
Low-Power Techniques for Video Decoding

by

Daniel Frederic Finchelstein

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

c© Massachusetts Institute of Technology, 2009. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2009

Certified by .
Anantha Chandrakasan

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Departmental Committee on Graduate Students

2

Acknowledgments

I want to thank the following people and organizations. If I forgot anyone, please give me a

call.

• my family, in order of increasing age, for shaping me and helping me during the time we

lived together: “Little-Little”, “Fuxea”, “Beige”, Marica, “Ruby”, Ina, mama, “Tica”

• the rest of the family whom I have had the pleasure of associating with, also in order

of increasing age: Sanskaar, Kanako, Irina, Theo, Iolanda, Misae, Tesfaye

• all the friends I’ve made while at MIT, hoping that we won’t lose touch

• all the team members from volleyball and soccer, for chasing together with me a simple

dream (the ball)

• all the members of Anantha’s group for their friendship and technical advice

• Anantha for creating such a collaborative and non-competitive culture among his stu-

dents

• Arvind and his students for their stimulating discussions on computer architecture and

hardware design languages

• Nokia and Texas Instruments for research funding and chip fabrication facilities

• people at Nokia Research Cambridge for their guidance (Jamey, John, and Gopal)

• people throughout Texas Instruments for listening to many of my presentations (Den-

nis, Alice, ...)

3

• Vivienne Sze who was involved in many of the ideas described in this thesis, and she

is acknowledged in each of the chapters containing her contributions

• Ersin Sinangil who designed the low-voltage SRAMs used for the on-chip caches of

Chapter 5

4

Contents

1 Introduction 23

1.1 Motivation for Low-Power Video . 23

1.1.1 Voltage Scaling for Low Power . 24

1.1.2 Memory Optimization for Low Power 26

1.2 Outline of Main Contributions . 27

1.3 The H.264 Video Codec . 29

1.3.1 H.264 Overview . 29

1.3.2 Entropy Decoder (ED) . 30

1.3.3 Inverse Transform and Quantization (IT) 32

1.3.4 Intra Spatial Prediction (INTRA) . 33

1.3.5 Motion Compensation (MC) . 34

1.3.6 Deblocking Filter (DB) . 36

1.3.7 Frame Buffer (FB) . 37

1.4 Related Work . 38

1.4.1 Related Work on Video Pipelining and Unit Parallelism 39

1.4.2 Related Work on Multi-Core Video Decoding 40

1.4.3 Related Work on Video Memory Optimization 41

2 Pipelining and Unit-Level Parallelism 43

2.1 Decoder Pipeline . 44

2.2 FIFO Sizing . 45

2.3 Motion Compensation (MC) Architecture . 47

5

2.4 Inverse Transform (IT) Architecture . 47

2.5 Deblocking Filter (DB) Architecture . 55

2.6 Intra Prediction (INTRA) Architecture . 56

2.7 Entropy Decoding (ED) Architecture . 56

2.8 Reconstruction (ADD) Architecture . 57

2.9 Memory Controller (MEM) Architecture . 58

2.10 Summary . 58

3 Motion Compensation (MC) Architecture 59

3.1 Luma Motion Compensation (MC) Pipeline 59

3.2 Luma Interpolator Parallelism . 61

3.3 Chroma Interpolator Parallelism . 70

4 Multi-Core Decoding 73

4.1 Slice Multi-Core Decoding . 75

4.2 Frame Multi-Core Decoding . 79

4.3 Diagonal Macroblock Processing . 81

4.4 Interleaved Entropy Slice (IES) Multi-Core Decoding 85

4.5 Bitstream Controller . 90

4.6 Software Applicability of Multi-Core Decoding 92

4.7 Multi-Core Decoding Comparison . 93

4.8 Summary . 96

5 Memory Optimization 99

5.1 Full-Last-Line Caching (FLLC) . 100

5.2 Last-Line Caching for Interleaved Entropy Slices (IESs) 101

5.3 Motion Compensation (MC) Caching for H.264 104

5.4 Motion Compensation (MC) Caching for Interleaved Entropy Slices (IESs) . 106

5.5 Last-Frame Cache (LFC) for Motion Compensation 107

5.6 Motion Compensation Data-Forwarding Caches 111

6

5.7 Software Applicability of Memory Optimization 114

5.8 Caching Summary . 115

5.9 Summary . 115

6 Prototype Video Decoder ASIC 119

6.1 Video Decoder ASIC Architecture . 119

6.2 Multiple Voltage and Frequency Domains . 123

6.3 Dynamic Voltage and Frequency Scaling . 125

6.4 Real-Time ASIC Demonstration . 127

6.5 Results and Measurements . 134

6.6 Power Breakdown . 139

6.7 Area Breakdown . 140

6.8 Summary . 141

7 Conclusions 143

7.1 Future Areas of Research . 144

7.1.1 Rate-Distortion-Power Video Coding 144

7.1.2 Video System Integration . 145

7.1.3 Multi-Standard Video Decoder ASICs 145

7.1.4 Video Encoder ASICs . 146

7.1.5 Workload Prediction . 146

7

8

List of Figures

1-1 Parallelism of 2 blocks allows each block to tolerate double the latency for a

given throughput and run at a lower voltage. 26

1-2 H.264 algorithm flowchart . 29

1-3 Decoding quantized discrete cosine transform (DCT) coefficients 31

1-4 4x4 luma block spatially predicted from its left, top-left, top, and top-right

neighbors, which are already decoded . 33

1-5 Example of 4x4 luma block intra predcited using Down-Down-Right mode . 34

1-6 Integer and fractional motion vectors . 35

1-7 Fractional-location chroma pixel is interpolated from its integer-location neigh-

bors . 36

1-8 Deblocking filter smooths out artificial discontinuities across pixel edges . . . 37

2-1 H.264 pipelined decoder architecture . 44

2-2 Pipeline timing example . 45

2-3 Longer first-in-first-out registers (FIFOs) average out workload variations to

minimize pipeline stalls. For this analysis, the depths of all video decoder

(DEC) FIFOs are set to the same value, so the depths are varied together.

One FIFO element corresponds to data representing a 4x4 block of pixels. . 47

2-4 Parallel inverse transform architecture . 48

2-5 inverse discrete cosine transform (IDCT) architectures 49

2-6 Interpolator pipeline . 50

2-7 Energy and delay comparisons between three different IDCT architectures . 51

9

2-8 Scaling the bit-accuracy of the inverse transform (IT) operation 52

2-9 Power savings increase but peak signal-to-noise ratio (PSNR) decreases as the

number of truncated bits in the IT unit increases, computed for the movie clip

“You, Me, and Dupree” . 53

2-10 Truncating the 9 least significant bits (LSBs) of the IT data reduces the power

by 25% and the PSNR by 1.1dB for the movie clip “You, Me, and Dupree”,

coded with quantization parameter (QP)=40 54

2-11 Deblocking filter architecture for luma filtering 55

2-12 Hierarchical look-up tables (LUTs) for entropy decoder (ED) 57

3-1 Interpolator pipeline . 60

3-2 Energy of motion compensation (MC) interpolation per 4x4 block plotted

versus normalized supply voltage. Dynamic energy decreases with the supply

voltage, whereas leakage energy is a small portion of the total energy due to

the high activity factor. 61

3-3 Parallel MC interpolator architecture . 62

3-4 Scanning order for H.264 4x4 blocks. 62

3-5 Parallel MC interpolator assignment to blocks and macroblocks (MBs) for

N = 2, N = 4 and N = 8. 64

3-6 Simulated performance of parallel MC interpolators 65

3-7 Parallel (N = 4) interpolator performance versus output FIFO depth 66

3-8 Post-synthesis area overhead of MC interpolator parallelism 68

3-9 Energy savings of MC interpolator parallelism 69

3-10 Energy of MC interpolation per 4x4 block. Dynamic energy decreases with

parallelism initially, but then secondary effects such as wiring and muxing

overhead drive the energy back up for further increases in parallelism. 69

3-11 Normalized wire power for various degrees MC interpolator parallelism . . . 70

3-12 Comparison to scale of MC interpolator layouts, showing the nearly linear

growth in area . 71

3-13 Chroma bilinear filter (B) is replicated 4 times 71

10

4-1 Parallel video decoder architecture . 74

4-2 Dividing a frame into slices enables parallelism within a frame 75

4-3 Timing diagram of slice parallelism for N = 3 76

4-4 Start of slices can be found by parsing for headers. This figure shows each

frame divided into N different slices. 76

4-5 context-adaptive variable-length coding (CAVLC) coding loss increases with

number of H.264 slices in a 720p frame . 77

4-6 Performance of H.264 slice multi-core parallelism for 100 frames of the 720p

“mobcal” video sequence. When many slices are used, the performance in-

crease is not proportional due to uneven distribution across the slices and the

extra CAVLC processing required for each slice. 78

4-7 Three parallel video decoders processing 3 consecutive frames 79

4-8 Timing diagram of frame parallelism for N = 3 80

4-9 Snapshot of N parallel video decoders and their position in their respective

frames . 81

4-10 Performance of frame multi-core parallelism for 100 frames of the 720p “mob-

cal” video . 82

4-11 Distribution of vertical motion vectors for several conformance videos showing

a tight spread . 83

4-12 Spatial dependency on neighboring macroblocks 84

4-13 2:1 diagonal processing order . 84

4-14 A frame can be divided into interleaved slices which alternate among the MB

lines . 86

4-15 Interleaved entropy slices (IESs) with diagonal dependencies 87

4-16 Timing diagram of interleaved entropy slice (IES) parallelism for N = 3 . . . 87

4-17 Average CAVLC coding efficiency of interleaved entropy slices (IESs) relative

to parallel slice processing of Section 4.1 averaged over 150 frames of 4 different

videos: “bigships”, “mobcal”, “shields” and “parkrun” 88

11

4-18 Performance of IES multi-core decoding. The power is normalized relative to

a single decoder running at the nominal supply voltage. The area increase

assumes caches make up 75% of the area of a single DEC (see Section 6.7). 89

4-19 Bitstream controller supporting multiple slices and header search 90

4-20 Size of all slices are encoded at the start of each frame 91

4-21 Splitting slices into fixed-length segments . 91

4-22 Running parallel software video decoders (DECs) on a multi-threaded machine 92

4-23 Three different multi-core architectures show nearly-linear performance gains.

The multi-core performance of H.264 slices is slightly lower because of the ex-

tra processing required by the CAVLC and also the unbalanced slice workload

due to uneven image characteristics across the slices. 94

5-1 Full-last-line caches (FLLCs) reduce off-chip memory bandwidth (BW) . . . 100

5-2 Caches used for interleaved entropy slice (IES) processing with 3 video decoders

(DECs) . 102

5-3 Impact of FIFO sizing on parallel interleaved entropy slice (IES) performance 103

5-4 Eliminating motion compensation (MC) redundant reads 105

5-5 Motion compensation (MC) cache . 106

5-6 Last-Frame Cache (LFC) . 108

5-7 Hit rate of last-frame cache versus size of writeback cache for different 720p

videos. For each video, the type of motion is described, in order to help

explain the differences in hit rates. 110

5-8 Motion compensation (MC) data-forwarding caches (DFCs) for N = 3 112

5-9 High and low watermarks for 3 DECs to maximize DFC hit-rate 113

5-10 Reduction in off-chip reads versus size of motion compensation (MC) data-

forwarding cache (DFC) for N = 3. 113

6-1 H.264 ASIC decoder architecture . 120

6-2 Reduction in overall memory bandwidth from caching and reuse MC data . . 122

12

6-3 Independent voltage/frequency domains are separated by asynchronous FIFOs

and level-converters . 124

6-4 Workload variation across 250 frames of ”mobcal” sequence. 126

6-5 Measured frequency versus voltage for core domain and memory controller.

Use this plot to determine maximum frequency for given voltage. Note: The

rightmost measurement point has a higher voltage than expected due to lim-

itations in the test setup. 127

6-6 Test setup for H.264 decoder . 128

6-7 Photo of lab video demo . 129

6-8 Test field-programmable gate array (FPGA) architecture 130

6-9 Reordering of luma pixels . 131

6-10 Reordering of chroma pixels . 132

6-11 Die photo showing the different domains . 135

6-12 Comparison with other H.264/AVC decoders 136

6-13 FO4 delays for different technologies across supply voltages using predictive

models . 137

6-14 Comparison with other H.264/AVC decoders, estimated for the same 65nm

process . 138

6-15 Voltage supply variation across test chips . 138

6-16 Post-layout simulated power breakdown during P-frame decoding 140

6-17 Post-layout simulated ASIC leakage power breakdown 140

6-18 Post-layout area breakdown . 141

7-1 Illustration of a possible trade-off between bitrate, PSNR, and decoding power 145

13

14

List of Tables

1.1 Video resolutions and frame rates . 30

1.2 Exp-Golomb mapping between symbols and variable-length codes 32

1.3 Survey of H.264 hardware video decoders . 38

3.1 Sufficient FIFO depths for different parallel interpolator architectures. The

numbers represent the simulated performance for 100 frames of the “mobcal”

720p video. 66

4.1 Video decoder multi-core (N = 3, 720p) comparison for different techniques

relative to N = 1 . 95

5.1 Memory bandwidth (BW) of full-last-line caches (FLLCs) for 720p at 30 fps 101

5.2 Summary of different DEC caching techniques for 720p 116

6.1 FIFO sizes between different pipeline units 121

6.2 Cycles per 4x4 block for each unit in P-frame pipeline of Figure 1-2, assuming

no stalling taken for 300 frames of the ”mobcal” sequence. Each 4x4 block

include a single 4x4 luma block and two 2x2 chroma blocks. [] is performance

after Chapter 2 parallelism optimizations. 122

6.3 Estimated impact of multiple domains on power for decoding a P-frame. . . 124

6.4 Measured voltage/frequency for each domain for I-frame and P-frame for 720p

sequence. 127

6.5 Estimated impact of dynamic voltage and frequency scaling (DVFS) for GOP

structure of IPPP and size 15. 128

15

6.6 Equivalent 720p frame rates for different resolutions 134

6.7 Measured performance numbers for 720p at 30 frames per second (fps) . . . 137

16

Acronyms

ADD addition of residual to prediction

ASIC application-specific integrated circuit

BW bandwidth

CABAC context-adaptive binary arithmetic coding

CAVLC context-adaptive variable-length coding

CAVLD context-adaptive variable-length decoding

CMOS complementary metal-oxide semiconductor

DB de-blocking filter

DCT discrete cosine transform

DEC video decoder

DFC data-forwarding cache

DRAM dynamic random-access memory

DVFS dynamic voltage and frequency scaling

ED entropy decoder

eDRAM embedded dynamic random-access memory

17

ENC video encoder

FB frame buffer

FIFO first-in-first-out register

FIR finite-impulse-response filter

FLLC full-last-line cache

fps frames per second

FPGA field-programmable gate array

FO4 fanout-of-4 delay

GOP group of pictures

IDCT inverse discrete cosine transform

IES interleaved entropy slice

INTRA spatial prediction

IT inverse transform

LCD liquid crystal display

LFC last-frame cache

LSB least significant bit

LUT look-up table

MB macroblock

MC motion compensation

ME motion estimation

18

MEM memory controller

MV motion vector

OCFB off-chip frame buffer

OLED organic light-emitting device

PLL phase-locked loop

PSNR peak signal-to-noise ratio

QD-OLED quantum dot-organic light-emitting device

QP quantization parameter

ROM read-only memory

SRAM static random-access memory

VLC variable-length coding

WB write-back buffer

19

20

Low-Power Techniques for Video Decoding

by

Daniel Frederic Finchelstein

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical and Computer Engineering

Abstract

The H.264 video coding standard can deliver high compression efficiency at a cost of large
complexity and power. The increasing popularity of video capture and playback on portable
devices requires that the energy of the video processing be kept to a minimum. This work im-
plements several architecture optimizations that reduce the system power of a high-definition
video decoder.

In order to decode high resolutions at low voltages and low frequencies, we employ tech-
niques such as pipelining, unit parallelism, multiple cores, and multiple voltage/frequency
domains. For example, a 3-core decoder can reduce the required clock frequency by 2.91 ×,
which enables a power reduction of 61% relative to a full-voltage single-core decoder. To
reduce the total memory system power, several caching techniques are demonstrated that
can dramatically reduce the off-chip memory bandwidth and power at the cost of increased
chip area. A 123 kB data-forwarding cache can reduce the read bandwidth from external
memory by 53%, which leads to 44% power savings in the memory reads.

To demonstrate these low-power ideas, a H.264/AVC Baseline Level 3.2 decoder ASIC
was fabricated in 65 nm CMOS and verified. It operates down to 0.7 V and has a measured
power down to 1.8 mW when decoding a high definition 720p video at 30 frames per second,
which is over an order of magnitude lower than previously published results.

Thesis Supervisor: Anantha Chandrakasan
Title: Professor of Electrical Engineering and Computer Science

21

22

Chapter 1

Introduction

We begin by describing why low-power is important for certain video applications. We also

give a preview of how to reduce the power for a hardware video decoder. We then identify

the key contributions of this work. To help introduce the reader to some of the foundations

of video decoding, we describe the basic blocks of the H.264 video coding standard. Finally,

this introductory chapter concludes with a literature survey of published works related to

this thesis.

1.1 Motivation for Low-Power Video

Mobile multimedia devices such as smart phones are energy-constrained, so reducing their

power is critical for extending video playback times. The goal of this thesis is to explore

different power saving techniques for video decoders and demonstrate them on a hardware

application-specific integrated circuit (ASIC) architecture. The first of these techniques is to

use pipelining and parallelism to enable lower frequencies and supply voltages. The second

is the efficient scheduling and caching of memory operations to reduce the access power of

on-chip and off-chip memories. This chapter introduces these techniques and also describes

how they relate to previously-published ideas.

23

1.1.1 Voltage Scaling for Low Power

The power usage of a given digital system can be minimized by lowering the supply voltage

[1]. First, the decoder’s clock frequency is set to the lowest value that still guarantees that

the current computation workload can be met. Next, the supply voltage is reduced to the

minimal value that still allows the circuit to operate at the chosen frequency. Equation 1.1

shows the energy required for a digital computation. The total energy Etot is broken down

into the dynamic energy Edyn and the leakage energy Eleak. Voltage scaling reduces dynamic

energy consumption by a quadratic factor, as shown in Equation 1.1; Edyn is dynamic energy,

Ceff is the effective total switched capacitance and VDD is the supply voltage. Leakage energy

is computed as the leakage power integrated over the total time of the computation Tcomp.

The leakage power is obtained from the subthreshold current formula with the gate-source

voltage VGS set to 0 and the drain-source voltage VDS set to VDD; IS is the maximum

leakage current and Vth is the thermal voltage. The leakage power also decreases with VDD,

but the computation time TCOMP varies inversely proportional with VDD. Therefore, as VDD

decreases, the leakage energy first decreases slightly, but then begins to increase since TCOMP

eventually grows faster than the leakage power decays.

Edyn = Ceff × V 2

DD

Eleak = Tcomp(VDD) × VDD × IS

(

1 − e
−

VDD

Vth

)

Etot = Edyn + Eleak

(1.1)

Equation 1.2 shows how the propagation delay of static complementary metal-oxide

semiconductor (CMOS) circuit varies with the supply voltage VDD. The delay tP is pro-

portional to the supply voltage since VDD is the amount of voltage that must be charged

or drained to signal a 1 or a 0. The delay tP is also directly proportional to the total sig-

nal capacitance C being switched. Finally, the delay varies inversely proportional with the

switching current ID, since a larger current speeds up the switching operation.

24

tp =
CVDD

ID(VDD)
(1.2)

The main cost of scaling down the voltage is an increased circuit delay, as the currents

decrease with supply voltage. Specifically, the circuit suffers a linear increase in delay above

the threshold voltage, as shown by the current dependence of Equation 1.3 ([2]); ID−max is

the maximum transistor on-current, υsat is the velocity-saturated mobility, COX is the unit

oxide capacitance, W is the transistor width, VT is the transistor threshold voltage, VDSAT

is the velocity-saturation voltage, and λ is the channel length modulation coefficient. As

the supply voltage approaches the sub-threshold region and below (VDD < VT), the circuit

begins to experience an exponential increase in delay, as shown in Equation 1.4; IS and n

are fitting parameters, and Vth is the thermal voltage. This can be seen on the left side of

Figure 1-1, where the circuit delay increases exponentially along with the leakage component

of total energy. This decreased speed can be a challenge for real-time applications such as

video decoding where on average a new frame must be computed every 33 ms for frame rates

of 30 fps.

ID−max = υsatCOXW (VDD − VT −
VDSAT

2
)(1 + λVDD) (1.3)

ID−max = ISe
VDD

nVth

(

1 − e
−

VDD

Vth

)

(1.4)

Pipelining and parallelism, two well-known hardware architecture techniques, can be used

to maximize concurrency. This increased performance can be exploited to lower the supply

voltage, bringing the circuit back to the original performance but drawing less dynamic

energy [1]. This is the key concept used in this thesis to lower the voltage and power of

a video decoder. Pipelining increases computation concurrency by reducing the datapath

between registers. This allows a circuit to be clocked at a higher frequency, and thus process

data faster. One disadvantage of pipelining is the increase in pipeline registers and control

complexity. Parallelism increases concurrency by distributing computation among several

identical hardware units. For example, if a hardware unit is duplicated, the latency of each

25

VDD

Delay

Energy

T

2T

VDD

Figure 1-1: Parallelism of 2 blocks allows each block to tolerate double the latency for a
given throughput and run at a lower voltage.

individual unit can increase by a factor of 2; this allows each of the units to run at a lower

voltage, as shown in Figure 1-1. The main cost of parallelism is an increase in chip area and

additional muxing/de-muxing logic to feed all the units and collect their results.

1.1.2 Memory Optimization for Low Power

Video processing also requires a significant amount of on-chip and off-chip memory band-

width, for both motion compensation (MC) and last-line accessing. Therefore, memory

system optimization can reduce total power in the video decoder (DEC) system, which in-

cludes both the decoder ASIC and the off-chip frame buffer (OCFB) memory. One effective

way to reduce memory power is the use of on-chip caching. This technique trades off an

increase in chip area for a reduction in more power-hungry off-chip accesses. The cache hit

rate must be high enough so that the added power overhead of cache lookups and cache

writes does not outweigh the saving in off-chip memory power.

26

1.2 Outline of Main Contributions

This section outlines the main contributions and distinguishing ideas of this thesis. Many

of the ideas are complementary and can be used together on the same video decoder (DEC)

implementation. A portion of the work presented in this thesis was done in collaboration

with another doctoral student Vivienne Sze. She was heavily involved with the design of the

H.264 ASIC as well as the development of some of the multi-core and caching ideas. The

sections containing her contributions will be cited at the beginning of each chapter.

Pipelining and Unit-Level Parallelism (Chapter 2)

This thesis presents a pipelined architecture which separates the luma and chroma processing

into two different pipelines and operates on 4x4 blocks of 16 pixels. This architecture allows

the different hardware units in the DEC to be active during most clock cycles. Within

this pipeline, we study the effect of varying the FIFO depths between the different DEC

units. We find that deeper FIFOs can increase performance by 25% over using single-stage

FIFOs, because they reduce stalls by averaging the workload variation within the pipeline

stages. Parallelism is demonstrated within all the pipeline units to reduce cycles per 4x4

pixel block and speed up the pipeline throughput. For example, parallel architectures of up

to 20 MC interpolators and 4 de-blocking filter (DB) filters are presented. We present a

modified inverse transform (IT) algorithm (not compatible with H.264) that uses precision-

scaling arithmetic. This allows power to be used as a third knob next to bitrate and image

distortion for future video coding.

Multi-Core Decoding (Chapter 4)

This thesis presents three different multi-core DEC architectures. Due to the regularity of

the designs, video performance can be achieved with very little design time by instantiating

and connecting multiple copies of the same DEC. When replicating N DEC instances, the

total cycle count goes down by approximately a factor of N . The parallel DECs can work on

either multiple slices in one frame, or multiple consecutive frames. For slice processing, each

27

frame can either be broken up into H.264 slices or into interleaved entropy slices (IESs), the

latter providing several advantages in terms of area and memory efficiency.

Memory Optimization (Chapter 5)

This work shows how memory accesses to typical full-last-line caches (FLLCs) can be reduced

when using interleaved entropy slice (IES) processing. We also show several categories of

on-chip MC caches which trade off cache area for total memory power savings. For example,

a last-frame cache (LFC) can eliminate most off-chip reads by keeping a large on-chip cache,

while data-forwarding caches (DFCs) together with N parallel frame DECs can eliminate up

to (N −1)/N of the of-chip reads. Similarly, using N parallel IES DECs replaces (N −1)/N

of the accesses to the FLLC with reads and writes to very small FIFOs. We use a memory

power model to estimate and compare the power savings of the different on-chip caching

techniques we present.

Prototype Video Decoder ASIC (Chapter 6)

Based on the low-power ideas described in this thesis, we built and demonstrated a real-

time H.264 720p video decoder ASIC. This chip uses over 10x less power than previously-

published results. The ASIC shows the benefits of splitting the design into multiple voltage

and frequency domains. This allows each domain to operate at its minimum voltage and

frequency. As a result we can reduce the power by 25% and 29% when separating one

domain into two or three domains respectively. We also show how running dynamic voltage

and frequency scaling (DVFS) on the DEC can reduce the operating power for videos with

varying workloads. This shows a 25% improvement over a static control scheme where the

DEC voltage and frequency are set to handle the maximum possible workload. The ASIC

does not use any of the multi-core techniques described in Chapter 4 and Chapter 5.

28

1.3 The H.264 Video Codec

Before delving into low-power implementation details for DECs, it is important to give a

basic description of the video algorithm.

1.3.1 H.264 Overview

The H.264 video standard was introduced in 2004 [3]. Its main purpose is to provide an

increase in compression efficiency over previous standards such as MPEG2 [4]. The H.264

decoding flowchart, shown in Figure 1-2, is very similar to previous standards (MPEG-1,

MPEG-2), and operates on units as small as 4x4 pixels.

Entropy

Decoder

(ED)

Inverse

Transform

(IT)

Intra/Inter

Selection

(MUX)

Spatial

Prediction

(INTRA)

Motion

Compensation

(MC)

Deblocking

Filter

(DB)

Bitstream

Input

To

Monitor

+
Bitstream

Input

Bitstream

Input

Memory

Controller

(MEM)

YUV

to

RGB

Frame

Buffer

(FB)

Figure 1-2: H.264 algorithm flowchart

Each pixel has three components: one luma (Y) and two chroma (U and V), each of

which is processed separately. This format is different than Red/Green/Blue (RGB), which

is used to display pixels, for example on a liquid crystal display (LCD). Therefore, before

displaying the pixels, they must be converted from YUV to RGB using a matrix transform.

This thesis will focus on a video decoder that can handle various resolutions, from low to

high definition, as shown in Table 1.1. There are also several variations (called profiles) of

29

the H.264 standard, which target different applications [5]. For example, the baseline profile

targets low-cost applications, such as video-conferencing and mobile devices, which have

limited computing resources. Another variation, the high profile, is intended for broadcasting

and storage applications, where compression efficiency is the most important concern. To

achieve the extra compression efficiency, the high profile uses more computation-intensive

techniques such as context-adaptive binary arithmetic coding (CABAC), interlaced coding,

monochrome format, bidirectional slices, and 8x8 transforms. The decoder discussed in this

thesis only targets baseline profile videos, so it will not support some of the more advanced

features.

Table 1.1: Video resolutions and frame rates

Resolution Frames per Width Height MegaPixels Normalized
Name second [Pixels] [Pixels] per second Throughput
QCIF 15 176 144 0.38 1
CIF 30 352 288 3.04 8
D1 30 720 480 10.4 27
720p 30 1280 720 27.6 73
1080p 30 1920 1080 62.2 164

The following sections briefly describe the function of each of the major components of

the H.264 video decoder. This should provide the reader with enough details of the video

codec so that the power-saving techniques described later will be more easily understood.

1.3.2 Entropy Decoder (ED)

In a H.264 video decoder (DEC), the encoded bitstream is serially parsed by the entropy

decoder (ED), which produces configuration parameters, discrete cosine transform (DCT)

coefficients, and prediction modes (spatial or temporal) for each 4x4 block of pixels. There

are two entropy coding options for the H.264 standard: context-adaptive variable-length

coding (CAVLC) and context-adaptive binary arithmetic coding (CABAC). The baseline

profile of the H.264 standard uses CAVLC. The high profile uses CABAC, which offers a

10-15% coding gain over CAVLC, at the cost of increased computation complexity. This

30

thesis only explores the baseline profile, so only context-adaptive variable-length decoding

(CAVLD) is implemented.

To illustrate the operation of the CAVLD, a sample set of DCT coefficients is shown

in Figure 1-3. These coefficients have been quantized at the video encoder (ENC), so that

many of the coefficients received by the DEC are zero-valued. Also note that most of the

DCT coefficients are clustered at the lower frequencies, or lower indices of k1 and k2. This

is generally true because typical images have most of their energy content located in lower

frequency bands (there are fewer edges than smooth areas). This yields longer runs of zero

coefficients at the higher frequencies, which can be more efficiently coded. The non-zero

coefficients of Figure 1-3 are broken up into trailing coefficients with absolute value of 1,

and the rest. Each non-zero coefficient is encoded into the bitstream, in the order given by

the zig-zag scanning order (gray winding arrow). The locations of the coefficients (frequency

indices of k1 and k2) are encoded into the bitstream by transmitting the run-length of zeros

between consecutive non-zero coefficients.

0

k
1

2-D DCT

Coe!cients

k
2

3 -1 0

0 -1 1 0

2 0 0 0

0 0 0 0

trailing 1’s: 3

trailing signs: +1,-1,-1

remaining coe"s: 2,3

run of zeros: 1,0,0,1

of non-zero coe"s: 5

Figure 1-3: Decoding quantized DCT coefficients

CAVLC uses variable-length coding (VLC) to provide good compression by assigning

shorter codes to more probable symbols. These codewords are either computed according

to a fixed algorithm or are stored in code tables. For coding DCT coefficients, CAVLC uses

31

different code tables depending on the context, hence the context-adaptive name. For coding

other syntax elements, such as motion vectors (MVs), CAVLC uses a fixed (non-adaptive)

algorithm called exp-Golomb, which is described in Table 1.2. The symbols are enumerated

in order of decreasing probability, with symbol0 being the most probable.

Table 1.2: Exp-Golomb mapping between symbols and variable-length codes

Bit String Form Symbol Index Size of Range
1 0 1

01x0 1-2 2
001x1x0 3-6 4

0001x2x1x0 7-14 8
00001x3x2x1x0 15-30 16

1.3.3 Inverse Transform and Quantization (IT)

The inverse transform (IT) unit takes in a set of 4x4 discrete cosine transform (DCT) coef-

ficients, as shown in Figure 1-3, and performs the inverse discrete cosine transform (IDCT)

along with some pre-scaling and post-scaling. It produces a 4x4 block of pixels which can be

added to the predicted block to get the final decoded block. The transformation is done us-

ing an integer-based approximation of the IDCT, as shown in Equation 1.5. The 4x4 matrix

X represents a scaled version of the residual in the 2-dimensional space domain, while the

4x4 matrix Y is a scaled version of the coefficients in the 2-dimensional frequency domain.

The two other 4x4 matrices are used to perform an approximate 2-dimensional IDCT.

X =

1 1 1 1

2

1 1

2
−1 −1

1 −1

2
−1 1

1 −1 1 −1

2

Y00 Y01 Y02 Y03

Y10 Y11 Y12 Y13

Y20 Y21 Y22 Y23

Y30 Y31 Y32 Y33

1 1 1 1

1 1

2
−1

2
−1

1 −1 −1 1

1

2
−1 1 −1

2

(1.5)

32

1.3.4 Intra Spatial Prediction (INTRA)

The spatial prediction (INTRA) unit exploits the spatial redundancy found in still images to

predict pixels in frames generally found at the start of a new scene which have no temporal

redundancy. Using the already-decoded neighboring pixels above and to the left, it can

predict luma blocks of size 4x4 and 16x16, and chroma blocks of size 8x8. The chroma

resolution is half of the luma resolution in each dimension, as the 4:2:0 format is used.

Since the blocks are processed in raster-scan order, the right and bottom neighboring pixels

cannot be used for prediction since they have not yet been decoded. Figure 1-4 shows the

neighboring pixels used to predict a 4x4 luma block.

-1,-1 0,-1

0,0 1,0 2,0

x,y

3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

1,-1 2,-1 3,-1 4,-1 5,-1 6,-1 7,-1

Pixel to be predicted

Previously-decoded pixel

-1,0

-1,1

-1,2

-1,3

x

y

Figure 1-4: 4x4 luma block spatially predicted from its left, top-left, top, and top-right
neighbors, which are already decoded

Each 4x4 luma block is predicted from its left, top, and top-right neighboring pixels.

There are 9 directional prediction modes, such as vertical, horizontal, DC, and other di-

rections. For example, the formula for the Diagonal-Down-Right (DDR) prediction mode

uses a 3-tap finite-impulse-response filter (FIR), as shown in Equation 1.6. The 4x4 block

is predicted from the previously-decoded pixels to the left (x-coordinate=-1) and above (y-

coordinate=-1). Luma pixels can also be intra-predicted in blocks of 16x16, with one of four

prediction modes: horizontal, vertical, planar, and a DC average. The chroma prediction

modes for 8x8 blocks are identical to the modes of 16x16 luma intra.

33

if x>y,

pred4x4L[x, y] = (p[x − y − 2,−1]) + 2 × p[x − y − 1,−1] + p[x − y,−1] + 2)/4

if x<y,

pred4x4L[x, y] = (p[−1, y − x − 2]) + 2 × p[−1, y − x − 1] + p[−1, y − x] + 2)/4

if x==y,

pred4x4L[x, y] = (p[0,−1] + 2 × p[−1,−1] + p[−1, 0] + 2)/4

(1.6)

An example of a 4x4 luma intra prediction is shown in Figure 1-5. The prediction mode

is DDR, so the prediction uses the equations of Equation 1.6. Note how the predicted pixels

along every diagonal arrow are equal in value. Also note that their value is similar to the

previously-decoded pixel on the same diagonal, since a weighted 3-tap FIR is used.

16 32

18 36 72

x,y

81

9 18 36 72

5 9 18 36

2 5 9 18

64 128 5

DDR mode prediction

Previously-decoded pixel

8

4

2

0

x

y

16

18

18

18

18

32

36

36

36

72

72

64

81

128

2

2 5

5

4 9

9

9

8

Figure 1-5: Example of 4x4 luma block intra predcited using Down-Down-Right mode

1.3.5 Motion Compensation (MC)

The motion compensation (MC) unit uses pixels from previously decoded frames along with

corresponding motion vectors to predict the current 4x4 block. When the motion vectors

are integer-valued, the predicted 4x4 block can be found in its entirety in a previous frame,

as shown in the left part of Figure 1-6. However, when either the X or Y component of

34

the motion vector is fractional, the predicted 4x4 block must be interpolated from integer-

location pixels in previous frames, as shown in the right part of Figure 1-6. The luma

interpolating FIR (Equation 1.7) has 6 taps (better coding efficiency than a 2-tap FIR) so

a 4x4 block is predicted from an area of at most 9x9 pixels. An invariant 6-tap Wiener FIR

provides an improvement over a 2-tap FIR because it better approximates an ideal low-pass

filter [6].

Pixel in

Reference Frame

Pixel to be

predicted

MVint MV
frac

Figure 1-6: Integer and fractional motion vectors

pred[2.5] = (p[0] − 5 × p[1] + 20 × p[2] + 20 × p[3] − 5 × p[4] + p[5])/32 (1.7)

The fractional chroma pixels are predicted using a simpler bidirectional filter. There is

a separate MV for each 2x2 block of chroma pixels. Each fractional-location pixel (with

1/8th of an integer resolution) is interpolated from its integer-location neighbors: top-left

(TL), top-right (TR), bottom-left (BL) and bottom-right (BR), as shown in Figure 1-7.

The interpolation uses the equation in Equation 1.8, where dx and dy are 3-bit numbers

representing the fractional portion of the MVs. To interpolate a block of 2x2 pixels, a 3x3

block is needed.

pred[dx, dy] = ((8 − dx) × (8 − dy) × TL + dx × (8 − dy) × TR+

(8 − dx) × dy × BL + dx × dy × BR + 32)/64
(1.8)

35

TL

BL

TR

BR

dx

dy

8-dx

8-dy

Figure 1-7: Fractional-location chroma pixel is interpolated from its integer-location neigh-
bors

1.3.6 Deblocking Filter (DB)

A side effect of processing a frame in 4x4 blocks is that there can be some visible discon-

tinuities along the edges of these small blocks. The de-blocking filter (DB) unit smooths

these artificial discontinuities and thus improves the perceived image quality. The DB filter

is adaptive by design [7]. The choice of whether to filter an edge or not depends on the

pixel values across the edge. For example, if the gradient across the edge exceeds a certain

threshold, it is assumed that the sharp edge is part of the original image and no filter is

applied. This avoids unintended blurring in the original video. Alternatively, if the gradient

across the edge is smaller, a filter operation is applied. The type of filtering applied across

the edge depends on the type of edge. The most likely location for a blocking artifact is the

boundary between two different intra-coded MBs.

The filtering operation is performed by a finite-impulse-response filter (FIR) with up to

5 taps, depending on the adaptive filter strength, as shown in Figure 1-8. The strongest of

these filters, the 5-tap FIR, is shown in Equation 1.9. There are 6 of these FIRs, one for

each of the 3 pixel values on either side of the 4x4 edge.

36

p
0

p
1

p
2

p
3

q
2

q
3

x6

q
3

q
1

q
0

4x4 Edge

p’
0

p’
1

p’
2

p
3

q’
2

q’
1

q’
0

4x4 Edge

Variable 1 to 5 tap FIR

Figure 1-8: Deblocking filter smooths out artificial discontinuities across pixel edges

p′0 = (p2 + 2p1 + 2p0 + 2q0 + q1 + 4)/8

p′1 = (p2 + p1 + p0 + q0 + 2)/4

p′2 = (2p3 + 3p2 + p1 + p0 + q0 + 4)/8

q′0 = (q2 + 2p1 + 2p0 + 2p0 + p1 + 4)/8

q′1 = (q2 + q1 + q0 + p0 + 2)/4

q′2 = (2q3 + 3q2 + q1 + q0 + p0 + 4)/8

(1.9)

1.3.7 Frame Buffer (FB)

Decoded frames must be temporarily kept in a large cache called the frame buffer (FB), so

that they can be used for temporal prediction during the decoding of future frames. The

H.264 baseline profile level 3.2 (720p) requires the decoder to store the last 5 frames so that

they can be used for predicting future frames. These five 720p frames use up about 6.9MB

37

of memory (720 (height in pixels) × 1280 (width in pixels) × 1.5 (luma+chroma) × 1 Pixel

Byte × 5 frames). If they cannot be fit into on-chip caches, they must be kept in large

off-chip memories with more storage capacity.

The FB is written to by the video decoder whenever an output pixel is produced. The

decoder reads from the FB whenever it needs data for the MC unit. At the system-level, the

decoded frames must also be sent to a display. In the absence of a separate display buffer

memory, the frames to be displayed are also read from the FB.

1.4 Related Work

State-of-the-art H.264 ASIC video decoders (DECs) have used micro-architectural techniques

such as pipelining and parallelism to increase throughput and thus reduce power consumption

of the digital logic. Additionally, related papers have examined different ways to optimize

the memory subsystem of video decoders and therefore increase performance and reduce

off-chip memory accesses. Table 1.3 lists some of the recently published H.264 hardware

decoders. There is a wide spread in their power efficiency, but most of them consume less

than 1W when decoding 1080p videos at 30 fps.

Table 1.3: Survey of H.264 hardware video decoders

Paper Resolution Frame CMOS Clock Supply Core
Ref. W x H Rate Process Frequency Voltage Power
[8] 1920 x 1080 30 130nm 130-170 MHz N/A 554 mW
[9] 1920 x 1088 30 130nm 120 MHz 1.2 V 108 mW
[10] 720 x 480 30 180nm 16.6 MHz 1.2 V 12.4 mW
[11] 176 x 144 30 180nm 1.2 MHz 1.8 V 865 µW
[12] 1280 x 720 30 65nm 14-54 MHz 0.7-0.85 V 1.8 mW
[13] 352 x 288 30 180nm 6 MHz 1.65 V 1.8 mW
[14] 1920 x 1080 30 180nm 44.6 MHz 1.8 V 305 mW
[15] 1920 x 1080 15 65nm 162 MHz 1.2 V 172 mW

38

1.4.1 Related Work on Video Pipelining and Unit Parallelism

The authors of [14] and [16] pipeline the different decoder units using variable-depth FIFOs.

The work in [17] provides an in-depth analysis of how FIFO sizing affects performance of the

interconnect in a Network-on-Chip. They treat the whole decoder as a latency-insensitive

pipeline, so that the units do not have to operate in lockstep. They also separate the

chroma and luma pipelines, and argue that very little area overhead is incurred since the

functional units are different for luma and chroma. The pipeline operates on 4-pixel wide

data, which doubles the performance over a single-pixel pipeline while adding relatively

little area. Within the DB unit, there are two 4x4 block-edge filters, one vertical and one

horizontal. These two filters are pipelined and can thus run concurrently. A hybrid pipeline

architecture is employed in [13] where most decoder units operate on 4x4 blocks, whereas

the DB unit operates on a full MB.

Previous work proposes an architecture for 4x4 INTRA which is optimized for reducing

area [9]. As a result, because parallelism is sacrificed for area savings, it can take up to 8 clock

cycles to predict a 4x4 block. The work in [18] implements a parallel IDCT architecture using

two 1-D IDCTs that can compute a 4x4 block in 4 cycles. They authors of [19] implement

a pipelined and parallelized MC interpolator which can compute a 4x4 block in 4-9 clock

cycles.

The authors of [14] and [16] show that up to four 4x4 block edges can be filtered by the

DB unit in one cycle. This would require using 16 different 8-input filters, one for each of the

pixel edges. They also proposes a scheme where multiple MC interpolators could be used in

parallel.

The work of [20] used a hierarchical LUT for CAVLD in order to enable parallel lookup

of multiple bits at once while reducing the total LUT size. Similarly, [21] explored several

types of hierarchical LUT partitioning optimize the energy and performance of VLC. The

work in [22] speeds up CAVLD by decoding two coefficient levels and more than two “run-

of-zeros” in the same cycle. The work in [23] can improve the CAVLD throughput by 10%

when identifying highly-probable patterns of coded 4x4 or 2x2 blocks and thereby avoiding

the full CAVLD decoding process.

39

The author of [24] proposes using distributed arithmetic for implementing the IDCT

function of the MPEG-2 video standard. Due to the successive approximation nature of

distributed arithmetic, the author proposes using variable-precision arithmetic to perform

the IDCT computations. This reduces the processing power of unnecessary precision bits

while having only a minor impact on image quality.

This thesis presents several new ideas and analysis related to video pipelining and unit

parallelism. Unlike previous work such as [14], we quantify the performance gain achieved

by increasing the size of the FIFOs separating the different pipeline stages. We also explore

luma interpolator parallelism within the MC unit, which we have not found in other papers.

Finally, the variable-precision arithmetic study done for the computations in the IT unit of

a modified H.264 decoder was not seen in any of the previous works.

1.4.2 Related Work on Multi-Core Video Decoding

The performance bottleneck of the DEC architecture described in [12] was identified to be

the ED unit. This is because CAVLD processes an inherently serial bitstream and cannot

be easily parallelized. This is also seen in [25] and [26], where everything but the ED unit

was replicated by a factor of 8. Although [25] and [26] are software implementations for

multi-core processors, the same ED bottleneck is seen in multi-core hardware DECs, as will

be shown in Section 4.3. One way to overcome the ED performance bottleneck is to run it

at a faster frequency, as suggested in [27, 15]. However, the ED unit must be run at a higher

voltage than the rest of the system, so it will lower the overall energy efficiency. Also, even

at the maximum frequency allowed by the underlying transistor technology, the ED unit

might not be able to run fast enough to meet the highest performance demands.

A multi-core approach to increasing decoder throughput is to break the input stream

into slices that can be processed in parallel, which has been proposed by [28] and [29].

The authors of [28] propose breaking up each frame into completely independent slices; this

method was described for MPEG-2 but is also applicable within the H.264 standard at the

cost of lower coding efficiency, as will be shown in Section 4.1. The work in [29] proposes

breaking up each frame into “entropy” slices where only the ED portion is independent; this

40

method is not H.264 compliant.

Other approaches used to speed up video decoding in a multi-core system are the software

implementations of [26] and [25]. In these works, the MBs are decoded in parallel along a

diagonal, but the video bitstream is still parsed serially.

This thesis presents several new ideas and analysis related to multi-core parallelism. We

extend the idea of [28] from the MPEG-2 standard to the H.264 standard and analyze the

performance benefits, as well as the area costs. We also introduce frame parallelism, a

technique which allows multiple decoders to process several consecutive P-frames at once.

In addition, we implement the diagonal processing of [26] and [25] in a multi-core hardware

decoders and also allow for the ED portion to be processed in parallel. Finally, we describe

several ways of indexing multiple decoders into the same video stream at once.

1.4.3 Related Work on Video Memory Optimization

The work in [30] describes a tool called “ATOMIUM” that allows a designer to automatically

find the optimal memory architecture for a given algorithm transformation. This tool is

especially useful for multi-dimensional signal processing applications dealing with large sets of

data, such as video and image processing. The work in [31] analyzes the memory architecture

options for a motion estimation (ME) engine.

Previous work uses individual last-line caches for each of the decoder units to avoid

accessing a large main memory [14, 16]. [10] uses a line-pixel look-ahead scheme to reduce

the size and activity of this last-line cache.

The authors of [14, 16] place MC caches between the frame buffer controller (memory

controller (MEM)) and the frame buffer store (FB). Separate MC caches are used for luma

and chroma, and the authors conclude that two caches of size 1 kByte provide 46% and 30%

reduction in OCFB MC reads for luma and chroma respectively.

The work in [32] and [13] uses local buffers to store the MC overlap data between neigh-

boring 4x4 blocks. Additionally, [32] combines luma and chroma accesses to increase the

burst length of the external dynamic random-access memory (DRAM) from 2.18 to 4.38.

Based on these two techniques, [32] achieves 56% BW savings.

41

In addition to on-chip caching, another technique to reduce OCFB BW is to compress the

reference frames ([33]). When storing a decoded frame, the DEC uses a simple fixed-length

lossy compression to reduce the size of the frame sent to the OCFB. When reading back a

reference frame for MC, the DEC must perform the inverse of that compression to recover a

degraded copy of the reference pixels. This scheme can achieve a 25% reduction in both the

size and BW of the OCFB when compressing pixels from 8 bits to 6 bits. The main cost is a

degradation in either bitrate or PSNR and the extra computation required for compression

and decompression. Specifically, this scheme leads to a 1.03% drop in bitrate or 0.043 drop

in PSNR. The idea of [33] is not H.264 compliant and must be performed in the same way

at the encoder and decoder.

The work in [26] demonstrates how memory BW can be reduced for a multi-core H.264

DEC software implementation. Two partitioning methods are considered for the multi-core

processor architecture: by data (part of a frame) and by function (part of the algorithm).

The data memory BW is found to be 65% smaller when each processor fully decodes part

of a frame (data partitioning) versus when each processor performs part of the decoding for

the entire frame (function partitioning).

The work in [9] uses two separate FBs, one for luma and one for chroma, in order to

parallelize the MEM and allow it to operate at half the frequency. This is especially important

for 1080p resolutions, when the MEM clock rate could be as high as 200-300MHz. [34]

implements a video processor with embedded dynamic random-access memory (eDRAM),

allowing a large reduction in processor I/O power.

This thesis presents several new ideas and analysis related to video memory optimization.

We implement a last-frame cache (LFC) to help eliminate most off-chip memory reads in the

video decoder. We also describe how data-forwarding caches (DFCs) can be used to increase

the temporal locality of data written and read during two consecutive frames. Finally, we

show how interleaved entropy slice (IES) caching improves the temporal locality of data

written and read during consecutive MB lines.

42

Chapter 2

Pipelining and Unit-Level Parallelism

The decoder units of Figure 1-2 can be pipelined in order to increase concurrency and

throughput. Pipeline registers can be inserted between the different units, as shown in

Section 2.1 and Section 2.2, or within some of the units, as shown in Section 3.1 and Section

2.4.

Parallelism can also increase a video decoder’s performance and allow it to operate at a

lower voltage for a given performance requirement. Alternatively, the voltage can be fixed,

and so parallelism can allow the decoder to achieve a higher throughput and decode higher

resolutions. This chapter describes how parallelism can be used within the decoder units

of Figure 1-2 in order to reduce the number of cycles used to process a 4x4 block of pixels.

Chapter 4 will deal with multi-core parallelism.

As discussed in Section 1.4.1, pipelining and unit-level parallelism have been extensively

explored for video decoders. In this chapter, we will describe which of the existing pipelining

techniques we have used or improved, as well as introducing some new ideas.

The ideas presented in Section 2.1, Section 2.5, and Section 2.9 were developed together

with Vivienne Sze.

43

2.1 Decoder Pipeline

The top-level pipelined architecture of the decoder hardware is shown in Figure 2-1. At the

system level of the decoder, first-in-first-out registers (FIFOs) of varying depths connect the

major processing units: entropy decoder (ED), inverse transform (IT), motion compensation

(MC), spatial prediction (INTRA), de-blocking filter (DB), memory controller (MEM) and

frame buffer (FB). The pipelined architecture allows the decoder to process several 4x4

blocks of pixels simultaneously, requiring fewer cycles to decode each frame. Some pipeline

dependencies can arise, which will require stalling in order to ensure correctness. For exam-

ple, a block of pixels in the INTRA unit might have to wait for the previous block of pixels

to be processed by the addition of residual to prediction (ADD) stage before it can proceed.

ED

COEFFS

MODES

MVS

IT

IT

SHARED

LUMA

CHROMA

INTRA

MC
MEM

FB

DB+

COEFFS

MVS

MUX

FB

Bitstream

Input

LEGEND

MODES

MVS

INTRA

MC
MEM

DB+

MVS

MUX

FIFO

Figure 2-1: H.264 pipelined decoder architecture

An example of the luma pipeline operation for P-type macroblocks (MBs) is shown in

Figure 2-2. P-type frames use temporal prediction from previously-decoded frames, while

I-type frames use spatial prediction from previously decoded parts of the same frame. At

any given time, 7 different luma 4x4 blocks can be in flight. Some stages can be idle due to

44

variable workloads or unbalanced cycle counts.

Pipeline

Units

TIME

BK
0MV

IT

ED

BK
0

BK
0DCT

BK
1MV

BK
1DCT

BK
0

BK
0

BK
0

BK
5,0

BK
0,1

BK5

MC

ADD

MEM
wr

MEM
rd

DB

BK
1

BK
1

BK
2

BK
1

BK
2

BK
2MV

BK
1DCT

BK
1

IDLE

IDLE

IDLE

BK
2

IDLE

BK
2

IDLE

Figure 2-2: Pipeline timing example

Additional concurrency is achieved by processing the luma and chroma components with

separate pipelines that share minimal hardware and are mostly decoupled from each other.

In most cases, the luma and chroma components of each 4x4 block are processed simulta-

neously, which enables further cycle count reduction. However, the two pipelines do have

dependencies on each other, which sometimes prevents them from running at the same time.

For example, both pipelines use the same ED at the start, since this operation is inherently

serial and produces coefficients and motion vectors for both pipelines. To reduce hardware

costs, the luma and chroma pipelines also share the IT unit, since this unit has a relatively

low cycle count per block relative to the rest of the units.

2.2 FIFO Sizing

One of the challenges in the system design of the video decoder is that the number of cycles

required to process each block of pixels changes from block to block (i.e. each unit has varying

workload). Consequently, each decoder unit has a range of cycle counts. For instance, the

number of cycles for the ED depends on the number of syntax elements (e.g. non-zero

45

coefficients in residual, motion vectors, etc.) and is typically proportional to the bitrate. As

another example, the number of cycles for the MC unit depends on the corresponding motion

vectors. An integer-only motion vector requires fewer cycles (4 cycles per 4x4 luma block)

as compared to one which contains fractional components (9 cycles per 4x4 luma block).

To adapt for the workload variation of each unit, variable-depth FIFOs were inserted

between each unit. These FIFOs also distribute the pipeline control and allow the units to

operate out of lockstep. The FIFOs help to average out the cycle variations which increases

the throughput of the decoder by reducing the number of stalls, as described in [14]. For

example, consider a simple example where the ED performance alternates between 1 cycle

and 5 cycles per 4x4 block, with an average performance of 3 cycles/4x4. Also, suppose the

IT unit following the ED always takes 3 cycles per 4x4 block. In an ideal pipeline, these

two stages are balanced and the pipeline should have a throughput of one 4x4 block every 3

clock cycles. However, if the FIFO depth separating the two units is only one deep, the IT

unit will stall for 2 cycles whenever the ED unit takes 5 cycles to produce a 4x4 block. In

this case, the average throughput degrades to one 4x4 block every 4 clock cycles.

Figure 2-3 shows that the pipeline performance can be improved by up to 45% by in-

creasing the depths of the 4x4 block FIFOs in Figure 2-1. Compared to a DEC running at

full voltage, a 45% improvement in performance enables voltage scaling that corresponds to

about a 37% savings in dynamic power. For very large FIFO depths, all variation-related

stalls are eliminated and the pipeline performance approaches the rate of the unit with the

largest average cycle count. This performance improvement must be traded off against the

additional area and power overhead introduced by larger FIFOs.

The FIFO depths considered in Figure 2-3 were fixed for all the FIFOs to be the same,

and the performance was analyzed by varying the depths together. In reality, not all FIFOs

have an equal impact on global performance, so their depths can be optimized independently.

FIFOs with access patterns that have more variance and are more bursty should be deeper

than FIFOs connecting units that have relatively constant instantaneous throughput. For

a more in-depth analysis of FIFO sizing in the context of a Network-on-Chip interconnect,

the reader is referred to [17].

46

Normalized

System

Throughput

1

1.1

1.2

1.3

1.4

1.5

1 4 16 32 256

FIFO Depths

82

Figure 2-3: Longer FIFOs average out workload variations to minimize pipeline stalls. For
this analysis, the depths of all DEC FIFOs are set to the same value, so the depths are varied
together. One FIFO element corresponds to data representing a 4x4 block of pixels.

For maximum concurrency, the average cycles consumed by each stage of the pipeline,

which is equivalent to each processing unit in this implementation, should be balanced. The

remainder of this chapter describes how parallelism can be used to reduce cycle counts in

the bottleneck units to help balance out the cycles in each stage of the pipeline.

2.3 Motion Compensation (MC) Architecture

This thesis provides a detailed description of the pipelining and parallelism optimizations

implemented for the MC interpolator architecture. For this reason, this section will be dealt

with separately in Chapter 3.

2.4 Inverse Transform (IT) Architecture

The inverse transform (IT) unit performs an inverse discrete cosine transform (IDCT) on

the coefficients obtained from the entropy decoder (ED). A parallel implementation, shown

in Figure 2-4, has 8 1-D butterflies running simultaneously in order to reduce the IT latency

47

and increase its throughput. Reducing the latency is important to minimize the pipeline stall

cycles when there are many coded residual blocks (i.e. blocks with non-zero coefficients).

Using this architecture, a full 4x4 residual block can be produced every cycle. The critical

path includes pre-scaling, a 1D IDCT, transposing, another 1D IDCT, then post-scaling.

IN0

IN2

IN1

IN3

OUT0

OUT1

OUT2

OUT3

-

-

-

-

1/2

1/2

Row/Column 1D IDCT

T{ [in0, in1, in2, in3] } =

[out0, out1, out2, out3]

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1
D

ID
C

T

1
D

ID
C

T

1
D

ID
C

T

1
D

ID
C

T

TRANSPOSE

IN0

IN2

IN1

IN3

OUT0

OUT1

OUT2

OUT3

-

-

-

Row/Column 1

T{ [in0, in1, in2, in3] } =

[out0, out1, out2, out3]

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D IDCT

1D IDCT

1D IDCT

1D IDCT

ID
C

T

ID
C

T

ID
C

T

ID
C

T

ID
C

T

PRE-

SCALE

+
<< lshifts

adds

POST-

SCALE

+

>> rshifts

adds

Figure 2-4: Parallel inverse transform architecture

To speed up the IT throughput, we can pipeline the parallel architecture of Figure 2-5a,

by adding some registers before or after the transpose stage, as shown in Figure 2-5b. Alter-

natively, if we want to reduce the area and level of parallelism of the architecture in Figure

2-5a and Figure 2-5b, we can implement the IT as a folded pipeline, as shown in Figure 2-5c.

This reduces the cycle time, but it now takes two cycles to transform a 4x4 block. Note that

the cycle time is not reduced exactly by two, since there is the extra overhead of the mux

and setup time of the registers.

If there are no non-zero DCT coefficients, the IT is skipped since the residual is zero

and does not need to be computed. The workload of the IT can therefore vary considerably,

48

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

+

<<

DEQUANT

LUT

+

>>

PRESCALE

POSTSCALE

R
E

G
IS

T
E

R
S

R
E

G
IS

T
E

R
S

T
R

A
N

S
P

O
S

E

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

(a) Unpipelined architecture, IMPL0

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

+

<<

DEQUANT

LUT

+

>>

PRESCALE

POSTSCALE

R
E

G
IS

T
E

R
S

R
E

G
IS

T
E

R
S

T
R

A
N

S
P

O
S

E

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

R
E

G
IS

T
E

R
S

(b) Pipelined architecture, IMPL1

+

<<

DEQUANT

LUT

+

>>

PRESCALE

POSTSCALE

R
E

G
IS

T
E

R
S

R
E

G
IS

T
E

R
S

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

R
E

G
IS

T
E

R
S

T
R

A
N

S
P

O
S

E

CLK/2
CLKCLK/2

(c) Folded pipeline architecture, IMPL2

Figure 2-5: IDCT architectures

depending on the type of video, as shown in Figure 2-6. If the voltage and frequency of the

IT unit can be dynamically adjusted based on the workload, the IT can operate at a lower

voltage and frequency, and thus consume less energy. This is illustrated in Figure 2-7, which

shows how delay and energy scale for each of the IT implementations of Figure 2-5.

For future video standards, we can trade off power versus coding efficiency by scaling the

bit-accuracy of the computations in the IT block. One way to perform variable-resolution

arithmetic is to “zero” out N least significant bits (LSBs), as shown in Figure 2-8. The

motivation behind this is that for highly compressed videos, there is a great amount of

49

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

video sequence index

ID
C

T
 l
o

a
d

Figure 2-6: Interpolator pipeline

quantization noise present in the pixel values. As a result, the ratio of signal to quantization

noise is low enough that additional truncation of the data will not have a great impact on

the PSNR. This technique is not compliant with the H.264 standard.

Figure 2-9 shows how using less bits in the IT computation leads to lower dynamic

power, but increases the image distortion. Figure 2-9a shows how the dynamic power savings

increase as more bits are truncated. For larger quantization parameters (QPs), or higher

quantization, more bits need to be truncated in order to notice an increase in power savings.

This is because fewer LSBs are toggling for larger QPs. Figure 2-9b shows that with no

truncation, the PSNR is inversely proportional to QP. As we begin to truncate bits, the

video coded with the lower QP is the first to be affected. This is because the LSB contain

more information for videos with lower QPs.

Figure 2-10 shows an example of truncating the 9 LSBs of the IT internal 16-bit data

for a video coded with QP=40. From Figure 2-9, this can save 25% of the IT power while

having only a minor impact on image quality (1.1dB). The visual impact of the 1.1dB drop

in PSNR is almost negligible for this video, mainly because the PSNR was low to begin with

before truncation.

50

0

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8 1

V
DD

 [V]

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

IMPL0

IMPL1

IMPL2

(a) Normalized IDCT energy

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.4 0.6 0.8 1

V
DD

 [V]

L
o

g
(N

o
rm

a
li
z
e
d

 d
e
la

y
)

IMPL0

IMPL1

IMPL2

(b) Normalized IDCT delay

Figure 2-7: Energy and delay comparisons between three different IDCT architectures

To support the claim that the truncation technique is more applicable to videos of low

PSNR, consider trying to achieve 25% power savings when QP=10, with a PSNR of 55dB

for this video. From Figure 2-9a, we would need to truncate about 6 bits. However, the

impact of a 6-bit truncation is a PSNR drop of about 9dB, from Figure 2-9b. This might

not be a satisfactory trade-off for a ENC to make.

51

+

<<

+

>>

TRUNCATE

“N” BITS

POSTSCALE

C
O

E
F

F
IC

IE
N

T
S

R
E

S
ID

U
A

L
S

T
R

A
N

S
P

O
S

E

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

1D-IDCT

Data[16:1]

Data[16:16 -N],N{0}

Figure 2-8: Scaling the bit-accuracy of the IT operation

52

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

5 10 15

Truncation Length [bits]

D
y
n

a
m

ic
 P

o
w

e
r

S
a
v
e
d

qp=40 qp=30 qp=10

0

(a) Effect of truncating IT bits on dynamic power

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

Truncation Length [bits]

L
u

m
a
 P

S
N

R
 (

d
B

)

QP = 10 QP = 40 QP = 30

(b) Effect of truncating IT bits on luma PSNR

Figure 2-9: Power savings increase but peak signal-to-noise ratio (PSNR) decreases as the
number of truncated bits in the IT unit increases, computed for the movie clip “You, Me,
and Dupree”

53

(a) QP=40, 9-bit truncation, PSNR=29.4dB

(b) QP=40, No truncation, PSNR=30.5dB

Figure 2-10: Truncating the 9 LSBs of the IT data reduces the power by 25% and the PSNR
by 1.1dB for the movie clip “You, Me, and Dupree”, coded with quantization parameter
(QP)=40

54

2.5 Deblocking Filter (DB) Architecture

The DB architecture was designed by Vivienne Sze, with contributions from the author.

The length and weightings in the de-blocking filter (DB) FIR are dependent on several

parameters, including the coding type of the 4x4 blocks being filtered, as well as the pixel

value values on either side of the 4x4 edge. These different parameters are combined into

one DB parameter called the boundary strength. The boundary strength information of the

adaptive FIR is the same for all edges on a given side of a 4x4 block. Accordingly, the DB

can be designed to have 4 luma and 2 chroma FIRs running in parallel, and filter an edge

of a 4x4 block every cycle. The luma architecture is shown in Figure 2-11. For additional

cycle reduction, the luma and chroma FIRs operate at the same time, assuming the input

data and configuration parameters are available.

Last Line Cache

104kb

[SRAM]

Internal Memory

4x(4x4x8b)

[DFF]

Block IN

P

Filters (bS=4)

 Filters (bS=1 to 3)

Boundary

Strength (bS)

Datapath

Control

Datapath

Control

Block OUT

Datapath

Control

Datapath

Control

Datapath

Control

Q
out

P
OUT

 (bS=0)

4x4 4x4

4x4 4x4

Q

4x4

4x4

4x1

4x1
4x4

4x4

∆calc clip

<<

>>

......

......

threshold

threshold

<<

4 PARALLEL FILTERS

Figure 2-11: Deblocking filter architecture for luma filtering

55

2.6 Intra Prediction (INTRA) Architecture

The luma 4x4 prediction can be done in one cycle if all the filters are available in parallel.

For example, to implement the Diagonal-Down-Right (DDR) prediction of Equation 1.6, 7

different 3-tap FIRs are necessary. From Equation 1.6, there are 7 total diagonals, and all

the pixels along the diagonal have the same value, as the value only depends on (x − y).

Therefore, we do not need to instantiate 16 different FIRs, since the synthesis tool will

recognize the common terms. Similarly, the other prediction modes can be implemented

with additional parallel FIRs, and the synthesis tools can be used to extract any common

terms amongst them.

Chroma prediction for 8x8 blocks and luma prediction for 16x16 blocks uses the same

modes. As a result, these two units have some common hardware for doing averaging and

plane prediction. If area optimization is more important for these units than performance,

the common area can be multiplexed between the two predictors, and only one of the luma

and chroma DEC pipelines can do spatial prediction at a time. To avoid this pipeline

dependency, the common hardware can just be duplicated.

2.7 Entropy Decoding (ED) Architecture

Decoding a variable-length bitstream in parallel can be quite challenging, since the start of

the next codeword is not known until the current element is fully decoded. As a result, the

ED unit can be one of the bottlenecks of the decoder pipeline, especially for bitstreams with

low compression ratios.

Although two codewords cannot be processed simultaneously, it is possible to speed up

the decoding of an individual element. Instead of searching for a variable-length codeword

using one bit per cycle, the entire code can be retrieved in parallel from a lookup table in

one cycle. For example, the codeword that specifies the total number of coded coefficients

and the total number of trailing ones has a maximum length of 16 bits. This would require

a lookup table, or read-only memory (ROM) of size 216 = 65536 entries.

To reduce the memory requirements of the lookup table, a two-step lookup could be

56

used, as was demonstrated in [35] and shown in Figure 2-12. The 16-bit codeword could

be split up into two 8-bit parts, which would be stored in two different lookup tables, each

with up to 28 = 256 entries. If the variable-length codewords are less than 8 bits, only the

first lookup is needed and it takes one cycle. If it is longer than 8 bits, a second lookup

is needed, so an extra clock cycle is needed. Since the most common codewords use fewer

bits for good compression, the expected number of clock cycles needed would still be close

to one. A similar approach was used in [20], where it was termed “Hierarchical logic for

LUTs”. The work in [21] also explored several types of hierarchical LUT partitioning, in

order to optimize the energy and performance of VLC.

Codeword

Size <= 8 bits
Codeword

Size > 8 bits

TABLE 1 TABLE 2

Codeword

Size > 8 bits

256

addresses up to 256

addresses

up to

8 bits

Table 2

Addr.

Code Value

Width

Code Value

Width

Figure 2-12: Hierarchical LUTs for ED

2.8 Reconstruction (ADD) Architecture

The reconstruction unit can easily be parallelized to perform as many additions in one cycle.

For example, in order to reconstruct a 4x4 block in one cycle, 16 different 8-bit adders can

be used. If all the other DEC pipeline stages take 4 cycles on average per 4x4, then having

4 different adders with muxed inputs and outputs is sufficient.

57

2.9 Memory Controller (MEM) Architecture

The memory controller unit can be divided into two components: I/O pads and logic. The

I/O pads connect the video decoder to the external memory. The logic implements the

memory interface protocol, such as address calculation, read or write selection, memory

enable, generating output data, capturing input data.

The number of memory interface I/O pads might be restricted to the memory data width.

For example, if a memory chip has a bidirectional data bus of 32 bits, this allows only 4

bytes of data to be read or written during every cycle by the decoder. Even if wider memory

chips are an option, the number of memory I/O pads might still be limited by the total

silicon area which places a maximum on the total number of I/O pads. Therefore, if the I/O

pads and logic run off of the same clock, maximum parallelism is made possible by using as

many memory interface I/O pads as possible. If further parallelism is desired, the logic used

to generate the addresses could be placed on a slower clock domain and replicated. Smaller

logic on a faster clock domain could be used to multiplex between the different parallel

addresses.

2.10 Summary

This chapter described different techniques that can be used to speed up the video decoder

units, such that a slower clock and therefore lower voltage can be used to decode each frame.

The different video decoder units were first arranged into a non-interlocked pipeline, such

that all the units can operate in parallel and increase performance. The pipeline units were

separated by variable-depth FIFOs, whose depths were chosen to minimize stalls due to

workload variation within the units. Each of the pipeline units was then optimized to reduce

their cycle count, using parallelism whenever possible.

58

Chapter 3

Motion Compensation (MC)

Architecture

Vivienne Sze designed the original pipelined luma interpolator of Section 3.1 and the parallel

chroma interpolator of Section 3.3.

3.1 Luma Motion Compensation (MC) Pipeline

When one or both of the motion vectors are fractional, the luma interpolator predicts the

current 4x4 block from a 9x9 block of pixels from the previous frame. The interpolator

architecture is shown in Figure 3-1 and is similar to the design in [19]. It consists of a shift

register of 6 columns, which get shifted to the right during each cycle. Each column has

9 registers, 5 (X int,Y int) and the 4 (X int,Y frac) that fit right between them. During

each cycle, a column of 9 integer pixels (shown on the left) from the previous frame is input

to the interpolator. The middle 5 of these inputs are directly fed to the first column’s 5

(X int,Y int) registers. The 4 (X int,Y frac) registers are loaded with the outputs of the 4

vertical 6:1 FIRs shown on the left. After 6 clock cycles, the entire shift register has been

populated with either integer or vertically-filtered pixels. A set of nine 6:1 FIRs is now used

to obtain all the horizontally-filtered pixels at the half-way x-coordinate of the shift register.

At this time, all the half-point pixels are available for that x-coordinate and a column of 4

59

predicted pixels can be output if the motion vectors had only half-point values. However,

since quarter-point accuracy is possible, a set of 4 bilinear filters is used to predict the column

of 4 pixels when one or both motion vectors have quarter-point components. In total, the

datapath of the interpolator pipeline is made up of 54 different 8-bit registers, thirteen 6:1

FIRs, and four 4:1 Bilinear filters.

6:1

6:1

6:1

6:1

6:1

x9

6:1 6-tap FIR

X
int

, Y
int

X
frac

, Y
int

X
int

, Y
frac

X
frac

, Y
frac

LEGEND

Register

1

2

3

4

5

6

7

8

9

FULL-PEL

POSITIONS

Figure 3-1: Interpolator pipeline

In order to minimze the total energy, the interpolator architecture of Figure 3-1 would

be operated at the supply voltage that corresponds to the minimum energy point. This

minimum is shown in Figure 3-2, which plots the total energy used for a 4x4 interpolation

versus supply voltage. The minimum energy exists at around 50% of the supply voltage or

0.6V. However, at this voltage, the interpolator is quite slow and cannot meet the required

performance. To make up for the increase in delay due to voltage scaling, we can use

parallelism, as shown in the following section.

60

0

50

100

150

200

250

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05

Normalized V
DD

E
n

e
rg

y
 /
 4

x
4
 [

p
J
]

E
total

E
leak

E
dyn

4k2k@60fps

1080p@60fps

1080p@30fps

4k2k@30fps

720p@30fps

Figure 3-2: Energy of MC interpolation per 4x4 block plotted versus normalized supply
voltage. Dynamic energy decreases with the supply voltage, whereas leakage energy is a
small portion of the total energy due to the high activity factor.

3.2 Luma Interpolator Parallelism

The MC interpolator is a critical unit in the decoder pipeline. A single interpolator takes 4

to 9 cycles to compute a 4x4 block of pixels. For 65nm, the critical path in the interpolator

is about 6ns at the maximum supply voltage of 1.2V. Therefore, assuming no stalls, a single

interpolator can produce 733,108 4x4 blocks during every frame time period, which is 33ms

for a 30fps frame rate. This is roughly the throughput needed for a 4k2k resolution frame,

or 4096x2048 pixels.

Instead of having one interpolator running at the maximum voltage, the supply voltage

can be lowered and parallelism of varying degrees can be used to make up for the loss in

performance. As will be shown later, this can lower the MC power by as much as 72%. The

parallel MC interpolator architecture is shown in Figure 3-3. Each of the interpolator blocks,

MCi, can be implemented with the architecture described in Figure 3-1.

There are two different inputs for each of the N interpolators during each cycle: a column

of at most 9 pixels read by the MEM from the FB, and a motion vector coming from the

ED. The 128-bit (16 pixels) output of each interpolator is stored in an output FIFO, and

later sent down the DEC pipeline to the DB unit.

61

Memory

Controller

(MEM)

Entropy

Decoder

(ED)

9x1

columns

N

N

motion

vectors

to

reconstruction

stage

128-bit

FIFO

width

MC
0

MC
1

MC
N-1

Figure 3-3: Parallel MC interpolator architecture

In the H.264 standard, MBs are transmitted and processed in raster-scan order. However,

within a MB, 4x4 blocks are processed in a “nested zig-zag” order as shown in Figure 3-4.

This 4x4 order, from 0 to 15, is referred to as the block index. There are several ways to

assign these blocks to the MC interpolators.

row 00 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

block

of 4x4

pixels

16x16

macroblock

row 1

row 2

row 3

Figure 3-4: Scanning order for H.264 4x4 blocks.

One option is to always assign the next block to the first free interpolator. This way, each

62

of the interpolators could be assigned to any of the block indices. The problem with this

approach is that there is no guarantee that horizontally-neighboring 4x4 blocks would be

processed by the same interpolator. Therefore, the cycle savings and data reuse for adjacent

blocks with the same horizontal integer MV, described in Section 3.1, would disappear and

the performance and power would suffer.

An alternative is to assign fixed block indices to each of the parallel interpolators. This

increases performance, allows better data reuse, and simplifies the control logic. The follow-

ing list describes how the interpolators are assigned to the different block and MB indices,

where N is the number of parallel interpolators. .

• N=1, interpolator processes in zigzag scan order

– MC0: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

• N=2, one interpolator for even block rows, the other for odd rows (see Figure 3-5)

– MC0: [0, 1, 4, 5, 8, 9, 12, 13]

– MC1: [2, 3, 6, 7, 10, 11, 14, 15]

• N=4, one interpolator for each block row (see Figure 3-5)

– MC0: [0, 1, 4, 5]

– MC1: [2, 3, 6, 7]

– MC2: [8, 9, 12, 13]

– MC3: [10, 11, 14, 15]

• N=4*n one interpolator for each block row, but processes every nth MB (see Figure

3-5); MB with (index%n=j) is processed by:

– MC0+4j : [0, 1, 4, 5]

– MC1+4j : [2, 3, 6, 7]

– MC2+4j : [8, 9, 12, 13]

63

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0MC
0

N=4

N=8

MC
1

MC
2

MC
3

MC
0

MC
1

MC
2

MC
3

MC
4

MC
5

MC
6

MC
7

MC
0

MC
1

MC
2

MC
3

1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0MC
0

N=2
MC

1

MC
0

MC
1

MC
0

MC
1

MC
0

MC
1

1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Figure 3-5: Parallel MC interpolator assignment to blocks and MBs for N = 2, N = 4 and
N = 8.

– MC3+4j : [10, 11, 14, 15]

The performance increase achieved by interpolator parallelism is close to linear, as shown

in Figure 3-6a. It can be seen that the simulated performance relative to one interpolator

is slightly super-linear. This is because the single interpolator only processes at most two

horizontally-adjacent 4x4 blocks, whereas all the other parallel interpolators process at least

4 adjacent blocks. If N = 4, the performance versus linear gain is the highest, as shown

in Figure 3-6b. This is because the interpolators can process blocks along the entire frame

width in the same row, thus avoiding redundant operations across the MB borders.

Another design variable is the depth of the FIFOs at the output of each interpolator. For

64

1

6

11

16

21

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

MC parallelism

R
e
la

ti
v
e
 P

e
r
fo

r
m

a
n

c
e

simulated

linear

(a) Parallel MC performance normalized to N = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 12 16 20

MC parallelism

P
e
r
fo

r
m

a
n

c
e
 r

e
la

ti
v
e
 t

o
 l

in
e
a
r

(b) Parallel performance normalized to linear gain. Super-linear performance
growth is possible because the single-interpolator architecture follows the zig-
zag processing order and fails to take advantage of overlapped computations
across 4x4 block edges.

Figure 3-6: Simulated performance of parallel MC interpolators

example, consider the case when N = 4, the output FIFO of each interpolator has a depth

of 1, and the outputs are processed in the typical zig-zag order. When MC0 and MC1 finish

65

processing block indices 5 and 7, interpolators MC2 and MC3 are also finishing blocks 9 and

11. However, because the output FIFOs of MC2 and MC3 are full with blocks 8 and 10,

these two interpolators will stall and therefore lower performance. If we increase the FIFO

depth to 2, the bottom two interpolators will mostly be able to operate without stalling, as

shown in Figure 3-7. Table 3.1 shows the minimum output FIFO depth required to achieve

a near-maximum performance for each of the parallelism options analyzed.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17

Fifo Depth

P
e
rf

o
rm

a
n

c
e

R
e
la

ti
v
e
 t

o
 P

e
a
k

Figure 3-7: Parallel (N = 4) interpolator performance versus output FIFO depth

Table 3.1: Sufficient FIFO depths for different parallel interpolator architectures. The num-
bers represent the simulated performance for 100 frames of the “mobcal” 720p video.

Degree of Output FIFO Performance Total
Parallelism depth for each relative to FIFOs FIFO

N interpolator of infinite depth depth

1 1 100% 1
2 1 99.89% 2
4 2 93.55% 8
8 4 98.89% 32
12 4 98.31% 48
16 4 98.32% 64
20 4 97.24% 80

To avoid stalling the parallelized interpolator by starving its inputs, the MEM and ED

66

units should be parallelized to match the throughput. Alternatively, they could also run at a

higher frequency than the MC unit, and have sufficient buffering of their outputs. The input

FIFOs that hold the inputs for the parallel MC interpolators are not shown in Figure 3-3

and are absorbed within the MEM and ED units. Similarly, to avoid stalling the parallelized

interpolator by filling its output FIFOs, the units that follow the MC must match its rate

in blocks per second. Therefore, the DB, ADD, and MEM units must be also parallelized

or be run at a higher frequency. In this analysis, the MC unit was simulated at a much

lower frequency than the rest of the system, in order to avoid stalling generated by the other

un-optimized units.

The main cost of interpolator parallelism is chip area. Figure 3-8a shows how the area

grows with increased parallelism. The larger degrees of parallelism show super-linear area

growth, mainly due to the increased output FIFO requirements shown in Table 3.1.

The resulting savings in energy due to increased parallelism are shown in Figure 3-9,

normalized to the single-interpolator case running at full voltage. The energy is simulated

using a post-layout netlist which includes wire parasitics. Note that even when the voltage

is not scaled, total and dynamic energy is initially reduced due to a reduction in redundant

MC computation.

For low degrees of parallelism, total energy decreases since it is dominated by dynamic

energy, which decreases with voltage scaling. For higher degrees of parallelism, increased

performance translates to smaller drops in voltage and therefore dynamic energy. This is

because the current decreases faster at lower voltages. As a result, a minimum energy

point of 58 pJ per 4x4 block can be seen for a parallelism of N = 4. This minimum

energy point was also illustrated in Figure 3-2, where the minimum value was 68 pJ per 4x4

block. The difference in minimum values can be attributed to the fact that the 4-interpolator

architecture eliminates many of the overlapping computations of the single-interpolator case.

This difference was also seen in the super-linear performance gain of Figure 3-6b.

For higher degrees of MC parallelism, there is another factor that drives up the energy

per 4x4 block. As the area gets larger, the routing complexity increases, since we need

to distribute the inputs to more parallel processing elements and to collect the processed

67

1

6

11

16

21

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Degree of MC Parallelism

R
e

la
ti

v
e

 A
re

a

Relative Area

linear

(a) Parallel area normalized to N = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 12 16 20

Parallelism

A
r
e

a
 G

a
in

 v
s

 L
in

e
a

r

(b) Parallel area normalized to linear gain

Figure 3-8: Post-synthesis area overhead of MC interpolator parallelism

results and multiplex them onto the output. The increase in routing complexity leads to

longer wires and has a direct effect on the power used in charging up the interconnect. This

can be seen in Figure 3-11, which plots the normalized power of charging up the wires for

68

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

1 2 4 8 12 16

Degree of MC Parallelism

N
o

rm
a

li
z
e

d

Energy @ V
DD-Max

Energy @ V
DD-Min

V
DD_Min

-53%

-34%

+6% +0.2% +4%

Figure 3-9: Energy savings of MC interpolator parallelism

0

50

100

150

200

250

1.00 3.00 5.00 7.00 9.00 11.00 13.00 15.00 17.00

Degree of MC Parallelism

e
n

e
rg

y
 /
 4

x
4

 [
p

J
]

1080p@30fps

1080p@60fps

720p@30fps

4k2k@30fps

4k2k@60fps

Figure 3-10: Energy of MC interpolation per 4x4 block. Dynamic energy decreases with
parallelism initially, but then secondary effects such as wiring and muxing overhead drive
the energy back up for further increases in parallelism.

69

various degrees of parallelism. The power numbers were obtained from the power report and

normalized per cycle.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1 3 5 7 9 11 13 15 17 19

Degree of MC Parallelism

N
o

rm
a
li

z
e
d

 W
ir

e
 E

n
e
rg

y

Figure 3-11: Normalized wire power for various degrees MC interpolator parallelism

Figure 3-12 shows the layout for a single MC interpolator and a parallel one with N = 4.

The floorplan of the parallel interpolator is twice as large in each dimension and corresponds

to the near-linear increase in standard-cell area.

3.3 Chroma Interpolator Parallelism

Chroma interpolation involves the use of a 2-D bilinear filter and each 2x2 chroma block is

predicted from an area of 3x3 pixels. To speed up this operation, the chroma interpolator

can be also be parallelized. For example, if it is replicated four times, a 2x2 block of pixels

can be interpolated during every cycle, as shown in Figure 3-13. Each filter completes in one

cycle and consists of four 8-bit multipliers and four 16-bit adders.

70

(a) MC interpolator layout for
N = 1

(b) MC interpolator layout for N = 4

Figure 3-12: Comparison to scale of MC interpolator layouts, showing the nearly linear
growth in area

B B

B B

B

TL

BL

TR

BR

dx

dy

8-dx

8-dy

Figure 3-13: Chroma bilinear filter (B) is replicated 4 times

71

72

Chapter 4

Multi-Core Decoding

Chapter 2 described how parallelism can be applied within the video decoder (DEC) units

(for example, MC or DB) to increase system performance. In this section, we will describe

different ways in which two or more DECs can process a video in parallel and therefore

increase system performance. The goal of these techniques is to enable N DECs to execute

concurrently, in order to achieve a performance improvement of up to N . The added per-

formance can be traded off for a lower operating voltage and power, as explained in Section

1.1.1. These techniques are also cumulative, so they could be used together to expose even

more parallelism.

This section deals with both H.264-compliant video processing, as well as describing

other ways to expose the desired parallelism by slightly modifying the H.264 algorithm.

Specifically, the ideas of Section 4.1 and Section 4.2 are H.264 compliant, but the other ideas

require slight changes to the H.264 standard.

Multi-core decoding consists of replicating an existing DEC architecture, as shown in

Figure 4-1. Each of the parallel DECs parses different parts of the bitstream, and together

they produce one output video. The frame buffer memory controller is shared between the

parallel DECs, since they all share one off-chip memory. With enough buffering of memory

reads and writes, the sharing of the memory controller should not introduce any stalls in

the DEC cores. Similarly, the interface to the bitstream memory must also be shared by the

different DECs, and it is assumed that this bitstream memory is randomly accessible.

73

Bitstream

Memory

Controller

ON-CHIP

DEC
0

N

DEC
i

DEC
N-1

Frame

Buffer

Memory

Controller

+

MC Cache

Bitstream

Memory

Frame

Buffer

ED

IT

INTRA

MC

DB

+MUX

N

N

Figure 4-1: Parallel video decoder architecture

Section 4.1 shows how multiple DECs can parse several slices within one frame. Section

4.2 presents a way of decoding multiple H.264 frames simultaneously, while achieving a

linear improvement in performance with no loss in coding efficiency. Section 4.3 introduces

a new macroblock (MB) ordering that enables better DEC parallelism. Section 4.4 shows

how to process slices in an interleaved way and thus greatly reduce the coding loss of H.264

slices. Section 4.5 proposes several bitstream controller architectures, including a new way

of reducing the latency when buffering input slices or frames, which is required for all the

parallel DEC techniques. Section 4.6 looks into the applicability of the multi-core decoding

ideas to a multi-core software implementation. Section 4.7 summarizes and compares the

different DEC parallelism techniques.

The proposed architectures were implemented using Verilog and the coding loss was

simulated using the H.264 reference software [36]. The underlying DEC architecture used

for all the analysis is based on the implementation of Chapter 6.

The development of the ideas presented in Section 4.1, Section 4.3, and Section 4.4 was

done in collaboration with Vivienne Sze, who also performed the coding efficiency simulations

featured in Section 4.1. I led the RTL implementations of the multi-core ideas of this chapter

together with the performance, power and area analysis.

74

4.1 Slice Multi-Core Decoding

There is a simple scheme that enables multi-core H.264 decoding for increased performance

or lower operating voltage. It consists of dividing a frame into two or more slices at the video

encoder (ENC). Each slice can be processed by a separate DEC, as shown in Figure 4-2.

Parallel slice processing relies on the ability of the DEC’s entropy decoder (ED) to parse

two or more slices simultaneously, and also assumes that the ENC divides each frame into

enough slices to exploit parallelism at the DEC.

SLICE
0
, DEC

0

SLICE
1
, DEC

1

SLICE
N-1

, DEC
N-1

.

.

.

F
ra

m
e

 H
e

ig
h

t

Frame Width

Figure 4-2: Dividing a frame into slices enables parallelism within a frame

Consider the case of slice parallelism for N = 3 and 30 fps. The corresponding timing

diagram is shown in Figure 4-3. The three different DECs are staggered by approximately

11ms (one third of a frame period), such that each DEC finishes just in time for its part of

the frame to be shown by the DISPLAY process.

In the H.264 standard [3], each slice is preceded by a small 32-bit delimiter code, as shown

in Figure 4-4. If the DEC can afford to buffer an entire encoded frame of the input stream

and quickly parse for the start code of all slices, then it can simultaneously read all the slices

from this input buffer. This idea is similar to the parallel MPEG-2 decoder described in [28].

75

Parallel

Units

TIME

S
0,0

33ms

F
0

DEC
0

DEC
1

DEC
2

DISPLAY

ENC

S
1,0

S
2,0

S
3,0

S
0,1

F
1

F
2

F
3

S
0,0

S
0,1

S
0,2

S
1,0

S
1,1

S
1,2

S
2,0

S
2,1

S
2,2

S
3,0

S
3,1

S
3,2

S
1,1

S
2,1

S
3,1

S
0,2

S
1,2

S
2,2

S
3,2

22ms

Figure 4-3: Timing diagram of slice parallelism for N = 3

S
0

32- bit headers

FRAME
j+1

FRAME
j

S
1

S
2 S

i
...

...

S
i

...... S
N-1

... S
N-1

S
0

variable-length slices

......

Figure 4-4: Start of slices can be found by parsing for headers. This figure shows each frame
divided into N different slices.

The slice parallelism scheme is compatible with H.264 and trades off increased parallelism

for a decrease in coding efficiency. We evaluated the impact of slice parallelism by encoding

150 frames of four different video sequences and separating each frame into a fixed number of

slices, using the JM reference software [36] with QP=27. The result is shown in Figure 4-5.

Relative to having single-slice frames, the coding efficiency decreases because the redundancy

across the slice borders is not exploited by the ENC. Furthermore, the size of the slice header

information is constant while the size of the slice body decreases because it contains fewer

16x16 pixel MBs. For example, when dividing a 720p video coded with QP=27 into 8 slices,

76

the CAVLC coding method suffers an average 1.54% coding loss, when measured under

common conditions [37].

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 10 20 30 40 50 60 70 80

of slices

C
o

d
in

g
 L

o
s

s
bigships

mobcal

shields

parkrun

Figure 4-5: CAVLC coding loss increases with number of H.264 slices in a 720p frame

Beside the loss in coding efficiency, another disadvantage of the slice partitioning scheme

is that the full-last-line caches (FLLCs) of Section 5.1 need to be replicated together with

each DEC, since they operate on completely different regions of the frame. This causes the

area overhead of parallelism to be nearly proportional to the degree of parallelism. In some

DEC implementations the on-chip cache dominates the active area (75% as will be shown in

Section 6.7), so replicating the FLLCs might be avoided if area is of critical importance. If

the FLLCs are not replicated for each DEC, this increases off-chip BW and corresponding

power, as discussed in Section 5.1.

Ideally, the performance improvement of slice parallelism with N decoders is at most N.

However, there are two reasons why the performance does not reach this peak. First, the

workload is not evenly distributed amongst the parallel slices, especially since they operate

on disjoint regions of the frame which could have different coding characteristics. Second, the

increase in total bits per MB due to loss in coding efficiency (more non-zero coefficients, for

example) leads to an increase in ED computation cycles. Using the sizes of the encoded JM

77

slices as an estimate of ED performance, slice parallelism can only achieve a 2.51X relative

performance for N = 3. The performance impovement of H.264 slice multi-core parallelism

is shown in Figure 4-6. As the number of slices increase, the multi-core performance moves

further away from the linear increase since the workload distribution across the different

slices becomes more uneven and the number of compressed bits per frame also gets larger.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

of Slices

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

H.264 Slices

Linear

Figure 4-6: Performance of H.264 slice multi-core parallelism for 100 frames of the 720p
“mobcal” video sequence. When many slices are used, the performance increase is not
proportional due to uneven distribution across the slices and the extra CAVLC processing
required for each slice.

78

4.2 Frame Multi-Core Decoding

In this section, we show how to process N consecutive H.264 frames in parallel, without

requiring the ENC to perform any special operations, such as splitting up frames into N

slices. Once again, the motivation for this parallelism is either increased performance or

lower supply voltage. The simultaneous parsing of several frames relies on input buffering

and searching for delimiters, similar to the discussion of Section 4.1. However, note that

this technique requires buffering N frames, so it will incur a higher input latency than the

buffering of N slices.

Several consecutive frames can be processed in parallel by N different DECs, as shown

in Figure 4-7. The main cost of multi-frame processing is the area overhead of parallelism,

which is proportional to the degree of parallelism, just as in Section 4.1. If these frames

are all I-frames (spatially predicted), then they can be processed independently from each

other. However, when these frames are P-frames (temporally predicted), DECi requires

data from FB location FBi−1, which was produced by DECi−1. If we synchronize all the

parallel DECs, such that DECi lags sufficiently behind DECi−1, then the data from FBi−1

is usually valid.

FB
-1

FB
0

FB
1

FB
2

DEC
0

DEC
1

DEC
2

Frame
0

Input

Bitstream

Parallel

Decoders

Off-Chip Frame Buffer (OCFB)

Frame
1

Frame
2

On-Chip

Figure 4-7: Three parallel video decoders processing 3 consecutive frames

Consider the case of frame parallelism for N = 3 and 30 fps. A corresponding timing

diagram of the parallel units is shown in Figure 4-8. For 30 fps, a new frame must be

79

displayed every 33ms. Since there are 3 parallel DECs, each DEC can take about 100ms to

decode one frame. Figure 4-8 shows that the input buffering latency is 66ms, from the time

that framei arrives from the ENC and begins to be decoded to the time that it begins to

be displayed.

Parallel

Units

TIME

F
0

F
0

33ms

F
1

DEC
0

DEC
1

DEC
2

DISPLAY

ENC

F
3

F
6

F
9

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
4

F
7

F
10

F
2

F
5

F
8

F
11

66 ms 100 ms

Figure 4-8: Timing diagram of frame parallelism for N = 3

This staggered arrangement of the DECs is also illustrated in Figure 4-9. If the motion

vector in DECi requires pixels not yet decoded by DECi−1, then concurrency suffers and

we must stall DECi. This could happen if the y-component of the MV is a large positive

number. This stall is illustrated in Figure 4-9, which shows how DEC1 wants to read data

from a location in the previous frame. Since this location is not yet reached by DEC0,

which is processing the previous frame, DEC1 must stall until DEC0 reaches this area.

These types of stalls can eventually propagate to the other decoders (DEC2, ...), thereby

degrading system performance.

This type of parallel processing can increase the DEC performance by up to a factor

of N . The parallel frame processing architecture was implemented in Verilog using the

core of Chapter 6 for each of the DECs. The architecture was then verified for different

80

DEC
2

DEC
1

DEC
0

DEC
N-1

DEC
0

: 0, N, ..., n*N, ...

x

y Frame #

DEC
i

: i, N+i, ..., n*N+i

DEC
N-1

: N-1, 2N+1, ..., n*N+N-1 OK! DEC
1

done here

STALL! DEC
0

not here yet
OK! DEC

N-1
 done

with entire frame

F
ra

m
e

 H
e

ig
h

t

Frame Width

Figure 4-9: Snapshot of N parallel video decoders and their position in their respective
frames

video sequences and varying degrees of parallelism. Figure 4-10 shows how the clock period

increases for a given resolution as we process more frames in parallel. This increase is nearly

linear, but is limited by the workload imbalance across the various sets of frames running on

each of the parallel DECs.

The performance decrease due to the stalls described in Figure 4-9 was simulated to be

less than 1% for N = 3, across 100 frames of a 720p “mobcal” video sequence. The relatively

small number of stalls for the simulated videos can be understood by examining the statistics

of their vertical motion vectors. As shown in Figure 4-11, the motion vectors for various

videos are typically small and have a very tight spread, which minimizes stalling.

4.3 Diagonal Macroblock Processing

The H.264 coding standard processes the macroblocks (MBs) of video frames in raster-scan

order. In order to exploit spatial redundancy, each MB is coded differentially with respect

to its already-decoded neighbors to the left (L), top-left (TL), top (T), and top-right (TR),

as seen in Figure 4-12. The redundancy between neighbors is present in both pixel values

81

of Parallel Frames

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5

Linear

Frame Para

Figure 4-10: Performance of frame multi-core parallelism for 100 frames of the 720p “mobcal”
video

and control information (motion vectors, number of coded coefficients, etc).

In theory, we could instantiate two identical DECs to simultaneously process two con-

secutive MBs (for example, “Current” and “Left” in Figure 4-12). However, due to the

dependency shown in Figure 4-12, the “Left” MB should be fully decoded before the “Cur-

rent” one can be started. This means the two parallel DECs could not run at the same time

for these two MBs without a lot of stalling.

As an alternative, the parallel DECs can process MBs on a 2:1 diagonal as shown in Figure

4-13. This is similar to the parallel software processing order described in [25]. The diagonal

82

x-component of motion vector

O
c
c
u

r
e
n

c
e
s

0

50000

100000

150000

200000

250000

300000

-7 -5 -3 -1 10 3 5 7

mobcal - 300 frames

parkrun - 200 frames

shields - 300 frames

bigships - 150 frames

(a) Horizontal motion vectors

0

100000

200000

300000

400000

500000

600000

700000

y-component of motion vector

O
c
c
u

r
e
n

c
e
s

mobcal - 300 frames

parkrun - 200 frames

shields - 300 frames

bigships - 150 frames

-4 -2 0 2 4 6

(b) Vertical motion vectors

Figure 4-11: Distribution of vertical motion vectors for several conformance videos showing
a tight spread

height D could be set to anywhere from 1 to H (frame height). The different diagonals are

ordered from left to right. Setting D = 1 corresponds to the typical raster-scan processing

order.

83

LEFT

TOP-

LEFT
TOP

TOP-

RIGHT

Current

MB

Figure 4-12: Spatial dependency on neighboring macroblocks

If diagonal processing is used, all the MBs on a diagonal can be decoded concurrently since

there are no dependencies between them. If all MBs had similar processing workloads, the

scheme described in this section could speed up the DEC by N (degree of DEC replication).

In reality, the workload per MB does vary, so the performance improvement is lower than

the increase in area. The diagonal height D of each region of diagonals can be set to N , since

no further parallel DEC hardware is available. Note that the top line of MBs in each region

of diagonals is still coded with respect to the MBs in the region of diagonals just above, in

order to maintain good coding efficiency, as opposed to the slice parallelism of Section 4.1.

2:1 Slope

D
ia

g
o

n
a

l H
e

ig
h

t =
 D

 M
B

s

F
ra

m
e

 H
e

ig
h

t
=

 H
 M

B
s

Frame Width = W MBs

Diagonals processed in this order

Figure 4-13: 2:1 diagonal processing order

84

A limitation to implementing this scheme is that the coded MBs in H.264 arrive in raster-

scan order from the bitstream. One solution would be to modify the algorithm and reorder

the MBs in a 2:1 diagonal order at the ENC. For example, the MBs in each diagonal could be

transmitted from top-right to bottom-left in the bitstream. Another ordering could transmit

MBs on even diagonals top-right to bottom-left and MBs on odd diagonals from bottom-left

to top-right.

Diagonal reordering would require a change in the H.264 standard, and both the ENC and

DEC would have to process MBs in a diagonal order. The CAVLC entropy coding efficiency

would not suffer, since each MB can be coded in the same way as for the raster-scan ordering

of H.264. Therefore, the reordered CAVLC bitstream would contain the same bits within

the MBs, but the MBs would just be rearranged in a different order.

Even if diagonal reordering is used, the ED unit still cannot scan ahead to the next

MB since the current MB has variable length and there are no MB delimiters. This critical

challenge is addressed in the next section.

4.4 Interleaved Entropy Slice (IES) Multi-Core Decod-

ing

In order to enable DEC parallelism when using the diagonal scanning order of Section 4.3,

we propose the following solution. The bitstream can be split into N different interleaved

entropy slices (IESs). An “entropy” slice refers to the fact that two adjacent slices are not

completely decoupled, and coding can still be performed across the border. For example, if

the slices in Figure 4-2 were entropy slices, the top row of SLICE1 could be intra-predicted

with respect to the bottom row of SLICE0. The meaning of the word “entropy” in the IES

acronym signifies that the slices do not change their entropy when a frame is split up, so the

CAVLC coding efficiency is not affected by the partitioning of the slices.

Instead of splitting a frame into the slices of Figure 4-2, the slices can be interleaved

among the MB lines, as shown in Figure 4-14. Each of N parallel DECs is then assigned to

one of the IESs. Just as slices are separated for H.264, the compressed bitstream could be

85

split into different IESs.

SLICE
0
, DEC

0

SLICE
1
, DEC

1

SLICE
N-1

, DEC
N-1

.
.

.

SLICE
0
, DEC

0

SLICE
0
, DEC

0

SLICE
1
, DEC

1

SLICE
N-1

, DEC
N-1

.
.

.

F
ra

m
e

 H
e

ig
h

t
Frame Width M

B
 H

e
ig

h
t

Figure 4-14: A frame can be divided into interleaved slices which alternate among the MB
lines

There are two key differences between IESs and the entropy slices of [29]. IES processing

order has no loss in coding efficiency due to border effects, whereas [29] loses some of the

coding context across the slice borders. Additionally, IESs are interleaved to enable better

parallel processing and memory locality.

For example, Figure 4-15 shows the IES processing method for N = 2, with the IESs

split between DEC0 and DEC1. In this example, IES0 is made up of all the even MB rows,

while IES1 is made up of all the odd MB rows. When DEC0 finishes processing MB row 0,

it starts processing MB row 2, and so on.

Consider the case of IES parallelism for N = 3 and 30 fps. The corresponding timing

diagram is shown in Figure 4-16, where Si,j represents IESj of framei. The index j varies

from 0 to N-1. Since the slices are interleaved the processing of each of the N IESs begins

and ends almost at the same time, with the difference being the time it takes to process a

couple of MBs. Therefore, the maximum latency between the arrival of IES0 and the start

of its decoding by DEC0 is 22 ms.

86

DEC
1

DEC
0

DEC
1

DEC
0

Frame Width = W Macroblocks (MBs)

1 MB

.....

.....

Figure 4-15: Interleaved entropy slices (IESs) with diagonal dependencies

Parallel

Units

TIME

S
0,0

33ms

F
0

DEC
0

DEC
1

DEC
2

DISPLAY

ENC

S
1,0

S
2,0

S
3,0

S
0,1

F
1

F
2

F
3

S
0,0

S
0,1

S
0,2

S
1,0

S
1,1

S
1,2

S
2,0

S
2,1

S
2,2

S
3,0

S
3,1

S
3,2

S
1,1

S
2,1

S
3,1

S
0,2

S
1,2

S
2,2

S
3,2

22ms

Figure 4-16: Timing diagram of IES parallelism for N = 3

The processing of IESs would be synchronized to ensure that the 2:1 diagonal order is

maintained. As a result, each DEC must trail the DEC above. However, if one IES has a

higher instantaneous processing workload than the IES above it, the DEC above can move

forward and proceed further ahead, so that stalling is minimized.

This approach is different than the one used in [25]. In that work, the ED processing

was done in the usual raster scan order and all the syntax elements were buffered for one

frame. The diagonal processing could only start after the entire frame was processed by ED.

87

In the IES approach, which would be enabled by a change in the H.264 algorithm, even the

ED processing is done in parallel on a diagonal, which speeds up the ED operation and does

not require buffering any MB syntax elements.

This technique is similar to the dual macroblock pipeline of [15]. In that work, the

authors duplicate the MB processing hardware at the encoder, whereas here we replicate the

DECs at the decoder. While the encoder has the flexibility to process MBs in any order,

interleaved processing at the decoder requires a change in the H.264 standard.

It is worth considering how the use of IESs affects the entropy coding efficiency. Once

again, if the video uses CAVLC, the bitstream size will only be slightly affected, since the

macroblocks are coded in the same way as the raster-scan order of H.264. The only coding

overhead is the 32 bits used for the slice header and at most 7 extra bits for byte alignment

between slices. As we see in Figure 4-17, this scheme offers much better coding efficiency

than using CAVLC with H.264 slices, since there is no loss in coding efficiency at the borders

between IESs.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 10 20 30 40 50 60 70 80

of slices

C
o

d
in

g
 L

o
s
s CAVLC Interleaved Slices

CAVLC H.264 Slices

Figure 4-17: Average CAVLC coding efficiency of interleaved entropy slices (IESs) relative
to parallel slice processing of Section 4.1 averaged over 150 frames of 4 different videos:
“bigships”, “mobcal”, “shields” and “parkrun”

The performance of IES multi-core decoding is shown in Figure 4-18 for varying N. Ideally,

88

the IES multi-core technique can speed up the DEC performance by up to a factor of N . In

reality, this cannot be achieved due to varying slice workloads (as discussed in Section 4.1)

and stalls due to synchronization between the DECs. To evaluate the actual performance

of a real system, we implemented the IES parallelism scheme in Verilog and evaluated it

for several videos and degrees of parallelism. As an example, when N = 3, the relative

performance is 2.91X, which is close to the ideal of 3X. There are two reasons why IESs

perform better than regular H.264 slices (2.51X). First, the workload variation is not as

large between interleaved slices since they cover similar regions of a frame; as N increases,

however, the variation in interleaved slice workloads also gets larger. Second, IES parallelism

does not suffer from a large coding penalty, so the ED performance does not decrease as a

result.

R
el

at
iv

e
M

et
ri

c

of Slices

0

5

10

15

20

25

30

35

40

45

50
Clock Period

Linear

Power

Area

0 10 20 30 40 50

Figure 4-18: Performance of IES multi-core decoding. The power is normalized relative to
a single decoder running at the nominal supply voltage. The area increase assumes caches
make up 75% of the area of a single DEC (see Section 6.7).

89

4.5 Bitstream Controller

The video decoder (DEC) replication techniques described in Section 4.1, Section 4.2 and

Section 4.4 rely on the ability of the DEC to parse two or more slices or frames in parallel.

It is also assumed that the ENC and the DEC can agree on the number of slices per frame,

or on the total number of DECs. One way the DEC can read from several slices at once is

if the ENC serially orders the slices and separates them by slice delimiters, as was shown

in Figure 4-4. During each cycle, the DEC reads from one of the several slice pointers, in a

round robin fashion among the DECs requesting new input data.

When none of the DECs are reading from the input bitstream, the bitstream controller

reads from the input in order to find the next slice header, as shown in Figure 4-19. If the

frequency of this controller is too low, there will be no free cycles to read ahead for the

next header, and parallel processing will have to stall. In order to avoid this, the bitstream

controller should run at about twice the frequency relative to a non-parallel DEC since the

bitstream is essentially parsed twice.

Slice Pointer 0

Header Search

ADDR

DATA

Slice Pointer N-1

Bitstream

Memory

Figure 4-19: Bitstream controller supporting multiple slices and header search

An alternative to parsing for the slice delimiters is to also transmit the size of each slice

at the start of a frame, as shown in Figure 4-20. This enables the DEC to easily find an index

into the input buffer without having to scan the entire frame for slice headers. Encoding

either the slice size or delimiter into the bitstream has a negligible effect on coding efficiency,

as the coded size of each frame is quite large for the high resolutions targeted by parallel

DECs. Note that the slice size does not need to be placed there by the ENC, but could also

90

be computed the first time the bitstream is received and placed into the bitstream memory.

S
0

slice sizes

FRAME
j+1

FRAME
j

S
1

S
2}

... S
N-1

... S
N-1

S
0

variable-length slices

Figure 4-20: Size of all slices are encoded at the start of each frame

If a DEC can afford to buffer several slices or frames of the input stream and quickly

parse for the start of each slice, it can simultaneously read and process all slices from this

input buffer. The cost of this is an increase in latency from the time the frame is received

by the DEC to the earliest time it can begin to be displayed. If the input buffering latency

cannot be tolerated, a third scheme is proposed, and shown in Figure 4-21. At the ENC,

each slice is chopped up into small segments, where segments in each slice have a fixed

widths: W0, W1, andW2. The stream then alternates between segments from each slice. The

size of the segments for the different slices can be different, which ensures that the slices are

synchronized even when their total sizes differ. Relative to the scheme of Figure 4-4, this

method requires a much smaller input buffer to allow parallel slice processing.

W
0

1 Frame, 3 Slices (S
0
,S

1
,S

2
)

....

W
1

W
2 W

i
= width of all segments of slice

i

Frame Header

S
0

S
1

S
2

S
0

S
1

S
2

S
0

S
1

S
2

Figure 4-21: Splitting slices into fixed-length segments

91

4.6 Software Applicability of Multi-Core Decoding

This section discusses which of the multi-core techniques introduced in Chapter 4 are useful

for a software implementation on a parallel processor machine similar to that of Figure 4-22.

Main Memory

Shared Cache

DEC
0

DEC
1

... DEC
N-1

Multi-core processor

Figure 4-22: Running parallel software video decoders (DECs) on a multi-threaded machine

The slice parallelism technique of Section 4.1 can be applied to a N -core software imple-

mentation. If each of the N slice decoders is assigned to one of the processors, a speedup

of up to N can be achieved. This was also demonstrated by the work in [26]. The work

in [26] also showed that to minimize the inter-processor communication, each core should

implement a full DEC instance, rather than dividing the DEC units among the different

cores.

The frame parallelism technique of Section 4.2 is also applicable to a N -core software

implementation. Each of the N frame decoders can run on one of the processors. Some

overhead cycles will be needed to ensure that the synchronization is maintained between

each pair of DECi−1 and DECi of Figure 4-7. Additionally, there will also be some stall

cycles whenever a vertical MV is positive and large, as was explained in Figure 4-9.

The idea of IES processing introduced in Section 4.4 is similarly applicable to a software

implementation on a multi-threaded parallel processor. If each of the N threads runs an

instance of the DEC, a software performance improvement of up to N is achievable.

92

4.7 Multi-Core Decoding Comparison

The multi-core decoding schemes described in the previous sections were implemented by

replicating a particular DEC, though they should be applicable to most DEC implementa-

tions. The different architectures proposed were built, verified, and benchmarked in Verilog.

Figure 4-23 shows that all multi-core architectures achieve a near-linear speedup and corre-

sponding clock frequency reduction for a given resolution. However, as was shown in Figure

4-18, extending the level of multi-core parallelism to much higher than 3 achieves relatively

small power savings at the cost of a much larger area. As a result, we compare these different

multi-core architectures for N = 3, as shown in Table 4.1.

The following sections describe how the different fields in Table 4.1 were computed.

Relative Performance

Table 4.1 lists the performance achieved when the decoder is replicated 3 times, relative

to the performance of a single decoder. The relative performance for slice multi-core is

estimated from the relative size of the encoded slices, assuming performance is limited by

the ED unit. The relative performance of frame and IES multi-core was simulated in Verilog.

Equivalent Dynamic Power Savings

The dynamic power savings are computed from voltage scaling according to Equation 1.1.

The scaling is done from the maximum process voltage of 1.2 V down to the voltage that

slows down the circuit by the same factor as the relative performance gain of Table 4.1. As

discussed in Section 1.1.1, extra performance can be traded off for a slower clock and lower

voltage. If the single DEC’s operating voltage is lower than the full voltage (1.2 V), the

power savings due to multi-core decoding decrease. For example, if multi-core provides a 2X

increase in performance, this allows the supply voltage to scale from 1.2V to 0.83V, which

yields 52% dynamic energy savings. However, if the starting voltage is 1.0V, a 2X increase in

the clock period allows voltage scaling down to 0.77V, which only saves 41% of the dynamic

energy.

93

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8

IES

Linear

Frame Para

H.264 Slices

R
el

at
iv

e
S

p
ee

d

of Cores

Figure 4-23: Three different multi-core architectures show nearly-linear performance gains.
The multi-core performance of H.264 slices is slightly lower because of the extra process-
ing required by the CAVLC and also the unbalanced slice workload due to uneven image
characteristics across the slices.

CAVLC Coding Loss

The coding efficiency was quantified by the reference H.264 software using different slice con-

figuration settings. The CAVLC coding loss was computed from the increase in compressed

file size when the ENC breaks up the frames into slices. Frame multi-core does not suffer

from any coding loss because the frames are not broken up into any slices.

94

Table 4.1: Video decoder multi-core (N = 3, 720p) comparison for different techniques
relative to N = 1

Multi-Core H.264 H.264 Interleaved
Technique Slices Frames Entropy Slices

Thesis
Section 4.1 4.2 4.4
Degree of
Multi-Core 3 3 3
Relative
Performance 2.51X 2.64X 2.91X
Equivalent Dynamic
Power Savings 58% 59% 61%
CAVLC
Coding Loss 0.41% 0% 0.05%
Relative
Last-Line Size 3.00X 3.00X 1.03X
Relative
Logic Area 3.00X 3.00X 3.00X
Input Buffering
Latency (ms) 22 66 22
H.264
Compliance Yes Yes No
Software
Applicability Yes Yes Yes

Relative Last-Line Size

The need for full-last-line caches (FLLCs) will be described in detail in Section 5.1. In Table

4.1, the size of the FLLCs is a direct multiple of the parallelism factor N for slice and frame

multi-core, since the parallel DECs operate on independent areas of the video. For IES

multi-core, the size of the FLLCs grows very slowly with N , as will be discussed in Section

5.2.

95

Relative Logic Area

The top-level logic required to integrate the N parallel DECs is much smaller than the logic

within each of the DECs. Therefore, the total logic area increases almost linearly with N .

Input Buffering Latency

If the segmented scheme presented in Section 4.5 and Figure 4-21 is not used, the parallel

DECs of this chapter suffer from input buffering latency. For slice and IES multi-core, this

latency is (N − 1) slice periods, for a total latency given by the following equation.

InputLatency = 33ms × (N − 1)/N (4.1)

For frame multi-core, the input latency is (N − 1) frame periods, for a total latency given

by the following.

InputLatency = 33ms × (N − 1) (4.2)

4.8 Summary

In this chapter, we presented several ways to enable multi-core decoding and provide a clear

tradeoff between performance and area. If performance, power, area, coding efficiency and

input latency are key concerns for the video decoder designer, we recommend choosing the

proposed interleaved entropy slice (IES) architecture. In all of these metrics, IES processing

provides comparable or better results relative to the other techniques, though it requires a

slight change in the video standard.

If the decoder must remain H.264 compliant, then the choice is between the frame-level

multi-core of Section 4.2 and the slice-level multi-core of Section 4.1. Frame multi-core out-

performs slice multi-core in performance, power savings, and coding efficiency. However, slice

multi-core has a lower input buffer latency, so it might be the better choice for applications

such as video conferencing which have a hard limit on round-trip latency.

Note that frame multi-core is not mutually exclusive from either of the slice multi-core

96

techniques. For example, if we wish to have 9 parallel DECs to improve throughput, the

input buffering latency for frame multi-core would be 264 ms. However, if the system cannot

tolerate such a large input latency, we could combine frame multi-core with N = 3 and

slice multi-core with N = 3, yielding similar performance to N = 9. In this case, the input

latency would be (66 ms + 22 ms) = 88 ms.

97

98

Chapter 5

Memory Optimization

Video decoding requires a significant amount of memory activity, which can be broken down

into the following categories:

• frame buffer (FB) writing

• FB reading

• reading and writing the last line of information

• reading from ROM tables for ED

• reading and writing from pipeline FIFOs between DEC units

The memory subsystem is critical for both performance and power. In general, on-chip

memory accesses use less power and take less time than off-chip memory accesses. This

is because on-chip caches are smaller than off-chip memories, and on-chip memory accesses

avoid charging relatively long PCB traces. For on-chip memory, accesses to a smaller memory

usually consume less power than those to a larger cache. In this chapter, we outline different

techniques to help reduce the number of accesses or the size of the memory being accessed

by the video decoder (DEC).

The ideas presented in Section 5.1 and Section 5.3 were developed in collaboration with

Vivienne Sze. The initial concepts of Section 5.2 and Section 5.4 were identified indepen-

dently, then were fleshed out together with Vivienne Sze.

99

5.1 Full-Last-Line Caching (FLLC)

The top-neighbor dependency shown in Figure 4-12 requires each MB to refer to the MBs

in the last line above. The use of a full-last-line cache (FLLC) allows us to fetch this data

from on-chip static random-access memorys (SRAMs) rather than getting the previously-

processed data from a large off-chip memory. Only fully-processed pixels are stored in the

off-chip memory.

Several independent on-chip caches can be used to store syntax elements or pixel data

that have not been fully processed, as shown in Figure 5-1. This includes: the last four

lines of pixels that are required by the DB, last line of pixels needed for INTRA prediction,

INTRA prediction modes for each 4x4 in the last line, MVs for each 4x4 in the last line,

total IDCT coefficient count for each 4x4 in the last line, and macroblock (MB) parameters

for the last line of MBs. For 720p resolutions, the area cost of this technique is 138 kbits of

on-chip SRAM [27], as shown in Table 5.1. For 1080p resolutions, the FLLC size increase to

207 kbits, which is obtained from 138kbits × 1920/1280.

ED IT

INTRAMC

DB+

MUX

LAST

MVS

9.4 kbits

LAST

LINE

21 kbits

LAST 4

LINES

104 kbits

TOTAL

COEFFS

1.6 kbits

FB
On-chip

Low-voltage

SRAM

(size)

LEGEND

Processing

Unit

Figure 5-1: Full-last-line caches (FLLCs) reduce off-chip memory bandwidth (BW)

For a P-frame, this caching scheme reduces total off-chip BW by 26% relative to the case

where no caches are used. The BW of each of the FLLCs is shown in Table 5.1. The FLLC

is direct-mapped and does not need any tag bits since the address it caches is always implied

to be from the last line. If the data and syntax elements for each MB are written to the

100

Table 5.1: Memory bandwidth (BW) of FLLCs for 720p at 30 fps

Cache
Size Dimensions I-frame P-frame
[kb] addr x word BW [Mbps] BW [Mbps]

Deblocking
104

324x158 (luma) 510 510
(Last 4 lines) 324x158 (chroma) 297 297
Intra prediction

21
324x32 (luma) 61.7 32.4

(Last line) 162x32 (chroma x2) 57 35.4
Motion Vector 9 80x118 0 25.5
Total Coefficient Count 3 80x40 8.5 7.8

Macroblock Parameters 1
80x7 (luma) 6.1 6.1

80x7 (chroma) 6.8 6.8
Intra Prediction Mode 1 80x16 3.1 1.7
Total 138 n/a 579 922

FLLC, there is never the potential for a read miss.

5.2 Last-Line Caching for Interleaved Entropy Slices

(IESs)

In addition to enabling parallel processing, the interleaved entropy slices (IESs) of Section 4.4

also allow for better memory efficiency than the raster-scan processing in H.264. This section

shows how IES processing order can reduce accesses to the large full-last-line caches (FLLCs)

discussed in Section 5.1. For example, when decoding Bi in Figure 5-2, the data from MBs

Ai−1, Ai−2, Ai−3 can be kept in a much smaller cache since those MBs were recently processed

by DECA and have high temporal locality.

The caches that pass data vertically between decoders, such as DECA to DECB in Figure

5-2, are implemented as FIFOs. A deeper FIFO could better handle workload variation

between the IESs by allowing DECA to advance several MBs ahead of DECB and thus

reduce stall cycles and increase throughput. The caches that pass data horizontally within

each decoder only need to hold the information for 1 MB, and are unchanged from the H.264

raster-scan implementation. However, when we process Ai, the FLLC of Section 5.1 is still

needed to hold the data that is passed from DECC to DECA, since DECC writes this data

101

long before DECA can read it. The depth of the FLLC FIFO should therefore be about as

large as the frame width in order to prevent deadlock. The caching of data for IES processing

is similar to the one used in the encoder of [15].

A
iDEC

A

DEC
B

DEC
C

DEC
A

DEC
C

A
i-1

A
i-2

A
i-3

DEC
C

Full Last Line Cache

DEC
B

DEC
A

B
i

C
i

Figure 5-2: Caches used for interleaved entropy slice (IES) processing with 3 video decoders
(DECs)

To evaluate the performance impact of sizing the FIFOs of Figure 5-2, we implemented

the IES caches in Verilog and placed them together with the system of Section 4.4. When

simulating INTRA frames for N = 3, we found that a FIFO depth of four 4x4 edges (one MB

edge) only has a 3% performance penalty, whereas a minimally-sized FIFO reduces system

performance by almost 25%. This trade-off is illustrated in Figure 5-3.

The FLLC FIFO is read by DEC0 and written to by DECN−1, so if a single-ported

memory is used, the accesses will need to be shared. The total size of the IES inter-slice

caches is independent to first order of the degree of parallelism N , as the FLLC is not

replicated with each DEC. This implies that the total area overhead of DEC parallelism

with diagonal processing is not a factor of N , as was the case for the parallelism techniques

in Section 4.1 and Section 4.2. As will be shown in Section 6.7, the area of the FLLC SRAMs

can be 3 times larger than the rest of the DEC logic. As a result, for N = 3, the area increase

due to parallelism would be about 50% and not 200%.

102

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9

FIFO depth (last 4x4 edge)

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Figure 5-3: Impact of FIFO sizing on parallel interleaved entropy slice (IES) performance

If N is the number of parallel IES DECs, the number of accesses to the large FLLCs are

reduced to 1/N of the original. These accesses are replaced with accesses to much smaller

FIFOs that hold the information for about 1 MB. This uses much less energy than accessing

a large memory that stores 80 MBs for 720p, or 120 MBs for 1080p. This reduction in FLLC

accesses allows the designer to even eliminate the area-hungry FLLCs and just use the large

off-chip memory where the FB is stored to keep the last-line information.

It is interesting to note that diagonal processing can reduce FLLC accesses even when

only one DEC is used (no DEC replication). This would require the single DEC to alternate

between different IESs whenever one of the FIFOs in Figure 5-2 stalls.

The small IES FIFOs are only 1MB deep, so each FIFO only needs to be 1/80 of the total

FLLC size of Table 5.1, for a total size in kB of (N − 1)× 138/80/8. For really small caches

(below 1kB), the memory storage can be implemented efficiently in flip-flops or latches. For

the IES FIFOs of Section 5.2, the energy savings due to replacing FLLC accesses with FIFO

accesses can be computed using the following formula.

Ecache = (N − 1)/N × EFIFO + EFLLC/N (5.1)

103

The power savings relative to having no FIFO caches are computed as follows.

%saved = 100 × (EFLLC − Ecache)/EFLLC (5.2)

Based on the memory size, the IES FIFOs are implemented using Flip-Flops.

5.3 Motion Compensation (MC) Caching for H.264

The off-chip frame buffer (OCFB) used in the system implementation of Chapter 6 has a

32-bit data interface. Decoded pixels are written out in columns of 4, so writing out a

4x4 block requires 4 writes to consecutive addresses. When interpolating pixels for motion

compensation, a column of 9 pixels is required during each MC cycle. This requires three

32-bit reads from the OCFB.

During MC, some of the redundant reads are recognized and avoided. This happens

when there is an overlap in the vertical or horizontal direction and the neighboring 4x4

blocks (within the same MB) have MVs with identical integer components [9]. As discussed

in Section 3.1, the MC interpolators have a 6-stage pipeline architecture which inherently

takes advantage of the horizontal overlap. The reuse of data that overlap in the horizontal

direction helps to reduce the cycle count of the MC unit since those pixels do not have to

be re-interpolated. If we predict 4 neighboring 4x4 blocks with identical motion vectors, we

need to read 4x9x9 (324) pixels from the OCFB, as shown on the left side of Figure 5-4.

However, the four 9x9 areas overlap significantly, so we should only have to read an area of

13x13 (169 pixels) from the OCFB, as shown on the right side of Figure 5-4.

If two parallel MC interpolators are used, as shown in Chapter 3, they can be synchro-

nized to take advantage of the vertical overlap. Specifically, any redundant reads in the

vertical overlap between rows 0 and 1 and between rows 2 and 3 (in Figure 3-4) are avoided.

Alternatively, a more general caching scheme can be used to further reduce redundant reads

if it takes into account:

1. adjacent 4x4 blocks with slightly different motion vectors

104

1

3

324 reads

(4x9x9)

169 reads

(13x13)

0

2

1

3
0

2

1

3

Figure 5-4: Eliminating motion compensation (MC) redundant reads

2. overlap in read areas between nearby macroblocks on the same macroblock line

3. overlap in read areas between nearby macroblocks on two consecutive macroblock lines

The potential benefits of this scheme can be evaluated with the help of a variable-sized

fully-associative on-chip cache, as shown in Figure 5-5a. A small cache of 512-Bytes (128

addresses) can help reduce the off-chip read BW by a further 33% relative to the caching done

between two parallel MC interpolators. This is achieved by taking advantage of the first two

types of redundancies in the above list. In order to take advantage of the last redundancy in

the list, a much larger cache is needed (32 kBytes) to achieve a read BW reduction of 56%

relative to the caching of 2 parallel MC interpolators This larger MC cache achieves close to

no repeated reads, as the average number of luma reads per 4x4 is about four 4-pixel words,

or 16 pixels, as shown on the right axis of Figure 5-5a. The associativity of this cache also

impacts the number of reads, due to the hit rate. As Figure 5-5b shows, a fully associative

512-Byte cache (0 set bits) provides the largest hit rate, while a direct-mapped scheme (7

set bits) has the lowest hit rate. The benefits of this MC cache must be weighed against the

area overhead of data and address tags and the energy required to perform cache reads and

writes.

105

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 10 100 1000 10000 100000

Cache Size (32-bit words)

%
 r

e
a
d

s
 r

e
d

u
c
e
d

0

1

2

3

4

5

6

7

8

9

10

3
2
-b

it
 r

e
a
d

s
 /

 l
u

m
a
 4

x
4

(a) Effect of motion compensation cache size of read reductions

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

Set Bits

H
it

 R
a

te
 (

%
)

(b) Off-chip bandwidth (BW) reduction versus associativity

Figure 5-5: Motion compensation (MC) cache

5.4 Motion Compensation (MC) Caching for Interleaved

Entropy Slices (IESs)

The MC cache described in Section 5.3 can have a higher hit-rate if a diagonal MB ordering

is used. This is because the read area of the MBs above the current MB could fit inside

a much smaller cache. The hit-rate of this type of MC cache was simulated for varying

106

cache sizes and degree of IES parallelism. We found that a moderately sized cache of 2kB

reduces the OCFB read BW by 67%. This hit-rate was simulated to be 5% larger than for

an equally-sized MC cache of a DEC that uses regular raster-scan MB ordering.

For N = 3, the IES MC cache hit rate plateaus when the size reaches around 2kB. For

memory sizes between kBs and a few hundred kBs, SRAMs are a suitable choice. This

grows about linearly with N, as more MBs are processed on a diagonal. A moderately sized

MC cache for IES processing can eliminate a large fraction of the redundant MC reads, but

will not cover the vertical overlap between MB rows 0 and (N-1) of parallel IES processing.

The MC IES cache hit-rate will go up slowly with increasing N, and eliminate most overlaps

between MB rows 0 to (N-1). For IES MC caching, the average energy for a read is computed

by the following formula, where EWRMC , ERDHITMC and ERDMISSMC are the write,

read hit and read miss energies of the MC cache.

ERDcache =EWRMC + HR × ERDHITMC+

(1 − HR) × (ERDOCFB + ERDMISSMC)
(5.3)

The power savings relative to having no MC cache are computed as follows.

%saved = 100 × (ERDOCFB − ERDcache)/ERDOCFB (5.4)

Based on the memory size, the MC cache is implemented as SRAM.

5.5 Last-Frame Cache (LFC) for Motion Compensa-

tion

During motion compensation (MC), most of the pixels are read from the previous frame

(FB−1), as opposed to being read from even earlier frames (FB−2, FB−3, etc.). If we can

store the last reference frame in an on-chip LFC, we can avoid going off-chip for the majority

of MC reads. This caching architecture is described in Figure 5-6a, which shows how reads

from FB−1 (the previously-decoded frame) are replaced with reads from the LFC. This

107

scheme requires a write-back buffer (WB) in order to not overwrite the data at the current

location in the LFC, which is needed for MC.

To understand the need for a WB, let us assume that there is no WB and the MV for

the current block at location (x, y) is (−10,−10). In this case, the data from the last frame

at location (x−10, y−10) would no longer be found in the LFC, since it would have already

been overwritten by the block at location (x − 10, y − 10) from the current frame.

FB
-1

FB
0

DECODER
Writeback

Bu er

(WB)

Last

Frame

Cache

(LFC)

On-Chip

Off-chip Frame Buffer (OCFB)
(a) Architecture

Last Frame Cache (LFC)

Overwritten by current frame outputs

Still holds data from last frame

Current block @ (x,y)

x

y

Protected by writeback bu!er (WB)

(x-10, y-10) = HIT !

(x+20, y-20) = MISS !

(x, y+10) = HIT !

(b) Illustration of hits and misses in the LFC

Figure 5-6: Last-Frame Cache (LFC)

108

One overhead of this LFC scheme is the significant additional area of the WB and the

LFC. There is also a power overhead, since each decoded pixel is now written to the LFC

(as well as to the OCFB), written to and read from the WB, all of this just to avoid reading

it back from the OCFB.

For 720p resolutions, the size of the LFC would be 1.4 MBytes, with an area of 2.7mm2

if implemented with high-density eDRAM [38]. The size of the WB depends on how many

misses we are willing to tolerate in the LFC. Figure 5-7 shows how the hit rate of the LFC

varies with the size of the WB. If there is no WB, the videos with more movement from

left to right or up to down will have more LFC misses. For example, for the “shields” video,

the LFC hitrate with no WB is 65% because the movement is from left to right. A small

WB with the size of 1 MB can improve the hit-rate up to about 93%. To eliminate the

remaining misses, the entire MB above must be buffered by the WB, which explains the last

jump up to 100% when the WB size is 80 MBs. A miss occurs in the LFC when the block

being fetched has a much smaller y-coordinate and/or x-coordinate than the current block

being processed, as shown in Figure 5-6b. This type of miss happens when the MC data was

already overwritten by a recently decoded block which was evicted from the WB cache and

spilled into the LFC. If this happens, the data must be fetched from FB−1.

If the reference frame is not the last frame, the LFC is also bypassed and the data is

fetched from the OCFB. The frequency of this occurence depends on the choices made at

the ENC. The work in [39] shows that the previous frame is chosen 80% of the time as the

reference frame, as averaged over 10 different videos of CIF resolution. The ENC can choose

to limit the search range to only the last frame, in order to reduce the search time, but this

comes at a cost of decreased coding efficiency, since a less optimal prediction will be found

in some cases.

The WB cache is a simple window buffer which is written to and read from in the same

order that the pixels are decoded. There are no misses associated with the WB cache, since

the data is read and written in a deterministic order. The LFC cache also stores data at

deterministic addresses, since it has exactly the same form as a frame in the frame buffer.

There is no need to store tag information in the LFC cache, since we can implicitly derive

109

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100 1000

WB Size (MBs)

L
F

C
 H

it
 R

a
te

parkrun - right to left

mobcal - bottom to top

shields - left to right

Figure 5-7: Hit rate of last-frame cache versus size of writeback cache for different 720p
videos. For each video, the type of motion is described, in order to help explain the differences
in hit rates.

this value. If we wish to read from a given address in the LFC, we first need to determine

whether the data at that location is from the previous frame (cache hit) or the current frame

(cache miss). To determine between a cache hit or miss, we simply need to look at the pointer

that copies data from the WB into the LFC. If this pointer is smaller than the address we

wish to read (modulo the size of the frame), the data from the previous frame is still in the

LFC. If the pointer is larger than the address of the area we wish to MC predict from, we

recognize this as a cache miss and fetch the data from the OCFB instead.

To measure the impact of the LFC, we can compute the different trade-offs of this tech-

110

nique. If a LFC with a 32-line WB is used, the size of the cache for 720p is (720+32) pixel

lines, or (1080+32) lines for 1080p. Since eDRAM offers the highest area density, it is the

most suitable for the large LFC cache, and might even fit the entire frame buffer (FB). The

LFC cache can reduce up to 100% of the MC reads, if the WB is large enough and the

reference frame is always the previously decoded frame. For the LFC, the energy of the

cache was estimated by using the following formula, where HR refers to the cache hit-rate,

ERD refers to read energy, and EWR refers to write energy.

ERDcache =EWRLFC + HR × ERDLFC + (1 − HR) × ERDOCFB+

EWRWB + ERDWB

(5.5)

This is because LFC caching needs to write the data temporarily to the WB, and then

transfer it from the WB to the LFC. In case of a hit, the data is read from the LFC,

otherwise the data is read in from the OCFB. The power savings are computed using the

following formula.

%saved = 100 × (ERDOCFB − ERDcache)/ERDOCFB (5.6)

Based on the memory sizes, the WB is implemented as SRAM, while the LFC uses eDRAM.

5.6 Motion Compensation Data-Forwarding Caches

If we allow N parallel DECs to operate concurrently on N consecutive frames, as in Section

4.2, we can forward the motion compensation (MC) data between them using on-chip data-

forwarding caches (DFCs), as shown in Figure 5-8. This will avoid most off-chip MC reads

for all DECs but DEC0. For example, if N = 3, the DFCs can reduce the off-chip read BW

by up to 67% or (N − 1)/N .

In general, DECi and DECi−1 need to be synchronized, such that DECi lags sufficiently

behind DECi−1, similar to the discussion in Section 4.2. Conversely, if DECi−1 gets too far

ahead of DECi, the temporal locality is lost, and DECi will read the MC data from the

111

FB
-1

FB
0

FB
1

FB
2

DEC
0

DFC
0,1 DFC

1,2

DEC
1

DEC
2

Off-Chip Frame Buffer (OCFB)

On-Chip

Figure 5-8: Motion compensation (MC) data-forwarding caches (DFCs) for N = 3

OCFB instead of from DFCi−1,i. In that case, we can stall DECi−1 in order to maximize

the hit-rate of the DFCs. These two constraints can be handled with the help of low and

high watermarks, as illustrated in Figure 5-9. A top-level controller is used to make sure

Dist0,1 remains between WMlo−0,1 and WMhi−0,1 and similarly that Dist1,2 remains between

WMlo−1,2 and WMhi−1,2. For example, if DEC0 runs much faster than DEC1, Dist0,1 will

eventually hit the watermark WMhi−0,1 and DEC0 will be stalled. Alternatively, if DEC1

runs faster than DEC0, Dist0,1 will reach the value WMlo−0,1 and DEC1 will have to be

stalled.

In order to evaluate the performance impact and hit-rate of these DFCs, we implemented

the DFCs in Verilog and placed them between the DECs described in Section 4.2. The

performance impact of stalling at these watermarks was simulated for a “mobcal” video

sequence of 100 frames. The overall loss in throughput for N = 3 was less than 8%.

The DFCs need to store about 32-64 lines of pixels to minimize the cache miss rate, so

their on-chip area can be quite large for high-resolution, highly-parallel DECs. To understand

the trade-off between the size of the DFCs and the hit rate, we simulated the DFC system

for 100 frames of the “mobcal” video. The result is shown in Figure 5-10. As expected,

a really large cache will have near 100% hit rate, leading to 67% reduction in off-chip MC

112

DEC
2

DEC
1

WM
hi-0,1

Dist
0,1

DFC
0,1

WM
lo-0,1

WM
hi-1,2

WM
lo-1,2

DEC
0

x

y

F
ra

m
e

 H
e

ig
h

t

Frame Width

Dist
1,2

DFC
1,2

Figure 5-9: High and low watermarks for 3 DECs to maximize DFC hit-rate

reads for N = 3. The hit rate drops off significantly for DFC sizes of less than 32 lines, since

the vertical MVs can easily fall outside this range. For N = 3 and 720p resolution, the total

area of the two 64-line DFCs is about 1mm2, assuming high-density 65nm SRAMs.

Pixel Lines / Cache

%
 r

e
a

d
s

sa
v

e
d

0%

20%

40%

60%

80%

28 33 38 43 48 53 58 63

0%

20%

60%

80%

28 33 38 43 48 53 58 63

Figure 5-10: Reduction in off-chip reads versus size of motion compensation (MC) data-
forwarding cache (DFC) for N = 3.

The hit rate of the cache is also dependent on how often the reference frame is chosen

to be the last frame. For the simulations of Figure 5-10, a single reference frame was

assumed. However, typical ENCs will use multiple reference frames in order to improve

coding efficiency, so the maximum hit-rate of the DFCs can decrease to about 80%, assuming

the statistics of [39].

113

A DFC cache with near-maximum hit-rate can be implemented with 48 pixel lines per

DFC, for a total of 48 × (N − 1) pixel lines. If the DFC hit-rate can be maximized by

synchronizing the parallel DECs and the MV variation is not large, the DFCs can eliminate

(N − 1)/N of the MC reads, since all DEC but the first one will read from a DFC. For each

of the (N − 1) DFCs, the energy per access is computed using the following formula.

ERDcache = EWRDFC + HR × ERDDFC + (1 − HR) × ERDOCFB (5.7)

The average energy used for all MC reads is then given by the following equation, since the

first DEC always reads from the OCFB.

ERDavg = ERDcache × (N − 1)/N + ERDOCFB/N (5.8)

The power savings relative to no DFCs are computed as follows.

%saved = 100 × (ERDOCFB − ERDavg)/ERDOCFB (5.9)

5.7 Software Applicability of Memory Optimization

This section discusses which of the on-chip caching techniques introduced previously are

useful for a software implementation on a parallel processor machine similar to that of Figure

4-22.

FLLC cache accesses would also be reduced for a software IES DEC implementation

(parallel or serial), as temporal locality would be better exploited than in the case of using

the traditional raster-scan processing order. This is similar to the argument that was made

in Section 5.2.

The DFC caching technique described in Section 5.6 also exploits the temporal locality

in the processor’s cache for a software DEC implementation. In this case, an increase in

processor cache hit rate can be achieved for either a single or multi-core processor. For

the case of a single-core processor, each of the parallel DECs can be assigned to a different

114

thread. Since the N threads must run on the same processor, they must be scheduled such

that the DECs are properly synchronized and the cache hit rate is maximized. For the case of

a multi-core processor, the DECs running on different processors should also be synchronized

in the same way to obtain the same benefits.

5.8 Caching Summary

Several on-chip caching techniques were introduced that significantly reduce the off-chip

memory BW requirements. The different caching ideas were implemented, verified, and

benchmarked in Verilog. They are summarized and compared in Table 5.2. The first three

techniques reduce OCFB BW by using large on-chip caches. The fourth technique takes

advantage of interleaved entropy slice (IES) processing to provide better data locality and

thus minimize accesses to the full-last-line cache (FLLC).

To calculate the exact energy savings based on the different cache hit rates, we simulated

and estimated the energies for the different types of memories involved. The normalized

energy per bit for each of the types of memories are as follows.

• 1 for a FIFO flip-flop, estimated using the synthesis libraries

• 19 for a large eDRAM, estimated using the numbers of [38]

• 51 for a large SRAM, estimated from the designs used in [12]

• 672 for an off-chip DRAM, assuming a 10pF pin capacitance and Micron’s mobile

SDRAM [40]

5.9 Summary

In this chapter, we described several memory optimizations that reduce the off-chip memory

bandwidth and lead to overal power savings in a video decoder. If a very large eDRAM

(1 MByte) can be fit on chip, the LFC technique described in Section 5.5 can save 60% of

the MC memory read power relative to always doing off-chip reads. Using smaller caches

115

Table 5.2: Summary of different DEC caching techniques for 720p

LFC with 48-line MC cache 1-MB FIFOs
Caching 32-line DFCs for IESs for IESs
Technique WB N=3 N=3 N=3

Thesis
Section 5.5 5.6 5.4 5.2
Cache
Size (kB) 963 123 2 0.43
Cache
Type eDRAM SRAM SRAM FIFO Flip-Flops
OCFB MC
BW Reduction 80% 53% 67% 0%
FLLC BW
Reduction 0% 0% 0% 67%
Memory Access
Power Savings 60% 44% 37% 65%
H.264
Compliance Yes Yes No No
Software
Applicability Yes Yes Yes Yes

(0.1 MByte) together with the frame parallelism of Section 4.2, the use of DFCs can lower

MC memory read power by 53% relative to having no caches. A relatively smaller cache

(2 kByte) can eliminate a lot of redundant reads for the MC interpolation of neighboring

blocks, and thus reduce the MC read power by 37% relative to using no MC cache at all.

Finally, accesses to the FLLC SRAM can also be reduced using the IES processing scheme

of Section 4.4, saving about 65% of the FLLC access power relative to the case where each

slice reads and writes to a large FLLC.

Some of these memory optimizations can be combined to yield further power savings,

depending on the ratio of access energies between the different caches. For example, the MC

cache of Section 5.3 could be placed between the large LFC cache and the decoder. This

would replace some of the LFC reads with reads from the smaller MC cache. This would

116

only save power if the cost of writing and reading from the smaller MC cache is less than

the power to read from the larger LFC cache.

117

118

Chapter 6

Prototype Video Decoder ASIC

This chapter describes the application-specific integrated circuit (ASIC) implementation of a

video decoder (DEC), including the architecture, test setup, chip results, and chip statistics.

Three graduate students were involved in the design of the H.264/AVC decoder. The main

architects of the decoder were myself and Vivienne Sze. I was the lead designer of the IT,

INTRA, ED and MEM units, while Vivienne was the lead designer of the DB unit. The

design of the MC unit and the decoder pipeline architecture as well as the backend and

testing of the chip were a joint effort. The MC interpolators were implemented by Vivienne

Sze and I implemented the top-level parallel MC unit, the decoder pipeline, and the RTL

for the test harness on the FPGA described in Section 6.4. The low-voltage SRAMs were

designed by Mahmut Ersin Sinangil, and Vivienne and I helped integrate them into the rest

of the DEC. Portions from this chapter, particularly Section 6.2, Section 6.3, Section 6.5,

Section 6.6 and Section 6.7 appear in [27].

6.1 Video Decoder ASIC Architecture

The ASIC uses many of the pipelining techniques described in Chapter 2. The video decoder

(DEC) architecture is shown in Figure 6-1. For this ASIC, the different 4x4 FIFO depths

were chosen mostly to minimize chip area, so some performance was traded off as explained

in Section 2.2. The MC interpolator pipeline used is the same as the one described in Section

119

3.1. The ASIC is fully compatible with the H.264 baseline profile standard.

ED

COEFFS

MODES

MVS

IT

INTRA

MC
MEM

DB+

MVS

MUX

MUX

Bitstream

Input
ON-CHIP

FRAME BUFFER

(ZBT SRAM)
YUV->RGB

(FPGA)

OFF-CHIP

MODES

MVS

INTRA

MC
MEM

DB+

MVS

FIFO PARALLEL

SHARED

LUMA

CHROMA

LEGEND

FIFO

ADD

ADD

Figure 6-1: H.264 ASIC decoder architecture

The ASIC also uses parallelism within the decoder units whenever possible, as described

in Chapter 2. The number of cycles required to process each 4x4 luma block varies for each

unit as shown in Table 6.2. The cycles consumed for each 4x4 chroma block are also shown

in Table 6.2. The table describes the pipeline performance for decoding P-frames (temporal

prediction). Most of the optimization efforts were focused on P-frame performance, since

they occur more frequently than I-frames (spatial prediction) in highly compressed videos.

The MC interpolator was replicated by 2, as described in Section 3.2, so the average 4x4

block could be predicted in 2.3 cycles. The DB unit uses 4 different filters, as described in

Section 2.5, so on average a 4x4 block is filtered every 2.9 cycles. The IT unit has 8 different

1-dimensional transform blocks, so a 4x4 block can be inverse transformed in one cycle, as

described in Section 2.4. The reconstruction unit was parallelized by a factor of 16, so that

a 4x4 residual and predicted block could be added in one cycle, as described in Section 2.8.

Two different off-chip memories were used, one for chroma and one for luma, in order to

enable more parallelism in the MEM unit, as was discussed in Section 2.9.

120

Table 6.1: FIFO sizes between different pipeline units

Source Sink FIFO FIFO Total Synch. FIFO element
Unit Unit Depth Width Bits FIFO ? description
ED IT 1 144 144 yes 16 luma coeffs
ED IT 32 1 32 yes any luma coeffs?
ED IT 8 1 8 yes any chroma coeffs?
IT ADD 1 1 1 yes no luma residual?
IT ADD 8 1 8 yes no chroma residual?

ADD DB 1 1 1 yes no luma residual?
IT DB 4 4 16 yes no chroma0 residual?
IT DB 4 4 16 yes no chroma1 residual?
IT ADD 1 160 160 yes 16 luma residuals
IT ADD 1 160 160 yes 16 chroma residuals

INTRA/MC0 ADD 1 128 128 yes luma prediction
MC1 ADD 1 128 128 yes luma prediction
MC ADD 1 128 128 yes chroma prediction
ADD DB 1 128 128 yes reconstructed luma
ADD DB 1 128 128 yes reconstructed chroma
ED All 2 30 60 yes MB parameters
ED INTRA 16 4 64 yes prediction modes

MEM MC0 4 72 288 no luma from OCFB
MEM MC1 4 72 288 no luma from OCFB
MEM MC 4 72 288 no chroma from OCFB
DB MEM 1 151 151 no 16 luma outputs
DB MEM 1 151 151 no 16 chroma outputs
ED MEM 32 26 832 no motion vectors
ED MEM 8 3 24 no reference indices

This ASIC did not use any of the multi-core parallelism techniques described in Chapter

4, but the ASIC RTL was used to evaluate those ideas. The ASIC RTL required some

changes in order to implement those top-level parallelism ideas, some of which were not

H.264 compliant.

Two key techniques from Chapter 5 are used to reduce the ASIC off-chip frame buffer

(OCFB) memory BW. Making use of the full-last-line caches (FLLCs) discussed in Section

5.1 reduces both reads and writes such that only the DB unit writes to the frame buffer and

only the MC unit reads from it. The second method used by the ASIC, discussed in Section

5.3, reduces the number of reads by the MC unit by reducing some of the horizontal and

121

Table 6.2: Cycles per 4x4 block for each unit in P-frame pipeline of Figure 1-2, assuming
no stalling taken for 300 frames of the ”mobcal” sequence. Each 4x4 block include a single
4x4 luma block and two 2x2 chroma blocks. [] is performance after Chapter 2 parallelism
optimizations.

Pipeline Min Max Avg
Unit Cycles Cycles Cycles
ED 0 33 4.6
IT 0 4 1.6

Luma
MC 4 [2] 9 [4.5] 4.6 [2.3]
DB 8 [2] 12 [6] 8.9 [2.9]

MEM 8 31 18

Chroma
MC 8 [2] 8 [2] 8 [2]
DB 5 [2.5] 8 [4] 6.6 [3.3]

MEM 10 10 10

vertical redundancies. The impact of the two approaches on the overall OCFB BW can be

seen in Figure 6-2. The overall OCFB BW is reduced to 1.25 Gbps.

0

1

2

original caching cache &

fewer verticals

 reads

O
ff

-c
h

ip
 B

W
 (

G
b

p
s

)

26%

19%

2.1

1.55
1.25

Figure 6-2: Reduction in overall memory bandwidth from caching and reuse MC data

122

6.2 Multiple Voltage and Frequency Domains

The decoder interfaces with two 32-bit off-chip SRAMs which serve as the frame buffer (FB).

To avoid increasing the number of I/O pads, the MEM unit requires approximately 3x more

cycles per 4x4 block than the other processing units, as shown in Table 6.2. In a single-domain

design, MEM would be the bottleneck of the pipeline and cause many stalls, requiring the

whole system to operate at a high frequency in order to maintain performance. This section

describes how the decoder architecture can be partitioned into multiple frequency and voltage

domains.

Partitioning the decoder into two domains (MEM in the memory controller domain

and the other processing units in the core domain) enables the frequency and voltage to be

independently tailored for each domain. Consequently, the core domain, which can be highly

parallelized, fully benefits from the reduced frequency and is not restricted by the memory

controller’s limited parallelism.

The two domains are completely independent, and separated by asynchronous FIFOs as

shown in Figure 6-3. Voltage level-shifters (using differential cascode voltage switch logic)

are used for signals going from a low to a high voltage. The asynchronous FIFO shown

in Figure 6-3 moves data from the core domain to the memory controller domain. This is

similar to the multi-domain technique that was used in [41] and [42]. The FIFO contents are

split across the two different clock/voltage domains. The general rule is to place all registers

on the voltage domain corresponding to the clock of the register. This way, the clock tree is

only contained to one voltage domain, making timing closure much simpler. For example,

if the memory array registers of Figure 6-3 were instead placed on the memory controller

domain, the clock CLKslow would have to be routed using the memory controller voltage.

Since the memory controller voltage can change independently of the core voltage, there is

no way to guarantee that all the CLKslow clock tree leaves could be de-skewed, and timing

failures for the dataslow signal would be unavoidable.

From Table 6.2, we can conclude that there could be a further benefit to also placing

the ED unit on a separate third domain. The ED is difficult to speed up with parallelism

because it uses variable-length coding which is inherently serial.

123

Memory

Controller

write
slow

Voltage

Level

Shifters

V
highV

low

CLK
fast CLK

slow

Core

Domain
DFF

read
fast

data
fastdata

slow

Asynchronous FIFO

D Q D Q

DQ
full

slow

FIFO

LOGIC

Mem

Array

metastability

flop

D Q
empty

fast

VhighVlow

Figure 6-3: Independent voltage/frequency domains are separated by asynchronous FIFOs
and level-converters

Table 6.3 shows a comparison of the estimated power consumed by the single domain

design versus a multiple (two and three) domain design. The frequency ratios are derived

from Table 6.2 and assume no stalls. For a single domain design the voltage and frequency

must be set to the maximum dictated by the worst-case processing unit in the system. It

can be seen that the power is significantly reduced when moving from one to two domains.

The additional power savings for moving to three domains is less significant since the impact

of frequency reduction on voltage scaling is reduced as the operating point is nearing the

threshold voltage. Therefore, a two-domain design was used for this ASIC.

Table 6.3: Estimated impact of multiple domains on power for decoding a P-frame.

Frequency Ratio Voltage [V] Power
Domains ED Core MEM ED Core MEM [%]

One 1.00 1.00 1.00 0.81 0.81 0.81 100
Two 0.26 0.26 1.00 0.66 0.66 0.78 75
Three 0.26 0.18 1.00 0.66 0.63 0.78 71

124

6.3 Dynamic Voltage and Frequency Scaling

Video decoders have a highly variable workload due to the varying prediction modes that

enable high coding efficiency. While FIFOs are used in Section 2.2 to address workload

variation at the 4x4 block level, dynamic voltage and frequency scaling (DVFS) allows the

decoder to address the varying workload at the frame level in a power-efficient manner [43].

DVFS adjusts the voltage and frequency based on the varying workload to minimize

power. This is done under the constraint that the decoder must meet the deadline of one

frame every 33 ms to achieve real-time decoding at 30 fps. The two requirements for effective

DVFS include accurate workload prediction and the voltage/frequency scalability of the

decoder. Accurate workload prediction is ideal to maximize the efficiency of DVFS, but it

can be quite challenging. One possible solution is to embed a measure of the workload at

the ENC and transmit it in the bitstream. A second solution, which requires less changes

to the ENC or the video standard, is to monitor the DEC’s performance in real time and

adjust the voltage and frequency several times per frame. This section only addresses the

scalability of the decoder that enables DVFS.

DVFS can be performed independently on the core domain and memory controller domain

as their workloads vary widely and differently depending on whether the decoder is working

on I-frames or P-frames. For example, the memory controller requires a higher frequency for

P-frames versus I-frames. Conversely, the core domain requires a higher frequency during

I-frames since more residual coefficients are present and they are processed by the ED unit.

Figure 6-4 shows the workload variation across the ”mobcal” sequence. Table 6.4 shows the

required voltages and frequencies of each domain for an I-frame and P-frame. Figure 6-5

shows the measured frequency and voltage range of the two domains in the decoder ASIC.

Once the desired frequency is determined for a given workload, the minimum voltage can be

selected from this graph.

To estimate the power impact of DVFS, only the two operating points (P-frame and

I-frame) shown in Table 6.4 are used. The power of the decoder was measured separately

for each operating point using a mostly P-frame video and an I-frame-only video averaged

over 300 frames. The frame type (I or P) can be determined from the slice header (assuming

125

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

Frame Number

C
y
c
le

s
 p

e
r

fr
a

m
e

 (
n

o
rm

a
li
z
e

d
)

Core Domain Memory Controller

I-frameP-frame

(a) Cycles per frame (workload) across sequence

0

50

100

150

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cycles per frame (normalized)

C
o

u
n

t

Core Domain Memory Controller

(b) Distribution of cycle variation

Figure 6-4: Workload variation across 250 frames of ”mobcal” sequence.

one slice per frame). Table 6.5 shows the impact of DVFS for a group of pictures (GOP)

size of 15 with a GOP structure of IPPP. This corresponds to one I-frame followed by a

series of P-frames, where the GOP is the period of I-frame insertion among the P-frames.

126

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Frequency (MHz)

V
o

lt
a

g
e

 (
V

)

Core Domain Memory Controller

Figure 6-5: Measured frequency versus voltage for core domain and memory controller.
Use this plot to determine maximum frequency for given voltage. Note: The rightmost
measurement point has a higher voltage than expected due to limitations in the test setup.

DVFS can be done in combination with frame averaging for improved workload prediction

and additional power savings [44, 45].

Table 6.4: Measured voltage/frequency for each domain for I-frame and P-frame for 720p
sequence.

Frame Type
Core Memory Controller

Freq Volt Freq Volt
[MHz] [V] [MHz] [V]

P 14 0.70 50 0.84
I 53 0.90 25 0.76

6.4 Real-Time ASIC Demonstration

Verifying and demonstrating the real-time operation of a video decoder can be a challenging

task. There are many components involved in such a system, such as the ASIC, several

127

Table 6.5: Estimated impact of DVFS for GOP structure of IPPP and size 15.

Method
Core Memory Controller Relative

Freq Volt Freq Volt Power
[MHz] [V] [MHz] [V] [%]

No DVFS 53 0.90 50 0.84 100

DVFS
14 or 0.70 or 25 or 0.76 or

75
53 0.90 50 0.84

memories for storing input and output data, a test harness to generate the input clocks and

data, and a monitor to display all the outputs.

The test setup is shown in Figure 6-6. The OCFB was implemented using two 32-bit-wide

SRAMs [46], one for luma and one for chroma. A FPGA board based on [47] was used to

interface the ASIC to the display. The FPGA board is slightly different than [47]. The main

modification is the use of a larger SRAM size (16MB instead of 4MB), to allow the storage

of eight 720p frames (split into luma and chroma).

FPGA

Compressed

H.264 Bitstream

[14 MHz]

Decompressed

YUV Bitstream

[50 MHz]

Display

RGB

Off-chip

Frame Buffer

Decoder

ASIC

Figure 6-6: Test setup for H.264 decoder

An actual photograph of the lab setup that was used to demonstrate real-time video

decoding is shown in Figure 6-7.

The architecture of the test harness on the FPGA is shown in Figure 6-8. The FPGA logic

128

Figure 6-7: Photo of lab video demo

has several functions. A FIFO is used to read the compressed video, stored in flash memory,

and feed it to the ASIC whenever it is requested. When the ASIC writes out the decoded

pixels to the OCFB, the same data is also written into a FIFO on the FPGA. This data is

then rearranged and written into the display buffers. At the same time, a separate process

on the FPGA reads the pixel data (in YUV format) from the display buffers in raster scan

order. The luma and chroma pixel components are then combined and converted into RGB

format, and then sent out to the VGA controller. Equation 6.1 describes this conversion

from three 8-bit YUV values to another three 8-bit RGB values. A Digital Clock Manager

(DCM) on the FPGA uses several phase-locked loops (PLLs) to create all the different clocks

needed by the system, and these clocks are listed in Figure 6-8.

129

R = 1.164 × (Y − 16) + 2.018 × (V − 128)

G = 1.164 × (Y − 16) − 0.813 × (U − 128) − 0.391 × (V − 128)

B = 1.164 × (Y − 16) + 1.596 × (U − 128)

(6.1)

LUMA

FRAME

BUFFER

CHROMA

FRAME

BUFFER

LUMA

DISPLAY

BUFFER

CHROMA

DISPLAY

BUFFER

VGA

DRIVER

Flash Memory

mobcal.264

65nm H.264

Decoder ASIC

YUV to RGB
MEM

WR WR RD

RD

REORDER

CLK & PHASE

GENERATOR

OFF-FPGA

ON-FPGA

LEGEND

FIFO

ON-FPGA
- flash

- VGA

- ASIC_CORE

- Frame Buffer

- Display Buffer

Figure 6-8: Test FPGA architecture

The 32-bit-wide frame and display buffer memories shown in Figure 6-8 store 4 pixel

values at each address. Since the luma MC interpolator of Section 3.1 processes pixels in

vertical columns, rather than horizontal rows, the data in the OCFB was arranged in columns

of 4 pixels at each address, as shown in the top part of Figure 6-9. In order to display the

data on a monitor, a raster-scan order is used, so it was more convenient to store the data in

display buffer using horizontal rows of 4 pixels, as shown in the bottom part of Figure 6-9.

The reordering was done at the FPGA by buffering each 4x4 block of pixels written to the

OCFB (four 4x1 columns), and then writing its rows (1x4) into the display buffer.

The reordering from the frame buffer to the display buffer is also necessary for the

chroma components. This rearrangement of pixels is shown in Figure 6-10. Since the chroma

interpolator predicts a 2x2 block of pixels for each MV, it reads either a 2x2 or 3x3 area of

pixels from the OCFB, depending on whether the MV is integer or fractional. If the address

130

0

0

W/4

2W/4

3W/4

1+W/4

1+2W/4

1+3W/4

2+W/4

2+2W/4

2+3W/4

1 2

1 2 3 8 9 10 114 5 6 7

Frame Width = W luma pixels

Luma

Frame

Bu�er

Luma

Display

Bu�er

F
ra

m
e

 H
e

ig
h

t
=

 H

lu
m

a
 p

ix
e

ls

Reorder

Figure 6-9: Reordering of luma pixels

of this block is aligned to the memory boundaries, this 2x2 block (4 pixels) can be stored

in one memory location. Therefore, to minimize the total number of 32-bit reads, the 2x2

blocks are stored as a 2x2 box at each location in memory, as shown in the top part of Figure

6-10. In order to display the data on a monitor, a raster-scan order is used. Just as was the

case for luma, it is more convenient to store the data in the display buffer using horizontal

rows of 4 pixels, as shown in the bottom part of Figure 6-10.

The test setup in Figure 6-8 can first be used to validate the full correctness of individual

decoded frames. Although this task can first be done by visual inspection of the frame’s

appearance on the monitor, the actual data bits stored in memory should be checked for any

errors that the human eye cannot easily catch. For example, to verify frameN , the FPGA

can stop the ASIC clocks and stall the DEC once that frame has been fully decoded. The

expected frame contents, generated by a software decoder such as [36], are then loaded into

131

0

W/8

2W/8

3W/8

1+W/8

1+2W/8

1+3W/8

2+W/8

2+2W/8

2+3W/8

1 2

F
ra

m
e

 H
e

ig
h

t
=

 H
/2

ch
ro

m
a

 p
ix

e
ls

Frame Width = W/2 chroma pixels

Chroma

Frame

Bu!er

Reorder

Chroma

Display

Bu!er

0 1

W/4 1+W/4 2+W/4 3+W/4 4+W/4 5+W/4

2 3 4 5

Figure 6-10: Reordering of chroma pixels

the flash memory on the FPGA board. A software program is then run on the FPGA’s

Micro-Blaze processor to read from both the reference and decoded frames and print out an

error over UART whenever the contents differ. This process was run for several different

frames and no errors were discovered.

To demonstrate real-time decoding, the compressed video was first loaded into the flash

memory on the FPGA board. Since the flash memory has a fixed size, the total number

of compressed frames that could fit inside depends on the video. For the three different

720p videos that were tested, the video memory could store 300 frames for “mobcal”, 300

frames for “shields”, and 144 frames for “parkrun”. In order to perform continuous real-time

decoding for an extended period of time, the input video was decoded in an infinite loop.

This also made it easy to obtain stable power measurements for the ASIC. While the clock

frequencies were set at compile time by the FPGA, the ASIC supply voltages were manually

132

adjusted via separate source-meters.

Video frames can have widely varying workloads, as described in Section 6.3. Since a new

frame must be displayed every 33ms for 30fps, the display buffer must receive a new frame on

average every 33ms. In the test setup of Figure 6-8, the display buffer has the capacity to store

up to 8 different frames. If the ASIC DEC produces frames faster than 30fps on average, the

display buffer will eventually be filled up and the clocks to the ASIC must be temporarily

turned off. If the ASIC produces frames at less than 30fps, the display buffer eventually

becomes empty. If there are no new frames to display, the FPGA simply repeats the last

frame until a new frame appears. Note that as the size of the display buffer increases, the

instantaneous decoder throughput in fps can be better averaged, thus potentially reducing

the number of ASIC stalls and repeated frames. The number of repeated frames is counted

for each video loop in order to obtain an accurate estimate of average effective frame rate,

as shown in Equation 6.2. For example, if the display rate is 75fps (maximum for some LCD

monitors) and there are 500 repeated frames out of the 300 total looped frames, the effective

frame rate is 28.125fps.

fpseffective = fpsdisplay × TotalLoopFrames ÷ (Repeats + TotalLoopFrames) (6.2)

Although this method gives a good estimate of the average frame rate achieved by the

ASIC DEC for a fixed voltage/frequency setting, it has a couple of drawbacks. First of all, it

does not handle bursty activity very well, as the decoder can be stalled if the display buffer

fills up, meaning that it has to run faster at all other times in order to make up for that loss

in performance. Second, we can show that even when the effective average frame rate is the

desired one, the instantaneous frame rate will be either higher or lower, and therefore the

video playback will not be smooth. For example, if the ASIC frame rate temporarily exceeds

the display rate, the video will appear to speed up, whereas in the converse case the video

will appear to slow down and there will be many repeated frames. In a production-level

implementation, the voltage and frequency would have to be controlled more dynamically,

133

Table 6.6: Equivalent 720p frame rates for different resolutions

Resolution Equivalent MegaPixels
Name [frames per second] per second
QCIF 0.41 0.38
CIF 3.3 3.04
D1 11.3 10.4
720p 30 27.6
1080p 67.6 62.2

rather than be fixed for the entire duration of the video. This would ensure smooth playback

and no repeated frames.

For example, a good workload prediction scheme as described in Section 6.3 would guar-

antee that the DEC runs just fast enough during each frame to guarantee completion within

33ms. Alternatively, some frame averaging could be done at the display buffer to maintain

an average throughput of 30 fps, while guaranteeing that the display buffer never becomes

empty. This could be done by monitoring the fullness and emptiness of the display buffer

and setting the DEC frequency accordingly. If the display buffer becomes close to full, the

DEC could be slowed down, whereas the DEC would be sped up when the display buffer is

getting close to empty.

The ASIC was designed to process videos of only 720p resolutions, since the frame width

and height were internally hard-coded to 1280 and 720. However, for the purpose of charac-

terization, it is interesting to explore how the performance of the ASIC would vary for the

different resolutions shown in Table 1.1. In order to emulate the other resolutions and frame

rates, we could just operate at the 720p resolution, but vary the frame rate such that the

same throughput in pixels per second is obtained. This leads to the equivalent frame rates

shown in Table 6.6.

6.5 Results and Measurements

The H.264 Baseline Level 3.2 decoder, shown in Figure 6-11 was implemented in 65-nm

CMOS and the power was measured when performing real-time decoding of several 720p

134

video streams at 30 fps (Table 6.7) [12]. The video streams were encoded with the x264

software [48] with a GOP size of 150 (P-frames dominate).

3
.3

 m
m

3.3 mm

MEMORY CONTROLLER

DOMAIN

CORE

DOMAIN

CACHES

176 I/O PADS

Area (w/o pads) :

Area Utilization :

Technology :

I/O Pads :

On-chip SRAM :

2.76 x 2.76 mm2

31 %

65-nm

176

17kB

DECODER STATISTICS

Figure 6-11: Die photo showing the different domains

Figure 6-12 shows a comparison of this ASIC with other decoders. To obtain the power

measurements of the decoder at various performance points, the frame rate of the video

sequence was adjusted to achieve the equivalent Mpixels/s of the various resolutions. At

720p, the decoder has lower power and frequency relative to D1 of [32]. The decoder can

operate down to 0.5 V for QCIF at 15 fps for a measured power of 29 µW. The power of

the I/O pads or the off-chip frame buffer (OCFB) was not included in the measurement

comparisons.

The reduction in power over the other reported decoders can be attributed to using the

low-power techniques described in this work and also benefits from using a more advanced

silicon technology. To separate the two effects, we can try to estimate the power savings due

to process scaling alone. Since our implementation uses the 65nm process, we can estimate

what the power consumption of the other decoders of Figure 6-12 would be if they also used

65nm. For a given architecture, a more advanced process allows the circuits to operate at

a lower voltage for the same throughput requirement. The voltage scaling factor can be

estimated by simulating the fanout-of-4 delay (FO4) for different process technologies [49]

and supply voltages, as shown in Figure 6-13. To compute the equivalent supply voltage at

135

0.01 mW

0.1 mW

1 mW

10 mW

100 mW

1 W

0.1 1 10 100

[work]

process, profile

QCIF CIF D1 720p 1080p

Resolution

30fps
P

o
w

e
r

Mpixels/s

15fps

[Chien et al. (2007)]

130-nm, Baseline

[Na et al. (2007)]

180-nm, Baseline

[Liu et al. (2007)]

180-nm, Baseline

[Lin et al. (2007)]

180-nm, Main

This work

65-nm, Baseline

0.70 V

0.85 V

Core Domain

Memory Cntl

0.5 V

0.5 V

0.55 V

0.68 V

0.85 V

1.15 V

0.66 V

0.74 V

Figure 6-12: Comparison with other H.264/AVC decoders Chien et al. [32], Na et al. [13],
Liu et al. [10], Lin et al. [9]

65nm, the operating voltage of the older process is mapped to a FO4, and the same FO4 is

mapped back to a supply voltage for 65nm.

Figure 6-13 shows that advanced processes reduce power by allowing a throughput-

constrained circuit to operate at a lower supply voltage. In addition, process scaling also

provides a linear decrease in transistor capacitance to first order, since the transistor widths,

lenghts and oxide thickness all scale down linearly. The length of interconnect reduces lin-

early, while coupling capacitance increases as the wires get taller and closer together. As a

result, the decrease in wire capacitance is at most linear with process scaling. To compute

the total power savings, we can scale the published results of Figure 6-12 by the linear de-

crease in effective capacitance and decrease in operating voltage enabled by process scaling.

Figure 6-14 shows how our ASIC compares with other decoders, once the effects of process

scaling have been accounted for. At 720p resolutions, our decoder draws almost half the

power of [10]. For 1080p resolutions, our decoder draws slightly more power than [10], and

136

1E-11

1E-10

1E-09

1E-08

1E-07

0 0.5 1 1.5 2

Supply Voltage [V]

F
o

4
 d

e
la

y
 [

s
e

c
]

65nm

130nm

180nm

Figure 6-13: FO4 delays for different technologies across supply voltages using the predictive
models of [49]

that can be attributed to a difficulty in raising the memory controller frequency high enough,

which led to a larger requirement for the core frequency and voltage to compensate for the

resulting stalls.

The variation in performance across 15 dies is shown in Figure 6-15. The majority of

the dies operate at 0.7-V. Note that the spread in minimum supply voltage is only 30mV,

so even if all chips were operated at the maximum of 0.72V, the increase in power would be

minimal.

Table 6.7: Measured performance numbers for 720p at 30 fps

Video mobcal shields parkrun
of Frames 300 300 144
Bitrate (Mbps) 5.4 7.0 26
Off-chip BW (Gbps) 1.2 1.1 1.2
Core Freq (MHz) 14 14 25
Mem Ctrl Freq (MHz) 50 50 50
Core Vdd [V] 0.7 0.7 0.8
Mem Ctrl Vdd [V] 0.84 0.84 0.84
Power (mW) 1.8 1.8 3.2

137

0.01 mW

0.1 mW

1 mW

10 mW

100 mW

0.1 1 10 100

[work]

process, profile
QCIF CIF D1 720p 1080p

Resolution

30fps

P
o

w
e

r

Mpixels/s

15fps

[Chien et al. (2007)]

65nm, Baseline

[Liu et al. (2007)]

65-nm, Baseline

This work

65-nm, Baseline

Figure 6-14: Comparison with other H.264/AVC decoders, estimated for the same 65nm
process, Chien et al. [32], Liu et al. [10]

0

1

2

3

4

5

6

7

8

9

10

0.69 0.7 0.71 0.72

Voltage [V]

C
o

u
n

t

0

1

2

3

4

5

6

7

8

9

10

0.69 0.7 0.71 0.72

Voltage [V]

C
o

u
n

t

Figure 6-15: Voltage supply variation across test chips

It is important to consider the impact of this work at the system-level of a multimedia

device. As voltage scaling techniques can reduce the decoder power below 10 mW for high

definition decoding, the system power is then dominated by the OCFB. [10] shows that the

memory power using an off-the-shelf DRAM is on the order of 30 mW for QCIF at 15fps

138

which would scale to hundreds of milliwatts for high definition. However, new low power

DRAMs such as [38], can deliver 51.2 Gbps at 39 mW. For 720p decoding, the required

bandwidth is 1.25 Gbps after the memory optimizations of Figure 6-2. This corresponds to

a frame buffer power of 1 mW, based on a linear estimate from [38]. Furthermore, off-chip

interconnect power can be reduced by using embedded DRAM or system in package (i.e.

stacking the DRAM die on top of the decoder die within a package).

The display typically consumes around a third of the power on a mobile platform [50].

With upcoming technologies such as organic light-emitting devices (OLEDs) and quantum

dot-organic light-emitting devices (QD-OLEDs) the display power costs will be reduced.

OLEDs have lower power compared to LCDs since there is no back-light required [51].

6.6 Power Breakdown

This section shows the simulated power breakdown during P-frame decoding of the ”mobcal”

sequence. The power of P-frames is dominated by MC (42%) and DB (26%), as seen on the

left chart of Figure 6-16. About 75% of the MC power, or 32% of total power, is consumed

by the MEM read logic, as illustrated by the pie chart on the right of the same figure. The

memory controller is the largest power consumer since it runs at a higher voltage than the

core domain, its clock tree runs at a higher frequency, and the MC read bandwidth is large

(about 2 luma pixels are read for every decoded pixel). At 0.7-V, the on-chip caches consume

0.15 mW.

The total leakage of the ASIC at 0.7-V is 25 µW which is approximately 1% of the

1.8mW total power for decoding 720p at 30 fps. At 0.5 V, the leakage is 8.6 µW which is

approximately 28% of the 29 µW total power for decoding QCIF at 15 fps. 64% of the total

leakage power is due to the caches. The leakage of the caches could have been reduced by

power gating unused banks during QCIF decoding for additional power savings. The leakage

breakdown across decoder units is shown in Figure 6-17.

139

MC

42%

DB

26%

MEM

write
7%

Pipeline

control & FIFOs
19%

INTRA
1%

IDCT
1%

ED
3%

Motion Vector

 predictor
5%

MEM

Read 75%

Interpolators

20%

P-Frame

Figure 6-16: Post-layout simulated power breakdown during P-frame decoding

ED, 5.7%

IT, 8.5%

INTRA,

8.8%

MC,

22.9%
DB,

37.2%

MISC,

17.0%

Figure 6-17: Post-layout simulated ASIC leakage power breakdown

6.7 Area Breakdown

The area breakdown by decoder unit is shown in of Figure 6-18. The area is dominated by

the DB unit due the SRAM caches which occupy 91% of the DB area.

140

The cost of parallelism is primarily an increase in area. The increase in total logic area

due to the parallelism in the MC unit (Chapter 3) and DB unit (Section 2.5) is about 10%.

When compared to the entire decoder area (including on-chip memory) the area overhead is

less than 3%.

DB

56% MC

16.6%

INTRA

15.6%

ED

1.6% IT

8.2%

MISC

1.4%

Caches

75%

Logic

25%

Figure 6-18: Post-layout area breakdown

6.8 Summary

This chapter presented the design of a H.264/AVC Baseline Level 3.1 video decoder ASIC

that was fabricated in 65-nm CMOS and verified for real-time operation. The ASIC operated

down to 0.7-V and had a measured power as low as 1.8 mW when decoding a high definition

720p video at 30 fps, which is over an order of magnitude lower than previously published

results. The ASIC design made extensive use of the pipelining and parallelism techniques

described in Chapter 2, and also optimized the memory system using the MC and FLLC

caching techniques of Chapter 5.

141

142

Chapter 7

Conclusions

In this thesis we described how to build low-power video decoders by targeting low-voltage

operation and efficient memory accessing. Low-voltage operation was enabled by using

pipelining and parallelism techniques to reduce the number of cycles required to decode

each frame. Memory optimization was focused on replacing power-hungry accesses to large

memories with reads and writes to smaller on-chip caches. The proposed techniques were all

validated by either ASIC implementation, RTL synthesis, layout, and/or simulation.

This work makes several key contributions to the field of video decoder hardware design,

as listed below:

1. Non-interlocked 4x4 pipeline achieves nearly maximum concurrency for the different

decoder units.

2. Arbitrary degree of parallelism demonstrated for the MC and DB units.

3. Demonstrated several multi-core video decoder architectures, for both existing and

future video standards.

4. Proposed and evaluated several on-chip caching techniques for reducing power in the

memory system.

5. Showed how domain partitioning and DVFS help reduce video power for a given ar-

chitecture.

143

Based on our extensive prototyping and demonstration systems, we have shown that all

of these ideas are feasible to implement in a complex system such as a video decoder. For

each of the ideas, we also quantified the benefits (power and frequency reduction) versus the

costs (area, design complexity). This thesis should therefore give future designers a set of

tools which they can selectively use for their specific multimedia application.

7.1 Future Areas of Research

This section suggests several areas of video coding which could be investigated in future

work. These topics were not directly addressed by this thesis.

7.1.1 Rate-Distortion-Power Video Coding

Typically, videos are coded while only considering the trade-off between rate and distortion.

Rate is a measure of compression efficiency, while distortion is a measure of image quality

relative to the original raw video. However, it would be useful if power was added as a

third dimension to the coding process. For example, if the video size could be reduced by

1% while increasing the expected power of the mobile energy-constrained DEC by 50%, the

ENC could consider this tradeoff in a quantitative way and decide whether it is worth the

extra computation cost. If the decoder has a strict power budget, as shown in Figure 7-1,

this sets the minimum achievable compression, and also maximizes the PSNR (minimizes

distortion) given the power constraint. This type of analysis was done for a software video

encoder in [52].

One way to achieve power-scalability in video coding is by using different coding options

in the current H.264 video standard. For example, the high profile of H.264 can achieve an

increase in coding efficiency over the baseline profile, but requires more computation and

power. Other ways to trade off power versus coding efficiency can be thought of for future

video standards. One example is performing variable-precision arithmetic as proposed in

Section 2.4.

144

bitrate

power

B
u

d
g

e
t

PSNR

bitrate or power

bitrate

Figure 7-1: Illustration of a possible trade-off between bitrate, PSNR, and decoding power

7.1.2 Video System Integration

Further research could explore how the frame buffer (FB) can be stored closer to the DEC

processor either using eDRAM or a stacked die approach. The on-chip caching impact then

becomes lower since the off-chip power is no longer as large as before, so the trade-offs will

look different. For example, [53] presents an architecture for 3D stacking of the memory

above the video processor.

7.1.3 Multi-Standard Video Decoder ASICs

Most of the work explored in this thesis has focused on the H.264 video standard or proposed

minor changes that can enable high-level parallelism. However, H.264 is not the only video

decoder algorithm used by video players. There are many other popular standards [54], such

as MPEG-1, MPEG-2, VC-1, RealVideo, Flash, and so on.

Since video content on mobile devices can be dynamically downloaded from any source,

the compression algorithm used could be any of the ones in [54]. If the video stream is to be

played back using the H.264 decoder hardware, the non-H.264 videos need to be trans-coded

locally on the mobile device, using configurable software or hardware [55]. Although the

transcoding does not necessarily need to take place in real time, it can use up as much or

145

even more power than decoding the actual video using the H.264 hardware, thus negating

all the power savings of the decoder ASIC.

Ideally, the decoder ASIC could handle a group of the most popular standards. Fur-

thermore, some of the less popular algorithms could be handled in software. The software

implementations would draw more power and might not be able to handle the processing

requirements of higher resolutions. This type of multi-standard ASIC is a challenge to de-

sign, because the chip area and design time increases linearly with the number of supported

standards. This is an active area of research ([10, 56]), and an ideal solution would maximize

the amount of hardware reuse amongst the different algorithms.

7.1.4 Video Encoder ASICs

This thesis mostly focuses on techniques for reducing the power in video decoder ASICs.

However, encoders are also becoming popular on mobile devices such as digital video recorders,

so there is a lot of active research in this area ([15, 57]). The processing required in a video

encoder is arguably more complex, since the encoding process must also include a decoder

to ensure identical reference frames.

Many of the pipelining, parallelism, and caching ideas discussed in this thesis can be

ported to an encoder implementation. Additionally, because the standard only constrains the

decoder, the encoder offers some flexibility over the decoder. This allows further architecture

explorations, which could lead to more energy-efficient hardware designs.

7.1.5 Workload Prediction

The works in [44, 58, 59, 60] propose several techniques to predict the varying workload

during video decoding. As discussed in Section 6.3, accurate workload prediction improves

the power-efficiency of video decoders, since it allows them to operate at the lowest frequency

and voltage and decode frames “just-in-time” to meet the deadlines. In order to achieve

better prediction for H.264 and future video standards, further research is required to either

integrate the prediction methodology in the standard, or to provide more predictable ways

146

in the standard to estimate a frame’s required workload.

147

148

Bibliography

[1] A. P. Chandrakasan and R. W. Brodersen, “Minimizing Power Consumption in Digital

CMOS Circuits,” in Proceedings of the IEEE, April 1995, pp. 498–523.

[2] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 2nd ed.

Prentice-Hall, 2002.

[3] “Recommendation ITU-T H.264: Advanced Video Coding for Generic Audiovisual Ser-

vices,” ITU-T, Tech. Rep., 2003.

[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 13, no. 7, pp. 560– 576, July 2003.

[5] “Wikipedia H.264 entry.” [Online]. Available: http://en.wikipedia.org/wiki/H.264

[6] T. Wedi and H. Musmann, “ Motion- and Aliasing-Compensated Prediction for Hy-

brid Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 577–586, July 2003.

[7] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz, “Adaptive Deblocking

Filter,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7,

pp. 614–619, July 2003.

[8] H.-Y. Kang, K.-A. Jeong, J.-Y. Bae, Y.-S. Lee, and S.-H. Lee, “MPEG4 AVC/H.264

Decoder with Scalable Bus Architecture and Dual Memory Controller,” in IEEE Inter-

national Symposium on Circuits and Systems, May 2004, pp. II– 145–8 Vol.2.

149

http://en.wikipedia.org/wiki/H.264

[9] C.-C. Lin, J.-W. Chen, H.-C. Chang, Y.-C. Yang, Y.-H. O. Yang, M.-C. Tsai, J.-I.

Guo, and J.-S. Wang, “A 160K Gates/4.5 KB SRAM H.264 Video Decoder for HDTV

Applications,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 170–182, January

2007.

[10] T.-M. Liu, T.-A. Lin, S.-Z. Wang, W.-P. Lee, K.-C. Hou, J.-Y. Yang, and C.-Y. Lee,

“A 125uW, Fully Scalable MPEG-2 and H.264/AVC Video Decoder for Mobile Appli-

cations,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 161–169, January

2007.

[11] T.-M. Liu, T.-A. Lin, S.-Z. Wan, W.-P. Lee, K.-C. Hou, J.-Y. Yang, and C.-Y. Lee,

“An 865uW H.264/AVC Video Decoder for Mobile Applications,” in IEEE Asian Solid

State Circuits Conference, November 2005, pp. 301–304.

[12] D. F. Finchelstein, V. Sze, M. E. Sinangil, Y. Koken, and A. P. Chandrakasan, “A

Low-Power 0.7-V H.264 720p Video Decoder,” in IEEE Asian Solid State Circuits Con-

ference, November 2008, pp. 173–176.

[13] S. Na, W. Hwangbo, J. Kim, S. Lee, and C.-M. Kyung, “1.8mW, Hybrid-Pipelined

H.264/AVC Decoder For Mobile Devices,” IEEE Asian Solid State Circuits Conference,

November 2007.

[14] E. Fleming, C.-C. Lin, N. Dave, Arvind, G. Raghavan, and J. Hicks, “H.264 Decoder:

A Case Study in Multiple Design Points,” Proceedings of Formal Methods and Models

for Co-Design, (MEMOCODE), pp. 165–174, June 2008.

[15] K. Iwata, S. Mochizuki, T. Shibayama, F. Izuhara, H. Ueda, K. Hosogi1, H. Nakata1,

M. Ehama, T. Kengaku, T. Nakazawa, and H. Watanabe, “A 256mW Full-HD

H.264 High-Profile CODEC Featuring Dual Macroblock-Pipeline Architecture in 65nm

CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, 2008.

[16] C.-C. Lin, “Implementation of H.264 Decoder in Bluespec System Verilog,” Master’s

Thesis, Massachusetts Institute of Technology, February 2007.

150

[17] V. Chandra, A. Xu, H. Schmit, and L. Pileggi, “An Interconnect Channel Design

Methodology for High Performance Integrated Circuits,” in Design, Automation and

Test In Europe Conference (DATE), 2004.

[18] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen, “Parallel 44 2D transform

and inverse transform architecture for MPEG-4 AVC/H.264,” in IEEE International

Conference on Acoustics, Speech and Signal Processing, 2003.

[19] S.-Z. Wang, T.-A. Lin, T.-M. Liu, and C.-Y. Lee, “A New Motion Compensation Design

for H.264/AVC Decoder,” in IEEE International Symposium on Circuits and Systems,

vol. 5, May 2005, pp. 4558–4561.

[20] H.-C. Chang, C.-C. Lin, and J.-I. Guo, “A novel low-cost high-performance VLSI archi-

tecture for MPEG-4 AVC/H.264 CAVLC decoding,” in IEEE International Symposium

on Circuits and Systems, vol. 6, May 2005, pp. 6110–6113.

[21] S. Cho, “Design of a Low Power Variable Length Decoder for MPEG-2 System,” Mas-

ter’s Thesis, Massachusetts Institute of Technology, June 1997.

[22] T.-H. Tsa, D.-L. Fang, and Y.-N. Pan, “A Hybrid CAVLD Architecture Design with

Low Complexity and Low Power Considerations,” in IEEE International Conference on

Multimedia and Expo, July 2007, pp. 1910–1913.

[23] S.-Y. Tseng, “A Pattern-Search Method for H.264/AVC CAVLC Decoding,” in IEEE

International Conference on Multimedia and Expo, July 2006, pp. 1073–1076.

[24] T. Xanthopoulos, “Low Power Data-Dependent Transform Video and Still Image Cod-

ing,” PhD Thesis, Massachusetts Institute of Technology, February 1999.

[25] S. Nomura, F. Tachibana, T. Fujita, C. K. Teh, H. Usui, F. Yamane, Y. Miyamoto,

C. Kumtornkittikul, H. Hara, T. Yamashita, J. Tanabe, M. Uchiyama, Y. Tsuboi,

T. Miyamori, T. Kitahara, H. Sato, Y. Homma, S. Matsumoto, K. Seki, Y. Watanabe,

M. Hamada, and M. Takahashi, “A 9.7mW AAC-Decoding, 620mW H.264 720p 60fps

151

Decoding, 8-Core Media Processor with Embedded Forward-Body-Biasing and Power-

Gating Circuit in 65nm CMOS Technology ,” in IEEE Int. Solid-State Circuits Conf.

Dig. Tech. Papers, February 2008.

[26] E. van der Tol, E. Jaspers, and R. Gelderblom, “”Mapping of H.264 Decoding on a

Multiprocessor Architecture”,” in Image and Video Communications and Processing,

2003.

[27] V. Sze, D. F. Finchelstein, M. E. Sinangil, and A. P. Chandrakasan, “A 1.8-mW 0.7-

V H.264 720p Video Decoder,” IEEE Journal of Solid-State Circuits, to appear in

November 2009.

[28] L. Philipps, S. V. Naimpally, R. Meyer, and S. Inoue, “Parallel architecture for a high

definition television video decoder having multiple independent frame memories,” U.S.

Patent No. 5,510,842, issued to Matsushita Electric Corporation of America, April 1996.

[29] J. Zhao and A. Segall, “VCEG-AI32: New Results using Entropy Slices for Parallel

Decoding,” ITU-T Study Group 16 Question 6, Video Coding Experts Group (VCEG),

35th Meeting: Berlin, Germany, July 2008.

[30] L. Nachtergaele, F. Catthoor, F. Balasa, F. Franssen, E. D. Greef, H. Samsom, and

H. D. Man, “Optimization of Memory Organization and Hierarchy for Decreased Size

and Power in Video and Image Processing Systems,” in IEEE International Workshop

on Memory Technology, Design, and Testing.

[31] S. Dutta, W. Wolf, and A. Wolfe, “ A Methodology to Evaluate Memory Architec-

ture Design Tradeoffs for Video Signal Processors,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 8, no. 1, pp. 36–53, February 1998.

[32] C.-D. Chien, C.-C. Lin, Y.-H. Shih, H.-C. Chen, C.-J. Huang, C.-Y. Yu, C.-L. Chen,

C.-H. Cheng, and J.-I. Guo, “A 252kgate/71mW Multi-Standard Multi-Channel Video

Decoder for High Definition Video Applications,” in IEEE Int. Solid-State Circuits

Conf. Dig. Tech. Papers, 2007.

152

[33] M. Budagavi and M. Zhou, “Video coding using compressed reference frames,” in IEEE

International Conference on Acoustics, Speech and Signal Processing, 2008.

[34] T. Nishikawa, M. Takahashi, M. Hamada, T. Takayanagi, H. Arakida, N. Machida,

H. Yamamoto, T. Fujiyoshi, Y. Maisumoto, O. Yamagishi, T. Samata, A. Asano, T. Ter-

azawa, K. Ohmori, J. Shirakura, Y. Watanabe, H. Nakamura, S. Minami, T. Kuroda,

and T. Furuyama, “A 60 MHz 240 mW MPEG-4 Video-phone LSI with 16 Mb Em-

bedded DRAM,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February

2000.

[35] “Fffmpeg Open-Source Codec.” [Online]. Available: http://www.ffmpeg.org/

[36] “H.264/AVC Reference Software, JM 12.0.” [Online]. Available:

http://iphome.hhi.de/suehring/tml/

[37] T. Tan, G. Sullivan, and T. Wedi, “VCEG-AE010: Recommended Simulation Common

Conditions for Coding Efficiency Experiments Rev. 1,” ITU-T SG16/Q6, January 2007.

[38] K. Hardee, F. Jones, D. Butler, M. Parris, M. Mound, H. Calendar, G. Jones, L. Aldrich,

C. Gruenschlaeger, M. Miyabayashil, K. Taniguchi, and I. Arakawa, “A 0.6V 205MHz

19.5ns tRC 16Mb embedded DRAM,” in IEEE Int. Solid-State Circuits Conf. Dig.

Tech. Papers, 2004.

[39] Y.-W. Huang, B.-Y. Hsieh, T.-C. Wang, S.-Y. Chien, S.-Y. Ma, C.-F. Shen, and L.-G.

Chen, “Analysis and Reduction of Reference Frames for Motion Estimation in MPEG-4

AVC/JVT/H.264,” in IEEE International Conference on Acoustics, Speech and Signal

Processing, 2003.

[40] M. Semiconductors, “Mobile DRAM, The Secret to Longer Life.” [Online]. Available:

www.google.com

[41] B.-G. Nam, J. Lee, K. Kim, S. J. Lee, and H.-J. Yoo, “ 52.4mW 3D Graphics Processor

with 141Mvertices/s Vertex Shader and 3 Power Domains of Dynamic Voltage and

153

http://www.ffmpeg.org/
http://iphome.hhi.de/suehring/tml/
www.google.com

Frequency Scaling,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February

2007.

[42] T. Fujiyoshi, S. Shiratake, S. Nomura, T. Nishikawa, Y. Kitasho, H. Arakida, Y. Okuda,

Y. Tsuboi, M. Hamada, H. Hara, T. Fujita, F. Hatori, T. Shimazawa, K. Yahagi,

H. Takeda, M. Murakata, F. Minami, N. Kawabe, T. Kitahara, K. Seta, M. Takahashi,

and Y. Oowaki, “An H.264/MPEG-4 Audio/Visual Codec LSI with Module-Wise Dy-

namic Voltage/Frequency Scaling,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.

Papers, February 2005.

[43] V. Gutnik and A. P. Chandrakasan, “Embedded Power Supply for Low-Power DSP,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, pp. 425–435,

December 1997.

[44] E. Akyol and M. van der Schaar, “Complexity Model Based Proactive Dynamic Voltage

Scaling for Video Decoding Systems,” IEEE Transactions on Multimedia, vol. 9, no. 7,

pp. 1475–1492, November 2007.

[45] C. Im, H. Kim, and S. Ha, “Dynamic Voltage Scheduling Technique for Low-power

Multimedia Applications Using Buffers,” in IEEE International Symposium on Low

Power Electronics and Design. New York, NY, USA: ACM, 2001, pp. 34–39.

[46] “Cypress ZBT SRAMs.” [Online]. Avail-

able: http://download.cypress.com.edgesuite.net/design

resources/datasheets/contents/cy7c1470v25 8.pdf

[47] “MIT 6.111 Course Labkit.” [Online]. Available:

http://www-mtl.mit.edu/Courses/6.111/labkit/

[48] “X264 Open-Source Encoder.” [Online]. Available:

http://www.videolan.org/developers/x264.html

[49] “Predictive Technology Model.” [Online]. Available: http://www.eas.asu.edu/∼ptm

154

http://download.cypress.com.edgesuite.net/design_resources/datasheets/contents/cy7c1470v25_8.pdf
http://www-mtl.mit.edu/Courses/6.111/labkit/
http://www.videolan.org/developers/x264.html
http://www.eas.asu.edu/~ptm

[50] “Mobile Platform Display Technology Advancements.” [Online]. Available:

http://developer.intel.ru/download/design/mobile/Presentations/MOB165PS.pdf

[51] O. Prache, “Active Matrix Molecular OLED Microdisplays,” Displays, vol. 22, no. 2,

pp. 49–56, May 2001.

[52] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “ Power-Rate-Distortion Analysis

for Wireless Video Communication under Energy Constraints,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 15, no. 5, pp. 645–658, May 2005.

[53] A. Zeng, J.-Q. Lu, R. Gutman, and K. Rose, “Wafer-level 3D Manufacturing Issues for

Streaming Video Processors,” in IEEE Advanced Semiconductor Manufacturing, May

2004.

[54] “Wikipedia entry on commonly-used video codecs.” [Online]. Available:

http://en.wikipedia.org/wiki/Video codec#Commonly used standards and codecs

[55] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video Transcoding: an Overview of

Various Techniques and Research Issues,” IEEE Transactions on Multimedia, vol. 7,

no. 5, pp. 793–804, October 2005.

[56] T.-M. Liu, W.-P. Lee, and C.-Y. Lee, “ An Area-Efficient and High-Throughput De-

Blocking Filter for Multi-Standard V Video Applications,” in International Conference

on Image Processing, September 2005.

[57] T.-C. Chen, Y.-H. Chen, C.-Y. Tsai, S.-F. Tsai, S.-Y. Chien, and L.-G. Chen, “ 2.8 to

67.2mW Low-Power and Power-Aware H.264 Encoder for Mobile Applications,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, pp. 222–223, June 2007.

[58] K. Choi, K. Dantu, W. Cheng, and M. Pedram, “Frame-Based Dynamic Voltage and

Frequency Scaling for a MPEG Decoder,” November 2002, pp. 732 – 737.

[59] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-aware Video Decoding,”

in 22nd Picture Coding Symposium, 2001.

155

http://developer.intel.ru/download/design/mobile/Presentations/MOB165PS.pdf
http://en.wikipedia.org/wiki/Video_codec#Commonly_used_standards_and_codecs

[60] A. C. Bavier, A. B. Montz, and L. L. Peterson, “Predicting MPEG Execution Times,”

in ACM SIGMETRICS Joint International Conference on Measurement and Modeling

of Computer Systems. New York, NY, USA: ACM, 1998, pp. 131–140.

156

	Introduction
	Motivation for Low-Power Video
	Voltage Scaling for Low Power
	Memory Optimization for Low Power

	Outline of Main Contributions
	The H.264 Video Codec
	H.264 Overview
	Entropy Decoder (ED)
	Inverse Transform and Quantization (IT)
	Intra Spatial Prediction (INTRA)
	Motion Compensation (MC)
	Deblocking Filter (DB)
	Frame Buffer (FB)

	Related Work
	Related Work on Video Pipelining and Unit Parallelism
	Related Work on Multi-Core Video Decoding
	Related Work on Video Memory Optimization

	Pipelining and Unit-Level Parallelism
	Decoder Pipeline
	FIFO Sizing
	Motion Compensation (MC) Architecture
	Inverse Transform (IT) Architecture
	Deblocking Filter (DB) Architecture
	Intra Prediction (INTRA) Architecture
	Entropy Decoding (ED) Architecture
	Reconstruction (ADD) Architecture
	Memory Controller (MEM) Architecture
	Summary

	Motion Compensation (MC) Architecture
	Luma Motion Compensation (MC) Pipeline
	Luma Interpolator Parallelism
	Chroma Interpolator Parallelism

	Multi-Core Decoding
	Slice Multi-Core Decoding
	Frame Multi-Core Decoding
	Diagonal Macroblock Processing
	Interleaved Entropy Slice (IES) Multi-Core Decoding
	Bitstream Controller
	Software Applicability of Multi-Core Decoding
	Multi-Core Decoding Comparison
	Summary

	Memory Optimization
	Full-Last-Line Caching (FLLC)
	Last-Line Caching for Interleaved Entropy Slices (IESs)
	Motion Compensation (MC) Caching for H.264
	Motion Compensation (MC) Caching for Interleaved Entropy Slices (IESs)
	Last-Frame Cache (LFC) for Motion Compensation
	Motion Compensation Data-Forwarding Caches
	Software Applicability of Memory Optimization
	Caching Summary
	Summary

	Prototype Video Decoder ASIC
	Video Decoder ASIC Architecture
	Multiple Voltage and Frequency Domains
	Dynamic Voltage and Frequency Scaling
	Real-Time ASIC Demonstration
	Results and Measurements
	Power Breakdown
	Area Breakdown
	Summary

	Conclusions
	Future Areas of Research
	Rate-Distortion-Power Video Coding
	Video System Integration
	Multi-Standard Video Decoder ASICs
	Video Encoder ASICs
	Workload Prediction

