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ABSTRACT 
 
The sequence of events over the Neoproterozoic - Cambrian transition that led to the 
radiation of multicellular organisms has been an issue of debate for over a century. It is a 
critical interval in the history of life on Earth because it marks the first appearance of all 
extant animal phyla in the fossil record. We set out to improve understanding of 
environmental transitions during this key interval of Earth’s history by studying chemical 
fossils (biomarkers) in Neoproterozoic to Cambrian aged sedimentary rocks and oils from 
Australia, Eastern Siberia and Oman. This thesis presents the distributions of steranes and 
other hydrocarbons through these various strata and the characterization of novel age and 
paleostratification biomarkers. Compound specific carbon isotopic data of n-alkanes and 
isoprenoids were also acquired and evaluated in the context of existing datasets with a 
focus on elucidating the processes responsible for anomalous trends. Consistent with 
current theory, our results indicate that there was a significant shift in the redox state the 
oceans and that this took place on a global scale. The biomarker and isotopic proxies we 
have measured help us further constrain the timing of this redox shift, and suggest a 
concomitant switch in the composition of marine photosynthetic communities, at 
termination of the Neoproterozoic Era. 
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1. Introduction 
 
Abstract 

The Neoproterozoic Era was a time of great change in Earth’s surface environment and 

its biota. It is necessary to study this era, as it set the stage for the rapid diversification of 

multicellular life in the Cambrian. In order to understand these developments, we studied 

biomarkers of sedimentary rocks and oils from three areas of the world. This chapter 

provides a review of existing knowledge for the Neoproterozoic - Cambrian transition, 

how biomarker geochemistry can provide new insights and how we chose localities for 

sampling. 

 

Introduction 

Cambrian explosion.  

The Cambrian explosion marks the initial appearance of taxonomically diverse 

multicellular life, beginning around 542 Ma. It is important to understand this episode 

because, from many lines of evidence, it represents a globally significant biogeochemical 

event (e.g., Cloud Jr., 1968; Derry et al., 1992; Canfield & Teske, 1996; Knoll & Carroll, 

1999; Anbar & Knoll, 2002; Rothman et al., 2003; Porter, 2004; Fike et al., 2006; 

McFadden et al., 2008). In many sections around the world, the Neoproterozoic - 

Cambrian boundary is marked by a rapid increase in trace fossil diversity above 

Ediacaran-type fossils and below trilobites (Kaufman et al., 1991). Simple trace fossils 

occur below the boundary and the more complex ichnofossil Treptichnus pedum was 

used to guide the placement of the beginning of the Cambrian (Narbonne et al., 1987). At 

several localities the first appearance of small shelly fossils and/ or a strong, short-lived 

negative carbon isotopic excursion in carbonates also closely approximate the boundary 

(e.g., Magaritz et al., 1986; Lambert et al., 1987; Narbonne et al., 1994). 

 

The environmental and biological triggers for this radiation are still unclear. Some argue 

that the concept of a rapid increase in diversity at this time is a preservational artifact 

(Darwin, 1859; Bromham et al, 1998). However, sequence stratigraphy, the Precambrian 

fossil record and molecular clock studies with which the fossil record is congruent 
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support the concept of a rapid radiation in the diversity of life (Knoll, 2003; Peterson et 

al., 2004). 

 

Many contend that an increase in dioxygen levels was a driving force (e.g., Cloud Jr., 

1968; Knoll & Carroll, 1999; Porter, 2004). This is supported by carbon and sulfur 

isotopic data (Derry et al., 1992; Canfield & Teske, 1996; Fike et al., 2006; McFadden et 

al., 2008) and by basic animal and algal physiology (Runnegar, 1991; Anbar & Knoll, 

2002). Both animals and algae also have absolute requirements for molecular oxygen in 

order to biosynthesize sterols for their cell membranes (Bloch, 1983; Runnegar, 1991; 

Summons et al., 2006), though this requirement is low compared to that required by 

macroscopic bilaterian physiology. Sterols are synthesized almost exclusively by 

eukaryotes and are used to modify membrane rigidity and curvature and as signaling 

compounds (Bacia et al., 2005; Summons et al., 2006). These sterols, through the 

processes of diagenesis, become transformed into sterane hydrocarbons that are stable on 

geological time scales. Such steranes can be extracted from rocks and analyzed by 

conventional analytical techniques in order to trace aspects of animal evolution.  

 

Other theories for the sudden diversification of life invoke environmental perturbation. 

These include tectonic factors, changes in ocean chemistry and changes in 

biogeochemical cycling (Rothman et al., 2003; Porter, 2004). The Neoproterozoic - 

Cambrian boundary coincided with enhanced tectonic activity, which led to changes in 

ocean circulation and nutrient levels, transgressions, and the formation of shallow seas. 

Though these conditions were not unique to the late Neoproterozoic, they likely 

contributed to the diversification of life at that time (Tucker, 1992). 

 

Strong, short-lived negative carbon isotopic excursions in carbonates, analogous to the 

one near the Neoproterozoic - Cambrian boundary, can be caused by rapid decreases in 

biological productivity, and/ or increased oxidation of organic carbon (Lambert et al., 

1987). Similar isotopic events in Earth’s history are known to accompany widespread 

extinctions (Knoll & Carroll, 1999). The last appearance of the early calcareous fossils 

Cloudina and Namacalathus correlate with the isotopic excursion, so this faunal 
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transition has been hypothesized to be a mass extinction (e.g., Amthor et al., 2003). In 

rare cases, others have found an overlap in Ediacaran and small shelly fossils, 

conventionally considered to be of Cambrian age, and consider the evolutionary events to 

be continuous (Grotzinger et al., 1995). This leads to the hypothesis that the usually large 

gap seen in the fossil record may be more of a preservational feature than evidence of a 

mass extinction (Grotzinger et al., 1995). If there was an extinction event prior to the 

Cambrian - pre-Cambrian boundary, permissive ecology could also be used to explain the 

sudden diversification at this time. Permissive ecology is a concept Knoll (2003) employs 

to propose that “these intervals of rapid environmental change caused temporary 

breakdowns of the established ecosystems with their harsh competition for resources and 

thereby permitted the new experiments in life that ultimately led to our modern world,” 

(Narbonne, 2003). 

 

Evolutionary innovations such as sexual reproduction, multicellularity and the acquisition 

of plastids have also been proposed as explanations for the ‘explosion’. However, all of 

these biological innovations have a complex genetic basis and must have their roots in 

evolutionary events that took place long before the rapid, visible radiation and thus were 

probably not a primary influence in the diversification (Porter, 2004). Predation is 

another innovation that has been proposed. The first mineralized skeletons have borings, 

suggestive of predation (Bengtson & Zhao, 1992). It is possible that skeletons arose as a 

response to predation, which also induced a variety of other changes, leading to the 

radiation (Bengtson & Zhao, 1992). Another development that possibly appeared near the 

boundary was the production of fecal pellets which package and ballast organic matter 

into fast-sinking particles. These would likely have increased the flux of organic matter to 

the ocean floor, thereby circumventing its remineralization and assisting burial. The 

oxidation of organic matter is one sink for oxygen. When this material is buried without 

being oxidized, the level of oxygen in the water column and thus in the atmosphere 

increases. This could have been one mechanism by which more oxygen became available 

in surface waters, thereby propagating the radiation of metazoan life (Logan et al., 1995), 

however macrozooplankton with fecal pellets big enough to sink likely did not evolve 

until around 520 Ma (Chen & Zhou, 1997; Vannier & Chen, 2000; Peterson et al., 2005). 
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Coincident with the animal radiation was increased diversity of acritarchs. Acritarchs are 

eukaryotic microfossils that have traditionally been considered to be the cysts of 

planktonic algae (Porter, 2004). More recently, some have also been proposed to be 

animal egg hulls (Van Waveren & Marcus, 1993; Yin et al., 2004; Knoll et al., 2006). If 

many are derived from algae, this would suggest that the impact of biogeochemical 

changes at this time affected disparate forms of life and therefore that ecology must have 

played some role (Knoll, 1994). It is probable that no single factor led to the 

diversification of life at the Neoproterozoic - Cambrian boundary, but a complex 

combination of intrinsic and extrinsic factors (Knoll & Carroll, 1999). 

 

Biomarker importance.  

Though the term biomarkers can refer to both those found in living organisms and those 

found in sediments, in this thesis biomarkers refers to molecular fossils, derived from 

biochemicals, mainly lipids. Lipid biomarkers can be preserved when morphological 

remains cannot, even when the precursor organisms have no hard parts. The structural 

and isotopic information lipid biomarkers provide can be diagnostic of specific taxa, 

biosynthetic pathways, physiology, depositional environments, thermal maturity and used 

to place broad constraints on geological age (Peters et al., 2005). A biomarker may be 

diagnostic of a particular biosynthetic pathway because it is the product of a specific 

physiology or requires certain chemicals or other factors such as light, dioxygen, reduced 

sulfur, anoxia, or others. For example, in a sedimentary rock extract the presence of 

isorenieratane, derived from the carotenoid isorenieratene, suggests that green sulfur 

bacteria, which require sulfide and light, were active when the sediment was deposited 

and thus that the ancient photic zone included a euxinic layer (Brocks & Summons, 

2003). 

 

Although the Cambrian explosion is mainly associated with the rapid diversification of 

metazoans, biomarkers that are proxies for bacteria or protists can provide information 

about the prevailing environment. Triterpenoids derived from bacteria can provide 

information complementary to that derived from molecules specific for animals. As 

described above, molecules useful for directly studying eukaryotes include steranes. As 
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many researchers have put forward the increase in dioxygen levels as an important factor 

in multicellular diversity, we decided to use biomarkers to explore the issues of the redox 

state and ventilation of the ocean.  

 

Paleogeography.  

A broad paleogeographic range must be studied in order to complete a global 

environmental reconstruction of this time period. There are, however, mandatory 

conditions that must be met when choosing where to sample. Not all areas of the world 

have well preserved Neoproterozoic sections, if they occur at all. Additionally, certain 

conditions are mandatory for the preservation of indigenous biomarkers, including low 

thermal alteration, a low degree of oxidation and careful collection and handling. Further, 

it is advantageous if the rock has high organic content since indigenous hydrocarbon 

abundances will then be vastly in excess of contaminants, improving ‘signal to noise’ 

measured on a mass spectrometer. Thus the areas of the Earth that are explored in this 

thesis are from Australia, Eastern Siberia and Oman. These regions were likely disparate 

enough at the time of the latest Proterozoic to give a sense of the global environment at 

that time (Figure 1).  

 

 

Figure 1. Paleogeographic relationship of the world in the Late Proterozoic modified from McKerrow et al., 
1992. 
 

Australian samples.  

Samples from Australia have been collected from the Officer and Amadeus Basins, 

which, although now separate entities, were contiguous over the critical interval as the 

Centralian Superbasin (Walter et al., 1995; Logan et al., 1997). This area is of interest 
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because of the range of depositional environments represented and the unique fauna and 

acritarch assemblages observed in these sediments. For example, the Amadeus Basin of 

the Centralian Superbasin is home to the Pertatataka acritarch assemblage and body 

fossils of Ediacara fauna (Zang & Walter, 1989; Grey, 2005). In the Centralian 

Superbasin, both major Neoproterozoic snowball events are observed and detailed 

carbon, sulfur and strontium data have been collected and correlated worldwide (Walter 

et al., 1995; Walter et al., 2000).  

 

Eastern Siberian samples.  

The formations in Eastern Siberia range in age from the Riphean (650-1650 Ma), through 

the Vendian (570-650 Ma) and into the Early Cambrian. The biomarker work presented 

in this thesis suggests that all of the samples are from the late Cryogenian to Early 

Cambrian. The samples are all oils, primarily sourced by dolomites from a shallow water 

depositional setting. The biomarkers found follow very similar patterns to those extracted 

from Neoproterozoic rocks and oils of the South Oman Salt Basin. 

 

South Oman Salt Basin samples.  

Oman was chosen as an area of interest because the sediments are rich in organic matter, 

both major Neoproterozoic glaciations can be identified and because of the dating and 

carbon and sulfur isotope work being performed on these same samples in our lab or 

otherwise at MIT (Fike et al., 2006; Bowring et al., 2007). 

 

Thesis outline 

Chapter 2 presents the biomarkers extracted from Neoproterozoic oils from Eastern 

Siberia and the environmental interpretations that can be derived from that data. A brief 

overview of areas with C29 steranes vs. C27 steranes dominance and the environmental 

significance of this difference follow. Most likely the type of sterane dominance is due to 

the abundances of red vs. green algae, which may be ultimately determined by the redox 

of the deepwaters. Chapter 3 presents the use and origins of novel biomarkers. A C19 

norsterane and 21-norsteranes have been found to be useful indicators of water column 

stratification. The C19 norsterane is suggested to be an A-norsterane and is also viable as 
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an age marker for Neoproterozoic to Early Cambrian sedimentary rocks and oils. 

Chapter 4 presents compound specific carbon isotopic data for n-alkanes and 

isoprenoids from Neoproterozoic samples of the South Oman Salt Basin, Eastern Siberia 

and Australia. The changes in their relative isotopic values are interpreted with regards to 

the ventilation of the global ocean. Chapter 5 gives a thorough assessment of the 

possible contaminants faced when studying ancient rocks. 
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2. Biomarker Trends in Neoproterozoic to Lower Cambrian Oils  
from Eastern Siberia 

 

Abstract 

The Neoproterozoic Era is of widespread geobiological interest because it marks the first 

appearance of animals in the fossil record. Much Neoproterozoic research has been 

focused on the ventilation of the global ocean, as this is considered a primary factor in the 

diversification of complex, multicellular life. Neoproterozoic to Cambrian aged oils from 

Eastern Siberia were analyzed for their hydrocarbon biomarker contents in order to 

further our understanding of the prevailing environment and its microbial and metazoan 

communities. Sterane patterns from these oils are compared to those of Neoproterozoic 

sections in Oman to help reconstruct ecological relationships. Eastern Siberian oils and 

Oman Huqf oils are, overall, very similar. Although age constraints on the Siberian 

section are poor, the Huqf and Siberian petroleum source rocks appear to be broadly 

coeval. The abundance of sponge biomarkers in these samples allow us to better constrain 

the ages of the Siberian section. The predominance in these and other Neoproterozoic 

sediments of C29 or C27 steranes seems to be influenced by redox of deep waters that 

likely determined whether green or red algae dominated the local ecosystem, 

respectively. This yields another potential proxy with which to understand ancient deep 

water redox. 

 

Introduction 

The Neoproterozoic Era was a time of great change in Earth’s surface environment and 

its biota. It is proposed that there were two episodes when the Earth was entirely covered 

with ice, known as snowball Earth episodes: the Sturtian episode around 710 Ma and the 

Marinoan episode around 635 Ma (Hoffmann et al., 2004). There was also a more 

regional, short-term event referred to as the Gaskiers glaciation that occurred around 580 

Ma (Bowring et al., 2003). The ocean was in transition from having a deep anoxic water 

column with oxygenated surface waters to one with a fully ventilated water column (e.g., 

Lambert et al., 1987; Des Marais et al., 1992; Knoll & Carroll, 1999; Porter, 2004; Cloud 

Jr., 1968; Derry et al., 1992; Canfield & Teske, 1996; Anbar & Knoll, 2002; Fike et al., 

2006; McFadden et al., 2008). Toward the end of the Neoproterozoic Era we observe the 
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first metazoan body-fossils; this is followed by the rapid diversification of modern animal 

phyla during the Cambrian Period. Many forms of geological and geochemical evidence 

illuminate unprecedented and globally significant biogeochemical changes taking place 

during this entire interval (e.g., Knoll & Carroll, 1999; Porter, 2004; Cloud Jr., 1968; 

Derry et al., 1992; Canfield & Teske, 1996; Anbar & Knoll, 2002; Rothman et al., 2003; 

Fike et al., 2006; McFadden et al., 2008). The spatial and temporal patterns as well as the 

trigger for these profound environmental changes, however, remain unclear and subject 

to intense debate. The goal of this research is to use lipid biomarker proxies for microbial 

and metazoan communities in order to gain further insight into biological and redox 

processes taking place in the marine water column during these times of transition. 

 

We chose to study Eastern Siberian oils because Eastern Siberia is one of the few places 

in the world where Neoproterozoic sediments that have not been through extensive 

maturation and where high abundances of organic carbon and bitumen can be found in 

sediments (Hayes et al., 1992). Eastern Siberia is also host to numerous Neoproterozoic 

oils fields. Six petroleum samples were taken from the Baykit Basin of the Baykit High 

region, four from the Katanga Basin within the Cis-Sayan Basin, and fifteen from the 

Nepa-Botuoba Basin of the Nepa-Botuoba High region (Figure 1). 
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Figure 1. Map of the sites from which the Eastern Siberian oil samples were taken, adapted from Ulmishek, 
2001a. Samples from the Baykit Basin are from the Baykit High region, from the Katanga Basin are from 
within the Cis-Sayan Basin, and from the Nepa-Botuoba Basin are from the Nepa-Botuoba High region. 
 

Experimental Prodecures 

Sampling.  

Samples were selected from an oil collection provided by John Zumberge of Geomark 

Research, Houston, Texas. Being oils, the samples from Eastern Siberia are of uncertain 

stratigraphic placement within each formation. Sample information is given in Table 1. 
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Sample Basin Group Age Lithology Dep. Env. Key 
References 

ES 001 
ES 005 
ES 010 
ES 015 
ES 018 
ES 020 

Baykit Kamov Riphean 

dolomite with 
minor 

sandstone, 
shale, 

mudstone and 
marl 

marine to 
shallow 
marine 

IHS charts 

ES 022 
ES 024 
ES 026 

Katanga Vanavara Vendian shale, dolomite 
and sandstone 

shallow 
marine 

Ulmishek, 
2001b; IHS 

charts 

ES 030 Nepa-
Botuoba Kursov Vendian siltstone and 

sandstone  Sokolov & 
Fedonkin, 1990 

ES 035 Katanga Vanavara Vendian    
ES 036 

ES 040 
Nepa Vendian siltstone and 

sandstone 

continental 
depositional 

setting 
IHS charts 

ES 043 Parshino Vendian    
ES 048 

ES 053 
Byuk Vendian 

dolomite, 
dolomitic marl 
and anhydrite 

 Sokolov & 
Fedonkin, 1990 

ES 057 Katanga Vendian 

dolomite, 
clayey 

dolomite and 
dolomitic marl 

shallow 
marine to 
restricted 

Ulmishek, 
2001b; IHS 

charts 

ES 064 
ES 066 
ES 068 

Tetere Vendian-
Cambrian dolomite 

shallow 
marine to 
restricted 

Ulmishek, 
2001b; IHS 

charts 
ES 080 
ES 083 
ES 087 
ES 089 

Usol'ye Lower 
Cambrian 

salt and 
dolomite 

shallow 
marine to 
restricted 

Ulmishek, 
2001b; IHS 

charts 

ES 091 

Nepa-
Botuoba 

Bilir Lower 
Cambrian    

Table 1. The provenance, age, lithology, and depositional environment of the Eastern Siberian oil samples. 
 

General Procedure.  

Organic free solvents from OmniSolv were used. Prior to use, all glassware and 

aluminum foil were fired at 550°C for 8h and glass wool; pipettes and silica gel were 

fired at 450°C for 8h. 

 

Each sample was separated by liquid chromatography on a silica gel 60 (Merck, 230-400 

mesh) column using hexane to elute the saturate fraction, 4:1 hexane/dichloromethane to 
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elute the aromatic fraction, and 7:3 dichloromethane/ methanol to elute the polar fraction. 

Activated Cu was added to the saturate fraction to remove elemental sulfur. One 

milligram aliquots of the saturate and aromatic fractions were then reduced to 0.1 mL and 

added to insert vials with an internal standard. The saturate fraction was run on the 

Autospec with the following standards: 50 ng D4 (D4-ααα-ethylcholestane, Chiron) or 

50 ng D4 (D4-ααα-ethylcholestane, Chiron) + 1µg aiC22 (3-methylheneicosane, ULTRA 

Scientific). The aromatic fraction was run with 100 ng of D14 standard (d14 p-terphenyl, 

Cambridge Isotope Laboratories). 

 

Gas Chromatography-Mass Spectrometry (GC-MS) was performed using a Micromass 

Autospec-Ultima instrument equipped with an Agilent 6890N Series gas chromatograph. 

For analysis of the saturated hydrocarbons, a 60 m J&W Scientific DB-1 fused silica 

capillary column (0.25 mm i.d., 0.25µm film thickness) was used with helium as carrier 

gas. Injection was performed at 60ºC in splitless mode and, after a delay of 2 min the 

oven was programmed from 60ºC to 150ºC at 10ºC/min, then to 315ºC at 3ºC/min where 

it was held isothermal for 24 min. The source was operated in EI-mode at 70 eV 

ionization energy. For full scan analyses the scan rate was 0.80 s/decade over a mass 

range of 50 to 600 m/z with a total cycle time of 1.06 s. Data were acquired and 

processed using MassLynx v4.0 software. Biomarkers in the saturated hydrocarbon 

fraction were analyzed by GC-MS with the Autospec operated in the metastable reaction 

monitoring (MRM) mode under the same GC conditions as described for the full scan 

experiments. Peak identification was based on retention time comparisons with the 

hydrocarbons present in a synthetic standard oil (AGSO Standard Oil) and abundances 

measured by comparing peak areas to the internal D4 sterane standard without any 

adjustment for possible differential responses. 

 

Aromatics were analysed using a DB-5MS column in selected ion monitoring (SIM) 

mode. The source was operated in EI+ mode at 250˚C with 70 eV ionization energy and 

8000 V acceleration voltage. The injection method was the same as for the saturates. 
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Principal components analysis and hierarchical cluster analysis were conducted using the 

Pirouette software (Infometrix Corporation). 

 

Results and Discussion  

The biomarker data are subdivided into four categories: redox and possible stratification 

and hypersalinity indicators (Table 2), maturity indicators (Table 3), possible sponge 

biomarkers (Table 4), and other source biomarkers (Table 5). The sterane and hopane 

distributions for a typical Eastern Siberian oil sample are shown in Figures 2 and 3. 

 

 
Figure 2. A selection of GC-MS MRM chromatograms showing relative abundances of steranes in an 
Eastern Siberian oil from the Usol’ye Formation from the Nepa-Botuoba Basin, ES 083. 
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Figure 3. A selection of GC-MS MRM chromatograms showing relative abundances of hopanes in an 
Eastern Siberian oil from the Usol’ye Formation from the Nepa-Botuoba Basin, ES 083. 
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Redox and Possible Stratification and Hypersalinity Indicators 

 Pr/ 
Ph 

HomoH 
Index % 

γ/ 
C30H 

R22 
index 

21-norchol/ 
27-norchol 

21-norC28 St/ 
C28αββR 

21-norC28 St/ 
C28 Sts 

C/ 
A+B 

C/ 
A 

ES 001 0.94 0.08 0.09 0.80 0.05 0.39 0.08 0.11 0.71 
ES 005 1.06 0.10 0.09 1.02 0.06 0.38 0.08 0.09 0.60 
ES 010 0.89 0.09 0.10 0.82 0.08 0.23 0.05 0.12 0.77 
ES 015 1.26 0.10 0.10 0.98 0.08 0.43 0.10 0.10 0.59 
ES 018 1.01 0.09 0.11 0.99 0.09 0.33 0.08 0.13 0.80 
ES 020 1.14 0.08 0.07 0.91 0.09 0.25 0.05 0.12 0.85 
ES 022 0.75 0.10 0.11 0.99 0.10 0.45 0.11 0.14 0.74 
ES 024 0.79 0.10 0.10 0.99 0.07 0.29 0.07 0.15 0.77 
ES 026 0.77 0.07 0.08 0.97 0.04 0.23 0.06 0.13 0.75 
ES 030 0.83 0.11 0.13 1.00 0.05 0.30 0.07 0.15 0.75 
ES 035 0.76 0.09 0.08 0.98 0.08 0.24 0.06 0.12 0.91 
ES 036 0.72 0.09 0.09 0.93 0.06 0.50 0.10 0.10 0.58 
ES 040 0.68 0.10 0.07 0.98 0.04 0.31 0.08 0.19 1.06 
ES 043 0.77 0.09 0.09 0.96 0.04 0.33 0.09 0.11 0.67 
ES 048 0.66 0.12 0.07 1.05 0.05 0.21 0.05 0.09 0.55 
ES 053 0.85 0.12 0.08 0.95 0.04 0.32 0.07 0.08 0.48 
ES 057 0.74 0.08 0.07 0.97 0.04 0.23 0.06 0.20 1.45 
ES 064 0.69 0.10 0.07 1.05 0.05 0.21 0.06 0.18 0.98 
ES 066 0.67 0.09 0.09 1.03 0.06 0.37 0.10 0.11 0.72 
ES 068 0.72 0.11 0.07 0.98 0.04 0.23 0.06 0.13 0.98 
ES 080 0.74 0.06 0.11 0.94 0.06 0.35 0.09 0.07 0.45 
ES 083 0.75 0.10 0.07 0.98 0.04 0.22 0.05 0.12 0.82 
ES 087 0.63 0.10 0.07 0.98 0.05 0.24 0.06 0.21 1.38 
ES 089 0.64 0.10 0.08 1.00 0.06 0.31 0.08 0.12 0.77 
ES 091 0.76 0.10 0.07 1.03 0.03 0.34 0.08 0.12 0.78 
Table 2. Redox and possible stratification and hypersalinity indicators showing differences in the 
depositional environment of the Kamov Group samples (ES 001 - ES 020) compared to the younger 
samples (ES 022 – ES 091). None of the samples appear to have been deposited in a stratified environment 
and the Kamov samples were likely deposited in a more oxidized environment than the younger samples. H 
denotes hopane, γ gammacerane, and St for sterane. The homohopane index is calculated as C35H (R+S) 
*100/ C31-C35H (R+S) %. The R22 index is 2 * n-C22/ (n-C21 + n-C23). 
 

The pristane (Pr)/ phytane (Ph) ratio provides information on the redox conditions under 

which sediments were deposited (Powell & McKirdy, 1973; Didyk et al., 1978; ten 

Haven et al., 1987; Peters et al., 2005). However, as with all geochemical proxies, there 

needs to be caution in using one parameter in isolation. Pristane and phytane are both 

formed during the diagenesis of chlorophyll. When oxygen is present, pristane can be 

formed from phytol through a sequence of oxidation and decarboxylation reactions. 

When the depositional environment is anoxic, reductive processes prevail and phytane is 

the predominant product. Empirical evidence suggests that a Pr/ Ph value <0.8 is 

diagnostic for an anoxic environment as commonly encountered in strongly stratified 
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water columns. On the other hand, Pr/ Ph >1 suggests more oxygenated environments, 

while Pr/ Ph >3 is generally observed in terrestrial settings where organic matter is 

transported and sedimented in oxygenated water bodies (Peters et al., 2005). Further, Pr/ 

Ph ratios that are <1 are most commonly observed in marine carbonates while values in 

the range of 2-4 for are common in deltaic shales. Intermediate values are common in 

clastic marine settings. As shown in Table 2 and Figure 4a, the Pr/ Ph values are around 1 

for the Kamov Group oils and significantly lower, between 0.6 and 0.85, for the younger 

samples. This indicates that the samples are all marine, and that the depositional 

environment of the Kamov Group samples was more oxidizing than that of the other 

samples, which may have been deposited in more restricted environments. 

 

The two most widely used ‘salinity’ indicators are the C35 homohopane index, measured 

as C35H (R+S) *100/ C31-C35H (R+S) %, and gammacerane to hopane ratio. Both are 

more accurately indicators of stratification that can occur due to redox, temperature or 

salinity stratification (Peters et al., 2005). Gammacerane is formed through the 

dehydration and reduction of tetrahymanol (ten Haven et al., 1989; Harvey & McManus, 

1991), which is synthesized by bacterivorous ciliates that prefer stratified zones of the 

water column (Harvey & McManus, 1991; Sinninghe Damsté et al., 1995). The values 

for the homohopane index are all around 0.1% and the gammacerane to hopane values 

are all around 0.1. The R22 index is 2 * n-C22/ (n-C21 + n-C23) and is considered by some 

to be a salinity marker; a value greater than 1.5 is typical for hypersaline environments 

(ten Haven et al., 1988). This index is similar throughout all of the oils with values 

around 1. Use of 21-norsteranes and compound C as indicators of water column 

stratification is discussed in Chapter 3. As with the other stratification indicators, there is 

not much change in any of these indicators. There is a significant difference in the range 

of abundances of compound B, however, with the younger samples having a wider range 

(Figure 4b). As a whole these indicators suggest that none of the oils were deposited in 

stratified or hypersaline environments. 
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Maturity Indicators 
 Ts/ 

(Ts+Tm) 
C31 H 22S/ 

S+R 
C29 ααα St S/ 

(S+R) 
C30 H/ 

M Ts/ H Ph/  
n-C18 

OEP 

ES 001 0.52 0.66 0.54 20.88 0.38 0.24 0.98 
ES 005 0.58 0.59 0.51 20.31 0.38 0.20 0.99 
ES 010 0.51 0.59 0.54 20.62 0.41 0.22 0.96 
ES 015 0.63 0.59 0.54 20.45 0.51 0.14 0.96 
ES 018 0.63 0.65 0.58 21.11 0.49 0.18 0.99 
ES 020 0.52 0.51 0.51 11.41 0.36 0.19 0.97 
ES 022 0.58 0.52 0.55 11.97 0.48 0.51 0.99 
ES 024 0.43 0.52 0.54 12.40 0.32 0.86 0.99 
ES 026 0.43 0.52 0.54 12.36 0.35 1.11 0.97 
ES 030 0.38 0.58 0.52 12.40 0.32 1.08 0.98 
ES 035 0.42 0.51 0.53 16.48 0.23 0.95 0.93 
ES 036 0.67 0.57 0.54 15.58 0.64 0.95 1.05 
ES 040 0.41 0.52 0.52 14.80 0.31 1.38 0.95 
ES 043 0.37 0.58 0.53 14.77 0.34 1.22 0.96 
ES 048 0.38 0.60 0.54 20.65 0.25 1.38 1.00 
ES 053 0.45 0.60 0.55 23.24 0.23 1.05 0.98 
ES 057 0.40 0.59 0.52 18.94 0.29 1.43 1.00 
ES 064 0.57 0.56 0.51 19.30 0.50 1.56 1.02 
ES 066 0.56 0.59 0.56 20.41 0.67 1.24 1.02 
ES 068 0.40 0.59 0.54 20.17 0.29 1.35 0.40 
ES 080 0.72 0.53 0.57 22.72 1.11 1.23 0.37 
ES 083 0.37 0.57 0.53 17.21 0.26 1.39 0.39 
ES 087 0.43 0.59 0.52 17.74 0.31 1.64 0.41 
ES 089 0.48 0.54 0.57 19.46 0.34 1.38 0.40 
ES 091 0.39 0.58 0.52 18.63 0.28 1.31 0.36 

Table 3. Maturity indicators suggesting that all of the oils are of moderate thermal maturity, with the older 
samples being slightly more mature, and that ES 080 has an anomalous abundance of Ts. H denotes 
hopane, M moretane and St for sterane. The OEP is measured as (n-C25 + 6 * n-C27 + n-C29)/ (4 * n-C26 + 4 
* n-C28). 
 

Ts/ (Ts+Tm) values are commonly used to evaluate thermal maturity, with higher values 

indicating higher maturities (Seifert & Moldowan, 1978). However, there is a strong 

facies control on this ratio, so it is most reliable when compared among samples of 

similar lithology. As shown in Table 3 the values vary from around 0.4 to 0.7. The αβ-

homohopane 22S/ 22S + 22R and C29 ααα sterane 20S/ 20S + 20R ratios are also used to 

assess thermal maturity. Values at or near 0.55 indicate oil-mature samples (Siefert & 

Moldowan, 1986), as do high C30 hopane/ moretane ratios (Seifert & Moldowan, 1980). 

The homohopane S/ S+R values are all above 0.55 and the sterane S/ S+R values are all 

between 0.5 and 0.6, suggesting moderate thermal maturity. The hopane to moretane 

ratios are all around 20 with the exception of samples 020 to 043, which are between 10 
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and 16. All of these values suggest moderate maturity, with the samples with lower 

values having slightly lower thermal maturity. For post-mature samples, Ts/ H can be 

used as a maturity marker (Volkman et al., 1983). The samples all have values between 

0.2 and 0.7, except for sample 080 which also has the highest Ts/ (Ts+Tm) value. The 

phytane/ n-C18 ratio can be used as a maturity marker (ten Haven et al., 1987). Values 

>>1 suggest a sample is immature. It is also often used as an indicator for biodegradation. 

Within a family of oils, slightly to moderately biodegraded oils have higher phytane/ n-

C18 ratios (Peters et al., 2005). The Kamov Group oils have values around 0.2, whereas 

most of the other samples have values greater than 1. Samples ES 022 and ES 024 fall in 

between. This may suggest that the older samples are slightly more mature. OEP is the 

odd over even carbon number preference and is measured by (n-C25 + 6 * n-C27 + n-C29)/ 

(4 * n-C26 + 4 * n-C28). Values around 1 suggest that the bitumen is thermally mature 

(Scalan & Smith, 1970). Most of the oils have OEPs around 1, however samples ES 068 - 

ES 091 have much lower values, around 0.4, suggesting they are slightly less mature. 

Together these indicators suggest that the samples are all of moderate thermal maturity, 

with the older samples being slightly more mature than the younger samples, and that ES 

080 has an anomalous abundance of Ts. 
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Possible Sponge Biomarkers 

 i-C30/ 
n-C30 

i-C30 αααR/ 
n-C30 αααR 

27-norSts/ 
C27 Sts 

ES 001 3.03 1.81 0.30 
ES 005 2.52 2.20 0.28 
ES 010 4.02 1.70 0.29 
ES 015 1.73 0.96 0.23 
ES 018 2.37 1.15 0.26 
ES 020 0.74 0.32 0.14 
ES 022 1.75 1.91 0.27 
ES 024 2.78 1.20 0.24 
ES 026 2.28 1.21 0.37 
ES 030 2.95 1.76 0.26 
ES 035 2.76 1.27 0.25 
ES 036 1.12 0.52 0.31 
ES 040 2.43 1.38 0.30 
ES 043 2.09 1.75 0.35 
ES 048 2.32 1.77 0.26 
ES 053 2.26 1.63 0.27 
ES 057 2.81 1.24 0.30 
ES 064 1.95 0.99 0.30 
ES 066 1.91 1.36 0.35 
ES 068 2.10 1.24 0.26 
ES 080 1.43 0.51 0.32 
ES 083 2.22 1.03 0.24 
ES 087 1.97 1.09 0.26 
ES 089 2.20 1.32 0.29 
ES 091 2.01 1.41 0.31 

Table 4. Possible sponge indicators suggesting that demosponges were prevalent in the ancient depositional 
environment for all of the oils, but with samples 020, 036 and 080 as outliers. St denotes  sterane. The i-C30 
and n-C30 refer to iso- and n-propylcholestanes, respectively. 
 

The ratio of 24-isopropylcholestanes to 24-n-propylcholestanes is useful as an indicator 

of demosponges and as an age marker since it is only high in the Neoproterozoic to 

Ordovician (McCaffrey et al., 1994; Love et al., 2009). The n-propyl isomers likely 

originated from a marine algal source while the isopropyl isomers are hypothesized to be 

derived from demosponge input. Sponges, being the most basal metazoan clade, likely 

evolved in the Neoproterozoic and had comparatively lower abundances through the 

Phanerozoic (McCaffrey et al., 1994; Sperling et al., 2007; Love et al., 2009). Almost all 

of the Eastern Siberian oil samples have values well above 1 for both 

isopropylcholestanes/ n-propylcholestanes ratios, suggesting the presence of 

demosponges in the ancient depositional environment for all of the oils. Abnormally low 
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values are found in samples 020, 036 and 080. Another possible indicator of 

demosponges biomass contributions to sediments is a high abundance of 27-

norcholestanes relative to cholestanes (Kelly et al., 2007). The values here are all 

between 0.2 and 0.4 suggesting that if certain demosponges do give rise to a high 

abundance of 27-norcholestanes, they were not prevalent in the environment here. 

Altogether, these ratios suggest that demosponges were prevalent in the ancient 

depositional environment for all of the oils. 
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Other Source Biomarkers 

 Sts/ 
Hs 2αMeHI% 3βMeHI% 

28,30 
BNH/ 
C30 H 

C27 Sts/ 
C29 Sts 

n-C22/ 
x-C22 

n-C24/ 
x-C24 

x-C20/ 
Ph 

ES 001 0.61 6.55 3.59 0.18 0.20 2.66 2.68 0.90 
ES 005 0.67 8.30 4.64 0.17 0.16 3.33 2.79 1.10 
ES 010 0.63 8.78 5.50 0.18 0.17 3.08 3.10 0.96 
ES 015 0.72 8.47 5.58 0.17 0.21 3.71 2.66 1.31 
ES 018 0.73 6.10 4.33 0.18 0.19 3.89 3.35 0.95 
ES 020 0.85 8.44 5.22 0.17 0.33 2.99 3.17 0.96 
ES 022 0.47 12.69 8.60 0.14 0.15 2.44 2.40 0.44 
ES 024 0.64 11.01 5.39 0.24 0.17 1.47 1.25 0.42 
ES 026 0.86 11.09 5.57 0.42 0.16 1.26 1.14 0.40 
ES 030 0.86 10.47 6.34 0.32 0.17 1.96 2.59 0.32 
ES 035 0.61 9.13 4.30 0.13 0.15 1.51 1.32 0.49 
ES 036 2.23 8.42 5.46 0.42 0.18 1.20 1.18 0.53 
ES 040 1.26 10.73 4.77 0.39 0.18 1.31 1.25 0.25 
ES 043 1.20 11.31 4.95 0.37 0.16 1.28 1.19 0.37 
ES 048 0.82 6.67 4.22 0.15 0.20 1.34 0.79 0.35 
ES 053 0.79 8.25 4.27 0.12 0.19 1.71 1.63 0.30 
ES 057 1.10 8.33 3.83 0.30 0.18 1.23 1.22 0.30 
ES 064 1.77 8.77 3.48 0.55 0.20 1.35 1.21 0.28 
ES 066 2.59 10.39 4.61 0.52 0.24 1.45 1.54 0.29 
ES 068 1.01 8.61 3.94 0.30 0.19 1.30 1.25 0.31 
ES 080 4.63 8.74 5.43 0.41 0.30 1.36 1.92 0.26 
ES 083 1.00 8.54 3.78 0.25 0.22 1.36 1.53 0.23 
ES 087 1.10 8.36 3.89 0.30 0.19 1.16 1.15 0.29 
ES 089 1.34 10.15 4.89 0.28 0.18 1.38 1.28 0.35 
ES 091 1.03 9.39 4.04 0.34 0.17 1.25 1.05 0.41 

Table 5. A selection of source indicators showing differences in the depositional environment of the 
Kamov Group samples (ES 001 - ES 020) compared to the younger samples (ES 022 – ES 091). The 
steranes/ hopanes ratios suggest that eukaryotic input increased through time in this area. The 2- and 3-
methylhopane indices suggest a small but steady input from both cyanobacteria and methanotrophic 
proteobacteria, respectively. The 28,30-bisnorhopane to hopane ratios suggest that the Kamov Group oils 
were deposited in a more oxic depositional environment than the younger oils. The C27/ C29 steranes ratios  
suggest a predominance of green algae in all of these samples. The ratios of n-alkanes to X-peaks suggest 
that there was an abundance of sponges or colorless sulfide oxidizing bacteria, especially in the samples 
younger than the Kamov Group. The x-C20/ phytane signals appear to be dominated by the lack of 
abundance of phytane in the Kamov Group with respect to the younger oils. H denotes hopane and St for 
sterane.  
 

The ratio of steranes/ hopanes is primarily used as an indicator of input from eukaryotes 

relative to bacteria (Moldowan et al., 1985). The values for samples ES 001 through ES 

035 are all below 1 whereas those between ES 057 and ES 091 are all greater than 1. The 

samples between ES 035 and ES 057 vary in this respect. This suggests that the 

eukaryotic input increased through time in this area. The 2-methylhopane index (2MeHI) 

has been proposed as a molecular proxy for cyanobacteria (Summons et al., 1999) while 
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the 3-methylhopane index (3MeHI) is potentially useful as a proxy for methanotrophic 

proteobacteria (Collister et al., 1992; Farrimond et al., 2004). The 2MeHI values are all 

between 6 and 12 %, and the 3MeHI values are all between 3 and 9 % suggesting a small 

but steady input from both cyanobacteria and methanotrophic proteobacteria (Figure 4c). 

The 28,30-bisnorhopane to C30 hopane ratio, when high, suggests a clay-poor, anoxic 

depositional environment. 28,30-Bisnorhopane may be biosynthesized by 

chemoautotrophic bacteria that grow at the oxic-anoxic interface of a water body, but 

since it is only found in bitumen it is more likely that it is the diagenetic product of 

hopanols formed under conditions where bacteria like sulfide oxidizers thrive (Peters et 

al., 2005). The Kamov Group values are all around 0.18, whereas the younger oils have 

higher values, generally ranging between 0.3 and 0.5 (Figure 4a). This again suggests that 

the Kamov Group oils were deposited in a more oxic depositional environment. 

However, there is also a significant increase in the diasteranes to steranes ratio in the 

Kamov Group oils relative to the younger oils, so the change in 28,30-bisnorhopane 

abundance could also be related to a clay rich depositional environment for the Kamov 

Group. The C27/ C29 steranes ratios are all around 0.2, suggesting a predominance of 

green algae in all of these samples; this will be discussed further below. There are two 

ratios provided in Table 5 with n-C#/ x-C# and one x-C20/ Ph. The X-peaks are mid-chain 

monomethylalkanes which may suggest the presence of cyanobacteria, sponges or 

colorless sulfide oxidizing bacteria (Shiea et al., 1990; Thiel et al., 1999; Love et al., 

2008). The n-C22/ x-C22 and n-C24/ x-C24 are both greater than 2 for the Kamov Group 

and on average less than 2 for the younger samples. This abundance of X-peaks likely 

suggests the abundance of sponges or colorless sulfide oxidizing bacteria, especially in 

the samples younger than the Kamov Group. The x-C20/ Ph values are around 1 for the 

Kamov Group samples and significantly lower, between 0.2 and 0.6, for the younger 

samples. Given the n-alkane to X-peak ratios, this signal appears to be dominated by the 

lack of abundance of Ph in the Kamov Group sample rather than an abundance of X-

peaks in the Kamov Group oils (Figure 4d). In summary, eukaryotic input increased 

through time in this area, there was a small but steady input from both cyanobacteria and 

methanotrophic proteobacteria, the Kamov Group oils were deposited in a more oxic 

depositional environment than the younger oils, there was a predominance of green algae 
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in all of these samples and an abundance of sponges or colorless sulfide oxidizing 

bacteria, especially in the samples younger than the Kamov Group. 

 

 
Figure 4. Cross-plots of a selection of biomarkers. Samples from the Kamov Group are in dark blue, 
whereas the younger oils are in light blue. a) Pristane/ phytane vs. 28,30-bisnorhopane/ hopane, showing 
that the Kamov Group oils plot in a different region than the rest of the Eastern Siberian oils that are 
younger. b) C/ A vs. C/ A+B showing a greater variance of the abundance of B in the younger samples in 
comparison to the Kamov Group oils. c) 2-methylhopane/ (2-methylhopane + hopane) vs. 3-methylhopane/ 
2-methylhopane showing that the Kamov Group oils generally plot in a different region than the rest of the 
Eastern Siberian oils that are younger. d) n-C24/ x-C24 vs. n-C22/ x-C22 showing a clear separation between 
the Kamov Group oils and the younger Eastern Siberian oils. 
 

Environmental interpretations.  

In previous studies of Eastern Siberian oils the main features were recorded as low Pr/ Ph 

values, C35H/ C34H >1, trace gammacerane, Ts/ Tm <1, a high relative abundance of mid-

chain monomethyl alkanes, 30-norhopanes, C29 steranes and acyclic isoprenoids, a 

greater abundance of hopanes relative to steranes, the presence of 2-methylhopanes, 

2,3,6-trimethyl aryl isoprenoids and C30 methylsteranes, and a lack of diasteranes (Fowler 

& Douglas, 1987; Summons & Powell, 1992). The low Pr/ Ph values, presence of C30 
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norhopanes, C35H/ C34H >1, Ts/ Tm <1, and lack of diasteranes led the authors to suggest 

a carbonate source. 

 

Generally, our data agree with these past studies. The Pr/ Ph values show that the samples 

are all marine, and that the depositional environment of several of the Kamov Group oils 

was more oxidizing or less restricted than that of the younger samples. The low 

homohopane index, gammacerane to hopane ratio and concentrations of 21-norsteranes 

suggest that none of these samples were from hypersaline or stratified depositional 

environments. Combined, the Ts/ (Ts+Tm), C31 hopane S/ S+R, C29 sterane S/ S+R and 

hopane to moretane ratios suggest that all of the samples are of moderate thermal 

maturity. The isopropylcholestane sponge biomarkers are relatively high in all of the 

samples, providing evidence that even the oldest samples are likely Ediacaran or at least 

latest Cryogenian in age (Love et al., 2009). On average, the steranes to hopanes ratio 

was less than 1 in the early Ediacaran and greater than 1 in the later Ediacaran in these 

samples, suggesting more eukaryotic input closer to the Cambrian. The 2-MeHI shows an 

appreciable contribution from cyanobacteria throughout the sections. The 3-MeHI shows 

a small contribution from methanotrophic bacteria throughout as well. The 28,30-

bisnorhope to hopane ratio is higher in the younger samples than the Kamov Group 

samples, supporting the hypothesis that the Kamov Group samples were deposited in a 

more oxic setting. C29 steranes predominate in all of the samples, suggesting a 

predominance of green algae. The abundance of X-peaks likely suggests the presence of 

sponges or colorless sulfide oxidizing bacteria. Though there were peaks that appeared at 

similar retention times to 2,3,6-trimethyl aryl isoprenoids, further spectroscopic analysis 

showed that 2,3,6-trimethyl aryl isoprenoids could not be detected in these samples. 

 

A principal components analysis of the MRM-derived biomarker parameters showed 

three main clusters, with ES 020 and ES 080 as outliers (Figure 5). The most relevant 

factors that made up the principal components were the steranes/ hopanes ratio, % C27 

steranes, % C28 steranes, n-C22/ x-C22, n-C24/ x-C24, αααR isopropylcholestane/ αααR n-

propylcholestane, 2-methylhopane index, and isotopic compositions of the saturate and 

aromatic fractions (proprietary to Geomark). 
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Figure 5. Principal component analysis tree showing the main oil families in these Eastern Siberian oils, 
with ES 020 and ES 080 as outliers. Notice that the rest of the Kamov Group samples separate quite 
strongly from the younger samples. 
 

Comparison to Oman.  

Previous studies have compared Eastern Siberian oils to Huqf oils of Oman due to their 

high abundance of monomethyl alkanes and C29 steranes (Fowler & Douglas, 1987; 

Summons & Powell, 1992). The Huqf oils of Oman, recently discussed in Grosjean et al. 

(2009) have abundant C29 steranes, associated with an abundance of green algae, and 

mid-chain monomethyl alkanes. More interestingly, we have found that the Eastern 

Siberian Kamov Group samples are very similar to those of the Nafun group of Oman 

and the younger Eastern Siberian samples are very similar to those of the Ara group of 

Oman. Grosjean et al. (2009) showed that the main differences between the Nafun and 

Ara hydrocarbon assemblages are that the Nafun has a lower ratio of 28,30-bisnorhopane 

to hopane, 2-methylhopanes to 3-methylhopanes and C35H/ C34H, lower concentrations of 

21-norsteranes, X-peaks and gammacerane, higher Pr/ Ph, and higher relative abundance 

of diasteranes. Interestingly, these exact same parameters distinguish the Kamov Group 

vs. the younger Eastern Siberian oils with a few notable exceptions. In the Siberian 

samples, there is no significant difference in gammacerane to hopane or C35H/ C34H 
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ratios and 21-norsteranes are actually more abundant in the Kamov Group samples. All of 

the other parameters behave similarly, suggesting that the Nafun Group and Kamov 

Group samples may be coeval. The Nafun Group is dated to an age range of 635 to 547 

Ma (Bowring et al., 2007). Geochemical parameters suggest the source rocks of the 

younger oils of Eastern Siberia are coeval with the Ara Group, which is dated to be 547 

to < 541 Ma (Bowring et al., 2007). 

 

Sterane patterns.  

It appears that in Neoproterozoic rocks and oils C29 steranes are usually dominant with a 

few exceptions where C27 steranes are dominant (Knoll et al. 2007). In this section we 

explore what areas of the world at this time have which sterane dominance and try to 

relate that to known sterol patterns in modern algae in order to address the possible redox 

conditions of their depositional environments.  

 

The dominant steranes in the Awatubi and Walcott Members of the Chuar Group in 

Arizona, the Q oil of Oman, and the Ediacaran Formations of the Amadeus Basin in 

Australia are C27 steranes (Ventura et al., 2009; Grantham 1986; Summons & Walter 

1990; Appendix 1). In the lower Walcott Member, this dominance is strong and the 

average C27/ C29 steranes ratios are 17.1 (Ventura et al., 2009). The values for the 

Awatubi Member, which lies beneath the Walcott Member and for the upper Walcott 

Member are 2.7 and 6.8, respectively (Ventura et al., 2009). The dominance is also 

relatively strong in Q oil, which has average ratios of 2.6 (Grosjean et al., 2009). In the 

Amadeus Basin samples the average C27/ C29 steranes ratio is closer to unity at 1.4 

(Appendix 1). However, in rocks and oils (aside from Q oil) of the South Oman Salt 

Basin, Cryogenian to Early Cambrian oils of Eastern Siberia, and Ediacaran samples 

from the Officer Basin in Australia C29 steranes are dominant (Grantham 1986; Fowler & 

Douglas, 1987; Summons & Walter, 1990; Grosjean et al., 2009; this Chapter; Appendix 

1). The dominance of C29 steranes is clear in the South Oman Salt Basin (- Q oil) samples 

and Eastern Siberian oils where the average C27/ C29 steranes ratios are 0.3 and 0.2, 

respectively (Grosjean et al., 2009; this Chapter). In the Officer Basin samples the 
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average C27/ C29 steranes ratio is closer to unity at 0.8 (Appendix 1). This is clearly 

visible in the chromatograms in Figure 6 and ternary diagram in Figure 7. 

 

 
Figure 6. C27, C28 and C29 sterane distributions from representative samples of the Walcott Member, Q oil 
of Oman, the Amadeus Basin, Officer Basin, Eastern Siberia and the South Oman Salt Basin (SOSB). For 
each sample the axes are linked to show relative distributions. In the Walcott Member of the Chuar Group 
in Arizona, Q oil of Oman and Amadeus Basin samples of Australia a predominance of C27 steranes is 
visible, whereas in the Officer Basin samples of Australia, the oils from Eastern Siberia, and rocks and oils 
(aside from Q oil) of the South Oman Salt Basin C29 steranes are predominant. 
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Figure 7. Sterane ternary diagram showing that rocks from the Walcott Member of the Chuar Group and 
Oman Q oils have a predominance of C27 steranes, the other Oman samples (mainly Huqf oils and Nafun or 
Ara Group rocks) and Eastern Siberian oils have a predominance of C29 steranes, and the Australian rock 
samples from the Amadeus and Officer Basins lie roughly in the middle with slightly more abundant C27 
steranes in the Amadeus Basin samples and C29 steranes in the Officer Basin samples. None of these 
samples have an abundance of C28 steranes, which is expected for samples of Neoproterozoic to Cambrian 
age.  
 

The abundance of C28 steranes is generally quite low in Neoproterozoic to Cambrian 

sediments. The increase in C28/ (C28+C29) steranes through the geological record may be 

associated with the diversification of phytoplankton assemblages through the Mesozoic 

(Grantham & Wakefield, 1988; Schwark & Empt, 2006). In rocks, as opposed to oils, the 

abundance of C28 steranes spikes at some extinctions events (Schwark & Empt, 2006). 

So, another interpretation for high C28/ (C28+C29) sterane ratios may be an increase in 

contribution from resilient prasinophytes (Schwark & Empt, 2006), some of which are 

known to make C28 sterols (Volkman, 1986; Kodner et al., 2008). 

 

The green algal classes Ulvaphyceae and Prasinophyceae may be responsible for C29 

dominance in late Neoproterozoic rocks (Kodner et al., 2008). Green algae became 

ecologically important 600-800 Ma (Knoll et al., 2007) likely due to an increase in the 

essential nutrient of dissolved iron in the ocean (Canfield et al., 2008; Love, 2008). The 

700-750 Ma Svanbergfjellet Formation of Spitsbergen contains fossils of at least two 

classes of green algae, including a morphological analogue to Ulvophyceae (Butterfield 
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et al., 1988; Butterfield et al., 1994). Microfossil data also support the idea that C29 

sterane dominance in the Officer Basin samples of Australia was due to the prevalence of 

green algae. Acritarchs consistent with chlorophycean affinity are found in the Ediacaran 

lower Ungoolya Group, including the Tanana Formation (Arouri et al., 1999). 

 

There are several potential explanations for the dominance of C27 steranes in some 

Neoproterozoic sediments, but C29 sterane dominance in most. It is likely that the areas 

with C29 sterane dominance were those with a prevalence of green algae. Environments 

with C27 sterane dominance may have been areas where there was a prevalence of red 

algal clades, since green algae produce sterols with C29 dominance. 

 

Red algae produce cholesterol as their main sterol (Patterson 1971; Volkman, 1986). As 

early as ~1200 Ma, Bangiacean red algae were extant (Butterfield, 2000; Butterfield et 

al., 1990). Nearly all living marine red algae are multicellular benthos that would be 

expected to live close to the shoreline. Any samples with C27 sterane dominance due to 

red algal influence would have to be from areas shallow enough to have a major input 

from the photosynthetic benthos. Importantly, red algae have an advantage over green 

algae in euxinic waters. Sulfide strips the water column of Fe2+ and red algae have a 

lower Fe2+ requirement than green algae (Falkowski et al., 2004). 

 

Most green algae produce dominantly C29 sterols (Kodner et al., 2008; Volkman 1986). 

However, there are a few green algae that dominantly produce C27 sterols. In stationary 

phase, Dunaliella minuta may produce C27 sterols dominantly (Ballantine et al., 1979). 

Dictyosphaerium pulchellum produces C27 sterols dominantly, however it is a freshwater 

species, so it is not likely to be the source of the signal we are seeing in the geological 

record in marine rocks (Cranwell et al., 1990). Though Dunaliella salina (UTEX 1644) 

grown at 0.85, 1.7 and 3.4 M NaCl was found to dominantly produce C29 sterols (Peeler 

et al., 1989), I found that at ~4 M NaCl Dunaliella salina dominantly produces C27 

sterols. This may be due to use of different strains. The prasinophytes Tetraselmis sueica 

and two Tetraselmis sp. strains may also dominantly produce C27 sterols (Patterson et al., 

1993). Lastly, Ulva pertusa dominantly produces C27 sterols (Ikekawa et al., 1968). It 
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may not be that any of these taxa were responsible for the dominant C27 sterane signal in 

some of the Neoproterozoic sediments, but it is important to note that not all green algae 

produce C29 sterols as the predominant pseudohomologue. 

 

C27 sterols were the dominant sterols for half of the dinoflagellates studied by Volkman 

(1986). The glaucophyte Cyanophora paradoxa produces a predominance of C27 sterols, 

but is a freshwater organism (Kodner et al., 2008). Though it is unclear whether they 

evolved by the Neoproterozoic, a few Prymnesiophyceae dominantly produce C27 sterols. 

These include Chrysochromulina polylepis, Prymnesium patellifera and Ochrosphaera 

neapolitana (Volkman, 1986). The most likely of the above organisms to have been 

prolific in Neoproterozoic oceans are the dinoflagellates, which also make the unique 

compound dinosterol (Withers, 1983). Through diagenesis, dinosterol becomes a set of 

dinosteranes, which have been identified in sediments as old as the Early Cambrian 

(Moldowan & Talyzina, 1998). 

 

In order to identify the organisms that are most likely responsible for C27 sterane 

dominance in some Neoproterozoic sediments, it is important to first present the 

depositional environments of the areas studied. According to Canfield et al. (2008), 

during much of the late Neoproterozoic sub-surface oceans were anoxic with deep water 

being sometimes sulfidic, but usually ferruginous. Ferruginous deep waters were 

identified in two regions of South Australia, the Caribou and Mackenzie Mountains of 

Canada, Avalon Peninsula of Newfoundland, East Greenland, Spitzbergen of Svalbard 

and Siberia. 

 

Fe speciation data for the Walcott Member of the Chuar Group by Canfield et al. (2008), 

however, was suggestive of sulfidic deep waters. Though aryl isoprenoids are not present 

(Love, 2008), molecular fossil evidence is not inconsistent with the proposal for sulfidic 

deep waters in the Walcott Member. The apparent absence of aryl isoprenoids suggests 

that the sulfidic waters never entered the photic zone, but the Canfield et al. (2008) work 

focuses on bottom water environments. Also, work by Ventura et al. (2009) shows 

gammacerane to hopane ratios greater than 0.5 in the upper Awatubi Member and lower 
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Walcott Member, suggestive of statification. Work by Nagy et al. (2009) shows the lower 

Chuar Group had diverse acritarchs, which are commonly interpreted as being green 

algae. The ratios of highly reactive iron vs. total iron are variable, suggestive of both an 

oxic and an anoxic water column; however, the ratio of pyrite to highly reactive iron is 

low, suggesting a lack of euxinia (Johnston et al., 2008). The Fe speciation in the upper 

Chuar Group, which includes the Walcott Member, shows an abundance of highly 

reactive iron, suggestive of an anoxic water column, and high pyrite to highly reactive 

iron, suggestive of euxinic conditions (Johnston et al., 2008). This trend towards values 

indicative of euxinia begins in the upper Awatubi Member where the TOC starts to 

increase as well. The sample density is low at the top of the Walcott Member, so though 

it stays anoxic it is difficult to say whether or not it is still euxinic (Johnston et al., 2008). 

From the middle of the Awatubi Member up through the Walcott Member, diverse 

acritarchs are absent, but vase shaped microfossils and possibly bacterial blooms are 

present (Porter & Knoll, 2000; Porter et al., 2003; Nagy et al., 2009). The TOC, Fe and 

microfossil data suggest eutrophication during late Chuar time. There is no direct fossil 

evidence for red algae in the Walcott Member, but non-calcareous reds do not have a 

good fossil record and Xiao et al. (2004) suggest the even the coralline clade may have 

had an uncalcified evolutionary history in the Ediacaran.  

 

Grantham (1986) studied the composition of two Oman crude oils and found one to have 

C27 steranes dominant. Subsequent publications defined the oils with high C27 steranes as 

Q oils, meaning they have an unknown source (Grantham et al., 1988). These Q oils have 

a high abundance of gammacerane and 21-norsteranes, suggestive of a stratified water 

column (Grosjean et al., 2009). The presence of sponge biomarkers shows input from 

more oxygenated environments. Without knowing the source rocks for Q oils or having 

iron speciation data from those rocks, it is difficult to say for sure what the redox of the 

bottom waters was like in this area, but the high gammacerane abundances is consistent 

with sulfidic deep waters (Sinninghe Damsté et al., 1995). 

 

In the Ediacaran, the Amadeus basin likely had at least an upper oxic layer as the 

Pertatataka Fm. contains acritarchs of possible green algal affinity (Walter et al., 1995; 
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Zhang & Walter, 1989). The pristane to phytane values are variable, ranging from 0.5 to 

2.5 (Logan et al., 1997; McKirdy et al., 2006; Appendix 1). The gammacerane to hopane 

values are very low, all less than 0.1 (Appendix 1). The redox state of the deep water is 

unknown. 

 

The other oil Grantham (1986) studied had dominantly C29 steranes and was later 

identified as Huqf oil (Grantham et al., 1988). These oils are geochemically very similar 

to the Huqf rocks, in which C29 steranes dominate as well (Grosjean et al., 2009). They 

have very low Pr/ Ph values suggestive of an anoxic water column. Supporting this is a 

high C35 homohopane abundance. Gammacerane concentrations are low and aryl 

isoprenoids could not be identified. X-peaks are present in all samples as are 24-

isopropylcholestanes (Grosjean et al., 2009). Together this suggests deposition in a water 

column with a shallow oxic layer where sponges lived and an anoxic lower layer.  

 

The Eastern Siberian oils younger than the Kamov Group generally have values of Pr/ Ph 

less than 0.8 suggestive of an anoxic depositional environment. The abundance of 

demosponge markers suggests there was also an upper oxic layer. Though the 

gammacerane to hopane ratios are all less than 0.13, the presence of both anoxia and 

sponges is suggestive of a stratified water column with a shallow oxic layer above an 

anoxic water column. 

 

The Ediacaran Officer Basin samples have demosponge markers, suggestive of an upper 

oxic layer. Pristane to phytane values are highly variable, ranging from 0.5 to 2.2 (Logan 

et al., 1997; McKirdy et al., 2006; Appendix 1). The gammacerane to hopane values are 

all very low, less than 0.12 (Appendix 1). The redox state of the deep water is unknown. 

 

The most important factor in determining sterane abundances may be the redox 

environment of the deep water. From the Fe speciation evidence, we predict that in 

Neoproterozoic samples high C27/ C29 steranes ratios compared to nearby strata, 

especially in conjunction with high gammacerane abundances (gammacerane to hopane > 

0.5), are indicative of euxinic deep waters. Conversely, high C29/ C27 steranes ratios are 
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indicative of ferruginous deep waters. This hypothesis will be tested as we collect more 

Fe speciation data with which to compare our biomarker results. Though a gammacerane 

to hopane ratio of 0.3 is not insignificant, in the Phanerozoic, where stratification exists 

either due to salinity gradients or sulfidic deep waters, gammacerane to hopane ratios are 

generally quite high, reaching values around 1 (Wang & Fu, 1997; Bao & Li, 2001). 

Perhaps the organisms that make tetrahymanol, the precursor to gammacerane, would not 

live in water columns stratified due to ferruginous bottom waters. Though both the 

Awatubi and Walcott Members of the Chuar Group have a predominance of C27/ C29 

steranes, there is only strong evidence for euxinic deep waters in the upper Awatubi 

Member and lower Walcott Member. This is also where gammacerane abundances are 

highest. The lower Walcott Member is also where the C27/ C29 steranes ratios increase 

dramatically compared to the strata above and below. It is interesting that the 

gammacerane values indicate the switch in deep water before the C27/ C29 steranes ratios. 

 

The presence of sulfidic deep waters in the lower Walcott Member may have caused an 

increase in C27 steranes because Fe and Mo are removed from sulfidic water, leading to a 

limitation in fixed nitrogen and dissolved ferrous iron (Anbar & Knoll, 2002; Falkowski 

et al., 2004). Due to their lesser requirement for iron than that of green algae, red algae 

would then become abundant, leading to C27 steranes dominance. A schematic of this 

water column is shown in Figure 8a. A similar situation occurred at the P/T boundary, 

where extensive anaerobic waters led to a radiation in red lineage groups (Falkowski et 

al., 2004). Do note that algae grow in the oxic, shallow layer. 

 

Less certain is the deep water redox environment of the source rocks for the Oman Q oil. 

Due to the high abundance of gammacerane, we hypothesize that the C27 sterane 

dominance may be due to an origin from sediments deposited in a sulfidic deep water 

environment leading to a predominance of red algae, but it may be from a significant 

input of sterols from dinoflagellates or a significant input of sterols from ancient relatives 

of the modern hypersaline tolerant green alga Dunaliella salina. 
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In the rest of the South Oman Salt Basin and the Eastern Siberian basins there may have 

been enough mixing with a ferruginous deep zone to allow the green algae to out-

compete the red algae, leading to a dominance of C29 steranes. A schematic of this type of 

water column is shown in Figure 8b.  

 

The evidence for the redox state of the deep waters in the Amadeus and Officer Basins 

are the weakest. Interestingly, they are also the basins with samples where C27/ C29 

sterane ratios are close to unity. Additionally, these basins were likely were likely 

connected as regions of the Centralian Superbasin in the Ediacaran (Logan et al., 1997; 

Walter et al., 1995). Perhaps they each had stronger characteristics of sulfidic versus 

ferruginous bottom waters, but since they were connected they mixed enough for the 

signal to be sufficiently convoluted and muted. As neither have strong gammacerane 

abundances, we tentatively consider both to have ferruginous deep waters. Another 

possibility for the Amadeus Basin is that the bottom waters were euxinic as the sterane 

signature suggests but there were limited shallow waters where the benthic, phototrophic 

red algae could live. 
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Figure 8. Schematics of the different redox conditions of Neoproterozoic water columns. The Amadeus and 
Officer basins are enigmatic and not identified in either of these scenarios. In both cases, the algae are 
growing in the oxic, shallow ocean layer. a) Example of a water column with sulfidic deepwater, allowing 
red algae, which are benthic, to outcompete green algae and causing cholesterol to form in the sediments. 
This may have been the scenario for the Walcott Member and Q oil of the South Oman Salt Basin. b) 
Example of a water column with ferruginous deepwater, allowing green algae to dominate and leave C29 
sterols in the sediment. This was likely the case for the South Oman Salt Basin (minus the source of the Q 
oils) and Eastern Siberian basins. 
 

Conclusions 

From this new biomarker data we have an improved understanding of the sedimentary 

environment during source rock deposition during the late Neoproterozoic in Eastern 

Siberia. Though there was more eukaryotic input closer to the Cambrian, the older 

samples were deposited in a more oxic setting. Sponges, cyanobacteria, green algae and 

possibly sulfide oxidizing bacteria were relatively abundant throughout. 

 

The hydrocarbon compositions of the Eastern Siberian oils studied here have a strong 

resemblance to the Huqf oils of the South Oman Salt Basin. This and the substantial 

abundance of demosponge markers throughout the Siberian oils suggests that the samples 

assigned as Riphean age by Russian geologists are likely to be of Cryogenian to 
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Ediacaran age and those thought to be Vendian to Early Cambrian are likely Ediacaran to 

Early Cambrian. 

 

The C27/ C29 steranes ratio is important in understanding the Neoproterozoic ecology 

worldwide. Especially in conjunction with gammacerane to hopane values, it may be 

useful as an indicator of the redox conditions of deep water environments and thus of the 

dominant organisms of regions during this era. 
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3. Novel Steranes in Neoproterozoic Sediments and Oils 

 

Abstract 

The Neoproterozoic Era, which immediately precedes the sudden explosion of diverse 

animal life in the Cambrian, is of widespread scientific interest because is it here that we 

observe the first tangible evidence that complex organisms were present and interacting 

with their environment. However, Neoproterozoic rocks, other than a few Lagerstätten of 

the Ediacaran Period, do not contain an abundance of well-preserved macrofossils like 

those found in Phanerozoic rocks. Moreover, Ediacaran fossils are so unlike later 

organisms that it is difficult to discern taxonomic relationships or the specific conditions 

that characterized the paleoenvironments that were their habitats. Since few body fossils 

can be found, and these are difficult to interpret, chemical fossils provide a particularly 

important window into this chapter of Earth’s history. Though many types of biomarker 

hydrocarbons can be found in the sedimentary rock record, only a few of these are well 

enough understood to provide any information about the environment at the time of 

deposition. This study concerns the patterns of two types of norsteranes in 

Neoproterozoic sediments, C19 norsteranes and 21-norsteranes. Although the precise 

structures and biological origins of the C19 norsteranes remain to be determined, the 

relative abundance of one of the isomers appears to correlate with indicators of water 

column stratification. Because of its restricted temporal distribution, this C19 norsterane 

(designated C19C) may also serve as an age marker for Neoproterozoic to Early Cambrian 

rocks and oils. The second series, comprising C26-C28 pseudohomologues, are tentatively 

identified as 21-norsteranes based on their retention times relative to 21-norcholestane. 

These two series of compounds can be used to help characterize depositional 

environments, especially where there are no body fossils to allow interpretation. 

 

Introduction 

The Neoproterozoic Era was a period of transformation in Earth’s history. During this 

time, the ocean was in transition from an anoxic water column with oxygenated surface 

waters to a fully ventilated water column (e.g., Cloud Jr., 1968; Lambert et al., 1987; 

Derry et al., 1992; Des Marais et al., 1992; Canfield & Teske, 1996; Knoll & Carroll, 
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1999; Anbar & Knoll, 2002; Porter, 2004; Fike et al., 2006; McFadden et al., 2008). This 

era preceded the initial radiation of multicellular life, including representatives of all of 

the modern animal phyla in the Early Cambrian. Yet, only in the latest Neoproterozoic 

are body fossils of even simple animals found. Thus, chemical, or molecular, fossils offer 

an alternative for investigating the composition of contemporaneous microbial 

communities and, potentially, early metazoans (e.g. Love et al., 2009). 

 

Molecular fossils are useful tools to evaluate paleoenvironmental conditions, age of the 

host rock, and other factors. Though there are many hydrocarbon species found in rocks, 

the origins of only a few are understood well enough to provide tangible information. Of 

these, steranes are abundant in the geological record. Most have structures based on the 

cholestane skeleton, with the side-chain supplemented with up to 3 additional carbon 

atoms. The most ubiquitous steranes comprise cholestanes, ergostanes and stigmastanes. 

Eukaryotes biosynthesize a wide range of precursor sterols that are transformed upon 

burial and diagenesis into these sterane subclasses. Less common are steranes with 

reduced side-chains or modifications to the A-ring. These likely have fewer organismic 

sources and, as a consequence, could be source-specific. 

 

Current interest in the origins and implications of C19 norsteranes stems from 

observations of their high relative abundances in oils from the Neoproterozoic South 

Oman Salt Basin (SOSB) (Grosjean et al., 2009). The C19 norsteranes have a specific 

mass spectrometric fragmentation pattern. Because the A, B, C ring unit has one less 

methyl group than conventional steranes, the main fragment is 203 m/z, instead of the 

usual sterane 217 m/z fragment. The chromatogram in Figure 1 shows that the transition 

of 260>203 on a GC-MS with metastable reaction monitoring (MRM) allows these 

steranes to be visualized with excellent selectivity and a high signal to noise ratio. 

Though the structures are not known for certain, the diagnostic 260>203 parent to 

daughter transition used to identify these compounds suggests three primary skeletal 

possibilities. These are A-norsterane (1), 18-norsterane (2) and 19-norsterane (3) (Figure 

2). Of course, there would be numerous possibilities for distinct stereochemistries. 
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Figure 1. GC-MS MRM chromatogram showing the pattern of C19 norsteranes in Q oil from Oman on a 
DB-1 column. 
 

A-norsterane 18-norsterane 19-norsterane
1 2 3  

Figure 2. Hypothetical structures for C19 norsteranes identified in various rocks and oils. 
 

21-Norsteranes are already known to exist in the form of 21-norcholestane, which was 

first identified by Moldowan et al. (1991) based on chemical synthesis. More recently 

their 24-methyl and 24-ethyl homologues were tentatively identified (Bao & Li, 2001; 

Grosjean et al., 2009). The structures of these compounds are given in Figure 3. GC-MS 

MRM chromatograms of 21-norcholestane and 21-norstigmastane are given in Figure 4 

and 5, respectively. In contrast to the four regular sterane isomers (ααα + αββ each with 

20S + 20R) seen with cholestane, the 21-norsteranes only appear as a single peak in each 

trace. This is due to the absence of chiral a center at C20 and co-elution of the ααα + αββ 

isomers. It is more difficult to observe 21-norergostane since it coelutes on a DB-1 

column with the ααα 20R isomer of cholestane, as seen in Figure 6. 
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21-norcholestane 21-norergostane 21-norstigmastane  
Figure 3. Chemical structures of the 21-norsterane series.  
 

 
Figure 4. GC-MS MRM chromatogram of 21-norcholestane (marked with an asterisk) in a Shuram 
Formation rock from Oman on a DB-1 column. 
 

 
Figure 5. GC-MS MRM chromatogram of 21-norstigmastane (marked with an asterisk) in Q oil from Oman 
on a DB-1 column. 
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Figure 6. GC-MS MRM chromatograms of the full series of 21-norsteranes (marked with asterisks) from 
the A2C rock sample OMR 235 of Oman on a DB-1 column. 
 

Experimental Procedures 

Sampling.  

Samples from Australia were collected from fully cored petroleum exploration and 

stratigraphic wells. Samples from the Lake Maurice West-1 (LMW1) and Karlaya-1 (K1) 

wells of the Officer Basin were selected at the Glenside Drill Core Storage Facility, 

which is managed and run by the Primary Industries and Resources South Australia. The 

samples from the Wallara-1 (W1) well of the Amadeus Basin were selected at the 

Northern Territory Geological Survey’s core library in Alice Springs. The core samples 

were sectioned at the core facility and either placed in fabric bags or wrapped in 

aluminum foil pre-heated to 550°C and then placed into twist bags for transport to MIT 

and storage prior to analysis. 

 

Rock (OMR) and oil (OMO) samples from the South Oman Salt Basin were collected 

and analyzed for biomarker parameters conventionally used for oil-source correlation 

(Grosjean et al., 2009). Neoproterozoic oils from Eastern Siberia (ES) and a suite of 
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Phanerozoic oils were provided by John Zumberge of Geomark Research, Houston, 

Texas. Sediment samples from the Chuar Group were contributed by Susannah Porter 

and Geoscience Australia. A collection of rocks and oils from major producing fields 

worldwide was also provided by Geoscience Australia. Two oils from the Jinxian Sag in 

China were provided by Lu Hong. Each sample’s provenance, age, type and lithology are 

provided in Table 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sample Unit 

Approx. 
Age 
(Ma) 

Sample 
Type Lith. 

ES001 Kamov 700 oil c 

ES005 Kamov 700 oil c 

ES010 Kamov 700 oil c 

ES015 Kamov 700 oil c 

ES018 Kamov 700 oil c 

ES020 Kamov 700 oil c 

ES043 Parshino 598 oil c 

ES048 Byuk 598 oil c 

ES053 Byuk 598 oil c 

ES057 Katanga 588 oil c 

ES064 Tetere 568 oil c 

ES066 Tetere 568 oil c 

ES068 Tetere 568 oil c 

ES080 Usol'ye 561 oil c 

ES083 Usol'ye 561 oil c 

ES087 Usol'ye 561 oil c 

ES089 Usol'ye 561 oil c 

ES091 Bilir 561 oil c 

K1 1947 Tanana 589 rock c 

K1 1985 Tanana 589 rock c 

K1 2023 Tanana 589 rock c 

OMO005 A1C 547 oil c 

OMO006 A4C 542 oil c 

OMO015 A5C 540 oil c 

OMO016 A4C 542 oil c 

OMO031 A3C 543 oil c 

OMO033 A2C 545 oil c 

OMO034 A2C 545 oil c 

OMO035 A6C 539 oil c 

OMO036 A4C 542 oil c 

OMO038 A4C 542 oil c 

OMO039 A3C 543 oil c 

OMO040 A1C 547 oil c 

OMO041 A3C 543 oil c 

OMO043 A5C 540 oil c 

OMO051 A3C 543 oil c 

OMO052 A3C 543 oil c 

OMO053 A2C 545 oil c 

OMO054 A5C 540 oil c 

OMO055 A2C 545 oil c 

OMO056 A2C 545 oil c 

OMO057 A2C 545 oil c 

OMO058 A4C 542 oil c 

OMO059 A6C 539 oil c 

OMR002 Buah 550 rock c 

OMR017 Buah 550 rock c 

OMR020 Buah 550 rock c 

OMR028 A3C 543 rock c 

OMR029 A4C 542 rock c 

OMR030 A4C 542 rock c 

OMR031 A4C 542 rock c 

OMR032 A4C 542 rock c 

OMR033 A4C 542 rock c 

OMR034 A2C 545 rock c 

OMR035 A3C 543 rock c 

OMR036 A3C 543 rock c 

OMR037 A3C 543 rock c 

OMR038 A3C 543 rock c 

OMR039 A1C 547 rock c 

OMR040 A5C 540 rock c 

OMR041 A5C 540 rock c 

OMR042 A2C 545 rock c 

OMR149 Buah 550 rock c 

CA 203 Monterey Fm 8 oil c 

CA205 Monterey Fm 8 oil c 

CA247 Monterey Fm 8 oil c 

CA248 Monterey Fm 8 oil c 

CBO002 
Canning Basin- 

Blina 1 383 oil c 

CBO008 
Canning Basin- 

Sundown 2 323 oil c 

AGSO 3923 Svanbergfjellet 800 rock c 

PBO 004 Perth Basin 248 oil c 

CBO005 
Canning Basin- 

Blina OD 383 oil c 

PBO 016 Perth Basin 248 oil c 

FL002 
Florida/ 

Sunniland 105 oil c 

AGSO 3499 Marla 3 528 rock c 

AGSO 5679 Georgina Lst 507 rock c 

GR0002 Prinos Greece 6 oil c 

SI0006 
Coso Dissi 

Sicily 6 oil c 

SP0004 Amposta Spain 44 oil c 

CH0039 Jianghan China 44 oil c 

SI0001 Ragusa Sicily 214 oil c 

RU0354 
Iskrin Vogal/ 

Ural 380 oil c 

RU0383 
Kuzbaev 

Vogal/ Ural 381 oil c 

MI067 Lee 9 Michigan 436 oil c 
 

Table 1. Identity, provenance, age, type and lithology of each carbonate sample. Carbonate lithology is 
denoted by c. The ES, K1, OMO, and OMR samples are used in all of the plots below, whereas the rest are 
only used in Figure 7 and 8. Dates for A5 and A6 samples are not known, but are approximated from the 
other Ara unit dates. 



Sample Unit 

Approx. 
Age 
(Ma) 

Sample 
Type Lith. 

ES022 Vanavara 605 oil s 

ES024 Vanavara 605 oil s 

ES026 Vanavara 605 oil s 

ES030 Kursov 605 oil s 

ES035 Vanavara 605 oil s 

W1 1450 Bitter Springs 925 rock s 

W1 1345 Areyonga 778 rock s 

W1 1306 Aralka 707 rock s 

W1 1272 Pioneer 589 rock s 

W1 1045 Pertatataka 589 rock s 

W1 853 Pertatataka 589 rock s 

W1 706 Arumbera 542 rock s 

LMW1 373 
Dey Dey 
Mudstone 589 rock s 

LMW1 431 
Dey Dey 
Mudstone 589 rock s 

OMO001 Q 537 oil s 

OMO012 Q 537 oil s 

OMO018 Q 537 oil s 

OMO019 Q 537 oil s 

OMO020 Q 537 oil s 

OMO021 Q 537 oil s 

OMR016 Masirah Bay 635 rock s 

OMR027 Masirah Bay 635 rock s 

OMR099 Shuram 570 rock s 

OMR150 Shuram 570 rock s 

OMR151 Shuram 570 rock s 

OMR152 Shuram 570 rock s 

OMR153 Masirah Bay 635 rock s 

OMR154 Shuram 570 rock s 

OMR155 Shuram 570 rock s 

OMR156 Shuram 570 rock s 

OMR157 Masirah Bay 635 rock s 

CH7 
Shahejie Fm 
Zh7 2280m 173 oil s 

CH9 

Kongdian Fm 
Zh9 2360-

2390m 173 oil s 

Brazil 4438 Irati Shale 270 rock s 

SP-14-53-20 Walcott Mbr 750 rock s 

AK-10-60-3 Awatubi 760 rock s 

SP-12-53-12 Carbon Canyon 770 rock s 

NOSID 30 Brent Oil 654 oil s 

ICO 40 
Lion Sand? 
Ivory coast 83 oil s 

CA223 
Carneros 

(Temblor Fm) 20 oil s 

CA230 Wilhelm 4 oil s 

ICO 14 Lion Sand 105 oil s 

BS001 Scotland Gp 45 oil s 

AGSO 4193 Victor Bay 1200 rock s 

AGSO 4520 Nonesuch 1000 rock s 

AGSO 4536 Nonesuch 1000 rock s 

GA2000337 
Green River 

Shale Gilsonite 45 rock s 

AGSO 1316 
Currant Bush 

Lst 507 rock s 

AGSO 1361 Inca Fm 507 rock s 

SW0001 
Gotland 
Sweden 487 oil s 

AGSO 5141 
Walcott Mbr 

4.01 750 rock s 

AGSO 5120 Walcott Mbr 31 750 rock s 

AGSO 5121 Walcott Mbr 34 750 rock s 

AGSO 5123 Walcott Mbr 57 750 rock s 

AGSO 5125 Walcott Mbr 79 750 rock s 

AGSO 5136 Walcott Mbr 90 750 rock s 

AGSO 5133 
Walcott Mbr 

271 750 rock s 

Table 2. Identity, provenance, age, type and lithology of each siliciclastic sample. Siliciclastic lithology is 
denoted by s. The ES, W1, LMW1, OMO, and OMR samples are used in all of the plots below, whereas 
the rest are only used in Figure 7 and 8. The age for Q oils is not known, but is approximated from the Ara 
unit dates. 
 

General Procedure.  

Organic free solvents from OmniSolv were used. Prior to use, all glassware and 

aluminum foil were fired at 550°C for 8h and glass wool; pipettes and silica gel were 

fired at 450°C for 8h. 

 

Sediment samples were cleaned with de-ionised water, rinsed with methanol and 

dichloromethane and crushed manually with the sample wrapped in fired aluminum foil. 



 67

They were then ground to a fine powder in a SPEX 8510 Shatterbox fitted with an 8505 

alumina ceramic puck mill that was carefully cleaned between samples with aqueous 

detergent, fired sand, and finally rinsed with distilled water, methanol, dichloromethane 

and hexane. Rock powders were extracted using an accelerated solvent extractor (Dionex 

ASE) using a 9:1 mixture of dichloromethane and methanol. The resultant extracts were 

carefully evaporated under nitrogen to a volume of approximately 2 mL whereupon 

activated Cu was added to remove elemental sulfur. The sample was then separated by 

liquid chromatography on a silica gel 60 (Merck, 230-400 mesh) column using hexane to 

elute the saturate fraction, 4:1 hexane/dichloromethane to elute the aromatic fraction, and 

7:3 dichloromethane/methanol to elute the polar fraction. One milligram aliquots of the 

saturate fractions were then reduced to 0.1 mL and added to insert vials together with 50 

ng of internal standard. The saturate fraction was analyzed by GC-MS using D4 (D4-

ααα-ethylcholestane, Chiron), an internal standard that served as an index of relative 

retention time and for quantification. 

 

Gas Chromatography-Mass Spectrometry (GC-MS) was performed using a Micromass 

Autospec-Ultima instrument equipped with an Agilent 6890N Series gas chromatograph. 

Biomarkers in the saturated hydrocarbon fraction were analyzed by GC-MS with the 

Autospec operated in the metastable reaction monitoring (MRM) mode. A 60 m J&W 

Scientific DB-1 fused silica capillary column (0.25 mm i.d., 0.25µm film thickness) was 

used with helium at constant flow as carrier gas. Samples were injected in splitless mode. 

The oven was programmed 60ºC, held for two minutes, ramped to 150ºC at 10ºC/min, 

then to 315ºC at 3ºC/min where it was held isothermal for 24 min. The source was 

operated in EI-mode at 70 eV ionization energy. Peak identification was based on 

retention time comparisons with the hydrocarbons present in a synthetic standard oil 

(AGSO Standard Oil) and abundances measured by comparing peak areas to the internal 

D4 sterane standard without any adjustment for possible differential responses. Full scan 

analyses were acquired under the same GC conditions as described above and the scan 

rate was 0.80 s/decade over a mass range of 50 to 600 m/z with a total cycle time of 

1.06s. Data were acquired and processed using MassLynx v4.0 software. 
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OMO 012, a sample of Q oil from the SOSB, was analyzed on a GC×GC-ToF-MS 

system that employed a dual stage cryogenic modulator (Leco, Saint Joseph, Michigan) 

installed in an Agilent 6890N gas chromatograph configured with a 7683B series 

split/splitless auto-injector, two capillary gas chromatography columns, and a time of 

flight mass spectrometer. The extract was injected in splitless mode and the purge vent 

was opened at 0.5 minutes. The inlet temperature was 300°C. The first-dimension column 

and the dual stage cryogenic modulator reside in the main oven of the Agilent 6890N gas 

chromatograph (Agilent, Wilmington, Delaware). The second-dimension column is 

housed in a separate oven installed within the main GC oven. With this configuration, the 

temperature profiles of the first-dimension column, dual stage thermal modulator and the 

second-dimension column can be independently programmed. The first-dimension 

column was a nonpolar Restek Rtx-1MS, (25m length, 0.2 mm I.D., 0.2 µm film 

thickness) that was programmed to remain isothermal at 45°C for 10 minutes and then 

ramped from 45 to 320°C at 1.5°C min-1. Compounds eluting from the first dimension 

column were cryogenically trapped, concentrated, focused and re-injected (modulated) 

onto a second dimension column. The modulator cold jet gas was dry Nitrogen, chilled 

with liquid Nitrogen. The thermal modulator hot jet air was heated to 55°C above the 

temperature of the main GC oven (Thermal Modulator Temperature Offset = 55°C). The 

hot jet was pulsed for 0.75 second every 6 seconds with a 2.25 second cooling period 

between stages. Second-dimension separations were performed on a 50% phenyl 

polysilphenylene-siloxane column (SGE BPX50, 1.25 m length, 0.10 mm I.D., 0.1 µm 

film thickness) that was programmed to remain isothermal at 65°C for 10 minutes and 

then ramped from 70 to 340°C at 1.5°C min-1. The carrier gas was helium at a constant 

flow rate of 1.1 mL min-1. The Leco ToF-MS detector signal was sampled at 50 spectra 

per second. The transfer line from the second oven to the ToF-MS was decactivated fused 

silica (0.5 m length, 0.18 mm I.D.) which was held at a constant temperature of 280°C. 

The ToF source temperature was 225°C, the detector voltage was 1575 Volts, and the 

mass defect was manually set at 96.1milli-amu/100amu.     

 

An isomerization experiment was performed on androstane, following the method of 

Rampen et al. (2009). 5α-androstane from Sigma (5 mg) was placed in a 6 mm diameter 
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pyrex tube with 0.5 mg Pd/C. The tube was evacuated and sealed, heated to 320ºC for 36 

hours and then cooled to room temperature. The contents were rinsed out with hexane 

and filtered on silica gel to remove the catalyst. 

 

Results and Discussion 

Distribution of compound C through time.  

The relative abundance of C19 norsterane (C19C) is highest in oils reservoired in 

Ediacaran formations of Eastern Siberia, late Neoproterozoic to earliest Cambrian rocks 

and oils of the SOSB, and the Walcott Member of the Chuar Group of Arizona, as shown 

in a selection of GC-MS chromatograms in Figure 7. Trace amounts of compound C19C 

were found in Phanerozoic rocks and oils, but its abundance was orders of magnitudes 

lower than that found in Neoproterozoic samples of similar lithologies. Figure 8 depicts 

the ratio C/ (A+B) plotted versus geological time, showing the predominance of C19C in 

the Neoproterozoic to Early Cambrian, independent of the lithology of the source rock. 

The siliciclastic samples with high C/ (A+B) values around 800 Ma are from the Walcott 

Member of the Chuar Group, Arizona. The samples with high C/ (A+B) values near 540 

Ma are Q oil samples from the SOSB. The source rock for these oils is not known but is 

thought to be siliciclastic and of Early Cambrian age (Grosjean et al., in prep.). 

 

 
Figure 7. GC-MS MRM chromatograms showing the distributions of C19 norsteranes in a selection of oils 
and rocks spanning the Neoproterozoic to Jurassic. 
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Figure 8. Cross-plot of C/ (A+B) vs. geologic time showing the relative abundance of compound C19C in 
Neoproterozoic to Early Cambrian aged samples, independent of lithology.  
 

These data show that the abundance of the C19C is highest in rocks of Neoproterozoic to 

Early Cambrian age, which suggests that the biological source(s) were particularly 

prominent in the later Neoproterozoic. We therefore propose that a high abundance of 

C19C may be used as an age indicator for Neoproterozoic to Early Cambrian samples. 

This is a particularly important indicator for oils, which can migrate. 

 

Biomarker ratios that are known to vary with geological age include C28 to C29 regular 

and diasteranes, 24-nordiacholestanes to 27-nordiacholestanes and 24-

isopropylcholestanes to 24-n-propylcholestanes. The observed increase in the C28/ 

(C28+C29) steranes ratio through the geological record may be associated with changes in 

the composition of phytoplankton assemblages through the Mesozoic Era (Grantham & 

Wakefield, 1988). Knoll et al. (2007) have directly attributed this to the rise to 

prominence of chlorophyll a + c containing phytoplankton (dinoflagellates, diatoms and 

coccolithophorids) that has been independently documented on the basis microfossil 

distributions. The ratio of C28/ (C28+C29) steranes in Paleozoic and Neoproterozoic oil 

samples is generally less than 0.4. Therefore, a ratio greater than 0.5 for bitumen from a 

Precambrian rock should be viewed with caution as it may be an indicator of 

contamination with younger hydrocarbons (Grantham & Wakefield, 1988; Schwark & 

Empt, 2006). It is important to note, however, that when studying individual rock 
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samples, as opposed to oils, the relative abundance of C28 steranes has been shown to 

spike at extinctions events (Schwark & Empt, 2006). Similarly, some prasinophyte green 

algae biosynthesize a suite of sterols dominated by C28 sterols (Kodner et al., 2008). 

Therefore, it is entirely possible that bitumens from individual Paleozoic or Proterozoic 

rock samples could have high C28/ (C28+C29) steranes ratios.  

 

Also of importance in this respect is the 24-nordiacholestanes ratio (Holba et al., 1998). 

The ratio of 24-nordiacholestanes/ (24-nordiacholestanes + 27-nordiacholestanes) 

increases roughly in accord with the diatom radiation in the Cenozoic and is therefore 

expected to be very low in the Ediacaran and Cambrian (Holba et al., 1998). It is 

important, however, to note that this ratio is entirely based on data from gathered from oil 

samples where the age of the source rocks is thought to be known quite well. Since there 

is no published database for the C28/ (C28+C29) steranes ratio or the 24-nordiacholestanes/ 

(24-nordiacholestanes + 27-nordiacholestanes) ratio, the use of these in Paleozoic 

organic-rich rocks as indicators of contamination will remain subject to uncertainties. 

While steroids with the 24-norcholesterol structure have only been detected in extant 

diatoms and dinoflagellates (Rampen et al., 2007), it remains possible that their ancestors, 

or some other type of phytoplankton not yet analyzed for its natural products, produced 

compounds of this type in the past. 

 

Neither of the above age biomarker ratios is useful for identifying rocks of 

Neoproterozoic to Cambrian age. The only age-diagnostic biomarker ratio known that 

can be applied to this respect is the ratio of 24-isopropylcholestanes to 24-n-

propylcholestanes (24i/n) since it is only high in Neoproterozoic to Ordovician rock and 

oil samples (McCaffrey et al., 1994; Love et al., 2009). Sterols with an n-propyl side-

chain substituent occur most prominently in marine chrysophyte algae (Moldowan et al., 

1990). On the other hand, sterols bearing 24-isopropyl substitutents occur most 

prominently in demosponges (McCaffrey et al., 1994; Love et al., 2009). Most 

phylogenies derived from 18S r-DNA and protein sequences identify demosponges as the 

most basal animal lineage (Sperling et al., 2007). One explanation for the very high 24i/n 

ratio for steranes that has been observed in Neoproterozoic to Cambrian oils and rocks is 
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that, as pioneering metazoans, demosponges (or their direct ancestors) enjoyed a 

relatively short period of ecological prominence with very little competition. As animal 

life continued to diversify, and predation and competition for space became the prime 

biological interactions for animal life, the relative importance of sponge biomass declined 

relative to other taxonomic groups. A decrease in the 24i/n ratio for steranes from the 

middle Cambrian to present is consistent with sponges occupying a comparatively minor 

ecological role throughout the Phanerozoic (McCaffrey et al., 1994; Love et al., 2009). 

 

Distribution of C19 norsterane C with lithology and depositional environment.  

Figure 9 shows a correlation between C/ (A+B) and the gammacerane to hopane ratio (γ/ 

H). The latter is an indicator of water column stratification and possibly hypersalinity 

(Sinninghe Damsté et al., 1995). Only sediment formations with high gammacerane to 

hopane values have a high abundance of C19C, which suggests that the relative abundance 

of C19C is controlled by similar factors that affect gammacerane. It also suggests that 

C19C can also be used as a water stratification indicator. 

 

 
Figure 9. Cross-plot of C/ (A+B) with the gammacerane/ hopane (γ/ H) ratio showing a positive correlation. 
The linear relationship has R2 = 0.72. 
 

Identity of C19  norsterane C.  

Three possibilities are immediately apparent as potential structures for a hydrocarbon 

molecule with the mass spectral features of the C19 norsteranes. A prominent 260 to 203 
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transition suggests the possibility of A-norsteranes, 18-norsteranes or 19-norsteranes. A 

favored hypothesis is that the C19 norsteranes are A-norsteranes, which is based on GC-

MS MRM and full scan mass spectra and literature comparisons. A-norcholestanes and 

19-norcholestanes have been synthesized in prior work (van Graas et al., 1982). Analyses 

of their mass spectra showed that the A-norcholestanes had a higher abundance of the 

135 Da fragment compared to the 148 Da fragment whereas the reverse was true to the 

19-norcholestanes. As can be seen in Figure 10, the abundance of the 135 Da fragment is 

greater than that of the 148 Da fragment for each of the three compounds. Using the 

known fragmentation pathways of cholestane as a reference, mass assignments for the 

fragmentation of three possible structures of the C19 norsteranes are given in Figure 11.  

 

 
Figure 10. Spectra of C19 norsteranes A, B, and C in Q oil sample OMO 001. 
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Figure 11. Fragmentation patterns used to identify the C19 norsteranes. 
 

To obtain more information on the structures of these compounds, two-dimensional gas 

chromatographic analysis (GCxGC) was conducted along with Time-of-Flight (TOF) 

mass spectrometric detection. Extending the chromatographic resolution to the second 

dimension reveals no added complexity for compounds C19B and C19C over that which 

was already evident in the conventional GC-MS approach, suggesting that these 

compounds are single isomers and pure compounds (Figure 12). The spectrum of 

compound C19A was too weak to be able to discern properly. However, as expected, all 

three isomers eluted in the area diagnostic for compounds with 4 saturated hydrocarbon 

rings. 
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Figure 12. A GCxGC composite chromatogram of masses 203, 245, and 260 shown in two different views. 
 

We also investigated the possibility that compound C19C was the regular C19 sterane 5α, 

14α-androstane or another isomer of androstane. To accomplish this, we spiked a 

saturated hydrocarbon sample with a high abundance of C19C with 5α-androstane. This 

eluted just after compound C19B, between C19B, and C19C, and had a mass spectrum that 

was distinct from C19A, C19B, and C19C. An isomeric mixture of androstanes was then 

prepared via a high-temperature sealed-tube reaction using Pd/C as catalyst to promote 

rearrangement reactions. This reaction produced small amounts of new compounds with 

spectra consistent with the structure of androstane isomers. By GC-MS analysis, all of the 

neoformed compounds eluted earlier than 5α-androstane and did not coelute with C19A, 

C19B, or C19C (Figure 13). The GCxGC analysis of these androstane isomers is ongoing. 
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Figure 13. GC-MS chromatogram for a Q oil OMO 021 showing C19A, C19B, C19C, and the isomers of 
androstane produced by sealed-tube isomerization. The data were collected in full scan mode on a DB-1 
column with C19 compounds visualized through the 260 m/z selected ion chromatogram. 
 

Mass spectral data suggest the most likely structures for the three isomers C19A, C19B, 

and C19C are A-norsteranes with different stereochemistries. Although the peaks elute 

seemingly too far apart to have closely similar structures, it is possible that different ring 

conformations result in bigger differences in retention time than one might expect. The 

difference in retention time is likely too small for C19A to be a diasterane form of C19B or 

C19C. We are endeavoring to determine the precise structures of C19A, C19B, and C19C 

through chemical synthesis of authentic standards. This work is being conducted in 

collaboration with Professor J Rullkötter, University of Oldenburg. An attempt to isolate 

these compounds from SOSB sediments in order to determine the structure using NMR 

spectroscopy is also underway. 

 

A-norsteranes have a contracted A-ring (i.e. five instead of six carbon atoms). C26-C28 A-

norsteranes with 5β(H)- and 5α(H)- configurations have been previously identified in 

Cretaceous black shales by mass spectroscopy (van Graas et al., 1982). However, to the 

best of our knowledge, no analogous compounds lacking side-chains have been reported. 

In more recent studies of late Neoproterozoic rocks and oils from the South Oman Salt 

Basin (SOSB), three isomeric C19 norsteranes (A, B, and C) were identified as 

components of saturated hydrocarbon fractions (Grosjean et al., 2009). A potential 
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precursor molecule would most likely be a sterol with a hydroxymethyl group at the 3 

position on the A ring and possibly one or two double bonds elsewhere in the structure.  

Such structures exist in nature (Minale & Sodano, 1974a; Kanazawa et al., 1979; Bohlin 

et al., 1980; Kitagawa et al., 1983; Djerassi & Silva, 1991). Through diagenesis, the 

hydroxymethyl functionality on such a compound could be oxidized and lost through 

decarboxylation. It has also been suggested that A-norsteranes in sediments are derived 

from A-norsterols, or that they may be diagenetic products of cholesterol (Kerr & Baker, 

1991). The only organisms known to date that synthesize A-norsteroids are sponges 

(Minale & Sodano, 1974a; Kanazawa et al., 1979; Bohlin et al., 1980; van Graas et al., 

1982; Kitagawa et al., 1983; Djerassi & Silva, 1991), which synthesize them from dietary 

sterols (De Rosa et al., 1975a). These include 3-hydroxymethyl-A-norsteranes with C8-

C10 side chains (Minale & Sodano, 1974a; Kanazawa et al., 1979; Bohlin et al., 1980), 3-

hydroxymethyl-A-norsterenes with C8-C10 side chains (Kanazawa et al., 1979; Bohlin et 

al., 1980; Teshima et al., 1980), and 3-hydroxymethyl-A-norgorgostane (Bohlin et al., 

1980). 

 

An 18-norsterane lacks the angular methyl group normally at carbon 13. No compounds 

of this type have previously been identified in the rock record. The only known potential 

precursor molecules, 18-norsteroids, known to date are the 18-norpregane derivative 

fukujusonorone, which was extracted from Japanese pheasant eyes (Shimizu et al., 1969; 

Solomon et al., 1974) and veralkamine, which was extracted from the angiosperm 

Veratrum album (Tomko et al., 1967). 

 

A 19-norsterane lacks the angular methyl group normally found at carbon 10. As yet, no 

compounds of this type have been identified in the rock record. However, possible 

precursor 19-norsteroids have been found in nature and the sources include gorgonians 

(Popov et al., 1976; Popov et al., 1983), a sponge (Minale & Sodano, 1974b), soft coral 

(Huang, 2008), and fungi (Barrero et al., 1998; Nieto & A., 2008). Though a 19-

norcholesta-5,7,9(10)-trien-3β-ol has been detected in blood plasma and faeces of 

humans with Smith-Lemli-Opitz syndrome (Batta et al., 1995), it may have been formed 

during the analyses as a conversion product of cholesta-5,8-dien-3β-ol (Ruan et al., 
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1996). The fungal 19-norsterol is neoergosterol, but it is not as likely to be a precursor to 

a saturated 19-norsterane because its B ring is aromatized and this would likely remain so 

through diagenesis. It has been shown that the sponge Axinella polypoides synthesizes 

19-norsteroids via modification of a regular dietary steroid precursor (De Rosa et al., 

1975b). Another group of molecules that could lead to 19-norsteranes in the rock record 

are 19-OH sterols. These compounds have been isolated from soft corals (Bortolotto et 

al., 1976; Iguchi et al., 1989; Wang et al., 1992; Duh et al., 1998; Rao et al., 1999; 

Huang, 2008) and a sponge (Gunasekera & Schmitz, 1983). Again, the hydroxymethyl 

group is more readily oxidized than a simple methyl substituent and can then be lost via 

decarboxylation. 

 

The other interesting feature of the C19 norsteranes presented, besides the unusual 

nucleus, is the shortened side chain. Only a few types of organisms are known to 

dealkylate sterol side chains. Those able to dealkylate at C24 are mollusks (Collignon-

Thiennot et al., 1973; Saliot & Barbier, 1973; Khalil & Idler, 1976; Teshima et al., 1979), 

crustaceans (Teshima & Kanazawa, 1971; Kanazawa et al., 1976), a cnidarian (Saliot & 

Barbier, 1973), sponges (Malik et al., 1988; Kerr et al., 1990), nematodes (Chitwood, 

1999 and refs within), and insects (Clark & Bloch, 1959; Robbins et al., 1962; Ikekawa et 

al., 1966). This process may be more widespread, however, as the last step in this 

dealkylation has been shown in a green alga (Giner & Djerassi, 1992).  

 

Side chains shorter than C8 have also been identified in a gorgonian (Popov et al., 1983). 

24-norsteranes are likely formed by 24-norsterols which are probably sterols alkylated at 

C24 and then C26 and C27 are removed. Organisms that synthesize 24-norsterols include 

bivalves (Goad, 1981). A sponge makes a 19, 24-dinorsterol (Minale & Sodano, 1974b). 

 

Though A-norsteranes have been suggested to be sponge biomarkers (van Graas et al., 

1982), they were encountered in sediments of the Walcott Member of the Chuar Group, 

which is between ~800 and 742 Ma (Karlstrom et al., 2000). This may, or may not, be 

older than the evolution of sponges as it is older than the ~713 Ma Sturtian glacial 

(Bowring et al., 2007) and the current earliest evidence for sponges is just before the 
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Marinoan glacial around 650 Ma (Love et al., 2009). Of the organisms known to shorten 

sterol side chains today, none have been shown to have evolved by the early 

Neoproterozoic where we clearly see C19 norsteranes in sediments, however these 

metazoans had unicellular ancestors. Novel steroids could reasonably be predicted to 

have arisen in these lineages.  

 

Distribution of 21-norsteranes with lithology and depositional environment.  

21-Norsteranes have been proposed to occur in high concentration in hypersaline 

environments of relatively immature rocks and oils generated in the early oil window 

(Bao & Li, 2001; Grosjean et al., 2009). As shown in Figure 14, the 21-norcholestane and 

21-norstigmastane ratios follow expected trends, broadly correlating with gammacerane 

to hopane ratios. The abundance of 21-norstigmastane is measured relative to the closely-

eluting 5α ,14β, 17β−20R isomer of ergostane. It has been shown that 21-norsteranes are 

susceptible to input from thermal cracking of other steroids in rocks and oils of high 

thermal maturity (Moldowan et al., 1991). The ratio of 18α-22,29,30-trisnorneohopane 

(Ts) relative to C30 hopane is a well-known as maturity indicator useful for post-mature 

samples (Volkman et al., 1983). If we remove the samples from the gammacerane to 

hopane plot with a Ts/ C30 hopane ratio greater than 1.5, which are the most likely to 

have an additional input from thermal cracking, we obtain a more linear trend, as shown 

in Figure 15.  
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Figure 14. Crossplot of γ/  H vs. 21-norstigmastane/ C28αββR showing a weak positive correlation. 
 

 
Figure 15. Crossplot of γ/ H vs. 21-norstigmastane/ C28αββR without post-mature samples, showing a 
positive correlation. The linear relationship has R2 = 0.56. 
 

Despite the fact that a few oils in our study were clearly of high thermal maturity and 

Moldowan et al. (1991) have shown that of C26 steranes, 21-norsteranes are the most 

thermally stable, there is likely only a small contribution of these compounds to the 

sediments that derives from the thermal cracking of higher molecular weight steroids. 

Hydropyrolysis experiments have produced 21-norsteranes directly from kerogen 

hydropyrolysates, which suggests that their precursors were most likely incorporated into 

the kerogen during the earliest stages of diagenesis (Farrimond et al., 2003; Love, 2008). 

Figure 16 compares chromatograms for the saturated bitumen extract vs. the kerogen 
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hydropyrolysis product of the Oman sample OMR 235 of the A2C unit of the Ara 

Formation. The 21-norsteranes are in high abundance in all cases where this experiment 

was carried out, suggesting that the compounds were present as 21-norsterols (or possibly 

also functionalized at C21) in the sedimentary environment and incorporated into the 

kerogen during the earliest stages of diagenesis. 

 

 
Figure 16. GC-MS data showing the C26 and C28 21-norsterane abundances in bitumen and kerogen 
hydropyrolysate of rock sample OMR 235 of the A2C from Oman. Data from G. Love. 
 

Although the structures of the 24-methyl and 24-ethyl homologues of the 21-norsteranes 

have yet to be proven, we can be confident that their relative retention times and specific 

mass spectroscopic fragmentations are entirely consistent with this assignment. Also, the 

relative abundances in the different families of SOSB oils support this identification. In 

the Huqf and carbonate stringer oil families where C29 steranes are dominant, 21-

norstigmastane is the most prominent homologue. In the Q oil family where C27 steranes 

are dominant, 21-norcholestane is the most prominent homologue. The correlation 

between cholestane to 21-norcholestane and stigmastane to 21-norstigmation is shown in 

Figure 17. This uneven distribution in the rock record also supports the suggestion that 

they are not diagenetic products since these processes would affect all of the steranes 

similarly. It is more likely that a specific organism assimilated conventional sterols and 

subsequently altered them to yield compounds that then degraded to 21-norsteranes. 
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Figure 17. Crossplot of C27 steranes/ C29 steranes vs. 21-norcholestane/ 21-norstigmastane showing a 
positive correlation. The linear relationship has R2 = 0.78. 
 

21-Norsteranes lack the methyl group that is attached to C20 in a conventional steroid. 

These may be derived from 21-norsterols or a sterol with a functionalized C21 that is 

easily removed through oxidation. It is not known, if they even exist, how 21-norsterols 

are synthesized. It may be through a simple excision of C21 or it may be through the 

common conversion of cholesterol to a hormone with a C21-pregnane skeleton 

hydroxylated at C20 followed by transmethylation reactions by S-adenosylmethionine to 

build up the rest of the side chain (Goad, 1981). 

 

Conclusions 

Three isomers of a C19 norsterane have been recognized in SOSB oils and rocks. One 

isomer (C19C) is potentially useful as an indicator of water column stratification for rocks 

and oils of Neoproterozoic to Early Cambrian age. Compound C19B is usually the 

dominant isomer. Analysis of their mass spectra suggests that all are A-norsterane 

isomers. Although the source organism(s), and more importantly the function, of 

compound C19C remain unknown, it is quite useful as an age marker and water column 

stratification indicator. 

 

The origins of the 21-norcholestanes are also enigmatic. However, it appears that the 

molecules in this series are also useful as indicators of water column stratification. For 
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samples of the middle oil window or of relatively higher maturity it may be difficult to 

resolve their diagenetic versus biological sources (Moldowan et al., 1991), however from 

the hydropyrolysis results it is clear that these steranes are formed in early diagenesis. 

This suggests that though there is also a possible contribution due to thermal maturation, 

there is likely a strong biological contribution. In immature to moderately thermally 

mature sediments 21-norsteranes are most abundant in samples from stratified 

depositional environments suggesting a biological source that is hypersaline or redox 

tolerant. The parent compounds may have been sterols functionalized at C21, allowing 

facile oxidation and cleavage in early diagenesis. 
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4. C-Isotopic Studies of Hydrocarbons in Neoproterozoic to Cambrian Samples 

 

Abstract 

The Neoproterozoic Era marks the first appearance of animals in the fossil record. Much 

research has been focused on the ventilation of the global ocean in the Neoproterozoic as 

it is considered a primary factor in the diversification of life at this time. One of the most 

interesting features of the Neoproterozoic record is the presence of large excursions in the 

δ13C of carbonates, with little to no corresponding change in the δ13C of the coeval 

organic carbon. To delve into what was happening in the organic carbon cycle, we chose 

to study two series of organic compounds using compound-specific carbon isotope 

analysis of samples from Oman, Eastern Siberia and Australia. This chapter describes a 

widespread reversal in isotopic patterns in the Ediacaran and the implications of this 

change. In rocks and oils older than ~550 Ma, n-alkanes are enriched in 13C relative to the 

acyclic isoprenoids pristane and phytane. In younger sediments, the n-alkanes are 

depleted compared to these isoprenoids, with the possible exception of those deposited 

during Phanerozoic oceanic anoxic events. In Oman, this transition coincides with the 

termination of the Shuram Excursion, an interval when marine carbonates show very 

negative δ13C values with no corresponding shift in the isotopic composition of co-

occurring organic carbon. Several hypotheses for the cause(s) of this isotopic switch will 

be examined and the possible relationship to the radiation of metazoans will be 

addressed. The most likely cause is the availability of oxygen. This work uses an 

independent means to examine the ocean redox changes of the Neoproterozoic, 

corroborating previous data showing ventilation of at least shallow marine regions by 

~550 Ma. The data also show that though the bulk δ13C of organics during this time 

period does not change markedly, a large community reorganization may have occurred. 

 

Introduction 

Much of recent Neoproterozoic research has been focused on understanding the timing 

and extent of the ventilation of the global ocean. Recently, carbon and sulfur isotopes 

have been used to suggest ventilation of the water column by ~550 Ma (Fike et al., 2006; 

McFadden et al., 2008). Molybdenum concentration data support these results (Scott et 
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al., 2008). The work presented here concerns the timing and global nature of this 

phenomenon using an independent form of measurement, compound specific δ13C 

isotopes of hydrocarbon isoprenoids and n-alkanes. It has been hypothesized that the 

change in isotopic fractionation between these molecules is related to the oxidation state 

of the ocean (Logan et al., 1995). To obtain a more global perspective we studied a range 

of rocks and oils from individual basins in Oman, Eastern Siberia and Australia. We also 

analyzed the relationship of these compound specific isotopes to the bulk isotopic 

changes in Oman, where we have the best lithographic and age constraints. 

 

Recent work has shown that though there are large excursions in the carbonate isotope 

record, the δ13C of the corresponding organics was quite stable in the Ediacaran (Fike et 

al., 2006; McFadden et al., 2008). Since there is little change in the bulk organic signal in 

the Ediacaran, we chose to study the isotopic compositions of specific organic compound 

classes for further information: molecules derived from primary producers, isoprenoids, 

and from primary producers and heterotrophs, n-alkanes. 

 

The main isoprenoids of interest are pristane and phytane, which are primarily derived 

from the phytyl side chain of chlorophyll a (Blumer et al., 1963; Blumer & Snyder 1965; 

Didyk et al., 1978). The ester side chain of chlorophyll a is easily hydrolyzed, producing 

phytol, which, in oxic environments, is subsequently oxidized and decarboxylated to 

yield pristane. In reducing environments, it yields phytane (Didyk et al., 1978). Much less 

specific biomarkers are n-alkanes, which are derived from the lipids of diverse 

autotrophic and heterotrophic organisms, including both protists and bacteria. Thus, to a 

first approximation, pristane and phytane can be considered to represent input from 

primary producers, whereas n-alkanes can be considered to represent the input from both 

primary producers and heterotrophs. 

 

Consider the food chain in Figure 1, where primary producers use inorganic carbon with 

an isotopic composition of δa to biosynthesize isoprenoids with an isotopic composition 

of δ1 and n-alkanes with an isotopic composition of δ2p. These primary producers are then 

consumed by heterotrophs that biosynthesize n-alkanes with an isotopic composition of 
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δ2h. An important value that will be referred to from this point forward is ∆, which is δ2 - 

δ1, where δ1 is the average δ13C of the isoprenoids pristane and phytane in a sample, and 

δ2 is the average δ13C of the n-alkanes n-C17 and n-C18 in a sample that were 

biosynthesized by both the primary producers and heterotrophs. The absolute values of δ1 

and δ2 and their ordering with respect to each other are not the focus. Rather, the 

importance lies in the trend of ∆. In the Neoproterozoic, an unconventional relationship 

exists between isoprenoids and n-alkanes where ∆ is positive, whereas in latest Ediacaran 

and most of Phanerozoic rocks ∆ is negative. A negative ∆ is considered conventional 

because it is consistent with the ordering imposed by the isoprenoidal and acetogenic 

biosynthetic pathways for most marine organisms. 

 

 
Figure 1. Food chain with appropriate δ labels. Dissolved, inorganic carbon is taken up by primary 
producers that use it to biosynthesize isoprenoids with a δ13C of δ1 and n-alkanes with a δ13C of δ2p. The 
heterotrophs then eat the primary producers and, using this biomass, biosynthesize n-alkanes with a δ13C of 
δ2h. This food chain continues ad infinitum to the right as larger and larger heterotrophs eat the smaller ones 
before them, biosynthesizing δ2h’, δ2h’’, δ2h’’’, etc. 
 

Figure 2 represents a compilation of the work of Hoering, Logan, Brocks and others, 

providing average isotopic compositions for n-alkanes and isoprenoids in the Proterozoic 

and Phanerozoic oceans. In line with the established biosynthetic relationships of the 

dominant marine organisms, Phanerozoic sediments contain n-alkanes that are depleted 

in 13C compared to pristane and phytane, a conventional relationship where ∆ is negative, 

with the possible exception of those deposited during Phanerozoic oceanic anoxic events 

(e.g., Grice et al., 2005). In the Proterozoic, however, further reflecting the anomalous 

nature of C-isotopic data from that time, isoprenoids are more depleted in 13C than n-

alkanes; there is an inverted relationship amongst the hydrocarbons where ∆ is positive 

(pr, (n-C17, n-
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(e.g., Logan et al., 1995). Logan et al. (1995) showed that this phenomenon is evident in 

different, co-eval sedimentary basins. They did not, however, look at the change over 

time in individual basins.  

 

 
Figure 2. Isotopic ordering of isoprenoids vs. n-alkanes in Proterozoic and Phanerozoic marine systems 
showing a positive ∆ for Proterozoic sediments and a negative ∆ for Phanerozoic sediments, modified from 
Brocks et al., 2003a.  
 

Experimental 

Sampling.  

Samples from the South Oman Salt Basin were collected and analyzed for biomarker 

parameters conventionally used for oil-source correlation (Grosjean et al., 2009). Eastern 

Siberian samples were selected from an oil collection provided by John Zumberge of 

Geomark Research, Houston, Texas. Samples from Australia were collected from fully 

cored petroleum exploration and stratigraphic wells. The samples from the Wallara-1 

well of the Amadeus Basin were selected at the Northern Territory Geological Survey’s 

core library in Alice Springs. These core samples were sectioned at the core facility, 

wrapped in aluminium foil pre-heated to 550°C and then placed into twist bags for 

transport to MIT and storage prior to analysis. 

 

General Procedure.  

Organic free solvents from OmniSolv were used. Prior to use, all glassware and 

aluminum foil were fired at 550°C for 8h and glass wool; pipettes and silica gel were 

fired at 450°C for 8h. 
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Sediment samples were cleaned with deionised water, rinsed with methanol and 

dichloromethane and crushed manually with the sample wrapped in fired aluminum foil. 

They were then ground to a fine powder in a SPEX 8510 Shatterbox fitted with an 8505 

alumina ceramic puck mill that was carefully cleaned between samples with aqueous 

detergent, fired sand and finally rinsed with distilled water, methanol, dichloromethane 

and hexane. Rock powders were extracted using an accelerated solvent extractor (Dionex 

ASE) using a 9:1 mixture of dichloromethane and methanol. The resultant extracts were 

carefully evaporated under nitrogen to a volume of approximately 2 mL whereupon 

activated Cu was added to remove elemental sulfur. The sample was then separated by 

liquid chromatography on a silica gel 60 (Merck, 230-400 mesh) column using hexane to 

elute the saturate fraction, 4:1 hexane/dichloromethane to elute the aromatic fraction, and 

7:3 dichloromethane/methanol to elute the polar fraction. The saturate fraction was 

further separated using 5 Ǻ molecular sieves to trap the n-alkanes. The sieves were first 

combusted at 350°C for 16 hrs and stored in airtight jar at 120°C. The saturated fraction 

was dissolved in cyclohexane and transferred into a 3 mL reactivial. For every 10-20 mg 

of saturates 0.5 g of sieves were added to the reactivial, which was filled with 

cyclohexane up to ~2 mL. The vial was heated at 80°C over night after which it was 

cooled and filtered. The sieves were washed with several small portions of cyclohexane 

and air dried. The n-alkanes were then recovered from the sieves using HF and extracting 

the solution four times with 1 mL pentane. Where there was enough sample, the 

isoprenoids were further isolated from the branched/ cyclic fraction using a thiourea 

adduction performed according to the methods of Rubinstein & Strausz (1979). 

 

Compound-specific isotope results for lipids were obtained with a ThermoFinnigan 

TraceGC equipped with a J&W DB-1MS column (60 m x 32 mm, 0.25 mm film). 

Chromatographic conditions were initially 60ºC for 3 minutes, ramped from 60 - 180ºC 

at 10ºC/min, then 180 - 320ºC at 4ºC/min, and finally held at 320ºC for 40 min. The GC 

was coupled to a combustion furnace interfaced to a Finnigan MAT DeltaPlus XP isotope 

ratio monitoring mass spectrometer operated with Isodat 2.0. Precision of isotope results 

were measured with standards and found to be better than 0.3‰ vs. VPDB, and sample 

replicates produced average errors of ~ 0.7‰ vs. VPDB. 
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Results and Discussion 

The South Oman Salt Basin (SOSB) comprises a carbonate platform and a deeper Athel 

Sub-basin (Figure 3). Figure 4 shows the compound specific isotope data for the SOSB 

carbonate platform region. The y axis is stratigraphic height, also showing radiometric 

age constraints from U-Pb analysis of zircons (Bowring et al., 2007); the x-axis is the ∆ 

value. Below the red dotted line is the inverted relationship between the hydrocarbons, 

while above it is the conventional relationship. The switch occurs somewhere within the 

Buah Formation or A1 units of the Ara Formation, giving an age range of ~550-545 Ma 

for the change (Bowring et al., 2007). The Ara Formation records shallow water 

conditions, which would be fully oxidized rapidly with increasing atmospheric oxygen 

levels, and has, on average, a negative ∆. We also looked at the A4 unit equivalents in the 

deeper Athel Sub-basin (Figure 5). From oldest to youngest these are the U shale, 

Silicilyte and Thuleilat shale units. The A4 unit of the Ara Formation and the U 

Formation are considered to be coeval due to stratigraphic position and the presence of 

uranium enrichment in both (Schröder & Grotzinger, 2007). The U and Thuleilat shale 

units are from deep marine settings, while the Silicilyte unit is more restricted (Schröder 

& Grotzinger, 2007). As seen in Figure 5, on average, the U shale unit shows a positive 

value for ∆ while the two younger units give the same relationship as the A4 unit, a 

negative value of ∆. The switch occurred later, in the Athel Sub-basin, which is more 

easily seen in Figure 6. If correlations are correct, this would date the switch in the Athel 

Sub-basin to ~542 Ma (Bowring et al., 2007). This pattern may follow oxygen 

availability. It may have taken an extra ~8 Ma for the deeper Athel Sub-basin to be fully 

oxidized. The data for both sub-basins are given in Table 1. 
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Figure 3. On the left is the South Oman Salt Basin (SOSB), modified from Grosjean et al., 2009. On the 
right is detail of the region, showing that it is comprised of carbonate platforms to the north and south of 
the deeper Athel Sub-basin, modified from Bowring et al., 2007. 
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Figure 4. Compound specific isotopic data from the carbonate platform of the SOSB showing a significant 
change in ∆ in the Buah Formation. The teal circles are rock data and the yellow triangles are from oils. 
The oil data are from a proprietary report to the Petroleum Development of Oman. As the origin of the Q 
oil is yet unknown, it is grouped with the Ara Formation in this figure. 
 

 
Figure 5. Compound specific isotopic data from the Athel Sub-basin of the SOSB showing a small but 
significant change in ∆ in the U shale or Silicilyte units. The blue circles are rock data and the orange 
triangles are from oils. The open symbols represent the averages for each unit. 
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Figure 6. Compound specific isotope data for the entire SOSB, showing that the shift occurs later in the 
deeper Athel Sub-basin. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4 -2 0 2 Athel 

U shale 

Silicilyte 

Thuleilat 
-4 -2 0 2

rocks
ave rocks
oils
ave oils

∆-4 -2 0 2

rocks
oils

SOSB carbonate 

Khufai 

Buah 

Ara 

Nafun 

Ed
ia

ca
ra

n 

Masirah 
Bay 

Shuram 

Є
  

635 

550 

547 

∆



South Oman Salt Basin   
Carbonate Platform     
Sample ID Formation Age ∆ 
OMO 012 Q 537 -1.15 
OMO 018 Q 537 -0.86 
OMO 019 Q 537 -0.88 
OMO 020 Q 537 -0.49 
OMO 035 A6C 539 -0.80 
OMO 054 A5C 540 -0.90 
OMO 043 A5C 540 -1.13 
OMO 037 A5C 540 -1.42 
OMO 036 A4C 542 -0.98 
OMO 038 A4C 542 -1.76 
OMO 039 A3C 543 -1.62 
OMO 041 A3C 543 -1.55 
OMO 051 A3C 543 -1.35 
OMO 052 A3C 543 -0.86 
OMO 053 A2C 545 -0.79 
OMO 049 A2C 545 -0.73 
OMO 055 A2C 545 -0.23 
OMO 056 A2C 545 -0.59 
OMO 057 A2C 545 -1.60 
OMO 040 A1C 547 -1.64 
OMR 272 A6S 539 -3.73 
OMR 040 A5C 540 -0.05 
OMR 041 A5C 540 -0.56 
OMR 219 A5C 540 -2.07 
OMR 030 A4C 542 -0.68 
OMR 031 A4C 542 -2.17 
OMR 029 A4C 542 0.33 
OMR 032 A4C 542 -0.42 
OMR 033 A4C 542 -1.46 
OMR 036 A3C 543 -0.61 
OMR 038 A3C 543 -1.29 
OMR 028 A3C 543 -0.82 
OMR 035 A3C 543 -0.40 
OMR 037 A3C 543 -0.27 
OMR 220 A3C 543 -1.31 

OMR 222 A3C 543 -1.14 
OMR 232 A3C 543 -1.15 
OMR 233 A3C 543 -0.73 
OMR 034 A2C 545 -3.04 
OMR 042 A2C 545 -0.12 
OMR 039 A1C 547 -0.67 
OMR 229 A1C 547 -0.69 
OMR 231 A1C 547 -0.36 
OMR 017 Buah 550 0.98 
OMR 020 Buah 550 -0.10 
OMR 010 Shuram 590 1.20 
OMR 026 Shuram 590 0.20 
MQ1 4000 Khufai 610 0.13 
MQ1 4200 Masirah Bay 625 1.28 
MQ1 4244 Masirah Bay 630 0.60 
Athel Sub-basin     
Sample ID Formation Age ∆ 
OMO 025 Silicylite 542 -1.63 
OMO 029 Silicylite 542 -1.17 
OMO 030 Silicylite 542 -2.42 
OMO 044 Silicylite 542 -0.90 
OMO 048 Silicylite 542 -2.62 
OMO 050 Silicylite 542 -3.59 
OMR 011 Thuleilat 541.5 -2.05 
OMR 021 Thuleilat 541.5 -1.92 
OMR 022 Thuleilat 541.5 1.10 
OMR 003 Thuleilat 541.5 -0.90 
OMR 012 Silicylite 542 1.50 
OMR 013 Silicylite 542 -1.30 
OMR 004 Silicylite 542 -1.23 
OMR 023 Silicylite 542 -1.27 
OMR 024 Silicylite 542 -0.97 
OMR 006 U shale 542.5 -0.55 
OMR 014 U shale 542.5 0.57 
OMR 025 U shale 542.5 0.45 
OMR 005 U shale 542.5 -0.94 
OMR 007 U shale 542.5 0.63 

Table 1. ∆ data for the SOSB with sample IDs, formations, and approximate ages. 
 

This signal is also seen in samples from Eastern Siberian basins and the Amadeus Basin 

in Australia. Unfortunately, the age constraints are weak for both of these sections. The 

Eastern Siberian oil data are shown in Figure 7. Unfortunately, there are no 

corresponding well-dated rocks, so the ages are unconstrained except for the approximate 

ages of the reservoir rocks. The change in sign for ∆ occurs very roughly in the 
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Ediacaran. Although the ages here are poorly defined, the high abundance of 24-

isopropylcholestanes in the oils corroborates the suggestion that the switch occurs in the 

Ediacaran in Eastern Siberia (Love et al., 2009; Chapter 2). The data are given in Table 2. 

 

 
Figure 7. Compound specific isotopic data from Eastern Siberia showing a significant change in ∆ within 
the Vanavara Formation. The larger, unfilled squares are the averages for each formation. The Vanavara 
Formation stands for the Vanavara Formation and its equivalents, the Kursov, Nepa and Parshino 
Formations. The Byuk Formation stands for the Byuk Formation and its equivalent, the Katanga Formation. 
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Eastern Siberia     
Sample ID Formation Age ∆ 

ES 083 562 -1.03 
ES 080 

Usol'ye 
562 -1.65 

ES 068 567 -1.25 
ES 064 

Tetere 
567 -1.28 

ES 057 Katanga 585 -1.18 
ES 053 585 0.93 
ES 048 

Byuk 
585 -0.80 

ES 043 Parshino 606 -0.92 
ES 040 606 -0.55 
ES 036 

Nepa 
606 -1.15 

ES 035 Vanavara 606 2.13 
ES 030 Kursov 606 -0.38 
ES 026 606 0.76 
ES 024 606 1.29 
ES 022 

Vanavara 
606 3.65 

ES 020 665 2.21 
ES 018 665 5.33 
ES 015 665 7.23 
ES 010 

Kamov 

665 7.80 
Table 2. ∆ data for Eastern Siberia with sample IDs, formations, and approximate ages. 
 

The Australian rock samples studied are from the Amadeus Basin of the Centralian 

Superbasin. In Figure 8 are the compound specific isotope data for this region. The 

switch here occurs somewhere between 580 and 542 Ma, though the age constraints are 

largely uncertain as there are no zircon dates, but only geological correlations (Walter et 

al., 2000). The data are given in Table 3. 
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Figure 8. Compound specific isotopic data from the Amadeus Basin of the Centralian Superbasin in 
Australia, showing a significant change in ∆ in the upper Pertatataka Formation or lowest Arumbera 
Formation. 
 

Amadeus Basin, Australia   
Sample ID Formation Age ∆ 

W1 544 Arumbera 544 -1.08 
W1 580 Pertatataka 580 1.35 
W1 590 Pertatataka 590 0.40 
W1 600 Pioneer 600 1.08 
W1 695 Areyonga 695 -0.10 
W1 830 Bitter Springs 830 1.85 

Table 3. ∆ data for the Amadeus Basin of the Centralian Superbasin in Australia with sample IDs, 
formations, and approximate ages. 
 

In order to better understand the relationship of these compound specific isotopes to the 

bulk isotopic changes in the Ediacaran, we further analyzed the samples from the 

carbonate platform of the SOSB where we have the best lithographic and age constraints.  

The change from visibly decoupled to coupled δ13C of carbonate and of organics in the 

SOSB, shown in Figure 9 with a grey line, is close in time to the reorganization of 

isotopic values of the organic classes n-alkanes and isoprenoids (Figure 9). This suggests 

that they may have had a common trigger.  
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Figure 9. Compound specific isotopic data from Oman with bulk δa and δo data from Fike et al., 2006, 
showing that where Fike et al. (2006) see a visibly correlated coupling between bulk δa and δo data in the 
Buah Formation (grey line) is roughly the same point in time where we observe a significant change in ∆ 
(red line). Vertical positions of ∆ data for Nafun Group are unknown within each formation with respect to 
the bulk isotope data. 
 

To understand all of these changes, it is necessary to understand the basics of the carbon 

cycle and mass balance. The carbon cycle can give information about the environmental 

conditions of the Neoproterozoic Era. Organic carbon is linked with oxygen via the 

reversible reaction: CO2 + H2O ↔ CH2O + O2, where CH2O is representative of organic 

carbon. Autotrophs drive the reaction to the right while heterotrophs drive the reaction to 

the left. When organic carbon is buried or otherwise escapes this loop, oxygen is 

released. 

 

Isotopic measurements are valuable since they may be preserved well through time 

(Hayes et al., 1987; Knoll et al., 1986). All of the data are based on delta notation. δ13C = 

1000[(R-Rstd)/Rstd] where R is the 13C/12C of a sample and Rstd is the abundance 13C/12C 

ratio for the standard, Pee Dee Belemnite. The δ13C value for crustal carbon is around      

-5‰ (Holser et al., 1988). This is the isotopic composition of carbon entering the global 

system. The carbon exits the system as buried inorganic and organic carbon. The 

δ13Corganic (δo) is equal to the δ13Ccarbonate (δa) minus a fractionation factor, ε. Using 

isotopic mass balance, δin = δout = faδa + foδo, where fa is the fraction of carbon buried as 
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carbonate, fo is the fraction of carbon buried as organic carbon and fa = 1 - fo. This is 

valid if the system is in steady state, but the ocean is not always in steady state. For 

example, δin may not be -5‰ if there is another carbon source like dissolved organic 

carbon or methane that is affecting it. 

 

In the Phanerozoic, where the carbon cycle has generally been in a steady state, dissolved 

inorganic carbon (DIC) is the main carbon pool in the ocean. Marine primary producers 

fix this carbon, producing organic carbon with δ13C values offset from the inorganic 

carbon isotopic composition by a biological fractionation, ε. This yields δ13C isotopic 

signals in the sedimentary record where δa and δo are visibly coupled and therefore co-

evolve in a predictable manner. In the middle to late Neoproterozoic, there is a lack of 

obvious coupling between δa and δo. Rothman et al. (2003) calculated that from ~738 to 

555 Ma, fo is approximately 1 and go through an elegant mathematical explanation of 

why this is a reflection of dynamic change in a non-steady state carbon cycle.  

 

Fike et al. (2006) performed a detailed chemostratigraphic study of sections in Oman 

which is shown in Figure 10. There are three areas of different carbon cycling patterns. In 

the Khufai Formation and older rocks, there is no visible coupling of the carbonate record 

and the paired organic carbon isotopic record, indicating a dynamic carbon cycle. During 

the Shuram excursion, which is circled in red, δa and δo are anti-correlated. Because they 

appear somewhat coupled, this may be explained by an initial quasi-steady state in the 

carbon cycle where fo was constant but ε was changing. Just after the excursion, in the 

blue circle, the δa and δo do visibly couple and correlate, indicating a change to a carbon 

cycle in steady state. 
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Figure 10. Inorganic and organic carbon isotope signatures of the carbonate platform of the SOSB, adapted 
from Fike et al., 2006. In the red circle is the Shuram excursion and the blue circle shows where the organic 
and carbonate signatures visibly correlate. 
 

As can be seen in Figure 10 and especially in McFadden et al. (2008), there is little 

change in the bulk δo signal in the Neoproterozoic, so we chose to study certain organic 

compound classes for further information. Compound-specific isotope data give more 

specific information that may provide insight to the complexity of the food chain and 

thereby give clues about changing trophic structures leading up to the Cambrian 

explosion (Hayes et al., 1987). In this chapter we identified two classes of organic carbon 

to study: molecules derived from primary producers, isoprenoids, and from primary 

producers and heterotrophs, n-alkanes. 

 

The main isoprenoids of interest are pristane and phytane, which are primarily derived 

from the phytyl side chain of chlorophyll a (Blumer et al., 1963; Blumer & Snyder 1965; 

Didyk et al., 1978). Other potential sources of these isoprenoids include zooplankton 

(Blumer et al., 1963), tocopherols (Goosens et al., 1984), methyltrimethyl-

tridecylchromans (Li et al., 1995), and archeal ether lipids (Chappe et al., 1982). There is, 

however, good geochemical evidence that these are minor contributors. Firstly, pristane is 

likely present in zooplankton because of the chlorophyll in the phytoplankton they eat, so 

it is still a primary isotopic signal. Also, not only is tocopherol of minor abundance with 
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respect to chlorophyll (Bucke et al., 1966), it is formed by the same biosynthetic pathway 

as chlorophyll and would have the same isotopic composition (Li et al., 1995). 

Methyltrimethyltridecylchromans are likely formed by a reaction of phytol with phenols, 

and again likely retain the primary isotopic signature (Li et al., 1995; Koopmans et al., 

1999). Possible archaeal inputs will be discussed below, however archaeal lipids 

predominantly degrade to phytane, not pristane (e.g., Brassell et al., 1981; Chappe et al., 

1982) and in an analysis of 300 crude oils, which range in age from the Devonian to the 

Tertiary, Li et al. (1995) found that only two samples did not contain δ13C isotopically 

equivalent pristane and phytane. This suggests that in the vast majority of samples, 

pristane and phytane have the same source, limiting the possibility of significant archaeal 

input to phytane. 

 

Isoprenoids in sediments are derived solely from compounds produced by primary 

producers, but the n-alkanes come from compounds produced by both primary producers 

and heterotrophs. Heterotrophs, however, produce n-alkanes that are relatively enriched 

in 13C because the carbon retained by organisms is more enriched than the carbon 

respired by around 1‰ (DeNiro & Epstein, 1978; McConnaughey & McRoy, 1979). This 

1‰ compounds as the food chain lengthens. 

 

Throughout most of the Phanerozoic Eon, n-alkanes are isotopically depleted in 13C 

relative to isoprenoids, which leads to a negative ∆ (Hayes, 2001). In the Proterozoic 

isoprenoids are more depleted in 13C than n-alkanes; there is an inverted relationship 

amongst the hydrocarbons where ∆ is positive (e.g., Logan et al., 1995). Three main 

hypotheses have been put forward to explain the anomalous ∆ signals in the late 

Neoproterozoic and the change to Phanerozoic-like ∆ values in the late Ediacaran. These 

are: there was an added source of light carbon to the ocean which was DOM or methane, 

or we are simply seeing a shift from a prokaryotic dominated ocean to a eukaryotic 

dominated ocean. It will not be possible to fully evaluate these hypotheses until we 

analyze the compound specific isotopic signals in the early Neoproterozoic and older 

rocks. 
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Rothman et al. (2003) proposed that in the Neoproterozoic the balance of carbon pools in 

the ocean must have been different. Since δa varied substantially while δo varied very 

slowly, they suggest that the organic carbon reservoir was somehow buffered. They 

hypothesize that the dissolved organic carbon (DOC) was two to three orders of 

magnitude larger in size than in the Phanerozoic and thus a much larger contributor to the 

oceanic carbon pool (note: use of the term DOC is not meant to distinguish between 

dissolved and suspended colloidal or fine particulate organic carbon). In this model, the 

DOC pool would have allowed for intense heterotrophy. Heterotrophs use DOC, not DIC, 

as their carbon and energy source so the isotopic signal of the heterotrophic biomass may 

have masked the coupled signal of primary producers to produce sedimentary δa and δo 

that are not visibly coupled. In this case, a large change in the carbonate signature would 

not necessarily lead to a corresponding effect in the organic signature.  

 

Therefore the change in sign of capital delta may have occurred because of the varying 

inputs from primary producers versus heterotrophs. In the middle to late Neoproterozoic, 

the proposed large amount of DOC in the ocean would have allowed intense 

heterotrophy, driving up the isotopic composition of n-alkanes, resulting in a positive ∆ 

(Logan et al., 1995). When this organic matter was buried, heterotrophy declined and 

DIC became the major carbon pool. The signal of light n-alkanes from carbon fixation by 

primary producers with a negative ∆ would then become dominant. Looking back at the 

Fike et al. (2006) data in Figure 10, during the Shuram excursion heterotrophs would be 

using DOC, swamping the primary producer signal. Around 548 Ma, when the Shuram 

excursion ends, the δa and δo do visibly couple, indicating a change to a carbon cycle in 

steady state where DIC was the main carbon source. In the compound specific data at this 

time we see the light n-alkane signal from primary producers (which yields a negative ∆), 

suggesting their ecological dominance at that time. The large DOC pool would have been 

depleted, allowing for a significant rise in atmospheric oxygen, which would have likely 

aided the radiation of metazoans in the late Ediacaran to Early Cambrian. 

 

Figure 11 provides an interpretation of the Rothman hypothesis. The relative sizes of the 

boxes are drawn to scale. Today, the DIC in the ocean is ~2000 µmol/ kg, and the DOC is 
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~100 µmol/ kg. According to Rothman et al. (2003) this means that the DOC 

concentration of the Neoproterozoic was around 10,000 µmol/ kg. Hotinski et al. (2004) 

utilize a model, developed by Broecker & Peng (1982), in which the DIC concentration 

increases as the square root of the atmospheric levels of CO2 increase. This puts the 

Ediacaran DIC values in the range of 1-7 times that of today, around 8000 µmol/ kg. This 

calculation assumes that the concentration of calcium was the same in the Neoproterozoic 

as it is today, but this is reasonable. 

 

 
Figure 11. Depiction of the Phanerozoic ocean vs. the hypothesized Neoproterozoic ocean, involving the 
changes in the size of marine carbon pools and the effect of this on the ocean communities and the δa and δo 
signatures. 
 

If the DOM hypothesis is correct, the abnormal ∆ signature would only appear once the 

DOM built up enough and it would end as the DOC pool was removed by respiration or 

burial. A burial of DOM may lead to the increase of oxygen and thus of metazoan 

diversity. Although this theory fits the data, a mechanism for the formation and 

sustainability of such a staggeringly large pool of DOC for tens if not hundreds of 

millions of years has not been established. However, if the oceans at this time were 

ferruginous (Canfield et al., 2008), there would be little to no oxygen or sulfate available 

for the remineralization of organic carbon. So, perhaps remineralization was suppressed 

compared to the modern ocean and DOC had a longer residence time, potentially leading 

to a high DOC ocean. 
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A number of biological/ ecological explanations for the change in the sign of ∆ have been 

proposed with the general idea that DOM must be removed from the system via burial. 

For example, the evolution of algae with recalcitrant biopolymers would have kept some 

of the organic carbon from being quickly recycled and made it easier to bury. Also, the 

proliferation of Ediacara and sponge fauna present at this time in the ocean likely filtered 

and trapped dissolved and particulate organic matter. Ediacara likely only consumed 

particulate and/ or dissolved organic matter due to their small size and likely benthic 

habit (Sperling et al., 2007). Though significantly later than the first appearance of 

sponges (Love et al., 2009), the timing of the Shuram excursion correlates well with the 

hypothesized ecological dominance of sponges (Sperling et al., 2007). This theory may 

also suggest that we would see increased TOC in the sediments around this time, which is 

true for the SOSB and Eastern Siberia, but not for Australia. However, the Australian 

rocks may have been high in TOC, but they are simply too mature now to be able to tell. 

Assuming DOM was being depleted in the Ediacaran, the shortening of food chains is 

also a plausible explanation for the change in ∆. As food chains shorten, the ‘plus one per 

mil’ effect diminishes. This would happen if the start of the food chain was a large 

phytoplankton, as opposed to the smallest phytoplankton that can successfully utilize 

DOM. 

 

This change could have also occurred through the advent of animals with guts which 

could then create fecal pellets and enhance the export of DOM from the water column, 

however macrozooplankton with fecal pellets big enough to sink likely evolved around 

520 Ma (Chen & Zhou, 1997; Vannier & Chen, 2000; Peterson et al., 2005). 

Biomineralization may have also provided ballast for organic matter. Cloudina first 

appeared around 549 Ma, but they were most likely benthic, allowing for little ballasting 

(Grotzinger et al., 1995).  

 

There are theories founded on geologic processes as well. The earth was tectonically 

active during this time period, which may have created large depocenters, enhancing the 

burial of organic carbon and other reductants. Similarly, clays have been proposed to 

absorb organic carbon, and an increased flux of clays at this time could have helped bury 
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organic carbon (Kennedy et al., 2006). This clay factory hypothesis is less substantiated 

as Ediacaran shales are not especially organic rich, which would be expected if clays 

adsorbed the organic carbon in the water column and buried them. Additionally, recent 

work has found that ‘the deposition of pedogenic clays has remained broadly constant 

over Proterozoic time and into the Early Cambrian,’ which is incompatible with the clay 

factory hypothesis (Tosca et al., 2008). 

 
Alternatively, the extra source of light carbon buffering the system may have been 

methane. By around 800 Ma the oceans may have returned to a ferruginous state 

(Canfield et al., 2008), so the sulfur cycle was not likely very active. With low oxygen 

concentrations and sulfide being stripped out of the water column by Fe2+, sulfate may 

have been depleted before all of the organic carbon was remineralized. In this 

circumstance, methanogenesis would be a thermodynamically favored process, providing 

an additional source of light carbon. If this theory is correct, one should see the inception 

of anomalous ∆ values as oceans become ferruginous and the signal should end as the 

concentration of any oxidants with higher metabolic energy yields rise, either in the 

ocean as a whole in the Ediacaran to Cambrian, or in individual basins throughout the 

Proterozoic where the local environment has been characterized as euxinic or oxic. One 

must be careful in these interpretations, however, as a basin designated as being euxinic 

may merely have a euxinic lens above a ferruginous water column. If methanogenic 

archaea were active, the phytane δ13C values would likely be depleted relative to the δ13C 

pristane values, for which we see no evidence. Methanogenic lipids predominantly 

degrade to phytane (e.g., Brassell et al., 1981; Chappe et al., 1982), so an input from 

methanogens would lead to phytane δ13C values that are depleted with repect to the 

pristane values (Murray et al., 1998). However, the values in our data and the Archean 

data of Brocks et al. (2003a, 2003b) show no statistical difference between δ13C values of 

pristane and phytane. Additionally, with the presence of methanogenesis, there would 

likely be methanotrophy, so methanotrophic biomarkers would be expected to be higher 

in strata with abnormal ∆ values. The biomarker 3-methylhopane, likely derived from 

hopanoids of methanotrophic bacteria (Collister et al., 1992; Farrimond et al., 2004), has 

not been found to vary with the ∆ values in the sediments studied. This hypothesis cannot 
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be fully assessed, however until we collect compound specific isotope data on rocks or 

oils older than 550 Ma that have been shown to be euxinic, but even then it may not be 

conclusive. 

  

Recently, another theory has been put forward, suggesting that the compound specific 

isotopic shift is due to a change in the dominant marine communities from a prokaryotic 

dominated ocean to a eukaryotic dominated ocean (Close et al., 2008). This is supported 

by the observation that in the modern Pacific Ocean small (0.2 – 0.5 µm) particulate 

matter, assumed to be from picoplankton, is enriched relative to the larger particulate 

matter, assumed to be eukaryotic. If this theory is correct, this signal should be seen 

throughout the Proterozoic until non-picoplankton eukaryotes clearly become 

ecologically dominant. For the simplified case of a change from a prokaryote dominated 

ocean to a eukaryote dominate ocean, in terms of biomarkers, the abnormal ∆ signal 

should be seen wherever hopane abundances are strongly dominant over sterane 

abundances, which has yet to be indicated. Again, we must be careful with this 

interpretation as not all bacteria biosynthesize hopanoids and most of those found to have 

the ability are aerobic (Rohmer et al., 1984). Another concern is that though eukaryotic 

algae have been shown to produce acetogenic lipids that are depleted in 13C relative to the 

phytol (Schouten et al., 1998), prokaryotes have not universally shown the reverse 

relationship (Hayes, 2001). The relative δ13C of these compounds are determined by the 

metabolism of the organism, not by where they fall on the tree of life. For example, 

Chlorobium limicola, which uses the reverse tricarboxylic acid cycle, biosynthesizes fatty 

acids that are more enriched than its isoprenoids (van der Meer et al., 1998), while 

Synechocystis, which has a C3 metabolism, produces acetogenic lipids that are more 

depleted than phytol (Sakata et al., 1997). Organisms that use the reverse tricarboxylic 

acid cycle are not considered to have ever been dominant in the ocean (Knoll et al., 

2007).  

 

Conclusions 

We have shown a relative change in the carbon isotopic relationship of n-alkanes vs. 

isoprenoids in individual basins in Oman, Eastern Siberia and Australia so this 
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phenomenon appears to be roughly global in the Ediacaran. The change from n-alkanes 

being enriched in 13C relative to isoprenoids to being depleted relative to isoprenoids 

appears to occur in the Ediacaran, the best age constraint being ~ 550 Ma from the 

carbonate platform of the SOSB, coincident with the end of the Shuram Excursion, but it 

is not necessary for the change to be globally synchronous. This point is best seen in 

Oman where we see the change in the deeper Athel Basin occurring ~ 8 Ma after the 

carbonate platform. This corroborates previous studies that show full ventilation of 

shallow, marine regions by 550 Ma. 

 

The change in the sign of ∆ shows a community restructuring as the chemocline moves 

deeper. When it becomes negative in the SOSB, this suggests that the water column in 

this area was ventilated. However, this was a relatively shallow area. Perhaps all of the 

negative isotope excursions in the Cambrian are due to further oxidation events as the 

chemocline is pushed even deeper, and finally settles in the sediment. This gives ample 

time for the turnover of DOC to occur without depleting the available oxidants. If the 

data from Fike et al. (2006) is actually signifying the removal of DOC from just the 

slopes, that is much less than the DOC of the entire ocean and makes the DOC ocean 

more physically feasible. It may take until the late Cambrian for full oxygenation of the 

global deep waters to occur. 

 

The fact that the change from decoupled to coupled δ13C of carbonate and of organics 

and changes in ∆ both occur in the Ediacaran suggests that they may have had the same 

trigger. Both the DOC and methane hypotheses reasonably explain this. The theory that 

we are simply seeing a shift from a prokaryotic dominated ocean to a eukaryotic 

dominated ocean may explain the compound specific changes seen, but the bulk isotopic 

changes cannot be explained by this simple community shift. However, these changes 

could all be effects of the same environmental trigger; the community shift does not 

necessarily have to cause both bulk and compound specific isotopic changes. The three 

hypotheses are all plausible with the current data. 
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5. Neoproterozoic Rocks with Confounding Biomarker Signatures:  
Novel Environmental Signals or Contamination? 

 
Abstract 

In biomarker studies of ancient rocks, one of the prime issues to establish is that the 

compounds under investigation are indigenous and syngenetic. Neoproterozoic to 

Cambrian aged rocks from Ukraine, China, Canada, Russia and Australia were extracted 

and the compositions of these bitumens were evaluated for biomarkers indicative of 

geological age, thermal maturity, and biological sources. Most of the studied samples 

contained low percentages of bitumens (~ 0.01%) and exhibited biomarker signals 

atypical for Neoproterozoic to Cambrian samples. The anomalous features were high  

C28/ (C28 + C29) steranes ratios, high 24-nordiacholestanes ratios, low thermal maturities, 

differences in C28 and C29 ααα 20S/ (S + R) values, odd over even predominance in the 

higher carbon n-alkanes, bimodal n-alkane distributions, and/ or large UCMs. Some of 

these signals may be indicative of novel Neoproterozoic organisms or depositional 

environments, but for many of the samples the likelihood of contamination appears to be 

quite high. 

 

Introduction 

Considerable concern surrounds the integrity of bitumens isolated from ancient rock 

samples (e.g., McKirdy, 1974; Hayes et al., 1983; Hoering & Navale, 1987; Summons & 

Walter, 1990; Brocks et al., 2008; Waldbauer et al., 2009). The problem is particularly 

acute with respect to very old rocks, but applies in one form or another to all analyses of 

ancient rocks. This chapter examines the compositions of bitumens from rock samples 

from multiple locations (Ukraine, China, Canada, Russia and Australia) and identifies 

features that are atypical of Neoproterozoic to Cambrian aged rocks in order to provide 

an assessment of what these anomalies might mean. The end-member hypotheses to 

distinguish are that these are signatures for novel microbial communities and their 

depositional environments or that they are entirely due to contamination. There also 

might be an intermediate situation where the bitumens comprise mixtures of 

hydrocarbons from multiple sources. Contamination may have occurred after sediment 

deposition as younger oils migrated through the rock, or more recently during drilling, 
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sampling, handling, or storage. It is important to address age-sensitive parameters, 

maturity parameters, n-alkane patterns, the type of sample (hand sample vs. core), 

geological considerations, and other considerations in order to fully evaluate the 

significance of these signatures. 

 

Age-sensitive biomarkers and their limitations.  

As an age parameter, the ratio of C28/ (C28 + C29) steranes was originally identified as 

something that varied systematically with the geological age of petroleum source rocks 

(Grantham and Wakefield, 1988). The increase in this ratio through the geological record 

may be associated with the diversification of phytoplankton assemblages through the 

Mesozoic, so a ratio greater than 0.3 for bitumen from a Precambrian rock may be an 

indicator of contaminated samples or an inappropriate age for the host rock (Grantham & 

Wakefield, 1988; Schwark & Empt, 2006). Knoll et al. (2007) attribute the trend to the 

evolution of chlorophyll c algae. In some studies of individual rock samples, as opposed 

to oils, the abundances of C28 steranes were observed to be elevated during the Kacak, 

Upper and Lower Kellwasser extinction events of the Devonian and Carboniferous 

(Schwark & Empt, 2006). An alternative interpretation for high C28/ (C28 + C29) steranes 

ratios in ancient sediments may be an increase in contribution from prasinophytes, which 

appear to be resilient to oxygen depleted environments (Schwark & Empt, 2006), some of 

which are known to biosynthesize C28 sterols (Volkman, 1986; Kodner et al., 2008).  

 

Also of use is the 24-nordiacholestanes ratio (Holba et al., 1998). The ratio of 24-

nordiacholestanes/ (24-nordiacholestanes + 27-nordiacholestanes) roughly follows 

diatom evolution and is therefore expected to be very low, less than 0.25, in the 

Ediacaran and Cambrian (Holba et al., 1998). For each of the nordiacholestanes, the βαS 

and βαR isomers are summed. This hypothesis was updated due to the identification of 

24-norsterols in a diatom and a dinoflagellate by Rampen et al., (2007) who suggest that 

the ratio is affected by the evolution of both diatoms and dinoflagellates. This revised 

hypothesis is supported by other findings of 24-norsterols in dinoflagellates (Goad & 

Withers, 1982; Kokke & Spero, 1987; Thomson et al., 2004). It is essential, however, to 

note that this ratio is based on data solely from oils. All of the oil samples studied met 
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these criteria and are presented in Chapter 2. Oils give average values for a basin. It may 

be the case that the rocks presented in this chapter that did not meet these conditions are 

merely indicating unique conditions that, while not usual for the Neoproterozoic as a 

whole, may truly be the conditions in a local area for a period of time in the 

Neoproterozoic. 

 

Maturity parameters and use.  

As all of the sediments are over half a billion years old, they are expected to be thermally 

mature. The sterane 20S/ (20S + 20R) values were used to assess maturity. Values at or 

near 0.55 indicate oil-mature samples (Seifert & Moldowan, 1986). It is important, 

however, that these values be very similar in each series of steranes. In this study, we 

consider the 20S/ (S + R) ratios for C28 and C29 steranes. If these biomarkers are both 

indigenous to the original rock, the values of these ratios should be very close as they 

would have seen the same thermal history. A large difference in the two ratios suggests 

multiple sources of different maturities, and likely age. If, for example, the C28 steranes 

have a lower ratio, then it is likely that they are younger than the indigenous bitumen and 

that the sample has been compromised. 

 

Another maturity parameter is hopane stereochemistry. The biological form is 17βH, 

21βH, while the geological forms are αβ (hopanes) and βα (moretanes). Hopane is more 

thermodynamically stable than moretane, so high C30 hopane/ moretane ratios are also 

indicative of oil-mature samples (Seifert & Moldowan, 1980). It is not expected that 

Neoproterozoic rocks would still have the biological form in a pristine sample. Due to the 

higher expected maturities, one also does not expect to see high abundances of hopanes 

or steranes. Thus, usually, these signals should not be visible in the full scan of the 

saturate fraction. 

 

Patterns of normal alkanes (n-alkanes). 

The pattern of n-alkanes in an uncontaminated Neoproterozoic sample should be 

consistent with what is known about the prevailing biology. Normal alkanes are derived 

from biomolecules made by algae, bacteria, and land plants. An odd over even preference 



 120

in the intensities of n-alkanes, particularly nC27, nC29 and nC31, suggests the presence of 

land-plant input (Peters et al., 2005). Current fossil and genomic data suggest that land 

plants originated in the mid-Ordovician (Qiu et al., 2006), so this odd over even 

preference in high numbered alkanes may be seen as contamination in Neoproterozoic 

samples. Studies of the saturate fractions of oils (Grosjean et al., 2009; Chapter 2) mainly 

show a signal that rises quickly in relative intensity and then declines smoothly in 

abundance with carbon number. The n-alkane pattern is most reliable when it is 

unimodal. A bimodal pattern, though not necessarily indicative of contamination, creates 

the possibility that one distribution is of a more recent contribution to the bitumen. 

Lastly, biodegradation is, along with other factors, indicated by loss of light n-alkanes 

and generation of an unknown complex mixture (UCM) or hump in the spectrum (Peters 

et al., 2005). Biodegradation indicates that organisms later came and consumed some of 

the original organics, leading to signal decay, and may have even contributed some of 

their own to the rock, introducing younger biomarkers. 

 

General issues.  

As a general principal, and provided clean drilling techniques were employed, sediment 

core samples are preferable to outcrop samples. Outcrop samples are exposed to 

weathering which both alters organic material and aids its degradation, lowering the 

concentration of biomarkers (Peters et al., 2005). A useful way to minimize 

contamination from outcrop samples is to saw off the outside sections of a rock. This was 

possible for the Chinese and Canadian samples. Unfortunately, the Ukrainian and 

Russian outcrop samples were all too small for this to be useful.  

 

In either case, however, there are numerous ways for inadvertent contamination to occur 

between collection and analysis. A recent study found contamination of samples could be 

due to storage in plastic bags, presence of sunscreen on hands used to handle samples, 

and use of lubricants (Grosjean & Logan, 2007). These contaminants included fatty acid 

amides, chemical antioxidants, UV absorbers, branched alkanes with quaternary carbon 

atoms, alkyl cycohexanes and alkyl cyclopentanes.  
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Whatever the type of sample, it is preferable to focus on rocks containing in excess of 1% 

TOC. With low TOC samples (< 1%) even low levels of contaminants can overwhelm 

the original biomarker signatures. One important factor for this requirement is low 

thermal maturity. If the rock has been through extensive metamorphism it is unlikely that 

any biomarkers will have survived the associated thermal history. 

 

Unavoidable corruption of sediments can occur during burial when basinal fluids 

containing younger hydrocarbons migrate through porous rock intervals. In this case, 

maturity-sensitive and age-sensitive biomarkers become quite useful. Another possible 

way to distinguish this is to look at the 20S/ (S + R) ratios for C28 and C29 steranes, as 

described above. 

 

Experimental 

Sampling. 

Samples from Ukraine, which were provided by Dr. Dima Grazhdankin, were collected 

from tributaries of the Dnester River and stored in cloth sample bags until analysis. 

Samples from China, which were provided by Dr. Shuhai Xiao, had been stored in 

polypropylene sample bags. Sediment core samples from the Coppercap Formation in 

Canada were provided by Dr. Rigel Lustwerk and had been stored in cloth sample bags. 

Outcrop and core samples from Russia were provided by Dr. Mikhail Fedonkin in 

Moscow and had been stored in cardboard boxes. Samples from Australia were collected 

from fully cored petroleum exploration and stratigraphic wells. Samples from the Lake 

Maurice West-1 (LMW1) and Karlaya-1 (K1) wells of the Officer Basin and Mount 

James-1 (MJ1) of the Stuart Shelf were selected at the Glenside Drill Core Storage 

Facility which is managed and run by the Primary Industries and Resources South 

Australia. The samples from the Wallara-1 (W1) well of the Amadeus Basin were 

selected at the Northern Territory Geological Survey’s core library in Alice Springs. 

These core samples were sectioned at the core facility, wrapped in aluminium foil pre-

heated to 550°C and then placed into twist bags for transport to MIT and storage prior to 

analysis. Further details of the sampled strata are given in Table 1.  
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Area and 
Strata Type Age Lithology Depositional 

setting TOC Fossils Key 
References 

Ukraine: Podolia region of the East European Platform 

Rovno Horizon 

Khmelnitsky 
Fm. outcrop Cambrian argillite and 

siltstone       Iosifidi et al., 
2005 

Okunets Fm. outcrop Cambrian argillite and 
siltstone       Iosifidi et al., 

2005 

Kotlin Horizon 

Studenitsa 
Fm. outcrop Ediacaran 

sandstone, 
siltstone and 

argillite 
      Iosifidi et al., 

2005 

Krushanovka 
Fm. outcrop Ediacaran 

sandstone, 
siltstone and 

argillite 
      Iosifidi et al., 

2005 

Zhamovka 
Fm. outcrop Ediacaran 

sandstone, 
siltstone and 

argillite 
      Iosifidi et al., 

2005 

Danilovka 
Fm. outcrop Ediacaran siltstone and 

argillite       Iosifidi et al., 
2005 

Redkino Horizon 

Nagoryany 
Fm. outcrop Ediacaran 

sandstone, 
siltstone and 

argillite 
      Iosifidi et al., 

2005 

Yaryshev Fm. outcrop Ediacaran 
sandstone, 

siltstone and 
argillite 

      Iosifidi et al., 
2005 

               

China 

Xiuning: 
Hetang Fm. outcrop 530 to 520 

Ma 
black shale/ 
mudstone 

marginal platform 
to deep shelf 

high, 
up to 
24 wt. 

% 

small shelly fossils, 
sponge spicules,  

hexactinellid 
sponges, trilobites, 
small bilaterians 

Yuan et al., 
2002; Steiner et 
al., 2003; Xiao 

et al., 2005a 

Yangtze 
Gorges: 

Dengying 
Fm., 

Shibantan 
Mbr 

outcrop 
551 to 538 

Ma 
(Dengying) 

dolomite subtidal high 

Ediacaran body 
fossils, microbial 

structures, 
Vendotaenia 

antiqua 

Xiao et al., 
2005b 

Weng'an: 
Doushantuo 

Fm. 
outcrop 635-551 Ma 

phosphatic 
shale with 

minor 
carbonate 
and shale 

shallow to open 
marine high 

multicellular algae, 
acritarchs, fossil 
embryos, small 

bilaterians 

Xiao et al., 
1998; Chen et 

al., 2004; 
Condon et al., 

2005 

               

Canada 

Coppercap 
Fm.   Cryogenian carbonate       Kaufman et al., 

1997 
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Russia 
Arkangelsk 

Yorga outcrop Ediacaran 
siltsone, 

sandstone, 
mudstone 

delta plain to 
marine   

dominated by 
Leiosphaeridia Eis., 

abundant fine 
filamentous algae 

Grazhdankin, 
2004; 

Grazhdankin et 
al., 2005 

Zimny Gory core 

Ediacaran, 
555.3 +/- 

0.3 Ma near 
base 

mainly 
mudstone 
and silty 

mudstone-
sandstone 

lower to upper 
shoreface, marine   

filamentous forms 
and thin-walled 

Leiosphaeridia sp., 
abundant 

filamentous algae 
and plant films, 

colonial 
cyanobacteria 

Sokolov & 
Fedonkin, 

1990; Sokolov 
& Iwanowski, 

1990; Martin et 
al., 2000; 

Ragozina et al., 
2003; 

Grazhdankin, 
2004 

Verkhovka outcrop 
Ediacaran, 

base 558 +/- 
1 Ma 

mudstone 
with 

interbeds of 
siltstone 

middle to upper 
shoreface, marine   diverse 

leiosphaerids 

Sokolov & 
Iwanowski, 

1990; 
Grazhdankin, 
2003, 2004; 

Grazhdankin et 
al., 2005 

Arkhangelsk core Ediacaran 

mainly 
mudstone 
and silty 
mudstone 

coastal marine   diverse 
leiosphaerids 

Sokolov & 
Fedonkin, 

1990; Sokolov 
& Iwanowski, 

1990 

Lyamtsa outcrop Ediacaran siltstone-
mudstone 

lower through 
upper shoreface, 

marine 
  

Thick walled 
Leiosphaeridia 

Eisenach 

Sokolov & 
Fedonkin, 

1990; Sokolov 
& Iwanowski, 

1990; 
Grazhdankin, 
2003, 2004 

St. Petersburg 

Kotlin 
Horizon: 

Laminarite 
Fm. 

outcrop Ediacaran clay shale shallow marine high 

dominated by 
Leiosphaeridia 

Eisenach, abundant 
fine filamentous 

algae 

Sokolov & 
Fedonkin, 

1990; Sokolov 
& Iwanowski, 

1990 
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Australia 
Centralian Superbasin 

Officer Basin: 
Tanana Fm. core Ediacaran   shelf to slope low 

Diverse 
acanthomorphic 

acritarchs 

Grey et al., 
2003; McKirdy 

et al., 2006 

Karlaya 
Limestone core Ediacaran micritic 

carbonate shelf low 
Diverse 

acanthomorphic 
acritarchs 

Grey et al., 
2003; McKirdy 

et al., 2006 

Dey Dey 
Mudstone core Ediacaran 

mudstone 
with 

turbidites 

deep water up to 
slope low 

Lower has 
leiospheres, upper 

has diverse 
acanthomorphic 

acritarchs 

Grey et al., 
2003; McKirdy 

et al., 2006 

Amadeus 
Basin: 

Arumbera 
Sandstone 

core Ediacaran to 
Cambrian 

sandstone 
with minor 

siltsone, 
conglomerat
e, shale and 
carbonate 

  low 
Ediacaran fauna 
and diverse trace 

fossils 

Zang & Walter, 
1989; Walter et 

al., 1995 

Pertatataka 
Fm. core Ediacaran 

siltstone and 
shale with 

minor 
turbidite and 

sandstone 

foreland-basin to 
marine outer shelf   stromatolites, 

acritarchs 

Zang & Walter, 
1989; Walter et 

al., 1995; 
Logan et al., 
1997; Grey, 

2005 

Pioneer 
Sandstone 

Fm. 
core 

Cryogenian 
(635-850 

Ma) 
          

Aralka Fm core 
Cryogenian 
(635-850 

Ma) 

siltstones 
and shales       Walter et al., 

1995 

Areyonga Fm. core 
Cryogenian 
(635-850 

Ma) 

tillite and 
phosphatic 
sediments 

      Walter et al., 
1995 

Bitter Springs 
Fm. core 

Tonian 
(850-1000 

Ma) 

carbonate 
and 

evaporite 

shallow marine to 
lacustrine   stromatolites, 

acritarchs 
Walter et al., 

1995 

Stuart Shelf 

Wonoka Fm. core Ediacaran 

limestone, 
calcareous 
mudstone, 
sandstone 

shelf   
stromatolites, 
Ediacara-like 
megafossils 

Haines, 2000; 
Walter et al., 

2000 

Table 1. Information on areas and strata studied including their collection type, age, lithology, depositional 
setting, total organic carbon (TOC), and fossils. 
 

General Procedure.  

Organic free solvents from OmniSolv were used. Prior to use, all glassware and 

aluminum foil were fired at 550°C for 8h and glass wool; pipettes and silica gel were 

fired at 450°C for 8h. 

 

For each of the samples from the Hetang Formation, Doushantuo Formation and 

Shibantan Member of the Dengying Formation of China and Coppercap Formation of 
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Canada, the outer 5 mm were removed with a diamond saw and the inner and outer 

portions of each rock were analyzed separately or set aside, respectively. Sediment 

samples were cleaned with de-ionised water, rinsed with methanol and dichloromethane 

and crushed manually with the sample wrapped in fired aluminum foil. They were then 

ground to a fine powder in a SPEX 8510 Shatterbox fitted with an 8505 alumina ceramic 

puck mill that was carefully cleaned between samples with aqueous detergent, fired sand 

and finally rinsed with distilled water, methanol, dichloromethane and hexane. Rock 

powders were extracted using an accelerated solvent extractor (Dionex ASE) using a 9:1 

mixture of dichloromethane and methanol. The resultant extracts were carefully 

evaporated under nitrogen to a volume of approximately 2 mL whereupon activated Cu 

was added to remove elemental sulfur. The sample was then separated by liquid 

chromatography on a silica gel 60 (Merck, 230-400 mesh) column using hexane to elute 

the saturate fraction, 4:1 hexane/dichloromethane to elute the aromatic fraction, and 7:3 

dichloromethane/methanol to elute the polar fraction. One milligram aliquots of the 

saturate fractions were then reduced to 0.1 mL and added to insert vials with an internal 

standard. The saturate fraction was run on the Autospec with the following standards: 50 

ng D4 (D4-ααα-ethylcholestane, Chiron) or 50 ng D4 (D4-ααα-ethylcholestane, Chiron) 

+ 1µg ai-C22 (3-methylheneicosane, ULTRA Scientific). 

 

Gas Chromatography-Mass Spectrometry (GC-MS) was performed using a Micromass 

Autospec-Ultima instrument equipped with an Agilent 6890N Series gas chromatograph. 

Biomarkers in the saturated hydrocarbon fraction were analyzed by GC-MS with the 

Autospec operated in the metastable reaction monitoring (MRM) mode. A 60 m J&W 

Scientific DB-1 fused silica capillary column (0.25 mm i.d., 0.25µm film thickness) was 

used with helium at constant flow as carrier gas. Samples were injected in splitless mode. 

The oven was programmed 60ºC, held for two minutes, ramped to 150ºC at 10ºC/min, 

then to 315ºC at 3ºC/min where it was held isothermal for 24 min. The source was 

operated in EI-mode at 70 eV ionization energy. Peak identification was based on 

retention time comparisons with the hydrocarbons present in a synthetic standard oil 

(AGSO Standard Oil) and abundances measured by comparing peak areas to the internal 

D4 sterane standard without any adjustment for possible differential responses. Full scan 
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analyses were acquired under the same GC conditions as described above and the scan 

rate was 0.80 s/decade over a mass range of 50 to 600 m/z with a total cycle time of 

1.06s. Data were acquired and processed using MassLynx v4.0 software. 

 

Results and Discussion 

A summary of age-sensitive and maturity-sensitive biomarker parameters for each 

studied sample is given in Table 2.  
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Area Formation Sample % bitumen 
C28/ 

(C28+C29) 
Sts 

24-
Nordiachol. 

ratio 

C30 
Hopane/ 
moretane 

C29 St 
ααα S/ 
(S+R) 

C28 St 
ααα S/ 
(S+R) 

Ukraine 
Khmelnitsky UKR 15 0.00 0.58 ND 11.81 0.46 0.35 

Rovno 
Okunets UKR 13 0.01 0.52 ND 9.35 0.52 0.44 

UKR 12 0.01 0.58 ND 6.54 0.43 0.35 
UKR 19 0.00 0.51 ND 2.45 0.45 0.35 Studenitsa 
UKR 5 0.01 0.57 0.47 11.30 0.46 0.35 
UKR 9 0.00 0.52 ND 2.85 0.44 0.35 

Krushanovka 
UKR 11 0.00 0.58 ND 9.59 0.47 0.34 

Zharnovka UKR 4 0.02 0.58 0.49 8.98 0.39 0.34 
UKR 6 0.01 0.51 0.45 4.35 0.39 0.34 

Kotlin 

Danilovka 
UKR 3 0.12 0.57 0.47 6.35 0.43 0.36 
UKR 16 0.02 0.30 0.35 6.14 0.45 0.40 
UKR 2 ND 0.23 ND ND 0.46 0.50 Nagoryany 
UKR 17 0.05 0.27 0.17 5.49 0.50 0.47 
UKR 7 0.00 0.52 0.31 14.36 0.45 0.41 
UKR 1 ND 0.33 ND ND 0.45 0.47 
UKR 10 0.11 0.28 0.12 6.14 0.58 0.52 
UKR 14 0.00 0.54 0.41 6.67 0.36 0.30 
UKR 8 0.00 0.47 0.28 10.49 0.47 0.36 

Redkino 

Yaryshev 

UKR 18 0.00 0.56 0.40 4.52 0.46 0.42 
                  

 China 
  inside 0.00 0.54 ND 9.29 0.56 0.33 
  

Hetang 
outside 0.00 0.53 ND 13.75 0.50 0.32 

  inside 0.00 0.48 ND 11.52 0.49 0.49 
  

Shibantan 
outside 0.00 0.54 ND 13.48 0.36 0.38 

  inside 0.00 0.47 ND 10.26 0.53 0.43 
  

Doushantuo 
(WB) outside 0.00 0.56 ND 12.51 0.56 0.29 

           

 Canada 
  CCC1 0.00 0.50 0.31 14.01 0.49 0.41 
  CCC2 0.05 0.52 0.35 12.39 0.50 0.42 
  CCC3 0.03 0.50 0.36 13.61 0.44 0.41 
  

Copper cap 

CCC4 0.01 0.51 0.37 14.28 0.48 0.40 
           

Russia 
M8 0.01 0.50 0.29 3.26 0.42 0.45 
M7 0.01 0.18 0.22 2.54 0.25 0.32 
M6 0.01 0.14 0.26 3.74 0.37 0.38 

Zimny Gory 

M5 0.01 0.51 0.24 7.31 0.36 0.46 

lower 
Arkhangelsk 

beds 
M4 0.01 0.42 0.35 2.94 0.44 0.32 

Riphean M3 0.01 0.48 0.24 12.57 0.47 0.36 
Riphean M2 0.00 0.46 0.24 13.90 0.50 0.36 

Arkangelsk 
core 

Riphean M1 0.00 0.46 0.24 13.07 0.49 0.45 
Yorga 65 0.02 0.26 0.32 3.06 0.12 0.12 

62 0.02 0.12 0.21 4.00 0.07 0.09 
63 0.01 0.21 0.41 2.64 0.11 0.10 Verkovka 
64 0.01 0.12 0.26 2.57 0.11 0.20 

Arkangelsk 
outcrop 

Lyamza 61 0.02 0.22 0.20 3.04 0.20 0.28 
66 0.09 0.23 0.21 5.69 0.06 0.07 
67 0.06 0.23 0.16 3.53 0.06 0.06 St. 

Petersburg  Laminarite 
68 0.01 0.25 0.16 6.98 0.09 0.10 

           



 128

Australia 
K1 1737 0.00 0.50 0.42 14.88 0.40 0.45 
K1 1814 0.00 0.51 0.37 7.35 0.42 0.52 
K1 1851 0.00 0.54 0.42 12.36 0.43 0.40 
K1 1947 0.00 0.37 0.54 1.65 0.48 0.41 
K1 1985 0.00 0.35 0.51 2.33 0.57 0.65 

Tanana 

K1 2023 0.00 0.18 0.09 4.25 0.47 0.52 
Karlaya 

Limestone K1 2089 0.00 0.45 0.57 3.68 0.45 0.39 

LMW1 319 0.00 0.05 0.34 ND 0.28 0.24 
LMW1 373 0.00 0.14 0.27 1.98 0.30 0.29 

Officer 
Basin 

Dey Dey 
Mudstone 

LMW1 431 0.00 0.53 0.26 10.47 0.30 0.65 
Arumbera W1 706.0 0.00 0.49 0.26 26.19 0.60 0.66 

W1 852.8 0.00 0.35 0.25 33.09 0.57 0.45 
W1 1045.4 0.00 0.35 0.27 10.82 0.50 0.66 Pertatataka 
W1 1250.8 0.00 0.50 0.31 13.70 0.61 0.51 
W1 1272.3 0.00 0.43 0.25 14.91 0.51 0.50 Pioneer 

Sandstone W1 1279.5 0.00 0.48 0.30 17.60 0.64 0.57 
W1 1286.6 ND ND ND 16.78 ND ND 
W1 1296.5 ND ND ND 21.02 ND ND Aralka 
W1 1306.1 ND 0.44 ND 26.17 0.42 0.59 

W1 1324.3 0.00 0.49 0.31 22.59 0.59 0.48 

W1 1345.8 0.00 0.36 0.15 22.66 0.54 0.48 

W1 1368.1 0.00 0.45 0.30 21.07 0.58 0.46 

W1 1387.4 0.01 0.52 0.33 27.85 0.56 0.46 

Areyonga 

W1 1407.2 0.00 0.44 0.29 21.18 0.60 0.47 

W1 1450.2 0.00 0.37 0.26 30.28 0.54 0.50 
W1 1658.3 0.00 0.46 0.28 26.52 0.53 0.51 
W1 1728.3 0.00 0.49 0.31 23.18 0.50 0.52 
W1 1826.8 0.00 0.45 0.29 28.03 0.49 0.53 
W1 1862.7 0.00 0.48 0.32 35.54 0.49 0.48 
W1 1904.9 0.00 0.47 0.29 27.41 0.48 0.51 
W1 1981.6 0.00 0.40 0.37 29.51 0.46 0.43 

Amadeus 
Basin 

Bitter Springs 

W1 2000.8 0.00 0.44 0.39 31.81 0.46 0.51 
MJ1 32.8 0.00 0.57 0.46 14.45 0.53 0.44 
MJ1 106 0.00 0.45 0.46 13.03 0.42 0.37 
MJ1 216 0.00 0.52 0.51 14.01 0.29 0.46 

Stuart Shelf Wonoka 

MJ1 285 0.00 0.54 0.49 12.60 0.26 0.40 
Table 2. Key age and maturity parameters. St stands for steranes.  The 24-nordiacholestanes ratio is 24-
nordiacholestanes/ (24-nordiacholestanes + 27-nordiacholestanes). K1, LMW1, W1 and MJ1 are 
abbreviations for the well names Karlaya-1, Lake Maurice West-1, Wallara-1 and Mount James-1, 
respectively. Values that raise caution flags are in red, either because the value itself is out of the expected 
range for Neoproterozoic bitumen or, as in the case of the S/ S + R values, because they are markedly 
difference between two homologues. 
 

Age-sensitive biomarkers.  

The samples from the Ukraine, China, Canada, many of the samples from the 

Arkhangelsk region of Russia, and most of the Australian samples have C28/ (C28 + C29) 

steranes ratios and/ or 24-nordiacholestanes ratios that are incongruent with a 

Neoproterozoic age with average values for all of the samples being 0.42 and 0.32, 
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respectively. For the samples from Australia with the most reliable age biomarkers, a 

more complete story is provided in Appendix 1. 

 

Maturity-sensitive parameters. 

In most of the samples from Ukraine, China, Canada and Australia, the maturity 

parameters are consistent with a Neoproterozoic age of the bitumen. However, the C28 

and C29 ααα 20S/ (S + R) values are markedly different to each other (~ 0.1). In the 

standard AGSO oil run, the difference between C28 and C29 ααα 20S/ (S + R) values was 

on average 0.02.  

 

Maturity parameters are surprisingly low for some of the samples from the Arkhangelsk 

and St. Petersburg regions of Russia, with sterane S/ S + R ratios around 0.1. For the St. 

Petersburg samples, in the hopane traces, the ββ or biological form can be clearly 

identified, as is shown in Figure 1. Though such low thermal history is a concern for 

Neoproterozoic rock, evidence of a very low thermal history is corroborated by 

paleontological studies. The rocks from St. Petersburg have very light yellow 

microfossils and rocks of the Ediacaran White Sea outcrops have light orange 

microfossils (Knoll, 2009). A more thorough investigation of the samples from Russia is 

given in Appendix 2. 
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Figure 1. C31 hopane distributions in saturate fractions of samples from St. Petersburg collected by GC-MS 
MRM showing the anomalously immature patterns with ββ isomers present and high 22R/ 22S + 22R 
ratios. 
 

Patterns of n-alkanes. 

The work on the outcrop samples from China demonstrated that these rocks had been 

subject to surficial contamination as all of the biomarkers found were only present in the 

outer layers. The full scan for the upper Doushantuo Formation (WB) inside, outside, 

Hetang (H) inside, outside, and Shibantan (S) inside and outside portion is shown from 

left to right in Figure 2. The only true peak seen in the inside samples is the standard     

ai-C22 peak.  
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Figure 2. GC-MS full scans of the saturate fractions of samples from China showing that the only 
biomarkers are found on the outside of the samples, not the interior sections. The interior sections are 
denoted with an i and the outer sections are denoted with an o. 
 

Total ion current chromatograms from the full scan GC-MS data for the outcrop samples 

from the Arkhangelsk region in Russian are shown in Figure 3 where steranes and 

hopanes are visible in samples 62 - 65, with a clear odd over even predominance in high 

carbon n-alkanes in sample 63, a feature also seen in many of the samples from Ukraine, 

the Amadeus Basin and St. Petersburg (Figure 4). 
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Figure 3. GC-MS full scan data for the saturate fractions of outcrop samples from Arkhangelsk showing an 
anomalously high abundance of steranes and hopanes and an even over odd predominance in the n-alkanes. 
 

65

61 

62 

63 

64
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Figure 4. GC-MS full scan data for the saturate fractions of outcrop samples from St. Petersburg showing 
an odd over even predominance in the n-alkanes and a bimodal signal, suggesting the presence of land 
plants and multiple sources, respectively. 
 

Also evident in the total ion chromatograms for the St. Petersburg samples in Figure 4 are 

bimodal n-alkane signatures that may be evidence for multiple contributions. This feature 

is also seen in the samples from Ukraine, Amadeus Basin and possibly Wonoka 

Formation (Figure 5). 
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Figure 5. GC-MS full scan data for the saturate fractions of samples from the Wonoka Formation showing 
abnormal distributions, possibly indicating the presence of organic matter from multiple sources. The large 
peak that stands out is the standard ai-C22. 
 

For the samples from Coppercap Formation, Canada, the full scans for the saturated 

hydrocarbon fractions shown in Figure 6 show a lack of n-alkanes and a giant UCM in 

samples CCC2 - 4, suggesting that these bitumens have been biodegraded.  
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Figure 6. GC-MS full scan data for the saturate fractions of samples from the Coppercap Formation 
showing prominent UCMs likely indicative of biodegradation. 
 

General issues.  

The geology of the surrounding region must always be considered when analyzing 

samples. The samples from Ukraine are outcrop samples from the Podolia region of the 

East European Platform. Here, the Ediacaran sediments are overlain by Cretaceous 

(Albian-Cenomanian) sediments. Rb-Sr and K-Ar isotopic evidence suggest that there 

was extensive epigenetic alteration of the Redkino, Kotlin, and Rovno horizons in the 

Central East European Platform (Vinogradov et al., 2003), where our samples originate. 

Previous studies have shown that in the Devonian there was a tectonic episode (Leonov, 

1976) that activated groundwater migration. This may have affected the state of the 

biomarkers preserved within these rocks, leading to a contamination of biomarkers or a 

washing of the indigenous biomarkers out of the rock, leading to low percentages of 

bitumens. There is also a possibility that these rocks were then contaminated by 

biomarkers from the much younger overlying rocks. 

 

The high metamorphism in the Adelaide Rift Complex allows for the possibility of loss 

of the primary organic signal in the Wonoka samples of the Stuart Shelf, which is 
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adjacent to the Adelaide Rift Complex. The thermal history of rocks in this area increases 

the chance that any biomarkers present were destroyed. 

 

Conclusions 

The majority of the samples analyzed in this study have hydrocarbon patterns atypical for 

rocks of Neoproterozoic to Cambrian age. This may be due to novel environmental 

signals or contamination. The main confounding factor is that most bitumen found was   

< 0.1% of the total rock, with most samples having 0.00 to 0.01% extractable organic 

contents. This allows even the most minute contaminant to swamp the original biomarker 

signature. However, the evidence for contamination does not exclude the possibility that 

the bitumens comprise mixtures of hydrocarbons generated from rocks of different ages, 

including Neoproterozoic. 

 

The abnormalities found include: a high ratio of C28/ (C28 + C29) steranes (samples from 

Ukraine, China, Canada, Russia, and Australia), high 24-nordiacholestanes ratio (samples 

from Ukraine, China, Canada, Russia, and Australia), very low maturity (mainly samples 

from Russia), a significant difference in C28 vs. C29 ααα 20S/ (S + R) values (samples 

from Ukraine, China, Canada, and Australia), an odd over even predominance in the 

higher carbon n-alkanes (samples from Ukraine, Russian and, Australia), bimodal n-

alkane distributions (samples from Ukraine, Russian, and Australia), and a large UCM 

(samples from Canada).  

 

The level of severity of each of these abnormalities differs. The age parameters are 

primarily derived from ratios of biomarkers found in oil samples. However, in rocks the 

abundance of C28 steranes spikes at some extinction events, possibly due to an enhanced 

contribution from prasinophytes (Schwark & Empt, 2006). Though the 24-

nordiacholestane ratio primarily follows diatom evolution, it may be that a precursor to 

diatoms also synthesized 24-norsteroids, or even that diatoms evolved much earlier than 

for which we currently have evidence. 
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A difference in C28 and C29 ααα 20S/ (S + R) values is not possible for molecules of the 

same age within the same rock. Similarly, it is very unlikely that indigenous molecules in 

a rock could still have the original biological configuration of hopanoids after over half a 

billion years. A high enough concentration of biomarkers such that they are visible in the 

full scan is unlikely for a rock over half a billion years old. 

 

An odd over even predominance in the higher carbon n-alkanes is suggestive of an input 

from land plants which are not likely to have been present in the Neoproterozoic. 

Bimodal distributions of n-alkanes show a contribution from two sources, possibly with 

both at the time of the formation of the rock, possibly with only one indigenous to the 

rock and the other a younger overprint. A large UCM may be indicative of 

biodegradation, which means a loss of part of the original signature and possibly a more 

recent contamination.  
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Appendix 1: Biomarker Trends in Neoproterozoic to Lower Cambrian Rocks 
from the Centralian Superbasin in Australia 

 
Abstract 

Sedimentary bitumens from the Amadeus and Officer Basins of Australia were analyzed 

for their hydrocarbon biomarker contents in order to further our understanding of the 

Neoproterozoic environment and its microbial and metazoan communities.  

 

Introduction 

The Australian rock samples studied have been collected from the Officer and Amadeus 

Basins which, although now are discrete geological provinces, were likely contiguous 

regions of marine sedimentation over much of central and western Australia as the 

Centralian Superbasin during the critical interval (Figure 1) (Logan et al., 1997; Walter et 

al., 1995). Crustal sagging and deposition of marine and fluvial sands ~800 Ma led to the 

formation of this superbasin that was later broken up by tectonic events, 540-600 Ma and 

in the mid Carboniferous, into several basins including the Officer and Amadeus (Walter 

et al., 1995). Stratigraphic columns for these two basins are shown in Figure 2. This 

region is of interest because of the wide range of depositional environments represented 

and the rich faunal and acritarch assemblages observed in these sediments. In the 

Centralian Superbasin, both major Neoproterozoic snowball events are observed and 

detailed carbon, sulfur and strontium data have been collected, allowing us to correlate 

these sections with others worldwide (Walter et al., 1995; Walter et al., 2000). 
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Figure 1. Location of the Centralian Superbasin adapted from Logan et al., 1997.  
 

The Officer Basin sediments sampled include the Dey Dey Mudstone and the Tanana 

formations. Both of these units are Ediacaran in age and part of the Ungoolya Group, 

which is composed of deep water, sandy shales, minor carbonate and some turbidites. 

The palynoflora of the lower Dey Dey Mudstone consists of leiospheres, however in the 

upper Dey Dey Mudstone, acanthomorphic acritarchs quickly diversify (Grey et al., 

2003). Species number increases into the members above including the Tanana 

Formation (Grey et al., 2003). The lower Dey Dey Mudstone is comprised of deep water 

sediments and the upper part is comprised of turbidites from a slope, so it is not 

surprising that the total organic carbon (TOC) for the Dey Dey Mudstone is low 

(McKirdy et al., 2006). The TOC for the Tanana Fm. is also low, though it represents a 

shelf to slope environment (McKirdy et al., 2006). 

 

Amadeus Basin sediments were sampled from the Bitter Springs Formation., through the 

Areyonga Fm., Aralka Fm., Pioneer Sandstone, Pertatataka Fm., and Arumbera 

Sandstone. The Bitter Springs is Tonian (850-1000 Ma) in age and varies widely from 

shallow marine facies to lacustrine facies (Walter et al., 1995). The lithology is carbonate 

and evaporite and it also contains stromatolites and acritarchs (Walter et al., 1995). The 

Areyonga Formation is Cryogenian (635-850 Ma) in age and is composed of tillite and 

phosphatic sediments (Walter et al., 1995). The Aralka Fm. is also Cryogenian and is 
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composed of siltstones and shales (Walter et al., 1995). The Pioneer Sandstone is 

Ediacaran in age and is capped by a dolomite likely to be the Marinoan cap carbonate. 

The Pertatataka Fm. is Ediacaran in age and is a siltstone and shale facies with minor 

turbidite and sandstone (Zhang & Walter, 1989; Walter et al., 1995). It is likely from a 

foreland-basinal to marine outer shelf setting (Logan et al., 1997; Zhang & Walter, 1989). 

The fossils found include stromatolites and acritarchs that have become known as the 

Pertatataka acritarch assemblage (Zhang & Walter, 1989; Walter et al., 1995; Grey, 

2005). The Arumbera is a sandstone unit with minor siltstone, conglomerate, shale and 

carbonate that contains the Neoproterozoic-Cambrian boundary, Ediacaran fauna and 

diverse trace fossils (Walter et al., 1995; Zhang & Walter, 1989). It is also low in TOC. 

 

     
Figure 2. Stratigraphic columns of the eastern Officer Basin and the Amadeus Basin, where BSF stands for 
the Bitter Springs Formation, adapted from Walter et al., 2000. 

 

Experimental 

Sampling.  

Samples from Australia were collected from fully cored petroleum exploration and 

stratigraphic wells. Samples from the Lake Maurice West-1 (LMW1) and Karlaya-1 (K1) 

wells of the Officer Basin were selected at the Glenside Drill Core Storage Facility which 

is managed and run by the Primary Industries and Resources South Australia. The 

samples from the Wallara-1 (W1) well of the Amadeus Basin were selected at the 
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Northern Territory Geological Survey’s core library in Alice Springs. These core samples 

were sectioned at the core facility, wrapped in aluminium foil pre-heated to 550°C and 

then placed into twist bags for transport to MIT and storage prior to analysis.  

 

General Procedure.  

Organic free solvents from OmniSolv were used. Prior to use, all glassware and 

aluminum foil were fired at 550°C for 8h and glass wool; pipettes and silica gel were 

fired at 450°C for 8h. 

 

Sediment samples were cleaned with de-ionised water, rinsed with methanol and 

dichloromethane and crushed manually with the sample wrapped in fired aluminum foil. 

They were then ground to a fine powder in a SPEX 8510 Shatterbox fitted with an 8505 

alumina ceramic puck mill that was carefully cleaned between samples with aqueous 

detergent, fired sand and finally rinsed with distilled water, methanol, dichloromethane 

and hexane. Rock powders were extracted using an accelerated solvent extractor (Dionex 

ASE) using a 9:1 mixture of dichloromethane and methanol. The resultant extracts were 

carefully evaporated under nitrogen to a volume of approximately 2 mL whereupon 

activated Cu was added to remove elemental sulfur. The sample was then separated by 

liquid chromatography on a silica gel 60 (Merck, 230-400 mesh) column using hexane to 

elute the saturate fraction, 4:1 hexane/dichloromethane to elute the aromatic fraction and 

7:3 dichloromethane/methanol to elute the polar fraction. One milligram aliquots of the 

saturate and aromatic fractions were then reduced to 0.1 mL and added to insert vials 

with an internal standard that served as an index of relative retention time and for 

quantification. The saturate fraction was run on the Autospec with the following 

standards: 50 ng D4 (D4-ααα-ethylcholestane, Chiron) or 50 ng D4 (D4-ααα-

ethylcholestane, Chiron) + 1µg aiC22 (3-methylheneicosane, ULTRA Scientific). The 

aromatic fraction was run with 100 ng of D14 standard (d14 p-terphenyl, Cambridge 

Isotope Laboratories). 

 

Gas Chromatography-Mass Spectrometry (GC-MS) was performed using a Micromass 

Autospec-Ultima instrument equipped with an Agilent 6890N Series gas chromatograph. 
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Biomarkers in the saturated hydrocarbon fraction were analyzed by GC-MS with the 

Autospec operated in the metastable reaction monitoring (MRM) mode. A 60 m J&W 

Scientific DB-1 fused silica capillary column (0.25 mm i.d., 0.25µm film thickness) was 

used with helium at constant flow as carrier gas. Samples were injected in splitless mode. 

The oven was programmed 60ºC, held for two minutes, ramped to 150ºC at 10ºC/min, 

then to 315ºC at 3ºC/min where it was held isothermal for 24 min. The source was 

operated in EI-mode at 70 eV ionization energy. Peak identification was based on 

retention time comparisons with the hydrocarbons present in a synthetic standard oil 

(AGSO Standard Oil) and abundances measured by comparing peak areas to the internal 

D4 sterane standard without any adjustment for possible differential responses. Full scan 

analyses were acquired under the same GC conditions as described above and the scan 

rate was 0.80 s/decade over a mass range of 50 to 600 m/z with a total cycle time of 

1.06s. Data were acquired and processed using MassLynx v4.0 software. 

 

Results and Discussion  

General.  

Identity information for the Australian samples is given in Table 1. 

 

 Sample Core Basin Formation 
K1 1947 Karlaya-1 Officer Tanana 
K1 1985 Karlaya-1 Officer Tanana 
K1 2023 Karlaya-1 Officer Tanana 
LMW1 431 Lake Maurice West-1 Officer Dey Dey Mudstone 
LMW1 373 Lake Maurice West-1 Officer Dey Dey Mudstone 
W1 706 Wallara-1 Amadeus Arumbera 
W1 852  Wallara-1 Amadeus Pertatataka 
W1 1045 Wallara-1 Amadeus Pertatataka 
W1 1272 Wallara-1 Amadeus Pioneer 
W1 1286 Wallara-1 Amadeus Aralka 
W1 1296 Wallara-1 Amadeus Aralka 
W1 1306 Wallara-1 Amadeus Aralka 
W1 1345 Wallara-1 Amadeus Areyonga 
W1 1450 Wallara-1 Amadeus Bitter Springs 

Table 1. Australian samples and their identities. 
 

Full scan data are shown in Table 2. The pristane (Pr)/ phytane (Ph) ratio provides 

information on the redox conditions under which sediments were deposited (Powell & 
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McKirdy, 1973; Didyk et al., 1978; ten Haven et al., 1987; Peters et al., 2005). However, 

as with all geochemical proxies, there needs to be caution in using one parameter in 

isolation. Pristane and phytane are both formed during the diagenesis of chlorophyll. 

When oxygen is present, pristane can be formed from phytol through a sequence of 

oxidation and decarboxylation reactions. When the depositional environment is anoxic, 

reductive processes prevail and phytane is formed. This empirical evidence suggests that 

a Pr/ Ph value <0.8 is diagnostic for an anoxic environment as commonly encountered in 

strongly stratified water columns. On the other hand, Pr/Ph >1 suggests more oxic 

environments, while Pr/Ph >3 is generally observed in terrestrial settings where organic 

matter is transported and sedimented in oxygenated water bodies (Peters et al., 2005). 

Further, Pr/Ph ratios that are <1 are most commonly observed in marine carbonates while 

values in the range of 2-4 for are common in deltaic shales. Intermediate values are 

common in clastic marine settings. The phytane/ n-C18 ratio can be used as a maturity 

marker (ten Haven et al., 1987). Values >>1 suggest a sample is immature. The R22 index 

is 2 * n-C22/ (n-C21 + n-C23) and is considered by some to be a salinity marker; a value 

greater than 1.5 is typical for hypersaline environments (ten Haven et al., 1988). OEP is 

the odd over even carbon number preference and is measured by (n-C25 + 6 * n-C27 + n-

C29)/ (4 * n-C26 + 4 * n-C28). Values around 1 suggest that the bitumen is thermally 

mature (Scalan & Smith, 1970). There are two ratios provided below with n-C#/ x-C# and 

one x-C20/ Ph. The x-peaks are mid-chain monomethylalkanes which may suggest the 

presence of cyanobacteria, sponges or colorless sulfide oxidizing bacteria (Shiea et al., 

1990; Thiel et al., 1999; Love et al., 2008). 
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Pr/ 
Ph 

Ph/    
n-C18 

R22 
index OEP 

n-C22/ 
x-C22 

n-C24/ 
x-C24 

x-C20/ 
Ph 

K1 1947   1.46 1.11 25.69 31.87  
K1 1985   1.73 0.91 23.07 12.76  
K1 2023 1.38 0.15 1.05 1.05 20.71 45.17 0.29 
LMW1 373 0.70 0.30 0.98 1.07 30.36 94.11 0.23 
LMW1 431 0.58 0.31 0.91 0.98 20.83 77.11 0.27 
W1 706   0.84 1.53 10.94 22.48  
W1 852 0.84 0.33 1.19 1.06 13.16 16.69 0.37 
W1 1045   1.15 1.03 11.06 30.25  
W1 1272   1.11 1.15 8.24 24.94  
W1 1286            
W1 1296   1.00 1.02 5.23 4.31  
W1 1306   1.39 1.16      
W1 1345 0.87 0.22 0.94 0.88 7.66 6.30 0.54 
W1 1450 1.18 0.54 0.96 1.08 12.82 24.49 0.22 

Table 2. Australian full scan data. 
 

GC-MS (MRM) data are shown below, split into potential hypersalinity indicators (Table 

3), maturity indicators (Table 4), and sponge and other source markers (Table 5). The two 

most used salinity indicators are gammacerane to hopane and the C35 homohopane index, 

measured as C35H (R + S) *100/ C31-C35H (R + S) %, are actually both indicators of 

stratification that can occur due to redox, temperature or salinity stratification (Peters et 

al., 2005). Gammacerane is formed through the degradation of tetrahymanol (ten Haven 

et al., 1989; Harvey & McManus, 1991), which is synthesized by bacterivorous ciliates 

that live in stratified zones of the water column (Harvey & McManus, 1991; Sinninghe 

Damsté et al., 1995). Use of 21-norsteranes and compound C as indicators of water 

column stratification, are discussed in Chapter 3. 

 

The ααα-sterane 20S/ 20S + 20R and αβ-homohopane 22S/ 22S + 22R ratios are 

commonly used to assess thermal maturity. Values at or near 0.55 indicate oil-mature 

samples (Seifert & Moldowan, 1986), as do high C30 hopane/ moretane ratios (Seifert & 

Moldowan, 1980). Though most reliable when compared among samples of similar 

lithology, Ts/ Ts + Tm values are also used to indicate thermal maturity, with higher 

values indicating higher maturities (Seifert & Moldowan, 1978). For post-mature 

samples, Ts/ H can be used as a maturity marker (Volkman et al., 1983). 
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24-Isopropylcholestanes have been proposed as biomarkers for demosponges as 

discussed above. Another possible indicator of demosponges biomass contributions to 

sediments is a high abundance of 27-norcholestanes relative to cholestanes (Kelly et al., 

2007). The ratio of steranes/ hopanes is primarily used as an indicator of input from 

eukaryotes relative to bacteria (Moldowan et al., 1985). The 2-methylhopane index 

(2MeHI) has been proposed as a molecular proxy for cyanobacteria (Summons et al., 

1999) while the 3-methylhopane index (3MeHI) is potentially useful as a proxy for 

methanotrophic proteobacteria (Farrimond et al., 2004; Collister et al., 1992).  

 

Potential Hypersalinity Indicators 

 
HomoH 
Index % 

γ/ 
C30H 

21-norchol/ 
27-norchol 

21-norC28 St/ 
C28 αββR 

21-norC28 St/ 
C28 Sts 

C/ 
A+B C/ A 

K1 1947 2.80 0.08 0.00 0.20 0.03 0.32 3.58 
K1 1985 3.12 0.12   0.19 0.03 0.22 1.66 
K1 2023 1.49 0.06   0.25 0.04 0.06 0.21 
LMW1 431 0.00 0.01   0.29 0.05 0.04 0.18 
LMW1 373 0.16 0.02 0.00 0.16 0.02 0.02 0.10 
W1 706 2.25 0.05   0.29 0.04 0.05 0.40 
W1 852  5.44 0.06 0.75 0.35 0.06 0.05 0.30 
W1 1045 4.17 0.03   0.27 0.04 0.10 0.79 
W1 1272 6.28 0.04 0.71 0.26 0.03 0.06 0.61 
W1 1286 6.25 0.08   0.42 0.06     
W1 1296 5.56 0.05   0.63 0.10     
W1 1306 6.38 0.03 0.23 0.43 0.07 0.07 0.34 
W1 1345 6.41 0.05 0.46 0.46 0.08 0.05 0.28 
W1 1450 6.72 0.06 0.55 0.34 0.07 0.03 0.16 

Table 3. Salinity indicators from GC-MS MRM analyses of Australian samples. H denotes hopane, γ 
gammacerane, and St for sterane. 
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Maturity 

 
Ts/ 

(Ts+Tm) 
C31 H 22S/ 

S+R 
C29 ααα St S/ 

(S+R) C30 H/ M Ts/ H 
K1 1947 0.20 0.58 0.34 1.92 0.33 
K1 1985 0.18 0.59 0.38 2.07 0.27 
K1 2023 0.11 0.61 0.43 5.15 0.03 

LMW1 431 0.56 0.59 0.42 10.74 0.63 
LMW1 373 0.03 0.58 0.25 2.16 0.04 

W1 706 0.74 0.63 0.52 19.33 1.36 
W1 852 0.61 0.62 0.53 25.50 1.17 

W1 1045 0.62 0.58 0.40 14.07 0.49 
W1 1272 0.65 0.59 0.52 16.98 0.84 
W1 1286 0.66 0.58 0.56 31.25 0.66 
W1 1296 0.63 0.60 0.54 17.09 0.80 
W1 1306 0.65 0.57 0.48 19.36 0.83 
W1 1345 0.67 0.57 0.53 23.39 0.91 
W1 1450 0.58 0.58 0.49 23.75 0.85 

Table 4. Maturity indicators from GC-MS MRM analyses of Australian samples. H denotes hopane, M 
moretane and St for sterane. 
 

  Sponges Other Source Markers 

  
27-norSt/   

Σ C27-C29 St 
27-norSts/ 

C27 Sts 
i-C30/ 
n-C30 

i-C30αααR/ 
n-C30αααR 

Sts/ 
Hs 

2αMe
HI% 

3βMe
HI% 

C27 Sts/ 
C29 Sts 

K1 1947 0.01 0.03 0.47   0.09 5.25 1.94 0.91 
K1 1985 0.00 0.00 0.39 0.56 0.07 3.58 2.78 0.60 
K1 2023 0.00 0.00 1.16 1.21 0.05 1.08 1.04 0.33 
LMW1 431 0.00 0.00 0.17   0.22 6.92 1.24 1.59 
LMW1 373 0.00 0.00 1.54 1.31 0.04 0.48 1.87 0.38 
W1 706 0.00 0.00 0.68 0.28 0.44 16.94 2.22 2.13 
W1 852  0.00 0.00 0.74 0.35 0.68 11.68 1.81 1.37 
W1 1045 0.00 0.00 0.16 0.05 0.37 8.84 2.08 1.13 
W1 1272 0.00 0.00 0.40 0.20 0.63 13.75 2.62 1.98 
W1 1286 0.00 0.00 0.00 0.00 0.35 14.60 2.78 1.46 
W1 1296 0.00 0.00 0.00 0.00 0.29 13.55 1.50 1.25 
W1 1306 0.01 0.02 0.00 0.00 0.30 14.40 2.38 1.20 
W1 1345 0.01 0.02 0.03 0.13 0.44 13.20 2.26 1.01 
W1 1450 0.02 0.04 0.36 0.48 0.56 11.74 2.50 1.30 

Table 5. Sponge and other source markers from GC-MS MRM analyses of Australian samples. H denotes 
hopane and St for sterane. 
 

Interpretations for Australian samples.  

Low homohopane indices and gammacerane to hopane ratios suggest that the 

depositional environment was not an evaporitic basin. This interpretation is supported by 

the lithology. All of the samples studied were thermally mature, with the samples from 

the Amadeus Basin being more mature than those of the Officer basin. As expected, the 
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demosponge markers 24-isopropylcholestanes are not abundant in the Amadeus Basin 

where sediments are either too old to find sponge markers or are from deep waters, which 

were not oxygenated enough to support sponge life in the Neoproterozoic (McCaffrey et 

al., 1994; Love et al., 2009). Two samples from the Officer basin do clearly show the 

presence of demosponges. Neither of the samples have an appreciable amount of 27-

norcholestane, though that may be due to preferential loss of light compounds due to over 

evaporation. The Amadeus Basin samples have a much higher steranes to hopanes ratio, 

suggestive of a higher eukaryotic over bacterial input (Brocks et al., 1999). The 2-

methylhopane index suggests the presence of cyanobacteria in all samples, but with a 

higher prevalence in the Amadeus Basin. The 3-methylhopane index suggests a low 

abundance of methanotrophic bacteria. 

 

Conclusions 

From this new biomarker data we have a better understanding of the environment during 

the Neoproterozoic in Australia. Demosponge markers are found in substantial 

abundance in the Officer basin. The Amadeus Basin samples have higher eukaryotic to 

bacterial input than the Officer Basin. 
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Appendix 2: Biomarker Trends in Ediacaran Rocks from the White Sea 
Region of Russia 

 
Three outcrop samples from St. Petersburg were studied. Sponge biomarkers are not 

apparent in any of the samples and all of these samples contain 2,3,6-methylaryl 

isoprenoids. It cannot be specified whether these aryl isoprenoids are derived from 

isorenieratane or chlorobactane, but in either case it suggests the presence of green sulfur 

bacteria (Chlorobiacea) and thus a euxinic photic zone. These samples also contain Ni(II) 

porphyrins, as confirmed by their polarity and absorption at 392 nm (Saitoh et al., 2001; 

Grosjean et al., 2004). The presence of Ni(II) is suggestive of an oxic zone, though 

supporting evidence from other biomarkers is necessary (Lewan, 1984; Schaeffer et al., 

1993; Sundararaman et al., 1993). The pristine/phytane ratio of these samples is near one, 

which supports the idea of an at least partially oxygenated water column. If true, the 

Ni(II) porphyrins and aryl isoprenoids together suggest a stratified water column. The 

mere fact that many of the samples have both aryl isoprenoids and large Ediacaran fauna 

is suggestive of this as well, since these organisms are assumed to need oxygen to respire. 

In Felitsyn et al. (1998), they too studied the Eastern European Platform and found 

evidence for a shallow low-energy marine environment, blooms of cyanobacteria that 

then lead to enrichment in Co and tetrapyrrole complexes, elevated Ni, signatures that 

suggest both an oxic and an anoxic environment, and organic circulation by 

methanogens. No 2-methylhopanoids were found, but that in no way discounts the 

cyanobacteria proposal (Rohmer et al., 1984). In support of the methanogen suggestion, 

3-methylhopanoids have been identified. The elevation of tetrapyrrole complexes and Ni 

can be seen with the Ni porphyrins found. The confusion with oxic and anoxic 

environments and evidence for a shallow, low energy system supports the idea of a 

stratified water column that has enough oxygen in the surface layer to support Ediacaran 
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life and a euxinic zone that permeated up into the photic zone enough for Chlorobiacea 

to survive.  
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