
Experimental Study of Photonic Band Gap

Accelerator Structures

by

Roark A. Marsh

B.S. (Physics), UC Santa Cruz (2003)
B.A. (Mathematics and Classical Studies), UC Santa Cruz (2003)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

c© Roark A. Marsh, MMIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Physics

April 27, 2009

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Richard J. Temkin
Senior Scientist, Department of Physics

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thomas J. Greytak

Associate Department Head for Education



Experimental Study of Photonic Band Gap Accelerator

Structures

by

Roark A. Marsh

Submitted to the Department of Physics
on April 27, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract

This thesis reports theoretical and experimental research on a novel accelerator con-
cept using a photonic bandgap (PBG) structure. Major advances in higher order
mode (HOM) damping are required for the next generation of TeV linear colliders.
In this work, PBG HOMs are studied theoretically and experimentally for the first
time. PBG HOMs are shown in simulation to be low Q lattice modes, removed from
the cavity defect and beam position. Direct wakefield measurements were made in
hot test using the bunch train produced by the MIT HRC 17 GHz linear accelerator.
Measurements are compared with beam-loading theory, and wakefield simulations
using ANALYST. Excellent agreement is observed between theory predictions and
power measured in the 17 GHz fundamental operating mode; reasonable agreement
is also seen with the 34 GHz wakefield HOM. In order to understand the performance
of PBG structures under realistic high gradient operation, an X-band (11.424 GHz)
PBG structure was designed for high power testing in a standing wave breakdown
experiment at SLAC. The PBG structure was hot tested to gather breakdown statis-
tics, and achieved an accelerating gradient of 65 MV/m at a breakdown rate of two
breakdowns per hour at 60 Hz, and accelerating gradients above 110 MV/m at higher
breakdown rates. High pulsed heating occurred in the PBG structure, with many
shots above 270 K, and an average of 170 K for 35×106 shots. Damage was observed
in both borescope and scanning electron microscope imaging. No breakdown damage
was observed on the iris surface, the location of peak electric field, but pulsed heating
damage was observed on the inner rods, the location of magnetic fields as high as
1 MA/m. Breakdown in accelerator structures is generally understood in terms of
electric field effects. PBG structure results highlight the unexpected role of magnetic
fields on breakdown. The hypothesis is presented that the low level electric field on
the inner rods is enhanced by pulsed heating surface damage, and causes breakdown.
A new PBG structure was designed with improved pulsed heating, and will be tested.
These results greatly further the understanding of advanced structures with wakefield
suppression that are necessary for future colliders.
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Chapter 1

Introduction

1.1 Accelerator Physics

For the last 80 years, High Energy Physics (HEP) has been driven by technological

advances in the field of accelerator physics. This evolution can be summarized in the

“Livingston” plot shown in Figure 1-1, which plots accelerated particle energy against

the year of accelerator commissioning. In turn, accelerator driven HEP has been the

biggest motivator for advances in accelerator technology. Advances have made our

current understanding of the basic forces and particle constituents of the universe

possible. The Standard Model of particle physics is the most precisely vetted physical

model Science has brought forth. The Standard Model posits that Quantum Field

Theories (QFT) accurately describe the interaction of three generations of Quarks

and Leptons with the fundamental Electromagnetic, and Nuclear Strong and Weak

forces. Particle interactions within QFT involve massless particles. A quantum theory

of gravity has long eluded theorists, though particle mass can be added to QFT.

The Standard Model includes a prescription for adding mass to particles using the

Higgs mechanism. The additional spontaneously broken symmetry involved in the

mechanism predicts an associated spin zero Goldstone boson exists: the Higgs boson.

The Higgs boson is the last undiscovered piece of the Standard Model that is predicted

and has yet to be observed.

Higgs boson searches have been conducted using previous collider data. No detec-
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A) B)

Figure 1-2: Allowable mass range for the Higgs boson. A) is theoretically allowed
mass range with the thick lines representing uncertainty in theory parameters [3]. B)
is a global fit to all Standard Model data, yielding a fit of 91 + 45 – 32 GeV for the
mass of the Higgs boson [4].

tion has been made, which places limits on the acceptable possible Higgs boson mass,

as shown in Figure 1-2 [3, 4]. An overall fit to all electroweak parameters predicts a

Higgs boson mass of 91 + 45 – 32 GeV. This mass range will be well covered by the

upcoming Large Hadron Collider (LHC) operation.

The fundamental issue with LHC coverage of the possible Higgs boson mass range

is that LHC events, though capable of detecting Higgs-like particles of the appro-

priate mass and coupling characteristics, will be hard pressed to carry out precision

measurements of the Higgs boson properties, which clearly indicate its identity. Fig-

ure 1-3 shows a typical simulated LHC Higgs event, along with the overall Higgs boson

detection signal, in Figure 1-4 [5]. Multi-jet events are the golden channel for Higgs

detection in the predicted mass range, for proton-proton collisions. Because protons

are composite particles, made up of constituent quarks and anti-quarks, the energy

in any given collision is not fixed, having some spread, which decreases the number

of useable events. In addition, the background processes which also produce multiple

hadronic jets (which can appear to be Higgs boson events) are numerous. Though

the signal to noise ratio is less than one, the predicted signal is still easily within the
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Figure 1-3: Simulated multi-jet event indicative of Higgs boson particle process in
LHC detector data [5]. The large number of particles involved is an unavoidable
byproduct of colliding composite particles; in this case protons.
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ATLAS

A) B)

Figure 1-4: Low signal to noise ratio inevitable in Higgs boson detection using LHC
event data [5]. A) shows simulated Higgs detection on the CMS detector. B) shows
simulated Higgs detection on the ATLAS detector.

detector threshold for detection, as is clear from the visible peaks in Figure 1-4.

Precision measurements of the Higgs boson mass and properties are necessary to

confirm discovery detection, but the couplings to various channels are also necessary

to fully characterize the discovery. In order to carry out precision measurements and

measure the Higgs boson couplings to heavy quarks, a high energy electron-positron

collider is necessary. The International Linear Collider (ILC) has been proposed

by the international accelerator and HEP communities for this purpose. Figure 1-5

shows a typical simulated ILC Higgs boson event, and the overall detection signal is

shown in Figure 1-6 [6]. Because the ILC will collide electrons and positrons, each

fundamental (non-divisible) leptons, the machine events are much cleaner than LHC

events: compare Figure 1-5 to Figure 1-3. The golden channel for Higgs detection

at the ILC is quite distinct from possible background events, allowing not only high

signal to noise ratios, as seen in Figure 1-6, but additional information to be measured

concerning the Higgs boson properties.

The ILC global design effort is underway, and a set of baseline and possible up-
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Figure 1-5: Simulated typical Higgs boson event for the proposed ILC [5].
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Figure 1-6: High signal to noise ratio possible in Higgs boson detection using simulated
ILC event data [6].
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grade scenarios have been developed. The baseline design calls for the use of two

15 km superconducting main linear accelerators. Superconducting rf technology was

chosen by an international decision panel as the technology for the ILC development.

Several significant limitations are intrinsic to, or have since emerged concerning this

technology. Superconductors are fundamentally defined to expel all magnetic flux

up to a critical field at which they lose their superconductivity. This critical field

defines an upper bound on the surface magnetic field allowable in a superconducting

accelerating cavity. Geometric optimization and alternate superconducting materials

can slightly vary this limit, but an upper bound on accelerating gradient of 50 MV/m

is believed to be unavoidable. The gradient actually achieved in single cells, and

eventually realistic multi-cell cavities is less than the theoretical fundamental limit of

50 MV/m. Industrialization and standardization in fabrication practices have been

claimed as surmountable difficulties, but the current state of progress is still deficient

in reaching the specified accelerating gradient for the ILC of 31 MV/m, as shown in

Figure 1-7 [7].

Regardless of the current difficulties in ILC cavity construction, the single largest

cost driver in the linear collider’s construction is associated with the main linac. An

improvement in the linac accelerating gradient makes a more economical machine

possible. In terms of Physics achievement, a higher gradient makes a more complete

discovery possible. An upper achievable energy of 800 GeV–1 TeV was specified for

the ILC, or any future electron-positron collider for HEP. Such an energy is necessary

to both complement LHC data, as well as to adequately measure the coupling of

the Higgs boson with the Standard Model particles. Practical large scale metrology

constrains the overall length of any terrestrial accelerator complex to 50 km. In order

to reach energies higher than those of the ILC, or to reach the original specification for

the ILC performance, in a reasonable length, high gradient acceleration is required.

Because of the fundamental constraint of superconducting structures to operate

below a critical field, high gradient acceleration requires conventional normal con-

ducting structures. Standard oxygen free high conductivity (OFHC) copper provides

a robust, and well understood material for high gradient accelerator concepts. High
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Figure 1-7: Gradient achieved in multi-cell superconducting accelerating cavities as
a function of time [7]. The design goal for the ILC gradient of 31 MV/m is shown as
a horizontal line. Progress has been steady, but cavities are still produced using all
current state-of-the-art procedures demonstrate deficient performance.
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accelerating field is the goal in such structures, constrained by material properties,

and accelerator performance. Material properties impact the maximum electric sur-

face field a surface can sustain and the repeated cycling of pulsed heating tolerable.

Accelerator performance prescribes very high availability of very high quality beams,

to maximize the discovery potential of any linear collider concept.

1.2 High Gradient Accelerators

1.2.1 Accelerator Structures

For linear collider operation, charged particles are accelerated to high energy, and then

interact. Accelerator cavities are conventional pillbox resonators, operating in a TM01

mode, so that an axial electric field is present [8]. Irises must be used to provide a path

for the beam from one pillbox cell to another, to impose axial boundary conditions

to insure acceleration, and often to allow power to couple from cell to cell.

The axial electric field for the TM01 mode of a cylindrical waveguide is given

in Equation 1.1 [9]. Equation 1.1 describes a wave propagating in the positive z

direction, with magnitude, E0, wave number, k, and frequency, ω.

Ez (r, z, t) = E0J0 (k0r) eı(kz−ωt) (1.1)

The wave number, k, is given by Equation 1.2.

k2 = (ω/c)2 − k2
0 (1.2)

For the TM01 mode, k0 = 2.405/R ≡ ωc/c, where R is the waveguide radius.

Equation 1.2 allows the phase velocity, vp = ω/k, to be calculated for the TM01

mode, as shown in Equation 1.3

vp =
ω

k
=

c
√

1 −
(

ωc

ω

)2
> c (1.3)
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The phase velocity for this mode is greater than the speed of light, which means that

particles can not be synchronized with the traveling wave during acceleration. Parti-

cles that begin synchronously, and are accelerated, will eventually lose synchronism,

and be decelerated. To reduce vP ≤ c, iris loading is used to slow the traveling wave

down. For electrons, v ≈ c, and so an accelerator mode is chosen such that vp = c.

1.2.2 Luminosity

The discovery potential of an accelerator is based largely on a figure of merit known

as the beam luminosity. The number of events observed per unit time is a function

of the rarity of the event in question, or the process cross-section, σ, multiplied by

the number of total particle interactions, defined as the beam luminosity, L. For

beam-beam colliders, this can be expressed as:

L =
nbN

2frep

A
HD (1.4)

The luminosity defined in Equation 1.4, L, is written in terms of the number of particle

bunches, nb, the number of particles per bunch, N , the repetition frequency, frep, the

beam cross-sectional area, A, and a beam shape dependent term, HD. To maximize

the luminosity of a collider, a careful balance of the relevant terms in Equation 1.4

must be reached. To maximize the numerator, it is most effective to use the greatest

number of particles per bunch; to minimize the denominator the smallest possible

bunches should be used to decrease the bunch transverse size. Particle dynamics

dilute the beam quality, and so a balance must be reached between particle number

and size.

1.2.3 Beam Dynamics

Beam dynamics play a fundamental role in determining the possibility of beam trans-

port and acceleration. As the number of relativistic particles per bunch is increased,

the transverse, Lorentz-contracted electric and magnetic fields of the particle bunches

become large enough that they can act on subsequent particle bunches. These beam
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induced fields, or wakefields, can be separated into two categories, short-range and

long-range wakefields. Short-range wakefields are generated by the particles in the

head of a bunch and act on the tail of the bunch. Short-range wakefields increase

the energy spread of the beam, by decelerating particles in the tail, and deflect the

beam, when particles are off-axis. Long-range wakefields are caused by the field of

one bunch acting on subsequent bunches, most critically by exciting transversely de-

flecting modes. The wake potential of a bunch can be written as a sum over cavity

eigenmodes.

W (z) =
∑

n

anfn (~x) e−ıωnte−ωnt/2Qn (1.5)

The wake potential expressed in Equation 1.5, W , is written as a function of the

trailing distance behind the bunch, z. This can be written generally as a sum over

cavity modes, n, with some coupling strength, an, a functional field dependence, fn(~x),

and a time dependence, given as an oscillation at a frequency, ωn, with damping given

as a time constant, τn = 2Qn/ωn, where Qn is the quality factor for mode n. The

most dangerous modes are those which have high Q, and field distributions which can

excite dangerous motion in the beam, such as transverse deflection. Damping these

modes is of paramount concern in order to effectively transport or accelerate bunches

of charged particles.

1.2.4 Frequency Scaling

High gradient acceleration is limited by cavity performance in terms of the maxi-

mum electric field the surface can tolerate, the maximum magnetic field the surface

can tolerate, and particle trapping. Conventional normal conducting structures have

been used successfully for accelerator applications for the last 50 years, providing an

understanding of the fundamental limits inherent to high gradient acceleration. Fig-

ure 1-8 summarizes the frequency scaling of limits to the gradient achievable in linear

accelerators: limits are derived for effects associated with electric field breakdown,

magnetic field pulsed heating, and particle trapping. These effects are discussed in

Sections 1.2.5, 1.2.6, 1.2.7, and more thoroughly described in Section 2.2.
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1.2.5 Electric Field

The accelerating gradient, defined as the accelerating field integrated along the beam

path, has fundamental physical limits which scale with frequency. At higher frequen-

cies, higher gradients are achievable while avoiding breakdown, pulsed heating, and

dark current capture. The maximum surface electric field relates geometrically with

the accelerating gradient; structures can be shaped to improve the gradient with re-

spect to the surface field, but generally a ratio of Esurface/Egradient ∼ 2.2 is observed.

It was believed that the maximum surface electric field sustainable without break-

down scaled with frequency [11, 12]. This scaling was not observed to hold as hoped

at higher frequency, and it is currently believed that breakdown limits high gradient

accelerators to surface fields of ∼ 450 MV/m [13]. A maximum surface electric field

of 450 MV/m and a gradient to surface ratio of 2.25 translates into the breakdown

limit line on Figure 1-8.

1.2.6 Magnetic Field

Magnetic field effects have been linked with cyclic fatigue [14, 15]. The surface mag-

netic field induces surface currents, which ohmically heat the surface. Over the short

rf pulse length, this heat is dissipated over a limited surface area, melting it. The tem-

perature rise on high magnetic field areas can be quite high, and bounds for tolerable

levels have been experimentally measured [15], and a theory on the pulsed heating

lifetime of devices has been developed [14]. The current acceptable thresholds for safe

pulsed heating, between 40 and 120 K are shown in Figure 1-8.

1.2.7 Dark Current Trapping

The electric field in high gradient accelerating structures can be high enough that non-

energetic background vacuum electrons can be excited to relativistic speeds quickly

enough that they can match phase with the accelerating field, and avoid being de-

celerated when the field changes direction. Dark current both decreases the energy

available to accelerate beam particles, and can strongly affect beam dynamics by
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forming trapped particle halos. Limits for dark current capture can be derived for

specific structures using computer modeling, or can be derived analytically. Calcula-

tions from first principles give trapping limits based on what energy trapped electrons

are required to gain before they are considered trapped, as discussed further in Sec-

tion 2.2. These calculations result in the 2 and 3 MV/m trapping limits, as shown in

Figure 1-8.

1.2.8 Wakefields

Fundamental to accelerator structure operation is the damping of wakefields, as de-

scribed briefly in Section 1.2.3. The motivation for high gradient operation at higher

frequency can be observed by looking at Figure 1-8, which shows advantageous scal-

ing of gradient limits with increasing frequency. Fabrication and high power source

availability restrict development at very high frequencies, but wakefield considerations

dominate. Wakefields scale as ω2 or ω3, and must be damped [16]. Figure 1-9 shows

the simulated electric field of a Gaussian bunch as it traverses a PETRA accelerator

cavity. The short-range wakefields can be seen as the electric field lines contacting

the iris surface and the long-range wakefields can be seen as the field left in a cavity

cell after the bunch has passed [17].

Short-range wakefields affect both the energy spread of the beam and the trans-

verse size of the beam; both effects act to decrease the quality of the beam, and its

Physics potential. The longitudinal short-range wakefields, WL, scale as ω2, and de-

crease the energy of tail particles, increasing energy spread. Short-range longitudinal

wakefields can be reduced by limiting the bunch charge, increasing the bunch length,

or by careful phasing of particles bunches. The transverse short-range wakefields, WT ,

act to increase the transverse energy spread, increasing the bunch transverse area.

Short-range longitudinal wakefields can be reduced by limiting the bunch charge,

increasing the bunch length, or by careful control of transverse particle motion, uti-

lizing tight alignment, strong focusing, and other targeted damping. Clearly, allowing

short-range wakefields to go unchecked will decrease collider performance, directly by

degrading the luminosity, or indirectly by decreasing the precision attainable due
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Figure 1-9: Electric field of a Gaussian bunch (Longitudinal bunch length of 2 cm,
and bunch charge of 1 µC) traversing a PETRA cavity [17].
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to large energy spread. Controlling short-range wakefields by decreasing the bunch

charge will also decrease luminosity, and leads to a reliance on the alternate methods

mentioned.

Long-range wakefields build up as bunches transit through accelerating structures

and excite modes other than the accelerating mode (excitation of the fundamental

will occur at such a phasing as to decrease the accelerating field, an effect known as

beam-loading). Long-range wakefields degrade the beam quality by increasing the

bunch transverse area, and can lead to serious beam instabilities that prohibit the

bunch from being safely transported. Long-range wakefields can be reduced by lim-

iting the bunch charge; increasing the bunch length; increasing the bunch spacing;

careful control of transverse particle motion, utilizing tight alignment and strong fo-

cusing; or targeted damping of the dangerous cavity modes using a variety of damping

and detuning techniques. As with controlling short-range wakefields, luminosity pre-

serving countermeasures are preferred. Bunch charge, bunch length, bunch spacing,

the strongest practical focusing, and tight transverse tolerances are implemented to

control short-range wakefields, and optimize collider luminosity and operational pa-

rameters. Detuning is utilized to shift the frequencies of modes over the length of

individual accelerator sections so that fields do not coherently act on the beam.

Damping unwanted modes supplements these measures, and can positively impact

global parameter optimization by loosening requirements on the other countermea-

sures. Because mode damping is an important consideration in accelerator structure

design, a number of innovative solutions have been suggested in order to provide

damping sufficient for the next generation of high energy linear accelerators. These

solutions include waveguide damping on the cavity itself [18], on the beam pipe [19],

slotted irises [20], higher order mode (HOM) damping couplers [21], choked mode

structures [22], and both dielectric [23] and metallic [24] photonic bandgap (PBG)

structures. Design of these structures is an active area of research with many inno-

vative and effective ideas.
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1.3 Metamaterials and Photonic Bandgaps

Electromagnetic metamaterials can be defined as artificial effectively homogeneous

electromagnetic structures with unusual properties not readily available in nature.

An effectively homogeneous structure is one whose average cell size is much smaller

than the guided wavelength; effectively homogeneous can be defined at the limit

where the average cell size is equal to the guided wavelength [25]. Metamaterials can

be created with frequency dependent properties, such as negative values of relative

permittivity and permeability over a frequency range.

The frequency dependent properties of metamaterials could allow a microwave

cavity to be built such that the walls of the cavity reflect the frequency of the fun-

damental accelerating mode of the structure, but transmit at the frequencies of the

dangerous transverse deflecting modes that must be damped. The simplest such

cavity can be formed as a two dimensional Photonic bandgap structure. Photonic

bandgap materials do not strictly meet the criteria of effective homogeneity, but can

be formed to reflect and transmit appropriately to form the damped cavity of interest.

Photonic bandgap materials are formed by a periodic structure of varying dielec-

tric constant [26]. This variation can be in one, two or three dimensions as shown

in Figure 1-10. Photonic bandgaps are formed when all electromagnetic radiation in

a particular frequency band is entirely reflected. A material that contains a single

bandgap can be made to form a resonator at a frequency within the gap, because it

acts to completely reflect radiation near that frequency. This cavity can be made by

forming a suitable two dimensional photonic crystal, one with an appropriate com-

plete photonic bandgap, and making a defect in the crystal, for example by removing

a section of it, to form a cavity.

1.4 Motivated Research

A complete photonic bandgap has been designed for triangular and square lattices of

cylindrical metallic rods. This lattice has then been used to form a PBG cavity, by
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Figure 1-10: Simple examples of one, two, and three dimensional Photonic crystals.
The differently colored sections are meant to represent varying dielectric constants.
Photonic bandgaps can be designed by changing the size, shape, or dielectric constant
of the regions.

removing a single rod. Additional rods have been removed to form adequate coupling

into the cavity, id est, in order to form coupling cells. At MIT, a six cell traveling wave

accelerator structure has been built, cold tested, tuned, and hot tested, demonstrating

a 35 MV/m gradient, as reported in [27, 28, 29]. Following a first demonstration of

acceleration using a PBG accelerator structure, there are many important Physics

questions remaining.

The previous six cell structure was designed to produce a measurable electron

acceleration with low input power; a demonstration that a PBG accelerator is possible.

This first proof of principle design is impractical as an actual accelerator design, and

these deficiencies must be corrected in order to fully characterize the performance of

PBG structures as a high gradient accelerator concept.

The use of a complete photonic bandgap insures an operating mode can be con-

fined to the lattice defect, forming a cavity, but the gap does not guarantee that

unwanted modes will not be contained in the cavity; the gap promises complete re-

flection in a band, it says nothing specific about transmission, except that finite

transmission exists. The lattice in any realistic device will be finite, rather than the
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infinite lattice required to guarantee gap structure. Finite lattice effects and the prop-

agation of modes outside the gap are open questions. Damping is the motivation for a

PBG accelerator structure, but damping in PBG structures has not been observed. A

major motivation of this thesis research is to investigate wakefield damping in a PBG

structure, both theoretically and experimentally. The performance of more realistic

PBG structures is the fundamental major advance of this thesis work.

1.5 Outline of Thesis

This thesis will present the development of PBG accelerator concepts from previ-

ous design and first demonstration, to mature and well-understood practical devices.

The theory underlying accelerator cavity performance limits, photonic bandgaps, and

operating mode wakefields, or beam-loading theory, are presented in Chapter 2. Orig-

inal research into PBG structure quality factors, and the nature of HOMs in PBG

structures, including cold testing and damping are discussed in Chapter 3. Wake-

field measurement experiments performed on the MIT Haimson Research Corporation

(HRC) accelerator are presented in Chapter 4. The design of X-band PBG breakdown

structures, including the design of both a large rod PBG structure, and an improved

elliptical rod profile PBG structure is presented in Chapter 5. Chapter 6 details the

experimental testing of the large rod PBG structure, including bead pull measure-

ment and cold test, tuning, and high power testing. Conclusions and a discussion of

results and future work conclude the thesis in Chapter 7.
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Chapter 2

Theory

2.1 Introduction

The experimental work of this thesis is dependent on theoretical models for moti-

vation, relevance in the larger field of accelerator physics, as well as to motivate

and aid in structure design, and understand experimental results. These theoretical

models are reviewed in more detail than that provided in Chapter 1, where many

of the concepts discussed in this Chapter were introduced. Section 1.2.1 reviews the

basic concepts behind electromagnetic accelerator structures. Section 2.2 discusses

theory used to establish or understand fundamental accelerator performance limits;

Section 2.3 develops beam cavity coupling, for the case of the fundamental operat-

ing mode (also known as beam-loading), for traveling wave structures, which will be

compared with experimental measurements in Chapter 4; Section 2.4 discusses the

theory behind photonic bandgaps (PBGs), which will be extended to a discussion of

PBG higher order modes (HOMs) in Chapter 3.

2.2 Accelerator Limits

The accelerator structure limits introduced in Chapter 1 have been developed over

50 years of experience with rf linear accelerators. In the following sections they

are reviewed in more detail, and the theory underlining the fundamental results is
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Figure 2-1: Kilpatrick limit electric field strength as a function of frequency. Solution
to Equation 2.1 plotted as MV/m versus GHz.

reviewed.

2.2.1 Kilpatrick Limit and Loew-Wang Scaling

At sufficiently high electric field strengths, the surface electric field becomes powerful

enough to pull electrons out of the surface material. In practice, breakdown phenom-

ena are observed well below this theoretical limit of ∼ 2 GV/m. Empirical scaling

laws derived from experiments provide more realistic guidance as to achievable field

strengths, avoiding breakdown arcs.

The original analysis of rf and DC breakdown studies was summarized in a formula

by W. D. Kilpatrick [11]. This formula can be expressed in the following form [30]:

f (MHz) = 1.64E2
Ke−8.5/EK (2.1)

In Equation 2.1 the Kilpatrick limit field, EK , in MV/m, must be solved for iteratively

at a given frequency, f , in MHz. Field strengths below EK can be sustained without

causing surface damage, or instigating breakdown events.

Given the establishment of this limit before high quality vacuum systems were as
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Extrapolated Limiting Gradients 11.424 GHz 17.136 GHz
Peak Surface Field [MV/m] 660 807

Accelerating Gradient [MV/m] 264 323

Table 2.1: Predicted gradient limits for high frequency accelerators extrapolated from
empirical scaling laws. Accelerating fields assume an Es/Egradient ratio of 2.5.

developed as they are today, a bravery factor, b, is often used to modify EK .

ES = bEK (2.2)

Equation 2.2 raises the highest safely applied surface electric field, ES, by a factor b

from the Kilpatrick limit, EK . Typical values of b range from 1.0 to 2.0, and can be

higher for pulsed rf operation [16].

More recent breakdown results concern themselves with pulsed rf, which is what

is used in high gradient accelerator operations. G. A. Loew and J. W. Wang sought

to extend the Kilpatrick EK ∝ f 1/2 scaling under pulsed operation in the limit of

high frequency [12]. They took data at three frequencies: 2.856, 4.998, and 9.303

GHz; and confirmed Kilpatrick f 1/2 scaling. They also extended the empirical scaling

of breakdown limited electric field to include dependence on the rf pulse length, t, as

shown in Equation 2.3 [31, 12].

ES ∝ f 1/2

t1/4
(2.3)

These scaling laws predict the peak surface field and corresponding accelerating gra-

dient that can be sustained at high frequency, as summarized in Table 2.1 for both

11.424, and 17 GHz [12]. The possibility of achieving higher than 200 MV/m gra-

dients stimulated research into accelerator structures at these frequencies, including

the MIT HRC 17 GHz accelerator laboratory.

More recent results indicate that the optimistic Kilpatrick and Loew-Wang scaling

with frequency does not hold above ∼ 3 GHz. The Kilpatrick limit was motivated by a

theory of breakdown involving ion acceleration and impact, which seems increasingly

unlikely at high frequency, given the small amplitude oscillations of ions in high

frequency rf fields. Scaling laws motivated by other theoretical models have been
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examined, such as the Fowler-Nordheim model used in further testing by J. W. Wang

and G. A. Loew [32]. First evidence of an absolute surface field limit of ∼ 300 MV/m

was clear at 17 GHz, in both experimental and theoretical work on the MIT rf gun [33,

34]. More recent results at 21, 30, and 39 GHz, using precisely scaled cavities, show

little change in sustainable field strength with frequency, with an absolute surface

field limit between 350 and 400 MV/m [13].

2.2.2 Fowler-Nordheim Field Emission and Breakdown

Field emission of electrons has been examined in depth as a possible source phenom-

ena for rf breakdown. The first quantum-mechanically valid treatment of electron

tunneling out of a surface with an applied field was done by R. H. Fowler and L. Nord-

heim [35]. Fowler and Nordheim used Fermi-Dirac statistics to treat the electrons in a

metal surface penetrating the barrier of the surface in the presence of an electric field.

They arrived at what is known as the Fowler-Nordheim (FN) relation, which relates

the observed current density, J , in Amps per square meter, to the field enhancement

factor, β, the surface electric field, E, in Volts per meter, and the surface material

work function, φ, in electron Volts, as shown in Equation 2.4 [35, 32].

J = 1.54 × 10−6 × 104.52φ−1/2 β2E2

φ
e−

6.53×10
9φ3/2

βE (2.4)

The main occurrence of the FN model, or its use in breakdown models revolves

around the use of β, which can be defined as a local enhancement in field strength,

of the form: Elocal = βEaverage. Breakdown phenomena can then be understood

as occurring in the regime of ∼ GV/m fields in proximity to high β regions. A

number of experiments have been done which imply values of β in the range of 10–100.

Geometrically, surface defects can be modeled, either analytically or in simulation,

to determine β. The theoretical difficulty in applying theory to experiment is in the

fact that β is invariant to the actual size of surface defects, depending primarily on

the aspect ratio of asperity height to width as shown in Figure 2-2 [32, 36]. This

implies that however clean a surface appears, or is prepared to be, small, but high
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Figure 2-2: Plot of β for differing aspect ratio defects, of varying geometries [32, 36].
Aspect ratio is given as h/ρ or h/k: for a sphere of radius ρ a height h above a
plane; a cylinder of height h topped by a hemisphere of radius ρ; an ellipsoid of major
radius h and minor radius k, such that ρ = k2/h; and a sphere of radius ρ lying on a
smoothed defect of height ρ.

aspect ratio defects will provide high β foci for electric field breakdown events. The

effect of stacked perturbations also serves to enhance the effective β as the effect of a

perturbation on top of another is geometric, id est, βtotal = βlower × βupper.

The Fowler-Nordheim model and implied or experimentally measured β (via field

emission current measurement; id est, using Equation 2.4 to measure β) are often

used to bridge the gap between theoretically motivated limits for electric field break-

down based on fundamental material physics, and experimentally measured limits in

breakdown experiments. The effect of high β points, and Fowler-Nordheim field emis-

sion is shown in the schematic of breakdown phenomena in Figure 2-3. High β points
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exist on the surface, and are the source for breakdown arcs. The arcs themselves

form craters that serve to smooth the initial site, but can form secondary sites, which

are smoothed by subsequent breakdowns. Damage observed in the high field regions

of accelerator structures confirms the topology of breakdown phenomena shown in

Figure 2-3.

2.2.3 Dark Current Trapping

Dark current is defined as electrons spontaneously emitted by a microwave cavity

when rf power is input, but no beam is injected. This current can be that emitted by a

FN-like field emission process, secondary emission or multipactor processes, or can be

composed of background gas. Moving under the influence of the rf fields in the cavity,

emitted electrons in high gradient cavities can be exposed to field strengths sufficient

to accelerate them such that they can match phase with the rf fields and continue to

be accelerated, rather than decelerated by the changing phase of the rf fields. The

condition for the initiation of electron trapping is given by Equation 2.5 [38].

α = π

√

1 − β

1 + β
=

E0eλ

m0c2
≥ π (2.5)

In Equation 2.5, β is the electron initial velocity divided by the speed of light, c, E0

is the maximum value of the rf electric field, e and m0 are respectively, the charge

and mass of an electron, and λ is the rf field wavelength. For electrons beginning at

rest, Equation 2.5 predicts a trapping threshold scaling with frequency as shown in

Equation 2.6.

E0 ≥
πm0c

2

eλ
=

1.6MV/m

λ
(2.6)

The value of 1.6 MV/m in Equation 2.6 is an overly conservative limit for dark

current trapping onset. Electrons emitted at the optimal phase will be trapped at

this field, but it takes higher field strengths to trap an appreciable phase space of

emitted electrons. Lines are plotted for values of 2 and 3 MV/m in Figure 1-8. The
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Figure 2-3: Development process of breakdown erosion: primary field emission site;
explosive electron emission; pressure on the emission site; plasma; growth of a new
micropoint from the liquid metal; microdrops [32, 37].
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RS Surface resistance 0.034 Ω (at 17 GHz)
0.0279 Ω (at 11.424 GHz)

K Thermal conductivity 3.95 W/cm◦C
D Thermal diffusivity 1.15 cm2/s

Table 2.2: Material properties of OFHC copper for insertion into Equation 2.7.

effect of dark current is to absorb rf power meant for beam acceleration, but it can

also affect the beam path. Dark current measurements in accelerator structures are

generally on the milliAmp scale, though simulations have shown much larger electron

currents may exist within the structure. In the steady state operation of most linear

collider concepts the effect of this dark current on the beam is ignorable [39].

Dark current is also emitted during breakdown events, and in sufficient quantities

that the structure breakdown rate can begin to seriously affect beam quality in both

energy spread and transverse motion.

2.2.4 Pulsed Heating

The magnetic field strength in accelerating cavities peaks on the walls of conventional

pillbox cavities, as well as on input couplers. In advanced concepts, incorporating

wakefield damping, the cavity shape is generally modified from a pillbox and as a

result, higher peak magnetic fields can be observed on the perturbed surfaces. High

surface magnetic fields lead to localized ohmic heating, and can result in very high

temperature rise. The peak temperature rise due to pulsed heating, ∆T , can be

expressed as a function of the surface material resistance, RS, conductivity, K, and

thermal diffusivity, D, the rf pulse length, tP , and the maximum surface magnetic

field, Hpeak, as shown in Equation 2.7 [40].

∆T =
RS

K

√

DtP
π

|Hpeak|2 (2.7)

Equation 2.7 can be expressed numerically, using typical values for copper, as shown

in Table 2.2.

For realistic pulse shapes, the exact pulsed heating temperature rise can be calcu-
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ρ Density 8.95 × 103kg/m3

cε Specific heat at constant strain 385J/kgK
αd Linear thermal expansion coefficient 1.65 × 10−5K−1

Table 2.3: Material properties of OFHC copper for insertion into Equation 2.8.

Temperature Rise Number of shots
82 ± 3 K 86 × 106

120 ± 10 K 56 × 106

∼ 250 K 56 × 106

Table 2.4: Surface temperature rise and number of shots survived [15]. 250 K tem-
perature rise resulted in enough cracks to cause local melting of the surface

lated for the rf pulse using the general integral formulation shown in Equation 2.8 [15].

∆T =
1

ρcε
√

παd

∫ t

0

1√
t − t′

1

2
RS |H (t′)|2 dt′ (2.8)

The values for ρ, cε, and αd are given in Table 2.3 [15]. Equation 2.8 simplifies to

Equation 2.7 for a square pulse of duration tP .

Tolerable temperature rise has been a subject of much debate, and has resulted in

targeted experimental research. D. P. Pritzkau constructed cavities to apply a specific

surface temperature rise on a copper surface. Pritzkau observed that surface tem-

perature rise affected the number of shots the surface would survive, as summarized

in Table 2.4. Surface roughness increased, and cracks were observed under scanning

electron microscope inspection of the surfaces [15].

The experimental results of Pritzkau have prompted and enabled a two point

normalization for the theory of S. V. Kuzikov and M. E. Plotkin [14]. This model de-

velops a thermal-fatigue theory based on the polycrystalline structure of copper. The

thermal strains and mechanical loads on copper grains are treated probabilistically,

with the ability to either realign or crack under cyclic pulsed heating. Kuzikov uses

the two experimental points tested by Pritzkau to normalize a model that predicts

the number of shots sustainable by a structure at a given level of pulsed heating.

The two points allow an estimation of the two unknown parameters in Equation 2.9,

which relates the number of shots to damage a surface, Nf , to the temperature rise,
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Figure 2-4: Plot of Equation 2.9 from [14] calibrated and with data points from [15].
Temperature rise is plotted as a function of the number of sustainable shots, for pulse
lengths of 1000 ns and 100 ns.

∆T , pulse length, τ , and two surface material dependent parameters, ζ and C [14].

Nf =
C

eζ
√

τ(∆T )2 − 1
(2.9)

The two parameters, C and ζ , can be solved for using the first two data points

from [15], shown in Table 2.4. The result is shown in Figure 2-4, for pulse lengths of

1 µs and 100 ns, along with the two data points used for calibration. Though only

two data points are used to calibrate a two parameter fit, the functional dependence

is weak, and the points agree well with the theoretically motivated Equation 2.9, as

observed in Figure 2-4. For pulsed heating such that, ∆ T . 50 K, an accelerating

structure should survive a sufficient number of pulses under normal collider operation.

2.3 Beam-Loading in Traveling Wave Accelerators

Accelerating particles in a linear accelerator involves a transfer of energy from the

electric field in the structure to the particles. This increase in particle energy nec-

essarily decreases the total accelerating field in the structure: an effect known as

beam-loading. In the case of no input power, expressions can be obtained which
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predict the power radiated by the beam into the structure. The following treatment

of beam-loading makes the following linearity assumptions: linearity with respect to

particle motion in time, linearity with respect to the fields in the structure, and power

supplied independent of beam-loading effects [41].

The interaction of an electron beam with a traveling wave accelerating structure

can be developed starting with the power diffusion equation, as given in Equation 2.10,

which relates the change in rf power density, P , with distance, z, as a function of the

voltage attenuation per unit length of the structure, I, and the effect of beam-loading,

involving a term with the average beam current, i, and the electric field, E.

dP/dz = −2IP − iE (2.10)

Equation 2.10 can be reëxpressed using the definition of structure shunt impedance,

r, given in Equation 2.11.

r =
E2

dP/dz
=

E2

2IP
(2.11)

Similar to Equation 2.10, the electric field change with distance, dE/dz, can be

written as:

dE/dz = −IE − Iir (2.12)

Equation 2.10, combined with the definition for shunt impedance in Equation 2.11,

and Equation 2.12, can be solved for the electric field as a function of z, E (z), as

expressed in Equation 2.13, where E0 is the initial electric field strength supported

by input power.

E (z) = E0e
−Iz − ir

(

1 − e−Iz
)

(2.13)

Equation 2.13 can be integrated over the structure length, L, to get the total voltage

experienced by the beam. Equation 2.13 can also be used with Equation 2.11 to

express the power radiated by the beam, Pb, for no initial power input, id est, for

E0 = 0, as shown in Equation 2.14.

Pb =
E2

b

2Ir
=

(

i2r

2I

)

(

1 − e−IL
)2

(2.14)
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The voltage loss per unit length, I, can be expressed as shown in Equation 2.15, as a

function of the structure frequency, ω, group velocity, vg, and quality factor, Q [38].

I =
ω

2vgQ
(2.15)

Which allows Equation 2.14 to be rewritten as Equation 2.16.

Pb =

(

i2rvgQ

ω

)

(

1 − e
− ωL

2vgQ

)2

(2.16)

Equation 2.16 can be expanded for small loss, id est, Q � 1, by Taylor series expan-

sion of the exponential, using
(

1 − e
− ωL

2vgQ

)

≈
(

1 − 1 + ωL
2vgQ

)

. Giving the low loss

form of Equation 2.16 as Equation 2.17.

Pb = i2
ωL2

4vg

r

Q
(2.17)

Equation 2.17 contains a dependence on Q only in the combination r/Q, which is

a geometric quantity, dependent only on the accelerator structure shape, with the

functional dependence on cavity wall losses cancelling out.

2.4 Photonic Band Gaps

Photonic crystals have the ability to form frequency selective walls for accelerator

structures, providing simultaneous damping of all wakefields. An axial electric field

is required for acceleration, which is generally accomplished using the transverse

magnetic (TM) modes of pillbox-like cavities. The TM01 mode is the lowest frequency

eigenmode of a pillbox cavity, and so the unwanted modes can be identified as higher

order modes (HOMs).

Photonic crystals can be formed in one, two or three dimensions, as shown schemat-

ically in Figure 1-10, by periodically arranging materials of varying dielectric con-

stants, including metals, or the absence of material in the form of air or vacuum.

Much as band gaps are formed in semiconductors representing forbidden energy lev-
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Figure 2-5: Reciprocal lattices and Brillouin zones for A) square lattice, and B)
triangular lattice. Irreducible Brillouin zones are shaded [27].

els, bandgaps can be formed in photonic crystals, representing forbidden frequency

ranges. Bragg filters are well known examples of photonic crystals in one dimension,

reflecting all radiation in a range of frequencies. The dispersion relation can be calcu-

lated for a given geometry, which when calculated over an irreducible Brillouin zone,

is mathematically complete: videlicet all solutions are recovered. The reciprocal lat-

tices are shown in k-space for two dimensional square and triangular lattices, with

their irreducible Brillouin zones in Figure 2-5.

Solving Maxwell’s equations in k-space in Bloch form, complete solutions for TM

mode dispersion can be represented over the wave vector points in Figure 2-5 for all

frequencies, as shown in Figure 2-6. Solutions are shown as lines in Figure 2-6 for the

specific geometry shown in Figure 2-7: square and triangular lattices of cylindrical

metallic rods, with radii a and lattice spacing b. Gaps can be formed in the dispersion

curves, such that for a given frequency, or band of frequencies, no solution exists for

any k-vector. Such omni-directional frequency gaps are known as complete or global

photonic bandgaps. Reflections from the photonic crystal lattice components add

destructively in this band of frequencies to forbid propagation through the lattice.
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Figure 2-7: Geometry used for dispersion curve and global bandgap calculations.
Cylindrical rods of radius a are arranged in A) square, or B) triangular lattice of
lattice spacing b. Dashed line box corresponds to irreducible simulation region [27].

These gaps can appear and disappear as the geometry is altered. Figure 2-8 shows

a map of the gaps in normalized frequency as the ratio a/b is varied. For metallic

lattices of cylindrical rods, a lower gap always exists up to some frequency (an effect

also known as an rf cage). Additional gaps open up at higher frequencies as the a/b

ratio is increased, until at the extreme right of the plots in Figure 2-8, the entire

lattice begins to fill with metal, reflecting at all frequencies.

A photonic crystal lattice with a global bandgap is a starting point for the design

of an accelerator structure, but it must be formed into an appropriate cavity. This

is accomplished by removing a single rod from the lattices of metallic rods shown in

Figure 2-7. This defect in the lattice forms a space in which radiation at a frequency

in the bandgap of the surrounding lattice is perfectly reflected, confining the field

strength of the mode to the lattice.

A triangular lattice of cylindrical rods was designed by E. I. Smirnova et alia

at MIT, and used in the initial PBG accelerator concept and demonstration. Flat

metallic plates with a drilled beam hole were used to enforce the design axial mode

structure, suitable for accelerating particles. A schematic is shown in Figure 2-9

with design parameters described in Table 2.5, and photographs in Figure 2-10. The
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Figure 2-9: Schematic of six cell traveling wave PBG accelerator. Design values for
schematic labels are included in Table 2.5.

Rod radius a 1.04 mm
Rod spacing b 6.97 mm
Iris thickness t 1.14 mm
Iris diameter d 4.32 mm
Cavity length L 5.83 mm
TM01 frequency frf 17.14 GHz

Table 2.5: Table of six cell traveling wave PBG accelerator design properties. Lettered
abbreviations represent the dimensional labels used in the schematic of Figure 2-9.

structure was tested by measuring the change in energy of an injected electron beam.

The electron beam energy increased with the power input into the PBG structure, as

shown in Figure 2-11. The acceleration observed corresponds to a maximum gradient

of 35 MV/m [27, 28, 29]. This gradient was limited by available power and the

fabrication of the structure.
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Figure 2-10: Photographs of the six cell traveling wave PBG accelerator.
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Figure 2-11: Electron beam energy versus PBG input power. A maximum accelerat-
ing gradient of 35 MV/m was achieved [27].
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Chapter 3

Photonic Bandgap Higher Order

Modes

3.1 Introduction

The existence of a photonic bandgap makes the formation of an rf cavity possible, by

forming a lattice defect, exempla gratia, removing a single rod from the lattices of

Figure 2-7. By forming the defect in the vicinity of the operating point in Figure 2-

8, where a single lower frequency gap exists, the lowest frequency TM01-like mode

can be used. Any other cavity modes will be of higher frequency, which will have

dispersion relation solutions, as shown in Figure 2-6. These solutions guarantee that

the modes will escape the cavity, but do not directly contain information regarding

their transmission properties. Especially where the dispersion relation solution levels

off, id est, dω/dk ≈ 0, modes may escape the PBG lattice very slowly.

PBG structure damping was claimed because no HOMs would be confined to a

cavity formed from an appropriate lattice of cylindrical rods, exempla gratia, the

operating point in Figure 2-8 chosen for the six cell traveling wave PBG accelerator

demonstration. Current accelerator design, especially at high frequency, involves very

short bunches of electrons. The Fourier transform of a short electron bunch transiting
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a cavity will have a very broad frequency content, as in Equation 3.1.

I (ω) = e−( 2πσ
λ )

2

(3.1)

Any modes up to Fourier transform limited frequencies will be coherently excited

by an electron bunch; for short bunches, modes up to very high frequencies can be

excited. As motivated in Equation 1.5, any modes of the structure will make up the

bunch wakefields. The only reliable way to quantify damping is in examining the

terms involved of Equation 1.5: the beam coupling to the mode can be reduced, as

quantified in an, but also indirectly by fn (~x), because the fields of primary importance

are those in proximity to the beam; e−ıωnt is only oscillatory, though high frequency

modes will oscillate rapidly enough that any effect on the beam will become incoherent

as it is averaged over multiple cycles; e−ωnt/2Qn directly shows that the magnitude of

the excited modes damp, so that if low enough Q values are obtained for HOMs they

will be damped sufficiently quickly.

All of the HOM terms in Equation 1.5 can be directly tuned and improved in PBG

structures over conventional pillbox accelerating structures. HOMs can be extracted

from the proximity of the beam, so that their coupling is significantly decreased. HOM

loss can also be increased so that they have very low Q. These effects will be described

in detail in the following sections: Section 3.2 will detail High Frequency Structure

Simulator (HFSS ) simulations of PBG structures, and Section 3.3 will describe cold

testing of the six cell traveling wave PBG structure, including observation of HOMs,

and damping improvement with the application of lossy absorbers.

3.2 HFSS Simulations

A great deal concerning PBG cavity modes can be learned from HFSS simulations.

Run as eigenmode simulations, with the capacity for lossy surfaces and radiation

boundary conditions, HFSS provides full field data which can be used to understand

the functional structure of modes as well as their variation with cavity parameters.
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PBGs themselves can be probed, using the geometrically irreducible region indicated

in Figure 2-7.

Cavity modes are initially discussed in Section 3.2.1. Field data is then used to

calculate loss factors, both longitudinal and transverse, which quantify beam coupling

to modes, discussed in Sections 3.2.2 and 3.2.3, respectively. Mode quality factors

are calculated and examined extensively in Section 3.2.4. Damping solutions are

discussed in Section 3.2.5.

3.2.1 Motivation

Initial PBG structure simulations enclosed three rows of PBG lattice rods with a

metallic outer wall. As the ratio a/b (schematized in Figure 2-7) was varied, a qual-

itative difference in mode structure was observed, in expectation with Figure 2-8,

as additional bandgaps opened up. This is summarized in Figure 3-1 A–C, showing

PBG simulations for an a/b ratio of 0.15 and 0.2 as well as the fields for an equivalent

pillbox structure. In Figure 3-1 the fundamental TM01 modes are shown on the left,

and the first higher order modes, the dipole TM11 modes, are shown on the right, as

labeled. For comparison, the fundamental and dipole modes for a pillbox structure

are shown in Figure 3-1 C.

The dipole mode in Figure 3-1 A was initially believed to be a simulation artifact,

while the dipole mode in Figure 3-1 B was real and to be avoided [27]. The two

dimensional theory developed by E. I. Smirnova predicts that for an a/b ratio > 0.20

a dipole mode will be confined within the inner row of rods; a process that can

be seen as a/b is increased from 0.15 to 0.20 from Figure 3-1 A to Figure 3-1 B.

The dipole mode in Figure 3-1 A was assumed to be confined by the metallic outer

boundary used in the simulation, and not an actual mode of the structure. The six

cell structure that was built contained no outer wall, and so would not confine such

HOMs. Investigation into these HOMs reveals that they are in fact insensitive to the

outer metallic wall properties: position, conductivity, et cetera. Because they are not

strict cavity HOMs, contained in the vicinity of the fundamental mode and the beam,

but are restricted to the PBG lattice, they are referred to as lattice HOMs. Lattice
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A)

B)

C)

Fundamental TM 01
Dipole TM 11

Figure 3-1: HFSS simulations of fundamental TM01 and dipole TM11 modes for PBG
structures with A) a/b = 0.15 and B) a/b = 0.2, and C) an equivalently sized pillbox
structure. Electric field strength is shown in contour plots with scales as shown.

59



HOMs are a large improvement on the conventional pillbox HOMs because they are

localized away from the beam, coupling much more weakly, and they are damped,

and so decay a great deal before subsequent bunches have the opportunity to interact

with them.

3.2.2 Longitudinal Loss Factor Simulations

Longitudinal loss factors, k, with units Volts per Coulomb, are a measure of beam to

mode coupling, and can be calculated using Equation 3.2 from [16], and the HFSS

field data from the simulation of interest.

k =
V 2

b

4U
=

ω

4

R

Q0
=

∣

∣

∫

Ez(z)ei ωz
c dz

∣

∣

2

2
∫

(ε0E2 + 1
µ0

B2)dV
(3.2)

In Equation 3.2 the longitudinal loss factor is defined as a function of the beam

induced voltage, Vb, and the stored energy in the cavity, U , which can be related to

the cavity frequency, ω, and cavity R/Q0 (R/Q0 differs from r/Q in the specification

of R, the total shunt impedance, over r, the shunt impedance per unit length, and Q0,

the unloaded quality factor, over Q, the total quality factor). These cavity parameters

can then be calculated as a line integral of Ez, the electric field along the beam path

divided by an energy volume integral over the cavity, using the electric and magnetic

fields from simulation.

Wakefield theory can be developed as an expansion of cavity eigenmodes with

varying coupling to the beam. In an ideal accelerator structure the beam couples

very strongly to the operating mode, and very weakly to any HOMs. Using HFSS

simulations, the frequency, cavity quality factor, and loss factors for various modes

can be calculated. These are used with the following relation to arrive at the power

lost by a charge q into the nth mode as it passes through a single cell of the unpowered

structure [16].

∆Pn = q2 ωnkn

Q0n
(3.3)

The general loss factor formula, Equation 3.2 can then be used to calculate the
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charge power loss, ∆Pn, in Watts, using Equation 3.3 for each HOM n. Equation 3.3

is valid for a single bunch, for a train of bunches the total power radiated does not

scale linearly, as the bunches can coherently radiate; this is dependent on the group

velocity of the mode and the length of the structure. A more complete theoretical

treatment of this case, applicable to the traveling wave PBG accelerator structure, was

presented in Section 2.3, though it is limited to the case of modes with well-defined

and measurable group velocity and shunt impedance.

Loss factors, kn, relate directly to the wake potential, W , introduced in Sec-

tion 1.2.3. The longitudinal wakefield, W‖ can be written as Equation 3.4 [42].

W‖ (s) =
∑

n

2k‖ne
− ωns

2Qnc cos
ωns

c
(3.4)

The longitudinal wakefield is written as a function of the path length difference, s, the

distance between exciting and witness bunches, and expressed as a sum over modes,

indexed with n, with parallel loss factors, k‖n, frequencies, ωn, and quality factors,

Qn. This in turn can be expressed in terms of field information, involving the voltage

along the path of the exciting bunch, ~x′, and witness bunch, ~x, V (~x′) and V (~x),

respectively, as shown in Equation 3.5 [42, 17].

W‖ (~x′, ~x, s) =
∑

n

V ?
n (~x′) Vn (~x)

2Un
cos

ωns

c
(3.5)

Here it can be seen that the loss factor, k, takes the place of the beam to mode

coupling, and functional dependence implied in Equation 1.2.3.

3.2.3 Transverse Loss Factor Simulations

Much like longitudinal loss factors, transverse loss factors can be defined to quantify

the coupling of the beam to transverse deflecting modes, both their excitation and

their deflection of subsequent bunches. The transverse wake function, W⊥, can be
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written as Equation 3.6 [42].

W⊥ (s) =
∑

n

2k⊥ne
− ωns

2Qnc sin
ωns

c
(3.6)

As with the longitudinal wake, the transverse wake function can be rewritten in terms

of field quantities along the path of the exciting bunch, ~x′, and witness bunch, ~x. For

the transverse wake potential, the Panofsky-Wenzel theorem [43], Equation 3.7, can

be exploited to immediately write this down using Equation 3.5.

∂W⊥
∂s

= ∇⊥W‖ (3.7)

W⊥ (~x′, ~x, s) =
∑

n

c

ωn

V ?
n (~x′)∇⊥Vn (~x)

2Un
sin

ωmns

c
(3.8)

The transverse wake function is generally expressed in the units Volts per meter,

per picoCoulomb of exciting charge, per millimeter of position offset from the axis:

V/m/pC/mm; generally this is plotted as a function of path length, s. What is

necessary for linear collider operation is that the spacing between bunches is sufficient

that this wake potential is low enough it will not significantly affect the beam. Exact

collider specifications depend on an optimization over a very large set of parameters,

which means that the exact level of damping required is not an absolute threshold.

Again it is observed that k⊥ is equivalent to the beam to mode coupling, and the

functional dependence implied in Equation 1.2.3, and can be calculated using field

data, obtained from HFSS simulations.

3.2.4 Quality Factor Simulations

In order to study the diffractive Q of the lattice HOMs, HFSS simulations were run

for an outer boundary that more closely resembles that of the experiment, which is

open. This was done using a perfectly matched layer (PML). An HFSS PML result

is shown in Figure 3-2: the electric field complex magnitude is shown for the 17 GHz

TM01 fundamental, 23.0 GHz dipole mode, and 34 GHz HOM . The field strength of
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the HOMs is localized to the lattice, away from the beam, and very high diffractive

loss has been observed for these modes, with diffractive Qs on the order of ∼ 100.

17 GHz 23 GHz 34 GHz

Figure 3-2: HFSS simulations of 17, 23, and 34 GHz modes in a one cell 60◦ slice of a
PBG accelerator structure. Irises and the outer boundary are bordered with PMLs,
metallic rods and plates are modeled with ohmic losses. The electric field magnitude
is shown in color. Simulation results correspond to the Qdiffractive runs as shown in
Table 3.2.

To directly compare the effect of different structure losses on the cavity Q, HFSS

simulations were performed with different boundary conditions. The quality factors

associated with the different structure losses are: Qohmic, and Qdiffractive, which ac-

count for losses from ohmic surface heating, and the open nature of the structure,

respectively. These quality factors can be combined using Equation 3.9.

1

Q
=

1

Qtotal
=

1

Qohmic
+

1

Qdiffractive
(3.9)

Using HFSS these quality factors can be calculated independently by turning on

or off the different loss channels: Qohmic can be estimated by simulating a single PBG

cell with phased boundaries on the irises, a metallic outer boundary, and ohmic losses;

Qdiffractive can be estimated by simulating a single PBG cell with phased boundaries

on the irises, no ohmic losses, and a PML outer boundary; Qtotal can be estimated

by simulating a single PBG cell with phased boundaries on the irises, a PML outer

boundary, and ohmic losses. Table 3.1 summarizes the format of these simulations in

terms of boundary condition definitions for the calculation of the various independent

Q factors. Results can be cross-checked by observing how closely the losses combine
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Qtotal Qohmic Qdiffractive

Lossy metal x x
PML outside x x

Table 3.1: Table of Q value estimation simulations.

to give a total quality factor in accordance with Equation 3.9.

According to Equation 3.3 the power expected in each channel scales inversely

with Q, assuming that the R/Q dependence clear from the loss factor k in Equa-

tion 3.2 is a dominantly geometrically determined quantity. This allows the ratio of

power radiated into each channel to be predicted based on the following Q values for

the 17 GHz fundamental, and the 23 and 34 GHz HOMs, as shown in Table 3.2. The

Mode Qohmic Qdiffractive Qtotal

17 GHz 4500 2.5 · 105 4400
23 GHz 3500 60 60
34 GHz 3800 130 120

Table 3.2: Table of Q values for power ratio prediction based on Equation 3.3, for
17 GHz fundamental mode, 23 GHz dipole mode and 34 GHz HOM.

17 GHz mode has minimal diffractive loss, whereas the 23 and 34 GHz HOMs are

primarily losing power diffractively. The low Q HOMs demonstrate the HOM damp-

ing in PBG structures, and predict that most of the power lost in these modes will

occur cell by cell, through the open outer boundary of the structure. Some power will

couple out of the port, but the modes will not be resonantly built up as they will be

for the 17 GHz fundamental mode. The 17 GHz mode requires a more well-developed

formalism, which was discussed in Section 2.3.

3.2.5 Damping

Damping can easily be accommodated by either lattice deformation, or the addition

of lossy materials. The first inner row of rods predominantly shapes the cavity mode

frequency and structure; the second row can be deformed from a single lattice spacing,

b, to accomplish a shift in the second row radial position, as shown in Figure 3-3 A.

Movement of this second row of rods affects the Q of both the fundamental mode and
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A) B)

Figure 3-3: Schematic of A) position definition of second row rod placement for
deformed lattices, and B) location of damped rods.

the HOMs as shown in Figure 3-4; though the Q of the HOM is certainly much lower

than that of the fundamental, it is still not possible to solely decrease the HOM Q

without also decreasing the fundamental mode Q. Damping solutions must involve

damping material.

The second row of rods, as labeled in Figure 3-3 B can also be made of lossy ma-

terial, exempla gratia stainless steel or silicon carbide, changing the field pattern as

shown in Figure 3-5 and lowering the Q of HOMs significantly. The microwave prop-

erties of lossy materials used in simulations come from both the general literature [44]

or detailed experimental measurements [45]. Damping can be combined with lattice

deformation, especially if heavy damping is needed, but a higher fundamental mode

Q is desired.

3.3 17 GHz Structure Cold Test

Cold testing of the six cell PBG structure demonstrates the existence and scale of

HOM confinement in the structure. The six cell traveling wave structure was con-

nected to an Agilent E8363B Precision Network Analyzer (PNA). The measured S21
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Figure 3-4: HFSS simulation results for A) fundamental mode and B) first HOM Q
as a function of second row rod placement as schematized in Figure 3-3 A.
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A) B)

Figure 3-5: HFSS simulation results for A) damped and B) undamped rods as labeled
in Figure 3-3 B. Damped rods are simulated with the dielectric constant and loss
associated with microwaves measurements of Silicon Carbide [45].

parameter is shown in Figure 3-6: for the open structure without damping, in Fig-

ure 3-6 A, and with external damping, in Figure 3-6 B. The mode structure is rather

complex because there are many modes and because of resonances in the PNA SMA

cables. The structure is a six cell traveling wave structure, so that the S-parameters

of the observed modes appear very broad, because there are six axial modes.

Modes were distinguishable in both S21 and S11 measurements at roughly the

following frequencies: 17.14 (fundamental operating mode), 23.3, 24.5, 25.7, and

26.7 GHz. The high frequency modes (23–27 GHz) have very low quality factors,

and though they have not been fully identified by bead pull measurements, they are

near the dipole mode frequency of 23.0 GHz. Antenna excitation measurements have

been performed to probe the structure of these modes, which exist off-axis and are

most easily excited within the bulk of the PBG lattice, as expected given their field

profiles, exempla gratia the 23 GHz mode of Figure 3-2.

Though the HOMs have very high insertion loss, and low quality factors, they

are resonantly excited. External damping using a lossy dielectric absorber such as

ECCOSORB at the outer boundary of the structure can significantly decrease the

observed modes, as shown by the blue S21 curve in Figure 3-6 B. As observed in

simulations, exempla gratia Section 3.2.5, damping in a PBG structure can be quite
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Figure 3-6: Six cell metallic PBG accelerator structure uncalibrated S21 measurement.
A) is S21 in red without damping, B) is S21 in blue with external damping. Modes
are observed at: 17.14, 23.3, 24.5, 25.7, and 26.7 GHz.
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Mode vg I Q Parameter source
17.14 GHz 0.0109c 1.04 dB 4000 measurements
17.14 GHz 0.013c 0.8 dB 4200 design

Table 3.3: Cold test parameters for insertion into the equations of Section 2.3.

effective in damping HOMs [46].

These cold test results can be combined with the HFSS calculations described

in Sections 3.2.2 and 3.2.4, to allow parameters to be input into the traveling wave

excitation formalism of Section 2.3, so that power level predictions can be made.

A direct measurement of the mode frequency, insertion loss, and group velocity are

required. These measurements were carried out for the fundamental 17 GHz TM01

mode and the 34 GHz HOM, by measuring the direct S21 for the modes in question

and the phase as a function of frequency. Results for magnitude and phase are

shown in Figure 3-7 and Figure 3-8 for the 17 and 34 GHz modes, respectively.

Phase measurements, dφ/df were then converted into group velocity, vg = dω/dk

by changing units. Phase can be converted to wave vector: dφ = L dk, where

L is the electrical length of the structure. Frequency can be converted to angular

frequency: df = 2π dω. Table 3.3 presents the measured insertion loss, group

velocity, and quality factors, as calculated using Equation 2.15. Power predictions

were then derived as further described in Section 2.3 and reported in Chapter 4.
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Figure 3-7: S21 magnitude and phase measurement for 17 GHz modes.
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Figure 3-8: S21 magnitude and phase measurement for 34 GHz modes.
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Chapter 4

17 GHz PBG Structure Wakefield

Measurements

4.1 Introduction

The six cell traveling wave accelerator previously fabricated to demonstrate that

PBG structures can be used for acceleration, [27, 28, 29], provides an excellent

opportunity for direct observation of HOMs in PBGs. Cold test of the structure,

reported in Section 3.3, observed HOMs in the structure, though they had very high

loss, and low Q. The traveling wave theory of Section 2.3, backed by the simulations

of Section 3.2 and the measurements of Section 3.3 provide support for experimental

observation of beam induced wakefields in PBG structures.

4.2 MIT HRC 17 GHz Accelerator Laboratory

The MIT HRC 17 GHz accelerator was motivated by the improvement in gradient

predicted by the frequency scaling discussed in Section 2.2.1 [11, 12]. Early results

with rf photocathode guns showed that the scaling predicted was optimistic, and that

surface fields of only ∼ 350–400 MV/m were obtainable in experiment. Along with

the impetus of establishing frequency scaling, the necessity remains to establish opti-

mal accelerator operating parameters, which includes the selection of an rf frequency.
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Source development remains coincident with rf frequency selection; the optimal fre-

quency for beam parameters must be balanced with the availability of microwave

sources. Multiples of the original SLAC rf frequency of 2.856 GHz, which itself drove

S-band klystron development, remain points of operation; the Next Linear Collider

(NLC), exempla gratia, established its operating frequency at 11.424 GHz, four times

the SLAC rf frequency. MIT established an accelerator laboratory to take advantage

of rf sources available from Haimson Research Corporation at 17.136 GHz, six times

the SLAC frequency.

A relativistic beam klystron operates at 500–550 kV, providing up to 25 MW of

rf power through a dual arm output [47]. The current generation of the tube has

demonstrated 76 dB gain, allowing it to run using solid state pre-amplifiers. Such

gain requires isolation to prevent oscillations. Isolation is provided using two very

narrow (∼ 50 MHz) drop off low pass filters, which provide > 30 dB attenuation

to oscillations reflecting back into the tube. The two output arms are combined in

a hybrid coupler, which provides phase matching of the power input from the two

output arms, and splits the outgoing power into both the main linac line, and an

auxiliary output used for a variety of other experiments.

The klystron and linac high voltage thermionic guns are both powered by 500 kV

microsecond flat top pulses from a single high power modulator [48]. The linac gun

produces up to 500 mA DC current, which is bunched prior to linac injection using

an rf chopper and prebuncher system [49]. Beam current and size is controlled by

focusing the beam with solenoidal lenses prior to collimation. For these wakefield

measurement experiments, the system was operated in a long pulse mode, in which

the DC beam is primarily prebunched, with low chopper power operating only to

remove a low energy tail from the bunch; this produced 1 ps bunches, which was

verified using a circularly polarized beam deflector bunch length diagnostic [50, 51].

The parameters of the linac are summarized in Table 4.1.

The main linac is a constant gradient traveling wave structure consisting of 94 cells

operating in a 2π/3 mode, providing a beam energy of 18 MeV. An rf pulse length of

100 ns corresponds to a bunch train of ∼ 40 ns because of the 60 ns fill time of the
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rf Frequency, frf 17.14 GHz
rf Pulse Length 100 ns
Beam Energy 18 MeV
Bunch Length 1 ps
Bunch Spot Size 1 mm
Average Beam Current 20–300 mA

Table 4.1: Operating parameters for MIT HRC 17 GHz accelerator laboratory.

accelerator structure. A toroidal lens follows the linac where the beam is focused to

an emittance limited spot size of 1 mm. This size was verified by beam interception

measurements. The beam was then passed through the PBG experimental chamber

and into a Faraday cup to measure the beam current and serve as a beam dump.

4.3 Experimental Setup

Subsequent to its generation, the bunched, energetic electron beam is transported

through the six cell traveling wave PBG accelerator structure shown in Figure 2-10.

The six cell PBG structure is housed in a stainless vacuum vessel on the beam line,

shown schematically in Figure 4-2 and in the photograph of Figure 4-3. A fused

quartz window was installed on the bottom of the vacuum chamber housing the PBG

structure, as labeled in Figure 4-2, so that radiation could be observed leaking out

of the open PBG structure. The input and output couplers, as labeled in Figure 4-2,

were mounted with vacuum windows, shown in Figure 4-3, so that observations could

also be made of radiation coupling out of the structure via the input and output

coupler ports, with the detectors arranged as shown in Figure 4-2. During these

wakefield measurements, no microwave power was injected into the structure.

Two sets of diode detectors were used, at both Ku (12–18 GHz) and Ka (26–

40 GHz) bands. They were calibrated using their respective power heads and meters.

The horns, waveguide, adapters, attenuators and vacuum windows that were used

were calibrated over their respective frequency ranges using an E8363B Agilent PNA.

A heterodyne receiver was used to look at the frequencies of the observed radiation.

This heterodyne system consisted of an 8–18 GHz YIG local oscillator and a 2–18 GHz
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Figure 4-1: Photograph of the MIT HRC 17 GHz accelerator laboratory.
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Figure 4-2: PBG accelerator structure vacuum vessel. The waveguide input and
output ports, as well as the bottom of the vacuum chamber were mounted with
vacuum windows. Location of matched load and diode detectors. Beam direction is
indicated with an arrow.
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Figure 4-3: Photograph of the PBG accelerator structure vacuum vessel with attached
vacuum windows on input and output ports.
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double balanced mixer. Wavemeters and waveguide filters were also used to verify

the observed frequency content of the wakefields.

4.4 Wakefield Simulations using ANALYST

Calculations of wakefields generated by a train of 17.14 GHz bunches transiting the

six cell PBG accelerator structure were carried out using the ANALYST parallel finite

element software package developed by Simulation Technology & Applied Research

(STAAR) [52, 53]. For this work the time domain field modeling component of ANA-

LYST (called TD3P) was used. It uses a high order adaptive finite element method

with an implicit time step to accurately compute time domain fields on unstructured

tetrahedral meshes of widely varying element size. TD3P was used to simulate a

train of Gaussian charge bunches traveling at the speed of light along the axis of the

PBG structure. The bunch spacing was chosen to be 17.49 mm, giving a 17.14 GHz

period corresponding to the spacing used in the experiments. The bunch length was

a factor of 10 larger than that used in the experiment in order to minimize meshing

requirements and numerical noise in the solution.

The wake calculations were performed with field monitors at both the structure

input and output ports, using a length of simulated waveguide to temporally iso-

late waveguide terminations so that the resulting time domain signals correspond to

matched terminations. Fourier transform results are given in Figure 4-4. Power is

excited coherently at integer multiples of the bunch repetition frequency, which is

equal to frf , 17.14 GHz; peaks are observed in the spectrum near 17.14, 34.28, 51.42,

68.56, and 85.7 GHz.

The electric field Fourier transform can be used to obtain the ratios of power

predicted at different frequencies. The field results are multiplied by the ratio of the

Fourier transforms at the specified frequency of the bunch train lengths, in order to

extrapolate the results from 10 ps simulations to the experimental Gaussian bunch

length of 1 ps. The field numbers are then squared to obtain power figures, and ratios

of predicted power are obtained. Observed at the output port, the ratio of 17.14 GHz

78



0.00 17.14 34.28 51.42 68.56 85.70
10

-4

10
-3

10
-2

10
-1

10
0

W
ak

ef
ie

ld
 P

o
w

er

F
o

u
ri

er
 T

ra
n

sf
o

rm
 [

A
rb

.]

Frequency [GHz]

Figure 4-4: Fourier transform of beam induced wakefield electric field versus fre-
quency, as calculated using ANALYST for a 10 ps bunch length.

power to 34.28 GHz power is 620. The absolute power level at 17.14 GHz can be

obtained by integrating the field data over the waveguide cross-section, predicting

1.5 kW. Combining these figures, 2.4 W of power is expected at 34.28 GHz.

4.5 Experimental Results

Radiation is expected to scale quadratically with bunch charge, as shown in Equa-

tion 3.3. Wakefield scaling with current was observed as the average current was

varied from 20–300 mA, corresponding to a bunch charge in the range of 1–18 pC.

Wakefield measurements were made in a variety of configurations as functions of beam

position and current; Table 4.2 shows a sampling of the detector configurations and

power measurements, for an average beam current of 100 mA. Table 4.3 presents

theory and experiment comparison for both the traveling wave theory of Section 2.3

and the wakefield simulations made using ANALYST.

Excellent agreement has been observed between measurements made on the output

port with a matched input port, and the corresponding predictions from the traveling

wave theory of Section 2.3; Figure 4-5 displays absolute power measurements and the
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Frequency Location Power Measured
17 GHz Port 1.46 kW

Chamber 21 mW
34 GHz Port 240 mW

Chamber 240 mW

Table 4.2: Power measurement summary. Frequency of observed wakefields, location
of detector, fully calibrated power level detected for 100 mA average beam current.

Experiment TW Theory ANALYST

[Watts] [Watts] [Watts]
17 GHz 1.46 × 103 1.54 × 103 1.5 × 103

34 GHz 0.24 0.0025 2.4

Table 4.3: Summary of power measurements of output port diode: frequency of
observed wakefields, fully calibrated power level detected for 100 mA average beam
current, and theory predictions.

theory prediction. Comparable agreement is seen with the wakefield simulations made

using ANALYST.

Results for the Ka-band diode detector observing on the output coupler port

are shown in Figure 4-6. Good agreement is obtained with a quadratic fit, with

error arising from both the statistical diode signal variation and shot to shot current

fluctuation. The traveling wave theory prediction for the 34 GHz power is two orders

of magnitude low, and the ANALYST prediction is an order of magnitude high.

The traveling wave theory is rather unreliable, given the high insertion loss for the

34 GHz mode. The wakefield simulations demonstrate a large amount of sampling

variation over the waveguide cross-section. This numerical noise may be at fault for

the large discrepancy between theory and experiment. The experimental systematic

error at 34 GHz is also large. Calibration of the detectors is precise, and the overall

calibration of the windows and coupler losses is also precise to ∼ 1 dB. The coupling

of the 34 GHz waveguide mode to the diode detector has the same possible variation

as that observed in the simulations; unknown coupling of the waveguide mode to the

diode could result in large error.

Wakefield measurements were also made as a function of the beam displacement

from the axis. The 1.3 mm beam size, and 3.5 mm input collimator diameter gave
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Figure 4-6: Power observed on output port with matched input port, at 34 GHz,
versus current. Quadratic fit (motivated by Equation 3.3) to data shown in blue
dotted line with data given as black bars.
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Frequency frf multiple
17.14 1
34.28 2
51.42 3
68.56 4
85.7 5

Table 4.4: Heterodyne receiver observations in GHz, and corresponding integer mul-
tiple of frf , 17.14 GHz.

a reasonable range of position variation. Results proved to be entirely attributable

to beam current loss as the beam was intercepted by the input collimator. Current

transmitted through the structure varied as would be expected when a 1.3 mm Gaus-

sian profile is passed through a 3.5 mm aperture. After normalizing for beam current

variations, the results of observations made with the Ku-band diode were unchanged

as a function of beam offset. As expected, the loss factor for the fundamental does

not vary with offset position. Observations in the Ka-band similarly show only de-

pendence on the total current through the structure, and little variation with beam

offset alone.

Heterodyne frequency measurements were made, and peaks were only observed

at integer multiples of the linac rf frequency, 17.14 GHz. A summary of observed

frequencies is given in Table 4.4. No clear signal was observed of the dipole HOMs of

the PBG structure, such as the 23 GHz mode of Figure 3-2. The heterodyne detector

has very high sensitivity to narrow band power, but cannot measure absolute scale

power. The power detected at frequencies above 34.28 GHz with the heterodyne sys-

tem was not observable with diode detectors. HOMs were only observed at multiples

of frf .

Wavemeters were used across K-band to look for signs of other HOMs. Modes

were observed in agreement with heterodyne measurements; integer harmonics of frf

were observed, no other HOMs were. Waveguide cutoff frequencies were exploited to

filter unwanted 17 GHz wakefields from power measurements in other bands, or near

other frequencies, when signals of HOMs were being sought. An adjustable narrow

band pass filter was tuned to 34 GHz, with flat transmission within ∼ 1 GHz, and
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used to verify that all power detected in the 26–40 GHz band was in fact at 34.28 GHz,

or twice frf . No sign of any HOMs not at multiples of frf was seen. The reduction

on Ka-band power seen when using the waveguide filter gives an estimate of out of

filter band power of 0.08 ± 0.10 mW at 100 mA average beam current.

4.6 Discussion

Excellent agreement is seen between experimental measurements and theoretical pre-

dictions for wakefield power at 17 GHz. This agreement is seen in both the traveling

wave theory of Section 2.3 and the wakefield simulations using ANALYST of Sec-

tion 4.4. HOM power predictions using the traveling wave theory are quite low,

because the theory is not applicable to modes with as high insertion loss as the PBG

structure HOMs. Wakefield simulation calculations using ANALYST predict more

power in HOMs than is observed in experiments. Minor variations between the ex-

periment and simulations may be at fault, and more precise simulations may show

better agreement with experimental measurements. The more likely cause of the

discrepancy is the difference between experimental measurement sampling and sim-

ulation. The simulations sample the field in the waveguide couplers across the guide

cross-section. The experiment uses waveguide tapers and a limited aperture diode;

these operate quite well for the fundamental mode, but power may be uncollected in

other waveguide modes.

The quality factor ratios calculated in Section 3.2.4, while not directly capable of

predicting power levels, provide a great deal of insight as to where the power lost by

the beam can be expected. At 17 GHz a traveling wave mode is generated, and very

little power is lost due to diffraction out of the PBG lattice. At 34 GHz, diffractive

loss dominates, and power is expected to leak out the open outer wall of the structure.

Diffractive loss is so dominant that the experimental observation of equal power levels

in port and chamber measurements should not be surprising; power measured on the

port is only that lost by the beam in the coupling cell directly attached to the port.

The need for well-developed wakefield damping in PBG accelerator structures has

83



been much demonstrated by these experimental results. Cold test measurements, as

in Figure 3-6, showed dramatic HOM damping improvement by adding an external

damping material. The beam induced wakefield measurements reported in this Chap-

ter show that measurable power is being radiated into HOMs, and that if these wakes

are not damped they escape the structure. Damping these HOMs will prevent the

power from escaping the immediate area of the structure only to be reflected back

and act incoherently on the beam. The dominance of diffractive loss makes damping

HOMs in PBG structures relatively straightforward, and a promising direction for

future work, along the lines discussed in the literature [45, 46].

84



Chapter 5

Experimental Design of an X-Band

PBG Structure

5.1 Introduction

Previous work on PBG structures has generated a demonstration of acceleration, a

proof of principle experiment [27, 28, 29]. To mature the concept of PBG acceler-

ation, operating under realistic collider parameters is necessary; this includes both

realistic design properties and operational levels. The iris aperture, which controls

the structure group velocity must be comparable to that considered in collider con-

cepts, such as the NLC operating range of a/λ ∼ 0.2 (a/λ is an iris aperture radius

to wavelength ratio) [54]. Breakdown and pulsed heating require contouring of sharp

edges, to minimize electric and magnetic field enhancement at discontinuities [55].

High gradient structures are exposed to high power rf, and their performance in

this regime is of vital pertinence in determining collider suitability. To accomplish

testing on a variety of geometries, components for single cell structure testing have

been developed [56]. These components allow single cell standing wave cavities to

be tested quickly in order to compare their performance at high rf power, and will

be discussed further in Section 5.2. This test stand makes possible the design and

testing of a realistic X-band PBG accelerator structure.

The structure design was accomplished using the commercial code HFSS [44].
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5.1.1 Six Cell PBG Structure

The six cell traveling wave structure was deficient for practical use in that the struc-

ture had a very low design group velocity of vg = 0.013 c, corresponding to an aperture

to wavelength ratio of a/λ = 0.123. In the first demonstration, this low group ve-

locity meant demonstrating acceleration was more easily accomplished, but it makes

the experimental achievement inapplicable to a linear collider design. The six cell

structure was formed by brazing individually electroformed cells [27]. The structure

aperture was formed by drilling a hole through the electroformed cells, resulting in a

sharp edged square profile iris aperture [57]. Any rounding will be an improvement

over a square aperture; optimized iris profiles have been developed resulting in an

elliptic aperture [58, 59].

5.2 SLAC Components

The main components that make single cell testing possible are demountable couplers

that allow structures to be manufactured simply, quickly set up for high power testing,

and then replaced with subsequent structures [55]. The launcher, or mode converter,

couples power from standard WR-90 waveguide into the TM01 mode of perpendicular

0.900 inch diameter circular waveguide. The design of this launcher provides very low

fields in the launcher, so that breakdown events will occur in the structure, and not

upstream in the coupler; for 50 MW input, the peak surface electric field is 35 MV/m,

and the peak surface magnetic field is 100 kA/m. The launcher provides a broad

match, so that reflections will be minimized and good coupling into structures can be

achieved. The mode launcher is shown in Figure 5-1.

The use of a mode converter for all single cell tests requires that the oversized

waveguide TM01 mode be matched using cells specifically designed for this purpose.

The fields in the matching cells need to be balanced so that the field maximum is in

the test cell, so that breakdown events occur there, and not in the coupler cells. This

will dictate the overall form of the single cell breakdown structures.
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Figure 5-1: TM01 mode launcher for coupling into single cell structures.

5.3 X-Band Breakdown Structure Design

To test PBG structures at realistic operating conditions, videlicet high power, high

rep rate, reasonable and contoured aperture, a single cell standing wave structure has

been designed for testing at SLAC. Indexed as, 1C-SW-A5.65-T4.6-Cu-PBG, this is

the first PBG structure to be tested to its limits, as the previous first high power test

was limited by available power.

5.3.1 Baseline Pillbox Structure

The general structure form is shown in Figure 5-2. To match into the structure a first

pillbox cell is used, with an iris radius optimized to minimize reflection, and maximize

coupling into the structure. The central cell is the actual test cell, where the field

strength will be maximal; to insure this, a third pillbox cell is used to balance the

overall mode structure such that the field in either matching cell is half that of the test

cell. The parameters in Table 5.1 detail the design numbers for the SLAC baseline
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Figure 5-2: Drawing of SLAC baseline pillbox structure, 1C-SW-A5.65-T4.6-Cu.
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Figure 5-3: Schematic for parameters of SLAC baseline pillbox structure. Parameters
shown in Table 5.1.

pillbox structure, 1C-SW-A5.65-T4.6-Cu, shown schematically in Figure 5-3 [58, 59].

Four of this structure have been designed and tested, and provide a sizeable dataset

for the comparison of structure geometry modifications, such as the use of a PBG cell

as the central test cell.

5.3.2 Assumptions

The PBG breakdown structure will take the general form shown in Figure 5-4: two

pillbox matching cells, and a single PBG cell. The pillbox cells will be similar to

those of the baseline pillbox structure, with only the coupling aperture radius, and

the two cell radii used to tune the coupling, frequency, and field structure. The input
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SLAC Parameters
b end 11.6206 mm
b cll 11.4023 mm
b cpl 11.4428 mm
a cpl 4.8075 mm
Rpipe 3 mm
Rb 1 mm
t 4.6 mm
e r 3.4 mm
D 13.116 mm
a 5.6475 mm
a pipe 6.35 mm
b conv 11.43 mm

Table 5.1: Parameters for SLAC baseline pillbox structure, values for schematic in
Figure 5-3.

Figure 5-4: General geometry views of the PBG structure.

waveguide will be matched to that of the mode launchers: perpendicular 0.900 inch

diameter circular waveguide. The end cell will taper into a cutoff section of perpendic-

ular 0.500 inch diameter circular waveguide, to connect with dark current monitoring

or viewing windows. The iris geometry is chosen to be identical to that of the four

SLAC pillbox baseline structures, to constrain differences in observed performance as

much as possible. The fixed parameters for the structure are shown in Table 5.2 for

the schematic of Figure 5-5 B. Tuning parameters are shown in Figure 5-5 A with

final design values in Table 5.3.
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Figure 5-5: Schematics for parameters of PBG structure; A) schematizes fixed param-
eters for the structure, B) schematizes free tuning parameters, as shown in Table 5.2
and 5.3, respectively.
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Fixed Parameters
Rpipe 3 mm
Rb 1 mm
t 4.6 mm
e r 3.4 mm
D 13.116 mm
a 5.6475 mm
a pipe 6.35 mm
b conv 11.43 mm

Table 5.2: Fixed parameters for PBG structure, values for schematics in Figure 5-5 A.

5.3.3 Requirements

The structure tests are to be performed at X-band, at 11.424 GHz, requiring the

design mode to be within∼ 100 MHz of this klystron operating frequency. The mode

itself needs to have half the electric field magnitude on axis in the center of each match-

ing cell as in the central test cell. Coupling into the entire structure is accomplished

via a TM01 mode from the 0.900 inch waveguide, and should be maximized. Slight

overcoupling is preferred to precise critical coupling, because the single cell structures

that have been fabricated in the past have come out slightly undercoupled [59].

5.3.4 Design Algorithm

The design is accomplished iteratively, by changing the tuning parameters to meet the

design requirements, and then assessing the impact the tuning parameter variation

has had on the other requirements. This process is shown schematically in Figure 5-6.

The PBG cell is characterized by three parameters: the overall cell radius, b cll,

and the rod radii and spacing. In fact, the cavity properties are insensitive to b cll,

and so a relatively small value is chosen such that the rods are all enclosed. The

remaining two parameters determine both the band structure and frequency. The

frequency is fixed by the requirement of close comparison to the SLAC baseline pillbox

structure. This leaves one free parameter, which determines the specific photonic

band gap lattice structure, as in Figure 2-8. Again a triangular lattice is chosen,

with a single rod defect. Structure design was done for varying PBG a/b ratios: from
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Figure 5-6: Design algorithm schematic.
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that used in the six cell structure, a/b = 0.15, up to the opening of the next gap,

a/b = 0.20. Qualitatively the HOM field patterns begin to be localized in the

defect as a/b increases. Rods larger than those used in the six cell structure were

desirable to reduce fabrication difficulty and provide less intense heating on the rods.

An a/b ratio of 0.18 provided an aggressive improvement in rod size without clearly

increasing HOM confinement. More detailed analysis of PBG cell design is discussed

in Section 5.4, in regard to an improved PBG breakdown structure design.

The four tuning parameters are then the actual unscaled rod spacing or rod radius

(only one parameter is free, the other is constrained by radius/spacing = 0.18), the

coupling cell radius, the end cell radius, and the coupling iris radius. The coupling

iris strongly affects the cavity coupling, and weakly affects the field structure and

frequency. The relative cell radii affects the field distribution. The cavity radii can

be scaled to alter the frequency. Each step in Figure 5-6 has a dominant set of tuning

parameters, but is also weakly coupled to the rest, and so final design is achieved by

iteration of individual optimizations.

5.3.5 Design Results

The results of the design process are indicated by the final tuning parameter values

shown in Table 5.3. Design properties and field results are from final HFSS driven

mode solutions for an input power of 10 MW. A 30◦ section of the actual full structure

was used, corresponding to the irreducible geometric section of the triangular PBG

lattice, all other components are cylindrically symmetric and insensitive to symmetry

boundary conditions.

The normalized axial electric field is shown in Figure 5-7: half field is seen in both

matching cells, with peak field on axis in the PBG cell. Some field strength can be

seen entering the cavity from the left. Increasing a matching cell radius, holding other

parameters constant, results in a small increase in the field strength in that cell.

The structure coupling is shown in Figure 5-8 and Figure 5-9. Fast frequency

sweeps were useable in these HFSS simulations because the eigenmodes of the struc-

ture were well separated, and only a single mode was being excited in the frequency
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Tuning Parameters
b end 11.627 mm
b cll 38.87 mm
b cpl 11.471 mm
a cpl 5.132 mm
Rod Radii 2.176 mm
Rod Spacing 12.087 mm

Table 5.3: Tuning parameters for PBG structure. Final design values for schematics
in Figure 5-5 B.
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Figure 5-7: Electric field relative magnitude on axis of PBG structure. Power is
coupled in from the left; half field is seen in each coupling cell, relative to the central
PBG cell.
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Figure 5-8: S11 coupling as a function of frequency for PBG structure.

range of interest. Figure 5-8 shows S11 as a function of frequency, showing a good

match of -24.3 dB at 11.4236 GHz. The coupling Smith chart is shown in Figure 5-9,

demonstrating a Q-circle of slightly larger than unit radius, indicating slight overcou-

pling, as preferred.

Field plots are shown in Figure 5-10 for the electric and magnetic fields as viewed

along a radial cut of the structure through the nearest rod, for 10 MW input power.

The electric field is strongest in the central cell, with peaks on axis and on the

structure irises. The magnetic field is strongly peaked on the inner edge of the first

row of rods. Top views of the electric and magnetic fields are shown in Figure 5-11,

for 10 MW input power. For comparison with the PBG structure, the SLAC pillbox

structure field plots are shown in Figure 5-12.

Comparison of the fields in the two structures indicates design dictated similar-

ities, along with some important differences. Maximum field values are observed as

displayed in Table 5.4. The PBG structure is more inductive than the pillbox struc-

ture, so that for the same input power, less electric field strength is seen, and more

magnetic field is observed. Decreased electric field strength will not be a problem in

breakdown testing because the power requirement is relatively low, and additional

power is easily accommodated. Increased magnetic field strength, however, will re-
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Figure 5-9: Smith chart Q-circle of coupling for PBG structure.
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Figure 5-10: Electric and magnetic field for PBG structure. Side views.
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Figure 5-11: Electric and magnetic field for PBG structure. Top views.

Figure 5-12: Electric and magnetic field for SLAC baseline pillbox structure.
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Structure Electric Magnetic
PBG 280 MV/m 1300 kA/m
Pillbox 340 MV/m 710 kA/m

Table 5.4: Peak field values observed in the simulations of Figures 5-10 and 5-12.

sult in higher pulsed heating on the structure, as described by Equation 2.7. For

100 MV/m gradient and 100 ns pulse length a temperature rise of 87 K is predicted,

limiting the structure to a lifetime of & 250× 106 shots, according to Figure 2-4. To

improve this number and pulsed heating performance, a new design is required.

5.3.6 HFSS Analysis Simulations

PBG Simulations

In the actual experiment, breakdown rates will be calculated and compared with

structure input power levels. Breakdown rates are of interest not with regard to

power levels, but with respect to the field properties of the accelerator structures.

To convert from power level to field properties, HFSS simulations are used with an

increased focus on field convergence. Driven mode solutions allow power levels to

be calibrated with surface fields; a single calibration point suffices as the field scales

as the square root of the power. The simulation for this calibration is run with as

detailed a mesh as possible. A final mesh with ∼ 700,000 tetrahedra was used, and

is shown in Figure 5-13.

The primary field quantity of interest is the accelerating gradient. This is cal-

culated for a single cell in an eigenmode HFSS simulation with 180◦ phased iris

boundary conditions, in order to model an extended accelerator structure from the

simulation results for a single cell. The mesh for this simulation required 300,000

tetrahedra and 1◦ surface approximation, and is shown in Figure 5-14.

The accelerating gradient is calculated using the HFSS field calculator and Equa-

tion 5.1. The gradient is the electric field experienced by a particle traveling on axis

at the speed of light. Field convergence is a serious concern for such a critical field

parameter, and this was insured by steadily finer mesh operations until the result of
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Figure 5-13: 700,000 tetrahedra mesh for power calibration driven mode HFSS sim-
ulations.

Figure 5-14. The suitability of this mesh was confirmed by calculating the gradient

on a large number of slightly off-axis lines. The gradient should be exactly constant;

any fluctuations are the result of field sampling.
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(5.1)

The peak surface fields, both electric and magnetic, are also of interest for break-

down statistics. These are calculated using the eigenmode HFSS simulations and

determining the maximum field value on the surface. Minor variations in the tera-

hedral meshing result in very large fluctuations in the HFSS calculated maximum

surface fields. The field value along multiple lines must be evaluated, as with the cal-

culation of the gradient. This can be done more efficiently by examining the complex

magnitude surface field plots visually. The field plot maximum and minimum are

adjusted until the maximum is observed in a continuous fashion on the surface. Final

plots for this calculation are shown in Figure 5-15 for the maximum surface electric
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Figure 5-14: 300,000 tetrahedra mesh for field calibration eigenmode HFSS simula-
tions.
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Figure 5-15: Surface electric field maximum from field calibration eigenmode HFSS

simulations. Contours are plotted on the iris surfaces of a 30◦ model of the entire
structure.

Power 5.9 MW
Gradient 100 MV/m
Surface Electric Field Maximum 208 MV/m
Surface Magnetic Field Maximum 890 kA/m
Rod Surface Electric Field 14 MV/m

Table 5.5: HFSS simulation field calibration numbers for PBG structure.

field, which is on the iris, and in Figure 5-16 for the maximum surface magnetic field,

which is on the inner rod; field plots are shown for an input power of 5.9 MW, which

corresponds to an accelerating gradient of 100 MV/m.

Cross-calibration of driven and eigenmode HFSS simulations combine all of these

field and power numbers so that the power coupled into the structure can be scaled

into accelerating gradient, surface electric field, or surface magnetic field. A summary

of the calibration parameters is given in Table 5.5.

The electric field on the inner rod is of interest because that is the location where

both magnetic and electric field effects interact. Pulsed heating damage on the rod

will provide a source for increased β sharp points, which will enhance any electric
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Figure 5-16: Surface magnetic field maximum from field calibration eigenmode HFSS

simulations. Contours are plotted on the inner rod surface of a 30◦ model of the entire
structure.

field on the rods. The field on the inner rod is shown in Figure 5-17. The field level

is much lower than on the structure iris, as can be compared by the field values in

Table 5.5: for 100 MV/m gradient, the surface field on the iris is 208 MV/m, and the

surface field on the rod is 14 MV/m. The field plot shown in Figure 5-18 shows the

same field data as Figure 5-11, but rescaled to the level of the surface field on the

rod.

Pillbox Simulations

This simulation process was repeated for the SLAC baseline pillbox structure. These

simulations were more straightforward than the PBG simulations because of the cylin-

drical symmetry of the pillbox structure; very fine meshes were possible with less

reliance on meshing operations and sensitivity to field convergence. The calibration

results are shown in Table 5.6.
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Figure 5-17: Surface electric field on inner rod from field calibration eigenmode HFSS

simulations.

Figure 5-18: Electric field contour plot from field calibration eigenmode HFSS simu-
lations. Contours are plotted on the midplane of a 30◦ model of the entire structure.
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Power 4.6 MW
Gradient 100 MV/m
Surface Electric Field Maximum 211 MV/m
Surface Magnetic Field Maximum 418 kA/m

Table 5.6: HFSS simulation field calibration numbers for pillbox structure.

Figure 5-19: Drawing of PBG structure, 1C-SW-A5.65-T4.6-Cu-PBG.

5.3.7 Design Tolerances

For a 1 mil (25 µm) variation in the rod radii or rod spacing, a ± 25 MHz shift was seen

in simulation. The rod radius and spacing sensitivity was found to be approximately

1 MHz/µm. Coupling is maintained into the structure for variations in the coupling

aperture. The coupling cells, b cpl, and b end are mechanically tunable so that the

overall frequency or field pattern observed in cold test can be changed if necessary.

The final structure design is shown in Figure 5-19.

5.4 Design Improvements

In order to reduce pulsed heating on the inner row of rods, a new PBG design is

required. Variations in PBG lattice geometry, as well as rod deformations are ex-
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amined. The goal in changing the PBG structure design is to improve the cavity

E/H ratio, as calculated in Ohms, Ω. The immediate side effect of varying cavity

parameters to achieve better pulsed heating is that the cavity damping properties are

altered. In order to maintain adequate HOM damping, the HOM Q and kick factor

k⊥ are tracked as changes are made.

Design iteration simulations rely on convergence of HFSS field solutions. HFSS

itself converges solely on mode frequency, or S-parameters, and so special care must

be taken to force sufficient mesh operations to insure field convergence. Limiting the

length and maximum aspect ratio to 1–2 mm and 2, respectively, proved adequate.

Surface deviation of curved surfaces was a more sensitive issue, requiring less than

5–10◦ for design sweeps.

HOM damping figures of merit are vital in insuring that improved pulsed heating

performance does not result in degraded HOM damping. Longitudinal loss factors,

and transverse kick factors were calculated over design variation sweeps. No varia-

tion outside the design to design variation attributed to HFSS field convergence was

observed. HOM mode Q, on the other hand, showed large variation as the PBG

design was changed. As discussed in Sections 3.2.2 and 3.2.3, both the beam to mode

coupling k, and mode Q affect the strength of the HOM wakefield experienced by

trailing bunches. The beam to mode coupling, k, was not observed to vary more than

is attributable to HFSS field convergence, across all PBG design perturbations. The

quantitative figure of merit for redesigned PBG HOM damping is found to be the

HOM mode Q.

Both ohmic and diffractive loss combine to affect the HOM Q, so simulations

must combine simulating surface losses with PML boundaries to calculate accurate

changes to HOM Q as PBG parameters are varied. Two dimensional simulations

are adequate for rapid solutions to numerous variations, and were used extensively to

provide timely feedback on promising ideas. A large breadth of ideas were attempted,

with extensive input on perturbation concepts.
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Figure 5-20: Schematic of 1 mm filleted inner rod joint. Side and perspective views.

5.4.1 Fillet

The high peak magnetic field on the inner row of rods is a result of high currents

flowing along the rods. In the baseline PBG design, and most PBG structure designs,

the rods abut the irised end plates of the structure cells at 90◦. A reduction in this

sudden change in current flow direction can be accomplished by filleting the rod joint,

as shown in Figure 5-20.

Simulations were done with a range of fillet radii, from sub-millimeter to several

millimeters. No variation in E/H ratio was accomplished, outside the simulation

fluctuation attributed to field convergence, as shown in Figure 5-21.

107



0.0 0.4 0.8 1.2 1.6 2.0
200

250

300

E
/H

 R
at

io
 [
Ω

]

Fillet radius [mm]

Figure 5-21: E/H ratio versus rod fillet radius.

5.4.2 Ratio

Larger rods, videlicet increasing a/b beyond 0.18 improves the electric to magnetic

field ratio; however, HOMs are immediately better confined as well. The positive

variation in E/H ratio is shown in Figure 5-22; larger rods mean less magnetic field

for a given surface electric field or gradient. Larger rods also confine modes better,

including HOMs. Enhanced confinement is seen in the field plots shown in Figure 5-

23; both the fundamental and dipole mode are observed to be better confined by

larger rods, id est, larger a/b.

The fundamental and dipole mode Qs are shown in Figure 5-24 for the simulations

of Figure 5-23. The mode Qs include both ohmic and diffractive losses. The change in

mode Q does not track as it is seen to when other structure parameters are changed,

such as the outer rod spacing discussed in Section 3.2.5. The ratio of fundamental

to dipole mode Q is shown in Figure 5-25. A maxima is observed at an a/b ratio of

∼ 0.17. Increasing a/b will mean that while heating will be a smaller concern, the

HOM damping attributes desired in a PBG structure will be compromised. An a/b

ratio of 0.18 is already aggressive for E/H improvement; a solution to pulsed heating

is required beyond larger rods.
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Figure 5-22: E/H ratio versus a/b ratio. A linear increase in E/H is seen as a/b is
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Figure 5-23: Electric field complex magnitude of fundamental and dipole modes for
a/b ratios of 0.16, 0.20, and 0.24.

109



0.15 0.17 0.19 0.21 0.23 0.25
0

3000

6000

9000

12000

0

1500

3000

4500

6000
M

o
d

e 
Q

a/b Ratio
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Figure 5-25: Ratio of fundamental to dipole mode Q as a function of a/b.
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5.4.3 Movement

Dielectric PBG structures require many rows of rods to confine a high Q fundamental

mode for accelerator applications. Recent work has looked at perturbing perfectly

symmetric lattices of dielectric rods in order to raise the fundamental mode Q [60].

Similar perturbative algorithms are incorporated into HFSS including an implemen-

tation of a genetic algorithm. These analyses, and a thorough sweep of parameters

have been carried out to examine the effect of moving metallic rods from their ideal

PBG lattice positions.

In a metallic PBG, the field is primarily contained and affected by the first row of

rods. This makes perturbations in the position of the first row of rods so dramatic, it

is more accurate to consider the perturbation the movement of all of the outer rows of

rods. Moving an inner rod radially inward or outward merely alters the frequency of

the fundamental mode, and all HOMs; similarly the mode Qs are changed as discussed

in Section 3.2.5 for outer rod position perturbations.

Changing the position of the inner row of rods from their PBG lattice positions

changes the surface E/H ratio. The ratio is insensitive to small changes in rod posi-

tion, and decreases for large changes. Movement of the rods from their lattice defined

positions may be useful for dielectric PBG structures, but is not capable of improving

the E/H ratio in metallic PBG structures.

5.4.4 Oblation

Oblation of the inner row of rods can improve the pulsed heating performance of the

structure by spreading the magnetic field maximum over a larger area. This oblation

can be accomplished by removing material from the ideal circular cross-section rod in

either the format indicated in Figure 5-26 A or Figure 5-26 B; the radius of curvature

facing the interior of the cavity can be made greater than that of the circular radius

of the rod in either a convex or concave fashion.

Sweeps were made over both the center position of the oblation, and the radius

of curvature. Both forms of oblation were found to be capable of increasing the E/H

111



A) B)

Figure 5-26: Schematic of inner rod oblation; A) concave and B) convex oblation.

ratio. Maximum effect was achieved for large radii of oblation, much larger than that

of the rods themselves. The center position offset for the oblation was less critical

to affecting E/H, and primarily altered the cavity frequency; removing material from

the cavity lowers the mode frequency.

Concave oblation leaves sharp edges of material facing the electric and magnetic

field maxima. These edges can be formed such that the E/H ratio is improved, but

the maximum surface field is constrained to a small area, so that the surface is more

sensitive to damage. Convex oblation increases the effective radius of the inner row

of rods, without changing the HOM Q as dramatically as increasing the entire radius

of the rods, as discussed in Section 5.4.2. Convex oblation, like increasing the a/b

ratio or rod radii increases the area of maximum surface magnetic field.

5.4.5 Elliptical

An additional method to effectively increase the rod radii is to form the rods with

an elliptical, rather than circular cross-section. Optimization runs were performed

as well as parameter sweeps. As with concave oblation and larger radii rods, the

magnetic field maximum is distributed over a larger area. The E/H ratio is also
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Figure 5-27: E/H ratio as a function of the major to minor radii.

improved for increasing ellipticity. Results are shown for the E/H ratio, as a function

of the major to minor radii in Figure 5-27.

The HOM Q is also increased with increasing ellipticity, requiring a global opti-

mization of cavity performance parameters. Such design optimization is beyond the

scope of the present work, and so a design goal is set to reduce the cavity pulsed

heating by 50%. Pulsed heating, discussed in Section 2.2.4, scales quadratically with

the peak magnetic field, so that a 50% reduction in pulsed heating implies an im-

provement in the E/H ratio of 22%. To accomplish this, and using the same a/b ratio

used for the first design, a major to minor radii ratio of 3 to 2 is found adequate

in two dimensional simulations. The actual pulsed heating performance requires full

design and modeling of a three dimensional structure.

The next step towards a full redesigned structure is a complete three dimensional

model. The results of a parametric sweep over a range in major to minor rod radii

ratios is shown in Table 5.7. In each of the elliptical rod simulations, the a/b ratio is

fixed at 0.18; the radius of the outer rods is equal to the minor radius of the inner

rods, aouter = aminor; and the rod spacing, b, is tuned so that the TM01 mode

frequency is ∼ 10.1 GHz. A TM01 frequency of 10.1 GHz is the same as the pillbox

cell, or central PBG cell in the breakdown structures that produces the 11.424 GHz
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TM01 TM11

Ellipticity E/H Frequency Q Frequency Q Frequency Q
amajor/aminor [Ω] [GHz] [GHz] [GHz]

1 285 10.1004 598 15.4631 40 15.4631 40
1.25 335 10.1024 1328 15.6977 94 15.6977 94
1.5 383 10.0673 3125 15.8033 283 15.8034 284
1.66 397 10.1166 5523 15.9519 685 15.9519 676
1.75 405 10.1155 7046 15.9768 1101 15.9768 1110

Table 5.7: Elliptical rod structure simulation results.

Figure 5-28: General geometry views of the redesigned PBG structure.

mode desired, as in Figure 5-7. For circular rods, an E/H ratio of 285 is achieved.

For a major to minor radii ratio of 3 to 2, an E/H ratio of 383 is achieved. The

improvement in ratio is sufficient to decrease the pulsed heating by more than 50%.

HOM containment, as quantified by HOM Q also improves rapidly with increasing

ellipticity. For this first redesign, an improvement in pulsed heating performance is

mandated, with as small an increase in HOM Q as possible. Future designs will need

to balance performance across multiple domains.

5.5 Final Redesign

A new PBG breakdown structure is designed with an elliptical inner row of rods to

improve the pulsed heating performance of the structure with respect to the first PBG

breakdown structure design. Fixed parameters remain the same as for the initial PBG

structure and its pillbox counterpart, as listed in Table 5.2 and labeled in Figure 5-30.
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Figure 5-29: Schematic for PBG lattice parameters for redesigned PBG structure.

The redesign process follows the same design algorithm used for the initial design,

shown schematically in Figure 5-6.

The tuned axial electric field of the redesigned structure is shown in Figure 5-31.

The structure coupling is shown in Figure 5-32 and Figure 5-33. Figure 5-32 shows

S11 as a function of frequency, demonstrating a match of better than –60.0 dB at

11.4273 GHz. The coupling Smith chart is shown in Figure 5-33, demonstrating a

Q-circle of unit radius, indicating critical coupling.

Tuning Parameters
b end 11.632 mm
b cll 28 mm
b cpl 11.436 mm
a cpl 4.828 mm
Outer Rod Radii 2.266 mm
Rod Spacing 12.588 mm
Major Radius 3.399 mm
Minor Radius 2.266 mm

Table 5.8: Tuning parameters for PBG structure. Final design values for schematics
in Figure 5-30.
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Figure 5-32: S11 coupling as a function of frequency for redesigned PBG structure.
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Figure 5-33: Smith chart Q-circle of coupling for redesigned PBG structure.
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Figure 5-34: Electric and magnetic field for redesigned PBG structure. Side views.

Field plots are shown in Figure 5-34 for the electric and magnetic fields as viewed

along a radial cut of the structure through the nearest rod, for 10 MW input power.

The electric field is strongest in the central cell, with peaks on axis and on the

structure irises. The magnetic field is strongly peaked on the inner edge of the first

row of rods. Top views of the electric and magnetic fields are shown in Figure 5-35,

for 10 MW input power.

For comparison, the SLAC pillbox structure field plots are shown in Figure 5-12,

and the first PBG structure field plots are shown in Figures 5-10 and 5-11; all plots

are for 10 MW input power. A summary of field values observed in these simulations

is given in Table 5.9. For 100 MV/m gradient and 100 ns pulse length a temperature
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Figure 5-35: Electric and magnetic field for redesigned PBG structure. Top views.

Structure Gradient Electric Magnetic
PBG 130 280 MV/m 1300 kA/m
Elliptical PBG 150 310 MV/m 1070 kA/m
Pillbox 160 340 MV/m 710 kA/m

Table 5.9: Maximum surface field values observed in the simulations of Figures 5-10,
5-12, and 5-34. All simulations are for 10 MW input power.

rise of 48 K is predicted, limiting the structure to a lifetime of & 900 × 106 shots,

according to Figure 2-4. As discussed in Section 2.2.4, a pulsed heating excursion of

< 50 K is believed to be acceptable for linear collider accelerator structure operation.

Design tolerances remain consistent with previous specifications for the first PBG

breakdown structure. Machining of elliptical rods should be straightforward given the

fabrication method used for the first PBG structure, in which the rods were milled

from a single block of OFHC copper.
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5.6 Future Directions

A deformed PBG lattice quickly loses the necessary symmetry to formally be a pho-

tonic crystal, becoming a photonic quasi-crystal. Many of the potentially free pa-

rameters defining the positions of the rods of a PBG lattice were defined by two

parameters: the rod radii and spacing. These two parameters were constrained fur-

ther to tune the cavity frequency. In a quasi-crystal the only requirement is on the

frequency, freeing up the positions of many of the rods. Optimizing cavity parameters

involves HOM damping, as discussed in Section 3.2.5, as well as the field measures

discussed here with regard to pulsed heating. Future experimental directions will dic-

tate what cavity parameters are desired for subsequent testing. Once the parameters

for a future PBG structure are decided, the large number of free parameters can be

optimized to determine an exact solution of geometry and PBG lattice deformations.
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Chapter 6

Experimental Results of X-Band

PBG Structure Testing

6.1 Introduction

As part of the United States high gradient research collaboration, single cell break-

down testing of an MIT designed PBG structure was proposed at SLAC. Design of

the structure was described in Chapter 5. Fabrication of the structure was completed

by engineering teams at SLAC, with cold testing done collaboratively, high power

testing by SLAC staff, data analysis done at MIT, post high power cold testing col-

laboratively, and final surface imaging done at SLAC.

The design presented in Chapter 5 was provided to SLAC, and translated into

engineering drawings. The PBG cell was machined from a single block of OFHC

copper including one of the cell iris plates, the other iris was included in the facing

cell piece, into which the PBG lattice rods were brazed. The structure, after passing

machining quality control, prior to brazing is shown in Figure 6-1. The structure was

then brazed into a single copper unit, and the stainless steel flanges were welded into

place.
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Figure 6-1: Machined PBG structure parts prior to brazing. Courtesy of SLAC.
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6.2 Cold Test and Bead Pull

Cold testing of the PBG structure was done to confirm manufacturing, and enable

tuning. The parameters measurable in cold test are the mode frequencies, mode Qs,

and mode identification via bead pull.

6.2.1 Setup

The single cell standing wave PBG structure, identified by SLAC code as 1C-SW-

A5.65-T4.6-Cu-PBG-SLAC#1, was matched with a TM01 mode launcher, T52219-1,

for all cold testing, and the same launcher remained connected for high power testing,

and final cold testing. The author is shown in Figure 6-2 with the PBG structure

mounted for cold test. An HP 8510C vector network analyzer (VNA) was used with

X-band adapters and full calibration kit. A full two port calibration was done for

each measurement, to insure accuracy across the frequency range of interest, and to

most effectively utilize the 800 frequency points per measurement. A dry nitrogen

flow was provided through a straight length of WR-90 waveguide to preserve struc-

ture cleanliness, and limit measurement fluctuations due to humidity. Temperature

fluctuations were monitored by a sensor for the room, and an additional sensor lead

attached to the body of the PBG structure.

Measuring the field profile of the cavity modes is accomplished by introducing a

small perturbation to the cavity and measuring the response. For two port devices

this is done in a resonant way, in which the electric field strength at the bead position

is proportional to the frequency shift of the resonance [61]. For a one port device,

a non-resonant technique must be adopted [62]. The practical technique for both

methods involves the suspension of a small dielectric perturbation, or “bead”, on a

thin dielectric wire. This suspension is accomplished using the mounting attached to

the PBG structure shown in Figure 6-2, and in more detail in Figure 6-3.

The mounting allows the smooth draw of the bead through the structure precisely

on axis. The mounting is attached with three bolts, threaded through springs, so

that they can be adjusted to exactly center the bead. The wire used was Ashaway
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Figure 6-2: Author and cold test laboratory.
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Figure 6-3: Mounting for bead pull measurement.
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Figure 6-4: Detail of bead on wire and adjustable bead pull mounting.

10/0 black monofilament 2 lb Trilene; the bead is made of a small drop of superglue.

The bead pull mounting and bead can be seen in Figure 6-4.

6.2.2 Bead Pull Measurements

Cold test enables measurement of the cavity mode structure, frequency, and Q. The

mode field profile is calculated by identifying a resonance in S11 on the VNA and

performing a calibration over a frequency range that fully encloses the resonance (id

est, a full Q-circle when viewing the Smith chart). The real and imaginary phase is

then measured on resonance (or slightly off resonance) as a function of bead position.

This method is non-resonant because no shift in resonant frequency is measured, as

with [61], but the field is probed directly as a phase shift [62].

To get a quantitative measure of the electric field strength, the phase data must

first be centered. The arbitrary path length between the VNA and the cavity functions

127



160 165 170 175 180
-170

-160

-150

-140

-130

-120

-110

-100

-90

Im
ag

in
ar

y
 P

h
as

e

Real Phase

176 177 178 179 180
-165

-164

-163

-162

-161

Im
ag

in
ar

y
 P

h
as

e

Real Phase

A)

B)

Figure 6-5: Recentering of real and imaginary phase measurements.

to offset the cavity resonance in both real and imaginary phase. The raw data for a

bead pull measurement is shown in Figure 6-5 A; data is shown for advancing bead

position at 11.4323 GHz. The collection of small random phase change, shown in

detail in Figure 6-5 B, is not the resonance, and the data is shifted by 178◦ and

–163.5◦ in real and imaginary phase, respectively so that the phase measurement is

centered on zero.

Once the data has been centered, the field strength squared is proportional to the

total phase shift, as expressed in Equation 6.1, allowing the normalized electric field
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Figure 6-6: Broad S11 measurement showing all observed resonances of the PBG
structure and mode launcher.

magnitude to be expressed as in Equation 6.2.

E2 ∝
√

φ2
real + φ2

imaginary (6.1)

|E| ∝
(

φ2
real + φ2

imaginary

)1/4
(6.2)

Equation 6.2 and the recentering of the bead pull data shown in Figure 6-5 allow field

profiles to be created for all resonances seen in the broad S11 measurement shown in

Figure 6-6. Field profiles, shown in Figures 6-7, 6-8, and 6-9 identify the modes.

Three modes are expected in the PBG structure itself: the 0-mode, π/2-mode, and

π-mode, which correspond to the field shape in the structure cells. Two coupler modes

are also observed, formed by multiple peaks in the oversized waveguide connecting the

TM01 launcher and the PBG structure. This accounts for all the peaks observed in

Figure 6-6. Primary interest is in the matching of the π-mode to its design prediction,

which is shown in Figure 6-10. Slightly less field strength is seen in the last pillbox

cell, but the overall agreement is quite good.
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Figure 6-7: Bead pull result for “0-mode”.
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Figure 6-8: Bead pull result for “π/2-mode”.
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Figure 6-9: Bead pull result for “π-mode”.
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Figure 6-10: Bead pull results for PBG standing wave structure. Good agreement is
seen between before cold test bead pull measurements and design simulation.
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Mode Frequency Q
[GHz] Q0 QL Qext

0 11.0036 8347 3390 5708
π/2 11.1397 9044 3796 6541

Coupler 11.3819 8299 4304 8941
π 11.4323 7401 4695 12844

Coupler 11.5517 12746 11224 9395

Table 6.1: Table of measured Q values for PBG structure modes.

6.2.3 Coupling

Once the modes have been identified, their coupling can be measured without the

presence of the bead. S11 measurements allow the mode frequency and coupling to

be directly measured, as well as the mode Q, by measuring the area within the Q-

circle formed on a Smith chart [63]. Table 6.1 summarizes the mode Qs: the unloaded

Q, Q0; the loaded Q, QL; and the external Q, Qext. The measured π-mode Q is 7400,

the design simulation value was 7600; this close agreement, and the close field profile

agreement observed in Figure 6-10 means the structure was well fabricated.

6.3 SLAC Klystron Test Stand Facility

The PBG breakdown structure was installed at SLAC on klystron test station #4.

Structure installation requires the removal of lead shielding from the enclosure bunker,

and the timely removal of the previous breakdown test structure and installation of

the next structure under as clean conditions as possible. Swift and clean structure

change insures that the vacuum system recovers quickly, and that no contamination of

the structure surfaces occurs, both prior to and after high power testing. Installation

of the PBG structure into the bunker under HEPA filtration is shown in Figure 6-11.

The interior of the test bunker is shown in Figure 6-12, after the vacuum connections

have been made, but prior to water cooling connections and bunker shielding.
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Figure 6-11: Photograph of PBG structure being installed in lead enclosure for break-
down testing.

133



Figure 6-12: Photograph of PBG structure installed in lead enclosure for breakdown
testing.
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6.3.1 Operation

Klystron test station #4 operates the X-band klystron XL4–6B and related microwave

diagnostics. The tube is driven and controlled by computer, allowing pulse shaping

and frequency tuning on a shot to shot basis. Filling of the standing wave structures

is accomplished in a shaped manner; a high power level initially fills the structure, and

then the power is lowered to maintain a constant level over the nominal power pulse

length, as discussed further in Section 6.3.2. Power level goals are set for the nominal

power level, and the computer changes the klystron drive properties to correct for

drift in the klystron operating parameters. The drive frequency is similarly tuned

to maximally couple power into the structure by minimizing the reflected power;

frequency tuning is necessary as the structure detunes with temperature, videlicet

190 kHz/K. A log is kept for the test station, which provides information regarding

operating conditions and the goals set for each operational run.

6.3.2 Diagnostics

Computer connection to microwave diagnostics is necessary to facilitate the algorithm

driven control of the klystron. Two primary sets of traces are read and analyzed: the

peak power meter, and scope traces. Two HP8990A peak power meters measure the

fully calibrated klystron power, and the power being fed into the breakdown structure

under test: the forward and reverse power. A typical peak power meter trace is shown

in Figure 6-13. The peak power meter is a continuous readout that relies on time

averaged sampling. Changes in power level appear discontinuous, and require time to

average back to an accurate baseline. The klystron output is much higher than that

necessary for testing single cell structures; most of the klystron power is terminated

in a high power load. The structure forward and reverse power are the peak power

monitor channels that read the power from directional couplers on the structure power

arm of the klystron output, after the load. The klystron power is not uniform, but is

shaped in order to more rapidly fill the structure.

The forward and reverse structure power can be used to calculate the fields in
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Figure 6-13: Peak power meter trace for klystron signals: klystron output power,
structure forward and reverse power traces.
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the structure. Precise calibration of this using HFSS simulations was discussed in

Section 5.3.6. The fields in the structure are a function of the power being fed

into the structure, and the Q of the structure and external coupling, or the loaded

Q, QL [16, 9]. The time constant for power coupling into the structure is then:

τ = 2QL

ω
[16]. A shaped filling pulse is used to provide a flat field profile in the

structure. A flat input pulse is shown in Figure 6-14 with the corresponding cavity

accelerating gradient. A shaped pulse is shown in Figure 6-15 with the corresponding

cavity accelerating gradient, showing a flat region of the pulse as a result of the pulse

shaping. This is why the peak power meter pulse in Figure 6-13 has its non-uniform

shape. The approximate input power pulse, and the corresponding cavity accelerating

gradient are shown in Figure 6-16, for the input power shown in Figure 6-13.

Scope traces are uncalibrated measurements obtained within the structure bunker

enclosure. These include microwave measurements of structure forward and reverse

power using diode detectors, and dark current measurement from both forward and

reverse Faraday cups (FCs). The scope traces are used as shot to shot diagnostics,

and to monitor breakdown events. A typical scope trace is shown in Figure 6-17, a

typical scope trace during a breakdown shot is shown in Figure 6-18; for both of these

shots, the forward power into the structure (from the peak power meter) was 5.0 MW.

The Faraday cup measurements were usually very low for the PBG structure, . 2–

3 mA. During breakdown shots, however, Faraday cup measurements of > 45 mA

were observed.

6.3.3 Data

Computer control and diagnostic monitoring provides a wealth of data. Filtering

useful shots for analysis is important for both the analysis process itself, and data

storage. The peak power meter logs data continuously every day; shots are stored

every two seconds while running, and every 15 minutes while not running. The scope

traces have a much higher volume, as they are taken continuously, every shot, while

operating at a repetition rate of 60 Hz. Scope traces are stored for every breakdown

event, as well as the shot immediately preceding each breakdown event.
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Figure 6-14: Flat input power pulse, and cavity accelerating gradient as functions of
time.
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Figure 6-15: Shaped input power pulse, and cavity accelerating gradient as functions
of time.
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Figure 6-16: Input power pulse, and cavity accelerating gradient as functions of time
for the approximate input power of Figure 6-13.
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Figure 6-17: Breakdown structure scope traces (uncalibrated) for non-breakdown
event. Forward and reverse power in structure, forward and reverse Faraday cup
signals. The forward power into the structure (from the peak power meter) was
5.0 MW for this shot.
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Figure 6-18: Breakdown structure scope traces (uncalibrated) for breakdown event.
Forward and reverse power in structure, forward and reverse Faraday cup signals.
The forward power into the structure (from the peak power meter) was 5.0 MW for
this shot.
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6.4 Data Analysis

The peak power meter and scope traces provide the bulk of information concerning

the structure performance, but must be processed to provide useful structure infor-

mation. Breakdown data sets are derived from the scope traces. Power levels and

pulse length information is derived from peak power meter data with overlapping

temporal coverage of each breakdown data set. These measured power levels are then

scaled into structure field information by cross-calibration with HFSS simulations.

The accuracy of the calibrating simulations is confirmed by their close agreement

with structure cold test data. Mathematica was used to handle the binary data sets,

and individual programs were written to handle the individual tasks associated with

the analysis [64]. Care was taken in these programs to efficiently use computational

resources, which could easily be overwhelmed repeatedly searching through & 100 MB

files.

The Mathematica programs were each structured as modules, so that variable

names could be meaningful and reused, without interfering with each other. Three

programs functioned to read peak power meter traces, and scope trace headers and

traces. These programs kept track of data headers and separators, and each binary

data point, so that the data could be separated into data sets. The sets were han-

dled by programs which functioned as loops that ran through each large binary file

for shots, or processed information of interest. The following Sections describe the

operation of these programs in detail.

6.4.1 Data Processing

Binary data sets are produced for both peak power meter and scope traces. Peak

power meter data accumulates in dated data sets, which become quite large: & 100 MB.

Each peak power meter trace set is prefaced with a header, which must be read ac-

curately prior to reading out the bits that represent the trace itself. The header

contains time indexing information both in regard to when the data was stored, and

the various scope settings and offsets that must be applied to calibrate the trace axes.
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Figure 6-19: Time history of breakdowns for an individual breakdown scope trace
data set.

Scope traces are saved in smaller data sets between parameter changes by the test

station operator. Scope traces contain both breakdown pulses, exempla gratia, Fig-

ure 6-18, and the pulses immediately prior, exempla gratia, Figure 6-17. Breakdown

pulses are characterized by an increased power reflection prior to the termination of

the forward power, and a dramatic increase in the dark current measured by the Fara-

day cups. For processing purposes, an off-scale Faraday cup measurement of the dark

current was used and verified as indicative of breakdown events. The scope traces

contain separate header files, which are indexed with scope settings and temporal

calibrations. The timing of the individual shots is stored to millisecond accuracy

(sufficient for 60 Hz operation) in the traces themselves. The scope traces provide

breakdown data sets with regard to time. The time history of breakdown can then

be viewed, as shown in Figure 6-19. The total number of breakdowns in a given time

span provides a breakdown rate, quoted after [56] as number per hour at 60 Hz.

Further information is encoded in the breakdown data time series. The time

between breakdowns can be calculated directly from the data shown in Figure 6-19,

as shown in Figure 6-20. The distribution of these points is shown in the histogram

of Figure 6-21. A large number of breakdown events are followed immediately by

a subsequent breakdown; a phenomenon that has been observed, but not quantified
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Figure 6-20: Time spacing between breakdowns for an individual breakdown scope
trace data set.

as is possible with the large collection of data resulting from this testing process.

The percentage of immediate breakdown events ranges from ∼ 25–65%. Excluding

the singularity for immediate breakdown, the shape of the distribution is roughly

exponential, and can be fit as shown in Figure 6-21.

Once breakdown data sets have been generated and a breakdown rate for the data

set has been calculated, a power level needs to be attached as well. The time indexing

of the breakdown events gives a time span over which the relevant data was taken.

The peak power meter data for this time span is then sampled and a pulse length

and nominal power level is calculated.

6.5 Structure Performance Comparison

6.5.1 Pillbox Data Analysis

The PBG breakdown structure was designed to be directly compared with a series

of SLAC structures, 1C-SW-A5.65-T4.6-Cu, designed by B. Spataro of INFN, Fras-

cati [58, 59]. This is the SLAC baseline pillbox structure shown in Figure 5-2 and
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Figure 5-3. The iris geometry for both structures is identical, as required by the

shared fixed design parameters in Table 5.2. Analysis of the data for SLAC indexed

structure 1C-SW-A5.65-T4.6-Cu-Frascati-#2 provides pillbox comparison data for

analysis of the PBG structure results. Full analysis of the pillbox data was performed

to limit systematic error arising from differences in analysis techniques.

The steps discussed in Section 6.4.1 and Section 5.3.6 were repeated for the data

supplied by SLAC for the pillbox structure. The same Mathematica programs were

run for the additional data set to produce breakdown rates and power levels. HFSS

simulations were run to produce the calibration figures shown previously in Table 5.6.

6.5.2 Breakdown Data

Breakdown rates are an exponential process for which there is always a probability of

an accelerator structure breaking down, but that probability is higher as the operating

gradient of the structure is increased. There is no threshold for breakdown, there is

the two dimensional expression of breakdown rates for field levels. The behavior of
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breakdown changes as a function of pulse length as well; at a longer pulse length a

lower gradient can be maintained at a given breakdown rate, or for the same gradient

a higher breakdown rate will be observed.

For the PBG structure, breakdown rates were observed for 150, 170, 300, 360, and

600 nanosecond pulse lengths. Complete data is shown in Tables 6.4, 6.2, 6.6, 6.3,

and 6.5. Comparison with pillbox structure data was possible for 170 and 600 nanosec-

ond pulse lengths, with complete data shown in Tables 6.7 and 6.8. As discussed

in Section 6.4.1, all data was actually taken with respect to input power, which is

rescaled to field information. It is the field properties, gradient, and maximum surface

electric field, which are believed to be critical for breakdown. The maximum surface

magnetic field is associated with pulsed heating, as described in Section 2.2.4. Equa-

tion 2.7 allows an additional rescaling of field data to pulsed temperature rise. This

temperature rise is calculated for the flat portion of the pulse; the total temperature

rise is higher, and is discussed in more detail in Section 6.5.3. The data was taken in

the order indicated over approximately two weeks of operating time. The variation

in pulse length and power level can be traced for each structure. The total number

of shots in each data set is also shown.

The testing history is generally from shorter to longer pulse lengths, and higher to

lower power. These shots are not the only shots the structure experiences, they are

only data sets at relatively constant breakdown rate. To investigate the total time

history of the structures, the peak power meter traces can be examined to look at the

total field, or pulsed heating experienced by the structure as a function of time, as is

discussed in Section 6.5.3.

6.5.3 Time History of Testing

A full understanding of the time history of the testing process requires a calculation of

pulsed heating, including the contribution from the shaped portion of the rf pulse, and

shots that were not included in breakdown data sets. Pulsed heating temperature rise

was previously calculated using Equation 2.7 and the numerical values in Table 2.3.

Equation 2.8 is calculated numerically for all peak power meter data, which rep-
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Order Gradient Electric Magnetic BD/hour Heating Shots
[#] [MV/m] [MV/m] [kA/m] [#] [K] [#]
1 101 210 894 995.20 141 1.4 × 105

17 92 192 816 169.36 117 7.3 × 104

18 82 171 730 115.14 94 6.3 × 105

19 78 162 692 57.04 84 1.7 × 105

20 77 160 682 41.36 82 1.2 × 106

21 74 153 653 14.81 75 1.3 × 106

22 68 141 599 4.13 63 6.3 × 105

23 65 135 577 1.94 59 1.2 × 106

Table 6.2: PBG structure analysis result for 170 nanosecond pulse length.

Order Gradient Electric Magnetic BD/hour Heating Shots
[#] [MV/m] [MV/m] [kA/m] [#] [K] [#]
2 101 210 894 8042.55 205 5.6 × 103

3 116 242 1032 7266.93 273 1.1 × 104

4 105 218 930 2303.15 222 1.3 × 104

5 103 215 916 741.73 215 7.0 × 103

6 96 199 848 1030.88 184 6.0 × 104

7 93 193 824 441.26 174 2.8 × 105

8 87 182 774 119.64 154 3.6 × 105

9 77 160 682 42.61 119 1.1 × 106

Table 6.3: PBG structure analysis result for 360 nanosecond pulse length.

Order Gradient Electric Magnetic BD/hour Heating Shots
[#] [MV/m] [MV/m] [kA/m] [#] [K] [#]
10 112 233 992 3676.23 163 9.3 × 103

11 116 241 1025 3122.50 174 6.4 × 104

12 114 238 1012 1995.91 170 1.2 × 105

13 113 235 999 1852.34 165 5.4 × 104

14 105 218 930 424.31 143 5.0 × 104

15 100 208 886 248.29 130 2.8 × 105

16 92 192 816 67.41 110 1.5 × 105

32 91 190 808 248.79 108 5.1 × 105

33 87 182 774 179.02 99 1.2 × 105

34 78 162 692 74.93 79 5.9 × 105

35 75 156 663 7.55 73 1.0 × 106

36 71 148 632 6.02 66 1.8 × 106

37 66 138 588 6.85 57 8.2 × 105

38 64 133 565 4.65 53 2.0 × 106

Table 6.4: PBG structure analysis result for 150 nanosecond pulse length.
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Order Gradient Electric Magnetic BD/hour Heating Shots
[#] [MV/m] [MV/m] [kA/m] [#] [K] [#]
24 82 171 730 253.26 176 4.3 × 105

25 76 158 673 102.09 150 3.6 × 105

26 77 160 682 206.15 154 4.0 × 105

27 68 142 605 113.78 121 5.3 × 105

28 64 133 565 75.33 106 5.8 × 105

29 62 130 553 13.75 101 3.0 × 105

30 61 127 541 42.16 97 2.7 × 105

31 58 121 516 14.28 88 8.9 × 105

Table 6.5: PBG structure analysis result for 600 nanosecond pulse length.

Order Gradient Electric Magnetic BD/hour Heating Shots
[#] [MV/m] [MV/m] [kA/m] [#] [K] [#]
39 72 151 642 37.88 97 4.4 × 105

40 65 135 577 14.73 78 1.1 × 106

41 58 121 516 9.09 62 9.7 × 105

42 52 108 461 0.96 50 2.7 × 106

Table 6.6: PBG structure analysis result for 300 nanosecond pulse length.

Order Gradient Electric Magnetic BD/hour Heating Shots
[#] [MV/m] [MV/m] [kA/m] [#] [K] [#]
1 108 228 479 77.84 40 9.7 × 104

2 104 219 461 11.81 37 4.2 × 105

3 102 215 452 11.22 36 3.9 × 104

4 101 213 447 17.06 35 6.3 × 104

5 104 219 461 30.08 37 1.8 × 105

6 99 210 442 13.11 34 2.1 × 106

7 96 203 428 8.30 32 2.6 × 106

8 94 198 417 3.12 31 2.7 × 106

26 120 254 534 110.39 50 2.7 × 105

27 90 191 402 0.65 28 1.3 × 106

Table 6.7: Pillbox structure analysis result for 170 nanosecond pulse length.
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Order Gradient Electric Magnetic BD/hour Heating Shots
[#] [MV/m] [MV/m] [kA/m] [#] [K] [#]
9 102 215 452 1747.54 68 2.0 × 104

10 95 201 423 1224.74 59 8.6 × 103

11 90 191 402 12.15 53 4.3 × 105

12 97 206 432 230.05 62 1.0 × 104

13 97 206 432 169.12 62 4.6 × 105

14 97 206 432 99.19 62 4.4 × 105

15 97 206 432 143.89 62 4.6 × 105

16 95 201 423 40.55 59 6.8 × 105

17 87 183 386 12.11 49 4.3 × 105

18 86 181 380 46.21 48 2.7 × 105

19 84 178 375 7.30 46 4.4 × 105

20 84 178 375 17.99 46 4.9 × 105

21 84 178 375 12.11 46 8.9 × 105

22 80 170 357 3.55 42 7.9 × 105

23 80 170 357 4.90 42 1.9 × 106

24 76 161 339 0.71 38 9.1 × 105

25 78 164 345 2.36 39 1.5 × 106

Table 6.8: Pillbox structure analysis result for 600 nanosecond pulse length.

resents a uniform sampling of all high power structure shots. The result is plotted as

a function of shot number for both the PBG and pillbox structures, in Figure 6-22

and Figure 6-23, respectively. The shot numbers correspond to two second sampling:

a total of 120 shots occur for each peak power meter calculation.

The PBG structure was tested in the order shown in Tables 6.4, 6.2, 6.6, 6.3,

and 6.5, as well as in Figure 6-22, for several reasons. At high breakdown rates,

data can be gathered quickly, because many breakdown events are occurring. At low

breakdown rates, many shots, and eventually many hours of operation are necessary

to gather data. High breakdown rate data is gathered while an operator is present,

and can change the experimental parameters in real time; low breakdown rate data is

gathered later in the day, when the test stand can be left running unattended. As can

be seen in Figure 6-23, pillbox structures have less pulsed heating, when compared

with PBG structures. Previous experience with pillbox structures, may have led

SLAC operators to damage the PBG structure unintentionally in their pursuit of high

gradient results. The PBG structure is the first of its kind to be tested, motivating
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Figure 6-22: Pulsed heating temperature rise calculated for entire rf pulse using
Equation 2.8 for all peak power meter shots for the PBG structure.
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Figure 6-23: Pulsed heating temperature rise calculated for entire rf pulse using
Equation 2.8 for all peak power meter shots for the pillbox structure.
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the pursuit for as large a dataset as possible. A larger variation in gradient and pulse

length was explored in the PBG structure, with comparison to the pillbox structure.

This also impacts the large variation in pulsed heating, as the pulse length is varied

from 150–600 nanoseconds.

The PBG structure had two large excursions to quite high pulsed heating temper-

ature rises, with a maximum of 585 K, and an average pulsed heating temperature

rise of 168 K for 35× 106 shots. The pillbox structure on the other hand experienced

quite mild pulsed heating temperature rise, with a maximum of 114 K, and an average

of 56 K for 59 × 106 shots. It is possible that the large excursions to very high tem-

perature rise damaged the PBG structure. It is also possible that the first excursion

to high temperature rise, which occurred early in the testing process, damaged the

structure, and unduly influenced all subsequent breakdown testing results.

Gradient and Electric Field

Comparison of PBG and pillbox breakdown rates are shown as functions of gradient,

and peak surface electric field in Figure 6-24 and Figure 6-25 for 170 nanosecond pulse

length, and Figure 6-26 and Figure 6-27 for 600 nanosecond pulse length, respectively.

For both pulse lengths the gradient achievable in the PBG structure is less than that

reached in the pillbox structure. This can be alternatively phrased that for a given

gradient or peak surface electric field, the breakdown rate in the PBG structure was

higher than that in the pillbox structure.

Breakdown phenomena are generally understood in terms of maximum surface

field, as discussed in Section 2.2. This is not what is seen in Figures 6-25 and 6-27.

The performance of the two structures is not identical when compared in terms of

peak surface electric field. The PBG structure has a surface field of 208 MV/m for

a 100 MV/m accelerating gradient, compared to 211 MV/m peak surface field for

the pillbox structure. These nearly identical values would predict that only minor

fabrication differences would significantly impact the breakdown performance of the

structures. This is not what is seen in Figures 6-24 and 6-26.
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Figure 6-24: Breakdown rate versus accelerating gradient for PBG and Pillbox struc-
tures, in red and blue circles respectively. 170 nanosecond pulse length.
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Figure 6-25: Breakdown rate versus peak surface electric field for PBG and Pillbox
structures, in red and blue circles respectively. 170 nanosecond pulse length.
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Figure 6-26: Breakdown rate versus accelerating gradient for PBG and Pillbox struc-
tures, in red and blue circles respectively. 600 nanosecond pulse length.
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Figure 6-27: Breakdown rate versus peak surface electric field for PBG and Pillbox
structures, in red and blue circles respectively. 600 nanosecond pulse length.
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Figure 6-28: Breakdown rate versus peak surface magnetic field for PBG and Pillbox
structures, in red and blue circles respectively. 170 nanosecond pulse length.

Magnetic Field and Pulsed Heating

Comparison of PBG and pillbox breakdown rates are shown as functions of peak

surface magnetic field in Figure 6-28 and Figure 6-29 for 170 and 600 nanosecond pulse

length, respectively. The peak magnetic field is much higher in the PBG structure.

This large variation in magnetic field performance is of great interest because all single

cell standing wave breakdown tests prior have been done with structures of nearly

identical magnetic field performance.

Large variations have been observed in gradient, or electric field performance when

the structure iris geometry or aperture is changed, as shown in Figure 6-30. When

plotted versus peak magnetic field, the data for various pillbox structures collapses,

as shown in Figure 6-31 appearing consistent with being from the same structure.

The high magnetic field in the PBG structure tests will result in high pulsed

heating, according to Equation 2.7. Figure 6-32 and Figure 6-33 show the breakdown

rate as a function of temperature rise, for pulse lengths of 170 and 600 nanoseconds.

A pulsed heating temperature rise of 50 K is deemed safe for long term structure

operation. For realistic application, PBG structures must be redesigned or restricted
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Figure 6-29: Breakdown rate versus peak surface magnetic field for PBG and Pillbox
structures, in red and blue circles respectively. 600 nanosecond pulse length.
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Figure 6-30: Breakdown rate versus peak surface electric field for various pillbox
structures [65].
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Figure 6-31: Breakdown rate versus peak surface magnetic field for various pillbox
structures [65].

to perform at lower gradient levels to maintain allowable temperature rise on the

rods.

6.6 PBG Structure Autopsy

Once high power testing of the PBG structure is complete, it is removed in the same

semi-clean conditions it was installed under. Cold test of the structure is repeated to

confirm structure parameters after testing, and quantify damage prior to destructive

surface imaging. Borescope images provide a view of the structure surface prior to

cutting it for scanning electron microscope (SEM) imaging.

6.6.1 Cold Test

Structure bead pull measurements are identical to those made prior to high power

testing, as shown in Figure 6-34. Mode parameters have changed slightly from those

of Table 6.1 to the values shown in Table 6.9. Damage in the central PBG cell has

lowered the unloaded Q of the π-mode from 4695 to 4220. The mode frequency has
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Figure 6-32: Breakdown rate versus pulsed temperature rise for PBG and Pillbox
structures, in red and blue circles respectively. 170 ns pulse length.
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Figure 6-33: Breakdown rate versus pulsed temperature rise for PBG and Pillbox
structures, in red and blue circles respectively. 600 ns pulse length.
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Figure 6-34: Bead pull result for “π-mode” before and after high power testing.

not shifted, implying that the cell geometry has not been altered; the rods themselves

and the irises are intact. The change in Q means that the PBG cell is more lossy

subsequent to testing.

6.6.2 Borescope

Borescope images provide a baseline for surface appearance, prior to the machining

process of cutting the structure in half for SEM imaging. The high polish of the

copper surface makes visual images less informative than SEM micrographs because

of reflections. Figure 6-35 shows the PBG structure iris, which appears undamaged.

Figure 6-36 shows the inner surface of one of the inner row of rods; pulsed heating

damage is clear in the observable grain boundaries and surface roughness, similar

to [15]. Figure 6-37 shows the brazed joint between an inner cylindrical rod and

the flat iris end plate. The brazed joint formed between the cylindrical rods and

the facing iris plate appears to be less than ideal. An overhang seems to be visible,

and roughness is observed in the annular area of the braze. Borescope images are

typically only taken after high power testing. Borescoping before high power testing

would clearly indicate what surface features are a product of machining and which
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Mode Frequency Q
[GHz] Q0 QL Qext

Before High Power Testing
0 11.0036 8347 3390 5708

π/2 11.1397 9044 3796 6541
Coupler 11.3819 8299 4304 8941

π 11.4323 7401 4695 12844
Coupler 11.5517 12746 11224 9395

After High Power Testing
0 11.0041 7695 3303 5789

π/2 11.1399 8998 3719 6341
Coupler 11.3820 6756 3874 9084

π 11.4334 6267 4220 12928
Coupler 11.5520 12867 11424 101862

Table 6.9: Table of measured Q values for PBG structure modes, before and after
high power testing.

are the results of high power; a procedural change which has been suggested.

6.6.3 Scanning Electron Microscope

The PBG structure is cut in half and SEM micrographs are captured according to

the key shown in Figure 6-38 [66]. The three irises are labeled A, B and C. The

rods visible to direct SEM probing are labeled outward from 1–7. Rods 1, 2, and 3

are inner rods which saw large peak surface magnetic field, and the associated high

currents and pulsed heating. Rods 4, 6, and 7 are outer rods, which provide a baseline

for fabricated rod appearance, as very little field strength was experienced by these

rods. The cutting was done such that no inner rods were intersected; rod 5 was cut

roughly in half.

The structure irises are shown in Figure 6-39: A, B, and C correspond to the irises

as labeled in Figure 6-38. In each case the bottom arc of the iris is shown, with the

cut through the elliptically contoured iris visible at the bottom of the figure. Irises

B and C saw high peak surface field, Iris A did not. No difference is observed in

comparing the high field with the low field surfaces. No damage is observed. The

surface roughness corresponds to that of the machining process; Figure 6-40 shows a

detailed SEM micrograph of the iris surface.
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1 mm

Figure 6-35: Borescope image of PBG structure iris.

1 mm

Figure 6-36: Borescope image of PBG structure inner rod.
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1 mm

Figure 6-37: Borescope image of PBG structure rod braze joint.

The rods of the structure are shown in full in Figure 6-41; rod 5 is omitted. Grain

growth on the high field facing surfaces of rods 1, 2, and 3 is clear. Rods 4, 6, and 7

serve as a control reference, as the field strength on these rods was very low.

Pulsed heating damage is observable on the inner edge of rods 1, 2, and 3. Pro-

gressively more detailed SEM micrographs are shown in Figure 6-42. Figure 6-42 B

shows the growth of the grain boundaries, as detailed in Figure 6-42 C. Figure 6-42 D

shows the growing surface roughness, as detailed in Figure 6-42 E.

The brazed and machined bases of rod 1 are shown in Figure 6-43 A and Figure 6-

43 B, respectively. Grain growth and surface roughness are both observed. The

damage on the brazed and machined bases is shown in detail in Figure 6-43 C and

Figure 6-43 D, respectively. Very different damage patterns are observed on the

brazed and machined ends. The machined end is damaged much as the rest of the

rod: clear grains and surface roughness, especially along the grain boundaries. The

brazed end of the rod is discontinuously damaged: the rod has an increased surface
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Rod 1

Iris B

Rod 2

Rod 3

Iris A

Rod 4

Rod 5

Rod 6

Rod 7

Iris C

5 mm

Figure 6-38: Key to Scanning Electron Microscope micrographs of PBG structure
surface [66]. Irises are labeled A, B, and C: Iris A is the input coupler aperture, Irises
B and C are the high electric field surfaces of the PBG test cell. Rods are numbered
outwards 1–7: Rods 1, 2, and 3 are inner rods, which experienced high field strength;
Rods 5, 6, and 7 are outer rods, which did not. The PBG structure was cut so that
no inner rod was damaged, as a result Rod 5 was bisected.
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A)

B)

C)

Figure 6-39: SEM micrographs of PBG structure irises [66]. Irises are labeled A), B),
and C): A) is the input coupler aperture, B) and C) are the high electric field surfaces
of the PBG test cell irises. No breakdown damage is observed.
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Figure 6-40: Detailed SEM micrograph of PBG structure iris [66]. Tool marks are
visible, but no breakdown damage is observed under magnification.

roughness, but at the joint itself, very large accumulations of damage are observed.

This pattern of damage is observed on rods 2 and 3 as well, as shown in Figure 6-45

and Figure 6-44.

Observation of the braze joint can be made on one of the outer rods, which saw

little field, and no damage. Figure 6-46 A and Figure 6-46 B shows the brazed and

machined ends of the rod, respectively. Figure 6-46 C shows the detail of the brazed

joint. Braze material has collected annularly around the rod, and the joint itself is

convex. Damage on both ends of rods 1, 2, and 3 shows no striking asymmetry.

The discontinuity itself is not causing significantly more damage, but the additional

material combined with the discontinuity are the source of the larger damaged spots

seen in Figures 6-43, 6-45, and 6-44.

6.7 Hypothesis for the Explanation of Results

The breakdown testing results for the PBG structure are quite unexpected. De-

spite adopting the same iris geometry as the SLAC baseline pillbox structure, the

breakdown performance of the PBG structure was lower by ∼ 40% with respect to

accelerating gradient. The maximum surface electric field is on the iris, as shown in
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1)

2)

3)

4)

6)

7)

Figure 6-41: SEM micrographs of PBG structure rods as numbered in Figure 6-38 [66].
Rods are numbered outwards, 1–7: 1), 2), and 3) are inner rods, which experienced
high field strength; rods 4), 6), and 7) are outer rods, which did not. Damage is
visible on the inner surfaces of the rods in 1), 2), and 3).
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A)

B)

C)

D)

E)

Figure 6-42: Detailed SEM micrographs of the PBG structure rod in Figure 6-41 1,
showing pulsed heating damage [66]. Grain growth is clear in A), and shown in
increasing detail in B) and C). Increased surface roughness is shown in increasing
detail in D) and E).
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A) B)

C) D)

Figure 6-43: SEM micrographs of PBG structure rod 1 [66]. A) and B) show pulsed
heating surface damage on the brazed and machined ends of rod 1, respectively, which
is shown in greater detail in C) and D), respectively. Grain boundaries are visible, as
is increased surface roughness along the grains boundary edges and central portion
of the rod.
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A) B)

Figure 6-44: SEM micrographs of PBG structure rod 3 [66]. A) and B) show pulsed
heating surface damage on the brazed and machined ends of rod 3, respectively.

the calibration simulation results of Figure 5-15. Extensive cratering is expected on

the iris surface, in accordance with the phenomenology of Figure 2-3. Instead, the iris

surface of the PBG structure appeared undamaged under SEM imaging, as shown in

Figure 6-40 and Figure 6-39.

The maximum magnetic field is observed on the inner rod surfaces, as shown in

the calibration simulation results of Figure 5-16. Extensive damage was seen on these

surfaces as a result of pulsed heating temperature rise induced fatigue, as shown in

Figure 6-41, and in detail in Figure 6-42. Though the magnetic field is very large on

these surfaces, there is a small electric field, which was shown in Figure 5-17. This

low level electric field will be enhanced by local surface defects produced by pulsed

heating damage. A low level β enhancement of these fields, with β ∼ 20, will result

in the same electric field on the rods as is present on the iris surface.

Evidence of surface roughness is clear in the SEM micrographs of the rod surfaces,

and β of order 10–20 can be estimated by looking at the SEM micrographs for rods 2

and 3, which are viewed at an angle with respect to the surface normal. The surface

of rod 2 is shown in Figure 2-2 A, with detail in Figure 2-2 B; the surface of rod 3 is

shown in Figure 2-2 C, with detail in Figure 2-2 D. The field enhancement β can be

estimated from these images, and the scaling shown in Figure 2-2.
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A) B)

C)

Figure 6-45: SEM micrographs of PBG structure rod 2 [66]. A) and B) show pulsed
heating surface damage on the brazed and machined ends of rod 2, respectively. The
increased surface damage on the braze joint is shown in detail in C).
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A) B)

C)

Figure 6-46: SEM micrographs of PBG structure rod 4 [66]. A) and B) show the
undamaged surface of the brazed and machined ends of rod 4, respectively. The
brazed joint is shown in detail in C); Braze material has collected annularly around
the rod, and the joint itself is slightly convex.
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A) B)

C) D)

Figure 6-47: SEM micrographs of PBG structure rods 2 and 3 [66]. A) and C) show
pulsed heating surface damage on rods 2 and 3, respectively, which is shown in greater
detail in B) and C), respectively. β can be estimated using these oblique angle views
of increased surface roughness.
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Breakdown in the PBG structure can be understood as a two step process: the

magnetic field induces pulsed heating damage on the surface, the surface damage

results in increased β regions, which instigates electric field breakdown by the process

of Figure 2-3. The damage due to pulsed heating is uniform over the rod surface,

as demonstrated in SEM micrographs, and predicted by the field plot of maximal

magnetic field in Figure 5-16. The damage due to electric field breakdown on the

rods will be non-uniform, peaking on the two maxima observed in the rod surface

electric field plot in Figure 5-17. This asymmetry is not observed in SEM imaging of

the rods surface, but can be explained by the convolved uniformity of pulsed heating

damage.

6.8 Comparison with Other Breakdown Phenom-

ena

6.8.1 Traveling Wave Structures

The present results may be compared with breakdown observed on the input cou-

plers of traveling wave structures, where there is high magnetic field, and low electric

field. These coupler irises experienced high magnetic fields and large pulsed heating

temperature rises. Damage was observed on the coupler irises, and they were re-

designed for lower temperature rise [55]. A pulsed heating temperature rise of 270 K

produced sufficient damage that the 13 MV/m electric field on the iris surface was

increased to the point that breakdown occurred [67]. This is the same explanation

put forward to explain the PBG structure breakdown results. The difference between

breakdown phenomena in standing wave and traveling wave accelerators is an active

area of research, and results are generally not deemed to be applicable across these

domains.
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6.8.2 Outgassing

Breakdown at low gas pressure can occur at fields much lower than those in vacuum.

F. Paschen discovered a relation for the DC breakdown limit as a function of gas

pressure [68]. The effect of gas on rf breakdown is less understood in the current

era of high quality vacuum systems. During rf conditioning, adsorbed surface gas is

emitted, and the structure performance improves [69]. High pulsed heating in the

PBG structure could have produced copper gas in the vicinity of the inner row of

rods, where the surface magnetic field is maximum. This surface outgassing could

itself breakdown, or lower the breakdown threshold for the structure as a whole. The

gas could also remain in the structure between shots, and due to the 60 Hz operation,

lower the breakdown threshold for subsequent shots.

6.8.3 High Magnetic Field

Breakdown has also been observed in low frequency cavities, at 200 and 800 MHz,

with large DC magnetic fields, up to 5 T [70]. Recent theory work has focused on

the motion of electrons emitted from the surfaces, and their complicated motion in

these high fields. A model of breakdown has been put forward by R. B. Palmer, et

alia, in which electrons are accelerated by the electric field, and sufficiently focused by

the magnetic fields to induce damage on the cavity surfaces and instigate breakdown.

This model is not applicable to the PBG structure, but particle tracking simulations

would be necessary to understand the motion of emitted particles in the complicated

field patterns of PBG structures. Back bombardment of emitted electrons is possible

in the high magnetic field region near the rod, and may cause additional damage of

the surface. However, the surface damage observed on the rods in the PBG structure

is consistent with high pulsed heating damage observed in previous experiments [15].
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6.9 Conclusions

The cold test, borescope images, and SEM imaging provide a large amount of infor-

mation on the surface of the PBG structure after high power testing. Cold testing

confirmed that the coupling cell modes were unchanged, but the operating π-mode

of the structure Q has degraded by 10%. Q degradation was attributed to surface

roughness, which was observed on the inner row of rods in both borescope and SEM

micrographs. Borescope and SEM micrographs reveal undamaged irises, with only

tool marking roughness. SEM micrographs followed up on what appeared to be defi-

cient brazing of the rods to one of the irised end plates. Damage was observed on both

ends of the rods, and the mode Q in original cold test was quite close to its design

value; the braze was sufficient for testing even if it created material and a defect for

enhanced growth of pulsed heating damage. Extensive grain growth was seen on the

inner rods. The grain boundaries show the cracking and enhanced surface roughness

typical of high temperature pulsed heating [15].

The breakdown performance of the PBG structure was limited by the damage

produced by high pulsed heating on the inner row of rods. The structure should

perform more closely to the reported results for the SLAC baseline pillbox structure,

if the pulsed heating temperature rise is limited to < 50 K. Another PBG structure

could be built and tested at SLAC using the old design to verify this prediction. A

full redesign of the PBG structure to lower the peak magnetic field on the inner row

of rods was reported in Section 5.4. This next generation structure could be built

and tested at SLAC, and will perform better than the first PBG structure.

Several major recommendations for future testing have arisen as a result of this

testing. Surface condition should be verified by borescope imaging prior to high

power testing, so that the surface condition can be gauged prior to high power rf

conditioning. Structure processing and high power testing should be restricted in

power and pulse length so that the structure experiences less than 50 K pulsed heating

temperature rise. A real time integration of the structure power could be implemented

into the computer control system to provide immediate feedback on the structure
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heating. More extensive experimental diagnostics would provide information on the

structure properties during high power testing. The pressure record for the structure,

and other pertinent testing parameters should be stored and indexed to structure

testing so that uniformity or deviation can be ascertained across structure testing

runs.
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Chapter 7

Discussion and Conclusion

7.1 Summary of Results

Major advances in the theoretical understanding of higher order modes in PBG struc-

tures have been made. HOMs are seen to be low Q modes, present primarily in the

lattice of the PBG structure. The quality factors of the modes are seen as the quanti-

tative measure of HOM damping in PBG structures. PBG HOMs have been observed

in cold test of the 17 GHz six cell PBG structure previously demonstrated at MIT.

HOMs were observed at dipole mode frequencies, and had Q factors on the order of

100, as predicted by HFSS simulations. PBG wakefields were directly excited and

measured in the six cell structure. The 17 GHz PBG structure was unpowered by rf,

and the electron beam excited wakefields that were experimentally observed. Excel-

lent agreement was seen at 17 GHz with comparison to an analytic traveling wave

excitation theory, and numerical wakefield simulations.

As part of the US high gradient research collaboration, an 11.424 GHz PBG

structure was designed for breakdown testing at SLAC. This structure is the first

PBG structure to be tested for breakdown phenomena and limits. Design of the

structure predicted very high pulsed heating on the inner row of rods, and extensive

design work has been done on structure improvements. A next generation PBG

structure design was completed with an elliptically contoured inner row of rods.

The single cell breakdown PBG structure was fabricated by collaborators at SLAC.
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Cold testing bead pull measurements revealed the modes predicted, in very good

agreement with design parameters. The mode frequencies, coupling, and quality

factors were also close to design. The structure was installed at SLAC, and testing

was completed. Cold test and bead pull measurements were repeated after high power

testing, showing a decrease in the operating mode Q, indicating damage. The mode

frequency and field profile showed little change indicating the damage was an increase

in surface roughness, or wall losses. This was confirmed by borescope imaging of the

surface and subsequent SEM imaging.

The breakdown data for the PBG structure was analyzed to produce breakdown

rate plots with respect to the field quantities in the structure. Exponential trends

were seen across the field strengths and pulse lengths tested. The SLAC baseline

pillbox structure data was analyzed and compared with PBG structure results. The

PBG structure performance was ∼ 40% worse with respect to accelerating gradient

or electric field performance. The surface magnetic field in the PBG structure was

much higher than that seen in any other structure testing. This resulted in the

pulsed heating surface damage, but also indicates exciting new physics involved in

the interplay of electric and magnetic field effects in the breakdown performance of

accelerator structures.

7.2 Discussion of Relevance

Theory work on PBG HOMs represent a major advance. PBG wakefields are under-

stood as modes that can be excited by the accelerated beam. Quantitative measure of

mode damping, via the mode Qs allows PBG design damping to be compared directly

against other damping solutions, or PBG structure variations.

The results of the PBG structure breakdown testing are very exciting. A pillbox

structure is not a viable future linear collider concept. The PBG structure red points

stand alone, on the breakdown plots in Figure 6-24, and Figure 6-26. If lower accel-

erating gradients are achievable in damped structures when compared with pillbox

structure performance, it is an important issue that must be dealt with in both col-
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lider and structure design and development. The performance of damped structures

must be understood, and the testing of this first PBG structure is an important step.

The importance of magnetic field effects in breakdown performance has been high-

lighted in this work as a vital area of investigation. Pulsed heating damage of struc-

tures with high peak magnetic fields has been observed, and the structures have been

redesigned to reduce the peak field in the high field regions. Breakdown on the input

couplers of devices has been a limiting factor in testing the breakdown performance

of some structures [55]. This has not been understood as the observation of magnetic

field induced breakdown, but as the limiting of input power for testing the entirety

of the accelerator structure. Differentiation of breakdown phenomena according to

source, or damage potential has been an important establishment of vocabulary in

normal conducting accelerator research. Magnetically induced breakdown, or the in-

terplay of magnetic field effects on breakdown has not been a part of previous models

of breakdown, and the results we have seen were not anticipated.

Breakdown data for various geometry pillbox structures shows variation in the

maximum surface electric field, or accelerating gradient with breakdown rate; little

variation is seen with respect to surface magnetic field. The PBG breakdown data

provides an unique insight on this unexplored territory. PBG data is very disparate

from pillbox magnetic field data, and shows significant disagreement with the mag-

netic field breakdown rate correlation implied by pillbox data. The PBG structure

provides an unique interplay of electric and magnetic fields. This interplay results in

the two theoretical models put forward to explain the breakdown results.

The breakdown results for the PBG structure are understood as the result of a low

electric field on the PBG lattice rods being enhanced by pulsed heating damage. The

expected asymmetry in electric field induced damage is obscured by the uniformity

of pulsed heating damage. Alternative hypotheses involve the role of copper ions and

electrons expelled by the high pulsed heating on the rod surface, and either their

direct interaction with the electric and magnetic fields, or the subsequent complex

motion of these particles in the electric and magnetic fields present in the structure.
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7.3 Future Directions

7.3.1 Experiments at 17 GHz

The 17 GHz accelerator laboratory at MIT is well suited to single cell breakdown

testing of structures. The TM01 mode launchers can be scaled to 17 GHz so that

testing identical to that done at SLAC can be accomplished at MIT. To protect the

klystron tube from high power reflections, isolators or a circulator must be built or

purchased. PBG structures provide an excellent opportunity for diagnostics. Faraday

cups, x-ray monitors, acoustic sensors, and dark current spectroscopy can all be done.

In addition, the open nature of the structure enables real time observation of the

material surfaces under high power conditions, as well as easily implemented real

time diagnostics of the cavity environment.

7.3.2 Breakdown and Pulsed Heating

The link between rf breakdown and pulsed heating has been raised by the work in this

thesis. This can be further investigated by the fabrication of more single cell PBG

structures for breakdown testing. The same PBG structure that has been tested at

SLAC can be rebuilt, and tested again under more stringent pulsed heating conditions,

so that the structure performance can be insured to be free from early damage. A

second structure can be built and tested as described in the design of Section 5.5.

A second structure could also explore the parameter space in the other direction, by

increasing the pulsed heating on the rods.

7.3.3 New Photonic Bandgap Structures

Breaking the perfect symmetry of the triangular lattice of cylindrical rods, greatly

extends the parameter space for PBG structures (often called photonic quasi-crystals

when symmetry is lost). Ideas for improving the E/H ratio were presented in Sec-

tion 5.4, but need not be limited to minor changes to the triangular lattice of cylin-

drical rods. Ideal PBG structures have only two degrees of freedom: the rod radius
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and rod spacing. These two parameters are limited to just one, the a/b ratio, when

the other is used to fix the structure frequency. New photonic bandgap structure

ideas must make some concession to this high degree of symmetry to improve the

accelerator performance of the structure.

7.3.4 Damping

Damping HOMs is the motivation for PBG structures. The first proof of principle

experiment at MIT was open, allowing the wakefields to escape the structure. These

wakefields have been measured and must be damped by absorbing material. The

exact shape of external damping for vacuum application is a valuable future direction

for design research.
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