, the substrates were allowed to dry overnight.  Between ten 

and forty bilayers of PAH/SiO2 were deposited on the nickel wires and stainless steel plates, 

depending on the desired coating thickness.  Figure 5 illustrates the resulting components of the 

hydrophilic coating. 
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Figure 5:  Sketch of a Hydrophilic Thin-Film Coating Applied to Nickel Wires and Stainless Steel Plates.  The 
adhesion layer is made up of PAH (pH 4.00) indicated in green, and SPS (pH 4.00), indicated in blue.  The 
body layers consist of PAH (pH=7.00), indicated by red, and silica nanoparticles (50 nm + 20 nm).  Note that 
the size of the layers is not to scale. 
  

  

 The hydrophilic coatings applied to nickel wires and stainless steel plates withstood 

regular handling, and in the case of the wires, substantial bending and flexing.  Following regular 

handling and testing, SEM imaging indicated that coatings remained intact and uniformly 

adhered to the substrate (see section 3.3.4).  However, the coatings could be removed by wiping 

with ethanol or by rubbing the surfaces aggressively.  Although the adhesion and durability of 

the hydrophilic coatings was adequate for conducting pool boiling tests, their use in industrial 

applications could be precluded without additional treatments for improving their adhesion and 

integrity.   

 

2.3.2. Superhydrophilic Coatings 

 Superhydrophilic coatings were prepared in the exact same manner as described for the 

hydrophilic coatings in section 2.3.1, with one additional treatment.  After drying overnight, the 

nickel wires and stainless steel plates with hydrophilic coatings were calcinated at 550 ºC for 

four hours in a furnace, making the surfaces superhydrophilic.  It should be noted that 

superhydrophilicity is typically defined as a water droplet having a contact angle of 5º or less 

within 0.5 seconds of contacting the surface [14].  To simplify discussion of the results, the 

definition here will be loosened to include surfaces with water droplet contact angles less than 

15º after 0.5 seconds and virtually zero degree contact angle after several seconds.   

 30 



 The calcination removes the polymeric components from the coating, leaving behind only 

a SiO2 nanoparticle matrix.  Figure 6 illustrates the resulting components of the superhydrophilic 

coating.  The calcination also serves to increase the coating’s durability, effectively sintering the 

nanoparticles to each other and the substrate.  What remains is a mechanically durable coating 

with good adhesion, which, according to Cebeci, survives aggressive rubbing and easily passes a 

standard scotch tape peel test on glass substrates [14].  The superhydrophilic coatings are also 

expected to have nearly the same thickness as hydrophilic coatings with an equivalent number of 

PAH/SiO2 bilayers, since the adhesion sublayers and PAH monolayers have negligible thickness 

compared to the nanoparticle monolayers [15]. 

 

 

 
Figure 6:  Sketch of a Superhydrophilic Thin-film Coating Applied to Nickel Wires and Stainless Steel Plates.  
The superhydrophilic coating is a hydrophilic coating that has been calcinated at 550 ºC, removing the 
polymeric components, including the adhesion sublayers.  
 

 

     

2.3.3. Hydrophobic Coatings 

 Hydrophobic coatings were prepared on nickel wires and stainless steel plates in the 

exact same manner as described for the Superhydrophilic coatings in section 2.3.2, with one 

more additional treatment.  After applying the PAH/SPS adhesion sublayers, the PAH/SiO2 

bilayers, and calcinating at 550 ºC, the nickel and stainless steel samples were treated with 

1H,1H,2H,2H-perfluorodecyltriethoxysilane (fluorosilane, Alfa-Aesar) via chemical vapor 

deposition (CVD).  For the chemical vapor deposition process, nickel wires and stainless steel 

plates with calcinated PAH/SiO2 coatings were placed in a poly-tetrafluoroethylene (PTFE) 
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container with an open vial of fluorosilane.  A PTFE container was used to ensure that no 

moisture would remain after adequate drying, since moisture can interfere with the CVD process.  

The PTFE container was closed and placed in a 140 ºC oven for 30 minutes.  Fluorosilane has a 

nominal boiling point between 103 ºC and 106 ºC [18], so placement in the oven vaporized the 

fluorosilane, allowing it to deposit on the calcinated coating.  After standing overnight, the 

resulting coating exhibited hydrophobicity.  Figure 7 illustrates the components of the 

hydrophobic coating.  Although the other organic components and SiO2 particles in the coating 

deposit uniformly in monolayers, the fluorosilane may deposit in multiple layers since the 

process is not controlled by surface charge.  However, the overall thickness of the fluorosilane 

layer(s) is still expected to be negligible when compared to the SiO2 nanoparticle layers. 

 

 

 

 

 
Figure 7:  Sketch of a Hydrophobic Coating on Nickel Wires and Stainless Steel Plates.  The coating is 
identical in constituency and texture to the superhydrophilic coating, except that molecules of fluorosilane 
have been deposited on the top layer of particles using chemical vapor deposition. 
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3. WIRE BOILING EXPERIMENTS IN WATER 

3.1.  Experimental Apparatus 
 The boiling heat transfer coefficient and critical heat flux were measured for bare nickel 

wires and coated nickel wires in pure de-ionized water at atmospheric pressure.  Figure 8 depicts 

the pre-existing experimental apparatus used to conduct pool boiling experiments with the nickel 

wires.  The experimental apparatus and technique for obtaining boiling curves were loosely 

based on that established by Nukiyama in 1934 for attaining pool boiling curves in water [19], 

though modern power sources and data collection equipment make the tasks of control and 

acquisition significantly simpler and more accurate.  The pool boiling apparatus consisted of an 

inner test bath surrounded an outer isothermal bath.  The isothermal bath was filled with tap 

water and kept at saturation using an electric preheater.  The facility was constructed primarily of 

polycarbonate to aid in the visualization of the pool boiling experiments.  However, the 

polycarbonate effectively insulated the inner test bath, so several modifications were made to the 

existing facility, including changing the bottom wall of the inner bath to aluminum to decrease 

the duration required for heat up.  Nickel wires were attached to the copper leads using tin-lead 

solder. 

 

 
Figure 8:  Schematic of the Wire Boiling Facility.  Tests were conducted by resistively heating bare or coated 
nickel wires in de-ionized water at atmospheric pressure.  Original boiling  facility constructed by Tim Lucas, 
with modifications made by the author. 
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Considering that surface chemistry can dramatically alter wettability, and in turn, affect 

boiling heat transfer, corrosion and oxidation of boiling surfaces cannot be ignored.  Surface 

oxidation, or aging, has been shown to increase the wettability of de-ionized water on many 

metal surfaces [20], and oxidation has even been used as a technique to enhance the critical heat 

flux on copper surfaces [21].  Corrosion effects may either increase or decrease nucleate boiling 

heat transfer, depending on the original surface material [22].  Nukiyama recognized that 

electrolysis effects caused significant variations in his experimental results [19].  Stralen and 

Sluyter even advocated using AC current for wire pool boiling tests to alleviate fouling due to 

electrolysis [23], despite the added difficulties in measurement and control over the use of DC 

current.  Therefore, to obtain unadulterated boiling curves, corrosion and electrolysis should be 

minimized in the boiling system.  Even when using de-ionized water, corrosion is difficult to 

avoid.  Carbon dioxide gas from the air dissolves in the water and forms carbonic acid, which 

disassociates to increase the hydronium ion concentration, making the water slightly acidic and 

promoting corrosion.  Additionally, application of an external potential effectively creates an 

electrolytic cell, which may cause corrosion reactions which are nominally non-spontaneous.  

High voltages may also increase corrosion reaction rates.  Several steps were taken to reduce the 

impact of electrochemical corrosion and associated effects in the pool boiling experiments.  The 

copper leads were insulated with PTFE tubing to mitigate electrochemical effects, similar to 

Nukiyama covering his electrical leads with glass to reduce electrolysis [19].  Pure nickel wire 

was chosen for the boiling surface because pure nickel displays very good corrosion resistance in 

a variety of environments, even at moderately high temperatures [24, 25, 26].  Additionally, by 

grounding the positive leg of the power supply, the potential of the nickel wire was kept below 

earth ground, further reducing the likelihood for oxidation at the wire surface [27]. 

 For the boiling experiments, the wire was heated resistively using a Sorensen SRL DC 

power supply.  While the electric preheater brought the isothermal bath and test fluid up to 

saturation temperature, the wire surface was degassed by operating at low heat fluxes.  An 

Agilent Technologies 34980A Data Acquisition System measured the voltage drop across the 

wire, along with the voltage drop across a shunt resistor to determine the current passing through 

the wire.  The heat flux through the wire was calculated by: 
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 The temperature of the nickel wire was calculated using the temperature coefficient of 

resistance method, where the change in electrical resistance of the wire was correlated to the 

temperature change of the wire using: 

 

]1)[()( 0 TTRTR Δ+= α  (2) 

 

In addition to its corrosion resistance, nickel was chosen for its high sensitivity in electrical 

resistivity over the temperature range of interest (i.e. large temperature coefficient of resistance), 

as is the case for most pure metals when compared to metal alloys.  The linearized temperature 

coefficient of resistance, α, for the nickel was determined to be 0.0053 ± 0.0006 K-1 over the 

temperature range of interest, which is outlined in section 3.1.1.   

 Boiling tests were conducted by increasing the power in steps until CHF was reached.  At 

CHF, the nickel wire typically became red hot and subsequently failed.  At each power step, the 

heat flux and wire resistance were recorded for the purpose of plotting boiling curves and 

calculating the effective heat transfer coefficient.  The effective heat transfer coefficient at the 

wire surface is given by Newton’s Law of Cooling: 

 

)( satweff TThq −=′′  (3) 

 

 Measurement uncertainty was determined using stated uncertainty values for the 

thermocouples and data acquisition system published by the manufacturers.  Using the method of 

error propagation [28], measurement uncertainty was evaluated for all calculated quantities.  If 

some calculated quantity, f, is function of one or more independent measured variables, x1, x2, 

x3,…xn (i.e., f = f(x1, x2, x3,…xn)), and each measured variable has associated uncertainty σxi, then 

the uncertainty of the calculated quantity will be: 
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Table 2 lists experimental error for parameters which were measured directly.  Uncertainty for 

all other quantities could be propagated using these uncertainties.  The experimental uncertainty 

for all wire tests in water was typically 2.2% or less for the heat flux, 11% or less for the wall 

superheat, and 12% or less for the heat transfer coefficient.  Uncertainty in the wall superheat 

and heat transfer coefficient was primarily due to the uncertainty associated with the linearized 

temperature coefficient of resistance for the nickel wire (see section 3.1.1). 

 A Biot-type analysis reveals that one may approximate the surface temperature of the 

wire as equal to the average radial temperature due to the small diameter and high thermal 

conductivity of nickel.  The Biot number for the nickel wire under boiling conditions is 

expressed by: 

 

Ni

ceff

k
Lh

Bi =  (5) 

 

 

 

 
Table 2:  Experimental Uncertainties for Various Quantities   
Measured Quantity Measurement Error 
Voltage [% of reading (V) + range error (V)] ± [0.005% + 4x10-6]  V 
Shunt Resistance ± 4x10-5 Ω 
Wire Diameter ± 2.54 µm 
Wire Length ± 0.2 cm 
Fluid Temperature [TC + DAQ reading] ± [1.1 ºC + 1.0 ºC] 
  
Calculated Quantities  
Heat Flux ≤ ±2.2% 
Wall Superheat ≤ ±11%  
Heat Transfer Coefficient ≤ ±12% 
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Pure nickel has a thermal conductivity of 90.7 W/m-K at 27 ºC [29], and the characteristic length 

for the 0.01” (0.0254 cm) wire is 4// DAVL sc == = 6.35x10-5 m, where V is the volume of the 

wire and As is the surface area.  Taking a bounding value of the effective boiling heat transfer 

coefficient as 180,000 W/m2-K, one calculates that the maximum Biot number attained by the 

wire under boiling conditions will be Bi=0.126.  For situations where , the lumped 

capacitance model is appropriate [

1.0~≤Bi

30].  Therefore, since heff=180,000 W/m2-K is an upper 

bounding value, it is appropriate to assume that radial temperature gradients in the nickel wire 

are negligible.  That is to say, the measured average temperature of the wire may be 

approximated as equal to the average surface temperature. 

  

3.1.1. Determination of the Temperature Coefficient of Resistance for Nickel 

 The temperature coefficient of resistance of the nickel wire (99.98% pure, metals basis), 

was first determined using tabulated values in the literature, and then verified by actual 

measurements.  Using tabulated values of electrical resistivity between 100 ºC and 200 ºC [31], 

the average temperature coefficient of resistance over that range was determined to be 0.005340 

K-1.  Experiments were also carried out to verify the value of α, in which a temperature 

controlled hot plate raised the temperature of a bath of water from room temperature up to 100 

ºC.  The nickel wire was immersed in the water, and a very small current was passed through it 

such that the resistance of the wire could be measured without heating the wire appreciably.  A 

type K thermocouple measured the temperature of the bath to determine the temperature change 

associated with the resistance change of the wire.  Although an autoclave or a fluid with a higher 

saturation temperature than water could have been used to obtain resistance values above 100 ºC, 

neither was readily available at the time.  As such, the temperature coefficient of resistance was 

simply extrapolated for temperatures beyond 100 ºC, which is reasonable considering that the 

temperature coefficient of resistance remains relatively constant for small temperature changes.  

Figure 9 shows the measured resistance values of the wire between 50 ºC and 100 ºC.  Figure 10 

shows R/R0 plotted against T-T0, with a fit using least squares linear regression.  The slope of the 

line represents the temperature coefficient of resistance, as seen in the following relation: 
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The resistance change with temperature is very linear, yielding an average temperature 

coefficient of resistance of 0.005349 ± 0.0006 K-1 up to 100 ºC.  The uncertainty in the slope 

accounts for both the uncertainty in temperature and resistance measurements, and was 

determined using the method outlined by Coleman and Steele [32].  Using values reported in the 

literature and experimental measurements, the temperature coefficient of resistance for the nickel 

wire was approximated as 0.0053 K-1 in all saturated water boiling tests. 

 

 

 

 
Figure 9:  Electrical Resistance versus Temperature Data for a 0.01” Nickel Wire (99.98% pure, metals 
basis). 
 

 38 



 
Figure 10:  Least Squares Linear Regression to Compute the Average Temperature Coefficient of Resistance 
Between 50 ºC and 100 ºC.  The dashed red lines indicate the uncertainty on the slope (temperature 
coefficient) associated with uncertainty from the resistance and temperature measurements.   The coefficient 
of determination, R2=0.9993, indicates the linear model is appropriate for the data. 
 

      

3.2.  Results of Wire Boiling Experiments 
 Pool boiling data were obtained for untreated nickel wires, hydrophilic wires with 40-

bilayers, superhydrophilic wires with 10, 20, and 40-bilayers, and hydrophobic wires with 20-

bilayers.  Typically, three boiling tests were conducted for each case to ensure repeatability of 

the results.  Although rare, the results of some tests appeared unusual, and were labeled as 

suspect.  In one particular test of an untreated wire, the wire appeared visibly oxidized prior to 

CHF, and experienced CHF at a value higher than expected for a bare, clean nickel wire.  In one 

case of suspected premature failure of the wire, CHF occurred at the soldered connection.  In one 

other suspected case of premature failure for a coated wire, failure occurred on a portion of the 
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wire that appeared to be uncoated.  To confirm suspected outliers, Peirce’s criterion was applied 

to the CHF data [33, 34].  The following deviation ratio was calculated for each boiling test 

within a set: 

 

CHF

CHFCHF
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qq
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σ
ζ

′′−′′
=  

(7) 

 

If the quantity ζi were greater than the maximum allowable deviation, ζ*, the test was labeled as 

an outlier and removed.  In a set of three nominally identical CHF measurements with one value 

suspect, the maximum allowable deviation ratio, ζ*, is 1.196 (the derivation of this value is found 

in Reference [33]).  Nearly all boiling tests passed Peirce’s criterion, with the exception of the 

aforementioned tests, which failed.  In the event that a test failed Peirce’s criterion, an additional 

boiling test was conducted for the set.  In some situations, scheduled tests were canceled prior to 

reaching CHF due to noticeable defects in the wire or coating.    

 One should note that the statistical dispersion of a set of nominally identical CHF 

measurements, represented by the standard deviation, is perhaps a better measurement of the 

uncertainty in CHF rather than the measurement error associated with the heat flux, even when 

one accounts for the heat flux step size (~50 kW/m2 for wire tests in water).  Reporting the 

stochastic uncertainty is most appropriate because departure from nucleate boiling is a local 

phenomenon [35, 36], whereas the measured heat flux in the experiment is the average across 

the entire wire, not the local heat flux.  Additionally, local parameters on the wire and 

electrochemical effects on the boiling surface, which affect CHF, are difficult to control, thereby 

introducing additional random errors into the CHF measurement. 

 To validate the experimental apparatus and approximate the accuracy of the results, CHF 

values for bare, untreated wires were compared to CHF predictions from theory and those in the 

literature for similar experiments.  Lienhard’s adaptation of the hydrodynamic instability theory 

for application to finite bodies [37] is generally useful for predicting the peak pool boiling heat 

flux on various surface geometries.  However, the “small horizontal cylinder” prediction only 

applies for dimensionless lengths 0.15≤R*<1.2.  The non-dimensional radius for the wire heater 

can be calculated from: 
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where r is the wire diameter and the critical bubble radius, rc, can be calculated using: 
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For saturated water at atmospheric pressure, one finds the critical bubble radius to be 

Rc=2.50x10-3 m.  For the 0.01” (0.0254 cm) wire, the non-dimensional radius is R*=0.0507.  

Therefore, Lienhard’s “small horizontal cylinder” prediction for the peak pool boiling heat flux 

is not applicable to the 0.01” nickel wire.  Sun and Lienhard report that the data for the peak heat 

flux begin to deviate from the prediction for R*<0.15, due to the dominance of surface tension 

forces [38].  Bakhru and Lienhard write that when the radius of a wire becomes sufficiently 

small, hydrodynamic transitions disappear and the boiling curve becomes monotonic, with the 

natural convection regime proceeding directly to the film boiling regime and nucleate boiling 

vanishing [39].  Bakrhu and Lienhard claim that in the range of 0.01<R*<0.15, a transition 

regime is present, but the traditional hydrodynamic regimes are not yet fully established.  

However, the boiling curves and photographic evidence obtained in this study indicate that that 

this is not the case for nickel wire, as clear demarcations between the natural convection, isolated 

bubbles, and fully developed nucleate boiling regimes exist in de-ionized water at atmospheric 

pressure.   

 The study by Bakhru and Lienhard heavily relies on the use of platinum wires, ignoring 

the importance of the adhesion force determined by the unique liquid-surface combination.  Even 

Nikuyama’s original study on pool boiling heat transfer demonstrates that for small wires of the 

same diameter, the wire material can heavily influence the peak heat flux.  In the case of 

Nukiyama’s study, Nukiyama finds the peak heat flux for nickel wires to be 40% greater than 

that for platinum wires in saturated water at 1 atm, both with dimensionless radius R*=0.0279 

[19].  Hong and You indicate that the lower limit on R* for the “hydrodynamic mechanism” is 

fluid dependent, extending down to R*=0.0140 for well-wetting fluids [40], but do not account 
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for the unique surface-fluid combination.  Hong and You proposed the following CHF 

correlation for cylinders in the range 0.0140<R*<0.6: 
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       (10) 

 

where  is the Zuber prediction of CHF for an infinite flat plate, which will be discussed 

in section 

ZuberCHFq ,′′

4.3.1.  However, this correlation strongly relies on Hong and You’s data obtained for 

well-wetting fluids on platinum wires, and does not appear to agree with the trend of empirical 

data of peak heat flux gathered by Sun and Lienhard for 0.01<R*<0.15 shown in Figure 11. 

 

 

 
Figure 11:  Peak Boiling Heat Flux from Horizontal Cylinders.  Note that for R*<0.15, the Lienhard 
prediction for small horizontal cylinders deviates significantly from empirical data.  Hong and You’s 
prediction attempts to address this region, but still tends to over-predict other empirical results.  Source:  Ref. 
[39], reproduced with permission of Elsevier, © 1972. 
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Although there does not appear to be an appropriate correlation for predicting CHF in the case of 

this study with R*, the empirical data in Figure 11 indicates that the CHF for R*=0.0507 should 

fall between about 0.7  and 1.5ZuberCHFq ,′′ ZuberCHFq ,′′ , which equates to a CHF value between 776 

kW/m2 and 1660 kW/m2.    From the results in section 3.2.1, the average CHF for the untreated, 

bare nickel wire in de-ionized water falls in this range. 

 Boiling data were reduced and analyzed using a routine written in MATLAB.  

The MATLAB routine computed wall superheats for each data point, and computed the 

experimental uncertainty of all values using error propagation.  The MATLAB routine also 

reduced hundreds of data points at each heat flux step to a single data point using a simple 

moving average.  Values at each heat flux step were calculated by taking the arithmetic average 

of neighboring individual measurements to smooth small variations, while step increases, 

indicating a new heat flux level, were detected using pre-existing input criteria for the routine.  

Figure 12 summarizes relative effects of hydrophilic, superhydrophilic, and hydrophobic 

PAH/SiO2 nanoparticle thin-films on boiling curves.  Note that the boiling curve for the 

hydrophilic test case closely resembles that of the bare wire, except that it is shifted somewhat to 

the right and CHF is enhanced considerably.  For the hydrophobic wire, the shape of the boiling 

curve resembles that of the bare wire and hydrophilic wire, except that it is shifted to the left.  

The substantial reduction in the wall superheat for the hydrophobic wire signifies appreciable 

enhancement in the nucleate boiling heat transfer coefficient.  Additionally, CHF is still 

enhanced for the nickel wire with hydrophobic treatment over the bare wire test case.  As seen in 

Figure 12, the most unusual behavior is exhibited by the wire with the superhydrophilic coating, 

where the wire temperature increases dramatically until falling at high heat fluxes.  This behavior 

will be discussed further in section 4.2.   

 Table 3 summarizes average CHF values for all nickel wire boiling test cases.  Note that 

CHF enhancement was observed for all nickel wires with thin-film coatings, regardless of the 

final treatment.  The maximum average CHF value of 101% was observed for the nickel wires 

that were coated with 40-bilayers of PAH/SiO2 and calcinated.  
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Figure 12: Typical Boiling Curves in Pure Water for 0.01” Diameter Bare Nickel Wire (squares), Wire 
Coated with 40 Bilayers of PAH/SiO2, (circles), Wire Coated with 40 Bilayers PAH/SiO2 and Calcinated 
(inverted triangles), and Wire Coated with 20 Bilayers PAH/SiO2 and Calcinated with Fluorosilane 
Treatment (triangles).  All wires were boiled in pure de-ionized water. 
 
 
Table 3:  Summary of CHF Values for 0.01” Nickel Wire Boiling Tests.  Average enhancement for coated 
wires over untreated wires is also provided. 

Test Case Average CHF
CHF 

Std. Dev.† 
CHF 90% 

Conf. Interval‡ 
CHF 

Enhancement 
Bare Wire 
 

   862 kW/m2       7.4% [787 kW/m2, 
936 kW/m2] 

          - 

40 bilayers PAH/SiO2 
 

  1583 kW/m2       4.5% [1462 kW/m2, 
1704 kW/m2] 

        84% 

20 bilayers PAH/SiO2, 
calcinated, fluorosilane 

  1458 kW/m2       21% [933 kW/m2, 
1983 kW/m2] 

        69% 

10 bilayers PAH/SiO2, 
calcinated 

  1241 kW/m2       6.4% [1108 kW/m2, 
1374 kW/m2] 

        44% 

20 bilayers PAH/SiO2, 
calcinated 

  1402 kW/m2       9.5% [1234 kW/m2, 
1682 kW/m2] 

        63% 

40 bilayers PAH/SiO2, 
calcinated 

  1735 kW/m2       1.6% [1687 kW/m2, 
1783 kW/m2] 

      101% 

†Standard deviation (% of average) over three nominally identical tests (four tests for the bare wire case). 
‡Calculated from the t-distribution. 
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Although the superhydrophilic wires displayed the greatest enhancement in CHF, they 

suffered substantial degradation in the heat transfer coefficient.  Figure 13 shows typical results 

for the effective heat transfer coefficient plotted against heat flux for nickel wire coated with the 

PAH/SiO2 thin-films.  Nickel wires with the non-calcinated, hydrophilic coating showed little 

change in the heat transfer coefficient at a given heat flux when compared with the base case.  

The wires with the hydrophobic treatment showed on average 127% enhancement in heff over the 

untreated surfaces at their respective critical heat fluxes.  Clearly, the hydrophobic coating 

demonstrates the optimum performance enhancement when one accounts for both the nucleate 

boiling heat transfer coefficient and CHF.  Detailed results for all test cases are provided in 

sections 3.2.1 through 3.2.4. 

 

 

 

 

 
Figure 13:  Typical Values of the Heat Transfer Coefficient versus Heat Flux in Pure Water for Uncoated and 
Coated Nickel Wires Boiled in Pure Water. 
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3.2.1. Untreated Nickel Wire 

 Untreated, bare nickel wires were tested in saturated de-ionized water at atmospheric 

pressure to establish a base case and determine relative changes in wall superheat and CHF 

achieved with application of the thin-film coatings.  Nickel wires were tested with the as-

received surface condition, with no sanding or other mechanical treatments.  Prior to the tests, 

the wires were cleaned aggressively by sonicating in acetone and then rinsing in de-ionized 

water.  This cleaning process removed any potential dirt, grease, or other contaminants that could 

adversely affect the boiling tests.  Figure 14 shows plots of the four boiling tests used to establish 

a baseline measurement, with an average CHF of all tests being 862 ± 63.5 kW/m2.  At CHF, a 

hot spot developed at a random location on the wire, with the wire subsequently failing at that 

point.  In the following plots of boiling curves, the peak heat flux plotted for each test represents 

the critical heat flux for that test.  Figure 15 shows the effective heat transfer coefficient plotted 

against the heat flux for the bare wire tests.  From the figure, one can see that the spread of 

values for the tests fall within the experimental uncertainty on the heat transfer coefficient 

(±12%). 

 
Figure 14:  Boiling Curves in Pure Water for the Bare 0.01” Nickel Wires.  These four boiling tests 
established the base case from which relative enhancement was determined for CHF and the boiling heat 
transfer coefficient in subsequent tests.    
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Figure 15:  Effective Heat Transfer Coefficient Plotted Against Heat Flux for the Bare 0.01” Nickel Wire 
Boiling Tests.  Error bars represent the experimental uncertainty in the heat transfer coefficient and heat 
flux.  Note that the spread of heff values falls within the experimental uncertainty.  
   

 

3.2.2. Nickel Wire Treated with a Hydrophilic SiO2/PAH Thin-Film  

Coating 

 Nickel wires coated with hydrophilic thin-films (see section 2.3.1) were tested in 

saturated de-ionized water at atmospheric pressure.  All hydrophilic wires that were tested had 

40-bilayers of PAH/SiO2.  Figure 16, which also provides a bare wire boiling test for reference, 

shows that CHF is enhanced considerably for the wires with the hydrophilic coatings, while the 

wall superheat increased only slightly.  The average CHF for the hydrophilic wires was 1583 ± 

72.0 kW/m2.  Figure 17 shows photographs of boiling from the hydrophilic wire and bare wire at 

comparable heat fluxes.  Qualitatively, the nucleation site density in boiling from the hydrophilic 

wire appears comparable to that of the bare wire.  Figure 18 indicates that for a given heat flux, 

the effective heat transfer coefficient for the hydrophilic wires is only slightly degraded relative 

to the bare wire. 
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Figure 16:  Boiling Curves in Pure Water for 0.01” Nickel Wires Coated with 40-Bilayers PAH/SiO2.  A 
boiling curve for a bare nickel wire is shown for reference.  The number in parentheses is the test identifier. 
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Bare Wire 
 

 
q″=500 kW/m2 

 

Hydrophilic Wire  
(40-Bilayers PAH/SiO2) 

 
q″=500 kW/m2 

 

 
q″=800 kW/m2 

 
q″=800 kW/m2 

 

 
q″=1600 kW/m2 

Figure 17:  Boiling from a Bare Wire (Left side) and a Hydrophilic Wire Coated with 40-Bilayers PAH/SiO2 
(Right side). 
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Figure 18:  Effective Heat Transfer Coefficient Plotted Against Heat Flux for 0.01” Nickel Wires Coated with 
40-Bilayers PAH/SiO2.  Results for a bare nickel wire are shown for reference. Error bars have been omitted 
for clarity. 
 
 
 

3.2.3. Nickel Wire Treated with a Superhydrophilic SiO2/PAH Thin-film Coating 

 Nickel wires coated with superhydrophilic thin-films (see section 2.3.2) were tested in 

saturated de-ionized water at atmospheric pressure.  Superhydrophilic wires with three different 

coating thicknesses were tested: 10-bilayers, 20-bilayers, and 40 bilayers of PAH/SiO2, in order 

to gauge the effect of the coating thickness on nucleate boiling heat transfer and CHF.  Figure 19 

shows the boiling curves for the 10-bilayer case, Figure 20 shows boiling curves for the 20-

bilayer case, and Figure 21 shows boiling curves for the 40-bilayer case.  The average CHF was 

1241 ± 79.1 kW/m2 for 10-bilayers of PAH/SiO2, 1402 ± 133 kW/m2 for 20-bilayers, and 1735 ± 

28.2 kW/m2 for 40-bilayers.  There appears to be a clear trend in CHF with coating thickness for 

the superhydrophilic thin-films.  Figure 22 shows that the CHF increases linearly between 10 and 

40-bilayers with coating thickness.  In all superhydrophilic test cases, the wall superheat is much 

greater than that for the bare wire cases at low heat fluxes, only falling at high heat fluxes.  
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However, there appears to be no clear trend between wall superheat and coating thickness.  

Figure 23 shows this observation, indicating that there is significant scatter in the effective heat 

transfer coefficient between all superhydrophilic wire tests, regardless of coating thickness. 

 

 

 

 

 
Figure 19:  Boiling Curves in Pure Water for 0.01” Nickel Wires Coated with 10-Bilayers PAH/SiO2 and 
Calcinated.  A boiling curve for a bare nickel wire is included for reference. 
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Figure 20:  Boiling Curves in Pure Water for 0.01” Nickel Wires Coated with 20-Bilayers PAH/SiO2 and 
Calcinated.  A boiling curve for a bare nickel wire is included for reference.  Note that for test 8B, power was 
lost mid-test after boiling incipience, and the data collection was re-started from 0 kW/m2.   This likely 
resulted in flooding of vapor cavities on the second attempt, shifting the curve to the left (see section 4.2).   
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Figure 21:  Boiling Curves in Pure Water for 0.01” Nickel Wires Coated with 40-Bilayers PAH/SiO2 and 
Calcinated.  A boiling curve for a bare nickel wire is included for reference. 

 

 

 

 
Figure 22:  Average CHF Enhancement versus Coating Thickness for Calcinated PAH/SiO2 Coated Nickel 
Wires.  Error bars indicate the standard deviation in CHF for three nominally identical tests.   
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Figure 23:  Effective Heat Transfer Coefficient versus Heat Flux for All Superhydrophilic Wire Tests.  There 
does not appear to be a clear correlation between coating thickness and nucleate boiling heat transfer 
coefficient, though the heat transfer coefficient does recover at higher heat fluxes. 

 

 

 It was hypothesized that the reversal of the boiling curves at high heat fluxes for the 

superhydrophilic wires was a result of vapor entrapment in nucleation cavities, thereby reducing 

the superheat required for nucleation (see section 4.2 for more details).  To test this hypothesis, 

several boiling tests were conducted using 0.01” nickel wires with superhydrophilic coatings in 

which the heat flux was cycled below CHF.  Figure 24 shows the results of one such test for a 

nickel wire coated with 20-bilayers PAH/SiO2 and calcinated (test 21B).  Figure 25 shows a 

similar test for a nickel wire coated with 40-bilayers PAH/SiO2 and calcinated (test 29B).  A 

hysteresis effect clearly exists with the superhydrophilic coatings, and does not appear to depend 

on coating thickness.  Visualization of boiling from the superhydrophilic wire helps corroborate 

the high wall superheats and hysteresis observed in the boiling curves.  In Figure 26, one can see 

that even at a high heat flux of q″=500 kW/m2, the nucleation site density is surprisingly low on 

the superhydrophilic wire, with only a few active sites.  The nucleation site density remains low 
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compared to the bare wire, up to the point where the reversal in the boiling curve is observed.  In 

the ramp down and second ramp up of the heat flux, the photographs show a higher nucleation 

site density compared to the initial ramp up in heat flux. 

 

 
Figure 24:  Boiling Test Results for 0.01” Nickel Wire Coated with 20-Bilayers PAH/SiO2 and Calcinated 
(22B).  The heat flux was cycled three times, demonstrating a hysteresis in the boiling curve likely resulting 
from vapor entrapment in initially fully-flooded cavities.  Note that the heat flux was kept below CHF. 

 

 

 
Figure 25:  Boiling Test Results for 0.01” Nickel Wire Coated with 40-Bilayers PAH/SiO2 and Calcinated 
(29B).  The heat flux was cycled three times below CHF.  As in the 20-bilayer case, a hysteresis effect was 
observed, with no apparent influence from coating thickness. 
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(20-Bilayers PAH/SiO2) 
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Superhydrophilic Wire 
(20-Bilayers PAH/SiO2) 

q″ Ramp Down (2) 
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Superhydrophilic Wire 
(20-Bilayers PAH/SiO2) 
Second q″ Ramp Up (3) 
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Figure 26:  Boiling from a Bare Wire (Left side) and a Superhydrophilic Wire Coated with 20-Bilayers 
PAH/SiO2 and Calcinated (Three columns on the right).  Photographs for the superhydrophilic case are from 
test 22B (see Figure 24 for the boiling curve), in which the heat flux was cycled below CHF.  Clearly, a 
hysteresis exists, due to a higher nucleation site density during subsequent heat flux cycles. 
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3.2.4. Nickel Wire Treated with a Hydrophobic SiO2/PAH + Fluorosilane Thin- 

Film Coating 

 Nickel wires coated with hydrophobic thin-films (see section 2.3.3) were tested in 

saturated de-ionized water at atmospheric pressure.  All hydrophobic wires that were tested had 

20-bilayers of PAH/SiO2.  Figure 27 shows boiling curves for the three hydrophobic wires tested.  

As seen in Figure 27, the incipience of boiling occurs at a lower heat flux and wall superheat 

than for the bare wire tests.  Additionally, CHF is enhanced in all three tests over the bare wire 

case.  However, the scatter in the CHF values for the three nominally identical tests is somewhat 

larger than for the other tests cases, possibly due to the lack of control in the application of the 

top layer of fluorosilane.  Interestingly, the average CHF value for the nickel wires with 20-

bilayers PAH/SiO2, calcinated and treated with hydrophobizing fluorosilane was 1458 ± 311 

kW/m2, within 4% of the average CHF value for the nickel wires with 20-bilayers PAH/SiO2 and 

calcinated.  Figure 28 shows that boiling incipience occurs at a much lower heat flux than for the 

bare wire, and that the nucleation site density remains higher than that of the bare wire at all heat 

fluxes.  Figure 29 shows that the effective heat transfer coefficient for the hydrophobic wires is 

significantly higher than that for the bare wires at all heat fluxes, as expected from the higher 

nucleation site densities. 
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Figure 27:  Boiling Curves for 0.01” Nickel Wire Coated with 20-Bilayers PAH/SiO2, Calcinated, and Treated 
with Fluorosilane.  A bare wire boiling curve is shown for reference.  Compared to other boiling cases, the 
hydrophobic wires had the most scatter in CHF.  The lack of control in the fluorosilane deposition process 
may have led to the scatter.   
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Bare Wire 
 

q″=150 kW/m2 
 

Hydrophobic Wire 
(20-Bilayers PAH/SiO2, Calcinated, Fluorosilane) 

 
q″=150 kW/m2 

 

q″=500 kW/m2 
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q″=1400 kW/m2 

Figure 28:  Boiling from a Bare Wire (Left side) and a Hydrophobic Wire Coated with 20-Bilayers of 
Calcinated PAH/SiO2 and Treated with Fluorosilane (Right side). 
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Figure 29:  Effective Heat Transfer Coefficient Plotted Against Heat Flux for Boiling from the Hydrophobic 
Wires.  The results for a bare nickel wire are plotted for reference.  
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3.3.   Characterization of Thin-film Coatings 
3.3.1. Particle Size Characterization Using Quasi-Elastic Light Scattering 

 The primary component of the nanoparticle thin-film coatings investigated in this study 

was the SiO2 nanoparticles, deposited onto the substrate in the layer-by-layer process from a 

colloidal dispersion.  The silica was the majority constituent, by weight, in all varieties of the 

PAH/SiO2 thin-films investigated, and the silica nanoparticles were essentially the sole 

contributor to overall film thickness.  In order to characterize the size of these silica 

nanoparticles, quasi-elastic light scattering, commonly referred to as dynamic light scattering 

(DLS), was used to measure the SiO2 particle size distribution in suspension, i.e., prior to 

deposition on the substrate.  DLS is a useful technique for sizing suspended particles in a 

dispersive medium because the measurement can be taken quickly and directly.  DLS can also be 

used for agglomeration and settling rates of dispersed particles. 

 Particles that are much smaller than the wavelength of an incident photon scatter light 

according to Rayleigh theory.  In Rayleigh scattering, the intensity of the scattered light varies by 

the sixth power of the particle diameter, and follows the relation below: 
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Particles greater than 50 nm cannot be considered small compared to the wavelength of visible 

light [41], and these particles may absorb some light.  Mie theory is more appropriate for 

describing scattering of light from particles on the same order of size as the wavelength of the 

light.  If a particle were stationary in a dispersive medium, one would expect the observed 

intensity of light scattered from the particle to follow Rayleigh or Mie theory, depending on the 

size of the particle.  However, Brownian motion results in random movement of the dispersed 

particle, causing the intensity to fluctuate with time.  The diffusion coefficient of a particle may 

be related to the particle’s hydrodynamic diameter by: 
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Particle size measurement by DLS exploits the fact that larger particles diffuse in a medium 

more slowly than smaller particles, resulting in the period of the intensity fluctuation depending 

on the particle size.  Polydisperse systems are more difficult to characterize, but an 

autocorrelation function for a polydisperse system may be considered an integral of exponentials.  

Software provides various methods for solving the autocorrelation function, and oftentimes it is 

up to the discretion of the user to determine the best method for their particular situation. 

 The DLS setup used to measure the silica particles in dispersion consisted of a Lexel 95 

Argon Laser (514.5 nm, or green light), a sample holder with constant temperature bath, and a 

detector with photomultiplier tube on a goniometer.  Brookhaven Instruments software processed 

the data to provide particle size distributions and mean diameters.  Figure 30 shows the DLS 

setup used for the measurements.  A laser is best suited for DLS measurements since the light is 

monochromatic and the intensity is very stable with time.  For the DLS measurements, the 

detector was kept at a fixed 90º angle relative to the incident laser light.  Figure 31 shows the 

results for DLS measurements of the SiO2 colloidal dispersion used in the layer-by-layer 

assembly process.  From two nominally identical runs, the SiO2 number-weighted mean particle 

diameter was determined to be 48.6 nm.  Polysciences lists the diameter of their SiO2 

nanoparticles as 50 nm [42], whereas the reported diameter of the TM-40 SiO2 nanoparticles is 

20 nm [43].  Since the prepared silica dispersion contained equal weight concentrations of both 

particles, one would expect the mean diameter to be slightly less.  However, some loose 

agglomeration of the TM-40 particles may have occurred in the dispersed phase.  Additionally, it 

is important to realize that DLS measurements assume perfectly spherical particles, whereas the 

TM-40 particles may not have been perfectly spherical.  As it is an indirect measurement of 

particle size, DLS is only capable of providing the effective hydrodynamic diameter, i.e., the 

diameter of a spherical particle with the same diffusion coefficient.  Lastly, the mean diameter in 

polydisperse systems is more difficult to assess using DLS, especially when the size range is 

large (due to intensity scattering as ~d6), and often leads to greater measurement error.  

Nonetheless, the silica particles appear to be small (~<50 nm) and well-dispersed. 
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Figure 30:  Dynamic Light Scattering Setup.  The setup consists of an argon laser (514.5 nm) which shines 
monochromatic light onto a sample in the sample holder.  The scattered light then passes through a pinhole at 
an angle of 90º relative to the incident light, where it then enters a photomultiplier tube and the detector. 
 

 

 

Figure 31:  Size Distribution for 0.01wt% Polysciences Microspheres + 0.01wt% Ludox TM-40 in pH 9.0 
Buffer.  Results reported using the Exponential Sampling (EXPSAM) algorithm for deconvoluting the 
autocorrelation function.  Run 1 is on the left, run 2 is on the right, yielding an average mean particle 
diameter of 48.6 nm.  The plots show number density of particles versus diameter, with the diameter axis on a 
logarithmic scale.  G(d) is the probability distribution function, and C(d) is the cumulative distribution 
function. 
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3.3.2. Surface Roughness Using Confocal Microscopy 

 Confocal microscopy provided measurements of the surface roughness value for stainless 

steel plates with PAH/SiO2 thin-film coatings. An Olympus LEXT OLS3000 Confocal Scanning 

Laser Microscope measured the surface roughness of bare and coated stainless steel plates.  For 

each test case, measurements were performed at two separate locations on the plate.  Figure 32 

and Figure 33 show mapped surface textures of a bare and coated stainless steel plate, 

respectively.  Table 4 summarizes the results of surface roughness measurements for the plates.  

The Ra value is simply the arithmetic average of the absolute deviation in height, |zi|, from the 

mean height over a given number of measurements.  The measured roughness factor, which will 

be discussed in detail later, is the ratio of the actual external surface area to the geometric 

(projected) surface area.  The roughness factor measured using this confocal technique does not 

account for additional surface area from porosity effects.  The measurements indicate that there 

is virtually no change in the microscale surface roughness with the application of the thin-films.  

This implies that the nanoparticle-based coatings fill micron-scale deformities in the stainless 

steel surface conformally, which is expected with the LbL deposition method. 

 

 

 
Table 4:  Ra Values for Flat Plates Coated with PAH/SiO2. Typical measurement uncertainty is ±0.1 µm. 

Case 
Ra  
(μm) 

Roughness 
Factor 

Bare Plate 
 

0.290 1.093 

40 bilayers PAH/SiO2 
 

0.261 1.077 

20 bilayers PAH/SiO2, 
calcinated, fluorosilane 

0.225 1.062 

10 bilayers PAH/SiO2,  
calcinated 

0.281 1.066 

20 bilayers PAH/SiO2, 
 calcinated 

0.222 1.057 

40 bilayers PAH/SiO2,  
calcinated 

0.268 1.062 
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Figure 32:  Surface Texture of a Bare Stainless Steel Plate Obtained Using Confocal Microscopy. 
 
 

 
Figure 33:  Surface Texture of a Stainless Steel Plate Coated with 40-Bilayers of PAH/SiO2.  On a micron 
scale, there is no visible change in the surface texture from that of the bare substrate. 
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3.3.3. Wettability Using Contact Angle Measurement 

 Contact angles for thin-film coatings on flat stainless steel plates are listed in Table 5.  A 

CAM 101 contact angle analyzer and optical measurement software (KSV Instruments) 

measured the static and dynamic contact angles of de-ionized water on bare and coated stainless 

steel plates, providing insight into the wettability change by applying the PAH/SiO2 thin-film 

coatings.  All measurements were taken at room temperature.  Contact angles are reported after 

0.480 seconds for the superhydrophilic cases, as the static contact angles were so small as to be 

immeasurable (less than 3º).  For the hydrophobic surfaces, static advancing (advanced) and 

static receding (receded) contact angles were measured using the technique outlined in Figure 34.  

Although it is possible to measure dynamic advancing and dynamic receding contact angles by 

rolling a droplet down a tilted surface, the measurement is not as straightforward, as these 

contact angles depend on the velocity.  Note that starting with the same calcinated PAH/SiO2 

coating, dramatically different contact angles can be achieved by altering the chemical 

constituency of the top surface. 

 

 

 

 
Figure 34:  Technique for Measuring Static Advancing Contact Angle (Left) and Static Receding Contact 
Angle (Right).  The static advancing and static receding contact angles are the apparent angles immediately 
prior to motion of the three-phase contact line.  Source:  Ref. [44], reproduced with permission of KSV 
Instruments, © 2009. 
 

 

  

 The static equilibrium contact angle is expected to be between the static receding contact 

angle and static advancing contact angle [45]: 
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AeqR θθθ <<  (13) 

This is observed for the measurements on the hydrophobic surface.  For the hydrophobic surface, 

an unusually large contact angle hysteresis was observed, with receding contact angles as low as 

19º.  The bare stainless steel surface exhibited some hysteresis in the contact angle (θA=90º, 

θR=50º), but no where near the magnitude observed for the hydrophobic surface.  Advanced and 

receded contact angles were not measured on hydrophilic and superhydrophilic surfaces, as the 

highly wettable surfaces wicked the water away from the syringe.  Nonetheless, the contact angle 

hysteresis on these surfaces is expected to be small, with receded contact angles of ~0º and 

advanced contact angles near 0º on superhydrophilic surfaces.  Tadmor provides an equation 

which can be used to relate the equilibrium, advancing, and receding angles [46].   Figure 35 

depicts the various contact angles, highlighting the stark differences in wettability that can be 

achieved with the PAH/SiO2 coatings. 

 Since contact angle depends on the chemical constituency of the coating and not the 

substrate, one would expect similar wetting properties for coatings on other substrates.  

However, since the coating is conformal, one should not neglect the roughness of the substrate, 

as it could have an effect on the contact angle.  Since expected contact angles for smooth nickel 

are similar to those for stainless steel, typically between 60º and 80º [47, 48], changes in contact 

angle for a smooth nickel surface coated with these thin-film coatings (i.e., as on the nickel wires 

used in boiling tests) should be similar to changes seen for stainless steel plates. 

 
Table 5:  Summary of Measured Contact Angles for Flat Stainless Steel Plates.  Typical measurement 
uncertainty is ±5º.   

Surface Static  
At 
t=480ms 

Clean surface    84º Not 
Measured 

40 bilayers PAH/SiO2    21º Not 
Measured 

10 bilayers PAH/SiO2, calcinated     <3º       11º 
20 bilayers PAH/SiO2, calcinated     <3º       12º 
40 bilayers PAH/SiO2, calcinated     <3º       11º 
20 bilayers PAH/SiO2, calcinated fluorosilane    141º Not 

Measured 
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(a) 
 

 
θ=84º 

 

(b) 
 

 
θ=21º 

(c) 

 
θ=141º 

(d) 

 
θ=11º 

(t = 480ms) 

(e) 
 

 
θ=12º 

(t = 480ms) 

(f) 
 

 
θ=11º 

(t = 480ms)  
(g)   
 

     
θ=162º 

(h) 
 

θ=19º 

 

Figure 35:  Static Contact Angles of Water on Stainless Steel Plates for (a) clean surface, (b) surface coated 
with 40 bilayers of PAH/SiO2, and (c) surface coated with 20 bilayers of PAH/SiO2, calcinated, and treated 
with fluorosilane.  Contact angles after 480 ms on plates with calcinated PAH/SiO2 for (d) 10 bilayers, (e) 20 
bilayers, and (f) 40 bilayers.  Advanced (g) and receded (h) contact angles for surface coated with 20 bilayers 
of PAH/SiO2, calcinated, and treated with fluorosilane.  
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3.3.4. Coating Thickness and Porosity Using SEM 

 Images were obtained for nickel wires coated with PAH/SiO2 thin-films using a 

FEI/Philips XL30 FEG Environmental Scanning Electron Microscope.  SEM images show 

qualitatively that the coatings are smooth and homogenous on a micron-scale.  Estimates of 

coating thickness can also be obtained from these images.  As seen in Figure 36, SEM images 

reveal that 10-bilayer PAH/SiO2 coatings are of the order of 300 nm thick, 20-bilayer coatings 

are of the order of 600 nm thick, and 40-bilayer coatings are of the order of 1 μm thick.  

Therefore, coating thickness is nearly proportional to the number of bilayers.  These data 

correspond closely to data previously collected for multilayers of the same composition 

deposited on glass substrates.  On glass, the per-bilayer thickness was 28 nm, constant up to at 

least 40 bilayers [15].  28 nm per bilayer appears to be a reasonable value for the PAH/SiO2 

coatings investigated in this study based off DLS measurements of particle size, considering that 

nanoparticle layers are likely to intermesh. 
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           (a)   
(b) 

 

(c) 

 
 

(d) 

 
 

(e) 

 

Nickel Wire 

Coated Surface 

Coating 

Coated Surface 

Nickel Wire 

Nickel Wire 
Coated Surface Nickel Wire 

Coating 

Figure 36:  SEM Images of 0.01” Nickel Wires Coated with PAH/SiO2 Thin-films.  Wires were clipped and 
then oriented diametrically to view the coating thickness.   (a) Nickel wire coated with 40-bilayers PAH/SiO2, 
(b) Nickel wire coated with 10-bilayers PAH/SiO2 and calcinated, (c) Nickel wire coated with 40-bilayers 
PAH/SiO2 and calcinated, (d) & (e) Nickel wire coated with 20-bilayers of PAH/SiO2 and calcinated.  Note 
that in some cases, the coating did not cut cleanly (e.g. image (d)), making estimates of coating thickness more 
difficult.  
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 Unfortunately, the XL30 was not capable of obtaining high resolution images on length 

scales under a few microns for the coated surfaces.  A Supra 55VP Field Emission Scanning 

Electron Microscope was used to investigate the nanoscale surface texture.  As seen in Figure 37, 

the coating is nanoporous, with cavity sizes on the order of 100 nm or less.  In Figure 37, one can 

clearly distinguish between the larger Polysciences 50 nm silica microspheres, and the smaller 20 

nm TM-40 silica particles.  Although the DLS data indicates that these smaller 20 nm particles 

were not present, they may have formed loose agglomerates in suspension, thereby effecting a 

larger measured diameter by the DLS. 

 

 

  

 
Figure 37:  Highly magnified View of a 20-bilayer PAH/SiO2 Calcinated Coating on a Stainless Steel 
Substrate.  Note that the coating is very porous at the nanoscopic level, with both large spherical SiO2 
particles (~50 nm) and smaller SiO2 particles (~20 nm) being constituents of the film.  Image taken by Dr. 
Hyung Dae Kim. 
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3.3.5. Coating Thickness and Porosity Using Ellipsometry 

 Ellipsometry is a powerful optical technique that is widely used for the characterization 

of SiO2 thin-films in the microelectronics industry [49].  Ellipsometric techniques are used to 

measure various properties of thin-films, including refractive index, thickness, and porosity.  

Common ellipsometric setups use an incident beam of polarized light at a fixed angle, which 

then reflects off the surface of interest into a detector at a fixed angle.  The change in 

polarization of the reflected light can then be used to determine properties of the thin-film.  

Ellipsometric techniques are designed for differential analysis, i.e., one needs to measure the 

change in polarization from a clean, bare surface to establish a baseline measurement.  Using the 

established baseline, one may then measure the change in polarization obtained from application 

of a thin-film of nanoparticles. 

 Measurements of film thickness and porosity were attempted for PAH/SiO2 thin-films on 

stainless steel plates using ellipsometric techniques.  Unfortunately, the reflectivity on these 

surfaces was so low that an appreciable signal could not be obtained at the detector (leading to an 

unacceptably high signal-to-noise ratio), despite varying source and detector angles.  It was 

suspected that the reflection off the matte surface was too diffuse for this type of measurement, 

which is not surprising since typical substrates for thin-films analyzed with ellipsometry are 

glass slides or silicon wafers.  Although some film thickness data were obtained for the stainless 

steel substrates, uncertainty values were on the order of the measurement itself, and thus the 

results were discarded.  For future measurements, the author suggests that the metal surface be 

finely polished prior to application of the thin-films, in order to increase the reflectivity.  

Ellipsometry results from prior studies of similar coatings on glass substrates are useful in 

estimating coating thickness and porosity for PAH/SiO2 thin-films on nickel wires and stainless 

steel plates used in this study. Bravo et al. observe linear growth of PAH/SiO2 (50 nm+20 nm 

particles) films up to 40-bilayers, indicating a per bilayers thickness of 28 nm, with the 

calcination process causing a negligible change in the overall coating thickness [15].  The per 

bilayers thickness measured by Bravo implies that the 10-bilayer coatings investigated in this 

study will be 280 nm thick, 20-bilayer coatings will be 560 nm thick, and 40-bilayer coatings 

will be 1.12 µm thick.  These thicknesses agree well with the rough estimates attained using 

SEM.  Lee et al. measure porosity values of ε=0.42 for thin-films consisting of alternating 

bilayers of 16 nm/8 nm SiO2 particles, ε=0.49 for thin-films consisting of alternating bilayers of 
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16 nm/24 nm SiO2 particles, and ε=0.453 for calcined thin-films consisting of 7 nm TiO2/22 nm 

SiO2 particles [11,13].  Note that these films were prepared using similar techniques as the films 

in this study, and were prepared in the same laboratory; thus their porosity measurements are 

representative of expected porosity values.  

 If one assumes that we have dense random packing [50] of hard, spherical SiO2 particles, 

it is possible to predict the porosity of the PAH/SiO2 thin-films applied to nickel and stainless 

steel substrates in this study.  From the SEM micrograph shown in Figure 37, the particles appear 

to be essentially spherical.  Additionally, we will assume the particles adsorbed onto the surface 

constitute a bimodal distribution of 20 nm and 50 nm SiO2 particles.  Lastly, we will assume that 

the volume fraction of each particle type (50 nm and 20 nm) absorbed onto the surface is 

equivalent, since the dispersed aqueous volume fraction is equivalent.  Using results of 

simulations from Bezrukov et al. for packing of bimodal distributions of hard spheres of 

appropriate size ratio [51], one predicts that the porosity for dense random packing of 50 nm + 

20 nm SiO2 particles will be ε ≈ 0.39.  One must consider that in Bezrukov’s model, gravity is 

the packing force, whereas in our case it is an electrostatic interaction.  Nonetheless, even though 

this porosity prediction for the calcined PAH/SiO2 coatings used in this study is highly 

approximated, is seems to be reasonable when compared to measured porosity data for other 

nanoparticle thin-films.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 73



4. THEORETICAL ASPECTS OF THE EFFECT OF THIN-FILM 
COATING ON NUCLEATE BOILING HEAT TRANSFER AND 
CRITICAL HEAT FLUX 
4.1.   Review of Effects of Surface Structure and Chemical Constituency on  

  Wettability 
 

 
Figure 38:  Two-Dimensional Representation of the Interfacial Forces Acting On a Sessile Drop.  Here γ=σ, 
the surface tension (or liquid-vapor interfacial tension).  Source:  Ref. [46], reproduced with permission of the 
American Chemical Society, © 2004. 
 

 Previous work on boiling heat transfer of nanofluids by Kim et al. [3] has shown that 

porous deposits of nanoparticles on boiling surfaces lead to a substantial increase in the surface 

wettability, as measured by the contact angle of water on the surface.  Figure 35 shows that a 

wide range of contact angles can be achieved with the nanoparticle thin-film coatings tested in 

this study.  Figure 38 illustrates the forces acting at the triple contact line of a sessile drop on a 

flat surface.  From a force balance, the intrinsic contact angle may be determined using Young’s 

equation: 

 

σ
γγθ slsv

I
−

=cos  (14) 

 

Here (γsv-γs) represents the adhesion tension for the liquid/solid combination, and σ is the surface 

tension of the liquid.  However, if a surface is not perfectly flat, one must account for the surface 

roughness, as described by Wenzel [52], in order to determine the apparent contact angle: 

 

Ir θθ coscos =  (15) 

 

 74 



Here r is the roughness factor, which Wenzel defined as the total surface area divided by the 

projected area.  Note that, in the absence of line tension, the local contact angle on a rough 

surface will be exactly equal to the intrinsic contact angle for that material. 

 For very porous materials, the r term should be modified to account for effects of 

porosity.  Interconnected pores beneath the external surface increase the effective wetted area, 

thereby increasing the apparent wetting through wicking.  Lee corroborates this, explaining that 

for very porous materials, the r  term becomes very large, implying that the surface will have an 

apparent contact angle of ~0º if the intrinsic contact angle is less than 90º, or ~180º if the 

intrinsic contact angle is higher than 90º [11].  This happens to be the case for the calcinated 

PAH/SiO2 coatings.  Although the higher adhesion tension associated with silica certainly 

improves wettability over the bare metal substrates, it is the nanoporous nature of the coatings 

that leads to the superhydrophilicity and wettability.  As a comparison, 22º static equilibrium 

contact angles in air have been reported for de-ionized water on ultra-smooth (0.3 nm roughness) 

amorphous silica surfaces [53].  Cebeci et al. [14] attribute the superhydrophilicity of the 

PAH/SiO2 multilayers to the 3D nanoporous network of controlled thickness and the resulting 

nanowicking of water into that network.  They also note that there is a minimum critical film 

thickness needed to obtain the super wetting behavior, likely due to a critical volume capacity.  

 For the non-calcinated PAH/SiO2 coatings, the contact angle is reduced relative to the 

bare metal, but not to the same extent as with the calcinated coatings.  This can be attributed to 

the presence of PAH in the multilayers, which is slightly hydrophobic in nature.  Therefore, 

removal of the PAH during calcinations increases the hydrophilicity of the coating.  Nonetheless, 

significant improvement in wettability is still observed (θ=84º to θ=21º) due to the effect of the 

silica even if the PAH is not burned out.  Following calcination, a contact angle of about 10º is 

observed 480 ms after droplet contact, with nearly perfect wetting after several seconds.   

 The hydrophobic surface is perhaps the most fascinating, as the hydrophobic behavior is 

achieved from the superhydrophilic coating through only slight changes in surface chemistry.  As 

discussed, wettability is controlled by both the surface energy (the adhesion tension) and the 

geometry or texture of the surface (the r term in equation (15)).  The hydrophobic coating, while 

maintaining the same geometry and surface texture as the superhydrophilic coating, experiences 

a substantial change in wettability by changing the surface adhesion tension through application 

of the fluorosilane.  The wetting behavior of the hydrophobic surface is also characterized by a 
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large contact angle hysteresis, with an advancing angle around 160º and a receding angle around 

20º.  Note that despite the hydrophobic chemical constituency, the wetting of water on the 

hydrophobic coating remains in the Wenzel state, in which water fills the nano- and micro-

cavities on the surface.  Were the coating in the Cassie-Baxter state, water droplets would sit 

completely above the surface over air pockets, thereby leading to a low contact angle hysteresis 

and roll-off characteristics, which are not observed.  For the hydrophobic coatings investigated in 

this study, the nanostructure, combined with the chemical vapor deposition of fluorosilane, leads 

to the high static advancing contact angles and large contact angle hysteresis. 

 Since bubble nucleation and CHF are dynamic processes, dynamic advancing and 

receding contact angles are more appropriate in relating wettability to the boiling processes.  

Bernardin et al. describe the distinct differences between dynamic and static angles [54].  

Unfortunately, measurement of the dynamic advancing and dynamic receding contact angles is 

not as straightforward as static measurements, and depend on the velocity of the three point line.  

Regardless, advanced and receded contact angles provide useful information regarding 

wettability, and can be closely correlated to the dynamic advancing and dynamic receding 

contact angles.  Although temperature effects may also influence contact angle and wettability, 

and should be considered, experimental results by Bernardin and Mudawar showed that the 

contact angle for water on aluminum between room temperature and saturation at atmospheric 

pressure [54].   

   

4.2.   Wettability and Bubble Nucleation 
 As seen in Figure 12, for a given heat flux, the hydrophobic surface has the greatest 

enhancement in the nucleate boiling heat transfer coefficient, up to about 100%, whereas the 

hydrophilic surface suffers a slight degradation, ~10%, compared to the base case.  The 

superhydrophilic surface, however, shows substantial degradation of about 50% in the heat 

transfer coefficient, only recovering at very high heat fluxes. 

 Research in the field of boiling heat transfer indicates that entrapped gas (vapor or air) in 

surface cavities leads to the initial nucleation process [55].  Therefore, cavities that are not 

completely flooded by liquid water can promote bubble nucleation at lower wall superheats.  

Young and Hummel obtained higher nucleate boiling heat transfer by adding PTFE to localized 

regions of a boiling surface, resulting in better nucleation [56].  Enhancement in boiling heat 
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transfer from the PAH/SiO2 multilayers with hydrophobizing treatment can be explained in a 

similar manner.  The surface structure and chemical constituency of the calcinated PAH/SiO2 

multilayers with vapor-deposited fluorosilane result in a surface with a high advancing and static 

contact angle  This implies that cavities on the surface will not be flooded, but rather, filled with 

air and vapor.  This in turn leads to preferential nucleation from these cavities at lower wall 

superheats, explaining the considerable enhancement in the nucleate boiling heat transfer 

coefficient. 

 On an idealized boiling surface, the degree to which a cavity will be flooded depends on 

the groove angle, 2γ, and the contact angle of the liquid with the side of the cavity.  The situation 

can be treated as a liquid front advancing over the cavity, and therefore, the relevant parameters 

for initial entrapment of gas in the cavity will be the dynamic advancing contact angle [57, 58, 

59].  Although this model is overly simplified for our complex coatings, it is useful in estimating 

relative entrapment of gas on our different surfaces.  Therefore, the higher advancing contact 

angle, the higher the initial radius of the nucleus.  Upon incipience, we can imagine the 

microcavity dynamics involving the recession of a liquid meniscus, and here the receding contact 

angle will be relevant.  Nonetheless, the advancing contact angle is important for enhancing the 

nucleate boiling heat transfer coefficient as initial entrapment of vapor will substantially reduce 

the initial activation temperature resulting in a higher nucleation site density leading to lower 

wall superheats, as demonstrated by the results. 

  For wires coated with the hydrophilic and superhydrophilic surfaces, one may infer that 

cavities are more likely to be flooded when compared to the wires with the hydrophobic coating.  

Additionally, cavities that do become active will require higher superheats to nucleate.  For 

example, Wang and Dhir predicted that surfaces with higher wettability will display poorer 

nucleate boiling heat transfer, whereas surfaces with reduced wettability will exhibit better 

nucleate boiling heat transfer, and provided a correlation to predict the nucleation site density as 

a function of contact angle at a fixed wall superheat [60]: 

 

0.62 )cos1()/( −−∝ ca DcmsitesN θ      (16) 

 

where is the active nucleation site density and  is the cavity diameter.   aN cD
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 Equation (16) predicts a higher nucleation site density and thus a higher heat transfer rate 

for higher contact angle, which is in agreement with observations, illustrated by photographs of 

boiling from the different surfaces.  However, one cannot predict the boiling heat transfer 

coefficient solely from the knowledge of the nucleation site density because parameters such as 

bubble diameter and bubble departure frequency, which affect nucleate boiling heat transfer, are 

also altered by application of the thin-film coatings but were not measured in our experiments.   

 The boiling behavior of nickel wire with the calcinated PAH/SiO2 multilayers, shown in 

Figure 12, is particularly unusual due to the reversal of the boiling curve at high heat fluxes.  

Figure 26 shows qualitatively that there are very few active nucleation sites at a heat flux of 500 

kW/m2.  However, at even higher heat fluxes, a significant number of nucleation sites appear, 

cooling the wire substantially, resulting in the reversing trend observed in the boiling curve.  

This late activation of nucleation sites results in high wall superheats for the wire.  The situation 

exhibited by the superhydrophilic wire is similar to that described by Carey for boiling 

experiments seeking to eliminate trapped gas in surface cavities.  Such experiments displayed 

very high superheats for the initiation of nucleation, but after nucleation was initiated, the 

superheat required to sustain bubble formation dropped to a lower value [55].  The superheat 

required for nucleation falls due to the refilling of cavities with vapor upon nucleation. 

 For the superhydrophilic wires, one may presume that the high wettability leads to the 

majority of cavities being flooded at the start of each test, since θA<2γ. This, in turn, requires 

higher wall superheats to initiate nucleation.  However, upon nucleation, vapor becomes 

entrapped in the cavities, lowering the required superheat.  The hysteresis tests shown in Figure 

24 and Figure 25 support this hypothesis.  

 

4.3.   Critical Heat Flux 
4.3.1. Review of Existing Theories 

 The exact mechanism and parameters affecting the boiling crisis, or CHF, remain unclear 

to this day.  For many years, the hydrodynamic instability theory, developed by Zuber [61], has 

been widely used to predict the departure from nucleate boiling or CHF.  The Kutateladze-Zuber 

correlation, developed by Kutateladze through dimensional analysis [62], and Zuber through his 

hydrodynamic instability analysis [61], is shown in simplified form below:  
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where K is a constant that only depends on the geometry of the system.  For an infinite flat plate, 

K=0.131.  The hydrodynamic theory has been scrutinized in recent years because it does not 

account for surface characteristics such as wettability.  Recent work by Kim et al. [3], among 

others, clearly revealed the effects of surface parameters on CHF.  The hydrodynamic instability 

theory fails to predict the enhancement associated with modified surfaces, such as those created 

by the boiling deposition of nanoparticles.  The CHF enhancement presented here for pool 

boiling of nickel wires coated with nanoparticle thin-films also demonstrates the limitation of 

this theory. 

 Two popular theories, which do include dependence on surface characteristics such as 

wettability, are the macrolayer dryout theory [63, 64] and the hot/dry spot theory [65].  For the 

macrolayer dryout theory, the dependence of CHF on surface wettability is tied to the thickness 

of a liquid macrolayer covering the surface between vapor bubbles.  The equivalent thickness of 

the macrolayer can be calculated by: 
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    (18) 

       

 

The equivalent thickness from equation (18) is directly proportional to the dryout time of the 

liquid macrolayer.  CHF occurs if the liquid macrolayer vaporizes completely.  As contact angle 

decreases, the equivalent liquid macrolayer thickness increases, so CHF will also increase 

proportionally.  The macrolayer dryout theory qualitatively captures the wettability effect on 

CHF for hydrophilic surfaces.   

 The hot/dry spot theory predicts that CHF will occur at a nucleation site when rewetting 

is unable to occur at a growing hot spot.  Therefore, increasing the surface wettability would 

allow for easier rewetting of hot spots, thereby delaying CHF.  Theofanous and Dinh [65] give 

the following expression for the critical heat flux based off the hot/dry spot theory: 
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Equation (19) is almost identical to the Zuber equation, except that the leading constant depends 

on surface characteristics such as wettability.  Kim et al. [3] derived the following analytical 

expression for κ: 
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Using Eqs. (19) and (20), one would also expect an increase in CHF with a reduction in contact 

angle.  However, equation (20) is only applicable for θ≤90º.   

 

4.3.2. Importance of the Dynamic Receding Contact Angle on CHF 

 A pool boiling CHF model proposed by Kandlikar involves a force balance of a quasi-

static bubble on a heated surface, where the force due to momentum change at the bubble 

interface is an important parameter in determining CHF [66].  Kandlikar formulated a prediction 

for CHF from this model, which can be applied to both hydrophilic and hydrophobic surfaces:   
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where β is the dynamic receding contact angle for the surface-fluid combination.  Figure 39 

illustrates Kandlikar’s model. 
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Figure 39:  Force Balance on a Vapor Bubble Growing in a Liquid Over a Heated Surface.  β is the dynamic 
receding contact angle, FM is the force on the bubble due to momentum change.  Source: Ref. [66], reproduced 
with permission of Elsevier, © 2002. 
 

    

 It is important to note that all wires coated with nanoparticle thin-films demonstrated 

CHF enhancement.  However, one incongruity arises from the results of this study when 

compared with the CHF predictions of the hot/dry spot theory and Kandlikar’s model, as shown 

in Table 6.  Varying the coating thickness yields significant differences in CHF enhancement, 

while the measured contact angles for these coatings were virtually identical.  Both the 

macrolayer dryout theory and the hot/dry spot theory predict a direct dependence based on 

surface contact angles.   

 For the calcinated, superhydrophilic coatings, the only variable of the 10-bilayer, 20-

bilayer and 40-bilayer cases is coating thickness.  This implies that the total pore volume 

increases linearly with increasing thickness.  Although the pore volume is closely tied to the 

surface wettability, test results clearly indicate that the thickness of the porous layer, in addition 

to the apparent contact angle, should be accounted for when evaluating parameters that affect 

CHF. 

 Although the CHF enhancement associated with the hydrophobic coating seems 

counterintuitive, one must recognize that the hydrophobic coating is characterized by a large 

contact angle hysteresis.  The hydrophobic coating has static and advanced contact angles of 

about 140º and 160º, respectively, but the static receding contact angle is only about 20º.  

Kandlikar explains that the dynamic receding contact angle is the parameter influencing the 

dryout phenomenon [66, 67].  The static receding contact angle can be closely correlated to the 

dynamic receding contact angle.  Therefore, for low receding contact angles, one would expect a 
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higher CHF, which is exhibited with the hydrophobic coating.  Therefore, the hydrophobic thin-

film coating appears to be the ideal surface treatment for augmenting heat transfer, i.e., offering a 

large advancing contact angle to enhance the nucleate boiling heat transfer coefficient, while 

possessing a small receding contact angle to enhance the CHF. 

 

 

 

 
Table 6:  Comparison of Measured and Predicted CHF Enhancements for Various Thin-Film Coatings.  
Contact angles measured on flat plates are extended to the wire CHF results.  In applying equation (21), 
receding contact angles for the hydrophilic and superhydrophilic cases were assumed equal to the 
equilibrium angle, which is reasonable given the low contact angle hysteresis. 

Test Case 
 

Measured 
CHF 

Enhancement

Predicted 
CHF 

Enhancement
Eq. (19) 

Predicted 
CHF 

Enhancement 
Eq. (21) 

10 bilayers PAH/SiO2, 
calcinated 

        44%       225%       117% 

20 bilayers PAH/SiO2, 
calcinated 

        63%       224%       116% 

40 bilayers PAH/SiO2, 
calcinated 

      101%       225%       117% 

40 bilayers PAH/SiO2 
 

        84%       114%       110% 

20 bilayers PAH/SiO2, 
calcinated, fluorosilane 

        69% --- 
 

     111% 
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SECTION II: 
NANOPARTICLE-BASED ENHANCEMENT OF POOL 

BOILING HEAT TRANSFER IN LOW GLOBAL WARMING 
POTENTIAL DIELECTRIC FLUIDS 
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5. BACKGROUND ON LOW GLOBAL WARMING POTENTIAL 

DIELECTRIC FLUIDS FOR ELECTRONICS COOLING 

5.1.   Two-phase Cooling of Electronic Devices 
 The cooling of microelectronics, power electronics, and other high power density devices 

poses a continuing challenge for thermal engineers.  Considering that the performance of 

electronic devices degrades rapidly with increasing temperature, it is crucial that proper thermal 

management techniques are integrated into the design of electronic systems.  Large multi-chip 

modules and power electronics can dissipate thousands of watts, and as packaging becomes 

smaller, this can equate to heat fluxes of 3 MW/m2 and higher at the die surface [68].  Such high 

heat fluxes necessitate large heat sinks to increase the surface area along with other thermal 

management techniques.  Air cooling is often insufficient to maintain proper operational 

temperatures in high power density devices such as insulated-gate bipolar junction transistors 

(IGBT’s), even when coupled with large conduction heat sinks and forced convection setups.  

Indirect cooling using water offers higher cooling capacities than air cooling alone, but still 

requires large heat exchangers and creates corrosion issues which could lead to failure of the 

electronic device.  Direct immersion cooling of electronic devices has been a popular alternative 

to air and indirect water cooling due to the much higher heat transfer coefficient without the need 

for large heat sinks attached to the electronic device. 

 Bergles [69], Chu [70], and others have long recognized the difficulties associated with 

the cooling of electronic devices.  The use of dielectric fluids to cool electronics, both directly 

and indirectly, has been researched since the late 1960’s [70].  More recently, there has been a 

re-emergent interest in electronics cooling using dielectric fluids due to development of 

advanced power electronics for the renewable energy field.  Photovoltaic cells, wind turbines, 

electric vehicles, and hybrid-electric vehicles all require high density power electronics for 

rectifying or otherwise converting electrical energy to other forms [71, 72].  Two-phase direct 

immersion cooling offers high heat transfer coefficients coupled with the size reduction of 

secondary heat exchangers or heat sinks.  Figure 40 shows one such application of two-phase 

immersion cooling, in which an IGBT die is immersed in a dielectric fluid.  The primary 

challenge of two-phase immersion cooling is finding a fluid with good dielectric properties, good 

thermophysical properties, low toxicity, low flammability, low environmental impact, long-term 

stability, and acceptable chemical compatibility with electronic materials.  The search for an 
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Figure 40:  Dual Side Immersion Cooling of an IGBT Die Soldered to a Copper Boiler in a Hydrofluoroether 
Working Fluid.  Reproduced with permission of Phil Tuma, 3M Electronics Markets Materials Division, 2008. 
 

acceptable fluid has often led to significant compromises in reducing environmental impact or in 

fluid performance. 

 Many chlorofluorocarbons (CFC’s) and hydrochlorofluorocarbons (HCFC’s) are suitable 

for power electronics cooling applications, but have a significant environmental impact, as they 

are ozone-depleting.  The 1987 Montreal Protocol enacted legislation essentially banning all 

CFC’s and requiring the phasing out of HCFC’s [73].  Hydrofluorocarbons (HFC’s) have 

replaced CFC’s and HCFC’s for nearly all refrigeration and air conditioning applications.  One 

such HFC, 1,1,1,2-tetrafluoroethane (R-134a), is now widely used in automotive air conditioning 

systems, and has been used for the indirect cooling of electronic devices.  Recent work at the 

National Transportation Research Center has also shown the potential for direct immersion 

cooling of power electronics for hybrid-electric vehicles using R-134a [74]. 

 Perfluorocarbons (PFC’s) have been widely used for the cooling of power electronics for 

over four decades.  They offer high dielectric strengths, low toxicity and adequate heat transfer 

properties.  Perfluorocarbons are currently used as heat transfer fluids for supercomputers, 

avionics, and many mission-critical military electronics.  Perfluorohexane (C6F14), one such 

fluorocarbon, is available commercially as FC-72.  Perfluorocarbons, along with HFC’s, are non-

ozone depleting, and are therefore excluded from the Montreal Protocol.  However, perfluoro-

carbons and hydrofluorocarbons are both greenhouse gases, and on a per mass basis, contribute 

significantly to global warming, as explained in the following section. 
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5.2.   Greenhouse Gases and the Kyoto Protocol 
 Greenhouse gases are those which have a net positive effect on radiative forcing.  

Radiative forcing is typically defined as the change in irradiance at the tropopause, the 

atmospheric boundary between the troposphere and the stratosphere [75].  Radiative forcing is 

the cause of the well-known greenhouse effect.  The infrared absorption and emission 

characteristics of a gas partially determine its significance as a greenhouse gas, along with other 

factors such as the atmospheric lifetime.  The global warming potential (GWP) is a means of 

expressing the cumulative contribution of a unit mass of gas to radiative forcing over a 

designated time period relative to some reference gas [76].  Carbon dioxide is almost always 

used as the reference gas, with a GWP of 1.  The global warming potential accounts for the net 

of direct and indirect contributions to global warming from a gas.  The atmospheric lifetime of a 

gas primarily depends on the rate at which the gas decomposes from photolyzation or oxidation 

in the troposphere or stratosphere [77].  Whereas most naturally occurring substances such as 

methane or ozone have atmospheric lifetimes on the order of several years or less, inert HFC’s 

and perfluorocarbons can have atmospheric lifetimes on the order of thousands of years. 

 The 1997 Kyoto Protocol set forth by the United Nations Framework Convention on 

Climate Change seeks to reduce greenhouse gas emissions worldwide.  Nearly all major 

contributors to greenhouse gas emissions have signed and ratified the Protocol, with the 

exception of the United States, which has not yet ratified it.  The Kyoto Protocol includes 

hydrofluorocarbons and perfluorocarbons, calling for reductions in their production and use [78]. 

 With the potential reduction in the future availability of HFC’s and perfluorocarbons, 

there has been considerable interest in low global warming potential coolants to replace 

perfluorocarbons and other more environmentally disruptive haloalkanes for the cooling of 

power electronics and other devices.  Hydrofluoroethers (HFE’s) are one potential alternative, 

offering relatively good dielectric properties with low global warming potentials.  Another 

alternative is a new fluorinated ketone, C2F5C(O)CF(CF3)2, sold commercially by the 3M 

Company as Novec 649 Engineered Fluid.  C2F5C(O)CF(CF3)2 is particularly attractive due to its 

high dielectric strength, similar thermophysical properties to those of perfluorohexane, and 

global warming potential of 1 over a 100 year timeframe [79].  Table 7 lists relevant properties 

of C2F5C(O)CF(CF3)2 and perfluorohexane [79]. 
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Table 7:  Relevant Properties of Novec 649 and FC-72 at 25 ºC. 
Source: Ref. [79], reproduced with permission of IEEE, © 2008.  

Molecular Formula C2F5C(O)CF(CF3)2 C6F14 
Fluid Type Fluoroketone Perfluorocarbon 
Trade Name (3MTM) NovecTM 649 Engineered 

Fluid 
FluorinertTM Electronic Liquid FC-72 

Normal Boiling Point (ºC) 49 56 
Freezing Point (ºC) <-100 <-100 
Critical Temperature (ºC) 169 178 
Critical Pressure (MPa) 1.87 1.83 
Closed Cup Flashpoint (ºC) None None 
Open Cup Flashpoint (ºC) None None 
Surface Tension (mN/m) 11.4 12.0 
Thermal Conductivity (W/m-K) 0.059 0.057 
Liquid Specific Heat (J/kg-K) 1103 1050 
Liquid Density (kg/m3) 1610 1680 
Kinematic Viscosity (cSt) 0.42 0.40 
Latent Heat (kJ/kg) 88 88 
Vapor Pressure at 25 ºC (kPa) 40.4 30.9 
Vapor Pressure at 100 ºC (kPa) 441 350 
Resistivity (GΩ-cm) 10,000 1,000,000 
Dielectric Constant 1.84 1.76 
Dielectric Strength  
(kV at 2.54 mm) 

~40 ~40 

Solubility of H2O in fluid (ppmw) 21 10 
Atmospheric Lifetime (years) 0.014 3200 
Global Warming Potential 
(100 year Integration Time Horizon) 

1 9300 

Ozone Depletion Potential 0 0 
 

 

 This portion of the study investigates the two-phase heat transfer performance of Novec 

649 Engineered.  Boiling properties of FC-72 are measured as a basis for comparison.  Results 

are also compared to those expected by theory.  Additionally, prospective enhancement 

techniques for improving the boiling heat transfer properties of C2F5C(O)CF(CF3)2 are 

investigated, focusing on nanoparticle-based enhancement using dilute dispersions of 

nanoparticles.  Boiling deposition of nanoparticles provides distinct advantages in electronics 

cooling over other methods (such as application of thin-film coatings via the LbL method), in 

that the application process can be performed in situ, and the particle dispersion provides a 

regenerative coating.  As such, methods are explored for dispersing metal and metal oxide 

nanoparticles in fluorinated fluids, with the end goal of depositing nanoparticles on heated 

surfaces via boiling deposition. 
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6. PREPARATION OF COLLOIDAL DISPERSIONS IN DIELECTRIC 

FLUIDS 

6.1.  Theoretical Aspects of Dispersing and Stabilizing Nanopowders in Liquids 
 The stability of a colloidal system relies on maintaining the small size of the dispersed 

particles such that Brownian motion of the fluid can keep the particles suspended.  Inter-particle 

forces have a significant impact on stability, resulting in agglomerates (loosely bound particles) 

or aggregates (tightly bound) which, when they become large enough, settle out of the fluid.  

Chemical agents can also decrease inter-particle stability, causing flocculation (sometimes used 

synonymously with agglomeration).  In a colloidal system, there are two primary competing 

mechanisms which affect particle stability: attractive dispersion forces between particles 

(commonly attributed to Van der Waals forces, or dipole-dipole attraction, which encompasses 

London Dispersion Forces) and repulsive forces between particles.  Repulsive forces between 

particles may be electrostatic or steric, or both.  A popular theory for describing the inter-particle 

forces between suspended particles, and therefore the stability of a colloidal system, is that 

developed independently by Derjaguin, Landau, Verwey, and Overbeek (DVLO Theory, see Ref. 

[80] for a detailed description of the theory).  However, DVLO theory was developed for 

aqueous media, and cannot be applied to nonpolar dispersions since the Debye length, necessary 

to describe DVLO theory, is undefined [81]. 

 Stabilization methods for colloidal dispersions may be placed in three general categories:  

electrostatic, steric, and electrosteric.  Electrostatic stabilization relies on the repulsions between 

like surface charges on the particles.  Electrostatic stabilization is popular for oxide particles 

(such as alumina, silica, zirconia, etc.) in aqueous media since the surface charge may be readily 

controlled by adjusting the pH.  The degree of stability depends on the zeta potential of the 

system, and as the isoelectric point (i.e., the pH at which the net electric charge of all particle 

surfaces is zero) of the aqueous system is approached, the particles will begin to rapidly 

agglomerate and settle.  Steric stabilization, commonly referred to as polymer stabilization, relies 

upon adsorption of a relatively long chain molecule onto the particle which prevents particle-

particle interaction.  When two particles coated with polymers interact, the adsorbed polymer 

layers overlap, resulting in repulsion due to osmotic pressure (i.e. a higher concentration of 

polymer in the overlap region) and what is referred to as “entropic repulsion.” [82].  Electrosteric 

methods rely on the adsorption of a charged molecule onto the dispersed particles, providing 
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both electrostatic repulsion and some physical barrier to agglomeration.  For example, citrate 

ions have been used to stabilize gold nanoparticles in water.   

 For this study, steric and electrosteric methods are applicable for dispersing and 

stabilizing particles in the fluorinated ketone.  A dispersant refers to the additive (usually a 

polymer) used to disperse and stabilize the particles.  Note that all dispersants are surface active 

agents (surfactants), but not all surfactants are dispersants.  Some surfactants may actually act as 

coagulants, decreasing stability of dispersions.  Three criteria are required to successfully 

disperse nanoparticles in a base fluid using the steric or electrosteric approach.  First, the surface 

active agent (surfactant) must be soluble in the base fluid.  Although this seems trivial, many 

surfactants are either insoluble or poorly soluble in fluorocarbons and similar fluids (like the 

fluorinated ketone), due to the non-polar nature of such fluids.  Second, the solvated surfactant 

must be capable of adsorbing onto the particle surface, and the strength of this adsorption is 

important, since shear forces can strip the surfactant from the particles.  Therefore, the type of 

particle that is being dispersed, in addition to the base fluid, influences the surfactant.  Lastly, the 

surfactant must be capable of preventing particle agglomeration.  This is primarily dominated by 

the thickness of the absorbed layer on the particle.  The minimum critical adsorbed polymer 

thickness, t0, required for each particle is: 

 

kT
dAt
48

121
0 =  (22) 

 

where d is the particle diameter, kT represents the particle’s kinetic energy, and the Hamaker 

constant, A121, depends on the particle-fluid combination [83].  Clearly both the fluid and 

particle type are important for determining the best dispersant for a given situation.  Nelson 

created tables offering a general approach to selecting a suitable class of surfactant for preparing 

a particular particle/fluid dispersion [84].  In the tables, Nelson distinguishes fluorinated liquids 

as its own class of fluid, and indicates that the optimum surfactant for this fluid type will depend 

on whether the dispersed particles are metals or metal oxides.  Using this general approach, 

fluorinated surfactants were chosen for further study as a dispersing agent for preparing colloidal 

dispersions in the fluorinated ketone. 
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6.2.   Colloidal Dispersions of Nanoparticles in a Fluorinated Ketone 
6.2.1.  SiO2 Nanoparticles 

 Dilute dispersions of SiO2 nanoparticles in C2F5C(O)CF(CF3)2 were prepared using a 

two-step method.  Commercially available silica nanopowder (15 nm particle size, Sigma 

Aldrich) was added to pure C2F5C(O)CF(CF3)2 (Novec 649, 3M Company) and sonicated using a 

probe sonicator (VibraCell VC-505, Sonics & Materials).  One should note that despite the 

manufacturer’s stated size of 15 nm, nanoparticles in the dry powder likely form much larger 

aggregates.  This is a primary disadvantage of two-step preparation methods, as it is difficult to 

break up tightly bound nanoparticles that have aggregated in dried form. 

 Even with aggressive sonication, the SiO2 particles quickly flocculated in the fluorinated 

ketone, and settled to the bottom of the liquid shortly thereafter.  Due to the inability to disperse 

the SiO2 particles, various surfactants were tested in varying concentrations to disperse and 

stabilize the particles.  Fluorinated surfactants were chosen due to the higher likelihood of 

solvation in fluorinated liquids.  Additionally, fluorinated surfactants have been used in the past 

to disperse particles in fluorinated liquids.  For example, magnetite particles have been 

successfully dispersed with a fluorinated surfactant in a fluorocarbon-type solvent [85].  After 

various trials, one particular fluorinated surfactant was chosen for use in preparing SiO2 

dispersions in the fluorinated ketone. 

 0.01% by volume and 0.001% by volume SiO2 particles were prepared in 

C2F5C(O)CF(CF3)2 using the aforementioned fluorinated surfactant.  600 mL quantities of the 

0.01vol% SiO2 in Novec 649 dispersions were prepared for boiling tests by adding small 

quantities of fluorinated surfactant to the pure fluid.  After sonicating to dissolve the surfactant, 

the SiO2 nanoparticles were added and sonicated.  Sonication was carried out with an ice bath 

surrounding the beaker to prevent overheating and evaporation of the fluid.  0.001vol% SiO2 

dispersions were prepared in a similar manner, except that the surfactant concentration was 

reduced.  Following sonication, the SiO2 appeared well-dispersed, with no visible signs of 

settling after several hours.  However, the majority of particles appeared to have settled after one 

day, though they could be re-dispersed easily by shaking.  SiO2 particles in Novec 649, with no 

surfactant, remained flocculated, even after agitation.  Figure 41 shows smaller samples (in 

which sonication times were reduced) of the dispersions shortly after preparation. 

 

 90 



 

 

 

 

 

 
Figure 41:  (Left) Pure Novec 649; (Middle) 0.01vol% SiO2 in Novec 649 with Fluorinated Surfactant ~1 hour 
after preparation (Middle); and (Right) 0.01vol% in Novec 649 w/o surfactant ~40 minutes after preparation.  
Note that the sample without the surfactant is heavily flocculated, whereas the sample with surfactant 
appears well-dispersed. 
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6.2.2. Aluminum Nanoparticles 

 Commercially available aluminum nanopowder (99.99% pure, NTbase #NP-A80) was 

dispersed in Novec 649 using the aforementioned probe sonicator.  According to the vendor, the 

aluminum nanoparticle size is between 45 nm and 55 nm [86], although as with the SiO2 

nanopowder, aggregation in the dry state is expected to increase the dispersed particle diameter.  

0.01vol% concentrations of aluminum were dispersed with a small amount of fluorinated 

surfactant and with no surfactant, using the same method as that described for the SiO2 particles 

in section 6.2.1.  However, extra caution was used in handling the aluminum nanopowder, as it 

can oxidize rapidly in air and is potentially flammable.  The aluminum particles appeared to 

disperse well in the fluorinated ketone.  The surfactant appeared to have minimal effect on the 

dispersion and stability of the aluminum particles.  Both 0.01vol% aluminum dispersions 

appeared initially stable, with some visible settling after one hour.  After one day, it appeared as 

though the majority of particles had settled to the bottom, though the fluid still had a grayish tint.  

Figure 42 shows small samples (with reduced sonication times) shortly after preparation.  It is 

not surprising that the surfactant had minimal effect because, as described in section 6.1, the 

optimal dispersant depends both on fluid type and particle type, and is typically different for 

metal oxides and metals in the same fluid. 
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Figure 42:  (Left) Pure Novec 649; (Middle) 0.01vol% Aluminum in Novec 649 with Fluorinated Surfactant 
~1 hour after preparation; and (Right) 0.01vol% Aluminum in Novec 649 w/o surfactant ~40 minutes after 
preparation.   Note that both samples appear relatively well-dispersed. 
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7. WIRE BOILING TESTS IN DIELECTRIC FLUIDS 
 Pool boiling data were obtained for 0.01” nickel wires in pure C2F5C(O)CF(CF3)2, pure 

FC-72, SiO2/C2F5C(O)CF(CF3)2 dispersions, and Al/C2F5C(O)CF(CF3)2 dispersions at saturation 

and atmospheric pressure.  Unlike for the boiling in water in Section I, the dimensionless radius, 

R*, in the Novec 649 and FC-72 was within the required limits for Lienhard’s CHF prediction 

for horizontal cylinders (see section 8.2), and the measured CHF data for the pure fluids agreed 

well with the predictions.  Additionally, the scatter in the CHF data for the pure fluids was 

surprisingly small, and can likely be attributed to the dielectric nature of the fluids tested.  That 

is, since the fluids have high dielectric strengths, electrolysis becomes a non-issue, thereby 

preserving the surface conditions to a better degree than boiling in water using DC resistive 

heating.  However, material compatibility issues with the fluids became a cause for concern, as 

deleterious interactions with plasticizers or other materials could affect the boiling curves.  

Therefore, every step was taken to ensure compatibility with materials in the boiling apparatus, 

as discussed in the following section. 

   

7.1.   Experimental Apparatus 
 A wire boiling facility separate from that used for the water tests was assembled due to 

materials concerns and fluid volume requirements.  The compatibility of C2F5C(O)CF(CF3)2 with 

polycarbonate has not been explored, so a glass vessel was used instead to hold the test fluids.  

Additionally, given the much higher expense of FC-72 and Novec 649 compared to de-ionized 

water, the boiling apparatus was downsized so that less fluid would be used in each test.  Figure 

43 shows a schematic of the boiling apparatus used for the boiling tests of the dielectric fluids.  

Instead of an isothermal bath, a temperature controlled hotplate was used to maintain the fluids at 

their saturation temperatures.  The power supply, data acquisition system, and other components, 

along with the measurement techniques, were the same as those described in section 3.1. 
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Figure 43:  Schematic of the Wire Boiling Setup Used for Boiling Tests of FC-72 and Novec 649. 
 
 
 
 Since the saturation temperatures of the dielectric fluids investigated in this portion of the 

study were, on average, 47 K lower than the saturation temperature of water, the temperature 

coefficient of resistance for nickel was recalculated in the interval of 25 ºC to 75 ºC.  A similar 

analysis was done for this temperature range as was performed in section 3.1.1, with a least 

squares linear regression being applied to the data and the uncertainty calculated in the slope.  

The new temperature coefficient of resistance was calculated as   α=0.005628 ± 0.0006 K-1, only 

0.0003 K-1 more that the temperature coefficient used for boiling in saturated water.  The Biot 

number was once again calculated for these tests, and using a bounding maximum value of 

25,000 W/m2-K for the heat transfer coefficient, determined to be Bi=0.018, which is less than 

0.1.  Therefore, the lumped capacitance model is highly appropriate for the radial temperature 

distribution in the boiling tests with dielectric fluids, and the surface temperature of the nickel 

wire may be assumed equal to the average radial temperature. 

 Since the wires used in the FC-72 and Novec 649 boiling experiments were shorter than 

those used in the water tests, there was a slightly larger fractional uncertainty in the length 

measurements.  This in turn led to typical measurement uncertainties of 3.7% or less for the heat 

flux, 12% or less for the wall superheat, and 13% or less for the heat transfer coefficient. 
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7.2.   Property Measurements of Pure C2F5C(O)CF(CF3)2 
 Various properties of the fluorinated ketone Novec 649 were measured at room 

temperature to predict boiling properties and compare against reported values from researchers at 

3M [79].  Table 8 summarizes measured properties of Novec 649 at room temperature.  Liquid 

density was measured using a 50 ± 0.05 mL flask and precision balance.  The kinematic viscosity 

of the liquid was measured using a glass tube capillary viscometer and stopwatch.  Surface 

tension was measured using the Wilhelmy Plate method with a Sigma 703 Tensiometer, and was 

validated by first measuring the surface tension of water, which at 23 ºC was measured as 72.3 

mN/m, with an expected value of 72.58 mN/m.  The thermal conductivity was measured using a 

KD2 Pro Thermal Properties Analyzer with the KS-1 sensor probe.  All measured values agreed 

well with those reported by 3M (see Table 7).  Although the stated uncertainty of the KD2 Pro 

with KS-1 in the 0.02-0.2 W/m-K range is 0.01 W/m-K [87], convection effects could have 

interfered with the measurement, artificially increasing the thermal conductivity value. 

 Contact angle was measured for the fluorinated ketone on aluminum and stainless steel 

plates.  Due to the low surface tension, the fluid was nearly perfectly wetting on both surfaces, 

making measurement of contact angles difficult.  Figure 44 shows contact angles captured 100 

ms after droplet contact with the surface.  From these contact angles, one may conclude that the 

fluorinated ketone is very well wetting, as expected from the low surface tension. 

 

 

 
Table 8:  Summary of Measured Properties of C2F5C(O)CF(CF3)2 at Room Temperature 

Property Apparatus Value 
Liquid Density 
(at 21º C) 

Volumetric Flask and Precision Balance 1607 ± 2 kg/m3 

Liquid Kinematic Viscosity 
 (at 21ºC) 

Capillary Viscometer 0.4243 ± 0.0048 cSt 

Surface Tension (at 23º C) Sigma 703 Tensiometer 11.47 ± 0.23 mN/m 
Liquid Thermal Conductivity  
(at 23º C) 

KD2 Pro Thermal Property Analyzer 0.092 ± 0.01 W/m-K
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(a) 

 
θ=12º 

(b) 

 
θ=18º 

Figure 44:  Contact Angles for Novec 649 100 ms After Droplet Contact on (a) smooth stainless steel and (b) 
smooth aluminum.  
 

 

 

7.3.   Results of Wire Boiling Experiments 
 For all boiling tests, nickel wires were tested in as-received surface condition, though 

they were thoroughly cleaned prior to each test.  The wires were cleaned by sonicating in 

acetone, rinsing with ethanol, and sitting to dry completely.  Tests were conducted by increasing 

the heat flux in small steps (~10 kW/m2) in order to observe the incipience of boiling.  Unlike in 

the water boiling tests, many wires survived CHF, allowing for acquisition of film boiling data 

and the minimum heat flux (MHF).  Some post-CHF data will be presented, but not covered in 

detail, as that analysis is beyond the topic and scope of these studies. 

 Table 9 summarizes average CHF values obtained for saturated boiling of the dielectric 

fluids.  As seen in the table, boiling in colloidal dispersions enhances the CHF of the fluorinated 

ketone, whereas boiling with the dispersant tends to degrade the CHF slightly.  Nonetheless, the 

net effect from boiling in the SiO2 dispersion is still to enhance CHF, despite the presence of the 

surfactant.  Boiling in the aluminum dispersion, with no surfactant, yields the greatest 

enhancement in CHF.  Detailed results for all cases are provided in section 7.3.1 through section 

7.3.5. 
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Table 9:  Summary of CHF Results for Pool Boiling of 0.01” Nickel Wires in Saturated Dielectric Fluids. 

Test Case Average CHF 
CHF 

Std. Dev.† 
CHF 90%  

Conf. Interval‡ 
CHF  

Enhancement
Pure Novec 649 200 kW/m2 0.52% [198 kW/m2,  

202 kW/m2] 
- 

Novec 649 w/0.001wt% 
surfactant 

170 kW/m2 9.2% [152 kW/m2,  
188 kW/m2] 

-15% 

Novec 649 w/0.01wt% 
surfactant 

189  kW/m2 5.6% [163 kW/m2,  
215 kW/m2] 

-5.4% 

0.001vol% SiO2 in Novec 649 
w/0.001wt% surfactant 

205 kW/m2 1.5% [200 kW/m2,  
210 kW/m2] 

2.6% 

0.01vol% SiO2 in Novec 649 
w/0.01wt% surfactant 

274 kW/m2 1.4% [267 kW/m2,  
281 kW/m2] 

37% 

0.01vol% Aluminum in 
Novec 649 (no surfactant) 

280 kW/m2 6.0% [252 kW/m2,  
308 kW/m2] 

40% 

     
Pure FC-72 220 kW/m2 8.3% [189 kW/m2,  

251 kW/m2] 
N/A 

†Standard deviation (% of average) over three nominally identical tests (four tests for the bare wire case). 
‡Calculated from the t-distribution. 
 

7.3.1. Nickel Wire in Pure FC-72 

 Boiling tests were conducted for 0.01” nickel wires in FC-72 (perfluorohexane) at 

atmospheric pressure and its saturation temperature of 57 ºC.  Figure 45 shows boiling curves for 

the FC-72 tests, with an average CHF of 220. ± 18.3 kW/m2.  In Figure 45, one can see a 

significant increase in the temperature in the natural convection regime, with a substantial drop 

in temperature at the incipience of boiling.  This temperature overshoot was marked by rapid 

activation of nucleation sites across the surface.  Figure 46 shows boiling in various regimes, 

including nucleate boiling, high heat flux film boiling, low heat flux film boiling, and an 

interesting steady-state phenomenon where the sides of the wire have quenched with the middle 

remains in the film boiling regime. 

 Results of the FC-72 boiling tests compared well with data found in the literature, though 

direct comparisons are cursory when geometries and surface materials differ.  Kim et al. obtained 

a CHF of 170 kW/m2 at a superheat of ~30 ºC for the pool boiling of saturated FC-72 from a 390 

µm (0.15”) platinum wire at atmospheric pressure [8].  Liu et al. obtained a CHF of 232 kW/m2 

at a superheat of ~15 ºC for the pool boiling of saturated FC-72 from a flat surface at 

atmospheric pressure [88].    
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Figure 45:  Boiling Curves for 0.01” Nickel Wires in Pure FC-72.  Note the significant temperature overshoot 
prior to the incipience of boiling. 
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(a) 

 
(b) 
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(c) 

 
(d) 

 
Figure 46:  Photos of Boiling from a 0.01” Nickel Wire in Saturated FC-72 at Atmospheric Pressure.  (a) 
Nucleate boiling at q″=125 kW/m2, (b) film boiling immediately following CHF, (c) film boiling prior to the 
Leidenfrost point, (d) steady-state film and nucleate boiling, where the sides of the wire have quenched. 
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7.3.2. Nickel Wire in Pure C2F5C(O)CF(CF3)2 

 Boiling tests were conducted for 0.01” nickel wires at atmospheric pressure in pure 

Novec 649 at its saturation temperature of 49 ºC.  The results of these tests were compared 

against the results of the FC-72 boiling tests to gauge the two-phase heat transfer performance of 

the new fluorinated ketone.  As seen in Figure 47, the fluorinated ketone performed comparably 

in both nucleate boiling heat transfer coefficient and critical heat flux.  Photographs were also 

taken to visualize boiling in the fluorinated ketone, with nucleation parameters resembling those 

seen in boiling of perfluorohexane.  As with the FC-72, the temperature overshoot was observed 

when boiling in the Novec 649.  Figure 48 shows several boiling regimes, including the rapid 

activation of nucleation sites at boiling incipience, high heat flux film boiling immediately 

following CHF, and the same steady-state phenomenon observed with the FC-72 where a portion 

of the wire has quenched.  Overall, results indicate that from a heat transfer perspective, Novec 

649 and FC-72 behave similarly, and thus the former may be a viable alternative to the latter in 

the direct and indirect cooling of high power density electronic devices. 
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Figure 47:  Boiling Curves for 0.01” Nickel Wires in Pure Novec 649 at Saturation and Atmospheric 
Pressure.  A boiling curve for FC-72 is plotted as a reference.  Note that the temperature overshoot also 
occurs in this fluorinated ketone. 
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(a) 

 
 

(b) 
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(c) 

 
 

Figure 48:  Photographs of Boiling from a 0.01” Nickel Wire in Novec 649.  (a)  The onset of nucleate boiling, 
at which nucleation sites activated rapidly across the wire,  (b) film boiling on the wire immediately following 
CHF,  (c) simultaneous film and nucleate boiling where the ends of the wire have quenched. 
 

 

7.3.3. Effect of Dispersant on Boiling Heat Transfer 

 Small concentrations of a fluorinated surfactant were used to help disperse silica particles 

in the fluorinated ketone.  Therefore, it was important to assess the effects of the surfactant on 

two-phase heat transfer.  Surfactants alone have been added to fluids to alter boiling properties.  

Wu et al. observed enhancement in the pool boiling heat transfer coefficient in water [89] and 

others have demonstrated that CHF enhancement is possible with soluble surface active agents, 

even in flow boiling [90].  Since surfactants can change surface tension and wettability, they can 

have a significant effect on wettability and bubble nucleation, even at low concentrations.  Figure 

49 shows boiling curves for 0.01wt% and 0.001wt% fluorinated surfactant in Novec 649, and 

Figure 50 shows the effective heat transfer coefficient.  As seen in the figures, the addition of the 

fluorinated surfactant has a deleterious effect on nucleate boiling heat transfer and degrades the 

CHF slightly.  Since fluorinated surfactants in water can alter the surface tension by 58% or 

more [91], the change in surface tension achieved by adding the fluorinated surfactant to the 

fluorinated ketone was measured.  As seen in Table 10, the fluorinated surfactant had no effect 
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on the surface tension of the fluorinated ketone.  However, the fluorinated surfactant may have 

altered the interfacial tensions at the surface between the solid-liquid and solid-vapor interfaces, 

thereby altering boiling properties.  Another possibility is that boiling distilled the fluorinated 

surfactant on the surface, resulting in a thick enough film to insulate the wire.  These hypotheses 

were not explored further, though.  Nonetheless, one must consider the deleterious effect of the 

fluorinated surfactant when looking at boiling results for the silica test case, which utilized the 

surfactant to disperse the particles. 

 

 

 

 

 

 

 

 
Table 10:  Surface Tension Measurements for Pure Novec 649 and Novec 649 with 0.01wt% Fluorinated 
Surfactant.  Note that the surfactant had a negligible effect on the surface tension of the fluid. 

 Pure Novec 649 Novec 649 + 0.01wt% 
Fluorosurfactant 

Run 1 11.4 mN/m 11.7 mN/m 
Run 2 11.6 mN/m 11.8 mN/m 
Run 3 11.5 mN/m 11.7 mN/m 

Average: 11.5 ± 0.1 mN/m 11.7 ± 0.1 mN/m 
 

 

 

 

 

 

 

 

 

 

 

 106 



 

 

 

 

 

 
Figure 49:  Boiling Curves for 0.01” Nickel Wires in Novec 649 with Different Concentrations of a 
Fluorinated Surfactant. 
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Figure 50:  Effect of the Dispersant on the Nucleate Boiling Heat Transfer Coefficient for Novec 649.  
 

7.3.4. Nickel Wire in SiO2/C2F5C(O)CF(CF3)2 Colloid with Dispersant 

 Boiling tests were conducted with 0.01” nickel wires in SiO2/Novec 649 dispersions (see 

section 6.2.1).  Figure 51 shows boiling curves for 0.001vol% concentrations of SiO2 

nanoparticles, and Figure 53 shows curves for 0.01vol% concentrations.  For the lower 

concentration, there is essentially no net effect on CHF or the nucleate boiling heat transfer 

coefficient (except for test 17C, in which considerable enhancement was observed).  For the 

higher concentrations, the curves displayed unusual shifts, and the heat transfer coefficient data 

was widely scattered, as seen in Figure 53.  However, the CHF in this case was noticeably 

enhanced, on average 37% over the pure fluid value.  Following boiling tests in the SiO2 

colloidal dispersion, a white deposition was visible on the surface.  This deposition was expected 

to consist of SiO2 nanoparticles.  Although the particles stayed on the surface with gentle 

handling, they could easily be wiped off.  
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Figure 51:  Boiling Curves for 0.01” Nickel Wires in 0.001vol% SiO2/Novec 649 Dispersion with 0.001wt% 
Fluorinated Surfactant.  
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Figure 52:  Effective Heat Transfer Coefficient versus Heat Flux for the Boiling Curves Plotted in Figure 51.  
Note that the 0.001vol% SiO2 dispersions have the same heat transfer coefficient as the pure fluid case, except 
in one test where up to 50% enhancement was observed.  
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Figure 53:  Boiling Curves for 0.01” Nickel Wires in 0.01vol% SiO2/Novec 649 Dispersion with 0.01wt% 
Fluorinated Surfactant.  There was significant scatter in the wall superheat (although the CHF value was 
consistent), with curves displaying unusual trends.  In one case, the wall superheat falls rapidly at 150 kW/m2, 
although this is likely an artificial occurrence. 
 

 

7.3.5. Nickel Wire in Al/C2F5C(O)CF(CF3)2 Colloid 

 Boiling tests were conducted with 0.01” nickel wires in a 0.01vol% aluminum/Novec 649 

dispersion (see section 6.2.2).  No surfactant was added, considering that the particles dispersed 

well without it, and that the surfactant was found to degrade boiling heat transfer.  Figure 54 

shows boiling curves for this test case, and Figure 55 shows the effective heat transfer 

coefficient.  As seen in the results, the aluminum nanoparticles have only a slight effect on the 

heat transfer coefficient, but enhance the CHF by over 40%.  After boiling wires in the Al/Novec 

649 dispersions, a dark gray deposit was visible on the wire, which could be easily wiped off.  It 

is suspected that this deposit consists of the Al nanoparticles. 
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Figure 54:  Boiling Curves for 0.01” Nickel Wires in a Al/Novec 649 Dispersion. 
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Figure 55:  Effective Heat Transfer Coefficient Plotted Against Heat Flux for the Al/Novec 649 Dispersions. 
  
 

 

 

 

 

 

 113



8. THEORETICAL ASPECTS OF BOILING IN WELL-WETTING 

DIELECTRIC FLUIDS 

8.1.   Incipience of Boiling 
 The incipience of boiling for both Novec 649 and FC-72 occurs after a large temperature 

increase in the natural convection region, followed by a considerable drop upon activation of 

nucleation sites.  This onset of nucleate boiling temperature overshoot is contrary to the classic 

wall superheat requirement calculated using the Young-Laplace and Clausius-Clapeyron 

equations, 

 

cfg
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if rc is taken to be the radius of a typical microcavity on the surface.  For low surface tension 

liquids, one would expect the superheat for activation to be lower than for high surface tension 

liquids such as water based on equation (23).  Carey explains the importance of the radius of the 

vapor nucleus for the incipience of boiling, and that the radius of the vapor nucleus is not 

necessarily equivalent to the cavity radius, but rather strongly dependent on the contact angle 

[55].  For low contact angle (well-wetting) fluids, one may not assume that the radius of the 

vapor nucleus equals that of the cavity.  The fluorinated ketone and perfluorocarbon investigated 

in this study are very well-wetting, resulting in partial or complete flooding of cavities.  

Anderson and Mudawar discuss this phenomenon for perfluorocarbons, noting that small heaters 

are even more susceptible to large incipience excursions.  They explain that rapid activation 

patterns are more significant on small heaters since the surface area fraction of the heater 

affected by a single nucleation site is larger [92].  Marto and Lepere [93], among others, have 

observed similar trends for boiling incipience in fluorocarbons.  Yin and Abdelmessih [94]  

observe the temperature overshoot phenomenon in the flow boiling of a fluorocarbon liquid.  

Bar-Cohen addresses the superheat excursion phenomenon in detail, also pointing out that 

enhanced surfaces typically do not alleviate the effect [95].  The temperature overshoot is cause 

for concern in two-phase electronics cooling systems, as it may result in device temperatures 

significantly exceeding steady-state operational temperatures. 
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 Although not shown in the boiling curves, a hysteresis in the boiling curve was observed 

for both Novec 649 and FC-72 when the heat flux was reduced after operating in the nucleate 

boiling regime.  As the heat flux was reduced below the level at which boiling incipience 

occurred, nucleation sites deactivated gradually, skipping the temperature overshoot seen 

initially.  This is likely due to the entrapment of vapor in the nucleating cavities, leading to lower 

wall superheat requirements to maintain nucleation. 

 

8.2.   Critical Heat Flux 
 A review of relevant theories governing the critical heat flux is discussed in section 4.3.1.  

Unlike the case of boiling from the 0.01” nickel wires in de-ionized water, the hydrodynamic 

instability factor with the appropriate correction factor for a horizontal cylinder in the fluorinated 

ketone and FC-72 is applicable, since the critical bubble radius is much smaller than that for 

water.  Using equation (9), one can determine that for saturated conditions at atmospheric 

pressure, the critical bubble radius is Rc=7.22x10-4 m for FC-72 and Rc=7.92x10-4 m for 

C2F5C(O)CF(CF3)2.  From this, one determines that the characteristic length is R*=0.18 for FC-

72 and R*=0.16 for the fluorinated ketone.  This allows for application of Lienhard’s prediction 

for small, horizontal cylinders, which is applicable for 0.15≤R*<1.2.  Therefore, we may apply 

Lienhard’s finite body correction factor to the hydrodynamic instability theory, which, for small 

horizontal cylinders, is the following [96]: 
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Using equation (17), and the saturated properties of each respective fluid, one finds that 

q″CHF,Zuber=152 kW/m2 for FC-72, and q″CHF,Zuber=140 kW/m2 for the fluorinated ketone.  

Therefore, the predicted CHF values using the correction factor are 224 kW/m2 for FC-72, and 

208 kW/m2 for the fluorinated ketone, remarkably close to the experimental values obtained for 

the pure fluids. 

 However, the hydrodynamic model is unable to predict the 40% enhancement achieved 

by boiling in the dilute SiO2 and aluminum Novec 649 dispersions.  The more recent models, 
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covered in section 4.3.1, rely on the contact angle with the surface.  However, the fluorinated 

ketone is essentially perfectly wetting, with a equilibrium contact angle of 0º on unaltered 

surfaces.  Therefore, it is likely that another surface parameter is affecting CHF.  Although 

effects of nanoparticles on fluid properties are expected to be negligible due to the dilute 

concentrations tested, they cannot be ruled out since fluid properties were not measured for every 

test case.  Tuma has demonstrated enhancement in both the heat transfer coefficient and critical 

heat flux through the use of metallic microparticle coatings for both hydrofluoroethers [97] and 

Novec 649 [79].  Kim, Rainey, et al. have demonstrated that a microporous diamond coating 

significantly enhances the pool boiling heat transfer coefficient and the critical heat flux for FC-

72 [8], attributing the increase in the nucleate boiling heat transfer coefficient to a higher 

nucleation site density imparted by the microporous coating.  However, one must consider that 

these are microparticle coatings, and can be fairly thick.  The diamond coating used by Kim 

consisted of 8-12 µm particles, and was about 18 µm thick.  In addition, the coating used a 

binder agent, which could have, by itself, an effect on boiling heat transfer.  Kim et al. claim that 

the enhancement is not due to an increase in surface area, but rather higher nucleation site 

density and bubble frequency, and that the postponement of CHF is due an increase in the 

convective heat transfer contribution or an increase in bubble vapor inertia [8].   

 The thicknesses of the SiO2 and aluminum deposits on the 0.01” nickel wires investigated 

in this study were not measured.  In a similar study in the same laboratory, Truong measured 

thicknesses of anywhere between 3 µm and 15 µm for SiO2 nanoparticle deposits on a 0.381 mm 

stainless steel wire boiled in a 0.01vol% SiO2 water-based nanofluid [98].  It is not unreasonable 

to expect coating thicknesses in this vicinity for deposits of SiO2 on wires boiled in 0.01vol% 

SiO2/Novec 649 dispersions.  The advantage of thinner coatings is the ability to minimize the 

thermal resistance added by the particle layer.  The thermal conductivity of a porous coating can 

be calculated by [99]: 
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In boiling from our coatings, we would expect both liquid and vapor to be present.   Figure 56 

shows the expected thermal conductivity for porous coatings of SiO2 and aluminum 

nanoparticles as a function of porosity, assuming that the void space is filled either entirely with 

vapor or entirely with liquid.  Were the distribution of particle size accurately known, the 

porosity, ε, could be estimated in the same manner as it was for the thin-film coatings (see 

section 3.3.5).  In Figure 57, the thermal resistance of the coating is estimated as a function of 

thickness, simply assuming the porosity to be ε=0.40. 

 

 

 

 

 
Figure 56:  Effective Thermal Conductivity as a Function of Porosity for Aluminum and SiO2 Coatings in 
Novec 649.  Cases where the fluid is either in its liquid or vapor state are included.  The aluminum is assumed 
to be unoxidized, and the silica is assumed to be in amorphous form. 
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Figure 57:  Predicted Thermal Resistance per Unit Length as a Function of Coating Thickness for Porous 
Coatings of Aluminum and SiO2 on a 0.01” Nickel Wire in Novec 649.  The porosity is assumed to be ε=0.4.  
Cases where the fluid is either in its liquid state or vapor state are provided.  The aluminum is assumed to be 
unoxidized, and the silica is assumed to be in amorphous form. 
 

 It would appear that porosity effects are important, and in the case of well-wetting fluids, 

the likely explanation for enhancement in CHF.  Polezhaev and Kovalev proposed the following 

semi-empirical formula for boiling from a uniform porous coating [100]:   
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where ε is the porosity of the coatings and dbr is the diameter of the bubble as it breaks through 

the coating.  Hwang and Kaviany fit their experimental data to Polezhaev’s prediction, and 
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determined that the breakthrough bubble diameter, dbr, does not change with particle size or 

other coating characteristics [7].  Therefore, Polezhaev’s semi-empirical prediction would seem 

to indicate that coating thickness does not impact CHF, which does not agree with results in this 

work.  Additionally, equation (26) cannot be applied to our reference cases, since the porosity for 

the bare surfaces is essentially zero.  According to Liter and Kaviany, enhancement obtained 

with porous coatings is commonly attributed to effects of increased surface area, capillary 

induced assistance to liquid flow, creation of more nucleation sites, and/or influence on vapor 

escape paths created by the porous structures.  Liter and Kaviany go on to say, “These effects are 

dependent on the fluid and solid thermophysical properties and geometrical coating parameters, 

such as coating thickness δ and pore size distribution. The exact relational dependence is not 

well understood and the extent of possible enhancement is not known” [101].  The data obtained 

in this study, both for thin-film coatings in water and porous deposits of nanoparticles in well-

wetting fluids, appear to support this statement, with variations in thickness and other parameters 

appearing to have an effect.  However, the study of porous coatings in the literature have 

primarily focused on microporous coatings and surfaces, whereas the thin-film coatings 

investigated in Section I and nanoparticle deposits investigated in this Section are nanoporous in 

nature, with pore sizes in the vicinity of 100 nm or less for thin film coatings (see section 3.3.4 

and section 3.3.5).  Pore sizes are likely similar for deposits of SiO2 and aluminum particles from 

boiling deposition based off the original particle size.  Nanoparticle coatings with pore sizes an 

order of magnitude smaller than microparticle coatings are likely to have different effects on 

bubble interaction and other mechanisms, so data and correlations developed for microporous 

coatings should be applied to nanoporous coatings with caution. 

 

 

 

 

 

 

 

 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

 119



9.   CONCLUSION 
 This work has explored two general approaches to nanoparticle-based surface 

modification in two separate classes of fluids, and shown that enhancement in the pool boiling 

critical heat flux and nucleate boiling heat transfer coefficient is possible with both methods.  

Nanoscale modification of surface features for boiling heat transfer allows for precise control 

over parameters which affect nucleate boiling and CHF, such as wettability.  These surfaces, 

which have been carefully engineered using nanoparticles, are optimized to enhance two-phase 

heat transfer and CHF.   

 Although the two methods for depositing nanoparticles on surfaces are not directly 

comparable, each method offers certain advantages over the other.  Constructing nanoparticle 

coatings on boiling surfaces using the layer-by-layer assembly method allows for precise control 

of coating thickness, and to some degree control over porosity and surface texture.  Additionally, 

the layer-by-layer assembly method allows for additional treatments, such as chemical vapor 

deposition of fluorosilane, which can drastically alter surface wettability without affecting other 

parameters.  Lastly, the layer-by-layer assembly method provides a means of applying 

nanoparticle coatings to surfaces which are quite durable.  Through boiling deposition of 

nanoparticles, on the other hand, it is more difficult to control coating thickness and ensure 

adequate durability and uniformity.   

 Nonetheless, boiling deposition offers distinct practical advantages over the LbL method 

for applications in many engineering systems, including direct in situ deposition of nanoparticles.  

In many systems, additional treatments associated with the LbL method, such as calcination at 

550 ºC, may not be practical, thereby giving advantage to boiling deposition methods.  For 

applications involving immersion cooling of electronic devices, immersing dies in low pH 

aqueous solutions and calcinating at high temperatures would likely result in damage, making 

boiling deposition of nanoparticles a more practical method.  Additionally, continuous boiling in 

nanofluids provides a regenerative coating should particles scale off.    

 The primary findings of the experimental studies included in this work are summarized as 

follows: 
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Nanoparticle Thin-film Coatings for Pool Boiling Heat Transfer Enhancement 

• Nanoparticle thin-film coatings, applied using the layer-by-layer deposition method, 

display up to 100% enhancement in the pool boiling critical heat flux. 

• Nanoparticle thin-film coatings treated with fluorosilane display over 100% enhancement 

in the nucleate boiling heat transfer coefficient. 

• Film thickness affects CHF, with thicker films (up to 40-bilayers) leading to greater 

enhancement. 

• Both surface texture and chemical constituency can be altered drastically with the 

application of nanoparticle thin-films, influencing wettability, and in turn, nucleate 

boiling heat transfer and CHF. 

• The advancing contact angle appears to be the primary parameter affecting the nucleate 

boiling heat transfer coefficient, with higher advancing contact angles leading to 

improved nucleate boiling heat transfer due to its impact on the size of the vapor nucleus 

in boiling cavities. 

• The receding contact angle appears to be an important parameter influencing CHF, with 

low receding contact angles leading to higher CHF values. 

• The optimal surface for pool boiling heat transfer is one which displays a large contact 

angle hysteresis, with high advancing contact angle to enhance nucleate boiling heat 

transfer and low receding contact angle to enhance CHF. 

 

 

 

 

 

 

 

 

 

 

 

 

 121



Nanoparticle-Based Enhancement of Pool Boiling Heat Transfer in Low Global Warming 

Potential Dielectric Fluids 

• The fluorinated ketone C2F5C(O)CF(CF3)2, sold commercially as Novec 649, has 

comparable pool boiling heat transfer performance to that of perfluorohexane (FC-72), 

and may be a viable environmentally friendly alternative in two-phase electronics cooling 

applications. 

• The effect of dispersants on boiling heat transfer can be significant, even when used at 

low concentrations.  Therefore, the effect of dispersants must be considered when 

preparing colloidal dispersions for two-phase heat transfer applications. 

• Dilute dispersions of SiO2 or aluminum nanoparticles display up to 40% enhancement in 

the critical heat flux for well-wetting dielectric fluids.  The enhancement mechanism 

likely relates to the boiling deposition of particles on the heater surface, as has been 

shown previously in other water-based nanofluid experiments. 

• The effective thermal conductivity of porous coatings is typically much less than that of 

the bulk material.  Thick coatings of porous particles can lead to high thermal resistances 

on heater surfaces, so it is therefore desirable to reduce coating thickness. 

• The nucleate boiling heat transfer coefficient for well-wetting dielectric fluids may either 

be degraded, enhanced, or unchanged with the addition of small amounts of SiO2 or 

aluminum nanoparticles, depending on the concentration of particles and dispersant. 

 

 

General Implications for Pool Boiling Heat Transfer 

 Although wettability appears to be an important parameter influencing CHF, it is not 

entirely adequate in predicting or describing CHF enhancement, especially with complex 

surfaces or with well-wetting fluids.  Specifically, wettability alone fails in explaining CHF 

enhancement achieved in an already perfectly wetting fluid, or CHF enhancement achieved with 

increases in the thickness of a porous film where no surface wettability change is observed.  

Although surface structure and chemical constituency are closely related to wettability, there 

may be additional effects that wettability does not account for.  In particular, nanoporous 

coatings need to be studied further, with an emphasis on the role of porosity and pore size in 

boiling heat transfer.   
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