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Abstract 
 
The Fresh Breeze project is designing a new parallel architecture that is designed to serve 
as a model for high-performance computing while maintaining good software 
programming principles.  One of the unique aspects of this architecture is a write-once 
memory model with hardware-based garbage collection and a global address space.  Due 
to this memory immutability, new designs are needed before code generation can be 
developed for the Fresh Breeze compiler.  This paper outlines designs for arrays and the 
method calling protocol.  These designs are analyzed with respect to running times, 
possible alternatives, and algorithm performance. 
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1. Introduction 

 

Over the past several years, it has become apparent that increasing the speed of 

processors is becoming more difficult.  As the difficulty of increasing processor clock 

speeds increases, parallelism presents itself as the preferred strategy to advance high-

performance computing.  Under most parallel architectures, programming efficient and 

robust algorithms is very difficult.  Data conflicts, synchronization, and cache coherency 

problems hinder the effective use of parallelism and often lead to inefficient, bug-ridden 

programs.  The Fresh Breeze project, led by Professor Jack Dennis in the CSAIL 

Computation Structures Group, aims to solve these issues by designing a processor that 

integrates a functional programming model with high-performance parallelism [2]. 

Six principles identified by Professor Dennis have guided the design of this model in 

order to ensure good software practices [1].  These six principles are based on software 

modularity, by which any program may be used as a component in any other program.  

This concept holds for both sequential and parallel computation.  These six principles are 

listed as follows: 

1. Information Hiding Principle: modules should not be required to know about the 

internal implementation of other modules in order to use them, and each module 

should hide its implementation details from the outside. 

2. Invariant Behavior Principle: a program or subroutine should behave in the same 

way whenever it is called, regardless of the context from which it was called. 

3. Data Generality Principle: any type of data should be able to be passed into and 

returned from modules in the same way. 
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4. Secure Arguments Principle: the arguments passed into a function cannot be 

changed by the function itself. 

5. Recursive Construction Principle: any collection of modules forming a program 

should itself be a usable module for other programs. 

6. System Resource Management Principle: resource management, such as memory 

allocation, should not be handled directly by the programs themselves, but rather 

by the system. 

In order to conform to these principles, functional programming has been chosen as 

the programming paradigm for Fresh Breeze systems.  Java, although not originally a 

functional programming language, can be restricted to a subset of the language that can 

be considered functional.  Therefore a subset of Java known as Functional Java is used as 

the primary programming language under Fresh Breeze.  This language satisfies the first 

five above principles, allows for the system to satisfy the sixth, and prohibits poor 

practices such as modifying method arguments, side effects, and aliasing, thus providing 

the compiler more optimization opportunities for parallelization. 

The Fresh Breeze architecture uses a write-once memory model that supports these 

six principles.  Under this model, all memory is organized into Directed Acyclic Graphs 

and is considered to be non-linear. 

This work presents a design for the representation of arrays in memory, a protocol of 

method calling that lends itself to software modularization, and analyzes the 

performances of these designs.  In Fresh Breeze, arrays are represented as trees with 

elements stored in the leaves at equal depth.  The method calling protocol is designed 
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such that it supports the data generality principle, the secure arguments principle, and the 

recursive construction principle. 

This remaining part of this thesis is organized into five chapters.  Chapter 2 gives the 

necessary background on the Fresh Breeze processor and its memory model that are 

needed for the reader to understand the context of the rest of the paper.  Chapter 3 

describes the representation chosen for arrays under this memory model, analyzes this 

design and compares it to some alternatives, and examines how well sorting algorithms 

perform in a parallel system using this array design.  In Chapter 4, the mechanism for 

calling methods is discussed and analyzed.  Chapter 5 suggests possible future work to be 

done for Functional Java code compilation.  Chapter 6 then gives the overall conclusions 

that may be drawn from this thesis.  
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2. Background 

 

The Fresh Breeze processor consists of several multithreaded processors per chip 

that can be linked with other Fresh Breeze processors in parallel.  The main purpose of 

this design is to promote stability while enabling efficiency for high-performance 

scientific computing [2]. 

One of the unique aspects of the Fresh Breeze architecture is its memory model.  

The system’s memory is divided into discrete, 128-byte units called “chunks.”  Each 

chunk in the system is assigned a 64-bit Unique Identifier (UID) that is used when a 

program wishes to write to or read from a chunk.  It is important to mention that chunks 

cannot be accessed sequentially, unlike most memory models.  This UID is a global 

address, and any thread or program that wishes to use that chunk can only reference it 

with its UID. 

The behavior of the memory model is structured to uphold the aforementioned 

software principles and provide data safety across threads.  When a chunk is allocated, it 

is initially mutable.  A program may write to any of the 128 bytes of the chunk using the 

ChunkWrite instruction. When the chunk is shared with another thread, the chunk 

becomes immutable and cannot be changed.  This action is called “sealing” the chunk.  

Only after all references to the chunk have been removed may the chunk be reclaimed by 

an efficient hardware garbage collector, thus making it available again for future 

allocation [3]. 

This concept of immutability of written memory helps to solve many problems 

that are associated with high-performance parallel programming.  In a parallel system, 
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sharing data between threads is often problematic.  Concurrent access to a data structure 

is usually undesirable and can lead to serious problems, such as data corruption or race 

conditions.  There are various methods that have been used to fix this problem, such as 

mutexes and semaphores, but these locking mechanisms are often difficult to implement 

correctly and can lead to other problems like deadlock.  The immutability of shared 

memory prevents these issues and ensures the ability to safely run multiple threads that 

share data. 

Another issue is cache coherency, keeping data up to date and consistent in each 

processor’s cache.  Maintaining cache coherency is arduous when trying to write high-

performance parallel algorithms and cache coherency protocols are extremely 

complicated.  With the introduction of hardware-enforced immutability of memory across 

threads, cache coherency no longer is a problem, since any shared data cannot be 

modified and thus requires no updating. 

The hardware garbage collector responsible for reclaiming memory is based on 

reference counting.  For this to be efficient, a certain rule has been imposed on the 

memory model: there can exist no pointer cycles.  Instead, chunks are organized into 

Directed Acyclic Graphs (DAGs) and only UIDs of sealed chunks may be written to 

unsealed chunks [7].  This provides a cycle-free heap and allows the garbage collector to 

use reference counting for garbage collection.  Otherwise, the garbage collector would 

not garbage collect chunk cycles, which could cause memory leaks.  Pointer arithmetic is 

also forbidden, thus ensuring that unreferenced or unsealed chunks cannot be accessed 

without a deliberate given pointer.  This model also allows for files to be represented as a 

DAG of chunks of unbounded extent. This, along with the global address space, removes 
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the need for separate memory and file systems, and therefore there is no distinction 

between the two in a Fresh Breeze system.  This helps satisfy the data generality principle 

by allowing files to simply be a collection of chunks and thereby giving them the ability 

to be passed to functions like any other object. 

In order to design a compiler that can translate Functional Java into Fresh Breeze 

machine code, the representation of arrays and the method call protocol that the Fresh 

Breeze compiler will use for code generation must be designed to work with this memory 

model. 
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3. Array Representation 

 

When designing an array representation for the Fresh Breeze architecture, the 

differences between the Fresh Breeze memory model and the memory model in most 

computers today must be considered.  In a standard memory model, memory addresses 

are laid out linearly and local memory blocks may be allocated and changed without 

limit.  In the Fresh Breeze model, the memory is organized into 128-byte chunks.  A 

chunk is the smallest amount of memory that can be allocated at one time.  Given the 

chunk UID and the offset, the values of the words in a chunk can be written, but after a 

pointer to that chunk is sent to another thread, all data in the chunk becomes immutable 

and that portion of memory cannot be changed until it goes out of scope and is garbage 

collected.  Chunk allocation is not guaranteed to be linear.  Memory access is only linear 

within a chunk, not across chunks.  Therefore the array representation design must 

conform to this behavior of memory allocation and modification. 

The goal of this design is to make arrays feasible for high-performance computing 

and have running times comparable to arrays in a standard memory model.  The 

representation should allow for good performance with common array operations, such as 

accessing an element, changing an element, and adding or removing an element.  From a 

larger perspective, arrays should yield good performance when performing operations 

such as dot products, matrix multiplication [3], and common algorithms such as sorting 

and FFTs. 
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3.1. Array Design 

To store an array in memory, we can use a structure that consists of a tree of 

chunks.  Every element in the array is stored in the lowest level of the tree.  The top 

chunk of the tree reserves the first 64 bits to store the current size of the array and the 

depth of the tree.  The size is the number of 32-bit words in our array, even if the array is 

being used to store 64-bit data.  The depth is the number of levels the tree currently has, 

starting at a depth of 1.  The remaining space is used to store either the elements of the 

array (if the number of elements fits in 15*64 bits) or pointers to the next level of the 

tree.  Here is a sample array of 40 64-bit doubles: 

 

 
Figure 1 

 
 

To compute the depth needed to store a given number of elements, it is useful to 

consider the range of sizes of an array with a certain depth.  For convenience, let n be the 

number of elements in an array with 64-bit elements.  Then for a depth d, the range of 
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sizes for the array is 

€ 

15 ⋅16d -2 < n ≤15 ⋅16d−1.  This is because the root chunk has a 

branching factor of 15 and all lower chunks have a branching factor of 16.  Solving for d 

with this inequality: 

€ 

15 ⋅16d -2 < n ≤ 15 ⋅16d−1
log1615 ⋅16

d -2 < log16 n ≤ log1615 ⋅16
d -1

d − 2 < log16 n /15 ≤ d −1
d −1 < log1616n /15 ≤ d
d −1 < log16 s /60 ≤ d

 

The value s represents the number of bits needed to store the array.  These 

inequalities are only true when n ≥ 1 or when s > 60, because otherwise the logarithm 

becomes too small.  To fix this, noting that the depth of the tree must always be at least 1, 

take the maximum of 

€ 

log16(s /60)  and 1.  Therefore depth of the tree d is equal to 

€ 

max 1, log16(s /60) { }.  If the array is being used to store 32-bit integers, this formula can 

be rewritten as 

€ 

max 1, log16(32n /60) { } , where n is the number of elements in our array. 

When accessing an element in the array, an operation we will call AccessElement, 

one starts at the root node and traverses down the tree until reaching the desired element.  

This particular path down the tree is known beforehand based on the depth of the tree and 

the index being accessed.  If d is the depth of the tree and s is the current number of bits 

in the array, each array access requires d memory accesses, or O(log(s)). 

Although O(log(s)) seems undesirable, actual performance should be faster when 

performing operations such as dot product or matrix multiplication.  If all the elements in 

an array are being accessed in order, this array traversal takes constant amortized access 

time if the pointers to lower nodes in the tree are saved.  This prevents the program from 

having to start at the root node for every AccessElement operation. 



 16 

To replace an element in the array (ChangeElement), only the nodes of the path in 

the tree that lead to the desired element need to be copied and modified, not the entire 

array.  For example, if a program wants to change the element at index 18 in the array 

displayed in Figure 1 and set it to 1234.5, we only need to copy and change the two 

outlined chunks shown in bold: 

 

 
Figure 2 

 

This requires d chunks to be copied and modified, or O(log(s)).  The root node 

needs to be copied and modified because it needs to replace the pointer to the chunk 

containing elements 16 though 31. 

Adding and removing elements from the end of an array are very similar to the 

operation to change an element, except for the need to dynamically change the number of 

chunks allocated, change the size label, and if necessary increase or decrease the depth of 

the tree.  To perform the AddElement operation by adding an element to the end of the 

array, if adding one element does not increase the size of the array past 64*15*16d-1 bits, 

we simply employ the strategy of changing the spot after the last element of the array, 
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adding an extra chunk if needed.  However, if the array is already using 64*15*16d-1 bits, 

then no more elements can be added to the tree while keeping the same tree depth.  

Therefore a new root node is created and the depth of the tree is increased by 1.  Then the 

old root node is copied by removing the size and depth labels and shifting the contents to 

the left.  The new 64 bits at the end of this node are then used to either add the new 

element or to add a pointer to a new chunk which will lead to the element we are adding.  

Figure 3 demonstrates this transformation: 

 

 
Figure 3 

 

This operation requires d chunks to be copied and modified, where d is the new 

depth after adding the element. 

Removing an element from the end of an array, or RemoveElement, is almost the 

reverse of adding an element.  If removing one element does not decrease the value 

€ 

max 1, log16(s /60) { }, then only the value of the size of the array needs to be changed, 
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and thus only the root node is modified.  If the removal also frees a chunk, then the 

reference count of that freed chunk can simply be reduced.  However, if the removal 

decrements the value 

€ 

max 1, log16(s /60) { }, then the single chunk at depth two of the tree 

becomes the root node and the appropriate copies and modifications are made, thus 

decreasing the depth of the tree by one.  This is the reverse of the process of increasing 

the depth of the tree when adding an element.  Figure 4 shows an example of this process: 

 

 
Figure 4 

 

Depending on how the Fresh Breeze Processor is implemented, the 

RemoveElement operation may be an O(1) or an O(d) operation in the worst case.  If 

there is a way to dereference chunks explicitly, this could be O(1), but otherwise this 

operation may need to copy and modify d chunks. 

Both AddElement and RemoveElement could be O(log(s)) in the worst case, but 

again considering the frequency with which programs perform array operations in a linear 
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fashion, these will most likely be constant amortized time when adding or removing a 

large number of elements at once. 

This proposed design allows for a convenient space-saving optimization where 

the space for a large array for which most of the elements are zero can be dynamically 

allocated.  This is particularly useful if using a data structure such as a sparse matrix, 

where an array of large size is allocated but only a fraction of that array is actually used.  

Consider the following example: 

 

int[][] sparseMatrix = new int[1000][1000]; 
sparseMatrix[347][129] = 29; 
sparseMatrix[42][241] = -5; 
sparseMatrix[271][314] = 1234; 
 

Under a traditional memory model, nearly 4 megabytes of RAM would need to be 

allocated to execute this code if a special data structure for the matrix were not being 

used.  However, with the presented tree structure design, chunks can be allocated as 

needed when inserting elements into the array.  In Fresh Breeze memory chunks, each 

64-bit slot for a pointer has an extra bit indicating whether that slot currently stores a 

valid pointer or not.  When accessing an element in an array, a program can check these 

bits when traversing down the tree.  If any of these bits ever indicates that the retrieved 

pointer is not valid, that means that no value has been inserted at the specified index in 

the array.  In this case, the AccessElement operation can either return zero or a null 

pointer, depending on the type of array.  When using a large array where only small parts 

of the array are actually used, this optimization can save significantly in both space and 

average array lookup time. 
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In traditional Java, allocating an array takes O(n) time, where n is the initial size 

of the array.  This is because depending on the data type of the array, Java needs to 

initialize all elements of the array to either 0, null, or false.  This differs from C/C++, 

where this initialization does not take place and thus takes constant time for array 

allocation, but any leftover memory values where the array is allocated become the 

array’s initial values. 

With this design optimization for arrays in Functional Java, Fresh Breeze arrays 

get the advantages of both programming languages.  Every element of the array is 

implicitly initialized to 0, null, or false, but the code allocating the array does not need to 

fill the array with these values.  Fresh Breeze arrays gain the benefits of having a space- 

and time-efficient design while keeping the same principal form as arrays where all spots 

are filled. 

3.2. Design Analysis 

There are several advantages of this design for storing arrays in memory.  

Keeping the size of the array in the top chunk allows for O(1) performance when a 

program queries the current length of the array.  Although storing the current depth of the 

tree is not strictly necessary, since it can be calculated from the array size, it is convenient 

to have it available so that a program does not need to calculate it each time the program 

accesses an array element.    

One disadvantage of this design is the difference between the root node and the 

other nodes in the tree.  Since the first 64 bits of the root node are used for storing the 

size and depth of the tree, only 960 bits of the chunk remain for array data or pointers, as 

opposed to 1024 bits in every other chunk in the tree.  This makes implementing array 
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handling in code slightly more troublesome and also dictates that when a program needs 

to increase the depth of the tree, it needs to copy and modify the old root node, the 

process shown in Figure 3, instead of simply pointing to the old root node and allocating 

two new chunks.  However, the performance loss associated with this situation should be 

negligible.  

3.3. Array Representation Alternatives 

There are several possibilities for the array representation design, a few of which 

will be presented and compared with the chosen design.  A linear array structure is not 

included in this discussion due to the issues in poor running time when attempting to 

access an element in the middle or end of the array. 

3.3.1. Lopsided Tree 

A lopsided tree design would be similar to the chosen representation, but would 

store the last elements in the array in chunks higher up in the tree structure, rather than all 

at the same level.  There are several possible variations of the details of this design, but 

the main idea would be to gain a performance boost by utilizing the normally unused 

space closer to the root node.  If one wanted to store the array of elements shown in 

Figure 1 in this type of array, a data structure of the type shown in Figure 5 may be 

produced. 
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Figure 5 

 

The advantages of this type of design are the reduced number of allocated chunks 

and the average number of memory accesses to access an element is decreased.  The 

AccessElement function would require more computation, but would require fewer 

memory accesses, which could lead to increased average performance if accessing 

memory was much slower than doing a little more computation. 

The main disadvantage of this design is the design complexity.  The greater 

number of possible locations for elements significantly complicates the process of 

determining where the element at a given index is located in the tree, and this complexity 

increases as the tree’s depth is increased.  Once a tree reaches 3 or more levels, accessing 

an element may take several computations based on the size of the tree, and the 

AddElement and RemoveElement procedures would require extra computation to 

determine where to redistribute the elements at the end of the array.  
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3.3.2. Extra Size and Depth Bits 

Another design possibility would be to have 34 extra bits for each chunk that 

would only be used if that chunk were being used in an array.  The root node would store 

the size and depth of the entire tree and every child chunk would store the size and depth 

of its corresponding subarray.  This would eliminate the need to store the size and depth 

at the beginning of the root node and thus have every node be perfectly divisible by 16 or 

32.  The disadvantage would be that every chunk would need an extra 34 bits, requiring 

more hardware for the same amount of space. 

One advantage of this design is that it allows for any arbitrary array chunk to be 

sent to a method or thread and be treated as the root of an array.  This would provide 

slightly better modularity for the passing of subarrays. 

This design also reduces the number of allocated chunks on average, but only by a 

constant amount.  For any array of arbitrary size, the greatest number of allocated chunks 

this design would save would be one.  This is because the chosen design uses extra space 

at the beginning of the root chunk that could be used for one more pointer. 

3.3.3. Storing Size and Depth in Each Chunk 

One alternative that is similar to the proposed design would be instead of only 

storing the size and depth of the tree in the root chunk, the size and depth of each subtree 

could be stored in the root chunk for that subtree.  The root chunk would look exactly the 

same, but the child chunks of the tree would keep track of how many elements were 

stored in their portion of the subtree.  An example of this structure can be seen in Figure 

6, which is an array storing 32-bit integers containing 1,347 elements with a tree depth of 

3. 
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Figure 6 

 

The main advantage of this design is that each subtree is a subarray that fits the 

array specification in its own right, meaning that since the chunk stores the size and depth 

of its subarray, any chunk in the array can be viewed as the root of its subarray.  This 

may be useful if a program wanted to send a subarray to a method or multiple subarrays 

to separate threads for parallel execution. 

This design is similar to the design in which each chunk had extra bits that would 

store the size and depth of an array with that node as the root, except that the first 64 bits 

of the chunk are used instead.  This saves memory chip size at the expense of having to 

allocate more chunks for an array. 

There are two large disadvantages with this design.  The main disadvantage is that 

since each chunk has 15 spots to store pointers to chunks lower in the tree, a program 
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cannot simply use a bit mask to determine the next chunk as it traverses down the tree 

during an array lookup.  Instead, it would need to divide its current index by powers of 

15, a more time consuming operation.  However, it is plausible to consider that if a 

“divide by 15” operation were incorporated into the Fresh Breeze ALU, this operation 

could be made fast. 

The second disadvantage is that this design is slightly less space efficient.  For 

large arrays, more chunks would be needed in this design than in the chosen design.  For 

example, for the array in Figure 6 with 1,347 integers, 49 chunks would be needed to 

store the array.  In the chosen design, only 47 chunks are needed. 

3.4. Implementation Analysis 

In designing the memory representation of arrays in the Fresh Breeze architecture, 

how array operations will translate into Fresh Breeze instructions is important to consider 

for estimating actual runtime performance and implementation complexity for each 

operation. 

For the AccessElement function, a program needs to know the depth of the tree in 

order to determine which path to take.  Once it has the tree depth, it can find which 

branches of the tree to take by using the appropriate bit masks for that depth.  For an 

array storing 32-bit data elements, a 5-bit mask is used on the last 5 bits of the index, 

since there are 32 possible positions of the element at the lowest depth, and a 4-bit mask 

is used on the higher order bits to choose the pointer that points the program to the 

appropriate chunk in the next level of the tree.  

Implementing AccessElement(Array A, int N) for an array containing 32-bit data 

would look like the code shown in Figure 7.  ReadChunk(Pointer p, Index i) reads the 32-
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bit word in the chunk at pointer p at position i, where the chunk is divided into 32-bit 

sections.  ReadChunk64(Pointer p, Index i) reads the 64-bit data in the chunk at pointer p 

at position i, where the chunk is divided into 64-bit sections. 

 
AccessElement(Array A, int N) { 
 
  Ptr = A; 
  D = GetDepth(A); 
  Root = true; 
  while (D > 1) { 
    Mask = 0b1111 << 4*(D-1)+1; 
    I = (N & Mask) >> 4*(D-1)+1; 
    if (Root) { 
      I++; 
      Root = false; 
    } 
    Ptr = ReadChunk64(Ptr,I); 
    D--; 
  } 
  Elt = ReadChunk(Ptr, (N & 0b11111)); 
  return Elt; 
 
} 

Figure 7 

 

ChangeElement is similar to AccessElement in that it traverses down the tree to 

find the desired element at the specified index.  Once it finds the element, it copies the 

chunk the element is located in and changes the element at the appropriate spot.  It then 

needs to go back up the tree and copy/modify the ancestor chunks to update the pointers 

to the new children. 

One possible implementation for the ChangeElement operation can be seen in 

Figure 8.  The ChangeAndCopyChunk method is a helper function for ChangeElement.  

The idea is that the operation finds the element it needs to change, copies the chunk, 

changes the element at the specified index (which it can do because it has not yet shared 
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the chunk’s pointer with another thread), and returns the new chunk.  This needs to be 

recursive because it must update the pointers higher in the tree to point to the new chunks 

it is creating.  

 

ChangeElement(Array A, int N, int Elt) { 
 
  D = GetDepth(A); 
  return ChangeAndCopyElement(A,N,true,D,Elt); 
 
} 
 
ChangeAndCopyChunk(Array A, int N, boolean Root, int D,  
  int Elt) { 
 
  if (D != 1) { 
    Mask = 0b1111 << 4*(D-1)+1; 
    I = (N & Mask) >> 4*(D-1)+1; 
    if (Root) 
      I++; 
    Ptr = ReadChunk64(A,I); 
    Ptr2 = ChangeAndCopyChunk(Ptr,N,false,D-1,Elt); 
    Ptr3 = CopyChunk(A); 
    ChangeChunk64(Ptr3,I,Ptr2); 
    return Ptr3; 
  } else { 
    I = N & 0b11111; 
    Ptr = CopyChunk(A); 
    ChangeChunk(Ptr,I,Elt); 
    return Ptr; 
  } 
} 

Figure 8 

 

Again, the running time of this operation is O(log(s)), but when changing several 

elements of an array in order, it can get constant amortized time for each ChangeElement 

operation for the same reasons that AccessElement often takes constant amortized time.  

The code shown in Figure 8 is only that of a general ChangeElement operation.  With 



 28 

compiler optimizations, several elements can often be changed at a time if updating an 

array in a linear fashion. 

3.5. Sorting Algorithm Performance 

3.5.1. Background 

When evaluating the performance of the tree array design for the Fresh Breeze 

memory model, one should evaluate algorithms that rely on frequent array operations.  

Sorting algorithms are especially worthy of evaluation due to their complexity and heavy 

reliance on fast array performance.  Several sorting algorithms will be evaluated and 

contrasted to discuss the advantages and drawbacks of each with under the Fresh Breeze 

model.  An overview of how each sorting algorithm works under the proposed array 

design will be given, followed by an analysis and comparison of the methods.  In this 

discussion, merge sort and quicksort are evaluated.  Heapsort was not considered in this 

analysis due to the difficulty in parallelizing the algorithm, thus losing one of the most 

obvious advantages of the Fresh Breeze architecture. 

Merge sort is a recursive algorithm that sorts an array by first sorting the left half 

and the right half of the array, then constructing a new sorted array by using the two 

sorted array halves.  With the proposed array representation, at each step the two halves 

of the arrays can be sent to the recursive calls unmodified, possibly spawning new 

threads.  After the two recursive calls return, the parent method will have two sorted 

arrays.  Now a new array must be constructed using the two sorted halves, sequentially 

going through the left and right arrays to construct the new one.  This is the only step in 

which new chunks need to be allocated. 
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Quicksort is another recursive algorithm that works by randomly choosing an 

element from the input array as the pivot, then sequentially comparing the other elements 

to the pivot to determine if they should go to the left or the right of the pivot, often called 

the partitioning step.  After the array is partitioned, the left and right partitions are sent to 

recursive calls of the method, often being spawned off in new threads.  Due to the 

immutability of Fresh Breeze chunks, the partitioning step cannot be performed in place, 

so a new array must be constructed at this step.  After the recursive calls return, a new 

array must be constructed with the returned left and right halves of the partition. 

3.5.2. Theoretical Analysis 

With merge sort, there is only one time during each method invocation when new 

chunks need to be allocated.  This is when a new array is constructed from the left and 

right sorted halves.  This is because the algorithm can reuse the input array without the 

need for modification when it makes its two recursive calls. 

With quicksort, because the memory model forbids in place array manipulation, 

there are two points during each method invocation where chunks are allocated.  These 

are during the partitioning step before the recursive calls and after the recursive calls 

when the two returned halves need to be joined.  Note that if programmed optimally, the 

returned left and right halves of the array can be structured such that the parent call can 

reuse most of the chunks in the left and right halves of the array and only construct new 

chunks to join together the center of the array.  An illustration of this optimization can be 

seen in Figure 9. 
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Figure 9 

 

In this figure, the chunks in bold need to be joined together where the unbolded 

chunks (the chunks on the sides of the figure) can remain unmodified.  The gray areas in 

the bold chunks represent empty space that is to be filled by the data in the corresponding 

chunk shown by the double arrows when these chunks are recopied.  This “join” function 

saves the algorithm from having to recopy the entire array when both recursive calls 

return, but rather only needing to recopy the right-most chunks in the left half and the 

left-most chunks in the right half.  It may be beneficial to include this ArrayJoin 

procedure as special function in the Fresh Breeze standard library for Functional Java.  

An example of what this procedure may look like can be found in Appendix A as the 

join32() method in the FBArray class. 

With an unoptimized sequential traversal of an array, where each element is 

accessed by starting at the tree root, the running time of either sorting algorithm would be 

impacted.  However, if a program keeps a trail of UIDs from the root node to the current 
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leaf node in the registers, then the algorithm can sequentially access the elements of the 

array by remembering the pointers to the parent nodes.  One can see this by observing 

how many memory accesses it would take to sequentially go through the leaf nodes in a 

binary tree.  If a perfectly balanced binary tree has n=2k leaf nodes, then there are 2n–1 

nodes in the tree.  Consider the tree in Figure 10: 

 

 
Figure 10 

 

To most efficiently access the leaf nodes, keeping a trail of pointers for the nodes 

in the registers, the most efficient pattern of accesses is 1 → 2 → 3 → 2 → 4 → 1 → 5 → 

6 → 5 → 7.  In general, it takes n + 2(n–1) accesses, which is linear with respect to n.  

Therefore the array representation of Fresh Breeze arrays does not affect the asymptotic 

running times of the sorting algorithms with respect to sequential access. 

Both merge sort and quicksort perform in O(n log n) expected running time on a 

single processor and in O(n+(n/p) log n) expected running time on multiple processors, 

where p is the number of processors available.  This running time over multiple 

processors can be derived by considering how the work is divided over p processors.  To 

make the analysis simpler, let 

€ 

p = 2k1  and 

€ 

n = 2k2 .  Then because the O(n)-time parts of 

the algorithms can be performed in parallel, the top level will take n time, the second 
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level will take n/2 time, the third level will take n/4 time, and so on.  This will continue 

until after k1 levels where we reach n/

€ 

2k1  time.  All levels below that will take n/

€ 

2k1  time, 

and there are 

€ 

k1 − k2  such levels.  Overall this leads to a running time of O(n + (k1–k2)(n/

)) = O(n + (log n–log p)(n/p)).  However, this model breaks down as p approaches n 

and no longer makes sense if p is greater than n, so the log p should be eliminated in the 

equation.  Therefore the running time is  

O(n+(n/p) log n).  If given enough processors to perfectly distribute the recursive calls, 

the Fresh Breeze parallel architecture achieves O(n) time. 

When comparing merge sort and quicksort under the presented array 

representation and the Fresh Breeze memory model, there are two significant differences 

between the Fresh Breeze model and the standard architecture of most of today’s 

computers that must be noted.  First of all, the tree structure of Fresh Breeze arrays favor 

sequential operations rather than random access operations.  Secondly, the immutability 

of chunks once they are written eliminates most “in-place” benefits that a sorting 

algorithm might have. 

One of the major benefits of merge sort over quicksort in a parallel architecture is 

that the input data can be evenly split amongst the available processors at each recursive 

step, whereas with quicksort there is no guarantee with each recursive call that the input 

data will be evenly divided.  In the worst case, the partition step always chooses a pivot 

that is either less than or greater than most of the elements, thereby achieving O(n2) 

runtime.  When this happens, parallelizing the algorithm does not help the runtime 

performance. 
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  Quicksort is often faster on many architectures due to the ability to sort an array 

in-place.  However, in Fresh Breeze this is not possible because once an array is stored in 

memory, it cannot be modified and thus any portion of the array that is to be modified 

must be copied into newly allocated chunks.  Thus the Fresh Breeze architecture cannot 

make use of this principal benefit of quicksort.  In merge sort, at each step only one new 

array needs to be constructed after the recursive calls return.  In quicksort, however, a 

new array needs to be constructed during the partition step and several extra chunks need 

to be allocated in the optimized array join step after the recursive calls return. 

Although not strictly a runtime concern, there exists the issue of programmability 

of the algorithms.  With merge sort, it is possible to program an optimized version of the 

algorithm in functional Java.  This is because the original input array can be sent to each 

recursive call, along with starting and ending indices to signal which section of the array 

this particular call should consider.  When the two recursive calls return, the active call 

needs to create an entirely new array in any optimized version, and this can be done 

easily in Java.  However, with quicksort, in order for the algorithm to be optimal, the 

returned arrays from the recursive calls should be of the form shown in Figure 9, where 

the data is structured in the chunks such that joining the two arrays only requires joining 

the middle chunks in the diagram.  This cannot be achieved in Functional Java without 

the special ArrayJoin operation being added to the Fresh Breeze standard library for 

Functional Java, since direct manipulation of the underlying chunks of the tree structure 

would be required. 

Despite the above disadvantages of quicksort, many advantages of the algorithm 

still apply with Fresh Breeze.  With merge sort, a naïve implementation will result in 2n – 
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1 method calls in the worst case, whereas in quicksort there are always n recursive calls 

because there is one call per pivot element.  This may lead to better utilization of the 

available parallel processors than merge sort will achieve.  A smart implementation of 

quicksort may yield better cache performance if the algorithm is restricted to the registers 

once the input array is below a certain size. However this may not be an actual negative 

for merge sort in practice, since it is common to switch to a different sorting algorithm 

once the array size is sufficiently small and may be sorted in place in a single processor’s 

registers. 

3.5.3. Experimental Analysis 

Although examining merge sort and quicksort on paper is useful, it is beneficial to 

see how the two algorithms actually perform in practice.  To do this, we have written a 

program in Java that simulates a simplified version of the Fresh Breeze memory model, 

Fresh Breeze arrays, and implementations of merge sort and quicksort using these arrays.  

The full code for this simulation can be found in Appendix A and B. 

The objectives of this simulation were to see how these algorithms may actually 

be programmed optimally using these arrays and to observe how well they perform.  

Three principal measurements were taken for each algorithm: the number of memory (or 

chunk) accesses, the number of allocated chunks, and the number of method invocations. 

Memory accesses were measured with several optimizations in mind.  First, 

sequential accesses were measured with the pointer trail optimization discussed in the 

previous section associated with Figure 10.  Second, several reads or writes of the same 

chunk were considered to be only one access, due to likely cache performance and bulk 

memory transfers in a real processor. 
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Counting allocated chunks was relatively simple.  All that was needed was to 

count the number of chunk objects instantiated in each algorithm.  Determining the 

number of method calls was equally as simple.  The only methods considered to be actual 

method calls were the recursive calls, since all other methods invocations were 

simulation methods. 

When writing the algorithms, several of the previously discussed optimizations 

were used.  Due to the speed of sorting small arrays of numbers in the registers, when an 

input array was less than or equal to 16 elements (thus ensuring there would be enough 

space in the registers), no recursive calls were made and no chunks were allocated until 

the array was sorted.  Instead, both algorithms switched to selection sort and used the 

registers in place of memory.   

In merge sort, the entire input array was passed to each method call, along with 

starting and ending indices.  Quicksort used the ArrayJoin optimization by creating 

sparse arrays, each with a size equal to the input array, and adding the sorted elements to 

them with a specified offset so that ArrayJoin could be executed.  The two algorithms are 

shown in Figures 11 and 12: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36 

 

 
Figure 11 

 

 
Figure 12 

FBArray mergeSort(FBArray a, int start, int end) { 
if (a.size() <= 16) { 

  // selection sort details hidden 
  return newArray; 

} 
 

FBArray left = mergeSort(a, start, (start+end)/2); 
FBArray right = mergeSort(a, (start+end)/2, end); 
FBArray newArray = new FBArray(); 

   
int i = 0, j = 0; 
while (i+j < left.size()+right.size()) { 

  if (i == left.size()) { 
   newArray.addElement(right.read(j)); j++; 
  } else if (j == right.size()) { 
   newArray.addElement(left.read(i)); i++; 
  } else if (left.read(i) <= right.read(j)) { 
   newArray.addElement(left.read(i)); i++; 
  } else { 
   newArray.addElement(right.read(j)); j++; 
  } 

} 
return newArray; 

} 

 

FBArray quickSort(FBArray array, int start, int size) { 
 if (array.size() <= 16) { 
  FBArray newArray = new FBArray(size); 
  // selection sort details hidden 
  return newArray; 
 } 
   
 int pivotPoint = random.nextInt(array.size()); 
 int pivotValue = array.read(pivotPoint); 
 FBArray left = new FBArray(); 
 FBArray right = new FBArray(); 
 
 for (int i = 0; i < array.size(); i++) { 
  if (i == pivotPoint) { 
   continue; 
  } 
   
  int elt = array.read(i); 
  if (elt <= pivotValue) { 
   left.addElement(elt); 
  } else { 
   right.addElement(elt); 
  } 
 } 

FBArray leftDone = quickSort(left, start, size); 
FBArray rightDone = quickSort(right, start+left.size()+1, 

size); 
 FBArray done = FBArray.arrayJoin(leftDone, rightDone, 
start+left.size()); 

done.changeElt(start+left.size(), pivotValue); 
 return done; 
} 
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These two algorithms were applied to several arrays of various sizes.  Integer 

arrays with random values were generated with sizes between 100 and 1200 elements at 

increments of 20.  For each array size, the same array was given to both algorithms.  

Because quicksort is a randomized algorithm, it was considered important to try to 

minimize variance, so the same array was given to quicksort 20 times and each 

measurement was averaged over those trials. 

The results of these tests can be seen in Figures 13, 14, and 15: 

 

 
Figure 13 
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Figure 14 

 

 
Figure 15 

 
It seems that even though merge sort may a slight advantage on the number of 

memory accesses, both algorithms have very close results.  The graphs depicting chunks 

allocated and method calls provide a better differentiation between the two. 

We predicted that quicksort would require more space, even with the ArrayJoin 

optimization.  On average, it appears that the number of allocations that merge sort makes 
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is about 68% of the number of allocations that quicksort performs.  However, allocating 

chunks is relatively cheap compared to memory accesses or method spawns.  Assuming 

that the memory management logic always maintains a few free chunks in on-chip 

memory for use, allocating one chunk should take on average 1 to 2 clock cycles [4]. 

The results from the method call graph are more surprising.  Without the hybrid 

algorithm approach (in other words, combining merge sort/quicksort with selection sort), 

quicksort would perform better in this area.  However, due to the random nature of 

quicksort, merge sort actually makes fewer method calls on average due to the even split 

of the data on each recursion.   Due to quicksort’s uneven average splitting, it again 

performs worse than merge sort.  This is a major impact on the two algorithms’ 

performance, since a spawn operation takes about 16 to 20 clock cycles to execute, and 

the join operation’s cost is similar [4]. 

There are several limitations to these results.  First, it is unclear if the hybrid 

strategy of combining these algorithms with selection sort would be worthwhile on actual 

Fresh Breeze hardware.  When the selection sort strategy is removed, the method call 

results are reversed: quicksort becomes the clear winner, although this data is not shown 

here.   

Second, it is difficult to estimate real cache performance.  Although the best 

estimates were attempted, these estimates could be quite different depending on the 

specific details of the system. 

Third, the number of available processors was not taken into account when 

performing calculations.  For a small number of processors, it is most likely better to 
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have an even split of the array at each recursion as in merge sort, rather than a random 

split one can see in quicksort. 

In general, whether quicksort or merge sort is faster using the proposed array 

representation design in the Fresh Breeze architecture will depend on the efficiency of 

method calls, the number of processors available, and the expense of allocating new 

chunks, though both the theoretical analysis and the experimental data tend to favor 

merge sort. 
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4. Method Call Protocol 

 

In most architectures, such as Intel or PowerPC, method calling involves pushing 

method arguments that are stored in the registers or in memory onto a stack, a section of 

RAM reserved for argument passing and local variable storage.  In Fresh Breeze, the 

system is prevented from using a stack for two reasons.  First, the immutability of written 

chunks and the non-linearity of memory hinder the design and time efficiency of using a 

stack.  Second, requiring a stack to pass arguments to and return values from program 

methods does not lend itself well to a parallel system, as the slave processors might finish 

their method calls in a different order from which they were called, and thus writing 

return values to the master processor’s stack would be overly complicated. 

When designing a method calling protocol for Functional Java, there are several 

objectives to keep in mind.  Method calling is a common operation and therefore needs to 

be efficient.  Minimum usage of memory is preferable and the number of required 

memory accesses should be low.  The design also ought to preserve a program’s 

modularity, thus using only one standard for both single- and multi-threaded behavior.  

Any program should be able to call a method of any other program simply by observing 

its interface and passing along the required arguments.  Due to the functional 

programming standard of Fresh Breeze, there also needs to be an efficient and modular 

way of returning the return values of a method call.  As with method calling protocols in 

other architectures, when a method is invoked, the processor responsible for running the 

method will need a clean slate of registers with which to work. 



 42 

The protocol for calling a method in Fresh Breeze should take advantage of the 

architecture’s unique strengths.  The universal memory-addressing scheme allows data 

objects to be accessed by any thread, as opposed to thread-dependent virtual memory that 

exists with typical processors.  Memory immutability also ensures that no data conflicts 

will arise by sharing data among multiple threads.  Reference count based garbage 

collection removes the issue of deallocation responsibility when sharing data across 

threads as well. 

Based on these aims, the design for calling a method will be to use a tree of 

chunks to pass the necessary information, such as arguments and the object the method is 

being called on, to the called method.  The UID of this tree can then be stored in a 

register for access by the method if called on the same processor, or sent to the hardware 

scheduler to later be stored in one of the slave thread’s registers.  Depending on the 

number of arguments to the function, the data structure will either use just one chunk or a 

tree of chunks to hold the values.  Without loss of generality, this data structure will be 

considered a tree, similar to the design of the array representation.  This tree will contain 

a pointer to where the Program Counter (PC) should be after the function is finished.  

This is usually just after where the function was called, but in the case of a spawn 

instruction where the function was sent to a new thread, this would be simply a null 

pointer, since the thread should not jump to an instruction location after it is done with its 

computation.  The parent method will need to restore its previous registers before the 

method call, a pointer to a data structure that stores the old registers for the parent 

function is required.  Lastly, the rest of the tree will be the arguments passed to the 
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function, those being either literal values or pointers to values or objects.  A general 

notion of what this data structure is can be seen in Figure 16:  

 

 
  Figure 16 

 

Note that this data structure serves a role equivalent to the role of the stack in 

other architectures, in that with each method call, all the registers of the previous method 

are saved, including the register that points to the previous argument data structure.  This 

idea is illustrated in Figure 17. 
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Figure 17 

 

For returning from a method call, one register can be used by convention that will 

hold a pointer to another tree that will hold the values needed to be returned by the 

method.  This tree will contain the main return value for the method and, in the case of 

objects and arrays, modified copies of the arguments to the method.  Because Functional 

Java and the memory model dictate that objects cannot be modified once constructed, the 

data structure also includs a modified copy of the object the method is being called on. 
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4.1. Implementation Details 

4.1.1. Method Call 

To call a method, the program begins by allocating a chunk and saving all 32 

registers to that chunk.  This will be the responsibility of the caller method, thus making 

this protocol a caller-saved design.  This step is only necessary when the called method is 

not sent to another processor.  The program then allocates another chunk and uses it to 

build a data structure for the parameters that need to be passed to the called method.  By 

convention, a pointer to this data structure will be stored in register 32.  The chunk will 

have its first 8 bytes as the UID of the code chunk that contains the location where the 

function should return once the method call is finished.  Following this, there will be 8 

bytes that contain the PC of the return location within the code chunk to which the 

method will jump to when finished.  The next 8 bytes store a pointer to the chunk that is 

storing the old register values.  The remaining 104 bytes of the chunk are devoted to 

storing the arguments to the method call.  If there is not enough room for all the 

arguments in the 104 bytes, the first 8 bytes will point to another chunk that will contain 

the necessary arguments.  If that is not enough room, then the second 8 bytes will point to 

another chunk containing arguments, and so on.  If there is not enough space for pointers 

to extra chunks, the first pointer will instead point to a chunk of pointers to chunks of 

arguments, thus making a tree.  From this pattern, a tree can be built that is precisely 

determined by the number, order, and type of the method’s arguments. 

The following algorithm precisely describes how this data structure is built: 

 
main_chunk[0] = return pointer; 
main_chunk[1] = register chunk pointer; 
compute how many levels you need; 
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store arguments in order such that the fewest arguments  
possible are lower in the tree; 

 
compute how many levels you need: 
    if (total size of arguments <= 104 bytes) 
        return 0; 
    else if (total size of arguments <= (104/8)*128 bytes) 
        return 1; 
    else if etc... 
 

 

Each argument may have different sizes, so only the bytes that are needed will be 

used to pass in the argument.  For example, an integer would only occupy 4 bytes while a 

double would occupy 8 bytes.  Anything that would require fewer than 4 bytes, such as a 

boolean, would be stored in 4 bytes.  Therefore the arguments section of the chunk will 

have variable length spots for the arguments.  If the method call is an instance method, 

the first argument will be a pointer to the object the method is being called on.  This 

design is shown in Figures 18 and 19.  Figure 18 demonstrates when there is enough 

space in the chunk to fit all arguments.  Figure 19 shows how we start to build a tree if 

there are too many arguments to fit into one chunk. 

 

 
  Figure 18 
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Figure 19 

 
 

With this design, for any given method signature, there is exactly one data 

structure that can be built to pass in the arguments to that method.  When a tree of chunks 

is needed to store the arguments, the maximum number of arguments are put higher up in 

the tree.  In Figure 19, chunk 2 is not completely filled with arguments because there is 

still space in the main chunk where the remaining arguments can fit.  Keeping more 

arguments in the main chunk is more efficient because fewer memory accesses are 

required than if more arguments were stored in chunk 2 and there was unused space at the 

end of the main chunk. 

If the method call is invoked by a spawn instruction, then the program does the 

same as shown above except it does not include a register chunk pointer.  Instead, it uses 

the space for a pointer to the “join ticket,” a special chunk that contains the UID to the 

local data segment of the master thread, and the “join point” index in the master thread.  

The join point is the location in the master thread where the thread will wait for the slave 

to finish, also providing space for the master thread’s status and where the master thread 

can find the returned data from the slave [5]. 
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In this case, it is not necessary to save the registers for a spawn.   Thus only two 

pointers need to be sent to the processor that is taking over the spawned method call.  A 

pointer to the above data structure is sent along with a pointer to the code chunk of the 

called method to the hardware scheduler, which determines which processor should 

handle the spawned method. 

4.1.2. Method Return 

When a called method wishes to return its return values, it needs to be able to 

send the return values back to the caller method, including modified copies of the 

arguments.  When a method call is ready to return, it first allocates a chunk and creates a 

data structure exactly like that in Figures 18 and 19, except it starts the argument list/tree 

at the beginning of the chunk, eliminating the spots for the return pointer, the return PC, 

and the register chunk pointer.  It fills this data structure with the main return value of the 

method, then modified copies of the arguments, starting with the object the method was 

called on if this was an instance method.  It then saves a pointer to this chunk in register 

31.  Finally, it returns to the point denoted by the return pointer and load all the registers 

stored in the register chunk back to the registers, except for register 31, since that 

contains the pointer to the return chunk. 

If this is a return from a spawned method call, the program includes a pointer to 

this data structure in the join ticket.  The join ticket is sent to the hardware scheduler to 

wait for the master thread to finish.  When the master thread arrives at the join point for 

the slave thread, it waits in a suspended state, similar to the scheme used in the Cilk-5 

multithreaded programming language [6].  It continues to check the hardware scheduler 

until it sees the join ticket from the slave thread, indicating it has completed.  The master 
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thread then reads the join ticket and loads any return values it needs from the data 

structure pointed to in the join ticket.  

4.2. Method Call Protocol Alternatives 

One possible alternative to the above design is instead of using a tree structure for 

the method arguments, the design could use a linked list of chunks instead.  If a method 

signature had too many arguments to fit into one chunk, the last 8 bytes could be a UID 

to another chunk containing a list of arguments.  Once that chunk was filled, the last 8 

bytes would be another UID to another chunk with a list of arguments, and so on.  

Unfortunately, the problem with this design is if there were too many arguments, the 

arguments at the end of the list would take several memory lookups to access.  Although 

this would not be a problem with most methods, it is possible to imagine a method that 

contained a very long list of arguments, in which accessing an element at the end of the 

list would take O(n) time instead of O(log n) time, where n represents the number of 

arguments.  

It would also be possible to use a standard Fresh Breeze array, as discussed in 

previous sections, to hold the necessary information.  The main difference between this 

design and the chosen design would be that the data would be stored only in the leaf 

nodes rather than on several levels of the tree. 

This alternative has both advantages and disadvantages.  The main advantage 

would be that method parameter handling could reuse the same code as array handling.  

Because the types and number method arguments are always known at compile time, this 

would be a convenience for the programmer writing the code generator.  Depending on 

the details of this variation, this also may reduce the amount of code generated.  If type 
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data were included in this array, a single section of code could be reused to handle any 

parameter array, since the size of the tree would be stored with the array. 

The main disadvantages of this method is that it would require more memory 

accesses on average and take slightly more space than the chosen design.  Although the 

tree structure of the chosen design is slightly more complicated, it is not a major problem 

since the work required to determine the necessary tree structure would be done at 

compile time as opposed to at runtime. 

4.3. Possible Additions 

One possible idea would be to add an extra bit to each register in the hardware 

that would signify whether that register was being used by the caller method.  Then when 

the program saves the registers, it would only need to save those that are being used and 

could disregard the others.  There could be an extra instruction in the Fresh Breeze ISA 

that would save all registers to a chunk that were marked as being used. 

Another topic under consideration is whether the argument tree should be right-

heavy rather than left-heavy.  This would place the first arguments in the head chunk and 

the later arguments in the lower chunks, thus building the tree from right to left as 

opposed to building the tree from left to right, contrasting what the current design is.  If 

more frequently used arguments are placed first, a right-heavy design would be more 

beneficial to average runtime performance than the current design.  However, if more 

frequently accessed arguments are often at the end of the argument list, the current left-

heavy design would yield the best performance. 
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5. Future Work 

 

Before the compiler for Functional Java to Fresh Breeze machine code can be 

completed, there is still significant work to be done.  The compiler currently is able to 

translate Java bytecode into optimized data flow graphs (DFGs).  The ability to translate 

DFGs into machine code has not yet been implemented.  Along with code generation, 

future work needs to be completed on topics such as register allocation and method 

inlining. 

A code generator still needs to be implemented for the Fresh Breeze compiler that 

is able to translate data flow graphs into Fresh Breeze machine code.  This could be 

completed by translating DFGs into machine code directly, or by converting DFGs to an 

intermediate representation upon which further optimizations could be made. 

Register allocation is an area in which there could be interesting future work.  

Since the Fresh Breeze memory model is significantly different from traditional memory 

models, there are several new factors that do not exist in most systems that will need to 

be considered when allocating registers.  The division of memory into immutable chunks 

may influence compiler choices for when data should stay in registers and when it should 

be moved to main memory.  Whereas most architectures have a stack where any amount 

of space can be allocated for local variables, the fixed-size memory allocation model 

could require more thought.  There may also be instances where addresses of unsealed 

chunks will need to remain in the registers before they can be stored in memory, and 

these situations must be identified and handled efficiently. 
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Due to the functional nature of Fresh Breeze programs and the usage of data flow 

graphs instead of control flow graphs in the compiler, the problem of determining when 

methods should be inlined should be explored.  As method calling may prove to be 

expensive, there are possible merits to inlining methods more than in traditional 

architectures.  
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6. Conclusion 

 

The work presented in this paper describes the designs for Fresh Breeze arrays 

and the protocol for calling methods.  These are needed before the Functional Java 

compiler can be completed.  We have also evaluated these designs and shown their 

advantages, disadvantages, and possible future modifications. 

As the Fresh Breeze memory model dictates that memory sections (or chunks) be 

immutable once written, we needed a non-traditional design for arrays.  The design was 

chosen to be a tree of chunks with the size and depth of the tree stored in the root chunk 

and the array’s data stored in the leaf nodes.  This provides for O(log n) running times for 

array element retrievals and writes.  Although this may seem poor, further analysis shows 

that when using algorithms with mainly sequential element access, this reduces to O(1) 

amortized time if a pointer trail from the root to the current leaf node is kept in the 

registers or the local cache. 

We also discussed the design for method calling, both in the same thread and with 

thread spawning.  The design was chosen to be efficient with both small and large 

numbers of arguments.  By using a tree structure similar to the one for arrays, we were 

able to achieve this goal while maintaining simplicity. 

In conclusion, these two designs and analyses will help provide a basis for code 

generation and support the efficiency of the produced code.  We expect future work to 

use these ideas to complete the compiler by implementing code generation and further 

optimizations. 
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Appendix A: Array Model Simulation Code 
 
 
 
package memorymodel; 
 
public class Chunk { 
  
} 
 
 

 
package memorymodel; 
 
public class DataChunk extends Chunk { 
 
 int[] data = new int[32]; 
 boolean[] canWrite = new boolean[32]; 
  
 /** 
  * Constructs a new writable DataChunk with zeros for initial values. 
  * A DataChunk serves as a leaf node in a Fresh Breeze array and thus 
  * stores the actual data values for the array.  The chunk can be  
  * thought of as "unsealed" and a program is able to write to any location 
  * in the chunk. 
  */ 
 public DataChunk() { 
  for (int i = 0; i < canWrite.length; i++) { 
   canWrite[i] = true; 
  } 
 } 
  
 /** 
  * Constructs a new DataChunk that is a shallow copy of c. 
  * This copy is initially completely mutable. 
  * @param c the DataChunk to be copied 
  */ 
 public DataChunk(DataChunk c) { 
  for (int i = 0; i < data.length; i++) { 
   data[i] = c.data[i]; 
  } 
  for (int i = 0; i < canWrite.length; i++) { 
   canWrite[i] = true; 
  } 
 } 
  
 /** 
  * Read a 32-bit piece of data from this chunk, returned as a 32-bit integer. 
  * The read location is then "sealed" and can no longer be written to. 
  * @param i the index of the desired element.  For example, if you desire bits 
  * 0 to 31, the index would be 0; 32 to 63, the index would be 1; etc. 
  */ 
 public int read32(int i) { 
  if (i < 0 || i >= 32) { 
   throw new RuntimeException("Invalid read32 chunk access " + 
     "for index "+i); 
  } 
  canWrite[i] = false; 
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  return data[i]; 
 } 
  
 /** 
  * Read a 64-bit piece of data from this chunk, returned as a 64-bit integer. 
  * The read location is then "sealed" and can no longer be written to.  
  * @param i the index of the desired element.  For example, if you desire bits 
  * 0 to 63, the index would be 0; 64 to 127, the index would be 1; etc. 
  */ 
 public long read64(int i) { 
  if (i < 0 || i >= 16) { 
   throw new RuntimeException("Invalid read64 chunk access " + 
     "for index"+i); 
  } 
  canWrite[2*i] = false; 
  canWrite[2*i+1] = false; 
  long temp = data[i*2]; 
  temp = temp << 32; 
  return temp+data[i*2+1]; 
 } 
  
 /** 
  * Write a 32-bit piece of data to this chunk.  If the location is sealed, 
  * a RuntimeException is thrown. 
  * @param i the index of the element that will be changed, where 
  *   i = (number of data bits before the desired location)/32 
  * @param d the data to be written to that location 
  */ 
 public void write32(int i, int d) { 
  if (i < 0 || i >= 32) { 
   throw new RuntimeException("Invalid write32 chunk access " + 
     "for index "+i); 
  } 
  if (!canWrite[i]) { 
   throw new RuntimeException("Invalid write32 attempt to a locked " 
+"word at index "+i); 
  } 
  data[i] = d; 
 } 
  
 /** 
  * Write a 64-bit piece of data to this chunk.  If the location is sealed, 
  * a RuntimeException is thrown. 
  * @param i the index of the element that will be changed, where 
  *   i = (number of data bits before the desired location)/64 
  * @param d the data to be written to that location 
  */ 
 public void write64(int i, long d) { 
  if (i < 0 || i >= 16) { 
   throw new RuntimeException("Invalid write64 chunk access " + 
     "for index "+i); 
  } 
  if (!canWrite[2*i] || !canWrite[2*i+1]) { 
   throw new RuntimeException("Invalid write64 attempt to a locked " 
+"word at index "+i); 
  } 
  data[2*i+1] = (int)(0xFFFFFFFF & d); 
  long temp = d >> 32; 
  data[2*i] = (int)temp; 
 } 
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} 
 
 
 
 

 
 
package memorymodel; 
 
public class PointerChunk extends Chunk { 
  
 Chunk[] chunks = new Chunk[16]; 
 boolean[] canWrite = new boolean[16]; 
  
 /** 
  * Constructs a new writable PointerChunk with null pointers for 
  * initial values.  A PointerChunk serves as a non-leaf node in a  
  * Fresh Breeze array and thus stores pointers to child nodes. 
  * The chunk can be thought of as "unsealed" once constructed 
  * and a program is able to write to any location in the chunk. 
  */ 
 public PointerChunk() { 
  for (int i = 0; i < 16; i++) { 
   canWrite[i] = true; 
  } 
 } 
  
 /** 
  * Constructs a new PointerChunk that is a shallow copy of c. 
  * This copy is initially completely mutable. 
  * @param c the PointerChunk to be copied 
  */ 
 public PointerChunk(PointerChunk c) { 
  for (int i = 0; i < chunks.length; i++) { 
   chunks[i] = c.chunks[i]; 
  } 
  for (int i = 0; i < canWrite.length; i++) { 
   canWrite[i] = true; 
  } 
 } 
  
 /** 
  * Returns a pointer to the Chunk, either another PointerChunk or 
  * a DataChunk, that is stored at the given index.  This location 
  * in the chunk becomes "sealed" and can no longer be written to. 
  * @param i the index of the desired Chunk pointer 
  * @return a pointer to a child Chunk found at index i 
  */ 
 public Chunk getChunk(int i) { 
  if (i < 0 || i >= 16) { 
   throw new RuntimeException("Invalid getChunk access " + 
     "for index "+i); 
  } 
  canWrite[i] = false; 
  return chunks[i]; 
 } 
  
 /** 
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  * Write a pointer to Chunk c at index i in this chunk. 
  * If the location is sealed, a RuntimeException is thrown. 
  * @param i the index at which the Chunk pointer will be written 
  * @param c the Chunk pointer to be written 
  */ 
 public void writeChunk(int i, Chunk c) { 
  if (i < 0 || i >= 16) { 
   throw new RuntimeException("Invalid writeChunk access " + 
     "for index "+i); 
  } 
  if (!canWrite[i]) { 
   throw new RuntimeException("Locked writeChunk slot " + 
     "for index "+i); 
  } 
  chunks[i] = c; 
 } 
 
} 
 

 
 
 
package memorymodel; 
 
public class FBArray { 
  
 private int size; 
 private int depth; 
  
 // In this simulation, the root technically has 16 locations 
 // for chunk pointers, or 32 32-bit data locations for a data 
 // chunk, but in the methods in FBArray we assume that there 
 // are only 15 locations for pointers (or 30 locations for 
 // integers) 
 private Chunk root; 
  
 /** 
  * Constructs an empty Fresh Breeze array with initial size 
  * of 0. 
  */ 
 public FBArray() { 
  root = new DataChunk(); 
  size = 0; 
  depth = 1; 
 } 
  
 /** 
  * Constructs a new Fresh Breeze array with the specified size. 
  * The array is initially a sparse array, that is it is not filled 
  * in with initial values. 
  * @param size the desired size of the array, where 
  * bits = size*32. 
  */ 
 public FBArray(int size) { 
  if (size <= 30) { 
   root = new DataChunk(); 
  } else { 
   root = new PointerChunk(); 
  } 
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  this.size = size; 
  this.depth = 1; 
  while (size > 30*(1<<((depth-1)*4))) { 
   depth++; 
  } 
 } 
  
 /** 
  * Reads the element at index "i" in this array and returns 
  * the data as an integer 
  * @param i the index of the desired element 
  * @return the data located at element i as an integer 
  */ 
 public int read32(int i) { 
  if (i < 0 || i >= size) { 
   throw new RuntimeException("Invalid array " + 
     "access: index="+i+", array size="+size); 
  } 
  int d = depth; 
  Chunk pointer = root; 
  while (d > 1) { 
   int mask = 0xF << 4*(d-1)+1; 
   int n = (i & mask) >> 4*(d-1)+1; 
   PointerChunk p = (PointerChunk)pointer; 
   pointer = p.getChunk(n); 
   if (pointer == null) { 
    return 0; 
   } 
   d--; 
  } 
  int elt = ((DataChunk)pointer).read32(0x1F & i); 
  return elt; 
 } 
  
 /** 
  * Reads the element at index "i" in this array and returns 
  * the data as a long 
  * @param i the index of the desired element 
  * @return the data located at element i as a long 
  */ 
 public long read64(int i) { 
  if (i < 0 || i >= size) { 
   throw new RuntimeException("Invalid array " + 
     "access: index="+i+", array size="+size); 
  } 
  int d = depth; 
  Chunk pointer = root; 
  while (d > 1) { 
   int mask = 0xF << 4*(d-1); 
   int n = (i & mask) >> 4*(d-1); 
   PointerChunk p = (PointerChunk)pointer; 
   pointer = p.getChunk(n); 
   if (pointer == null) { 
    return 0; 
   } 
   d--; 
  } 
  long elt = ((DataChunk)pointer).read64(0xF & i); 
  return elt; 
 } 
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 /** 
  * This method changes the 32-bit element located at index 
  * "i" in this array to the integer "elt" 
  * @param i the index of the desired element to change 
  * @param elt the new value for the element at index i 
  */ 
 public void changeElt32(int i, int elt) { 
  if (i < 0 || i >= size) { 
   throw new RuntimeException("Array out of bounds " + 
     "access: index="+i+", array size="+size); 
  } 
  root = changeElt32Help(root,i,depth,elt); 
 } 
  
 /** 
  * This method changes the 64-bit element located at index 
  * "i" in this array to the long "elt". 
  * @param i the index of the desired element to change 
  * @param elt the new value for the element at index i 
  */ 
 public void changeElt64(int i, long elt) { 
  if (i < 0 || i >= size) { 
   throw new RuntimeException("Array out of bounds " + 
     "access: index="+i+", array size="+size); 
  } 
  root = changeElt64Help(root,i,depth,elt); 
 } 
  
 private Chunk changeElt32Help(Chunk a, int i, int d, int elt) { 
  if (d != 1) { 
   assert a instanceof PointerChunk; 
   PointerChunk aTemp = (PointerChunk)a; 
   int mask = 0xF << 4*(d-1)+1; 
   int n = (i & mask) >> 4*(d-1)+1; 
   Chunk p1 = aTemp.getChunk(n); 
   if (p1 == null) { 
    if (d == 2) { 
     p1 = new DataChunk();  
    } else { 
     p1 = new PointerChunk(); 
    } 
   } 
   Chunk p2 = changeElt32Help(p1, i, d-1, elt); 
   PointerChunk p3 = new PointerChunk(aTemp); 
   p3.writeChunk(n, p2); 
   return p3; 
  } else { 
   assert a instanceof DataChunk; 
   DataChunk aTemp = (DataChunk)a; 
   int n = i & 0x1F; 
   DataChunk ptr = new DataChunk(aTemp); 
   ptr.write32(n, elt); 
   return ptr; 
  } 
 } 
  
 private Chunk changeElt64Help(Chunk a, int i, int d, long elt) { 
  if (d != 1) { 
   assert a instanceof PointerChunk; 
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   PointerChunk aTemp = (PointerChunk)a; 
   int mask = 0xF << 4*(d-1); 
   int n = (i & mask) >> 4*(d-1); 
   Chunk p1 = aTemp.getChunk(n); 
   if (p1 == null) { 
    if (d == 2) { 
     p1 = new DataChunk();  
    } else { 
     p1 = new PointerChunk(); 
    } 
   } 
   Chunk p2 = changeElt64Help(p1,i,d-1,elt); 
   PointerChunk p3 = new PointerChunk(aTemp); 
   p3.writeChunk(n, p2); 
   return p3; 
  } else { 
   assert a instanceof DataChunk; 
   DataChunk aTemp = (DataChunk)a; 
   int n = i & 0xF; 
   DataChunk ptr = new DataChunk(aTemp); 
   ptr.write64(n, elt); 
   return ptr; 
  } 
 } 
  
 /** 
  * This method adds the specified element to this array at 
  * index this.size and then increases the array's size by 
  * 1.  This method also increases the array's depth if needed. 
  * @param elt the integer to be added to the end of this array 
  */ 
 public void addElement32(int elt) { 
  if (size+1 <= 30*(1<<((depth-1)*4))) { 
   // we don't need to add a level of depth 
  } else { 
   // we need to add a level of depth 
   Chunk temp = root; 
   root = new PointerChunk(); 
   ((PointerChunk)root).writeChunk(0, temp); 
   depth++; 
  } 
  Chunk c = addElementHelper32(root,depth,elt); 
  size++; 
  root = c; 
 } 
  
 private Chunk addElementHelper32(Chunk a, int d, int elt) { 
  if (d != 1) { 
   int mask = 0xF << 4*(d-1)+1; 
   int n = (size & mask) >> 4*(d-1)+1; 
   Chunk p2; 
   PointerChunk p3; 
   if (a == null) { 
    p2 = addElementHelper32(null, d-1, elt); 
    p3 = new PointerChunk(); 
   } else { 
    PointerChunk aTemp = (PointerChunk)a; 
    Chunk p1 = aTemp.getChunk(n); 
    p2 = addElementHelper32(p1, d-1, elt); 
    p3 = new PointerChunk(aTemp); 
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   } 
   p3.writeChunk(n, p2); 
   return p3; 
  } else { 
   int n = size & 0x1F; 
   DataChunk ptr; 
   if (a == null) { 
    ptr = new DataChunk(); 
   } else { 
    DataChunk aTemp = (DataChunk)a; 
    ptr = new DataChunk(aTemp); 
   } 
   ptr.write32(n, elt); 
   return ptr; 
  } 
 } 
  
 /** 
  * This method takes two Fresh Breeze arrays of equal size and 
  * merges them into one array.  The join index is the index 
  * where elements in the first array will start to be replaced 
  * by elements in the second array.  For example, if you have 
  * two arrays: [0, 1, 2, 3, 4, 5] and [10, 11, 12, 13, 14, 15] 
  * and a join index of 3, the resulting array would look like 
  * this: [0, 1, 2, 13, 14, 15].  This method is basically an 
  * optimization designed for algorithms that need to combine 
  * two arrays but would like logarithmic performance rather 
  * than linear performance.  If the two arrays do not have 
  * equal size, a RuntimeException is thrown. 
  * @param a1 the first array 
  * @param a2 the second array 
  * @param joinIndex the index where elements in the first array 
  * will start to be replaced by elements in the second array 
  * @return a new array that is the joining of both arrays 
  */ 
 public static FBArray join32(FBArray a1, FBArray a2, int joinIndex) { 
  if (a1.size != a2.size) { 
   throw new RuntimeException("Attempting to join two arrays" + 
     " of unequal size: array1.size="+a1.size+", " + 
     "array2.size="+a2.size); 
  } 
  FBArray joinedArray = new FBArray(a1.size); 
  joinedArray.root = joinHelper32(a1.root, a2.root, a1.depth, joinIndex); 
  return joinedArray; 
 } 
  
 private static Chunk joinHelper32(Chunk c1, Chunk c2, int d, int joinIndex) { 
  if (c1 == null && c2 == null) { 
   // there's really nothing to copy, so there's no need to 
   // construct empty chunks 
   return null; 
  } 
  if (d != 1) { 
   int mask = 0xF << 4*(d-1)+1; 
   int n = (joinIndex & mask) >> 4*(d-1)+1; 
   PointerChunk curr1 = (PointerChunk)c1; 
   PointerChunk curr2 = (PointerChunk)c2; 
   Chunk cc1 = null, cc2 = null; 
   if (curr1 != null) { 
    cc1 = curr1.getChunk(n); 
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   } 
   if (curr2 != null) { 
    cc2 = curr2.getChunk(n); 
   } 
   Chunk joinedChild = joinHelper32(cc1,cc2,d-1,joinIndex); 
   PointerChunk joined = new PointerChunk(); 
   for (int i = 0; i < 16; i++) { 
    if (i == n) { 
     joined.writeChunk(n, joinedChild); 
    } else if (i < n) { 
     if (curr1 == null) { 
      joined.writeChunk(i, null); 
     } else { 
      joined.writeChunk(i, curr1.getChunk(i)); 
     } 
    } else { 
     if (curr2 == null) { 
      joined.writeChunk(i, null); 
     } else { 
      joined.writeChunk(i, curr2.getChunk(i)); 
     } 
    } 
   } 
   return joined; 
  } else { 
   int n = joinIndex & 0x1F; 
   DataChunk curr1 = (DataChunk)c1; 
   DataChunk curr2 = (DataChunk)c2; 
   DataChunk joined = new DataChunk(); 
   for (int i = 0; i < 32; i++) { 
    if (i < n) { 
     if (curr1 == null) { 
      joined.write32(i, 0); 
     } else { 
      joined.write32(i, curr1.read32(i)); 
     } 
    } else { 
     if (curr2 == null) { 
      joined.write32(i, 0); 
     } else { 
      joined.write32(i, curr2.read32(i)); 
     } 
    } 
   } 
   return joined; 
  } 
 } 
  
 public int size() { 
  return size; 
 } 
  
 public int depth() { 
  return depth; 
 } 
  
 public String toString() { 
  String s = "["; 
  for (int i = 0; i < size; i++) { 
   s += read32(i); 
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   if (i != size-1){ 
    s +=","; 
   } 
  } 
  s += "]"; 
  return s; 
 } 
 
} 
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Appendix B: Sorting Algorithm Code 
 
 
package tests; 
 
import memorymodel.FBArray; 
 
public class MergeSort { 
  
 public static FBArray mergeSort(FBArray a) { 
  return mergeSortHelper(a,0,a.size()); 
 } 
  
 private static FBArray mergeSortHelper(FBArray a, int start, int end) { 
  if (end-start <= 16) { 
   FBArray tinyArray = new FBArray(); 
   int[] registers = new int[end-start]; 
   for (int i = start, j = 0; i < end; i++,j++) { 
    registers[j] = a.read32(i); 
   } 
   int i = 0; 
   int j = 0; 
   int min = Integer.MAX_VALUE; 
   int minIndex = 0; 
   while (i < registers.length) { 
    while (j < registers.length) { 
     if (registers[j] < min) { 
      min = registers[j]; 
      minIndex = j; 
     } 
     j++; 
    } 
    int temp = registers[i]; 
    registers[i] = registers[minIndex]; 
    registers[minIndex] = temp; 
    i++; 
    j = i; 
    min = Integer.MAX_VALUE; 
    minIndex = i; 
   } 
   for (int k = 0; k < registers.length; k++) { 
    tinyArray.addElement32(registers[k]); 
   } 
   return tinyArray; 
  } 
 
  FBArray left = mergeSortHelper(a, start, (start+end)/2); 
  FBArray right = mergeSortHelper(a, (start+end)/2, end); 
  FBArray newArray = new FBArray(); 
   
  int i = 0, j = 0; 
  while (i+j < left.size()+right.size()) { 
   if (i == left.size()) { 
    newArray.addElement32(right.read32(j)); 
    j++; 
   } else if (j == right.size()) { 
    newArray.addElement32(left.read32(i)); 
    i++; 
   } else if (left.read32(i) <= right.read32(j)) { 
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    newArray.addElement32(left.read32(i)); 
    i++; 
   } else { 
    newArray.addElement32(right.read32(j)); 
    j++; 
   } 
  } 
   
  return newArray; 
 } 
 
 
} 
 
 

 
package tests; 
 
import java.util.Random; 
 
import memorymodel.FBArray; 
 
public class QuickSort { 
  
 static Random r = new Random(); 
  
 public static FBArray quickSort(FBArray a) { 
  return quickSortHelper(a, 0, a.size()); 
 } 
  
 private static FBArray quickSortHelper(FBArray array, int start, int size) { 
  if (array.size() <= 16) { 
   FBArray newArray = new FBArray(size); 
   int[] registers = new int[array.size()]; 
   for (int i = 0; i < array.size(); i++) { 
    registers[i] = array.read32(i); 
   } 
   int i = 0; 
   int j = 0; 
   int min = Integer.MAX_VALUE; 
   int minIndex = 0; 
   while (i < registers.length) { 
    while (j < registers.length) { 
     if (registers[j] < min) { 
      min = registers[j]; 
      minIndex = j; 
     } 
     j++; 
    } 
    int temp = registers[i]; 
    registers[i] = registers[minIndex]; 
    registers[minIndex] = temp; 
    i++; 
    j = i; 
    min = Integer.MAX_VALUE; 
    minIndex = i; 
   } 
   for (int l = 0,k = start; l < registers.length; l++,k++) { 
    newArray.changeElt32(k, registers[l]); 
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   } 
   return newArray; 
  } 
   
  int pivotPoint = r.nextInt(array.size()); 
  int pivotValue = array.read32(pivotPoint); 
  FBArray left = new FBArray(); 
  FBArray right = new FBArray(); 
   
  for (int i = 0; i < array.size(); i++) { 
   if (i == pivotPoint) { 
    continue; 
   } 
    
   int elt = array.read32(i); 
   if (elt <= pivotValue) { 
    left.addElement32(elt); 
   } else { 
    right.addElement32(elt); 
   } 
  } 
 
  FBArray leftDone = quickSortHelper(left, start, size); 
  FBArray rightDone = quickSortHelper(right, start+left.size()+1, size); 
 
  FBArray done = FBArray.join32(leftDone, rightDone, start+left.size()); 
  done.changeElt32(start+left.size(), pivotValue); 
 
  return done; 
 } 
 
 
} 
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