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Chapter 1

Introduction

Across almost every engineering discipline, efficient system operation dominates the

design process. This fact is especially true for those involved in the power electron-

ics world, where every extra percentage point of efficiency significantly affects the

performance and success of a given power converter. Recently, great strides in high

frequency topology design have resulted in a variety of systems that are optimized

for both power density and efficiency. These resonant converters are the backbone

of the modern consumer electronics industry, and require intricately complex control

circuitry to ensure proper operation. This thesis investigates integrated circuit design

methodologies as they apply to modern power converter control.

The first part of this document details the actual design of a control IC fabricated

using an industrial mixed signal silicon process. Specifically, Chapter 3 presents rele-

vant schematics and performance data for a secondary side synchronous rectification

controller for use in an LLC resonant converter. The majority of the work on this

IC was carried out at Texas Instruments. Given that this controller is intended to

be a competitively marketable product, heavy emphasis has been placed on accurate,

low power operation over a wide input voltage and temperature range. Proper im-

plementation of synchronous rectification (SR) also requires immediate response to

specified control signals, thus the controller must be rated for gate drive switching

on the order of 20 ns. Balancing all of these different design criteria has resulted in

a novel and robust integrated circuit, which serves as an exemplary frame to discuss
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the challenges associated with industrial IC design. As a relevant background sec-

tion, Chapter 2 presents a review of the basic concepts of resonant conversion and

synchronous rectification.

Motivated by the intricacies of the mixed signal design noted above, the second

part of this document explores methods for teaching power IC design techniques to

students in a university level electrical engineering program. Real world issues, such

as temperature fluctuation, non ideal input voltage, and process variation are seldom

covered in an academic setting. This fact leads to a significant gap between the

knowledge base of a graduating analog IC designer and that required by standard

industrial practice.

Currently, a hardware kit exists that allows students to build common IC modules

out of discrete components, and then hook them together to create a working power

supply control circuit [1]. The intention is for students to develop the intuition and

skills that uniquely arise from building and testing complete circuit systems. Al-

though certain aspects of discrete design are fundamentally different from integrated

design, the circuits in this kit mostly avoid any technology dependent quirks [1]. In

a classroom setting, students will learn about basic analog building blocks, review

relevant control techniques, and then customize reference circuit topologies by in-

dividually picking component values based on applied theory and appropriate hand

calculations. As with real IC design, students will need to verify their design choices

with calculation and simulation. Chapter 4 of this thesis presents the SPICE and

written exercise framework that has been developed for student design evaluation.

Relevant circuit blocks, important simulations, and potential classroom/homework

assignments are explained, and sample waveforms from circuits with stock compo-

nent values are shown. This work, along with the preexisting hardware kit, provides

the foundation for a power IC design laboratory course at any upper level institution.

Chapter 5 concludes this document with closing remarks and relevant summaries.
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Chapter 2

Review of Resonant Conversion

and Synchronous Rectification

This chapter presents the background necessary to understand the operation of the

LLC resonant converter, and explains the motivation behind using synchronous rec-

tification in power output stages. Section 2.1 details the fundamentals of resonant

conversion and concludes with a description of the LLC converter. Section 2.2 devel-

ops the concept of synchronous rectification and its application to the LLC converter.

Finally, section 2.3 discusses the challenges of designing an integrated secondary side

synchronous rectification controller on a modern industrial silicon process.

2.1 Resonant Conversion

With the demand for smaller, more powerful electronic devices increasing daily, a

common trend in power supply design has been to attempt to maximize both power

density and efficiency. High power density requires that the energy storage elements

used in the conversion process be as small as possible. In traditional DC-DC convert-

ers, such as the buck converter in Fig. 2-1, the size of the energy storage elements

is determined by the fundamental switching frequency fSW [6]. To understand this
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Figure 2-1: Buck Converter Schematic

statement, consider the voltage conversion relationship of the buck converter:

Vout = DVDC (2.1)

where D is the fraction of the switching period that switch S1 conducts. This equa-

tion is derived from the steady state requirement that the current through the buck

inductor LB must start and end each switching cycle with the same value [6]. An

important feature of the actual calculation of (2.1) is that the buck capacitor voltage

is assumed to be constant throughout an entire switching period. While this assump-

tion is never entirely accurate, it holds to a first order as long as the switching period

is significantly less than the time constant of the system. Expressed mathematically,

this requirement is

τ � 1

2πfsw
(2.2)

Given that τ =
√
LC, (2.2) can be expressed in terms of the energy storage elements

of the system as follows:

LC � 1

(2πfsw)2
(2.3)

Thus, as the switching frequency of the converter increases, the constraint on the

sizes of L and C decreases.

Unfortunately, increasing fsw has significant negative effects on the efficiency of

the buck system. In traditional converters, an important mechanism of efficiency

degradation is the switching loss of the power semiconductor devices [6]. Consider

the energy lost in the transition between on and off states of the switch S1 in Fig.

16



2-1:

ELOSS =

∫ toff

0

VS1IS1dt (2.4)

where VS1 is the voltage across the switch, IS1 is the current through the switch, and

toff is the rise and fall time of both quantities. Typical switching waveforms for such

a transition are illustrated in Fig. 2-2. As can be seen, VS1 starts at zero and ramps

Figure 2-2: S1 Turn Off Waveforms

up as more and more voltage builds across S1. IS1 remains constant until VS1 = VDC ,

at which point it ramps down to zero as the output current commutates to D1. This

process is called a hard transition. Energy is lost because both switch voltage and

current are non-zero for a finite amount of time, due to the speed limitations inherent

to all field effect devices and the diode commutation period. Using (2.4), the total

calculated energy loss for one transition is

ELOSS =
1

2
VDCIouttoff (2.5)

Assuming that ton = toff , the same amount of energy is lost when S1 turns on. Thus,

the total power dissipation due to semiconductor switching loss is [6]

PLOSSswitch = VDCIouttofffsw (2.6)
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Noting that this value is directly proportional to the switching frequency of the sys-

tem, traditional DC-DC converters, such as the buck converter, cannot be optimized

for both power density and efficiency. Therefore, a different type of power converter

must be used to allow for simultaneous improvement of multiple figures of merit.

Recently increasing in popularity, resonant converters are an excellent replace-

ment, and feature significantly enhanced performance statistics over the hard switched

converters discussed above [6]. All resonant converters share a set of common at-

tributes. First, a network of switches creates a square wave AC waveform from one or

more DC sources. This square wave is applied to a reactive filter to remove unwanted

harmonics from the signal, leaving only the fundamental component. Given that the

difference between the fundamental and the lowest order harmonic in a square wave is

so small, a highly selective LC resonant tank, tuned to the switching frequency of the

system, is used as the filter [6]. From here the name resonant converter is derived.

Second, power is controlled by varying the switching frequency about the resonant

frequency of the tank, such that the impedance of the tank changes and more or less

of the fundamental voltage drops across the load. Third, the semiconductor devices

in a resonant converter can have much lower switching loss as compared to those in

a high frequency traditional converter. Considering equation (2.4), a resonant con-

verter can be designed to ensure that either VS or IS remains near zero during a

switching transition, thereby minimizing the value of ELOSS. This feature will be

more throughly discussed in section 2.1.2, and allows for efficient system operation

at much higher frequencies than would otherwise be possible. High fsw implies small

values for L and C, thus power density improves as well [6].

The resonant converter, however, is not without its drawbacks. Specifically, the

internal currents and voltages that the switches and the energy storage elements must

endure are more severe than in traditional converters [6]. These higher stress parame-

ters imply the need for more expensive devices and raise the cost of the entire system.

Despite these issues, resonant conversion still yields vastly superior performance over

traditional high frequency conversion.
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2.1.1 Second Order Systems

In general, the implementation of a resonant converter is fundamentally a second

order system. Before discussing specific topologies, the following section reviews the

behavior of second order circuits. Consider the series RLC circuit presented in Fig.

2-3. As derived in [6], the complex admittance of the network in terms of frequency

Figure 2-3: Series RLC Circuit with Square Wave Drive

is:

Y (s) =
sC

s2LC + sRC + 1
(2.7)

where s = jω, and ω = 2πf . At a certain frequency, where ω = ω0, the admittance

of the inductor and capacitor perfectly cancel, and the resulting value is a purely

resistive admittance:

Y (jω0) =
1

R
(2.8)

The quantity ω0 is equal to 1√
LC

, and is called the resonant natural frequency of the

system. A graph of the admittance of the network versus ω is shown in Fig. 2-4. As

can be seen, the peak of the admittance function occurs at ω0. The points at which

the magnitude of the admittance is less than its maximum value by 1√
2

are called the

half power points, and occur at ω0 ± α. The ratio ω0

2α
is a standard measure of the

selectivity of the system and is referred to as the quality factor, or Q. The higher the

value of Q, the better the system’s ability to select one frequency and reject all others
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Figure 2-4: Admittance vs. ω for the Series RLC Circuit

[6]. In terms of Q, (2.7) becomes:

Y (s) =
1

R

( 1
Q

)( s
ω0

)

( s
ω0

)2 + ( 1
Q

)( s
ω0

) + 1
(2.9)

where Q = 1
R

√
L
C

. If Q is sufficiently large, it becomes evident that

|Y (nω)| � |Y (ω)| (2.10)

for ω ≥ ω0. Therefore, for a square wave drive, only the fundamental sinusoidal

component, with magnitude 4VS

π
, needs to be considered in the circuit analysis [9].

This idea is called the first harmonic approximation, and is useful for simplifying

calculations of power transfer in resonant converters [6].

As a final note, consider the peak voltage across the capacitor in fig. 2-3 as derived

in [6]:

|VC
VS
| = Q (2.11)

Unfortunately, the more selective the RLC system, the higher the peak voltage mag-

nitude across the capacitor. Similar analysis shows that the peak magnitude of the

current in the inductor is also proportional to Q. Thus, equation (2.11) exemplifies

the costly disadvantage of employing second order techniques to power conversion: L,
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C, and the semiconductor switches must be expensive components with high stress

tolerances.

With this brief overview of second order systems complete, specific resonant

topologies are presented below.

2.1.2 The Series Resonant Converter

Consider the series resonant converter schematic presented in Fig. 2-5. By lumping

Figure 2-5: Half Bridge Series Resonant Converter

the transformer, output rectification diodes, and resistor Rload into one primary side

impedance, Reff , this system can be modeled as a series RLC circuit with square

wave drive at node Va. Lr and Cr form a resonant tank, with ω0 = 1√
LrCr

, and are

in series with the effective load. Thus, the admittance relation of (2.7) holds for this

converter topology [6].

Given the results of the previous section, the full fundamental component of the

drive voltage waveform appears across the resistor Reff at resonance, and, therefore,

maximum power is transferred to the load at this frequency. Running the converter

off of resonance introduces finite tank impedance, reducing the output voltage mag-

nitude, and the power delivered to the load.
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Fig. 2-6 shows a graph of output voltage gain versus normalized switching fre-

quency for various values of Q. As expected, the maximum gain is 1. This converter is

Figure 2-6: Gain Characteristics for the Series Resonant Converter [12]

designed to nominally operate above resonance, such that variations in input voltage

can be compensated for by increasing or decreasing the switching frequency.

The chosen operating region also ensures that the LC tank impedance always looks

inductive, i.e. the current will lag the voltage at node Va. This is one of the most

important design considerations for a resonant converter, for when the drive current

lags the drive voltage, switches S1 and S2 can transition with no voltage across them.

The switching loss in the converter, therefore, will be roughly eliminated [6].

To further understand the notion of zero voltage switching, a detailed review of

one switching period is presented below. Assume first that S2 is off and S1 has not

yet turned on. The circuit corresponding to these conditions is shown in Fig. 2-

7. Notice that the primary side current, Ip, is negative. With S2 off, Ip forward

biases the body diode of MOSFET switch S1, and leaves the device free to turn on

with minimal voltage across it. Sometime later, the current Ip reverses direction and

becomes positive. When S1 turns off, Ip commutates to Cp1, and the switch voltage
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Figure 2-7: SRC Equivalent Circuit: S1 and S2 Off, Ip Negative

slowly charges up to VDC , implementing another transition where switch voltage is

negligible.

Once Cp1 is fully charged, Ip begins to flow through the body diode of S2, allowing

that switch to turn on with minimal voltage. This situation is presented in Fig. 2-8.

At the end of the S2 conduction cycle, Ip has reversed again, and is now flowing in

Figure 2-8: SRC Equivalent Circuit: S1 and S2 Off, Ip Positive

the negative direction. When S2 turns off, Ip commutates to Cp2, and yields a final
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lossless transition as described above. Ip then begins to flow through the body diode

of S1, and the entire cycle repeats.

In summary, the series resonant converter can control power delivered to a load

by varying its switching frequency about the resonant frequency of its LC tank. If

the converter is run nominally above resonance, all of the switch transitions will be

lossless. This fact allows operation at very high frequency without an appreciable

loss of converter efficiency, and, consequently, yields a converter with very high power

density.

Certain inherent flaws, however, render this converter unsuitable for many appli-

cations. Primarily, as the quality factor of the system decreases, the converter must

run at higher and higher frequencies to properly regulate its output voltage. Thus, in

situations where the load and input voltage are variable, the series resonant converter

will have an extremely wide switching frequency range. Given that more current cir-

culates in the energy storage elements the further away from resonance the converter

operates, more power will be dissipated in the parasitic components of those elements

[12]. Therefore, efficient regulation over a wide input and load range is impossible,

and the need for a more robust topology is clearly evident.

2.1.3 The Parallel Resonant Converter

A schematic of a parallel resonant converter is presented in Fig. 2-9. This topology

places the load in parallel with resonant capacitor Cr, rather than in series with

it. The filter inductor Lf is used to match impedances between the primary and

secondary sides of the transformer, and does not affect the resonant frequency of

the system [12]. A graph of the output voltage gain versus normalized switching

frequency is given in Fig. 2-10. As shown, the operating region for this converter

is above resonance. Much like in the series resonant converter, this frequency range

ensures the ability to regulate against input voltage variation, and yields zero voltage

switching for both S1 and S2.

When examining light load regulation, it is important to note that Q for this

system increases in proportion to the value of load resistance. Thus, as the converter
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Figure 2-9: Half Bridge Parallel Resonant Converter [12]

Figure 2-10: Gain Characteristics for the Parallel Resonant Converter [12]
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load lightens, the gain curve in Fig. 2-10 steepens, and less frequency shift is nec-

essary to regulate the output voltage. The circulating current in the resonant tank,

however, increases dramatically with decreasing load, and results in significant power

dissipation in the parasitic components of the energy storage elements. As derived

in [12], the energy lost due to circulating current in a parallel resonant converter is

higher than the corresponding energy loss in a series resonant converter. This con-

verter, therefore, is not suitable for efficient operation in applications with widely

varying loads and input voltages.

2.1.4 The LLC Resonant Converter

As just described, the series and parallel resonant converter topologies are unideal

choices for power systems without stable loads and input voltages. Deviations from

their nominal operating points lead to noticeable efficiency degradation. Additionally,

both of these converters are designed to operate above their respective resonant fre-

quencies (to ensure ZVS and bidirectional output voltage control), which inherently

imposes finite circulating energy loss [12].

Consider now the LLC resonant converter topology presented in Fig. 2-11. This

Figure 2-11: Half Bridge LLC Resonant Converter [12]

schematic looks much like that of the SRC, but an additional inductor has been placed

in series with the load. A relatively simple addition, this inductor has significant
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effects on the dynamics of the system. Specifically, two resonant frequencies now

exist, and are given by [12]

fr1 =
1

2π
√
LrCr

(2.12)

fr2 =
1

2π
√

(Lr + Lm)Cr
(2.13)

A graph of the DC gain characteristics of this converter is shown in Fig. 2-12. In

this graph, fr1 occurs at fs

fr
= 1. Note that Q for this system is equal to

Figure 2-12: Gain Characteristics for the LLC Resonant Converter [12]

Q =
1

Rp

√
Lr
Cr

(2.14)

where Rp is the reflected load impedance on the primary side of the converter. After

quick inspection, fig. 2-12 looks much like a combination of the DC gain characteris-

tics of the SRC and PRC. At the lower resonant frequency, fr2, the dynamics of the
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PRC dominate, while at the higher resonant frequency, fr1, the dynamics of the SRC

dominate [12]. Thus, this converter can both step up and step down its input voltage

by switching below or above fr1.

As evident, a load independent operating point exists at the upper resonant fre-

quency. Designing the converter to nominally operate at this frequency yields the

ability to regulate the output voltage down to zero load without switching off of res-

onance. Loss due to circulating energy, therefore, is minimized, for the impedance

of the resonant tank goes to zero and no net current reactively flows between the

energy storage elements [4]. Additionally, for careful balancing of load conditions and

allowable input voltage range, this converter can remain in the inductive region for

regulative switching above and below fr1 [9]. This fact enables ZVS for all designed

operating conditions and minimizes the semiconductor switching losses. A final ben-

efit is a boost in power density achievable by magnetically integrating Lr and Lm as

the leakage and magnetizing inductances of the transformer.

In summary, the LLC converter does not suffer from the same limitations that

plague the SRC and PRC. Energy lost due to circulating current in the resonant tank

is minimized by the load independent operating point at fr1. Variations in allowed

input voltage can be efficiently regulated against by switching above or below fr1,

while still maintaining ZVS conditions for the power semiconductor devices. Also,

power density increases beyond that of a general resonant converter when magnetic

integration techniques are used.

This topology, therefore, is very popular for use as the primary power conversion

stage for systems requiring up to 500 W. Efficiencies as high as 93% have been re-

ported for implementations of the system as drawn in fig. 2-11 [4]. Topologies that

employ synchronous rectification techniques, however, report efficiencies up to 96%

[4]. These extra few percentage points can make the difference between a system

that receives government mandated efficiency certification and one that does not.

Thus, synchronous rectification controllers for this topology are extremely valuable,

and the design of one such controller is the subject of the first part of this thesis

document. Before going through the design and operation of this LLC secondary side
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synchronous rectification controller, a brief discussion of synchronous rectification

itself is appropriate.

2.2 Synchronous Rectification

The concept of SR is best understood by going back to the buck converter of fig. 2-1.

In the previous section, the efficiency degradation associated with the switching tran-

sitions of S1 was explained, but the power loss due to diode conduction was neglected,

as the diode was assumed to be ideal. In a real system, however, a conducting diode

has a forward voltage drop given by

Vf = VT ln
If
I0

(2.15)

where If is the forward biased current through the device, VT is the thermal voltage,

and I0 is a device specific parameter that depends on the doping, diffusion coefficient,

and physical length of the actual diode [10]. Noting that the power dissipated in any

device is equal to the voltage across the device times the current through the device,

average diode power loss in the buck converter can be expressed as

Pdiode = (1−D)VT Iout ln
Iout
I0

(2.16)

where If in (2.15) has been replaced by the average converter output current Iout.

Thus, as the load demand on the system increases, so does the conduction loss of D1.

Now consider replacing D1 with MOSFET switch S2. Assume the proper circuitry

exists such that S2 is off whenever S1 is on, and vice versa. This control scheme is

called synchronous rectification. The corresponding average conduction loss due to

S2 is

Ps2cond = (1−D)I2
outRDSon (2.17)

where RDS,on is the on state resistance of the switch.

In order to compare these two loss mechanism, we must first define some reference
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parameters. For a diode, typical values of the saturation current I0 for a power

device are on the order of 10−12 A. For a power MOSFET, a respectable value for

RDS,on is roughly 20 mΩ, assuming a cost conscious design methodology [10]. Using

these values, the following table compares the conduction losses of the two different

rectification devices in the buck converter for increasing values of load current.

Iload [A] RDSon Loss [W] Diode Loss [W]

1 .02 .68

5 .5 3.6

25 12.5 19

50 50 39

As can be seen, synchronous rectification yields vast improvements over diode rectifi-

cation at low current levels. As the demand for power increases, however, the benefit

of using SR quickly diminishes, and above a certain output power level, vanishes al-

together. A graph of these results is presented in fig. 2-13, where the shaded region

indicates conduction loss savings by using SR.

It is important to understand that the analysis above neglects the additional

switching loss introduced by S2 turn off transitions in the buck converter system.

For this reason, SR is not an extremely useful tool in the design of hard switched

converters. In the LLC resonant converter, on the other hand, no additional switching

loss is added to the system by the inclusion of synchronous rectification MOSFETs.

Turn on transitions are lossless given that the control circuitry waits until the body

diode of the proper SR FET is forward biased before applying power to its gate. Turn

off transition are similarly lossless, given that the current in the SR FET decays to

zero at the turn off instant, assuming discontinuous conduction mode. Thus, for the

power levels where RDSon conduction loss is lower than diode conduction loss, SR

directly improves the efficiency of an LLC resonant converter.
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Figure 2-13: Forward Voltage to Current Comparison of an SR FET and a Diode [12]

31



2.3 Integrated Controller Challenges

While the concept of synchronous rectification (SR) is relatively simple to understand,

designing an integrated circuit that accurately and efficiently implements the proper

secondary side control scheme is non-trivial. Additionally, for a chip to be accepted in

the industrial marketplace, it must function over a wide variety of different operating

conditions, further complicating the design process.

The first major hurdle involves sensing when to turn off the SR FET. Given

that most LLC converters nominally operate in the discontinuous conduction mode,

the gate of the SR FET must be immediately brought low once the current flowing

through the device decays to zero. If the SR FET is turned off too soon, an inefficient

body diode will complete the conduction cycle and negate any potential power savings.

If the SR FET is turned off too late, output current will begin to flow through the

converter in reverse, potentially damaging system components and decreasing overall

efficiency. A common solution to this problem involves accepting the lesser of two evils

by sensing the voltage from source to drain across the SR FET, and turning off the

device before current has completely decayed. This method of control is sub-optimal.

The second challenge involves possible system operation in continuous conduc-

tion mode. Here, signals from the primary side must be coupled into the secondary

side controller to dictate proper operation of the SR FETs. Very few industrial SR

solutions include the option for primary synchronization, thus CCM performance is

extremely weak.

The third challenge involves designing an IC that will function over a very wide

range of supply voltages. Given that the most efficient way to power a secondary side

controller is from the converter output itself, an IC must be rated for operation at

all possible system output voltages in which it will be used. Additionally, packaging

constraints do not allow for an internal power bypass pin, thus the on-chip power

buffer must be designed to reliably operate without the aid of bypass capacitors.

The fourth challenge relates to the design of accurate IC timing circuitry. A volt-

age mode SR controller must generate timing pulses that blank the internal detection

32



circuitry for a specific amount of time to prevent false turn on and turn off events.

The details of this requirement will be discussed in the next chapter, but due to the

variation in component values introduced by the manufacturing process, design of

high accuracy timers and pulse generators is a difficult task [3].

The final criteria is true of any industrial integrated circuit used in a power sys-

tem, specifically, the need for low standby current and minimal steady state power

consumption.

All of these aforementioned concerns are addressed by the LLC secondary side SR

controller presented in Chapter 3 of this document. Unlike any other commercially

available SR controller, this chip consistently implements a complete SR FET conduc-

tion cycle for converters switching at frequencies of up to 1 MHz, thereby maximizing

the theoretical efficiency gains of systems in DCM [6]. Additionally, this controller

provides a primary synchronization input pin, enabling high performance operation

in the continuous conduction mode. Note that power consumption in standby and

normal modes is also kept at a minimum. Schematics, operational statistics, and

simulation data for all the circuit blocks in this converter are discussed next.
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Chapter 3

LLC Secondary Side Synchronous

Rectification Controller

To address the difficulties associated with implementing a synchronous rectification

scheme, an integrated secondary side controller for the LLC converter has been de-

signed using a proprietary Texas Instruments silicon process technology. Target out-

put power levels for systems using this controller are in the range of 90 - 500 W

(depending on the end application), with output voltages ranging from 12 - 48 V at

switching frequencies up to 1 MHz.

These broad specifications introduce unique challenges into the IC design process

that are seldom discussed in an academic setting. Most notable is the construction

of circuits that produce exact reference currents and voltages that are independent

of supply variation. Additionally, in order meet industrial and consumer product

standards, this controller must reliably function over a temperature range of -50

- 150 ◦C. Thus, the temperature dependence of every device included in a given

design schematic must be carefully considered, and methods to assure temperature

independence of critical quantities become essential.

Variation due to the manufacturing process presents yet another design variable

that is normally ignored in the classroom. Specifically, slight drift in the prescribed

dimensions of semiconductor devices can yield noticeable inaccuracies between calcu-

lated and experimental circuit parameters. Care must be taken, therefore, to intelli-
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gently hook up and size devices so as to minimize the effects of process variation on

a particular circuit. Layout techniques, such as including dummy devices and using

common centroid configurations [5], can be useful to help match critical devices, but

the overall benefits are limited.

When verifying a particular design using simulation, it is vital to consider the

effect of process variation on circuit performance. This fact motivates the use of

Monte Carlo simulation, a method that randomly varies system parameters based

on a predetermined statistical distribution [8]. If enough sequential simulations are

performed, relevant output statistics can be computed for quantities of interest, and

performance over manufacturing process variation can be assessed. In this way, Monte

Carlo simulation can help hone particular topological choices, such that the number

of real ICs that meet certain standards is maximized. Given that every chip sold must

conform to the specifications laid out in its data sheet, it is desirable to maintain the

ratio of marketable to unmarketable chips per silicon wafer as high as possible. The

use of Monte Carlo simulation techniques helps maximize the functional device yield,

reducing wasted resources and increasing overall profitability.

This chapter is dedicated to the exploration of the particular design choices in-

volved in the creation of the secondary side SR controller mentioned above. Schemat-

ics of essential circuit blocks and simulated data on the chip’s performance are pre-

sented. As implied, individual circuit evaluation relies heavily on Monte Carlo gen-

erated data. The discussion proceeds logically, beginning with an overview of the

system level operation, proceeding to the specifics of the internal circuitry, and con-

cluding with top level simulation results. Due to a binding non-disclosure agreement,

however, specific component values and device sizes have been omitted from all the

figures found below.

3.1 System Level Operation

Fig. 3-1 shows a typical application diagram of the aforementioned controller in an

LLC resonant converter. Note that the designation UCC24600 is the Texas Instru-
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ments part number for this IC. As evident, both secondary side FETs require their

Figure 3-1: Typical Application Diagram

own controllers, thus two chips are necessary for each desired output stage. Ad-

ditionally, this controller uniquely allows for converter operation in the continuous

conduction mode, using primary side signals received on the sync pin to coordinate

proper switching.

To better understand the operation of this controller, consider the block level

diagram, shown in Fig. 3-2, and the typical timing waveforms, shown in Fig. 3-

3. Assuming first discontinuous conduction mode, steadily increasing current flow

forward biases the body diode of one of the secondary side FETs at the beginning of

its conduction cycle. The corresponding voltage drop from source to drain is enough

to trigger the -100 mV comparator, which instructs the controller to bring the gate

drive output high, turning on the synchronous rectification (SR) FET. Given that the

magnitude of voltage across the SR FET immediately drops, the minimum on timer

(MOT) is also triggered by the -100 mV comparator, ensuring that the gate drive

signal remains high for a user programmable amount of time. After the MOT expires,

the controller waits for the output current to decay such that the voltage from source

to drain across the SR FET is roughly Vth,off . At this threshold, the -3 mV comparator

is triggered, and the gate drive signal is brought low. Due to parasitic voltage ringing
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Figure 3-2: Synchronous Rectification Controller Block Diagram

on the drain of the SR FET after turn-off, a user programmable minimum off timer

(MOFFT) is initiated to prevent spurious turn-on signals. Only after the MOFFT

has expired and the drain voltage has risen above Vth,reset (implying the other SR

FET is conducting) is the system armed and ready for another conduction cycle.

In continuous conduction mode, the current in the SR FET never decays to zero.

Turn off, therefore, is dictated by the coupling of the primary side switching signal

to the secondary side controller through the sync pin and an AC coupling capacitor.

Otherwise, operation is identical to the process described above.

The following is an overview of the function of each pin on the IC:

SYNC (CCM Turn-off Synchronization) - A falling edge on SYNC forces GATE

low, turning off the SR MOSFET without regard to the voltage across its drain and

source. When a power converter is operated in CCM, it is necessary to turn off the

SR MOSFET under command of the primary control circuit. SYNC must be con-

nected, therefore, to a control signal on the primary side of the converter using a

high-voltage isolation capacitor or transformer. This pin is not shown in Fig. 3-2 due
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Figure 3-3: Conduction Cycle Timing Waveforms
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to intellectual property concerns.

EN (Enable, Programmable Off Time) - When EN is low, the UCC24600 is in

sleep mode. When EN is above its turn on threshold, and VCC is greater than VCC,on,

the UCC24600 is in run mode. The voltage level on EN also programs the minimum

off timer, as will be discussed later. EN is internally pulled high by a 25 µA current

source, so the voltage level on this pin can be set by connecting a resistor from EN

to GND.

Ton (Programmable On Time) A resistor from Ton to GND programs the mini-

mum on timer, as will be discussed later.

VCC (Positive Power Input) - VCC supplies power to all circuits in the UCC24600.

Comparators in the under-voltage lock out (UVLO) block prevent operation until

VCC rises above VCC,on. VCC can be used to safely turn off the UCC24600 by pulling

it below VCC,off , in which case GATE immediately falls.

GATE (SR MOSFET Gate Drive) - GATE is a high current output port used

to quickly turn on and off the SR MOSFET. It is internally clamped to 15 V.

GND (Analog, Digital and Power Ground) This pin serves as the reference

potential for all the circuitry inside the IC.

VS (Source Voltage Sense) - This pin is used as the potential reference for the

voltage across the SR MOSFET.

VD (Drain Voltage Sense) - This pin is used to determine the switching operation

of the SR MOSFET. In a steady state LLC resonant converter, this pin fluctuates

between ground and twice the converter output voltage [6].

Having briefly discussed the system level operation of the chip above, individual

circuit blocks are presented in the subsequent sections.

3.2 Under Voltage Lock Out

An intelligent interface with the external converter system, this block determines

whether or not enough voltage has been applied on the VCC pin to reliably run all of

the internal circuitry, and makes sure the EN pin voltage is above the proper threshold
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for normal operation. A full schematic of this block can be seen in Fig. 3-4. Given

the number of devices that comprise this circuit, however, the UVLO block has been

divided into two sub-blocks, which are discussed in detail below.

3.2.1 Supply Independent Current Source

In order to supply power to those devices that operate when the system is in sleep

mode, a low overhead, supply independent current source is necessary. Fig. 3-5

shows a schematic of this current source as it is implemented in the UVLO block.

This circuit develops a stable, temperature and supply insensitive reference current,

Iout, that is used to bias the rest of the startup circuits in the IC.

To find an analytical value for Iout, consider KVL around the loop comprised of

R3 and the four bipolar transistors:

VR3 + Vbe3 + Vbe0 = Vbe1 + Vbe2 (3.1)

Rearranging terms and noting that

Vbex =
KT

q
ln
ICX
ISX

(3.2)

where KT
q

is the thermal voltage, and Icx and Isx are the collector and saturation

currents respectively of device x, the voltage across R3 can be expressed as

VR3 =
KT

q
[ln
Iout
IS1

+ ln
Iin
IS2

− ln Iin
IS0

− lnIout
IS3

] (3.3)

By collapsing the ln terms and dividing by R3, Iout becomes

Iout =
KT

qR3

ln
IS0IS3

IS1IS2

(3.4)

Thus, the output current of the circuit is dependent only on the device geometries of

Q0 - Q3 and the value of R3. As long as there is enough voltage headroom to bias all

of the devices in their active regions, the supply voltage has no effect on Iout.
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Figure 3-4: Full UVLO Schematic Diagram
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Figure 3-5: Supply Independent Current Source Schematic
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In terms of temperature, Iout is evidently proportional to absolute temperature

(PTAT), as shown in (3.4). To counteract this effect, the resistor R4 is placed from

the base of Q2 to ground. Given that the base-emitter drop of a bipolar transistor has

a negative temperature coefficient [2], as temperature increases, Icomp will decrease

while IR3 increases. For the proper weighting of R3 and R4, Iout will remain unaffected

by variations in temperature. It is important to note that this analysis ignores the

temperature dependence of the resistors themselves, however, if they are made of the

same material and carefully matched, their individual temperature coefficients will

tend to cancel.

As can also be seen in Fig. 3-5, the current source is loaded by a p-channel

cascoded current mirror. This construction yields two stable operating points for the

circuit. The first is where the desired values of Iout and Iin flow in the proper legs,

and the second occurs when no current flows in any of the devices. To avoid the zero

current state, transistors MN0, MN1, MN2, MP4, and MP5 are used to form a “kick

start” circuit.

Consider the case when VCC starts at zero and slowly ramps up to a higher voltage.

Initially, no current flows through the system, and all transistors in the circuit are

cutoff. When VCC rises above the threshold voltage of MN2, however, the drain of

that transistor pulls down on the gates of MP2 and MP3, allowing current to start

flowing through the primary mirror. The circuit quickly breaks away from the zero

current state, and regenerates itself until the second stable operating point is reached.

To prevent MN2 from interfering with the steady state operation of the system, the

current from MP1 and MP3 is mirrored to MP4 and MP5, and then again to MN1

through MN0. As MN1 starts to draw current, it pulls down on the gate of MN2,

turning off the transistor and effectively removing it from operation. Thus, the “kick

start” circuit ensures that the current source never settles into the zero current state

and does not interfere with normal function.

As mentioned previously, the current source supplies power to those blocks that

operate when VCC is below the turn-on threshold of the IC, specifically the UVLO

comparators, the bandgap voltage reference, the internal power buffer, and the EN
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node pull up current source. It is essential to accurately control how much current

these circuits draw in sleep mode (VCC < VCC,on) in order to minimize system power

consumption when the IC is disabled. This goal is achieved by using scaled versions

of Iout to power the blocks.

Simulated data on the performance of the current source over temperature is now

presented in the form of the EN node pull up current. This current is merely an

amplified version of Iout. Fig. 3-6 is generated using centered process values, while

Fig. 3-7 is generated using 100 Monte Carlo simulation runs where process parameters

are allowed to vary.

Figure 3-6: EN Node Pull Up Current Over Temperature; VCC = 20 V

As evident, the temperature dependence is not completely zero, but specific design

choices yield an average value of 25 µA over an extremely wide temperature range.

The remaining devices in this circuit, specifically R0, R1, and R2, are used to

generate the VCC,on and VCC,off thresholds for the one of the UVLO comparators

discussed below.
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Figure 3-7: EN Node Pull Up Current Over Temperature; VCC = 20 V; Monte Carlo

3.2.2 UVLO Comparator

To determine when the proper conditions for normal operation exist in the external

converter system, the UVLO block has two identical comparators that monitor the

voltages on the VCC and EN pins respectively. A simplified schematic of the com-

parator system is presented in Fig. 3-8. As shown, Comp1 and Comp2 are fed with

current sources derived from the supply independent source described above. Each

comparator has a Thrsh input against which the voltage on the In pin is compared.

Run and Runz are complementary output signals, generated by the two comparators

and additional logic, that control the function of the rest of the IC, and VBG, VBGH ,

and VBGL are voltages produced by the bandgap voltage reference. Not shown in the

diagram are the transistors that keep the EN node grounded until VCC rises above

the VCC,on threshold.

To understand the operation of this sub-block, consider when VCC is lower than

VCC,on. In this case, VCC,ok and ENok are both low, while Run and Runz are inverted.
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Figure 3-8: Simplified UVLO System Diagram

Noting that the gate of MN0 is connected to VCC,ok, the VCC turn-on threshold is given

by:

VCC,on =
R0 +R1 +R2

R2

VBG (3.5)

The turn-on threshold for the EN pin is dictated by the voltage on the Thrsh pin of

Comp2, and is equal to VBGH .

When VCC rises above VCC,on, VCC,ok transitions high, and allows the EN pull up

current to begin charging the EN node. When the voltage on EN exceeds VBGH ,

ENok also transitions high. These two events trigger Run and Runz to be properly

asserted, and the controller awakens from sleep mode and begins to draw its rated

quiescent current from VCC . Note that hysteresis is implemented differently for Comp1

and Comp2. When VCC,ok goes high, MN0 turns on, and the switching threshold for

Comp1 drops to

VCC,off =
R0 +R2

R2

VBG (3.6)

When ENok goes high, the voltage on the Thrsh pin of Comp2 is directly modulated

through a complementary transmission gate, and the switching threshold drops to

ENoff = VBGL (3.7)

47



The actual schematic of the comparator that implements Comp1 and Comp2 is

shown in Fig. 3-9, and consists of an NMOS differential input stage followed by two

inverting common source gain stages. The comparator is fed by two current sources,

Figure 3-9: UVLO Comparator Schematic

where Ipwr supplies bias current to the input and intermediate gain stages, and Ipu

supplies pull up current to the output gain stage. MN2 and MN3 are each biased with

the same gate voltage, derived from the supply independent current source network,

and split the current supplied by Ipwr between the first and second stages. Zener

diodes D0 and D1 limit the voltage swing on the gates of MP5 and MN4 to protect

the gate oxides of those devices, and to increase the turn-on speed of the entire

comparator by decreasing the slewing time of those nodes.

Simulated performance data of this comparator is shown below. Note that R0,

R1, and R2 are sized such that VCC,on = 10.2 V and VCC,off = 8.8 V. VBGH and VBGL

are designed such that ENon = 1.8 V and ENoff = 1 V.
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Fig. 3-10 is a graph of VCC,on and VCC,off at 25◦ Celsius, generated by 100 Monte

Carlo simulation runs of the UVLO block. The average VCC,on and VCC,off thresholds

are 10.19 V and 8.79 V respectively, and the standard deviations are .047 V and .040

V respectively. These values do not appreciably change as temperature is varied.

Fig. 3-11 is a graph of ENon and ENoff at 25◦ Celsius, also generated by 100

Monte Carlo simulation runs of the UVLO block. The average ENon and ENoff

thresholds are 1.81 V and .988 V respectively, and the standard deviation is .009 V

for both. These values do not appreciably change as temperature is varied.

Figure 3-10: VCC Switching Thresholds over Process Variation at 25C

As a final note, any devices found in Fig. 3-4 and not explicitly discussed above

are used as biasing elements or are not fundamental to the understanding of the

UVLO block operation.
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Figure 3-11: EN Switching Thresholds over Process Variation at 25C

50



3.3 Bandgap Voltage Reference

An important building block in any modern integrated circuit is a stable voltage refer-

ence. Using the fact that Vbe,on and VT have opposite voltage temperature coefficients

[2], it should be possible to construct a circuit that weights these two values to yield

a temperature insensitive reference.

3.3.1 Canonical Bandgap Voltage Reference Operation

In order to understand the operation of such a reference, consider the hypothetical

circuit shown in Fig. 3-12.

Figure 3-12: Ideal Bandgap Circuit

As shown, the output voltage is

Vout = Vbe,on +MVT (3.8)
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From the derivations carried out in [2], the quantities in (3.8) are given by

Vbe,on = VG0 − VT [(γ − α) lnT − ln(EG)] (3.9)

VT =
KT

q
(3.10)

where VG0 is the bandgap voltage of silicon at 0 K, γ and E are device specific

parameters, and α and G are bias specific parameters. From these two equations, the

negative temperature dependence of Vbe,on and the positive temperature dependence

of VT are evident. Thus, proper weighting of these two quantities should yield a

temperature insensitive value. If (3.9) and (3.10) are substituted back into (3.8), the

result as given in [2] is

Vout = VG0 + VT (γ − α)(1 + ln
T0

T
) (3.11)

Thus, the temperature dependence of the output voltage is heavily dependent on the

quantity T0, which is determined by the circuit parameters M, E, and G [2].

When (3.11) is differentiated with respect to T, the slope of Vout as a function of

temperature is
dVout
dT

= (γ − α)
VT
T

(ln
T0

T
) (3.12)

As shown by (3.12), the temperature coefficient of the output voltage is zero only at T

= T0. Assuming that (γ−α) is a positive quantity, the slope of the output is positive

when T < T0, and negative when T > T0. This result can be understood by examining

(3.9) and (3.10). Given that MVT can only be used to cancel linear temperature

dependence, the variation of dVout

dT
with temperature is due to the uncompensated

non-linear term in the equation describing Vbe,on.

Even with the aforementioned non-linear effects, it is still possible to build a

reference based on the hypothetical circuit presented above with extremely small

variations in output voltage over a wide range in temperature. For the purposes of

most power supply control chips, higher order temperature cancellation is unnecessary

[6].
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The next challenge is designing a circuit that practically implements the output

voltage relationship in (3.8). Consider the circuit in Fig. 3-13. Looking at the voltage

Figure 3-13: Simple Bandgap Voltage Reference

across R0, the value is determined to be the difference between two base-emitter

voltage drops.

VR0 = Vbe1 − Vbe0 (3.13)

As noted in [2]

Vbex = VT ln
ICX
ISX

(3.14)

where ICX and ISX are the collector and saturation currents respectively of device X.

53



Plugging (3.14) into (3.13) yields the following equation for the voltage across R0:

VR0 = VT ln
IC1IS0

IC0IS1

(3.15)

Given that the amplifier A0 regulates Va and Vb to the same voltage, the collector

currents running through Q0 and Q1 must be the same. Also, assuming that Q0 is a

parallel combination of transistors identical to Q1, the ratio IS0

IS1
is equal to the ratio

of the emitter areas of Q0 and Q1 [2]. Thus, the voltage across R0 and the current

through R0 are

VR0 = VT ln8 (3.16)

IR0 =
VT ln8

R0

(3.17)

Since double the current that flows through R0 flows through R1, the voltage across

R1 must be

VR1 = 2
R1

R0

VT ln8 (3.18)

This equation shows that the voltage across R1 is linearly proportional to tempera-

ture, because of the direct temperature dependence of the thermal voltage VT . Now,

considering the location of the output terminal, the output voltage is the sum of the

voltage across R1 and the base-emitter drop of Q1:

Vout = Vbe1 + 2
R1

R0

VT ln8 = Vbe1 +MVT (3.19)

Therefore, this circuit behaves exactly as the hypothetical circuit presented in Fig.

3-12 with the value of M set by a constant times the ratio of R1
R0

.

While many other bandgap voltage reference topologies exist, the fundamental

output voltage relation for this group of circuits is as presented in (3.19) [2]. Thus, a

general design philosophy can be employed:

1. Model bipolar transistor characteristics to extract process specific parameters.

2. Choose a temperature at which Vout will have zero temperature coefficient, i.e.
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T0.

3. Using (3.11), calculate the value of Vout at this temperature.

4. Run design simulations at T = T0, and adjust the value of M to yield the desired

0TC output voltage.

3.3.2 Specific IC Implementation

Using the structure of Fig. 3-13 as a foundation, the actual circuit constructed for

the LLC secondary side controller is shown in Fig. 3-14. As can be seen, Q0, Q1, R0,

Figure 3-14: Complete Bandgap Voltage Reference

and R1 still form the bandgap cell that yields the output voltage relationship given

in (3.19). Where resistors were used to load the collectors of Q0 and Q1, a current

mirror now exists. It is important to note that the results of (3.13) - (3.19) imply that
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when Vout equals the desired 0TC value, the currents flowing through Q0 and Q1 will

be the same. If Vout is too high, or too low, the collector current of Q1 will not match

the drain current of MP1, and node A will fluctuate in voltage. Thus, a single ended

inverting amplifier, composed of MP2, MP3, MN0, and MN1, is used to regulated the

output voltage to the proper value. Steady state is reached when IDMP1 = ICQ1 and

VBG equals the value calculated in (3.11).

The operation of the regulation loop can be understood in the following manner.

Assuming that the output voltage on the VBG node is too high, more current will

flow through Q1 than Q0 [2]. This has the effect of pulling down the voltage on node

A, and raising the current flowing out of the drain of MP2. This current is mirrored

around through MN0 and MN1, and pulls down on the top of the output divider,

effectively lowering the voltage on the VBG node back down to its nominal value.

The opposite process occurs if the output voltage starts off too low, which results in

VBG being pulled up. C0 is placed between the high impedance node of the amplifier

and ground, implementing dominant pole compensation and ensuring overall loop

stability.

A few other devices in this circuit are also worth mentioning, specifically Q2, Q3,

and Q4. Q2 functions as a matching device for the collector-base junction area of

Q1 with Q0. Q3 and Q4 are startup devices. While operation in steady state was

previously explained, another stable operating point exists when no current runs in

all the circuit legs. Q3 and Q4 prevent this condition from occurring. Driven by a

small current source, Istart, Q4 biases the base of Q3 at roughly a diode drop above

ground. If no current is flowing through R0, then the emitter of Q3 will be sitting at

ground. Thus, Q3 will be forward biased, and the collector of the device will draw

current through MP0. This process breaks the reference away from its zero current

state, and begins the output regulation cycle. As more current flows through R0, the

base-emitter voltage of Q3 drops, and the device removes itself from the steady state

operation of the circuit.

The remaining components of the circuit in Fig. 3-14 will be discussed in the next

section. As a final remark, note that the supply node for this circuit is connected
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to a current source derived from the supply independent source in the UVLO block,

rather than a voltage source. This choice limits the maximum current consumed by

this block, and isolates the circuit from variations in VCC .

3.3.3 Silicon Process Concerns

As with any industrial integrated circuit process, variations in the manufacturing pro-

cess can result in undesirable effects, most notably device and component mismatch.

Many layout techniques exist to mitigate these effects, such as including dummy de-

vices to help match important components, but a higher level of control is necessary

when exact precision is required. Thus the inclusion of trim resistors R2 - R5. This

binary weighted array is used to adjust the effective value of R1 in (3.19) to yield the

proper 0TC output voltage at T0, post-production. Without any of the fuses blown,

the voltage across R1 is designed to be 46 mV below its desired value, indicating that

it is smaller than required. Adding the MSB trim resistor into the string by blowing

fuse F0, however, increases the output voltage by 46 mV. Therefore, the ideal value

of R1eff is equal to R1 +R2. If the value of Vbe1 drifts higher or lower than expected

due to process variation, different combinations of the binary weighted resistors in the

array can be added together to yield the proper output voltage. In such a manner,

the circuit as implemented at Texas Instruments can correct for variations in Vbe1, or

any other parameter affecting Vout, that would results in an uncompensated voltage

error of ±46 mV. Using Monte Carlo simulation techniques, the standard deviation

of the untrimmed output voltage, over process variation, was calculated to be 4 mV,

implying that the trim range is more than sufficient.

Other process specific design choices include:

1. Using transistors with large gate lengths as mirrors to minimize the effect of

threshold voltage mismatch on current mirror accuracy [2].

2. Using combinations of unit sized resistors when constructing important resistor

ratios to ensure ratio insensitivity to process and temperature.
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3.3.4 Simulated Results

The simulation results for the circuit described above are shown in Figs. 3-15 and

3-16.

Figure 3-15: VBG for −50C ≤ T ≤ 150C, Centered Process

As evident, the peak to peak voltage variation over an extremely wide operating

range is limited to ≈ 1.5 mV, assuming standard parameters. The previously men-

tioned standard deviation of 4 mV over process was calculated from the Monte Carlo

generated distribution in Fig. 3-16. Given the generous trim range provided by R2

- R5, any process variation can be compensated by trimming one or more resistors.

Thus, a precise and robust voltage reference has been developed.
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Figure 3-16: VBG for −50C ≤ T ≤ 150C, Montecarlo Simulation - 100 Runs
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3.4 Power Buffer

In the frequency range of interest for the converter system (150 KHz - 1 MHz), low

voltage, high speed transistors are necessary to implement the desired analog signal

processing. Thus, an on chip power buffer is required to convert VCC into two lower

voltage power rails, from which the remainder of the circuit blocks in the IC draw

their current. Using the bandgap voltage as a reference, the power buffer is basically

a non-inverting feedback amplifier coupled with a unity gain open loop buffer, as

shown in Fig. 3-17. The output of the amplifier is designed to be 5 V, with a current

Figure 3-17: Power Buffer System Diagram

sourcing capability of 10 mA. The output of the unity gain buffer is designed to be 3

V with a current sourcing capability of up to 2 mA. A full, detailed schematic of the

entire power buffer is shown in Fig. 3-18. Note that discussion of this block is split

into two subsections regarding the 5 V and 3 V circuitry respectively.

3.4.1 5V Amplifier

A schematic of the 5 V power amplifier is shown below in Fig. 3-19. This circuit is

a single stage, differential amplifier hooked up in a non-inverting feedback configura-
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Figure 3-18: Full Power Buffer Schematic
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Figure 3-19: 5V Power Amplifier Schematic

tion. Q0 and Q1 form the emitter coupled differential input pair. Bipolar transistors

are chosen as input devices for their high transconductance and output resistance for

a given bias current level relative to MOS transistors [2]. A cascoded current mirror

load ensures accurate current matching between input legs and presents a high in-

cremental output impedance on the drain of MP6. Given that the differential gain of

the amplifier is roughly

Av = gm1(ro1‖ro6) (3.20)

where gm1 is the transconductance of Q1, and ro1 and ro6 are the incremental output

resistances of Q1 and MP6 respectively, the configuration described above is optimal

for high amplifier gain [2]. The inclusion of C0 from the high impedance node to

ground implements dominant pole compensation, and guarantees closed loop stability.

The output stage of the amplifier is formed by two unity gain followers, comprised

of MP13 and MN8. Noting that the load current of the buffer must flow through MN8,

the gate to source voltage of this device at full load is

VGS8,max =

√
2LID8,max

kW
+ Vt (3.21)
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where L and W are the length and width of MN8, k is a process dependent parameter,

Vt is the threshold voltage, and ID8,max is the maximum load current of the buffer

[2]. In order for the entire circuit to function properly, all MOS devices must be

biased in their saturation regimes, implying that VDS ≥ VGS + Vt for all devices, and

consequently VCC must be higher than a certain value. Given that ID8,max is orders of

magnitude larger than any other current in the circuit, the limiting factor in the VCC

overhead requirement is VGS8,max. Thus, to ensure the controller reliably operates at

the minimum allowable value of VCC , MN8 must be designed to be as wide as possible.

Moving on to biasing, MN1 and MN2 form the reference leg of all the current

mirrors used to supply bias current to the various circuit elements in the buffer. Ibias

is fed into this leg from the UVLO block, and is derived from the supply independent

source discussed earlier. R0 and R1 serve dual purpose as biasing elements for MN8,

and as the voltage divider feeding the output signal back to the inverting terminal of

the amplifier.

There are several other peripheral devices in this circuit that are worth mentioning.

First, MN0 and MN5 are two transistors that form an effective on/off switch. When

Run is low, MN0 prevents Ibias from flowing through MN1 and MN2, stopping the

flow of all bias current in the system. Similarly, when Runz is high, MN5 ensures that

the output voltage of the buffer remains at GND. Both of these precautions avoid the

possibility of false gate triggers when the controller is disabled. As soon as Run and

Runz are properly asserted, however, the buffer is free to operate normally.

Second, MN3 is used to reduce the input offset voltage of the amplifier by matching

the collector-emitter voltages of Q0 and Q1. To a first order, VGS of MP13 roughly

matches that of MN3, thus VC1 will equal VC0, and the effect of base-width modulation

on the collector currents of Q0 and Q1 will be the same.

Finally, Q2, Q3, R2, R3, and C1 are used to implement a transient output voltage

spike suppression circuit. Without these components, the amplifier can effectively

regulate its output voltage in the presence of positive load current spikes, as the

current through MN8 merely increases by design. Negative going spikes, however,

will result in dangerously high voltage transients, perhaps large enough to damage the
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transistors connected to the output node. To understand how the above mentioned

devices prevent this situation from occurring, consider steady state operation where

the output voltage is 5 V, and, assuming R2 = R3, the base of Q3 is biased at 1
2
Vbeon.

If the load current suddenly drops from Iload to zero, the induced voltage spike on

the output node will couple through C1 and strongly forward bias Q3, allowing this

device to absorb the excess transient current and suppress the voltage spike on the

output. Given a load step from 10 mA to zero in 10 ns, the maximum voltage seen

on the output of the buffer without spike suppression is roughly 7.4 V. With spike

suppression, this value drops to 5.6 V. Both of these voltages were attained with

simulation at 25◦ Celsius. At -50◦ Celsius, the value of the peak decreases to 5.3 V,

while at 150◦ Celsius, the peak increases to 5.9 V. It is important to note that the

slew rate of the load current used in these simulations is significantly higher than any

expected slew rate in the physical controller system, thus the values reported above

will never actually be observed.

Simulated data on the steady state performance of the 5 V buffer will be presented

alongside that of the 3 V buffer in section 3.4.3.

3.4.2 3V Buffer

A schematic of the open loop 3 V buffer is shown below in Fig. 3-20. Note that the

feedback amplifier discussed above has been abstracted into a block labeled Buff5,

with an input voltage equal to the bandgap reference, and an output voltage equal

to 5 V. The 3 V buffer itself is comprised of Q4 - Q11, which form two Darlington

followers and a Darlington push pull output stage. Tracing the signal path from the

input to the output of the buffer, Vout3 can be expressed as

Vout3 = VQ4b + 2Vbe,onp − 2Vbe,onn (3.22)

Assuming that the base-emitter voltage drops of a pnp and npn transistor are equal,

the output voltage will roughly equal the voltage on the base of Q4. For proper choices

of the values of R4 and R5, this voltage can be set to 3 V. To ensure accuracy of the
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Figure 3-20: 3 V Power Buffer Schematic

buffer over process and temperature variation, it is essential that the ratio of R4 to R5

remain constant. Thus, these devices must be made from the same resistive material,

and constructed from the same unit sized blocks to minimize possible sources of error.

Now, given that the current gain of a composite Darlington transistor is β2 [2],

where β is the base to collector current gain of one bipolar device, the configuration

of this buffer allows for significant output load current with minimal requirements

on the bias currents I1 and I2. In fact, as long as the following two expressions are

satisfied,

I1 >
IC10max

β2
(3.23)

I2 >
IC9max

β2
(3.24)

the buffer will reliably produce its desired output voltage for any value of rated load

current.

Of interest in the system is the magnitude of output voltage error. This value

is proportional to the current Ierr, which is equal to the difference between the base
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currents of the npn and pnp Darlington followers. Assuming that I1 and I2 are set to

their minimum values, as defined above, Ierr can be expressed as

Ierr =
1

β4
((IC10max − IC10)− (IC9max − IC9)) (3.25)

with the important simplification that βnpn = βpnp. Thus, the benefit of using Dar-

lington connected transistors is extremely evident, for the error current and output

voltage error become inversely proportional to β4. For even moderate values of β,

this error negligibly effects the performance of the system. Please note that in the

real circuit, Ic10 will nominally equal zero, as the buffer is not designed to function as

a current sink in steady state. Also, βnpn will not equal βpnp in practice, hence, the

above analysis is slightly inaccurate.

3.4.3 Simulated Results

The following two figures display simulation results for the entire power buffer system.

Fig. 3-21 is a graph of the steady state values for Vout3 and Vout5 with zero load over

50 Monte Carlo simulation runs where process parameters are randomly varied. Fig.

3-22 shows the same data, but the buffer is under full load, with 2 mA drawn from

Vout3 and 10 mA drawn from Vout5. Both simulations are done at 25◦ Celsius.

For the no load case, the average output voltages are 3.008 V and 5.004 V, and

the standard deviations are .018 V and .007 V respectively. Over temperature, Vout5

does not noticeably change, while average Vout3 drifts ∓20 mV with increasing and

decreasing temperature. For the full load case, the statistical values for Vout5 are

unchanged, while average Vout3 drops to 2.851 V at 25◦ Celsius, and drifts ∓40 mV

with increasing and decreasing temperature. Given that Vout3 functions only as a

power source, the slight degradation observed with increasing load does not affect

system performance. In fact, this result is expected, as the 3 V buffer is strictly an

open loop system.
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Figure 3-21: No Load Power Buffer Output Voltages Over Process Variation

Figure 3-22: Full Load Power Buffer Output Voltages Over Process Variation
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3.5 Minimum On Timer

When current begins to flow through the body diode of the SR FET, the internal

-100 mV comparator detects the induced voltage drop, and instructs the controller

to bring its gate drive output high. As the SR FET turns on, the magnitude of VDS

across the FET can drop below the turn off threshold. To prevent false triggering of

the -3 mV comparator, and thus spurious turn off of the SR FET, all external signals

are ignored by the controller after turn-on for a user programmable length of time,

given by the minimum on timer (MOT). This block generates a variable width pulse

that blanks control signals produced by the internal detection circuitry and maintains

the gate drive output high. The following subsection goes through the operation and

structure of the timer.

3.5.1 MOT Operation and Structure

A high level schematic of the MOT is shown in Fig. 3-23. Note that the variable

width output pulse mentioned above occurs on the MOTon node. To understand

Figure 3-23: Simplified MOT System Schematic

the operation of this circuit, assume that ARM , M100mV , and MOTon are initially
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low, and that the V+ input of Comp1 is actively held at ground by MN6. When the

conduction cycle of the SR FET begins, M100mV transitions high, triggering MOTon

and turning off the gate of MN6. Ichrg now begins to charge up the V+ node through

C1. Once V+ = V−, the output of Comp1 inverts, forcing the Q outputs of SR0 and

SR1 high. This terminates the MOTon pulse and shorts the V+ node back to ground.

Given that the SR latches are both set dominant, the system will remain in this state

until a positive transition on the ARM pin is detected, bringing the S input of SR1

low, and allowing the M100mV signal to dictate the latch’s behavior.

The length of the MOTon pulse is thus determined by the charging time of C1

from ground to the voltage on the V− input of Comp1. Using the fundamental voltage

to current relationship of a capacitor, the pulse duration can be expressed as

tMOT = C1
V−
Ichrg

(3.26)

Given that V− is hooked to the inverting terminal of amplifier A0, and noting that

A0 is configured as a unity gain buffer, the voltage on V− equals Vref . To find Ichrg,

assume that MP4 - MP7 form a 1:1 current mirror. The charge current then becomes

Ichrg =
Vref
Rext

(3.27)

Now, if the expressions for V− and Ichrg are substituted back into (3.26), tMOT can

be written as

tMOT = C1Rext (3.28)

The pulse width of MOTon now only depends on the values of C1 and Rext, where

Rext is a user supplied resistor from the Ton pin of the controller to ground. The

limits on Rext result in tMOT,min = 250 ns and tMOT,max = 3 µs. This configuration,

therefore, yields a robust, programmable timer that is immune to variations in Vref

and amplifier offset voltage.

A full schematic of the MOT is shown in Fig. 3-24. Comp1 is left as an abstract

block and will be discussed in detail in the next subsection. As can be seen, the
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Figure 3-24: Full MOT System Schematic

signal processing and timing circuitry draw current from the 5 V power rail, whereas

the logic blocks draw current from the 3 V power rail. This design choice guarantees

that logic gate switching events do not perturb the 5 V rail, and consequently disturb

the accuracy of the timing circuits. MN10 and MP13 have been included to interface

between the 0-5 V comparator output and the 0-3 V logic input. VCC supplies Ichrg

to ensure that the devices in the leg comprised of MP4, MP5, MN5, and Rext have

enough voltage headroom to operate in their respective active regions.

A0, from Fig. 3-23, is implemented as a single stage, dominant pole compensated,

NMOS differential amplifier with PMOS cascoded current mirror load. Transistors

MP0 - MP3, MN2 - MN4, and capacitor C0 form this sub-circuit. The reference voltage

on the gate of MN2 comes from the bandgap voltage reference, and is nominally equal

to 2 V. Bias current for this, and the rest of the circuits in the MOT block, comes

from mirrors of the injected current Ibias.

In the next subsection, the design of the timing comparator is discussed, after

which simulated results for the entire block are presented.
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3.5.2 Timer Comparator

Accurate timing requires a comparator with fast response time and low offset voltage.

If either of these parameters is sufficiently skewed, the tMOT analysis performed above

no longer models the behavior of the system. Thus, Comp1 in Figs. 3-23 and 3-24 is

essential to the performance of the MOT.

A full schematic of this comparator is presented in Fig. 3-25 below. The most

Figure 3-25: Timing Comparator Schematic

important feature of this circuit is the design of the input gain stage. To ensure high

transconductance and low offset, bipolar transistors are chosen as the primary input

devices. To mitigate the detrimental effect of base current on the input resistance of

the comparator, MN3 and MN13 are used as input voltage buffers.

Note that Q0 and Q1 are both resistively loaded such that at maximum differential

input, neither transistor saturates, guaranteeing optimal switching characteristics for

the entire block [2]. This construction requires the use of folding legs to steer the

input currents, Iv+ and Iv−, to node A. These legs are formed by MP1, MP2, MN7,

and MN12. To understand their function, consider the following relationship for the

current I2:

I2 = k[IbiasR− (I2 + Iv+)R +

√
1

2k
Ibias]

2 (3.29)
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where Ibias is the current flowing out of the drain of MP0, Iv+ is the current flowing

through the collector ofQ1, and k is a process dependent parameter [2]. It is important

to realize that the above equation was derived assuming that MP0 is twice the width

of MP2. A similar relation for I1 exists where I2 and Iv+ in (3.29) are replaced by

I1 and Iv− respectively. At balance, when V+ = V−, Iv+ = Iv− = Ibias

2
, and equation

(3.29) reduces to

I2 =
Ibias

2
(3.30)

Similar analysis yields the same value for I1, thus no net voltage change is induced

on node A for these conditions. As soon as the system moves away from balance,

however, I1 increases in proportion to the quantity (V+ − V−), while I2 increases

in proportion to the quantity −(V+ − V−). Therefore, for positive differential input

voltages, node A falls and the output of the comparator goes high, while for negative

differential inputs, the opposite occurs.

The topology described above results in extremely fast comparator response times,

largely due to the low impedances on each node in the signal path. High current

biasing of the input and output stages contributes as well. MP13 functions as a speed

enhancing device by limiting the maximum negative voltage swing of node A, and

consequently decreasing the slewing time required to bring the comparator output

low. The average delays between V+ crossing V− and the output of the comparator

changing are summarized in the table below.

Temp Rising Delay Falling Delay Power Consumption

-50 C 5.86 ns 19.9 ns 700 µW

25 C 6.95 ns 19.2 ns 729 µW

150 C 8.84 ns 19.25 ns 734 µW

These numbers were calculated from 100 Monte Carlo simulations of the timing com-

parator block. For each run, V− was held at 2.5 V, while V+ was a 0-5 V, 2.5 µs pulse

with 10 ps rise and fall times. Given that the lowest allowable value of tMOT is 250

ns, the comparator dynamics do not negatively affect the performance of the greater

MOT system.
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3.5.3 Simulated Results

Simulated data for the MOT block is presented below. Fig. 3-26 is a graph of the

minimum tMOT pulse width over 100 Monte Carlo simulations runs. Fig. 3-27 shows

the same data, but for the maximum tMOT pulse width.

Figure 3-26: Minimum tMOT Over Process Variation

Both of these graphs were generated at room temperature, and their respective

averages are 261.9 ns and 2.93 µs, with respective standard deviations of 1.2 ns and

.021 µs. Over temperature, none of these statistics noticeably change, due to timer

insensitivity to fluctuations in Vref (see eqn (3.28)), and careful comparator design.

The primary source of pulse width variation comes from capacitor C1, whose value

deterministically drifts over process.

These results are extremely promising, for while most power IC timing circuits

are rated at ±20% of their nominal values [5], the MOT output only varies ±5%,

assuming a maximum process variation of 6σ.
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Figure 3-27: Maximum tMOT Over Process Variation
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3.6 Minimum Off Timer

The logical dual of the MOT, the minimum off timer (MOFFT) generates a low

going, variable width pulse that blanks the internal detection circuitry and ensures

the gate drive output remains low for a user programmable length of time. This

function is necessary to prevent false turn on signals from being generated by the

parasitic voltage ringing on the drain of the SR FET after current decays to zero.

The following section details the function of this timer.

3.6.1 MOFFT Operation and Structure

A schematic of the MOFFT system is shown below in Fig. 3-28. This timer is very

Figure 3-28: MOFFT Schematic

similar in construction to the MOT discussed above. Specifically, amplifier A0 and

timing comparator Comp1 are identical to the circuits previously described. The

differences are as follows. First, Ichrg is given by
Vref

R0
, where R0 is an internal, rather

than external, resistor. Immediately, this timer will be subject to greater output
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variation than is the MOT, for integrated resistors drift roughly ±10% over process,

while discrete resistors have tighter variation statistics.

Second, the duration of the low going output pulse is given by the discharge time

of C1 from the 5 V rail, to the voltage on the V+ pin of Comp1. This threshold is

given by the voltage on the EN node, and is equal to IENREN , where IEN is the

pull up current on the EN node described earlier, and REN is a user supplied resistor

from the EN node to ground. The range of this resistor is chosen such that the ideal

minimum and maximum pulse widths are 500 ns and 5 µs respectively. Unfortunately,

this setup decouples the charge current from the comparator threshold voltage, and

subjects the MOFFT pulse to variations in both Vref and IEN .

The final difference is that no latches are involved with the operation of this timer.

One 3 V NAND gate, one 3-5 V level shifting buffer (BUFF0), and one 5-3 V level

shifting inverter (MP13 and MN13) are the only logic gates. Nominally, the output of

Comp1 is low and the Trig input is low, thus MOFFTz is high and C1 sits charged

up to the 5 V rail. When Trig transitions high, MOFFTz drops low and Ichrg begins

to discharge C1. When VC1 = VEN , the output of the comparator goes high, node A

falls to zero, and the MOFFTz low going pulse is terminated. C1 does not charge

back up to 5 V until Trig goes low, which happens at the beginning of the next SR

FET conduction cycle.

In terms of pulse width variation, consider the following equation:

tMOFFT = R0C1
5− VEN
Vref

(3.31)

Noting that all the terms in the above equation have process dependent parameter

distributions, the total variation in pulse duration will be significantly higher than

that of the MOT.

3.6.2 Enable Node Voltage Clamp

Given that the user is allowed to float the EN pin, a circuit that clamps the maximum

voltage on this node is necessary to ensure that tMOFFT,min is a deterministic value.
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A schematic of such a circuit is shown in Fig. 3-29. Here, Vclamp is equal to R1

R0+R1
5,

Figure 3-29: EN Node Voltage Clamp Schematic

and the voltage on the base of Q1 in steady state is

VQ1b = Vclamp − Vbe,onn (3.32)

where Vbe,onn is the base-emitter voltage drop of Q0. Once the voltage on the EN

node reaches Vclamp − Vbe,onn + Vbe,onp, Q1 starts to draw current through its emitter,

and actively limits the EN node to this voltage. Given that the base-emitter drops of

a npn and pnp transistor are not exactly equivalent, iterative simulations can yield

the proper sizing of R0 and R1 for the desired clamp output voltage.

The remainder of the devices in this circuit supply bias current to Q0, and ensure

that the EN clamp does not affect the operation of the system during startup. Con-

sider when VCC is below VCC,on and the 5 V rail is at zero. Without MN5, the base

of Q1 would be at ground, and the EN node would be clamped to roughly Vbe,onp,
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preventing the circuit from ever coming out of sleep mode, for the power buffer only

turns on if VEN ≥ VEN,on. With the inclusion of MN5, however, the base of Q1 sits

roughly at the value of Runz, which is significantly higher than VEN,on when the con-

troller is in sleep mode. As soon as normal operating mode is reached, Runz drops

low, the power buffer turns on, and the desired value of Vclamp controls the voltage on

the base of Q1. Note that Iclamp, D0, D1, and MN2 are included to limit the operating

voltage on the collector of Q0 to safe levels for this particular device.

3.6.3 Simulated Results

This section presents the simulated performance data for the MOFFT block. Fig.

3-30 is a graph of the minimum low going output pulse duration over 100 Monte

Carlo simulation runs at 25◦ Celsius. Fig. 3-31 is a graph of the same data, but for

the maximum pulse width.

Figure 3-30: Minimum tMOFFT Over Process Variation
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Figure 3-31: Maximum tMOFFT Over Process Variation
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The average calculated pulse widths for the two data sets above are 498.1 ns and

4.988 µs respectively. Assuming maximum process variation of 6σ, the total pulse

width is accurate to within ±12% of these averages. Over temperature, the standard

deviations do not change, but the averages drift ±1%. It is important to note that

this data does not include variation due to the EN node pull up current, which brings

total pulse width accuracy to within ±20% of the averages.

3.7 Detection Circuitry

The final circuits of interest inside this secondary side controller are the three external

signal comparators that sense the voltage across the SR MOSFET and detect primary

side switching events. These circuits were designed by Robert Neidorff, an engineer at

Texas Instruments, and thus the schematics cannot be reproduced in this document.

A brief discussion of the specifications of these circuits is presented below.

3.7.1 -3 mV Comparator

Turn off of the SR FET in discontinuous conduction mode is triggered by the current

in the device decaying to zero. This condition is detected by the system when the

magnitude of voltage from drain to source of the SR FET falls below 3 mV. An

additional requirement is that the gate of the SR FET must begin to fall 20 ns after

this threshold is reached. Given the difficulty in detecting such low voltage levels, and

the stringent speed requirements of the system, a robust comparator with extremely

fast transistors is necessary.

A block level view of this comparator is shown in Fig. 3-32. Taking advantage

of the minimum time between successive conduction cycles (500 ns), the comparator

includes an offset trimming circuit to ensure consistently accurate threshold voltage.

As soon as the MOFFT block is activated, the Compare signals go low, and the Zero

signals go high. This event places the comparator in “trim” mode, where the V+ input

is shorted to ground and the V− input is tied to 3 mV. MP1 and MP2 then regulate

the output of the comparator to half way between its supply voltage and ground
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Figure 3-32: -3 mV Comparator Functional Diagram
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by injecting differential current into the system. This process forces the switching

threshold of the comparator to occur when V+ is 3 mV below V−, regardless of any

process shifts and input offset voltages. Once the Zero signals go low, the comparator

is back to normal operating mode, and the voltage induced on the gate of MP1 during

“trim” mode is stored on C0. Thus, every conduction cycle, the -3 mV comparator

always trips at the proper threshold. As long as the ”trim” mode lasts less than

tMOFFT,min, the system is never adversely affected by this operation.

Simulation of this block yields typical switching voltages of -3.7 mV at 150◦ Celsius

and -5.15 mV at -50◦ Celsius. Typical comparator delays are on the order of 12 ns,

as will be shown in the top level simulation section.

3.7.2 -100 mV and Primary Synchronization Comparators

The -100 mV comparator is responsible for detecting when current begins to flow

through the body diode of the SR FET, and thus when to apply power to its gate.

Given that the drop across a typical MOSFET body diode is roughly 1 V [6], the

requirements on the accuracy of this comparator are not particularly rigid. Even if

the threshold drifts ±50 mV, the overdrive on the inputs will still be sufficient to

trigger turn on at the right instant.

The primary synchronization comparator detects switching events on the primary

side of the converter system. When the appropriate primary switch turns off, a

negative pulse couples through to the SY NC pin of the controller. This pulse triggers

the primary synchronization comparator, and the SR MOSFET gate is immediately

shut off if the current in the SR FET has not already decayed to zero. This block

is subject to the same speed requirements as the -3 mV comparator, namely that

the gate drive output must begin to fall 20 ns after a triggering event. Supporting

simulation data can be found in the next section.
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3.8 Top Level Simulation Results

This section presents simulation data for the entire controller system. All of the

blocks described above are hooked together as shown in Fig. 3-33. Note that the

block labeled Vds Comp includes the -3 mV and -100 mV comparators and all of the

control logic for the chip. Additionally, all simulations include a 100 pF load capacitor

placed from the GATE pin to ground representing the gate capacitance of a typical

SR FET.

Fig. 3-34 shows the steady state room temperature switching waveforms of the

controller in a converter system designed to operate at 170 KHz. The voltage on the

Vd pin of the controller (DRAIN) is a piecewise linear waveform meant to simulate

discontinuous conduction mode operation. As evident, the gate drive signal is high

during the conduction period of the SR FET, and the MOT and MOFFT timer pulses

are triggered at the proper times. The resistances on the EN and Ton pins to ground

are sized for minimum pulse widths. Additionally, no significant voltage spikes are

noticeable on the 3 V and 5 V power rails during internal logic switching events.

The next two figures exemplify the important voltage thresholds and propagation

delays of the controller. Fig. 3-35 shows the delay between -100 mV detection and

the gate drive output rising at room temperature. As can be seen, the -100 mV

comparator trips at roughly the correct threshold, and the delay before the gate drive

starts to rise is 27 ns. The rising delay limit is 40nS, thus the system outperforms

the design specification. Fig. 3-36 shows the delay between -3 mV detection and the

gate drive falling. The detection point for this graph is VDS = −3.9 mV and the

propagation delay to the gate driver is 13.7 ns. Both of these values are well within

the required limits.

Finally, Fig. 3-37 shows the delay between the detection of a primary side turn

off event, and the gate drive output being driven low. The magnitude of VDS is

assumed to be instantaneously greater than the -3 mV threshold, thus the converter

is operating in continuous conduction mode. As demonstrated, the delay is 18.6 ns

at room temperature. This value is also acceptably below the design specification.

83



Figure 3-33: Top Level System Schematic
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Figure 3-34: Simulated Steady State Controller Switching Waveforms

Figure 3-35: Simulated Gate Drive Turn On Waveforms
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Figure 3-36: Simulated Gate Drive Turn Off Waveforms

Figure 3-37: Simulated Primary Synchronization Turn Off Waveforms
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3.9 Summary

This chapter has explored the design and simulated performance of an integrated sec-

ondary side synchronous rectification controller for use in an LLC resonant converter.

This chip was designed on a proprietary Texas Instruments silicon IC process, and is

meant to be sold as a competitive product. As exemplified by the previous discussion,

the performance of this chip far exceeds its aggressive design targets. Additionally,

the broad applicable converter frequency range, inclusion of primary synchronization

capability, and accurate detection and timing circuitry, uniquely identify this chip as

an industry leading SR controller.

I would also like to briefly mention that the practical experience gained from

participating in the industrial design process is invaluable. As will be discussed in

the next chapter, it is exceedingly difficult to address many real world IC design issues

given the inherent limitations of a classroom environment. Working in industry, even

briefly, is an excellent method for expanding upon one’s skill set and abilities as an

IC designer.
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Chapter 4

Simulation and Exercise

Framework for a Power IC Design

Course

More and more, companies are discovering that new electrical engineering graduates

have limited applicable experience with integrated circuit (IC) design. Issues such

as thermal behavior, manufacturing process variation, practical circuit construction,

and layout considerations are overlooked in a typical curriculum due to resource and

time constraints. Additionally, instructing students about modern IC fabrication is

difficult, considering that industrial techniques are continually evolving [1].

A new laboratory course has been developed for advanced undergraduate or be-

ginning graduate students that intends to fill in this knowledge gap that has been

growing between educational and industrial power IC design realms. The specific

objectives of this course include the following:

1. Introduce students to the fundamentals of power converter control theory.

2. Teach students to design analog control circuitry block by block.

3. Teach students to simulate models of their circuit designs.

4. Instruct students on how to build and debug their circuits and compare exper-
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imental results with their simulated results [1].

As mentioned in Chapter 1, a hardware kit exists that allows for the construction

of a complete power electronic controller. The kit consists of individual functional

modules that plug into a motherboard. Each module is a predesigned printed cir-

cuit (PC) board meant to mimic a common IC building block, such as a bandgap

reference, error amplifier, or clock. Students populate these boards with components

of their choosing, and then fit them all together on the motherboard to form cus-

tomized controllers. Ideally, the overall experience is foundationally similar to that

of integrated circuit design, while still enabling the use discrete components [1].

Important distinctions do exist, however, between integrated and discrete circuits.

Most notable is the use of resistors. In the discrete world, resistors are small, two

terminal devices that take up less room on a printed circuit or bread board than do

transistors, which are larger, three terminal devices [1]. On an integrated circuit,

however, resistor are fabricated from various types of silicon, poly-silicon, and metal

constructs, and take up orders of magnitude more die area than do bipolar or MOS

devices. Thus, on an IC, resistors are only used if absolutely necessary, and are

normally replaced by transistor equivalents whenever possible [5]. Another important

difference is that discrete thermal and geometric matching is only available on an

extremely limited basis [1]. Therefore, when matching is critical in a given module,

pairs of transistors fabricated on the same die are used.

This chapter presents the simulation and written exercise framework, intended

to couple with the preexisting hardware kit discussed above, that allows students to

verify their potential designs. SPICE schematics of each PC board module with stock

component values are shown, along with typical simulation results and potential class-

room/homework exercises. Given its ease of use, strong convergence likelihood, and

free academic license, LTSPICE has been chosen as the ideal simulation environment

for this course.

Before individual modules are presented, however, a review of the course design

methodology is appropriate.
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4.1 Design Methodology

Without a doubt, simulation is an essential tool in integrated circuit design. In fact,

the speed and ease with which particular topological criteria can be verified is essen-

tial to the industrial community, as discussed in Chapter 3. Unfortunately, designs

that are based on simulation alone suffer consequences resulting from the hidden

assumptions and inherent limitations of most simulation environments. SPICE, for

example, does not predict the effects of thermal runaway on un-degenerated bipolar

current mirrors, thus, a design that is functional in simulation may destroy itself once

constructed [1].

Given that SPICE should not be thought of as a primary design media, students

are instructed to begin with hand calculations, where order-of-magnitude quantities

prevail over exact numbers [1]. This is the stage where true engineering intuition is

developed. Students must choose appropriate approximations, such as small signal

and linear equivalent circuit models, in order to properly estimate useful component

values. From an enormous array of concepts, students learn to identify and employ

those that will roughly predict the operation of their circuits. In so doing, they are

assured to fundamentally understand the circuits they design, and are able to foresee

simulated outcomes. It can be argued that one does not simulate unless one has a

prediction of the result [1].

Once the component calculations are complete, SPICE simulation is useful in

verifying the legitimacy of the values. On the occasion that the simulated answers

disagree with expected ones, students must revisit their initial assumptions and revise

their hand calculations. In this way, simulation works to illuminate circuit design

concepts, rather than obscure them, and is thus an essential part of this power IC

laboratory course.

The following Sections detail the simulation framework developed for each IC

module to enable the design verification process.
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4.2 Regulator and Reference Board

This Section presents relevant information about the voltage regulator and bandgap

reference board. It is split into two subsections, where each part of the board is

discussed separately.

4.2.1 Voltage Regulator

A linear voltage regulator is an essential block of any integrated power controller, and

serves as an important starting place in the study and motivation of power conversion

techniques. A PC board module exists upon which students build a linear regulator

based on a single stage operational amplifier and output driver. The SPICE schematic

for this circuit is shown in Fig. 4-1. Note that two regulators exist on each PC board

module, and their respective outputs are meant to function as the internal power rails

for the remainder of the controller circuitry.

Figure 4-1: Discrete Linear Voltage Regulator Schematic

Transistors Q1 - Q4 form the differential input stage to the regulator, where Q3

and Q4 are an NPN emitter coupled pair, and Q1 and Q2 are a PNP current mirror
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load. This configuration results in a low frequency differential voltage gain of

| Vo
Vid
| = gmro (4.1)

where Vid is the magnitude of differential input voltage, gm is the transconductance

of one of the input transistors, and ro is the parallel combination of the incremental

output resistances of Q2 and Q4 [2]. Q5 and Q6 form a Darlington output follower

stage where the small signal gain from the base of Q5 to the emitter of Q6 is one [2].

The base of Q4 is connected to the tap of the output voltage divider formed by R6

and R7, while the base of Q3 is connected to the bandgap reference voltage, which

will be explained shortly. The result of this entire topology is a circuit that functions

as a canonical non-inverting feedback amplifier, like the one shown in Fig. 4-2. A0

Figure 4-2: Canonical Non-Inverting Feedback Amplifier

represents the single stage differential amplifier and Darlington output stage discussed

above, while R6 and R7 function as the feedback voltage divider. The output voltage
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of such a circuit is given by

Vout =
R7 +R6

R7

Vin (4.2)

assuming that the gain of amplifier A0 approaches infinity. While unrealistic, this

assumption simplifies the general analysis of this circuit and is largely accurate if the

gain is adequately high [2]. The meaning of adequately is left as an exercise to the

student, and is discussed later.

When the circuit of Fig. 4-1 is compared to a functionally similar circuit used in a

real IC, (see Fig. 3-19 from Chapter 3) certain differences can be observed. Aside from

a MOS implementation, the use of input followers, and extra control signals, the most

important topological distinction between the two circuits is the lack of degeneration

resistors in the biasing current mirrors of the IC regulator. For a well designed mirror,

the output current will almost exactly match the input current, a characteristic that

heavily relies on the geometric matching of the two (or more) transistors involved

[2]. On a given IC, modern fabrication and layout techniques can yield high degrees

of matching between devices on the same silicon die, thus, current mirror linearity

is quite high. With discrete devices, however, direct geometry matching is nearly

impossible [1]. Emitter degeneration resistors are used in lieu of device matching to

achieve the linearity required in a discrete mirror.

To understand the effect of these resistors, consider the case when R3 and R4 in

Fig. 4-1 are not present. As derived in [2], the output current of such a mirror equals

Iout,m =
Is7
Is8
Iin,m (4.3)

where Iout,m is the collector current of Q7, and Iin,m is the collector current of Q8. If

the mirror is designed to have unity gain, the saturation currents of both devices, Is7

and Is8, must be equal. Note that these two parameters are linearly dependent on

the emitter areas of their respective devices. If Q7 and Q8 are implemented as two

discrete transistors, a deterministic value for the ratio of their saturation currents is

impossible to attain, thus the resulting current mirror will not function as intended

[2].
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Consider what happens, however, when R3 and R4 are added back into the circuit

analysis. The base voltage of Q8 becomes

Vb8 = Iin,mR3 + Vbe,on (4.4)

where Vbe,on is roughly equal to .6 V [10]. Given that the Vb7 = Vb8, the voltage across

R4 is

VR4 = Vb8 − Vbe,on = Iin,mR3 (4.5)

where we have assumed that the base-emitter drops of both Q7 and Q8 are equal to

Vbe,on. Finally, the output current of the mirror is

Iout,m = IR4 =
R3

R4

Iin,m (4.6)

As evident, the current gain only depends on the ratio of R3

R4
. For discrete precision

resistors, the tolerance on stated device values is ± 1%, thus the worst case current

mirror error is limited to ± 2%. When compared to the enormous error incurred

without degeneration [2], the inclusion of R3 and R4 is more than justified.

Such comparative analysis is essential for the success of this laboratory course.

Every circuit block must be framed in IC domain for students to gain a true intuitive

understanding of the design process. By highlighting technology dependent asymme-

tries, buried intricacies become apparent, and topics that are not explicitly part of

discrete circuit design, such as device layout and matching, can be effectively taught.

After the hand calculation design stage is complete, students are instructed to

simulate their circuits in SPICE. For the linear voltage regulator, students use the

schematic in Fig. 4-1, where the stock component values are replaced by their own.

Hopefully, the simulated performance of the student’s circuit will match or exceed

some base metric set by the instructor. An open-loop bode plot of the input to

output characteristics of the stock circuit is shown below in Fig. 4-3. As can be seen,

the circuit is dominant pole compensated, resulting in a crossover frequency of 293

KHz and a phase margin of 90◦. From this plot, all closed loop dynamics can be
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Figure 4-3: Bode Plot of Vout

Vin
Magnitude and Phase for the Open-Loop Stock Regu-

lator
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2N3904 MAT03
Q5 Q6 Q7 Q8 Q1 Q2

LM394 Passives
Q3 Q4 Remaining components

Table 4.1: Bill of Materials for Voltage Regulator Module

found [7].

The bill of materials for one of the actual discrete voltage regulator modules can

be found in Table 4.1.

Coupled with each laboratory module are corresponding homework problems, in-

tended to further illustrate associated design concepts. Referencing Figs. 4-1 and

4-3, several potential problems are discussed below. Note that some of the answers

should result from hand calculations, and not blind simulation.

1. What is the open-loop, dc gain of the regulator op-amp circuit? This question

helps students to understand the difference between an ideal and real op-amp,

where gain is no longer infinity. This should be done without simulation.

2. What effect does finite gain have on the desired output voltage of the

regulator? This question results in a steady state error calculation, and

explains why high op-amp gain is desirable. Any lingering concerns about

what adequate amplifier gain implies should be alleviated.

3. Come up with an approximate transfer function for the open-loop operation of

the amplifier. This directive should get students thinking about the frequency

response and stability of the regulator. Several sub-questions are now

necessary.

• Based on this function, what is the unity gain crossover frequency?

• What is your estimation for the phase margin? Larger than 45◦?

Smaller? Why?

• What would happen without capacitor C1?
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Students should be able to use their calculated answers, and compare them to

simulated results. Ideally, this will reinforce an understanding of amplifier

stability metrics, methods for compensation, and gain/bandwidth tradeoffs. It

will also allow them to revise their designs and approximations if simulation

and calculation disagree.

4. What accounts for the differences between your estimations and SPICE’s

results? Even if hand calculation and simulation yield similar results, some

difference will always be evident. Students must realize that the circuit models

they use for analysis are approximate. Additionally, this question could

potentially lead into exploration of the SPICE algorithm, if an instructor so

desires.

4.2.2 Bandgap Voltage Reference

Much like the power buffer block in the SR controller of Chapter 3, the voltage

regulator discussed above requires a stable, temperature invariant voltage reference

from which its output voltage is derived. A high level schematic of this reference

circuit is shown below in Fig. 4-4. Assuming that A0 has adequately high gain, the

voltage on the inverting and non-inverting terminals of the amplifier will be equal.

The output voltage of the reference, therefore, is equal to

VBG = Vbe9 + VR6 (4.7)

To find VR6, look at the voltage across R7:

VR7 = VT ln
IC9IS8

IC8IS9

(4.8)

Assuming Q8 and Q9 are implemented as a matched pair, and realizing that IC9

IC8
= R6

R5
,

VR7 can be written as

VR7 = VT ln
R6

R5

(4.9)
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Figure 4-4: High Level Bandgap Voltage Reference Schematic
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By finding the current flowing through R7, and multiplying by the value of R6, VR6

can be expressed as

VR6 = VT
R6

R7

ln
R6

R5

(4.10)

The final expression for the output voltage is now

VBG = Vbe9 + (
KT

q
)
R6

R7

ln
R6

R5

(4.11)

where the thermal voltage, VT , has been replaced by its constituent relationship.

Thus, the output voltage of this circuit is of the same form as that of the hypothetical

bandgap voltage reference presented in Section 3.3.1, Fig. 3-12:

Vout = Vbe +M(
KT

q
) (4.12)

where the positive temperature coefficient gain, M , is given in this case by

M =
R6

R7

ln
R6

R5

(4.13)

The actual discrete implementation of this circuit is shown below in Fig. 4-5. A0

is almost the dual of the amplifier in the voltage regulator discussed above, where

the input stage is comprised of a PNP differential pair and an NPN current mirror

load. For reasons discussed earlier, Q5 and Q6 must be a matched pair to ensure

current mirror linearity. This amplifier also contains a common emitter output stage

to increase the overall dc gain and minimize the input offset voltage [2].

Students are required to reduce this circuit into the system schematic shown in

Fig. 4-4. A similar strategy to that presented at the end of Section 3.3.1 can be used

to choose a nominal temperature where the slope of the output voltage vs temperature

is 0, calculate the required value of M , and then size R5 - R7 appropriately.

Once the initial calculations are complete, students must simulate their own de-

signs using a supplied SPICE schematic with initially blank values. Results for the

sample bandgap reference shown in Fig. 4-5 are presented below. In this implementa-
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Figure 4-5: Discrete Bandgap Voltage Reference Schematic

tion, the output voltage varies 100 mV peak to peak over a 200 ◦C range. While still

acceptable for most power controller applications [6], the output swing is two orders

of magnitude greater than that of the integrated bandgap reference in Section 3.3.2.

This discrepancy helps to exemplify the performance limitations of discrete circuits.

The bill of materials for the actual discrete bandgap reference module can be

found in Table 4.2.

2N3904 2N3906
Q7 Q8 Q9 Q1 Q2

LM394 MAT03
Q5 Q6 Q3 Q4

1N4148 Passives
D1 Remaining components

Table 4.2: Bill of Materials for Bandgap Reference Module
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Figure 4-6: Simulated Discrete Bandgap Output Voltage for a DC Temperature Sweep
−50 ≤ T ≤ 150C
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Corresponding homework problems for this laboratory module are as follows:

1. Consider Fig. 4-4.

• What are the voltages at the inverting and non-inverting terminals of A0?

• What is the voltage across R7? Reduce this value to an expression

linearly dependent on temperature.

• What is the value of the current running through R6?

• Derive an expression for the output voltage, VBG? What is the

temperature dependence of this quantity?

This series of questions directs students towards deriving the temperature

dependence of the output voltage. While the operation and theory of bandgap

references will most likely have been covered in the classroom, personal

derivation is essential to complete understanding.

2. What are the requirements for A0? After learning about the non-ideal

characteristics of real op-amps, this question forces students to think about

the strict regulation requirements for proper bandgap function.

3. Why is it essential that Q5 and Q6 be implemented as a matched pair? What

effect on system performance would Q5 and Q6 have if they were instead two

discrete transistors? This question reinforces important discrete design

concepts, and can be used to bring up IC matching and layout issues.

4. How do the open-loop dynamics of A0 differ from those of a single gain stage

amplifier? What do closed-loop stability requirements imply about the location

of the crossover frequency and the size of CC? Another op-amp question,

students should be able to identify the increased difficulty of compensating a

system with two low frequency poles, and calculate the dependence of the

unity gain crossover frequency on CC .

5. Why does the simulated bandgap output voltage look parabolic over

temperature? At what temperature does the dVBG

dT
go to zero? Connecting
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simulation with calculation, students need to realize that the circuit as

constructed can only suppress the linear temperature dependence of the

output voltage. The resultant parabolic curve exemplifies the parasitic effect of

higher order temperature coefficients on the system. Ideally, the temperature

at which 0 Tc is observed coincides with the student’s target design value.

6. Why is a startup circuit for this reference necessary? As a final question,

students are asked to explain the need for some kind of startup circuit that

keeps the reference out of its stable 0 current state. It is important to note

that this operating condition is an example of something that could be missed

if the entire circuit design is based only on simulation.

4.3 Clock Board

An accurate clock is a vital piece of any power supply control circuit, and is used

primarily to set the switching frequency of a given converter system. In this course,

students are exposed to various clock topologies, however only one is actually con-

structed.

4.3.1 Exponential Relaxation Oscillator

In order to teach the basics of clock operation, the exponential type relaxation oscil-

lator of Fig. 4-7 is presented to students first. The operation of this timer is very

straightforward. Assume the controller is operating in steady state and the voltage

on the inverting terminal of Comp has just exceeded that of the non-inverting termi-

nal. This event brings the clock output low, and simultaneously lowers the switching

threshold, given by the voltage on the non-inverting terminal of Comp, to

Vth,on =
R4||R5

R3 +R4||R5

5 (4.14)

The clock will remain low until the voltage across C decays to Vth,on. When this

happens, the clock output transitions high, C begins to charge up, and the threshold
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Figure 4-7: RC Exponential Type Relaxation Oscillator

on the non-inverting terminal jumps to

Vth,off =
R4

R4 +R3||R5

5 (4.15)

In this way, the clock output continually oscillates while the voltage across C charges

up and down between the two switching thresholds. The effect of these thresholds

changing in the direction of comparator output voltage is known as hysteresis, and

is the basis of operation for all relaxation oscillators [3]. The period of oscillation for

this clock is directly proportional to the charge and discharge time of C through R1

and R2 respectively. Given that capacitor voltage is exponentially related to time in

this configuration, the name Exponential Type is appropriate.

4.3.2 Linear Relaxation Oscillator

The clock circuit that students build is more reminiscent of an oscillator that might

actually be found in a production IC [3]. A schematic of this linear type relaxation
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oscillator is shown below in Fig. 4-8. The primary difference between the two os-

cillators presented is the method by which the timing capacitor is charged. In the

exponential type, charge time is determined by the time constant of the system. In

the linear type, a known, constant value of current is sourced into or sunk out of the

capacitor C1. Given the constitutive voltage to current relationship of a capacitor,

the time it takes to charge from one voltage to another is given by

∆t = C1
∆VC1

Ichrg
(4.16)

where ∆VC1 is the magnitude of voltage change across the capacitor and Ichrg is the

current flowing through the capacitor. This method of timing is preferred on an IC for

multiple reasons. First, the charge and discharge times are only subject to variations

in the value of C1, rather than to variations in both R1/R2 and C. Additionally, the

linear type circuit requires the use of fewer resistors, which is advantageous from a

total die area perspective. Note that both timers in the SR controller of Chapter 3

are implemented with linear charging circuitry.

Given the multitude of functional sub-modules contained within the circuit of Fig.

4-8, the benefit of using this topology for educational purposes is clearly evident.

First, students learn about high speed comparator design by examining the NPN

differential input comparator at the heart of the timer. This circuit is formed by the

following transistors: Q14, Q15, Q20, Q21, Q24, Q25, Q26, and Q27. Concepts such

as folding legs, current steering, and bipolar saturation are all encompassed by the

design of this block. Additionally, the use of output inverters to increase the switching

speed and boost the current driving capability of the clock must be considered.

Second, the circuits that form the charge and discharge currents for C1 add insight

into the design of non-standard current sources. Specifically, Q4, Q5, Q6, and Q7 form

two voltage controlled current sources. Here, the voltage on the base of Q4 and Q6

controls the collector current of Q5 and Q7 respectively. Noting that IC5 is mirrored
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Figure 4-8: Linear Type Relaxation Oscillator Schematic
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into Q11, the charge current for capacitor C1 is given by

Ichrg = IC7 − IC5 (4.17)

Thus, by modulating the value of IC7 every half oscillation period, C1 either charges

up to the turn-off threshold, or down to the turn-on threshold.

To understand the exact switching behavior of this circuit, students must realize

that the clock output determines the state of the system. If the output is high, IC7

equals zero, C1 is discharging, and the turn-off threshold of the timing comparator

can be expressed as

Vth,off =
R2

R1 +R2

5 (4.18)

When VC1 = Vth,off , the clock output goes low and IC7 is allowed to flow. If IC7 > IC5,

Ichrg is a positive quantity, and C1 begins to charge toward the turn-on threshold of

the timing comparator, given by

Vth,on =
R2 +R3

R1 +R2 +R3

5 (4.19)

Thus, the total period length for one oscillation of this circuit can be written as

T = 2C1
Vth,on − Vth,off

IC5

(4.20)

where the assumption that IC7 = 2IC5 has been made.

Simulated results for this linear oscillator circuit with stock component values are

shown in Figs. 4-9 and 4-10 below. The designed switching frequency of the system

is 50 KHz with a duty cycle of .5.

In Fig. 4-9, Vclock refers to the output voltage of the oscillator, VC1 refers to the

voltage across C1, and Vth refers to the voltage on the inverting terminal of the timing

comparator, which is effectively the hysteretic switching threshold. As can be seen,

VC1 looks like a triangle wave, hence the name linear relaxation oscillator [3]. In Fig.

4-10, the rise time of clock pulse is shown, and is roughly equal to 45 ns.
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Figure 4-9: Simulated Clock Pulse Waveforms for the Linear Relaxation Oscillator
fclck = 50KHz
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Figure 4-10: Simulated Clock Pulse Rise Time
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2N3904 2N3906
Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11 Q4 Q6 Q20

Q12 Q13 Q14 Q15 Q22 Q23 Q25 Q26 Q21 Q24 Q27

2N700 ZVP3306A
M2 M4 M6 M8 M1 M3 M5 M7 M9

1N5711 Passives
D1 D2 Remaining components

Table 4.3: Bill of Materials for Clock Module

The bill of materials for the actual discrete clock module can be found in Table

4.3.

Corresponding homework problems for this laboratory module are as follows:

1. Which transistors function as the timing comparator in this oscillator? Where

is the high gain node? By this point in the course, students will have been

introduced to basic comparator design concepts, thus, recognizing a familiar

structure should be relatively simple. The difficulty in this question comes

from identifying the function of the folding legs and being able to trace the

signal path from input to output.

2. Why are the two output inverter stages necessary? This question is intended

to make students think about capacitive loading effects on nodes that are

critical to speed. Specifically, every other circuit that the clock is connected

too adds extra capacitance to the output node. Without a high current

inverter driving these parasitics, the clock would not function in any

reasonable frequency range.

3. Consider Fig. 4-10. How would the rise time of the clock pulse be affected if

D1 and D2 were removed? Given the importance of fast circuit response, this

question aims to exemplify the detrimental effect bipolar saturation has on

comparator slew time and the accuracy of the clock frequency. Students can

simulate the circuit without the clamp diodes and observe the effects they

predict.
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4. How is hysteresis implemented in this circuit? Understanding the method of

hysteresis used in this oscillator is key to grasping the operation of the circuit

as a whole.

5. Why is IC7 never really allowed to go to zero? This question reveals some of

the design subtleties of using Darlington-like configurations. Specifically, the

turn-on characteristics of such composite devices are terribly slow. When no

current flows through either transistor, the node that connects the base of the

output device to the collector/emitter of the input device has an enormous

incremental impedance [3]. Thus, the charge time of the parasitic capacitance

on this node is undesirably long, and any quantity that depends on current

flow through the composite device is limited by this interval. The harmful

effects of removing Rb1 and M1 in Fig. 4-8 can be seen in simulation.

4.4 Feedback Circuitry Board

At the core of every power controller is the feedback circuitry necessary to enable out-

put voltage regulation in a given converter system. In most control implementations,

two feedback loops exits: an outer voltage sense loop and a minor current sense loop

[6]. This section begins with a discussion of the voltage sense circuitry.

4.4.1 Error Amplifier

A schematic of the error voltage amplifier that students design is shown in Fig. 4-11.

This circuit serves dual purpose as the summing junction for the controller reference

and feedback voltage, and as the compensation network for the outer feedback loop

[11]. As derived in [6], proportional and integrative (PI) compensation is optimal

for this type of power controller. This is achieved with a network of resistors and

capacitors connected from the base of Q5 to ground.

To understand the operation of this circuit, students are asked to consider the

function of the actively loaded differential pair Q3 and Q4. These devices produce a
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Figure 4-11: Error Amplifier Schematic

current that is proportional to the difference between the converter reference and the

feedback voltage, otherwise know as the error [6]. This current is given by

ierr = gmverr (4.21)

where gm is the transconductance of one of the input transistors and verr is the error

voltage as defined above. ierr flows through a net impedance connected to the base of

Q5 to create a desired compensation transfer function. As derived in [11], the transfer

function from verr to vout for the error amplifier as shown in Fig. 4-11 is

vout
verr

(s) =
R5C2s+ 1

s(R5(C2||C3)s+ 1)

gm
C2 + C3

(4.22)

where vout is measured from the emitter of Q5 to ground (note that lowercase letters

are used to represent incremental voltages and currents). Not only does this transfer

function implement PI compensation, but it also contains an extra pole and zero
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2N3904 2N3906
Q3 Q4 Q5 Q1 Q2

Passives Notes
Remaining components 2.5 V Ref and Ibias not included

Table 4.4: Bill of Materials for Error Amplifier Module

for lead compensation. This encourages students to experiment with the location of

their frequency domain system dynamics and observe the effect lead compensation

can have on bandwidth and stability.

A simulated bode plot for this error amplifier is shown in Fig. 4-12. As evident,

the crossover frequency for this system is 270 Hz, while the phase margin is 80◦. The

observed bump in phase characteristic is due to placement of the lead compensation

zero roughly at crossover.

The bill of materials for the actual discrete error amplifier module can be found

in Table 4.4.

Corresponding homework problems for this laboratory module are as follows:

1. Explain how this circuit block fits into the overall operation of the power

controller. While a relatively basic concept, it is important that students

understand the system level functions of each circuit they design.

2. Derive the two port model for this amplifier using small signal characteristics.

Students should be able to use what they have learned about incremental

circuit models and making appropriate simplifications to derive the two port

model for this amplifier.

3. Using the model you just derived, find the transfer function from verr to vout

and sketch a corresponding bode plot. Note that an engineer’s ability to find

transfer functions and work comfortably in the frequency domain is an

enormous advantage when analyzing modern, high speed systems. Thus, this

course hopes to foster in students an intuition for frequency domain dynamics

and design.
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Figure 4-12: Simulated Error Amplifier Bode Plot
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4. Using SPICE, simulate the open-loop error amplifier and generate a plot of the

magnitude and phase of vout

verr
(s). Does this plot agree with your sketch? This

question allows students to compare their expected and simulated results. As

always, if the two disagree, design revisions are necessary.

5. Considering the external system with which this amplifier interacts, why is the

bandwidth so low? Hopefully, students will realize that the outer voltage loop

is meant to be quite slow. A fundamental design constraint of hard-switched

power converters is that the output voltage remain relatively constant over a

switching cycle. Thus, the response time of the converter output is orders of

magnitude slower than the switching period [6].

6. How is lead compensation used to assure closed loop stability? This question

attempts to illuminate slightly more advanced topics in stability and control.

Specifically, the use of a pole zero pair to boost the phase at crossover while

leaving low frequency dynamics unaffected.

4.4.2 Current Sense Amplifier

In order to implement a peak current mode minor control loop, the converter must

have a signal that is proportional to the current flowing through the power stage

inductor. A small resistor is placed in series with the high side MOSFET switch such

that the voltage across the resistor is proportional to the inductor current when the

switch is on. Given that the magnitude of the sense voltage will be small, an amplifier

is necessary to gain up the signal.

A schematic of the transconductance amplifier used for this purpose is shown

below in Fig. 4-13. Much like the error amplifier above, a differential input voltage

generates a current at the output node of the amplifier that is given by

io = gmvid (4.23)

where vid is the magnitude of differential input voltage. Noting that io must flow
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Figure 4-13: Current Sense Amplifier Schematic

through the connected load resistance, the voltage gain from input to output can be

expressed as

Av = gmRL (4.24)

Simulation data for the circuit in Fig. 4-13 is shown in Fig. 4-14. Here, the

input to the current sense amplifier is the signal Vcurr, which represents the voltage

across the high-side series resistor when the converter is operating in continuous

conduction mode. Note that the switching frequency is 50 KHz, and the rise time

of the current waveform is 100 ns. Even with such a fast rise time, the output of

the amplifier accurately tracks the input. By investigating the function of this circuit

block further, students should be able to clearly see the transient benefits of using an

open-loop transconductance amplifier in such applications.

The bill of materials for the actual current sense amplifier module can be found

in Table 4.5.

A few corresponding homework problems for this laboratory module are discussed
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Figure 4-14: Simulated Current Sense Amplifier Response During CCM Operation,
50 KHz Swithing
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2N3904 2N3906
Q1 Q2 Q5 Q6 Q3 Q4 Q7 Q8

Passives Notes
Remaining components Iptat not included

Table 4.5: Bill of Materials for Current Sense Amplifier

below:

1. Given that gm = IC
VT

, why is it necessary for the tail current source in Fig.

4-13 to be proportional to absolute temperature (PTAT)? Continuing with the

theme of industrial IC design techniques, a product must function over an

extremely wide temperature range in order to be viable in the marketplace.

This question intends to have students think about the temperature

performance of this amplifier, with the hope they will realize that the gain is

inversely proportional to temperature. As temperature rises, gm falls. Thus, a

bias current source that tends to increase IC as temperature rises should

cancel out the dependence of amplifier gain on operating temperature.

2. What is the function of degeneration resistors R3 and R4? How are they sized?

As derived in [11], these resistors significantly increase the linear operating

range of the current sense transconductance amplifier. Students should

calculate the maximum differential input voltage expected on the inputs of the

amplifier, and then use appropriate simplifications to calculate the values of

R3 and R4 that yield enough linear amplification range.

3. Draw a block diagram of the complete system regulation loop. This question

allows students to connect the feedback circuitry they have been studying to

more theoretical control concepts, such as minor loop feedback and overall

system dynamics.
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4.5 Gate Drive Board

In order to translate internal converter logic into high power drive signals, capable of

quickly turning on and off large external MOSFETs, specialized gate drive circuitry

is necessary. In this course, students will learn about the difficulties associated with

designing good gate drivers, especially for high side switches. A schematic of the

discrete high side driver circuit used in this course is shown in Fig. 4-15. Here, a

Figure 4-15: High Side Gate Drive Circuitry

high signal on the base of Q1 strongly forward biases the emitter-base junction of

Q3. This pulls the gate of M1 high, and the charge stored in ballast capacitor Cbst is

transferred to the gate of high side switch MHS. It is important to note that while

the source of MHS is technically floating while both low and high side switches are off,

the voltage across Cbst was previously charged to VCC during the low side conduction

cycle. Thus, when M1 turns on, Cbst is effectively strapped from gate to source of

MHS. Regardless of where the source voltage has floated, Cbst forces the gate-source

voltage of MHS to be equal to VCC , and thereby turns on the high side switch.

A full schematic intended for student simulation of this module is shown below
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in Fig. 4-16. Both low and high side gate drivers are visible, along with extra

control logic for shoot through protection and under voltage lock out sensing. Note

Figure 4-16: Discrete Gate Drive Board Schematic

the inclusion of schottky diodes from base to collector on almost every bipolar device.

This is intended to prevent the detrimental effects of saturation on gate drive response

time.

Simulated waveforms for this gate driver are presented in Fig. 4-17. As can be

seen, the input to the circuit is a logic level PWM signal, while the outputs (High
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2N3904 2N3906
Q1 Q2 Q3 Q4 Q7 Q8 Q5 Q6 Q11

Q9 Q10 Q14 Q15 Q16 Q17 Q12 Q13

2N700 ZVP3306A
M1 M3 M5 M6 M7 M11 M12 M2 M4 M8 M9

M13 M17 M18 M19 M20 M10 M14 M15 M16

1N4148 1N5711
D11 D1 D2 D3 D4 D5

D12 D6 D7 D8 D10 D13

MUR120 Passives
D9 Remaining components

Table 4.6: Bill of Materials for Gate Drive Module

and Low) are higher voltage signals capable of turning on and off power MOSFETs.

Note that shoot-through is prevented by ensuring that High and Low are never on

at the same time.

Using this topological framework, students should gain a unique appreciation for

the complexity of modern gate drivers and the difficulty of attaining fast transient

responses in such circuits. Exposure to fundamental concepts is the primary goal of

this module, as creative gate drive intuition can take years of experience to develop

[3].

The bill of materials for the actual discrete gate driver module can be found in

Table 4.6.

4.6 Summary

This chapter has developed the simulation and written exercise framework necessary

to allow students in a potential class on power electronic control circuitry to verify

their design choices and cement their understanding of course material. While funda-

mentally based in discrete circuit design, this course is intended to mimic the process

an industrial IC designer would go through in creating and fabricating a functional

product. Every circuit that students learn about and build is framed in the context

of its integrated counterpart, and all supporting coursework is intended to illuminate
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Figure 4-17: Simulated Gate Drive Operational Waveforms, 50 KHz Switching
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important concepts that transcend distinctions between the two design methodolo-

gies. Thus, a student having actively participated in this course should be well suited

to tackle the intricate challenges of industrial IC design.
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Chapter 5

Conclusion

This thesis investigated integrated circuit design methodologies as they apply to the

industrial and educational realms. First, using a proprietary Texas Instruments mixed

signal silicon process, an integrated secondary side synchronous rectification controller

was designed. This chip is meant for use in the LLC resonant converter topology, and

conforms to the extremely high reliability and functional standards demanded of an

industrial product. A vast range of possible operating conditions, as well as stringent

speed and response time requirements, introduced unique and exciting challenges into

the IC design process that needed to be carefully overcome. The resulting top level

performance of the controller greatly exceeded all target specifications, and the chip

itself will be fabricated and sold under the name UCC24600.

Many of the intricacies involved in industrial power IC design, and illustrated

by the circuitry in the UCC24600, are glossed over in a normal electrical engineer-

ing curriculum due to time and resource constraints. Process variation, tempera-

ture dependence, and many other important real world issues are idealized in most

academic treatment of the circuit design process. Thus, the second part of thesis

developed a simulation and written exercise framework, intended to couple with a

discrete hardware kit, that allows for the creation of a laboratory course in power

electronic integrated circuit design. Students in such a course will design a com-

plete power electronic control circuit, made of discrete circuit modules that mimic

the function of common IC blocks. Each module will be framed in the context of its
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real IC implementation, and important differences will be discussed. Relevant theory

in control, analog circuitry, and power supply operation will be presented to students

as well. The work demonstrated in this thesis guides students towards understanding

each circuit module and being able to calculate custom component values to yield

desired performance. A simulation environment has also been created where students

can verify their design choices and make appropriate modifications. This process is

meant to mirror that of common industrial practice.

By exploring IC design in both the academic and industrial worlds, this thesis has

effectively bridged the gap between the two. Working on a real industrial product

enabled the identification of important challenges not discussed in the classroom, and

made it possible to develop an educational framework for teaching students how to

overcome these issues. This work can, and should be expanded to ensure future grad-

uating analog IC design students have the skills and knowledge to make an immediate

difference in industry and beyond.
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