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Abstract

Patients who have suffered an acute coronary syndrome (ACS) are at elevated risk
of future adverse events, including fatal arrhythmias or myocardial infarction. Risk
stratification—the identification of high-risk patients—is an important step in deter-
mining who is most likely to benefit from aggressive treatments.

We propose a new automated risk stratification technique that uses the long-term
electrocardiographic data routinely recorded in the days following an ACS. Data
obtained from clinical drug trials indicates that our technique, called MV-DF (mor-
phologic variability diagnostic frequencies), can significantly improve prognostication
for ACS patients. Patients with MV-DF values in the highest quartile show a more
than five-fold elevated risk of death in the 90 days following a non-ST-elevation ACS.

We also propose techniques to construct models of the dynamics of cardiac be-
havior. Preliminary results suggest that such techniques may be useful for short-term
prediction of fatal arrhythmias.

Our results suggest that long-term ECG-based risk assessment techniques—in
particular, methods incorporating information about morphologic variability—are an
effective and practical way to select appropriate treatment options for cardiovascular
disease patients.

Thesis Supervisor: John V. Guttag
Title: Professor, Electrical Engineering and Computer Science
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Chapter 1

Introduction

Each year, approximately 1.4 million Americans are hospitalized following an acute

coronary syndrome (ACS) [17], an incident in which the blood supply to part of the

heart muscle is blocked or severely reduced. Acute coronary syndromes are broadly

classified into two major categories: unstable angina, in which heart tissue is not

permanently damaged, and myocardial infarction (MI, or heart attack), in which it

is.

People who have suffered an ACS are at greatly increased risk for future adverse

events. In the GUSTO-IIb trial [4], patients who suffered a non-ST elevation MI

(NSTEMI)—one particular subclass of MI—had mortality rates of 5.7% within 30

days and 11.1% within one year; for unstable angina patients, the mortality rates

were 2.4% and 7.0%, respectively. In addition, 9.8% of NSTEMI patients and 6.2%

of unstable angina patients suffered a myocardial (re)infarction within six months.

There are two reasons for this increased risk. First, the underlying cause of the

ACS—cardiovascular disease—may cause future heart attacks. Second, ACS often

leads to scarred or damaged cardiac tissue, the presence of which can interfere with

the normal electrical conduction patterns of the heart. This may lead to arrhythmias,

or abnormal heart rhythms, the most severe of which are fatal.

People have different risk levels for cardiovascular disease due to varying risk

factors, both hereditary and lifestyle-related. In addition, acute coronary syndromes

vary widely in their severity. ACS patients are therefore quite heterogeneous in their
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risk for death and adverse cardiac events [4, 11, 53]. One key goal for clinicians

is post-ACS risk stratification—assessment of both a patient’s risk for a particular

adverse event and the expected benefit to that patient of a particular intervention.

Accurate risk assessment is important for identifying patient-appropriate treat-

ment options. The most invasive treatments—which are also usually expensive and

risky—are often of the most benefit to high-risk patients. Conversely, patients deemed

low-risk may receive quite conservative therapies. For ACS patients, treatments may

include anti-arrhythmic drugs, any of a number of surgical or catheterization pro-

cedures, or the implantation of a device such as an ICD (implantable cardioverter

defibrillator, a device that can detect arrhythmias and administer an electrical shock

to restore normal cardiac rhythm). Risk stratification may also be used to decide

when additional tests (e.g. imaging procedures) can justify their cost and risk.

Risk prediction for acute arrhythmic events on shorter timescales—minutes or

hours—would also be valuable. Such information could be used to allocate resources

and attention among patients in a hospital.

Two risk stratification techniques that are commonly employed today are the TIMI

risk score and echocardiography. The TIMI risk score [3, 31, 32] incorporates clini-

cal information available at the time of patient presentation, such as patient history

and electrocardiographic (ECG) features, to yield an assessment of risk. One compo-

nent of the TIMI risk score is based on the analysis of short-term ECG recordings—

recordings of the heart’s electrical activity—which can indicate the extent of an ACS.

An echocardiogram [38] is an ultrasound image of the heart that may be used to

diagnose certain mechanical abnormalities.

We advocate the adoption of another class of risk stratification techniques, those

based on long-term ECG recordings. ECG data is routinely acquired during hospi-

tal stays for monitoring purposes and is often collected for long periods of time. It

provides a wealth of diagnostic information and captures subtle features of cardiac

behavior. Various ECG-based risk stratification techniques have been proposed, in-

cluding heart rate variability [30], deceleration capacity [7], and T-wave alternans

[44]. It has been shown that risk stratification techniques based on long-term ECG

16



collected in the hours after admission can refine an initial prognosis made at the

time of presentation. However, despite their value and easy availability, the use of

ECG-based risk stratification is still uncommon.

In this thesis, we present an improved technique for post-ACS risk stratification

and risk prediction based on the MV-LF/HF technique proposed by Syed et al. [50,

51], which gives a measure of morphologic variability (MV). MV-based techniques

estimate risk by quantifying heterogeneity in the shapes (morphologies) of heartbeats

on an ECG.

At a high level, the process of taking an input ECG signal and computing the

MV-LF/HF measure from it can be considered in four steps, as shown in Figure

1-1. ECG data for a patient is segmented into heartbeats and noisy parts of the

signal are excluded from further computation (1). A measure of morphologic distance

(or morphologic difference; MD) is computed for each pair of adjacent heartbeats,

yielding a sequence of successive morphologic distances—the MD time series (2).

The MD time series is then summarized by a single number giving a measure of risk

in steps (3) and (4).

The primary contributions of this thesis are the following:

• An evaluation of various methods for computing a morphologic difference be-

tween two time-series signals. We demonstrate how three techniques originally

designed for comparing shapes, sequences, and distributions in a general met-

ric space may be adapted to compare time-series data; we compare them to

the technique employed in [50] for comparing heartbeats—a variant of dynamic

time-warping (DTW) [35]. All of the techniques are compared in discriminative

power and robustness against noise. We then evaluate how well the techniques

identify morphologic differences in ECG data that are associated with adverse

outcomes. We show that DTW has certain desirable properties and best iden-

tifies those particular morphologic differences that are associated with high risk

of death.

• The identification and evaluation of a new diagnostic frequencies measure, called

17



MV-LF/HF

Per-window MV values

(4) Median

MD time series

(3) Compute LF/HF ratio in windows

Segmented heartbeats

(2) Compute morphologic distances

ECG data

(1) Segmentation and signal rejection

Figure 1-1: Steps in the computation of MV-LF/HF.

MV-DF, that summarizes the MD time series with a measure of risk. The MV-

DF measure isolates morphologic change on specific timescales. We developed

and trained the technique using data from 764 patients of the DISPERSE-2

(TIMI33) clinical drug trial [13]. We then validated the MV-DF technique on

data from 2,302 patients in the placebo group of the MERLIN (TIMI36) trial

[33]. In both datasets, for each patient, we had access to continuous ECG

recordings at least 24 hours long that started no more than 48 hours following

a non-ST-elevation ACS (NSTEACS).

We show that high MV-DF values are significantly associated with increased

risk. The quartile of patients with the highest MV-DF shows a more than five-

fold increase in risk of death in the 90 days following NSTEACS. Patients with

high MV remain at significantly elevated risk even when controlling for other

risk variables. MV-DF identifies patients at elevated risk of death in the 90

days following NSTEACS with a c-statistic of 0.77, as compared to 0.72 for the

MV-LF/HF measure proposed in [50]. Our results indicate that MV-DF is the
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best Holter-based risk stratification technique known today for predicting risk

following NSTEACS.

• The development of techniques for modeling the dynamics of morphologic change

using hidden Markov models (HMMs). These techniques operate on the MD

time series and other sequences that can be derived from ECG data. We argue

that such models might yield important information for short-term risk pre-

diction. Some preliminary results suggest that these models may be used to

predict acute arrhythmic events, although further study is needed to validate

this claim.

The remainder of this thesis is organized as follows. Chapter 2 provides back-

ground on cardiac function and acute coronary syndromes. Chapter 3 gives an

overview of existing post-ACS risk stratification methods, with a focus on ECG-based

techniques. Chapter 4 evaluates various techniques for computing the morphologic

difference between two signals. In Chapter 5, we develop the MV-DF measure for

summarizing measurements of morphologic heterogeneity to yield an evaluation of

patient risk. Chapter 6 proposes methods for modeling cardiac dynamics and ex-

tracting features from those models for risk stratification and prediction of imminent

death. Chapter 7 concludes with a summary and a discussion of future work.
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Chapter 2

Cardiac function and disease

This chapter gives an overview of basic cardiac function and electrophysiology, as well

as coronary artery disease and its consequences. The interested reader is advised to

consult Lilly [28] for a more comprehensive treatment of these topics.

2.1 Cardiac function

The heart consists of four muscular chambers: the right and left ventricles, and the

right and left atria, which deliver blood to their respective ventricles. The right atrium

and ventricle collect deoxygenated blood from the body and deliver it to the lungs

where carbon dioxide is exchanged for oxygen. The left atrium and ventricle collect

oxygenated blood from the lungs and deliver it to the rest of the body. The aorta,

the artery that carries blood out of the left ventricle, branches into smaller arteries

which lead to different parts of the body. The first arteries to split off are the left

and right coronary arteries, which supply the heart’s own muscles with oxygenated

blood.

The heart circulates blood via the coordinated action of the various parts of the

myocardium, or heart muscle tissue. In each heartbeat, the sequence of contraction

of the atria followed by contraction of the ventricles pumps blood through the circu-

latory system. This process is coordinated by the orderly propagation of electrical

impulses which cause depolarization, a temporary reversal of the cell membrane volt-
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Figure 2-1: Main components of the cardiac conduction system. From Lilly [28].

age, throughout the myocardium. Depolarization of cells in the myocardium causes

those cells to contract.

The conduction system of the heart is pictured in Figure 2-1. A wave of depolar-

ization begins in the sinoatrial (SA) node, which contains pacemaker cells that spon-

taneously produce electrical impulses. From there, depolarization spreads throughout

the atria, causing them to contract. The wave then reaches the atrioventricular (AV)

node. This is the only connection between the conduction systems of the atria and

the ventricles, which are elsewhere separated by insulating fibrous tissue. The AV

node consists of specialized tissue that conducts slowly, so it delays electrical impulses

that pass through it for a short time (about 0.1 sec). This delay is important for effi-

cient circulation because it allows the atria to completely empty their blood into the

ventricles before the ventricles begin to contract. Finally, the wave of depolarization

spreads throughout the ventricles by way of the Bundle of His and the left and right

bundle branches, causing the ventricles to contract.
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2.1.1 Electrophysiology

The membrane of a myocardial cell contains ion channels, specialized proteins that

span the cell membrane and regulate the movement of specific ions across the mem-

brane [28]. Different types of ion channels are selective for different kinds of ions,

allowing only ions of a specific type to pass. In addition, the conformation of ion

channels changes with the membrane voltage difference to allow (or block) the dif-

fusion of ions. Ion channels act as voltage-regulated passive gates for ions: the flow

of ions through ion channels is determined by the concentration gradient and by the

electrical potential difference (voltage) across the membrane. Cell membranes also

contain active ion pumps, which consume energy in the form of adenosine triphos-

phate (ATP) to pump ions across a membrane against their natural gradient.

In a cardiac cell at rest, the ion channels and ion pumps together maintain a

resting potential of −90 mV inside the cell by selectively moving Na+ and Ca++

ions out of the cell and K+ ions into the cell. If the membrane voltage goes above

approximately −70 mV, an action potential begins. Some sodium ion channels open,

allowing Na+ ions to enter the cell, raising the potential inside, causing more sodium

ion channels to open, and so on, creating a positive feedback loop. The cell quickly

(within milliseconds) becomes depolarized and reaches a peak voltage of slightly more

than 0 mV. This voltage is high enough to raise the membrane voltage in a nearby

area of the cell or a neighboring cell, causing the action potential to propagate.

At the peak voltage, the sodium channels close and remain inactivated until the

cell has returned to resting potential (as described below). In healthy myocardial

tissue, this refractory period prevents recently depolarized cells from depolarizing

again, regardless of the membrane voltage. This ensures that the wave of depolariza-

tion propagates forward and never backward.

The cell now begins the process of repolarization in order to prepare for the next

action potential. When the membrane voltage becomes high enough, the potassium

and calcium channels open, allowing K+ and Ca++ ions to flow out of and into the

cell, respectively. Calcium ions entering the cell during this phase activate a pathway
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that induces the physical contraction of cardiac muscle cells. Finally, the original

concentrations of each ion, and the resting potential, are restored by ion pumps in

order to prepare the cell for another action potential.

2.2 Electrocardiogram

An electrocardiogram (ECG) is a recording of the electrical activity of the heart.

ECG data is routinely recorded for hospitalized patients, as it is useful for both

monitoring them and diagnosing conditions such as ACS or arrhythmias. ECG can

be acquired inexpensively and with minimal invasiveness; a Holter monitor (a portable

ECG device worn on a patient) can record data for 24 hours or more. As such, ECG

data is useful for analysis of rare and noisy phenomena. Depending on the setting and

on the reason for the recording, varying numbers of electrodes may be used in order to

capture fewer or more channels of data. Typical ECG monitors record between 3 and

12 channels. MV, as well as some other ECG-based risk measures, can be computed

from just a single channel of Holter data.

A cardiac muscle cell at rest maintains a negative voltage with respect to the

outside of the cell. While at rest, the surface of the cell is uniformly charged with

a positive voltage, but during depolarization, this voltage decreases and may even

become negative. Consequently, when depolarization is propagating through a cell,

there exists a potential difference on the membrane between the part of the cell that

has been depolarized and the part of the cell at resting potential. After the cell

is completely depolarized, its membrane is uniformly charged again (although now

negatively instead of positively).

These changes in potential, summed over many cells, can be measured by elec-

trodes placed on the skin. For any pair of electrodes, a voltage is recorded whenever

the direction of depolarization (or repolarization) is aligned with the line connecting

the two leads, with the sign indicating the direction of depolarization. Multiple elec-

trodes along different axes are used so that the average direction of depolarization,

as a three-dimensional vector, can be reconstructed from the ECG tracings.
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Figure 2-2: Cardiac conduction pathway, with corresponding waveforms on the ECG
recording. The electrical impulse begins at the SA node (1). The wave of depolariza-
tion traverses the atria (2). Conduction is slowed at the AV node (3). The wave of
depolarization traverses the ventricles (4). From Lilly [28].

Three major segments can be identified in a normal ECG, corresponding to dif-

ferent parts of the action potential. Schematics of the cardiac conduction pathway

and a typical ECG recording are shown in Figure 2-2. The P wave is associated with

depolarization of the atria. The QRS complex is associated with depolarization of the

ventricles. The T wave is associated with repolarization of the ventricles. The QRS

complex is larger than the P wave because the ventricles are much larger than the

atria. The QRS complex coincides with repolarization of the atria, which is therefore

usually not seen on the ECG. The T wave has a larger width and smaller amplitude

than the QRS complex because repolarization takes longer than depolarization.
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2.3 Atherosclerosis

Atherosclerosis is a disease of the arteries characterized by the accumulation of fat,

cholesterol, cells, and other substances within the arterial wall. Such deposits may

form lesions in the arteries known as plaques. When this occurs in a coronary artery,

this condition is known as coronary artery disease. Coronary artery disease is danger-

ous because it interferes with the biochemical pathways that maintain healthy vessel

walls; this can lead to complications such as an ACS. Coronary artery disease can

also reduce the cross-section (and therefore effective capacity) of the artery.

In healthy arteries, the endothelium—the thin layer of cells closest to the blood-

stream—performs a number of functions to preserve the integrity of the vessel wall

and promote normal blood health. The endothelium forms a tight barrier so that

large molecules and cells in the bloodstream do not enter the tissue of the vessel wall.

Endothelial cells normally inhibit thrombosis—blood clotting—by synthesizing cer-

tain antithrombotic substances. They also inhibit the immune system inflammatory

response unless an injury or infection has actually occurred. When endothelial cells

become damaged, these functions may be compromised. A damaged endothelial layer

is more permeable and is more likely to release chemicals that inappropriately induce

clotting or inflammation.

One critical factor in atherosclerosis is the presence of low-density lipoproteins

(LDLs), biochemical assemblies that bind to cholesterol—which is not water-soluble

by itself—so that it can be transported in the bloodstream. Cholesterol carried by

LDL is commonly referred to as “bad cholesterol” for its role in contributing to

cardiovascular disease. When the endothelium is damaged, LDL can diffuse across

the endothelium into the intima, the layer of tissue just outside the endothelium.

In the intima, LDL participates in a pathway that may lead to the formation of

atherosclerotic plaques. LDLs may become oxidized or otherwise modified and cause

the endothelium to activate the inflammatory response. This causes leukocytes (white

blood cells) to enter the intima from the bloodstream and ingest the LDL. When

the leukocytes become loaded with LDL, they are known as foam cells, and they
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manifest as fatty streaks in the arteries. These fatty streaks are the first visible

effects of atherosclerosis, although they are asymptomatic and do not cause significant

narrowing of the arteries.

Subsequently, foam cells emit chemical signals that induce the migration of smooth

muscle cells into the intima from the surrounding muscle layer. Once they are estab-

lished, smooth muscle cells reproduce within the intima and synthesize proteins that

produce a fibrous cap around the foam cell layer. The combination of these processes

causes the intima to expand in a lesion, shrinking the artery’s effective diameter.

Atherosclerosis is associated with a number of complications. The accumulated

deposits can reduce the blood vessel’s cross-sectional area enough to impair circu-

lation; this may cause stable angina, recurrent chest pain that occurs with physical

activity or stress but goes away with rest. The fibrous cap of the plaque can rupture,

exposing the foam cell core to the blood. Foam cells release chemicals that induce

thrombosis, causing a blood clot to form over the site of rupture which may partially

or completely occlude the artery. In a coronary artery, this may lead to an acute coro-

nary syndrome, which can cause myocardial cell death and may be life-threatening

in the absence of prompt medical attention. The blood clot may also break off from

the original site and travel to another part of the body (this is called an embolism).

This can cause a stroke if it blocks an artery that supplies the brain.

2.3.1 Treatment

The presence and extent of atherosclerosis may be diagnosed by angiography, a pro-

cedure for imaging blood vessels. In this procedure, an x-ray opaque dye is injected

into a patient’s bloodstream near the coronary arteries using a catheter. High-speed

x-ray imaging can then be used to identify narrowing of the blood vessels.

Patients with severe myocardial ischemia (a shortage of blood flowing to cardiac

tissue) may require revascularization, which may refer to any of a number of surgical

or catheter procedures to improve blood flow to the heart.

In percutaneous transluminal coronary angioplasty (PTCA, also called balloon

angioplasty), a small balloon is threaded to the blockage site through a catheter. The
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balloon is inflated so that it widens the artery. In a PTCA procedure, a patient may

also receive a stent, a small wire mesh tube. The stent is unfolded in the artery to

hold the artery open and is left there permanently. Some stents are coated with drugs

that are released over time and prevent additional plaque formation from closing the

artery again.

In the case of more extensive blockage, other procedures may be used to widen

the artery by removing the plaque. In laser angiography, a laser is used to vaporize

plaque at the blockage. In an atherectomy, a rotating drill bit is used to grind the

plaque away. These procedures may be used in combination with balloon angioplasty

or stents.

In some cases, a patient may receive a coronary artery bypass graft (CABG). A

blood vessel from another part of the body is transplanted with one end attached to

the aorta and the other end attached just downstream of a blockage. Blood flow can

bypass the blocked blood vessel by way of the transplanted vessel.

2.3.2 Risk factors

Various attributes have been identified that are associated with increased risk of

atherosclerosis. Older people, males, and people with a family history of coronary

disease are at elevated risk. A number of other controllable risk factors can be miti-

gated by lifestyle changes and drug treatments, as described below.

Maintaining appropriate blood cholesterol levels is a major component of reducing

risk. High LDL cholesterol levels are associated with increased risk of coronary artery

disease, since excess LDL may form deposits in the intima as previously described. In

contrast, high-density lipoproteins (HDL, also known as “good cholesterol”) have been

shown to protect against atherosclerosis, since HDL can remove excess cholesterol

from circulation.

Obesity is associated with high LDL cholesterol levels and is a risk factor for

atherosclerosis. Diet and exercise can reduce this risk. Many drug therapies also

aim to reduce LDL levels. The most effective of these are the HMG CoA reductase

inhibitors (“statins”), which accelerate the expression of pathways that remove LDL
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Figure 2-3: Consequences of coronary thrombosis. From Lilly [28].

from the bloodstream. Statins have been shown not only to lower LDL levels but also

to reduce risk for strokes and ACS [12, 36].

Other factors have been implicated in the compromise of the endothelium, making

it more permeable to lipids. Cigarette smoking weakens the endothelium by introduc-

ing various toxic chemicals. Hypertension (high blood pressure) directly puts physical

strain on the endothelium and induces the production of foam cells. Diabetes is often

associated with impaired endothelial function (as well as with reduced HDL).

2.4 Acute coronary syndromes

An acute coronary syndrome (ACS) is an event in which blood supply to part of the

myocardium is blocked or severely reduced. The most common symptom of ACS is

unusual and unprovoked chest pain. An ACS is usually caused by the rupture of an

atherosclerotic plaque producing a blood clot within a coronary artery. This leads to

ischemia or to cell death in the myocardium.

Various subclassifications of ACS are distinguished by the presence of myocardial

necrosis (cell death) and by ECG diagnosis. An overview of these subclassifications

is shown in Figure 2-3.
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Unstable angina refers to an ACS event in which necrosis does not occur, while

myocardial infarction (MI) refers to one in which it does. ACS’s are also subclassified

based on the extent of the occlusion, which can be inferred from ECG recordings. An

ECG showing elevation in the ST segment is indicative of complete occlusion of an

artery and necrosis (and therefore, myocardial infarction). Such patients are given a

diagnosis of ST-elevation MI (STEMI).

Non-ST-elevation ACS (NSTEACS) is indicative of partial occlusion of an artery

and is a less severe condition. NSTEACS may be diagnosed by the presence of

certain ECG irregularities (ST depression or T wave inversion). Two subclasses of

NSTEACS, unstable angina and a non-ST-elevation MI (NSTEMI), are distinguished

by whether necrosis occurs. Blood tests are used to determine levels of two serum

biomarkers—cardiac-specific troponin and creatine kinase MB (CK-MB)—which are

chemicals released into the bloodstream when myocardial necrosis occurs.

Treatment for NSTEACS focuses on inducing the dissolution of blood clots by

natural pathways (via aspirin or heparins), and on reducing ischemia by lowering the

heart’s oxygen demand and raising oxygen supply. Drugs that dilate blood vessels (ni-

trates) or lower heart rate (β-blockers) are commonly employed. STEMI patients may

benefit from the same treatments, but they also receive more aggressive thrombolytic

drugs to break down blood clots and restore normal blood flow. The revascularization

procedures described in Section 2.3.1 may also be conducted, either in an emergency

or after the patient’s condition has stabilized.

2.5 Arrhythmias

An ACS may leave damaged or scarred heart tissue, which can interfere with the

heart’s electrical conduction system. This may lead to arrhythmias, or abnormal

heart rhythms.

Arrhythmias can be benign, but the most severe of them may be fatal. One of

the most serious of these is ventricular fibrillation (chaotic and rapid twitching of the

ventricles). This may lead to cardiac arrest (failure of the heart to circulate blood
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around the body effectively), and, if not promptly treated, death.

Arrhythmias are broadly classified into two groups: tachyarrhythmias (those as-

sociated with increased firing rate) and bradyarrhythmias (those associated with de-

creased firing rate). They may arise from irregularities in the generation of action

potentials or in the conduction of action potentials through the myocardium. The

generation of action potentials is usually the job of the SA node. In abnormal sit-

uations, other parts of the heart may start to spontaneously depolarize (leading to

tachyarrhythmias) or impulse generation may be impaired (leading to bradyarrhyth-

mias). Typically, a bradyarrhythmia stemming from impaired impulse generation is

not a life-threatening situation, because the myocardium contains multiple regions

of tissue that have the potential to spontaneously depolarize; these act as “backup”

pacemakers if impulse generation at the SA node becomes too slow.

Myocardium that has been damaged by ischemia may contain small islands of

tissue that is electrically unexcitable [19]. Such tissue may also merely conduct im-

pulses slowly or only in one direction. Small damaged regions may lead to beat-to-

beat variations in the conduction pathway, while larger damaged regions may cause

arrhythmias.

Small regions of impaired tissue in the conduction pathway may lead to bifurcation

of the conduction path, which is associated with slow and anisotropic conduction [24].

Such conduction patterns may vary from beat to beat for two reasons. First, they

may be due to random and unstable variations in damaged myocardium. In addition,

if a region of cells is slow to repolarize, then a subsequent wave of depolarization will

be forced to take a different route around it. It is these beat-to-beat changes that

we believe are measured by the MV method. The consequences of minor conduction

inhomogeneity are not well understood, but there is some evidence that they may

degenerate into, and have predictive value for, ventricular arrhythmias [8] and other

adverse events.

More major conduction pathway alterations can lead to arrhythmias. A conduc-

tion block arises when a region of unexcitable tissue stops the wave of depolarization

entirely, preventing part of the heart from contracting. Reentry is a phenomenon in
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which a wave of depolarization travels around a closed-loop conduction path, some-

times around an island of unexcitable tissue. The wave of depolarization becomes

self-sustaining, leading to a tachyarrhythmia.

Ventricular fibrillation occurs due to a reentrant conduction pattern in the ventri-

cles. Reentry in the atria may lead to atrial flutter (rapid but regular atrial beats),

which may degenerate into atrial fibrillation (chaotic atrial activity).

When arrhythmias are deemed dangerous, they may be treated by drugs that

raise or lower the heart rate, or by other more invasive interventions. A persistent

bradyarrhythmia may be treated by the implantation of an artificial pacemaker. An

artificial pacemaker applies electrical stimulation to induce depolarization at a desired

rate, preempting the heart’s (slower) natural pacemaker.

A tachyarrhythmia caused by reentry may be an emergency situation as it may

lead to cardiac arrest. Such a condition is treated by the application of an electrical

current across the chest. This depolarizes the entire myocardium so that reentrant

patterns are interrupted. The heart’s natural pacemaker then assumes control of

heart rhythm. This technique is called defibrillation in the case of ventricular fibril-

lation. In other cases, the discharge has to be synchronized with the QRS complex in

order to avoid inducing ventricular fibrillation; in these cases, this technique is called

cardioversion.

Patients at high risk of tachyarrhythmias may receive an implantable cardioverter-

defibrillator (ICD), a device similar in appearance to a pacemaker that can detect

aberrant heart rhythms and apply electrical shocks to restore normal rhythm.
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Chapter 3

Post-ACS risk stratification

This chapter provides background information on post-ACS risk stratification meth-

ods. We consider the TIMI risk score (TRS), echocardiography, and long-term ECG-

based techniques. The TRS [3, 31, 32] provides a general assessment of risk based on

clinical variables that can easily be obtained at the time of admission. The variables

considered by the TRS represent the most significant independent predictors of risk—

selected from a larger set of 12 clinical variables—that were identified in the TIMI11B

trial [3]. Echocardiography is a technique for imaging the heart using ultrasound; it

yields information about blood flow in the heart as well as the shape of the heart. The

electrocardiogram is a valuable tool for the diagnosis and prognosis of ACS patients.

As described in Section 2.4, ECG data may be used to diagnose the severity of an

ACS at the time of presentation and is typically used to guide immediate treatment.

A variety of methods have been proposed that assess risk based on automated

analysis of long-term ECG data collected in the hours or days following admission.

Such data is routinely collected during a patient’s stay and therefore these additional

risk assessments can be obtained at almost no additional cost. We discuss three ECG-

based methods that have been proposed in the literature: heart rate variability (HRV)

[30, 26], deceleration capacity (DC) [7], and morphologic variability [51, 50, 48]. Each

of these measures has been shown to correlate with risk of various adverse events in

the period following an ACS.

One additional long-term ECG-based risk stratification technique, T-wave alter-
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nans (TWA) [44], has also received some attention. However, evaluating TWA re-

quires the use of specialized equipment and requires patients to complete specific

maneuvers in order to elevate their heart rate. Unlike the other long-term ECG risk

measures we consider, TWA cannot be computed using regular Holter monitor data.

It is unlikely that TWA (in its current form) could be used widely for risk stratification

in general populations, and as such we do not consider it further in this thesis.

Each of the techniques considered here incorporates some information about a

patient and yields a number that can be used to estimate the patient’s risk. For

example, higher values of the TRS are associated with higher risk. We evaluate

the utility of these risk stratification techniques using two metrics. The c-statistic,

or the area under the receiver operating characteristic (AUROC) [22], identifies the

degree to which progressively higher values of the variable are associated with higher

risk of adverse events. In practice, treatments may be chosen based only on the

dichotomized value of a particular variable—whether its value is greater than or less

than some threshold value. In this case, the Cox proportional hazards model [16] is

used to estimate the hazard ratio, the ratio of the instantaneous rates of death in the

two groups.

3.1 TIMI risk score

The TIMI risk score (TRS) [3, 31, 32] is a simple risk stratification technique that

incorporates clinical variables easily acquired at the time of admission and is designed

to be evaluated without the use of a computer. It can therefore be used in triage and

immediate decision-making with regard to treatment options. The GRACE [21] and

PURSUIT [10] risk scores perform similar functions.

The TRS considers the following 7 predictor variables:

• Age 65 years or older

• At least 3 risk factors for coronary artery disease among the following: hy-

pertension, hypercholesterolemia, diabetes, family history of coronary artery
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disease, or being a current smoker

• Prior coronary stenosis (narrowing of an artery) of 50% or more

• ST-segment deviation on ECG at presentation

• Severe anginal symptoms (at least 2 anginal events in prior 24 hours)

• Use of aspirin in prior 7 days

• Elevated serum cardiac markers (CK-MB or troponins)

One point is counted for each variable that is observed, and the TIMI risk score

is the total number of points (between 0 and 7). The set of variables was obtained

by selecting independent prognostic variables from a set of 12 prospective clinical

variables after a multivariate logistic regression [3]. The other 5 variables that were

considered but not included in the TRS were: prior MI, prior coronary artery bypass

graft (CABG), prior angioplasty (PTCA), prior history of congestive heart failure,

and use of IV heparin within 24 hours of enrollment.

The TIMI11B and ESSENCE trials [3] showed that a higher TRS is associ-

ated with higher rates of adverse events—defined as death, MI, or severe recurrent

ischemia—in the 14 days following the initial event. Those trials also demonstrated

that the TRS can be used to identify groups of patients who respond differently to a

treatment. In particular, they showed that prescribing enoxaparin (an antithrombotic

drug) instead of unfractionated heparin reduced risk more in patients with high TRS

than in patients with low TRS.

3.2 Echocardiography

Echocardiography (often referred to as simply “echo”) is the use of ultrasound tech-

niques to create an image of the heart. An echocardiogram can yield structural

information about the heart and its valves, and about blood flow through the heart.

Magnetic resonance imaging (MRI), nuclear imaging, and the angiographic techniques

described in Section 2.3.1 can provide some of the same information.
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In particular, an echocardiogram is frequently used to assess left ventricular func-

tion [27]. The left ventricle is the largest chamber of the heart and is responsible for

pumping oxygenated blood to the body, so proper left ventricular function is impor-

tant to the health of the body. If the myocardium is damaged in an MI, then the heart

is weakened and the left ventricle’s capacity to pump blood may be reduced. This is

associated with higher risk of congestive heart failure and fatal arrhythmias [34]. One

measure of left ventricular function is the left ventricular ejection fraction (LVEF),

the fraction of the blood volume ejected from the left ventricle during systole (the

contraction phase of the heartbeat). An echocardiogram may be used to estimate the

volume of blood in the heart before and after systole, and therefore the LVEF:

LVEF ≡
(LV volume before systole) − (LV volume after systole)

(LV volume before systole)

A healthy heart has an LVEF of between 0.55 and 0.75 [28]. Patients with an LVEF

of below 0.40 are considered to have left ventricular dysfunction [2]. As discussed

above, a weakened myocardium may stem from an MI, so low LVEF often corre-

lates with other disorders of the heart. The MADIT II trial [34] demonstrated that

those with low LVEF may benefit more from aggressive treatments—in particular,

the implantation of a defibrillator.

3.3 Heart rate variability

One class of ECG-based risk stratification techniques that has been discussed ex-

tensively in the literature is based on measurements of heart rate variability (HRV)

[30, 26]. The theory underlying HRV-based techniques is that in healthy people, the

body should continuously compensate for changes in oxygen demand by changing the

heart rate; therefore, a heart rate that changes little suggests that the heart or its

control systems are not actively responding to stimuli. HRV-based measures attempt

to quantify the amount of change in a patient’s instantaneous heart rate in order to

yield an estimate of risk.
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Heart rate is primarily modulated by the autonomic nervous system, which com-

prises the the sympathetic and parasympathetic nervous systems. The parasympa-

thetic nervous system’s effects on heart rate are mediated by the release of acetyl-

choline by the vagus nerve, which lowers the heart rate. The sympathetic nervous

system’s effects are mediated by the release of epinephrine and norepinephrine, which

raise heart rate. In particular, it is decreased vagal or parasympathetic modulation

(i.e. reduced down-regulation of heart rate) that is thought to be linked to increased

risk of death [9, 43]. One possible explanation for this is that the heart raises the

heart rate in order to maintain a steady blood supply when its pumping capacity per

beat has been reduced by ischemia or infarction. This fact is also consistent with the

observation that tachyarrhythmias are often life-threatening but bradyarrhythmias

are rarely so. However, there is currently no consensus on whether low HRV is simply

a correlate of poor outcomes or whether it is actually part of some mechanism that

leads to arrhythmias [30].

Under resting conditions, changes in instantaneous heart rate are dominated by

the effects of vagal modulation anyway [14, 30]. Therefore, total variation in heart

rate is a good proxy for variation due to vagal stimulation.

In general, HRV-based techniques first compute the sequence of intervals between

heartbeats, which may be determined from ECG tracings. These are typically ob-

tained by counting from one QRS complex to the next [30] since the QRS complex is

the most prominent feature of a heartbeat. If only heartbeats resulting from normal

depolarization of the SA node are considered, then this sequence is termed the NN

(for normal-to-normal) series. One of a number of methods is then used to summarize

this series with a single number indicating the amount of heart rate variability. These

HRV measures can be roughly divided into time-domain, frequency-domain, and non-

linear measures. Malik [30] provides a more complete overview of HRV metrics.

Frequency-domain HRV methods are believed to quantify primarily the effects of

vagal stimulation. They rely on the fact that vagal and sympathetic nervous system

activity can be distinguished because they are mediated by biochemical pathways that

are associated with different timescales [30]. One frequency-domain metric, LF/HF, is
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defined in terms of the power spectral density (PSD) of the NN series. In the analysis

here, we compute the PSD using the Lomb-Scargle periodogram [29], a technique for

estimating the frequency content of a signal that is sampled at irregular intervals.

LF/HF is the ratio of the total power in two frequency bands of the spectrum, “low

frequency” (LF) and “high frequency” (HF):

HRV-LF/HF ≡
(Power between 0.04 and 0.15 Hz)

(Power between 0.15 and 0.4 Hz)
.

The HF band is believed to reflect vagal modulations, but there is disagreement as to

whether the LF band reflects sympathetic nervous system modulations or some other

phenomenon [30]. Because of this uncertainty, there is no widely accepted physio-

logical interpretation of the LF/HF ratio. Although it is primarily decreased vagal

(HF) activity that is thought to be dangerous, the sympathetic and parasympathetic

nervous systems do inhibit each other to some degree. As a result, one interpretation

is that the LF and HF energies, and the LF/HF ratio, all reflect the amount of vagal

activity.

The LF/HF ratio is computed for 5-minute windows, as in [30], and the median

value across windows is used as the LF/HF value for that patient. Patients with high

HRV-LF/HF—that is, patients whose high frequency (vagal) heart rate modulations

are small compared to their low frequency (sympathetic) heart rate modulations—are

considered to be at risk.

Time-domain HRV methods give a measure of total variation in heart rate. Com-

monly considered time-domain HRV metrics include SDNN (standard deviation of

NN intervals) and SDANN (standard deviation of mean NN interval over five-minute

windows of the recording). Other time-domain measures include:

• ASDNN, the mean of the standard deviation of NN intervals within five-minute

windows.

• RMSSD, the root-mean-square of differences of successive NN intervals.

• HRVI (HRV triangular index), the maximum number of items in a single bin
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in a histogram of NN intervals (using a standard bin width of 1/128 s), divided

by the total number of NN intervals.

• pNN50, the fraction of differences of successive NN intervals that exceeded 50

ms.

In our own experiments, we found that HRV-LF/HF performed better at identi-

fying patients at high risk of death post-ACS than any of the time-domain metrics.

These results are consistent with earlier findings reported by the Framingham Heart

Study [52]. We believe that frequency-based methods may be more robust in general

because high-frequency noise in ECG recordings does not interfere with measurements

of the relatively low-frequency components that are physiologically relevant.

3.4 Deceleration capacity

Deceleration capacity (DC) is an extension of work on heart rate turbulence [6]. Like

HRV, DC attempts to measure impaired vagal modulation of heart rate, which is

believed to be associated with high risk. The theory underlying the DC technique

is that vagal activity can be distinguished from sympathetic activity because vagal

activation causes heart rate deceleration while the sympathetic nervous system causes

heart rate acceleration [7].

To compute DC, we begin with the RR interval sequence A[k]. Each RR interval

longer than the preceding one is identified as an anchor. Segments of intervals around

each anchor are identified, so that if ki is the index of the ith anchor, then Si[k] ≡

A[ki + k]. (For example, Si[0] represents all the anchors, Si[1] represents every beat

after an anchor, etc.) Let X[k] be the average of the Si[k]’s. Then DC is computed

as follows:

DC ≡
(X[0] + X[1]) − (X[−1] + X[−2])

4
.

Roughly speaking, DC measures the magnitude of the typical beat-to-beat decelera-

tion. Low values of DC have been linked to higher risk of death [7].
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3.5 Morphologic variability

HRV and DC are designed to measure changes in the heart rate mediated by the

autonomic nervous system. Morphologic variability (MV) is a technique designed

to measure variations in the shape of the heartbeat that are related to myocardial

instability [50]. MV measures beat-to-beat conduction path changes that may be

indicative of myocardial damage [24], as discussed in Section 2.5.

At the core of the MV method is morphologic distance (MD), a measure of the

difference in morphology of two heartbeats. MD is computed using a variant of

dynamic time-warping (DTW) [39]. The DTW method, described in detail in Chapter

4, aligns the samples of the two heartbeats in a way that minimizes the total energy

difference between aligned samples. This alignment process permits comparison of

corresponding parts of the two beats even in the presence of timing inconsistencies.

MD is the sum-of-squares energy difference under this optimal alignment and contains

a term for each pair of aligned samples. Because the alignment is longer (leading to

a larger morphologic distance) if the sequences differ in their timing characteristics,

the MD measure reflects differences in amplitude as well as inconsistencies in timing.

To compute MV, the morphologic distance between each pair of consecutive beats

is computed; the resulting series of morphologic distances is referred to as the MD time

series. As with HRV, a frequency-domain measure can then be used to evaluate the

amount of variability in this signal. The MV-LF/HF measure is defined analogously

to HRV-LF/HF, but in terms of the spectrum of the MD series:

MV-LF/HF ≡
(Power between 0.04 and 0.15 Hz)

(Power between 0.15 and 0.4 Hz)
.

As with HRV, MV-LF/HF is computed for each five-minute window and the median

value is used to characterize the patient’s morphologic variability. Patients with low

values of MV-LF/HF (that is, patients who have significant high-frequency variations

in their MD time series) have been shown to be at increased risk for adverse events

following an MI [51, 50].

In Chapters 4 and 5 we develop an alternative to MV-LF/HF that quantifies
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morphologic variability to provide a better measure of risk. Chapter 4 begins by

examining alternatives to DTW for computing morphologic distance and the MD

time series. Then, Chapter 5 introduces the MV-DF risk measure which (like MV-

LF/HF) is based on frequency analysis of the MD time series.
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Chapter 4

Quantifying morphology change

The MV risk measure [50] is an indicator of morphologic heterogeneity in the ECG

signal; its computation requires, as an intermediate step, the computation of the mor-

phologic distance time series. For each element of the MD time series, two successive

heartbeats (represented as vectors of samples) are compared and the difference—or

“distance”—between their shapes is quantified with a single number. In this chapter,

we evaluate several different strategies for quantifying differences in the morphology

of time series. In order to compute morphologic differences effectively, these strate-

gies have mechanisms to account for variable time skew in the observed data. A

compressed version of this material can be found in [46].

Simple metrics, such as Euclidean distance, are not suitable for signals that have

variable amounts of time skew (or, indeed, for signals of different lengths). For exam-

ple, the waves that appear in an ECG are caused by particular sequences of events.

A delay in one phase of the ECG may displace subsequent parts by shifting them

forward in time. In this case, comparing samples by their timing alone may cause

parts of the signals associated with different phenomena to be compared, leading to

a poor estimate of similarity. Methods that relate corresponding parts of two signals

before measuring differences are useful in a variety of settings (e.g. [37, 50]).

We consider five morphologic distance measures for signals represented as real-

valued sequences of time-amplitude pairs, (t1, v1), (t2, v2), . . . , (tn, vn). We consider

two variations of dynamic time-warping [35], a technique conventionally applied to
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sequential data such as time-series data. The other methods are adaptations of earlier

methods for comparing shapes in a general metric space: Earth Mover’s Distance

(EMD) [41], Fréchet Distance (FD) [5], and Hausdorff Distance (HD) [23].

We first perform two general evaluations of each measure. We examine the dis-

tances produced when the measure is used to discriminate one shape from another.

We then examine the robustness of the measure when its inputs are corrupted by noise.

Both analyses are performed on two datasets: synthetic data from the cylinder-bell-

funnel problem [42] and ECG data from the PhysioNet MIT-BIH dataset [20].

We then evaluate the quality of risk stratification of MV-LF/HF when the mor-

phologic distance computation is replaced with each of the five techniques in turn.

The remainder of this chapter is organized as follows. Section 4.1 summarizes

the five measures and the adaptations we propose to them. Section 4.2 describes the

evaluation procedure and results. Section 4.3 concludes with a discussion.

4.1 Techniques

4.1.1 Dynamic Time-Warping

The Dynamic Time-Warping (DTW) distance metric [35] computes the distortion

needed to align two time series. An alignment of two sequences A and B, of length

m and n respectively, is a sequence of integer pairs of some length k,

(φA[1], φB[1]), (φA[2], φB[2]), . . . , (φA[k], φB[k]), (4.1)

where φA and φB satisfy the following boundary conditions:

φA[1] = 1, φB[1] = 1,

φA[k] = m, φB[k] = n,
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as well as the following continuity conditions:

φA[j] ≤ φA[j + 1] ≤ φA[j] + 1 ∀j : 1 ≤ j < k,

φB[j] ≤ φB[j + 1] ≤ φB[j] + 1 ∀j : 1 ≤ j < k.
(4.2)

Intuitively, each ordered pair (φA[i], φB[i]) matches two elements to be aligned.

The DTW distance between A and B is the minimum sum-of-squares difference be-

tween pairs of matched elements under all allowable alignments,

DTW(A,B) ≡ min
φA,φB

|φA|
∑

i=1

(A[φA[i]] − B[φB[i]])2 , (4.3)

where we use |φA| to denote the length of the sequence φA—i.e. what we denote k in

(4.1).

DTW captures both amplitude and timing differences between the signals. Timing

differences are captured by an increase in the length k of the alignment (i.e. a larger

number of summed terms).

DTW may be computed in an efficient manner using dynamic programming [15],

as follows. Suppose we define the function D(i, j) as the minimum cost of aligning

the subsequences A[i . . . m] and B[j . . . n], and by convention let D(i, j) = ∞ if i > m

or j > n. If i = m and j = n then the two inputs only have one sample each, so

D(m,n) = (A[m] − B[n])2. In other cases, the continuity conditions (4.2) yield the

following recurrence relation:

D(i, j) = (A[i] − B[j])2 + min



















D(i + 1, j)

D(i, j + 1)

D(i + 1, j + 1)

. (4.4)

Intuitively, the cost of aligning two subsequences is the sum of two terms: the cost of

aligning their first elements, and the cost of the the cheapest possible way of aligning

the remainders of the two sequences. An implementation of Equation (4.4) can be

used to compute the optimal total cost (namely, D(1, 1)) in O(mn) time.
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4.1.2 Modified DTW Method

The recurrence (4.4) allows a single sample in either sequence to be aligned with an

arbitrarily large number of consecutive samples in the other sequence. This is unde-

sirable in many applications because such a situation usually represents an unphysical

alignment: it is rare to see a single phenomenon manifest itself over a long period

of time in one signal and a nearly instantaneous period in another signal. Syed et

al. [50] avoid this problem by using a slightly modified formulation of DTW, which

we refer to as DTW*. In DTW*, the recurrence (4.4) is replaced by the following

recurrence:

D(i, j) = (A[i] − B[j])2 + min











































D(i + 1, j + 1)

D(i + 1, j + 2)

D(i + 1, j + 3)

D(i + 2, j + 1)

D(i + 3, j + 1)

. (4.5)

The modified recurrence ensures that one sample in either sequence can never

be aligned with more than 3 samples in the other sequence.1 In this way, we never

evaluate the cost of highly unphysical alignments.

4.1.3 Earth Mover’s Distance

Earth Mover’s Distance (EMD) [41] is a metric for comparing two non-negative sig-

nals, interpreted as distributions—a generalization of probability distributions in

which the total mass need not sum to 1. The distance between the two signals is

based on the amount of work needed to construct one signal by deforming the other.

In order to obtain a non-negative distribution from an arbitrary time-series (e.g.

ECG data), we consider the absolute value of the original signal and treat it as a

distribution over time.

The signal with the larger total mass (the mass of A is defined as
∑

i A[i]) is

considered to be the source distribution (A) and the smaller signal is considered to

1The choice of the number 3 here, which reflects the specific form of (4.5), is somewhat arbitrary.
We speculate any small integer ≥ 2 will yield similar results for most applications.
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be the goal distribution (B). The objective is to start with the configuration of mass

specified by the source distribution and move mass in order to construct the goal

distribution using as little work as possible.

Formally, suppose f(tA, tB) is the amount of mass to be moved from point tA to

point tB. The movement specified by f is allowable if it does not exhaust the mass

available and satisfies the demand, for all values of t:

A[t] −
∑

tB
f(t, tB) ≥ 0 ∀t

A[t] +
∑

tA
f(tA, t) ≥ B[t] ∀t.

(4.6)

EMD is the minimum amount of work needed (when all functions from the set of

allowable functions F are considered) to construct the goal, where one unit of work

is needed to move a unit mass a unit distance. The result is normalized by dividing

by the total mass of the goal signal:

EMD(A,B) ≡
1

∑

t B[t]

(

min
f∈F

∑

tA,tB

|tA − tB|f(tA, tB)

)

. (4.7)

More generally, EMD may be defined for distributions over a general metric space,

not just distributions over time. In either case, the problem of finding the minimum

work constitutes a special case of the transportation problem and can be expressed

as a linear program.

4.1.4 Fréchet Distance

Fréchet Distance (FD) [5, 18] is often described by analogy to a man walking a dog:

a man and a dog are connected by a leash and each walks along a different path. The

man and the dog may move at any speed they wish, but neither may move backwards.

FD is the minimum leash length that allows the man and the dog to traverse their

paths.

Formally, given two directed paths parameterized by functions A and B mapping

the interval [0, 1] to the set S, and a metric d(s1, s2) on S, the Fréchet distance is
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defined as

min
φA,φB

max
0≤t≤1

d(A(φA(t)), B(φB(t))).

where φA and φB (intuitively, the positions of the man and dog as functions of time)

may be any monotonically non-decreasing continuous functions from [0, 1] to [0, 1]

satisfying the boundary conditions

φA(0) = 0, φA(1) = 1, φB(0) = 0, φB(1) = 1.

Here we consider the analogous notion for discrete time series, the discrete Fréchet

distance [18]. Suppose we have two sequences of length m and n containing time-value

pairs (t, v) as well as a metric on time-value pairs, d((t1, v1), (t2, v2)). We consider

alignments between the two sequences as we did for DTW in Section 4.1.1. For an

alignment characterized by sequences φA and φB, we may consider the maximum dis-

tance between aligned pairs of samples. The discrete Fréchet distance is the minimum

value of this distance over all possible alignments:

FD(A,B) ≡ min
φA,φB

max
i

d((φA[i], A[φA[i]]), (φB[i], B[φB[i]])) (4.8)

This problem is structurally similar to that of DTW and, like DTW, can be solved

with dynamic programming in O(mn) time.

4.1.5 Hausdorff Distance

Hausdorff Distance (HD) [23] measures the difference between two closed and bounded

sets of points. Given a metric d(s1, s2), the distance from a single point a to a set B

can be defined as the distance from a to the nearest point in B, i.e. minb∈B d(a, b).

To generalize this notion to two sets A and B, we consider the maximum of this

minimum distance from any point in either set to the other set:

HD(A,B) ≡ max

{

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)

}

. (4.9)
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To apply HD to time-series data, we consider the inputs as sets of points in

time-amplitude space (t, v) and define a metric d((t1, v1), (t2, v2)). A straightforward

implementation of Equation (4.9) evaluates HD in O(mn) time, where m and n are

the lengths of the two input sequences.

4.2 Evaluation and Results

4.2.1 Selecting scaling parameters for FD and HD

FD and HD are both parameterized by a distance metric d((t1, v1), (t2, v2)). Such a

metric must make some trade-off in how it weights changes in time against changes in

amplitude, and the particular choice of metric may affect performance on applications

to which the distance measure is applied. To assess FD and HD, we evaluate their

performance with a range of metrics. In particular, we consider metrics of the form

d((t1, v1), (t2, v2)) ≡
√

(v2 − v1)2 + (α(t2 − t1))2 (4.10)

where α (the “scaling parameter”) is a positive number that sets the relative weight

of unit changes in time and amplitude.

4.2.2 Cylinder-bell-funnel problem

Discrimination ability

To evaluate the utility of the various morphologic distance measures for distinguish-

ing between shapes, we compared the distances yielded by each method on a set

containing 500 randomly generated instances of each of the three eponymous classes

(shapes) of the cylinder-bell-funnel (CBF) problem [42].

For each method, we computed the pairwise distances between all 1500 elements

of the set. We then measured the ratio of the average distance in pairs containing

different shapes to the average distance in pairs of the same shape. We refer to

this ratio as the inter/intra distance ratio (IIDR). High values of the IIDR indicate
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Figure 4-1: Discrimination performance on CBF data as a function of α for selected
MD measures. FD achieved a maximum IIDR of 1.38 at α = 0.105, and HD achieved
a maximum of 1.58 at α = 0.087.

Method IIDR
DTW 2.06
DTW* 2.14
EMD 1.82
Fréchet α = 0.105 1.38
Hausdorff α = 0.087 1.58

Table 4.1: Discrimination performance of MD measures on CBF data.

that the method distinguishes between instances of different classes while ignoring

differences between instances of the same class.

For FD and HD, we evaluated the IIDR under a range of scaling parameters as

described in Section 4.2.1. The results are shown in Figure 4-1. For subsequent

experiments on this dataset, we use the scaling parameters that yielded the highest

IIDR here and report the results obtained.

The IIDR observed for each of the five methods is reported in Table 4.1. The

DTW methods, followed by EMD, showed the best performance among the methods

considered.
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Figure 4-2: Robustness of MD measures on CBF data.

Noise resistance

We evaluated the noise resistance of each morphologic distance measure by comparing

the morphologic distances obtained from given inputs to the morphologic distances

obtained when those inputs were corrupted by noise.

We synthesized 100 pairs of random cylinder-bell-funnel instances (i.e. 200 in-

stances) and computed the morphologic distance between the elements of each pair.

We then corrupted each instance with Gaussian distributed white noise of a fixed

variance. The computation of morphologic distances was repeated on the noisy data.

The correlation coefficient of the two output sequences (before and after noise was

added) was used as a measure of how robust the method was against noise. We

evaluated this correlation for various values of noise variance.

The morphologic distance correlations observed for various noise levels are shown

in Figure 4-2. DTW* showed the highest noise resistance at all noise levels, followed

by DTW and EMD.
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4.2.3 Electrocardiogram data

Discrimination ability

We performed experiments analogous to those in Section 4.2.2 on ECG data. We ac-

quired ECG data for 23 patients from a subset of the MIT-BIH Arrhythmia Database

[20] that is intended to be a representative sample of ECG waveforms. The data were

selected randomly from a corpus of ambulatory ECG recordings obtained from pa-

tients at Beth Israel Hospital with normal heart activity. The recordings are relatively

clean, and higher quality than typical Holter data (360 samples per second with 11-bit

resolution). Two channels of ECG data were available; we considered only the first

channel—a modified limb lead II (MLII), which shows the QRS complex clearly and

in the usual orientation.

The data were annotated with cardiologist-supplied labels for each heartbeat (e.g.

normal, premature ventricular contraction, etc.). We excluded 9 patients who did not

have at least two differently labeled beats each of which occurred at least five times.

For each of the remaining 14 patients, we randomly selected pairs of heartbeats with

the same label and pairs of heartbeats with different labels. We then computed the

IIDR—here, the ratio of the average distance between heartbeats of different labels

to the average distance between heartbeats of the same label. The average IIDR

across all patients was considered to be a measure of discrimination performance in

this application.

For FD and HD, appropriate scaling parameters were selected as in Section 4.2.2;

the average IIDR as a function of scaling parameter is shown in Figure 4-3. The

average IIDR for each of the five methods is reported in Table 4.2. In this application,

the DTW methods and EMD again showed the best discrimination performance.

Surprisingly, DTW performed much better here than DTW*. We speculate that this

is due to the relatively high variability of ECG morphologies. Even when instances

have the same physiological label, they may have different morphologies and require

significant warping to align. When significant warping is needed, DTW yields lower

morphological distances than DTW* (where the amount of warping is restricted). We
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Figure 4-3: Discrimination performance on ECG data as a function of α for selected
MD measures. FD achieved an IIDR of 1.74 at α = 0.0077, and HD achieved an
IIDR of 1.76, also at α = 0.0077.

Method IIDR
DTW 2.66
DTW* 2.19
EMD 2.16
Fréchet α = 0.0077 1.74
Hausdorff α = 0.0077 1.76

Table 4.2: Discrimination performance of MD measures on ECG data.

believe that this is true to a much smaller extent in the CBF instances.

Noise resistance

We evaluated the noise resistance of each method as in Section 4.2.2, using the pairs of

ECG signals from the previous experiment. Figure 4-4 shows the correlation between

the morphologic distances on clean data and the morphologic distances when the

data were corrupted by noise, as a function of the noise variance. DTW* showed the

highest noise resistance at all noise levels, followed by DTW and HD.
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Figure 4-4: Robustness of MD measures on ECG data.

4.2.4 Risk stratification

Finally, we evaluated the utility of each method for risk stratification of patients

following non-ST-elevation ACS (NSTEACS). We computed morphologic variability

for 764 patients using data from the DISPERSE-2 (TIMI33) trial [13] for whom

24 hours of continuous ECG were recorded within 48 hours of a NSTEACS. More

information about the trial data and our criteria for including patient data are given

later in Section 5.1. MV-LF/HF was computed using DTW* as the morphologic

distance measure, as described in Section 3.5 and in [50]. We then repeated the

computation of MV while replacing DTW* with each of the other four morphologic

distance metrics (DTW, EMD, FD, HD) in turn.

We evaluated each measure by computing the c-statistic of the resulting MV values

for prediction of death within a 90-day followup period of the initial event. The

resulting c-statistic for each measure is shown in Table 4.3. None of the morphologic

distance measures under consideration yielded MV values that had prognostic value

better than DTW*, the method currently proposed for use.
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Method c-statistic
DTW 0.619
DTW* 0.724
EMD 0.517
Fréchet 0.666
Hausdorff 0.656

Table 4.3: Prediction accuracy of 90-day death using MV with various MD measures.

4.3 Discussion

In the four general evaluations (discrimination performance and noise resistance on

both datasets), the DTW methods consistently outperformed the other three metrics.

EMD performed better than the remaining metrics on all but one of the evaluations—

the exception being the noise resistance test on ECG data (illustrated in Figure 4-4).

We believe that the superior performance of the DTW methods and EMD is in

part due to the fact that they sum a particular cost function across the entire signal,

yielding a cumulative assessment of morphology differences. In contrast, FD and

HD look at the input samples to see where some feature is maximized, and then use

that as their computed distance. Consequently, those metrics are more sensitive to

differences (including random noise) in limited regions of the two signals, differences

that are not necessarily representative of morphologic differences across the entire

signal. In many settings, including ECG recordings, measurements are accompanied

by significant amounts of noise, so it is critical that signal processing techniques are

robust against this noise.

In the risk stratification evaluation, DTW* showed the best performance among

the MD metrics, by a significant margin, for identifying morphologic differences as-

sociated with risk of death. We conclude that DTW* is, reassuringly, well suited for

use in MV-LF/HF.

Because the five methods showed somewhat inconsistent behavior across the dif-

ferent evaluations, we caution against interpreting the results of any one evaluation

too generally. For example, although the EMD-based MV measure showed the worst

performance among all the MD metrics, EMD performed relatively well in the noise re-
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sistance and discrimination performance evaluations (even those on ECG data). This

inconsistency may arise because the methods we considered may vary in their sensi-

tivity to large-scale morphology changes (like those between heartbeats of different

physiological classes) and small-scale morphology changes (like the subtle distinctions

that we believe are quantified by MV techniques).

One additional consideration is that the use of FD and HD (as described here) is

complicated somewhat by the need to select an appropriate metric. This choice of

metric can have a significant effect on discrimination performance. We cannot exclude

the possibility that the performance of FD or HD might improve substantially on the

tests we conducted when they are computed using a different metric.
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Chapter 5

Morphologic Variability

In this chapter, we develop a new technique for summarizing morphologic distance

information to provide a measure of morphologic variability and an evaluation of

post-ACS risk. Syed et al. showed that low levels of the MV-LF/HF measure are

significantly associated with higher risk of death and MI following NSTEACS [50,

51]. As discussed in Section 2.5, there is evidence that MV measures beat-to-beat

variations in the cardiac conduction path caused by intrinsic myocardial instability.

We propose changes to the MV-LF/HF measure that improve its accuracy of risk

assessment. Our primary contribution in this part is the empirical identification of a

diagnostic frequency band such that the total energy in that band correlates strongly

with risk of death. We present a new risk measure called MV-DF that considers the

energy in the diagnostic frequency band.

The remainder of this chapter is organized as follows. Section 5.1 gives information

about the populations on which we evaluated our techniques. Section 5.2 describes the

selection of an output threshold, which is a parameter of the summarization process.

Section 5.3 describes the selection of the diagnostic frequency band and presents

performance results for the MV-DF measure. Section 5.4 discusses the application

of MV-DF to the prediction of myocardial infarction rather than death. Section

5.5 proposes a possible mechanism by which myocardial instability could yield high

energy in the DF band of the MD time series. Section 5.6 concludes with a discussion.
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5.1 Evaluation

We trained our methods on data from 764 patients from the DISPERSE-2 (TIMI33)

trial [13]. The DISPERSE-2 trial compared the efficacy and safety of AZD6140 and

clopidogrel in patients admitted following NSTEACS. Patients in the trial had con-

tinuous Holter monitor ECG data recorded at a sample rate of 128 Hz within 48

hours of admission. A total of 990 patients were enrolled in the trial. Patients with

fewer than 24 hours of continuous ECG were excluded from the study. To exclude

data with low signal quality, further preprocessing was conducted as described in [48].

Usable data from 764 patients remained after this step. Patients were followed up for

a period of 90 days for the endpoints of death and MI; there were 15 deaths (2.0%)

in this cohort during the follow-up period.

Subsequently, we validated our methods on data from an independent set of 2,302

patients in the placebo group of the MERLIN (TIMI36) trial [33], which compared

the safety and efficacy of ranolazine versus placebo in patients post-NSTEACS. All

patients in this study had at least 24 hours of continuous ECG data, and preprocessing

was performed in a similar way as for DISPERSE-2. Patients were followed up for up

to 24 months for the endpoints of death and MI. The median follow-up length was

348 days. There were 57 deaths (2.5%) in this cohort within the first 90 days of the

follow-up period.

5.2 Output thresholds

The MV-LF/HF technique described in Section 3.5 computes a measure of morpho-

logic variability for each of a patient’s 5-minute windows and then uses the median

value across windows as a summary—an indicator of the patient’s overall morphologic

variability. (HRV methods usually operate in the same way, except that it is more

common to take the mean value across windows [30].)

We consider a generalization of this procedure by introducing a parameter called

the output threshold, labeled θ. Given a set of n inputs—an MV-LF/HF value for
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Figure 5-1: Prediction of 90-day death using MV-LF/HF with varying output thresh-
olds (θ).

each of n windows—we sort them and return a value that is greater than ⌊θn⌋ of

them. The previous procedure, in which we returned the median, now corresponds

to an output threshold of 0.5, because the median of a set is greater than half of its

elements.

To determine whether a different output threshold might improve the risk stratifi-

cation of MV-LF/HF, we evaluated the c-statistic for predicting death within 90 days

on the DISPERSE-2 dataset as the output threshold θ was allowed to vary between 0

and 1. Figure 5-1 shows this discrimination quality as a function of output threshold.

There is a trend towards improved discrimination as the output threshold is lowered.

The c-statistic improved from our baseline of 0.724 (at θ = 0.50) and achieved a

maximum value of 0.769 (at θ = 0.05).

Intuitively, although having low MV in general is dangerous, having even a small

number of extremely low-MV periods is even more dangerous. Our results suggest

that having this characterization of a patient’s extreme behavior is useful for risk

analysis. When using an output threshold, MV-LF/HF can incorporate information
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about morphologic variability that is not captured in a measure of central tendency

like the median.

The quality of discrimination drops off sharply as θ becomes very low or very high

(e.g. θ < 0.03 or θ > 0.90). This may be because as θ nears 0 or 1, the method

returns more extreme values from among the inputs. For example, θ = 0 (θ = 1) cor-

responds to returning the minimum (maximum) observed value over all windows—and

windows with near-minimal (near-maximal) MV-LF/HF are more likely to contain

noise, measurement anomalies, etc., and less likely to contain physiologically interest-

ing information about the patient. (Happily, this noise effect seems to be insignificant

on a surprisingly large portion of the θ space.)

When selecting an output threshold θ to produce a good summary, we need to

take advantage of the trend towards improved discrimination while being careful to

avoid the effects of noise. Guided by the results shown in Figure 5-1, we chose an

output threshold for use in subsequent experiments. We selected a value of θ = 0.10,

for which the c-statistic on the DISPERSE-2 dataset is 0.738 (an improvement of

0.014 over the baseline). This θ is suboptimal for this dataset—in the sense that a

smaller θ maximizes the c-statistic—but it lies far from the zone in which the effects

of noise become significant.

We verified that similar trends were also observed on the MERLIN dataset. The

baseline c-statistic was 0.675 (θ = 0.50). At θ = 0.10, it improved to 0.706, which is

approximately the maximal c-statistic on the MERLIN dataset.

5.3 A diagnostic frequency (DF) band

The MV-LF/HF measure proposed in [50] was intended to be analogous to HRV-

LF/HF [30] so that the utility of using the MD time series in place of the NN time

series could be fairly evaluated. The frequency bands for the low frequency (0.04

Hz–0.15 Hz) and high frequency components (0.15 Hz–0.40 Hz) are those used for

HRV. As described in Section 3.3, the LF and HF frequency bands are associated with

the timescales on which the sympathetic nervous system and vagal activity regulate
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Measure θ = 0.1 θ = 0.5
LF 0.553 0.539
1/HF 0.733 0.674
LF/HF 0.738 0.724

Table 5.1: Prediction accuracy (c-statistic) of 90-day death using LF, 1/HF, and
LF/HF. Since the c-statistic is a non-parametric statistic, 1/HF and HF are equivalent
here.

heart rate. Since morphologic variability is intended as a measure of a different

phenomenon, electrical instability of the myocardium, there is little reason to believe

that the frequency bands used for HRV would also be optimal for risk assessment

with MV. We show here that there is, in fact, a range of better frequencies for the

purposes of MV-based risk stratification.

The MV-LF/HF measure is computed as the ratio of energies in two separate

frequency bands of the MD time series. Low LF/HF is an indicator of risk and is

associated with either low LF energy, high HF energy, or both. We investigated

whether energy in either of those frequency bands alone, or in any single frequency

band, could be used effectively for prognostication.

We first examined the effectiveness of using the LF and HF energies alone (instead

of the LF/HF ratio) for risk assessment on the DISPERSE-2 dataset. The results of

this analysis, for output thresholds of θ = 0.5 and θ = 0.1, are shown in Table 5.1.

For θ = 0.5, neither the LF nor HF bands by themselves give as much information as

LF/HF, but having high HF is much more indicative of adverse events than is having

a low LF. For θ = 0.1, HF and LF/HF are almost equivalent. This suggests that

the HF energy is the major contributor of information in the LF/HF ratio. Indeed,

for both θ values, considering the LF energy alone gives prognostication that is only

slightly better than chance.

Based on these results, we decided to attempt to identify a frequency band near

the HF range such that high energy in that band would be a strong predictor of death.

We refer to this frequency band as the diagnostic frequency (DF) band.

To help choose the DF band, we evaluated all possible frequency bands within
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Figure 5-2: Prediction accuracy (c-statistic) of 90-day death using single band energy
as a function of band location, θ = 0.5.

the range 0.1 Hz–0.6 Hz to identify an optimal band. We excluded frequency bands

with width less than 0.05 Hz in order to ensure that the energy within the band could

be estimated robustly from time-series data. The frequency band endpoints were

tested with a granularity of 0.01 Hz. For each band, we evaluated the c-statistic for

predicting death within 90 days on the DISPERSE-2 dataset, using θ = 0.5. Figure

5-2 shows the resulting c-statistic as a function of the band’s location (i.e. we vary

the lower and upper frequency limits). The maximum c-statistic observed within the

search space was 0.741.

We repeated this analysis for an asymmetric output threshold. Because high risk is

associated with low values of LF/HF but high values of DF, we reversed the direction

in which we moved the output threshold in order to give an analogous metric for DF.

Therefore, we use θ = 0.9 rather than θ = 0.1. Figure 5-3 shows the c-statistic as

a function of band location when θ = 0.9. The maximum c-statistic observed in the

search space was 0.778.

Based on the results shown in Figures 5-2 and 5-3, we selected the DF band to be
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Figure 5-3: Prediction accuracy (c-statistic) of 90-day death using single band energy
as a function of band location, θ = 0.9.

0.30 Hz–0.55 Hz. This frequency range shows good discrimination for both θ = 0.5

and θ = 0.9; the respective c-statistics are 0.732 and 0.771. These are near optimal—

for both θ values, the c-statistic of the DF band is within 0.01 of the best c-statistic

observed within the search space for that θ (0.741 and 0.778, respectively). We refer

to the risk measure obtained by using the DF band with θ = 0.9 as the MV-DF

measure.

We revisited the selection of the output threshold to see if the change of frequency

bands would have had any effect on our choice of θ. Figure 5-4 shows the quality of

discrimination when the new DF band is used but the output threshold is once again

allowed to vary. The results of this analysis support the use of our initial choice of

θ = 0.9 with the new DF band. The same general behavior is observed with MV-

LF/HF (except, of course, that the effects of lowering and raising θ are reversed). The

c-statistic rises steadily with θ and the trend is much more pronounced than it was

under MV-LF/HF. As in Figure 5-1, there is a steep drop in quality of discrimination

for values of θ very close to 0 and 1. The prominent peak between θ = 0.9 and
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Figure 5-4: Prediction of 90-day death using DF band energy (0.30 Hz–0.55 Hz) with
varying output thresholds (θ).

θ = 1.0 here is somewhat unexpected; however, it may not be indicative of any general

phenomenon, given that only 15 patients died in the DISPERSE-2 population.

We validated the selection of the MV-DF measure (which was selected using the

DISPERSE-2 dataset) on the MERLIN dataset. Figure 5-5 shows the c-statistic

as a function of the band location for θ = 0.9 (that is, this figure shows the same

information for MERLIN that Figure 5-3 shows for DISPERSE-2). On this dataset,

MV-LF/HF achieved a c-statistic of 0.675. The MV-DF measure achieved a c-statistic

of 0.752. This was close to the maximum c-statistic observed in the search space in

Figure 5-5, which was 0.766. These results provide corroboration on an independent

dataset of the appropriateness of the MV-DF measure.

Table 5.2 and Figure 5-6 summarize the performance improvements from the two

changes we made to the MV-LF/HF method—using an output threshold of 0.9 and

using the new DF band—separately and then together. The baseline is the MV-

LF/HF method as described in [50]. Interestingly, on both datasets, the improvement

gained by using both changes together is greater than the sum of the improvements
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Figure 5-5: Prediction accuracy (c-statistic) of 90-day death using single band energy
as a function of band location, θ = 0.9, on the MERLIN dataset.

Measure DISPERSE-2 MERLIN
Baseline (MV-LF/HF) 0.724 0.675
+Threshold 0.738 0.706
+DF Band 0.732 0.718
+Both (MV-DF) 0.771 0.752

Table 5.2: Summary of MV method changes and their effects on method performance.
The c-statistic for each prospective method is shown on both datasets.

gained by using the two changes separately.

We used a Cox proportional hazards model [16] to gauge the value of using dichoto-

mized MV-DF values to separate the population into low- and high-risk groups. The

Cox proportional hazards model estimates the hazard ratio, the ratio of the instan-

taneous rates of death for patients in the two groups. The quartile of patients with

the highest MV-DF was identified as the high-risk group. On the DISPERSE-2

dataset, the cutoff MV-DF value for the top quartile was 48.0. The high-risk group

(MV-DF ≥ 48.0) showed a hazard ratio of 8.21 (p < 0.001, CI = [2.72, 27.48]) for

death within 90 days of NSTEACS, and a hazard ratio of 12.30 (p = 0.002) for death
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Figure 5-6: Summary of MV method changes and their effects on method perfor-
mance.

within 30 days of NSTEACS.

When applied to the MERLIN dataset, this cutoff identified identified a high-risk

group containing 647 patients (28.1% of the cohort). The high-risk group showed a

hazard ratio of 5.12 (p < 0.001, CI = [3.07, 9.39]) for death within 90 days. This

hazard ratio is lower than the hazard ratio on the DISPERSE-2 data. However, this

could reasonably be expected because the DF frequency band was specifically chosen

using the data from the DISPERSE-2 trial. In addition, the hazard ratio under

MERLIN is still well within the 95% confidence interval obtained on the DISPERSE-

2 data.

Subsequent to our work, Syed et al. compared the performance of the MV-DF

metric to DC and HRV-LF/HF on data from the MERLIN trial [49]. In that study,

there was a median follow-up period of 348 days post-NSTEACS. The following pre-

dictors were considered in a multivariate analysis: dichotomized values of the three

ECG risk measures, LVEF ≤ 0.4, TIMI risk score group, high levels of brain natri-

uretic peptide (BNP, an indicator of congestive heart failure), high BMI, and low
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Group Adjusted HR CI P value
DC ∈ [2.5, 4.5] 1.55 [0.93, 2.57] 0.094
DC < 2.5 1.97 [1.04, 3.73] 0.039
HRV-LF/HF < 0.95 1.36 [0.83, 2.23] 0.221
MV-DF > 52.5 1.65 [1.00, 2.71] 0.050

Table 5.3: Multivariate analysis of ECG risk measures (n = 2122; from [49]).

Group Adjusted HR CI P value
DC ∈ [2.5, 4.5] 1.76 [1.00, 3.12] 0.052
DC < 2.5 1.88 [0.86, 4.08] 0.111
HRV-LF/HF < 0.95 1.17 [0.66, 2.09] 0.594
MV-DF > 52.5 2.31 [1.28, 4.16] 0.005

Table 5.4: Multivariate analysis of ECG risk measures for patients with LVEF > 0.4
(n = 1943; from [49]).

creatinine clearance (CrCl). Abbreviated results from this analysis are shown in Ta-

ble 5.3. MV and DC, but not HRV, were independently and significantly associated

with death, and showed comparable hazard ratios. However, MV’s prognostic value

increased (relative to the other two ECG risk measures) when only outcomes in the

first 90 days following NSTEACS were considered. MV-DF therefore seems to be

especially valuable for short-term risk stratification.

A separate analysis was conducted in which only patients with high LVEF were

considered. The results of this analysis are shown in Table 5.4. MV-DF was signifi-

cantly associated with death in this population, but DC and HRV were not. Because

low LVEF is already a quite good predictor of risk, these results suggest that the MV-

DF metric may be used to supplement the echocardiogram by identifying high-risk

patients who would not have been identified as such on the basis of LVEF.

5.3.1 Graded response

The risk of death as MV-DF increases shows a graded response. The 90-day incidence

of death in the MERLIN dataset, when the patients are divided into deciles by MV-DF

value, is shown in Table 5.5. The 60% of patients with the lowest MV-DF (MV-DF <
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Number of Death
Decile deaths rate
0 (MV < 26.4) 1 0.4%
1 (26.4 ≤ MV < 28.9) 4 1.7%
2 (28.9 ≤ MV < 31.5) 1 0.4%
3 (31.5 ≤ MV < 34.3) 2 0.9%
4 (34.3 ≤ MV < 37.6) 1 0.4%
5 (37.6 ≤ MV < 41.3) 3 1.3%
6 (41.3 ≤ MV < 46.9) 5 2.2%
7 (46.9 ≤ MV < 54.2) 7 3.0%
8 (54.2 ≤ MV < 79.9) 13 5.7%
9 (79.9 ≤ MV) 20 8.7%

Table 5.5: 90-day rate of death in each decile of MV-DF (n = 2302).

41.3) show a low (0.9%) risk of death in the 90 days following NSTEACS. This rate

rises with increasing MV-DF in the remaining 4 deciles, with a maximum rate of 8.7%

on the highest-MV decile (MV-DF > 79.9).

5.3.2 Stability

To evaluate the sensitivity of the MV-DF measure to variations in the band parame-

ters, we evaluated the stability of the high- and low-risk groups that were identified

when the lower and upper band limits were perturbed. We compared the MV-DF

metric to the metric obtained when either the DF band lower or upper frequency

limit was raised or lowered by 0.05 Hz (a relative change in band size of 20%). For

each of these 4 alternative techniques, we evaluated the number of patients who died

who would have received different prognoses (high- or low-risk) under MV-DF and

the alternative technique.

On the MERLIN dataset, for MV-DF and each of the other 4 metrics under

consideration, we dichotomized the values at the top quartile, with high values indi-

cating high risk. In each case this procedure identified a high-risk group containing

576 patients. Under MV-DF, 36 of the patients in this high-risk group died within

90 days.

Table 5.6 shows the results of this analysis. For each of the alternative bands, no
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New frequency band (Hz) In Out
0.30–0.50 2 0
0.30–0.60 1 0
0.25–0.55 2 0
0.35–0.55 1 1

Table 5.6: Stability of prognosis when the DF frequency band is replaced with a
nearby one. The “In” column shows the number of patients who died (n = 57) who
were identified as high-risk under the alternative band but not under MV-DF. The
“Out” column shows the number of patients who died who were identified as high-risk
under MV-DF but not under the alternative band.

more than 2 (3.5%) of the patients who died would have received different prognoses

under MV-DF and the alternative technique. Although the heatmaps in Figures 5-

3 and 5-5 showed that the c-statistics were fairly stable as a function of the band

location, they did not exclude the possibility that different metrics might single out

different—but similarly sized—subsets of the patients who later died. The analysis

here confirms that the risk assessment generated by MV-DF is stable (does not change

substantially) at the level of individual patients when the band location is perturbed.

Similar results were obtained when we counted all patients instead of only those who

died.

5.3.3 Two-band measures

After refining the MV-DF metric, we returned to the question of whether a more

complex risk measure that incorporated information from two frequency bands (as

MV-LF/HF does) could provide significantly improved risk assessments. Naturally,

a metric with more free parameters (four frequency band boundaries rather than

two) can be expected to perform no worse on its training set than a simpler metric.

The test of such a method is whether its performance is also improved on previously

unseen test data.

Using techniques similar to those used in our previous investigations, we evaluated

the prognostic value of an MV-LF/HF-like ratio, where the HF band was set to be

the DF band we identified (0.30–0.55 Hz), and the LF band bounds were allowed
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to assume values in the range 0.00–0.40 Hz. On the DISPERSE-2 dataset the best

such LF/HF-like measure (with an LF band of 0.03–0.10 Hz) achieved a c-statistic of

0.789—an improvement over MV-DF. However, the same measure, when evaluated

on the MERLIN dataset, produced worse risk stratification than MV-DF (a decrease

in c-statistic from 0.752 to 0.725).

We fixed the HF band parameters here rather than searching the entire parameter

space, and it is possible that allowing those parameters to vary could yield a better

MV-LF/HF measure. However, our analysis here suggests that any improvement

from such a change may be quite limited.

5.4 Predicting MI

Although low MV-LF/HF is significantly associated with risk of MI [50], we found

no significant association between high MV-DF and MI. We evaluated the utility of

using MV-DF for predicting MI within 90 days of NSTEACS on the DISPERSE-2

dataset. When dichotomized at the top quartile, high-DF patients showed a hazard

ratio of 1.14, but this separation was not statistically significant (p = 0.83, CI =

[0.498, 2.624]). Using the DF band in conjunction with θ = 0.5 rather than θ = 0.9

was no better.

As with the endpoint of death, we tried to determine whether energy in another

frequency band might be used to predict MI. We found that in general, low energy

in the given band was associated with high risk of MI. However, no frequency band

provided particularly good risk assessment. Figure 5-7 shows the c-statistic for pre-

dicting MI within 90 days as a function of band location. The maximum c-statistic

observed in this figure was 0.575.

In our investigations, we found that using unsmoothed MD data (that is, omit-

ting the median filtering step when computing the MD series) yielded more accurate

prediction of MI. However, this change still did not yield any statistically significant

separation. In addition, we observed that using unsmoothed MD time series decreased

discrimination performance for predicting death. Because smoothing is similar in ef-
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Figure 5-7: Prediction accuracy (c-statistic) of 90-day MI for single band energy as a
function of band location, θ = 0.9.

fect to a low-pass filter, this result suggests that morphologic differences that predict

MI may be associated with higher frequencies than those that predict death.

Because the DF band was chosen for its accuracy in predicting risk of death, it

is not entirely surprising that MV-DF does not predict MI well. It is believed that

the DF band measures, specifically, conduction pathway irregularities that portend

high risk for fatal arrhythmias. Work on MV-LF/HF has indicated that morphologic

variability does indeed contain prognostic information that can be used in risk strat-

ification for MI, but the mechanism for this is still not fully understood. Predicting

risk for MI more accurately might require a new measure of morphologic variability

that is associated with a different physiological mechanism and (at the very least)

considers different frequency ranges.
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5.5 Physiological interpretation

In this section, we propose a simplified model of myocardial activity that may provide

a physiological interpretation of what the MV-DF metric measures. In particular,

we attempt to provide a mechanism to explain conduction path changes that are

associated with increased energy in the diagnostic frequency band (0.30 Hz–0.55 Hz)

of the MD time series.

Some aberrant heart rhythms manifest as patterns with a fixed period. For exam-

ple, in ventricular bigeminy and trigeminy, normal beats are interspersed with PVCs

every two or three beats, respectively. PVCs (and other kinds of unusual beats) may

also occur at larger intervals or only on an occasional and irregular basis. Such ar-

rhythmias have, in certain cases, been observed to terminate as soon as heart rate

goes below or above a certain threshold [25]. This suggests that the formation or

conduction of aberrant beats is critically affected by some process that evolves with

time, and on timescales that are on the order of the length of a heartbeat.

One possible mechanism for this is that a region of cells surrounding an ectopic

focus (a group of cells, other than the SA node, that spontaneously generates a

wave of depolarization) may be slow to repolarize completely and therefore cannot

depolarize on every heartbeat, but only on average once every N heartbeats (for some

real number N > 1). It is on these heartbeats that a PVC occurs because the ectopic

focus can actually excite the myocardium via the surrounding tissue.

When such an island of cells is located not at an ectopic focus but at some other

part of the myocardium instead, it may lead to periodic conduction path changes

rather than periodic ectopic beats. When all the cells of the myocardium can de-

polarize, the wave of depolarization takes some “preferred” course through the my-

ocardium. However, if a region of cells is electrically unexcitable some of the time,

then the wave is deflected around that region. Assuming that these two alternatives

register as different heartbeat morphologies on the ECG, we might observe a sequence

of morphologies like the following: ABBBABBBABBB . . . , where A represents a

heartbeat in which the region of interest is depolarized, and B represents one in which
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it is not. This particular pattern is associated with N = 4.

Now assume, for simplicity, that the computation of morphologic difference cap-

tures the difference between the A and B morphologies, and no other differences.

Then the ECG input above would be associated with a morphologic distance sequence

HLLHHLLHHLL . . . , where H represents a high morphologic distance (between an

A beat and a B beat) and L represents a low morphologic distance (between A and

A, or B and B). For an integer value of N , such a sequence will consist of alternating

sequences of 2 H values and (N − 2) L values.

When N is an integer ≥ 3, the MD time series is periodic with period N , so the

peak of its frequency content is given by f/N , where f is the heart rate. However,

when N = 2, the sequence is merely HHHHHH . . . and it has no energy content

except at a frequency of 0. Therefore, f/3 represents an approximate ceiling on the

frequency content for this phenomenon. For normal heart rates of 60–100 bpm, f/3

is no larger than 0.56 Hz. This frequency ceiling is essentially the same as the upper

frequency limit of the DF band, 0.55 Hz. On the other end, the phenomenon we

are considering could be associated with arbitrarily low frequencies, because as N

increases, f/N can be arbitrarily close to 0. However, our empirical analysis showed

that considering low frequencies does not improve the quality of discrimination. We

speculate that the DF lower frequency limit we identified (0.30 Hz) arises because

lower frequencies contain successively less and less information for prognostication—

after all, even patients with completely healthy myocardium can show low-frequency

changes in MD.

So far, we have modeled the myocardium with a single island of slowly repolarizing

tissue. The model can easily be generalized to the more realistic situation of multiple

such islands (possibly associated with different values of N) that produce conduction

path changes independently. Assuming that the morphologic changes arising from

two or more deflections are additive,1 the MD time series can be considered to be a

1That is, the MD between a baseline conduction path and a path in which two deflections are
taken is the sum of the MDs between the baseline path and the two paths in which the deflections are
taken in isolation. Whether this condition holds may depend on the proximity of the two aberrant
islands and the morphologic distance measure being used.
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superposition of multiple time series, each of which is associated with a single island

and behaves as described above. Because the power spectrum is linear in the MD

time series, similar frequency-domain behavior should be observed under this more

complex model.

5.6 Discussion

Morphologic variability identifies unstable beat-to-beat variations in the cardiac con-

duction path that portend high risk for cardiovascular death. In this chapter, we iden-

tified a diagnostic frequency (DF) band associated with the characteristic timescales

of such variation. High DF energy in this band is strongly associated with risk of

death. We also showed that having a small fraction (10%) of extremely high-MV

activity predicts high risk for death, even more so than having generally high MV.

We formulated the MV-DF method based on the results of analysis on ECG recorded

during the DISPERSE-2 trial. Our confidence in the technique is bolstered by the

fact that it provides good risk assessment on an independent test set of patient data

from the MERLIN trial.

Not only does the MV-DF metric outperform the MV-LF/HF metric, it has the

added advantage of having a simpler characterization, since it only relies on the

energy in one frequency band rather than two. A preliminary investigation showed

that using a two-band MV-LF/HF-like metric is unlikely to yield significantly better

risk stratification. This was consistent with our observation that the LF/HF ratio

itself only performed marginally better than the HF energy alone.

One weakness of MV-DF, as compared to MV-LF/HF, is that it does not do

as good a job of risk stratifying for MI. Further research is needed to identify an

MV-based metric that predicts risk for MI more accurately.
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Chapter 6

Dynamics

In this chapter, we propose techniques for characterizing the dynamics of cardiac

behavior using hidden Markov models (HMMs). We present preliminary results that

suggest that some features of those models may have prognostic value for long-term

risk stratification and short-term risk prediction.

Many interesting cardiac phenomena (for example, bigeminy and trigeminy, in

which a premature ventricular contraction happens every second or third beat, re-

spectively) can be naturally described in terms of particular sequences of classes of

heartbeats. It has previously been shown that the presence of specific “motifs”—

short and uncommon substrings in a discretized version of a stream of physiological

data—can be used to separate clinically relevant classes of behavior [47]. Moreover,

such motifs can be identified with no prior knowledge.

We believe that HMMs, because they are well suited for analysis of sequential

data, could complement motif detection techniques for purposes of identifying phys-

iologically interesting patterns. They are valuable because they could in principle

identify certain patterns more robustly than with motifs in the presence of noise or

other variations. HMMs use a probabilistic characterization of similarity, so they can

efficiently recognize patterns that deviate from a given “template” and quantify the

amount of deviation.

We developed and applied various approaches to quantify the dynamics of cardiac

behavior, with two goals: identifying patients at high risk of death, and identifying
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changes in dynamics that tended to occur shortly before death. In particular, we

constructed models of two kinds of time series derived from ECG recordings: phys-

iological labels of heartbeat types (as supplied by a cardiologist) and the MD time

series (computed as described in Section 3.5).

This chapter begins with an overview of HMMs and their application to pattern

detection. We then describe the procedures we used to train models from physiological

data. We report on the results of experiments in which we trained HMMs and used

various features of them to assess risk. Finally, we discuss possible future directions

for this work.

6.1 Theory

Hidden Markov models are a generalization of Markov chains, and may be used to

model the generation of both discrete- and continuous-valued time series. A given

model provides a characterization of which output sequences (also called emission se-

quences) are likely to be generated by a particular process. More explicitly, for a fixed

output length m, the probability that a particular output sequence t ≡ [t1, t2, . . . tm]

is observed can be written as

Pr(t) = Pr(t1, t2, . . . , tm) =
∑

s1,...,sm

(

S(s1)E(s1, t1)
m
∏

j=2

T (sj−1, sj)E(sj, tj)

)

, (6.1)

where the functions S, T , and E are parameters of the model. In the summation,

each of the variables s1, . . . , sm may take on any value in {1, . . . , n}, where n is the

number of hidden states.

This model may be interpreted in two stages, as follows. First, the values [s1, . . . , sm]

(the hidden state sequence) are assumed to be generated by a Markov process where

the probability of starting in state s is given by S(s) and the probability of transi-

tioning to state s′ from state s is given by T (s, s′). Then, for any j, the distribution

of the emission tj is assumed to depend only on the corresponding state value sj. In

particular, for discrete-valued emissions, the probability that a particular value of tj is
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observed is given by E(sj, tj). Under these assumptions, the probability of observing

a given output sequence [t1, . . . , tm] in conjunction with a given hidden state sequence

[s1, . . . , sm] is

Pr(s1, . . . , sm; t1, . . . , tm) = S(s1)E(s1, t1)
m
∏

j=2

T (sj−1, sj)E(sj, tj),

and (6.1) sums over all hidden state sequences to yield the total probability of observ-

ing [t1, . . . , tm]. Although there are nm possible state sequences, a dynamic program-

ming algorithm—the forward algorithm—can be used to evaluate (6.1) in O(mn2)

time [40].

For discrete-valued emissions, E simply gives a probability distribution over the

t’s for each s. That is, we require that

E(s, t) ≥ 0, ∀s, t and
∑

t

E(s, t) = 1, ∀s.

For continuous-valued emissions, the form of Equation (6.1) is unchanged. However,

E now instead specifies a probability density function (PDF) over the values of t,

satisfying

E(s, t) ≥ 0, ∀s, t and

∫ ∞

−∞

E(s, t) dt = 1, ∀s,

and the output of (6.1) is not the probability of observing [t1, . . . , tm] but a probability

density instead.

An HMM simulates both the production of an underlying hidden state sequence

over time and the generation of an emission sequence from the hidden states. Hidden

Markov models are so named because the emission sequences are typically assumed to

be directly observable but the hidden states are not (and therefore must be recovered

from the emissions). Consequently, algorithms developed for HMMs can be used

to analyze time-series signals that are considered to be noisy or indirect indicators

of some underlying phenomenon that cannot be directly measured. For example, in

HMMs used in speech recognition, the emission sequence might represent the recorded

acoustic data while hidden states might represent phonemes.
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In models of cardiac behavior, the emission sequences we consider are streams of

symbols or numbers derived from ECG recordings. In this work, we analyze two kinds

of emission sequences—sequences of cardiologist-supplied labels indicating the type

of each heartbeat (discrete-valued) and the MD time series (continuous-valued)—

that provide information at the level of individual heartbeats. In this context, the

hidden states may be interpreted as encoding information about the state of the

heart that is relevant to individual heartbeats. Different physiological states have

varying propensities to produce specific emissions (e.g. MD values or different types

of heartbeats), and this variation is encoded in the emission probabilities. Meanwhile,

the evolution of the hidden state is governed by various physiological factors. For

example, the depolarization and repolarization characteristics of the myocardium

lead to dependencies between consecutive heartbeats. Moreover, the behavior of the

heart is influenced by control systems external to the myocardium.

We use two general approaches for the analysis of cardiac HMMs. These ap-

proaches are described briefly here, and our specific experiments are described in

more detail in Section 6.3.

First, features of the HMMs acquired during training may be used to characterize

behavior. An HMM is a succinct but rich characterization of the kinds of patterns that

are prevalent in the training data. We show that there is a specific sense in which

the “complexity” of cardiac activity increases in the period immediately preceding

death. This measure of complexity is obtained by training models of various sizes for

a single input sequence and determining at what point larger models cease to explain

the data better.

Second, because HMMs give a measure of the likelihood of a sequence of observa-

tions, one can interpret a model as identifying a class of similar observation sequences.

We can use the likelihood given in (6.1) as a measure of consistency between the

model and a new observation sequence, that is, a measure of how likely it was that

the model was responsible for the new output. We explore one example of measuring

this consistency over time. A change in dynamics over time for a single patient could

be used to identify when that patient is deteriorating from a stable condition. We
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note that such measures could be used in various other ways for prognosis and risk

assessment. For example, testing consistency between patients might be useful for

identifying common classes of pathological cardiac behavior or clustering patients by

their patterns of physiological activity.

6.2 Training

The goal of HMM training is to find, given a set of training sequences1 {t1, t2, . . . , tl},

a set of model parameters that maximize the likelihood of observing the training data,

Likelihood =
l
∏

i=1

Pr(ti), (6.2)

while possibly respecting certain constraints on the model (such as fixing the number

of hidden states n).

For both emission types (cardiologist-supplied labels and the MD time series), we

used the Baum-Welch algorithm [40] to train HMMs from a single input sequence (i.e.

l = 1). The Baum-Welch algorithm takes as input one or more emission sequences, the

number of hidden states n, and an initial guess for the model parameters S(s), T (s, s′),

and E(s, t). It then returns a model with n hidden states that is a local maximum

of the likelihood (6.2).2 Because the Baum-Welch algorithm is only guaranteed to

converge to a local maximum, we ran it multiple times with randomly chosen initial

conditions and selected the output model that yielded the highest likelihood.

To train HMMs to model sequences of cardiologist-supplied heartbeat labels, we

used data from the Sudden Cardiac Death Holter Database (SDDB) in the MIT-BIH

Physionet dataset [20]. Each patient in that database died of sudden cardiac death

and had a continuous ECG recording leading up to the time of death. The recordings

were between 3 and 26 hours long. For the purposes of our experiments we used data

from 9 patients who both had cardiologist-supplied annotations for each beat and

1We’ll identify sequences of symbols using boldface letters like t.
2In fact, there is no known analytic way to determine the parameters that globally maximize the

likelihood [40].
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suffered ventricular fibrillation while under monitoring.

Each beat was labeled with one of 18 symbols indicating the type of the beat

(normal, premature ventricular contraction, bundle branch block beat, etc.). We

used the beat-to-beat intervals to augment each label with one of the following three

indicators of instantaneous heart rate: tachycardia (HR > 100 bpm), normal rhythm

(60 bpm < HR ≤ 100 bpm), or bradycardia (HR ≤ 60 bpm). Thus, each beat was

labeled with one of 54 possible symbols indicating the beat type and rhythm. We

trained HMMs using these sequences of symbols.

It was common for not all possible symbols to be represented in the training

data. This can cause problems because Baum-Welch and other maximum likelihood

estimation techniques estimate the probability of an event to be its observed frequency

in the training data—that is, m/n where m is the number of times the event was seen

to occur and n is the number of times it could have occurred. Baum-Welch can

therefore yield models that assign a zero (0/n) or undefined (0/0) probability to a

test data sequence; this can happen, for example, when the test data contains emitted

symbols that were never observed in the training data. We avoided this problem by

adding pseudocounts [45] to the data. In the presence of pseudocounts, the probability

of an event is estimated to be (α + m)/(kα + n) where k is the number of different

outcomes and α is some positive number, typically 1. Consequently, no probability

is ever estimated to be 0, and in the absence of any data (m = n = 0), the estimated

probability distribution defaults to a uniform distribution over the possible outcomes.

To train HMMs to model the MD time series, we used ECG data from 18 patients

selected from the placebo group of the MERLIN (TIMI36) trial [33]. The set included

6 patients who died within 7 days of a NSTEACS and had ECG data starting within

48 hours of the initial event and continuing to within 24 hours of death. For compari-

son, 12 additional patients were randomly selected from those who did not die during

the 90-day followup period. The MD time series for each patient was computed as

described in Section 3.5. We trained HMMs in which, for each hidden state s, E(s, t)

(the distribution of emissions from s) was constrained to take the form of a Gaussian

distribution. The Baum-Welch algorithm was then used to estimate optimal values
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of the parameters µs and σs (the mean and standard deviation of the distribution, re-

spectively) for each hidden state s, as well as the transition parameters. Since E(s, t)

is nonzero for all possible values of s and t, there was no need to use pseudocounts

in this setting.

6.3 Experiments

6.3.1 Complexity

The Baum-Welch algorithm requires as input the number of hidden states n to use in

the resulting model. One important consideration in HMM training is the problem of

model selection—selecting an appropriate number of states. Although using a larger

number of states always yields a model with better explanatory power for the training

data (that is, the likelihood on the training data is at least as large as with a smaller

number of states), one runs the risk of overfitting the training data if the number of

states is too large. The Akaike information criterion (AIC) [1] is one criterion that

has been proposed for selecting the number of states in discrete-emission HMMs.

For a training sequence t, the criterion is to choose the number of states n that

maximizes the quantity (log Prn(t)−Q(n)), where Prn(t) is the likelihood of the data

under a model with n hidden states, and Q(n) is the number of free parameters in a

model with n hidden states (which increases as O (n2)). By penalizing more complex

models, the AIC ensures that the use of a larger model is justified by its contribution

of additional explanatory power.

For each of the 9 patients in the SDDB dataset, we used the data from the first 60

minutes of the recording to train an HMM. For each patient, we then used the data

from the 60 minutes of the recording immediately preceding ventricular fibrillation

to train another HMM. For all models, we used the AIC to select an appropriate

number of states between 2 and 16. The model sizes selected by the AIC are shown

in Table 6.1. We found that the models trained on the last 60 minutes of data

usually required larger numbers of hidden states. This suggests that data collected
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Patient ID First 60 min. Last 60 min.
30 4 3
32 2 2
34 5 6
36 2 2
41 5 13
45 7 5
46 5 10
51 5 6
52 5 9

Table 6.1: Number of states selected by the AIC for each patient for models of the
first 60 minutes and the last 60 minutes preceding ventricular fibrillation.

during those periods was more unpredictable, or complex, than data collected at the

beginning of the recording, in the sense that more transition and emission parameters

are needed to characterize the behavior of the training data.

6.3.2 Consistency

We attempted to quantify the consistency of patient dynamics over time in order

to obtain useful information for short-term risk prediction. Obviously, an arrhyth-

mic event like ventricular fibrillation represents a dramatic change in dynamics. We

speculate that these large changes might be preceded by much subtler changes in dy-

namics in the minutes or hours before the arrhythmic event. If such changes could be

detected early on, they could be used to warn patients or caregivers so that preventive

measures could be taken.

For each of the 9 patients in the SDDB dataset, we evaluated the consistency

between an HMM trained on the first 60 minutes of data and windows of data taken

from the same patient at other times. For each of these windows of data, we computed

a measure of agreement with the model, which we refer to as normalized log likelihood,

as follows. For an emission sequence t = [t1, t2, . . . , tm], we first use the forward

algorithm to evaluate Pr(t). Then the normalized log likelihood is defined as

Normalized log likelihood =
log Pr(t)

m
. (6.3)
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As with the likelihood Pr(t), a high normalized log likelihood indicates that the output

sequence being evaluated is similar to the data on which the model was trained.

The purpose of computing normalized log likelihood rather than using the like-

lihood itself is to ensure that comparable figures can be obtained from emission se-

quences of different lengths. Ordinarily, under a given discrete-emission HMM, longer

sequences with similar composition are assigned a lower probability of occurring.

More precisely, the average probability of an emission sequence of length m is 1/bm,

where b is the number of possible emitted symbols. Taking the logarithm and dividing

by the length of the sequence, m, corrects for this effect to yield a quantity that is

related to the likelihood and is comparable between sequences of different lengths.3

The resulting normalized log likelihoods for each patient are shown in Figure 6-

1. Each plot represents data from a different patient and shows the normalized log

likelihood with respect to time. Notably, 4 of the 9 patients (41, 46, 51, and 52) started

to show deviation from the original model (normalized LL ≤ −1) shortly—within 1

to 3 hours—before the time of death. (Patient 36’s unusual-looking activity is the

result of intermittently switching from a rhythm of primarily normal beats—on which

the model was trained—to one of primarily premature ventricular contractions.)

By themselves, these results do not, by any means, prove conclusively that a

dropoff in consistency portends cardiovascular death: after all, as long as there is

any variation in dynamics over time—a reasonable assumption—a model trained on

data taken at a particular time is naturally expected to be less consistent with data

collected at a later time. However, our results leave open the possibility that HMMs

might be able to distinguish such inconsistencies in a clinically useful way. In order for

this hypothesis to be validated, experiments comparing the consistency of dynamics

in low-risk and high-risk patients should show that low-risk patients have more stable

dynamics than high-risk patients like the ones we analyzed here.

We attempted to reproduce these results on models trained on the MD time series

3For continuous-emission HMMs the situation is slightly more complicated. Since the output of
(6.1) represents a probability density in R

m, the probability densities obtained for different sequences
do not even have the same units unless the sequences have the same length m. However, the same
normalization procedure converts these densities into comparable quantities.
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Figure 6-1: Stability of trained model over time for each of 9 patients.
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of patients in the MERLIN study. We trained HMMs using data from 6 patients for

whom ECG recordings were available until within 24 hours of death. However, no

analogous results were observed in this population.

6.4 Summary and Future Work

In this chapter, we proposed, and reported preliminary results for, two classes of

techniques for modeling cardiac dynamics and using those models to perform risk

assessment. First, the models themselves (i.e. the set of transition and emission

parameters associated with an HMM) represent a concise characterization of the kinds

of patterns that typically appear in a particular training sequence. Various properties

of these models may provide valuable information for purposes of risk stratification

and short-term risk prediction. As a simple example, the transition and emission

parameters might encode some new notion of morphologic variability (in models of

the MD time series) or heart rate variability (in models of the RR interval series). We

showed that one measure of the “complexity” of a model increases for cardiac data

taken near the time of death. Future analysis of cardiac HMMs may identify other

features that may correlate with short-term or long-term risk.

Second, we defined and applied the normalized log likelihood, a notion of consis-

tency that may be used to decide how probable it is that a given model could have

generated a given sequence of previously unseen data. Our results provide support

for the idea that the consistency of a patient’s dynamics over time may be used to de-

termine when the patient is deteriorating from a stable condition. Studying changes

in dynamics at other critical times—such as right after an ACS—might also yield

important information. In addition, consistency between the dynamics of multiple

patients may be used to cluster patients with similar physiological activity or similar

risk profiles.

The line of research described here is based on the observation that many cardiac

irregularities manifest themselves as certain kinds of patterns in the time domain on

the timescales of individual heartbeats. Bigeminy (and trigeminy, and other kinds
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of rhythms), morphologic variability (under the interpretation in Section 5.5), and

deceleration capacity can all be interpreted this way. Moreover, in some of these cases

(bigeminy, and possibly morphologic variability) specific beat-to-beat interactions,

mediated by repolarization and depolarization characteristics of the myocardium,

have been implicated in these phenomena. Consequently, sequence-based approaches

such as HMMs and motif detection may be seen as complementary to previous risk

stratification approaches—such as HRV and MV—in which frequency-domain and

time-domain analyses have proven to be valuable. In addition, we believe that HMMs,

because they use a probabilistic characterization of similarity between a sequence and

a model, may recognize certain kinds of patterns more reliably than non-probabilistic

techniques can, especially in the presence of noise and variations.

The HMM techniques we considered may be applied to various streams of physi-

ological data. We worked with sequences of heartbeat type labels and the MD time

series, but consideration of other sequences like the RR time series—which would

serve as an extension of research on HRV and DC—might also be fruitful. We be-

lieve that a systematic examination of these techniques on additional data sources

represents the most immediate and straightforward next step from the current work.

One significant limitation of this work is that the small amount of data we used

(limited both by computational resources and the datasets themselves) makes it dif-

ficult to obtain statistically significant results. The SDDB dataset is useful because

it provides class annotations for each heartbeat. However, its utility for running con-

trolled experiments is limited because of its size (9 patients) and because it does not

contain any negative examples (i.e. comparable patients who did not die). Progress

in automatic beat classification techniques might allow similar beat annotations to

be obtained on larger datasets (like the DISPERSE-2 or MERLIN databases) where

they are at present unavailable, thus allowing the hypotheses we created on the SDDB

dataset to be tested elsewhere.

In addition to the two approaches we proposed in this chapter, we suggest an

additional possible way of interpreting HMM results. Given an HMM and a sequence

of emissions [t1, t2, . . . , tm], the Viterbi algorithm can be used to recover the most
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likely hidden state sequence (or sequences) that might have generated that emission

sequence,

arg max
s1,...,sm

S(s1)E(s1, t1)
m
∏

j=2

T (sj−1, sj)E(sj, tj).

This hidden state sequence [s1, . . . , sm] can be interpreted in a number of ways. In

a simple model, a particular state or sequence of states may be thought of as a

“signature” for particular motifs. Then, the process of computing the hidden state

sequence can convert a noisy and possibly continuous-valued input sequence to a

cleaner discrete-valued sequence for subsequent analysis. In a more complex model—

which could be either hand-tuned or trained using data from multiple patients—it is

possible that states or groups of states could be identified with specific pathophysi-

ological conditions. Since the hidden state at a particular time is thought to encode

information about the physiological state of the heart, the event of entering or staying

in particular hidden states may be clinically relevant. The utility of such information

is not necessarily limited to risk stratification. It might also more generally be used

as a tool for diagnosing specific conditions in an automated way.
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Chapter 7

Summary and Conclusions

7.1 Summary

People who have suffered an acute coronary syndrome remain at elevated but varying

levels of risk of death and reinfarction following the acute event. One factor con-

tributing to this risk is the unusual conduction characteristics of ischemic myocardial

tissue, which may lead to fatal arrhythmias; it is believed that morphologic variabil-

ity correlates with extent and effect of ischemic tissue. Morphologic variability, when

combined with other prognostication techniques, provides information that is useful

for identifying the best treatment options for specific patients.

The overall goal of this project was to improve short- and long-term risk assess-

ment post-ACS using morphologic variability-based techniques. Our first goal was

to develop an MV-based risk stratification technique that significantly outperformed

existing MV-based measures. We believed that such a goal was attainable because

previous research in morphologic variability (resulting in the MV-LF/HF measure)

was somewhat artificially constrained in order to facilitate initial comparison with

HRV-based measures. The result of our work, and the first main contribution of

this thesis, was a new risk measure, MV-DF (for diagnostic frequencies), which not

only identifies patients at heightened risk of death more accurately than MV-LF/HF

but, to the best of our knowledge, outperforms all previously published Holter ECG-

based risk stratification techniques. MV-DF provides significant information even
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after controlling for other risk factors, and it is especially valuable for short-term risk

stratification (assessing risk within the first 90 days after an ACS).

We developed the MV-DF technique empirically in a number of stages. First, we

evaluated various ways of measuring morphologic differences—a computation that is

at the heart of MV-based methods. We adapted three previously known techniques

(EMD, Fréchet, and Hausdorff distances) to the task of quantifying morphologic

differences between ECG signals, comparing them to the existing method based on

dynamic time-warping (DTW). We concluded that DTW is not only the best suited

of the methods for identifying the kinds of morphologic changes that are relevant to

assessing risk for cardiovascular death, but also that there is a sense in which DTW

is more stable than the other measures in the presence of noise.

Second, we identified a better way of integrating multiple measurements of a pa-

tient’s morphologic variability to produce a final assessment of risk. We discovered

that patients showing extremely high MV, even if only for a small fraction of the

time, were at higher risk than patients who had generally elevated but stable MV.

In order to take advantage of this fact to improve risk assessment, we introduced the

notion of an output threshold in the computation of the MV risk measure. One unan-

ticipated challenge of this approach was that using a patient’s most extreme behavior

to characterize his or her risk makes the measure sensitive to noise—after all, the

windows with highest MV often reflect noise rather than physiologically interesting

phenomena. We found that selecting more conservative output thresholds allowed us

to reap most of the performance gains while limiting the potential of noise to corrupt

the prognosis.

Finally, we identified a distinctive frequency band (the diagnostic frequency band,

0.30–0.55 Hz) such that increased MD energy within that band was significantly

associated with higher risk. Incorporating the DF band and the improved output

threshold yielded a risk measure (MV-DF) that identified patients at higher risk of

death post-ACS, with a c-statistic of 0.771 on a dataset of 764 patients from the

DISPERSE-2 study. For comparison, the c-statistic was 0.724 for the previous MV-

LF/HF risk measure. Patients with the highest quartile of MV showed more than
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five-fold elevated risk of death when compared to patients in the lower three quartiles.

Our confidence in the MV-DF technique was bolstered by the fact that similar

improvements in prognostic accuracy were observed on a dataset of 2,302 patients

from the placebo group of the MERLIN trial, even though the MV-DF measure was

trained independently of this dataset. We presented the results of analysis showing

that the MV-DF measure provides fairly stable prognoses and demonstrates a graded

response.

The second main contribution of this thesis was the presentation of a framework for

analyzing cardiac behavior using hidden Markov models. The heart can be considered

to be a dynamical system in which dependencies from beat to beat are mediated by

the depolarization and repolarization characteristics of the myocardium and by other

cardiac control systems external to the myocardium. We suggest that HMMs, as

a method of analyzing sequential data, may complement existing frequency-domain

and time-domain techniques for characterizing cardiac activity.

We proposed three ways of obtaining dynamical data from HMMs and using it

in risk assessment. We presented preliminary results indicating the viability of the

first two. First, an HMM can serve as a characterization of the sequence(s) on which

it was trained, and the idea of extracting features directly from the HMM for use

in risk stratification is similar to the principle behind ECG-based risk stratification

techniques like MV and HRV. Second, the log likelihood of a model on new data

can be used as a measure of how similar that data is to the data on which the

model was trained. We speculate that these similarity measures may be used to

determine when a patient’s condition deviates from some stable state—which would

have implications for short-term risk assessment. Finally, with enough training data,

one could imagine developing an HMM in which specific hidden states are identified

with specific physiological conditions. The fact that a patient entered specific states

in such a model (either once or repeatedly) might be used to modify that patient’s

risk estimate or to diagnose certain conditions.
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7.2 Conclusions

The MV-DF measure proposed in this thesis represents a significant improvement in

prognostication quality over previously known long-term Holter-based risk measures.

We showed that MV-DF performs better than HRV and DC at identifying patients

at risk of death following an ACS. In addition, MV-DF identifies patients at high risk

even after controlling for other significant risk factors such as poor left ventricular

ejection fraction and age.

MV-DF is most valuable when used in conjunction with other risk measures.

MV is a good complement to DC because the techniques are believed to assess dif-

ferent pathophysiological mechanisms. These ECG risk measures, as well as other

techniques—catheterization procedures, biomarker tests, and non-invasive imaging

techniques such as the echocardiogram—all yield information about specific aspects

of cardiac health. This information can be used to guide the selection of long-term

treatment options and to refine an initial prognosis obtained using techniques like the

TIMI risk score.

Among the long-term risk measures, long-term ECG stands out because it is

both inexpensive and safe. Biomarker tests require samples to be sent to a lab for

analysis; imaging studies and catheterization procedures can only be performed and

interpreted by highly skilled clinicians. Catheterization procedures are also invasive

and pose considerable risk. In contrast, Holter monitor data is already routinely

recorded for many patients during hospitalization, so long-term ECG risk measures

like MV-DF can be computed at essentially no additional cost or risk. Moreover, no

special training is needed to interpret the results of long-term ECG risk measures.

Because long-term ECG risk measures can be acquired essentially for free and at

no risk to patients, we believe that they should play an important role in the selection

of appropriate treatments. Patients who show low risk based on tests that include

an ECG measure like MV-DF may be spared other invasive tests and invasive or

expensive treatments. Patients who show high risk may be referred for further tests

(like catheterization procedures) or aggressive treatments that would not have been
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considered in the absence of supporting information.

It is unfortunate that long-term ECG risk measures are currently not widely used

to guide clinical decisions, despite their value and the ease with which they can be

acquired. The MV-DF technique is computationally simple enough that there would

be no difficulty in running it on a typical personal computer or implementing it in

hardware or software on an ECG monitoring device. The use of MV-DF—or indeed,

of any of the widely known ECG risk stratification techniques—represents a cost-

effective and practical way to improve clinical care for the millions of people who

are hospitalized following acute coronary syndromes each year. We hope that the

increasing weight of the evidence in support of ECG risk measures leads to their

inclusion in common clinical practice.
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