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Master of Science in Technology and Policy

Abstract

Energy storage has the potential to dramatically change the operation of photovoltaics
by allowing for a delay between generation and use. This flexibility has the potential
to impact both the revenue from generating electricity using photovoltaics and the
associated emissions reductions. This thesis attempts to quantify the impacts of
adding energy storage to photovoltaics.

The thesis formulates an optimization problem to solve for the optimal use of
photovoltaics with energy storage from 2000 to 2005 in New England. The optimiza-
tion is first solved using perfect information about historical solar generation, energy
prices, and marginal emissions rates. Then, the model is solved using forecasted
energy prices and emissions rates.

The analysis finds that adding energy storage to photovoltaics can increase annual
revenues by over 30%. With energy storage capacity and power equal to solar capacity,
annual revenues were found to increase between 19.3% and 31.1% with an energy
storage efficiency of 100%. Unfortuneately, the potential revenue increases were found
to fall to between 9.1% and 21.3% with 80% efficient storage and between 3% and
14.5% with 60% efficient storage.

However, when owners utilize energy storage to maximize revenue, the changes
in avoided emissions with energy storage are found to be negligible. Alternatively,
it is possible to achieve significant increases in the emissions offset by photovoltaics
with energy storage. However, when energy storage is utilized to maximize emissions
reductions, revenue decreases. This tradeoff between the economic and environmental
benefits that can be achieved when energy storage is added to photovoltaics means it
is unlikely to be possible, without policy, to simultaneously achieve large increases in
both revenue and avoided emissions. Policy mechanisms could be used to enable en-
ergy storage to enhance both the revenue from photovoltaics and avoided emissions.

Thesis Supervisor: Stephen Connors
Title: Director, Analysis Group for Regional Energy Alternatives
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Chapter 1

Introduction

Photovoltaics are currently experiencing a period of rapid growth. Annual global

production increased from 1,744 MW in 2006 to 5,950 MW in 2008, a growth of 241%

in only two years [1]. The growth in photovoltaics has largely been due to aggressive

policy mechanisms such as rebates, feed-in tariffs, tax credits, and renewable portfo-

lio standards [2][3]. These policy mechanisms have driven growth in manufacturing

capacity and impressive cost reductions [4]. However, despite rapid growth, photo-

voltaics continue to provide only a small fraction of worldwide electricity generation

[5] .

Solar resource variability and intermittency are important limiting factors in the

deployment and growth of photovoltaics at large scale [6]. The uncertainty associated

with intermittency increases the risks and the costs of deploying photovoltaics relative

to other generation technologies such as coal or natural gas [7]. Owners of photovoltaic

generating plants are typically unable to bid into day-ahead energy wholesale markets

in restructured power markets and can be subject to additional fees or penalties levied

by the grid operator to ensure high grid reliability. These challenges will only become

more important as photovoltaic installations continue to grow.

Energy storage technologies are also experiencing a period of rapid growth and

have attracted significant investment in the past several years [10]. There are currently

a range of technologies that have potential to provide utility-scale energy storage [8].

Figure 1-1 illustrates power and energy ratings for installed systems as of November

13



Figure 1-1: Energy storage installed system ratings. A variety of technologies are
currently being pursued for the storage of electricity. Pumped hydro storage (PSH)
and compressed air energy storage (CAES) have already been demonstrated at large
scale while other technologies such as Lithium-Ion batteries (Li-Ion) and flywheels
(FW) have only been demonstrated at smaller scales. Some technologies are ideally
suited for high power applications while others are best matched for applications
requiring large energy capacity [8][9]. Source: Electricity Storage Association[8].

2008 by storage technology. First, there are a number of competing battery storage

chemistries in development including lithium ion, sodium sulphur, nickel cadmium,

and zinc bromine. Lithium ion batteries, the mainstay technology for small elec-

tronics and laptop computers, is currently being pursued aggressively for the electric

vehicle market. Sodium sulphur batteries have been deployed at utility-scale in a

small number of pilot projects [11]. Next, vanadium redox and polysulfide bromide

flow batteries, which utilize liquid electrolytes to store energy, have also started to

attact attention. Flow batteries promise flexibility in both system power and sys-

tem capacity. Vanadium redox flow batteries have been coupled to wind generation

14



Figure 1-2: Applications for energy storage. Electricity storage can serve many pur-
poses on the modern power grid. Each application and the technology best matched
to it depends on storage capacity (i.e., storage time) and storage power (i.e., charg-
ing/discharging rates). For example, systems designed to maintain transmission sys-
tem reliabiliy require high power but do not need long duration storage. Source:
Electricity Storage Association[8].

in several locations worldwide [12]. Finally, there are a number of additional non-

battery storage technologies that have significant potential. Compressed air energy

storage, supercapacitors, and kinetic energy storage using flywheels are all showing

great commercial promise. Detailed descriptions of each of these technologies is be-

yond the scope of this thesis and have been reported elswhere [13][14][15].

Utility-scale energy storage installations can serve a range of purposes as illus-

trated in Figure 1-2 [16][17]. Energy storage systems can be used for commodity

arbitrage in wholesale power markets to shift electricity generated during low-price

periods to high-price periods [18]. In areas with high volatilility in energy prices the

systems can help reduce price fluctuations. Electricity storage systems can also be

15



used to provide ancillary services including voltage and frequency regulation or short

term reserve capabilities [19][20]. Strategically located energy storage systems can

also be installed to postpone necessary transmission and/or distribution upgrades

[21]. The systems can eliminate transmission capacity constraints or bottlenecks

[22]. System reliability can also be improved by utilizing energy storage systems to

provide standby power during transmission or distribution system failures. Finally,

energy storage technologies have the potential to alleviate some the problems asso-

ciated with the variability and intermittency of renewable generation resources, thus

enabling large scale deployment of renewables [23][24].

Energy storage systems can be used to provide two primary benefits when coupled

with renewable generators. Variations on the power grid introduced by intermittent

renewable generators can increase the costs of operating the grid through reduced re-

liability or a greater need for ancillary services [25]. Storage can absorb intermittency

or minute-to-minute variations in generation reducing the additional costs imposed

by renewable generation sources.

Electricity storage can also be used to time shift the delivery of electricity gener-

ated with renewables [26]. The impacts of time shifting the delivery of solar generated

electricity is the primary focus of this thesis. Time shifting the delivery of solar gen-

erated electricity to periods with higher energy prices can improve the economics of

employing photovoltaic systems. However, the added flexibility afforded by energy

storage has the potential to impact not only the revenue from generating electricity

using photovoltaics but also the emissions reductions associated with the installation

of the photovoltaics. While revenue increases could make photovoltaics and energy

storage more cost-competitive with conventional generation technologies, adding en-

ergy storage could actually reduce the emissions benefit associated with installing

the photovoltaics alone. Shifting solar generation to higher priced periods could also

shift generation to hours that have lower marginal emissions rates. Alternatively, at

the cost of increased revenue, energy storage can be used to significantly increase the

emissions offset by photovoltaics. The tradeoffs between these two scenarios are the

focus of this thesis.

16



While storage can be used for all of the above applications individually, using

storage to provide multiple services may be necessary to make storage economical in

the short term. Many previous studies have tried to quantify the various economic

benefits associated with the range of services storage can provide. Walawalkar et al.

found that energy storage is best suited for energy arbitrage and providing regulation

services in the New York power markets as they are currently structured [18]. Butler

et al. studied a number of business cases for deploying energy storage including

applications in reducing volatility, adding storage to boost the effective capacity of

transmission lines, and adding storage to combined heat and power facilities to smooth

output [27]. Shioshansi et al. estimated the arbitrage value of electricity storage in

the PJM interconnection, considering the impacts of fuel price changes, transmission

constraints, efficiency, storage capacity, and fuel mix [26].

Several general mathematical approaches have also been proposed to estimate

the value of electricity storage. Mokrian and Stephen developed a “Stochastic Pro-

gramming Framework” for valuing electricity storage focusing on optimizing intra-day

arbitrage [28]. Haesen and Driesen developed a “Multi-objective Valuation of Elec-

tricity Storage Services” that attempts to perform a global optimization to find the

optimal energy storage deployment from the perspective of the grid as a whole [29].

Both of these frameworks use multi-stage stochastic programming and dynamic pro-

gramming to optimize energy storage use. The models are solved using idealized,

modelled input data.

1.1 Central question

This thesis attempts to answer the following central question: Does coupling en-

ergy storage to photovoltaics enhance or reduce the economic and emis-

sions benefits associated with small to mid-scale photovoltaic installations?

This question could be of great interest to policymakers designing renewable energy

policies with environmental motivations. A detailed understanding of the potential

tradeoff between the economic and environmental benefits of using photovoltaics cou-

17



pled with energy storage could help guide the design of new policies. The results of

the analysis discussed here may also be of interest to energy storage researchers. The

results indicate which technical attributes of energy storage systems — storage charg-

ing and discharging rates or storage capacity — are the most important parameters

in the design of energy storage coupled photovoltaic systems.

Several previous studies have also attempted to quantify the impacts of coupling

energy storage with renewable generation sources. Benitez et al. studied the eco-

nomics of coupling wind power and hydroelectric energy storage in Alberta, Canada

[30]. They developed a nonlinear mathematical optimization program to investigate

the economic and environmental implications of high wind penetration. As in this

thesis, they used historical data on the operation of the electric grid as inputs to

their optimization model. They determined a cost for wind-generated electricity in

Alberta and a cost for reducing CO2 emissions. Finally, they found that new pumped

hydropower storage facilities in Alberta could provide most of the peak load require-

ments eliminating the need for new peak-load generation facilities.

Bathurst and Strbac also studied the economic value of combining wind generation

and energy storage [31]. They studied the optimal dispatch of energy storage given

the short-term power exchange prices and potential wind farm imbalance penalties.

They quantified the ability for storage to mitigate wind forecasting errors.

Finally, some studies have also focused on quantifying the impacts of coupling

energy storage and photovoltaics. Su et al. examined the economics of actually

coupling the two technologies and interfacing them with the grid [32]. Paatero and

Lund investigated the network impacts such as voltage stability of adding energy

storage to photovoltaics [33].

1.2 Data and methodology

In this thesis, I estimate what the benefits would have been of adding energy storage

to photovoltaics for the years 2000 to 2005 in New England. I formulate and solve

a Nonlinear Programming Problem (NLP) to optimize the use of photovoltaics with

18



energy storage using hourly historical time series electricity prices, solar generation,

and power grid marginal emissions rates.

Throughout this thesis, I assume that owners/operators of photovoltaic installa-

tions are primarily motivated by the potential economic benefits offered by energy

storage and will usually optimize the use of photovoltaics with energy storage to

maximize revenue. However, environmentally motivated policy mechanisms could be

designed to give owners incentive to also consider the avoided emissions from the op-

eration of energy storage-coupled photovoltaics. Therefore, I also discuss the results

of using the model to maximize emissions reductions. I discuss potential policy de-

signs or scenarios where owners could place greater value on the emissions reductions

associated with operating photovoltaics and energy storage.

Initially, the optimization problem is solved in the presence of perfect information

about prices, emissions rates, and solar generation. Solving the model with perfect

information gives an upper bound on the benefits that could be achieved with en-

ergy storage. The generator revenue and avoided emissions with energy storage are

compared to the calculated revenue and emissions reductions for photovoltaics alone.

The changes in the revenues and avoided emissions in these two cases represent the

impacts of coupling energy storage to photovoltaic installations.

Solving the model with different energy storage charging rates, efficiencies, and

capacities gives an indication of which technical attributes of energy storage systems

are most important for photovoltaic applications. I also study how seasonal and

weekly variations in the operation of the power system impact the potential benefits

of adding energy storage to photovoltaics.

Finally, I solve the model while imposing limitations on the information used as

inputs for the optimization to find more realistic estimates of the actual revenue and

emissions enhancements that could be achieved with energy storage.

The results described in this thesis can be used to estimate the likely benefits of

adding energy storage to existing or future photovoltaic installations in New England.

While the scope of this study is restricted to the New England region, the same

methodology can be applied to other regions.
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1.3 Summary of results and conclusion

The results of the analysis reveal that there is a tradeoff between the economic and

environmental benefits that can be achieved when energy storage is added to pho-

tovoltaics. The analysis finds that adding energy storage to photovoltaics can yield

significant increases in revenue. With energy storage capacity and power equal to so-

lar generation capacity, revenue increases were found to be between 19.3% and 30.5%

with an energy storage efficiency of 100%. Unfortunately, the potential revenue in-

creases were found to fall to between 9.1% and 21.3% with 80% efficient storage and

between 3% and 14.5% with 60% efficient storage. However, when owners utilize

energy storage to maximize revenue, the changes in avoided emissions with energy

storage are found to be negligible. Adding energy storage to photovoltaics does not

yield additional environmental benefits beyond those achieved by the installation of

photovoltaics alone.

Alternatively, it is possible to achieve significant increases in the emissions offset

by photovoltaics by adding energy storage. Adding energy storage with equivalent

capacity and power to the capacity of the solar generation was found to yield avoided

CO2 emissions increases of up to 56.2% with 100% efficient storage. With large stor-

age installations, it was found that avoided CO2 emissions could increase as much as

116%. If policies were promulgated to give owners the incentive to maximize avoided

emissions, energy storage could yield large emissions reductions. However, absent

policy, when energy storage is utilized to maximize emissions reductions, revenue

decreases.

Policy mechanisms could be used to enable energy storage to enhance both the

revenue from photovoltaics and avoided emissions. A detailed understanding of the

tradeoff between the economic and environmental benefits of using photovoltaics with

energy storage could help guide the appropriate design of these policies. Ultimately,

the value owners derive from CO2 emissions reductions would have to be large enough

to ensure the photovoltaics yield the same or greater revenue than if energy storage

was used to maximize revenues without considering emissions reductions. The value of

20



CO2 emissions reductions that would be necessary to achieve the maximum possible

CO2 emissions reductions was found to be in the range of $40 to $60 per metric ton.

Finally, the results of the analysis in this thesis may also be of interest to energy

storage researchers. The results indicate that for the appliation of adding energy

storage to photovoltaics for energy arbitrage, storage capacity is a more important

parameter than storage power. If the cost of capacity (MWh) and power (MW) for

a given technology are similiar, the ideal ratio of storage power to storage capacity is

roughly 0.3 or 0.4.

1.4 Document roadmap

In Chapter 2, I first detail the modeling methodology used in this thesis. I then

suggest some of the key assumptions used throughout. Next, I discuss the formulation

of the non-linear optimization problem. Finally, I characterize the energy price, solar

generation, and emissions rates used as inputs to the model.

Chapter 3 and Chapter 4 discuss the results of the anaylsis. Chapter 3 discusses

the optimal revenue and emissions benefits made possible by the addition of energy

storage to photovoltaics in the presence of perfect information. The results represent

an upper bound of what would be possible when coupling energy storage to photo-

voltaics. Chapter 4 details the revenue and emissions benefits that are likely to be

achieved under more realistic circumstances with imperfect information. The chapter

discusses the information that is likely to be most helpful in maximizing the benefits

derived from energy storage.

Chapter 5 discusses the broader policy implications of these results. The chapter

also discusses the most important characteristics of energy storage including cost,

capacity, and power. Finally, the short and long term implications are discussed.

Chapter 6 concludes and suggests future work.
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Chapter 2

Data and Methodology

This chapter discusses the data and methodology utilized in this thesis to assess the

impacts of coupling energy storage and photovoltaics. The analysis generates a coun-

terfactual prediction of the benefits that would have been achieved by adding energy

storage to photovoltaics for the years 2000 to 2005 in New England. I formulate and

solve a Nonlinear Programming Problem (NLP) using the General Algebraic Mod-

elling System (GAMS) to optimize the use of energy storage-coupled photovoltaics.

The model uses hourly historical electricity prices, hourly estimates of solar genera-

tion, and hourly power grid marginal emissions rates.

2.1 Introduction to model methodology

In the absence of energy storage, electricity generated with photovoltaics must be

used immediately. Photovoltaic generators are price takers and must sell energy to

the grid at the prevailing real-time price of electricity.1 Using hourly historical data

for prices, solar generation, and marginal emissions rates it is straightforward to

1This thesis assumes the owner of the photovoltaics actually sells the energy generated using
photovoltaics and, therefore, refers to the economic benefits of energy storage coupled photovoltaics
as revenue. However, in the case of small photovoltaics installations, the owner may simply use the
generated electricity locally in lieu of purchasing electricity from the grid. In these cases the economic
benefits of coupling energy storage to photovoltaics would actually be in the form of savings instead
of revenue. Furthermore, the benefits of adding energy storage to photovoltaics in these cases might
differ from those studied in this thesis as the owner would also save any transmission, distribution,
and delivery costs associated with grid purchased electricity.
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determine both the revenues generated by photovoltaics and the avoided emissions

due to the addition of photovoltaics to the power grid. However, with the addition of

energy storage, owners of photovoltaic generation can choose to sell solar-generated

electricity immediately or store the energy and sell it during higher priced periods.

The time shift between solar generation and peak power grid prices has been well

characterized previously [34].

The model formulated and solved in this thesis optimizes the operation of energy

storage to either maximize generator revenues or maximize avoided emissions. The

model compares the generator revenue and avoided emissions with energy storage to

the calculated revenue and emissions reductions for photovoltaics alone. The change

in the renveues and avoided emissions in these two cases represents the impact of

coupling energy storage to photovoltaic installations.

Initially, the model is solved with perfect information about prices, emissions

rates, and solar generation to find the upper bound of the benefits that could be

achieved with energy storage. Optimization with perfect information is equivalent

to an owner/operator having perfect predictions about future solar generation, en-

ergy prices, and emissions rates. In a practical application, it would be impossible

for owners to have all this information. However, advanced forecasting tools can

likely be developed to give good estimates for optimization. In this thesis, I explore

some of the data inputs that could be used as simple forecasting tools such as day-

ahead electricity prices or seasonally adjusted average daily price curves. Solving the

optimization model using imperfect price and emissions inputs and calculating the

resulting revenues using the actual values for prices and emissions gives an indication

of how good simple algorithms could be.

Finally, solving the model with different energy storage charging rates, efficiencies,

and capacities gives an indication of which technical attributes of energy storage

systems are most important for photovoltaic applications. I also study how seasonal

and weekly variations in the operation of the power system impact the potential

benefits of adding energy storage to photovoltaics.
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2.2 Key assumptions

In order to assess the impact of coupling energy storage to photovoltaics, I have

developed a simplified model of the interactions between photovoltaics and the power

grid. The model formulated in the next section relies on a number of important

assumptions, each of which is described here.

First, the analysis depends on the primary assumption that the amount of electric-

ity produced by the photovoltaic installation in question does not change the dispatch

order of the electric power grid. The analysis assumes that the operation of energy

storage-coupled photovoltaic installations causes fossil generating units operating at

the margin to ramp up or down in any given hour but not be turned on or off. The

historical energy prices and marginal emissions rates characterized below are only

valid for the specific group of units generating power in each hour. If a photovoltaic

installation were to cause a generator to be shut down in any given hour, the market

clearing price for generation and the marginal emissions rates would change for that

hour. Determining the dispatch order for fossil generating units requires complex

optimal power flow models that take into account individual bids from each genera-

tor and a detailed knowledge of transmission constraints and load forecasts. This is

beyond the scope of this thesis.

The assumption that the proposed photovoltaic installations with and without

storage do not change the power grid dispatch order limits the analysis to small to mid-

size photovoltaic facilities that are significantly smaller than most of the conventional

generating units on the grid. This is true for the vast majority of photovoltaics

installations currently being considered today but could change if installations grow

significantly in size. It is difficult to quantify exactly what size generating facility

would violate this assumption. However, it is expected that the analysis in this thesis

would be relevant for the vast majority of photovoltaic installations that are likely

to be installed in New England. As long as photovoltaics generation remains small

relative to the total load, this assumption should hold.

A second related assumption required by this analysis is that time shifting pho-
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tovoltaic generation does not require additional short term reserve capacity such

as spinning reserves. The addition or elimination of the need for additional reserve

capacity and the associated emissions changes are not taken into account in this anal-

ysis. This assumption also limits the maximum size of the photovoltaic installation

for which this analysis is relevant.

A third assumption also relating to the operation of the power grid needed for

this analysis is the assumption that photovoltaic generators are able to sell electricity

to the grid at any time at the real time energy price determined in the wholesale

markets. This assumption relies heavily on market regulations and policy mecha-

nisms for small to medium size generators. Net metering and market participant

rules continue to evolve. This assumption will likely always be satisfied for smaller

photovoltaic installations in commercial and residential settings where the load and

the photovoltaic system are on the customer side of the meter. In these cases, the

analysis in this thesis will actually yield conservative revenue/savings impacts as the

appropriate price to compare photovoltaic generation to would be the retail price of

electricity which includes the transmission and distribution costs in addition to the

cost of wholesale energy.

Finally, the analysis requires the assumption that owners and/or operators of

photovoltaic installations are primarily motivated by the potential economic benefits

offered by energy storage and will seek to optimize the use of photovoltaics with energy

storage to maximize revenue. This behavior is typical for investments of any kind

and the assumption should be satisfied in the vast majority of cases. Environmentally

motivated policy mechanisms that give a value to avoided emissions could be designed

to give owners incentive to also consider avoided emissions from the operation of

energy storage-coupled photovoltaic generating facilities. I will discuss some of these

potential policy designs or scenarios in Chapter 5.
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2.3 Limitations of method

The approach to calculating the revenue impacts and the avoided emissions due to

intermittent generation sources used in this thesis has a number of important limita-

tions.

First, the analysis in this study is a strictly historical analysis. Care should be used

in extrapolating the results of this thesis to predict future revenue and/or emissions

impacts. The results of this thesis are the result of the specific solar radiation, energy

prices, and emissions rates that occurred in the past. The results are derived from

a large number of days over 6 years. Therefore, the results are expected to give the

correct order of magnitude, or, at the very least, the direction of change when adding

energy storage to photovoltaics. However, the analysis is not meant to be used to

predict the exact revenue or emissions benefits that a specific system might realize.

Predicting future revenues is particularly difficult as the restructured electricity

markets in New England continue to evolve. As existing markets become more estab-

lished and new markets, such as the forward capacity market, are added, electricity

prices and electricity price daily profiles could change significantly. Furthermore, the

development of the retail market and price responsive demand could also change the

relative price changes throughout the day. Changes such as these could have a large

impact on the expected revenues associated with energy storage and photovoltaics.

Predicting future marginal emissions rates is also an area with significant un-

certainty. Changes in the relative costs of fuel prices for conventional generation

technologies would change the bidding strategies of different generators and, there-

fore, could have an impact on the carbon intensity of marginal electricity generation.

High oil and natural gas prices could drive greater electricity production by coal gen-

eration facilities while policy frameworks that put a price on CO2 emissions could

shift greater generation to cleaner burning natural gas facilities.

Second, the analysis does not account for any geographical variations in the results.

New England is treated as a homogeneous region. In reality, geographic locations in

New England will actually experience different magnitudes of solar radiation (this
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would be especially true in areas with significant shadowing, for example in valleys

surrounded by hills or mountains). Furthermore, the prices for electricity in any

given location could differ from the New England-wide energy price due to locational

marginal prices. Finally, the specific plants that are ramped down due to energy

sold by energy storage coupled photovoltaics could depend on local transmission or

distribution constraints. In these cases the calculated marginal emissions rates are

unlikely to have high accuracy.

Finally, even without significant changes in the future fuel mix on the New Eng-

land grid, the calculation of marginal emissions rates described later in this chapter

also has a number of limitations. Most importantly, the calculation does not account

for electricity generation from non-fossil units. Non-fossil generation facilities, such

as nuclear or hydropower plants, are not required to report emissions data to the EPA

under the Clean Air Act. The method for calculating marginal emissions rates may

not be entirely accurate if non-fossil plants are used to respond to changes in load.

This is because the marginal emissions rates are calculated by taking a weighted aver-

age of the emissions of all of the plants following the load in any given hour. Nuclear

plants typically run at full output and do not respond to short term changes in load.

Therefore, the operation of nuclear plants should not typically impact the marginal

emissions rates. Hydroelectric plants also do not have to report their operations to

the EPA. Hydropower plants can and do respond to load. Therefore, their omission

from the calculation of marginal emissions rates does adversely impact the accuracy

of the calculations. However, hydropower makes up a relatively small proportion of

the generation capacity in New England, limiting the magnitude of the potential in-

accuracies. The method of calculating marginal emissions rates also has no way of

accounting for changes in imports and exports of power from the New England region

to other regions or vice versa. ISO-NE does not have detailed information on which

units actually generate the power that is imported into New England. Therefore,

it is impossible to calculate emissions rates for the imported power. The relatively

small number of external connections on the New England power grid likely limits

the potential magnitude of the adverse impacts of this limitation.
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The limitations discussed above must be kept in mind when evaluating the results

of this thesis and using the results to predict future values. The results discussions

in the next two chapters should not be interpreted as precise calculations of exactly

what revenues and avoided emissions photovoltaics with energy storage would have

achieved in 2000 to 2005 or will achieve in the future. However, the results do indicate

the direction and approximate magnitude of the impacts of adding energy storage to

photovoltaics.

2.4 Optimization model formulation

An optimization model is used to quantify the impact of adding energy storage to

photovoltaics. The model is run for each day in the study period. The objective

for this model is to maximize revenue within a 24 hour period. The total revenue

is calculated by taking the sum of the product of the energy price in each hour by

the sum of the generation from the photovoltaics and the energy used from energy

storage in each hour. The total revenue is maximized subject to the constraints on the

energy storage efficiency, power, and capacity. The solar generation, energy prices,

and marginal emissions rates in each hour are assumed to be known. Mathematically,

the objective function is formulated as follows:

Revenue =
24∑
i=1

(PV Usedi + STUsedi)× Pricei (2.1)

where Revenue is the total revenue during the entire day, PV Usedi and STUsedi

represent the power used in hour i from the photovoltaics and energy storage respec-

tively, and Pricei represents the wholesale energy price in hour i. Pricei is an input

to the model.

Similarly, the avoided emissions resulting from the use of an energy storage coupled

photovoltaic installation is calculated by taking the sum of the product of the marginal

emissions rate in each hour by the sum of the generation from the photovoltaics and

the energy used from energy storage in each hour. This is formulated mathematically

as follows:

29



AvoidedEmissions =
24∑
i=1

(PV Usedi + STUsedi)× ERi (2.2)

where AvoidedEmissions is the total emissions reduction during the entire day,

PV Usedi and STUsedi represent the power used in hour i from the photovoltaics

and energy storage respectively, and ERi represents the marginal emissions rate for

the emissions type in question in hour i. ERi is an input to the model. Avoided

emissions values have been calculated for CO2, SO2, and NOX in this thesis.

All power generated in each hour must either be used immediately or added to

energy storage:

PVi = PV Usedi + PV Storedi (2.3)

where PVi is the energy generated by the photovoltaics in hour i, an input to the

model, and PV Usedi and PV Storedi represent the power used directly and the power

stored, respectively, in hour i.

The amount of energy in storage at the end of each hour is given by the sum of

the enery in storage at the end of the previous hour and the energy added to storage

by generation multiplied by the storage efficiency less the energy in storage used in

each hour. This is given as follows:

STi = STi−1 + PV Storedi × StorageLoss− STUsedi (2.4)

where STi represents the energy in storage at the end of hour i, PV Storedi represents

the solar energy added to storage during hour i, STUsedi represents the amount of

energy in storage used during hour i, and StorageLoss represents the efficiency of the

energy storage, the fraction of energy retained in the process of storing and retrieving

energy from the storage system. For the purposes of this analysis StorageLoss is

assumed to be a constant value irrespective of the amount of time energy is stored.

The characteristics of the energy storage are described by the the following con-

straints:

0 ≤ STi ≤ StorageCapacity (2.5)
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0 ≤ STUsedi ≤ StoragePower (2.6)

0 ≤ PV Storedi ≤ StoragePower (2.7)

where STi, STUsedi, and STStoredi represent the energy in storage after hour i,

the energy in storage used during hour i, and the energy added to the storage dur-

ing hour i, respectively. StorageCapacity and StoragePower represent the physical

constraints on energy storage that are used as an input to the model.

The model above is formulated as a Nonlinear Programming Problem (NLP) and

solved using the COINOPT solver in the GAMS environment.

2.5 Data

The model formulated above requires three sets of hourly time series data:

• Solar resource data

• Wholesale electricity prices

• Marginal emissions rates

I discuss each of these data sets in the following sections.

2.5.1 Solar generation

Solar radiation data from the National Solar Radiation Database (NSRD), a product

of the Renewable Resource Data Center at the National Renewable Energy Labo-

ratory, is used as input to the model [35]. The National Solar Radiation Database

was originally released in 1992. At that time the database contained hourly solar

radiation information for 239 weather stations throughout the United States for the

years 1961-1990. Subsequently, in 2007, the database was updated to include the

years 1991 to 2005 and expanded to 1454 stations. The database contains measured

solar radiation data for some locations. However, the vast majority of the data is
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generated using models based on meterological and geographical inputs. The user

manual contains the following disclaimer about the data in the database [35]:

Nearly all of the solar data in the original and updated versions of the

NSRDB are modeled. The intent of the modeled data is to present hourly

solar radiation values that, in the aggregate, possess statistical properties

(e.g., means, standard deviations, and cumulative frequency distributions)

that are as close as possible to the statistical properties of measured solar

data over the period of a month or year. These data do not represent each

specific hourly value of solar radiation to the same or equivalent accuracy

as the long-term statistics.

The uncertainty in the solar input data should be kept in mind when interpreting

the results of this thesis. The analysis in this thesis is intended to estimate the

direction of change (positive or negative) and the order of magnitude of the benefits

that could be achieved by coupling energy storage and solar installations. The thesis

does not explicitly quantify or predict exactly what the benefits would have been at

any specific location or in any specific hour. Instead, the analysis described below

focuses on aggregate results over many hours and days; the results do not rely entirely

on any specific hour’s result. Therefore, the data found in the NSRD is sufficient.

The NSRD includes data for 66 sites located within the six states of New England.

Specific details of each of the sites can be found elsewhere [35]. I average the hourly

solar radiation from all of these sites in order to generate hourly time series data to use

as an input to the model formulated below. Figure 2-1 displays the solar radiation,

averaged across these 66 sites, for every hour from 2000 to 2005. Each subplot displays

one year’s worth of data with hours within each day displayed across the horizontal

axis and days displayed on the vertical axis. These plots clearly indicate both the

increase in the duration and the intensity of solar radiation during the summer months

in New England. The plots also clearly show the variability that makes photovoltaics

problematic; dark horizontal lines on these plots represent cloudy days with little

direct solar radiation.

32



Figure 2-1: Average hourly solar radiation in New England. Average solar radiation
at all of the New England sites in the NSRD for every hour from 2000 to 2005. Each
subplot displays one year of data. The 24 hours in each day are displayed on the
horizontal axis while the vertical axis represents all 365 days in each year. Longer
days during the summer are clearly discernible in the middle of these plots. Horizontal
black stripes throughout the data represent cloudy days with little solar generation.

While the shape of the generation from a photovoltaic generating facility is likely

to match the shape of the solar radiation, one needs to assume a specific efficiency

or capacity factor of the solar array to determine values for hourly generation.2 In

order to achieve as realistic an efficiency as possible I performed the normalization

of the NSRD data using actual solar generation data from sites throughout the New

England for the years 1998 to 2002.3 The solar radiation data in the NSRD was

scaled to represent a 1 MW photovoltaic installation. This size installation is used

2There is an assumption here that the power generated from a photovoltaic array will vary linearly
with illumination intensity. The linearity of this relationship varies with different photovoltaic
technologies.

3Generation data for actual solar installations in New England was supplied by Schott Applied
Power for an earlier study. Unfortuneately, data after 2002 was unavailable, necessitating the use of
the modeled NSRD data in this study.
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Figure 2-2: Normalized hourly solar generation data. The data is normalized to
represent generation from a 1 MW capacity installation. While the specific generation
in any given day varies from year to year, the overall shape of the solar generation
curve is similar for each year.

throughout the analysis in this thesis. Energy storage capacities and powers are

always quoted relative to this installation size. Appendix A gives additional detail on

the process used to normalize the NSRD solar radiation data to represent the hourly

power ouput of a 1 MW photovoltaic installation. Figure 2-2 displays the hourly solar

generation after normalization. This plot clearly indicates that while the generation

on any given day may vary from year to year, the overall shape of the generation

curve is similar in each year.

Figure 2-3(a) displays the weekly maximum solar radiation for the years 2000 to

2005. This plot also confirms that while the solar radiation may vary significantly on
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(a) (b)

Figure 2-3: Weekly and daily maximum solar generation. (a) Weekly maximum
average solar generation from 2000 to 2005. While there are minor differences from
year to year, the weekly maximum solar radiation levels are similar each year. As
expected, higher radiation values occur in the summer relative to the winter. The
seasonal variation in solar radiation will likely cause significant seasonal variations in
the impacts of coupling energy storage and photovoltaics. (b) Daily maximum solar
generation from 2000 to 2005. The maximum solar generation from day to day is
highly variable.

an hour by hour or day by day basis, the weekly and monthly features are consistent

from year to year. The use of energy storage is expected to smooth the hour-by-hour

and day-by-day variations in the solar resource. Therefore, the aggregate impact of

adding energy storage to photovoltaics should be consistent from year to year.

Hourly and daily variations in solar generation are the most important ones for the

application of energy storage. Day to day solar generation variability is illustrated

in Figure 2-3(b) for the years 2000 to 2005. Figure 2-3(b) displays the maximum

solar generation for each day throughout the year. While this figure shows the same

increase in maximum generation during the summer months illustrated earlier in

Figure 2-3(a), it also shows the significant variation from day to day within each week

of the year. This figure illustrates the variable nature of solar generation based on

weather changes and indicates that the variability is greatest during summer months.

Finally, Figure 2-4 illustrates the hourly solar generation for four representative

weeks throughout 2005. As expected, the height and width of each day’s solar gener-

ation curve is highest during the summer and the solar generation is centered around
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Figure 2-4: Hourly solar generation in selected weeks. The shape of solar generation
in each day is relatively constant while the magnitude can change significantly based
on weather. As expected, the peak generation during summer months is greater than
the peak generation during the winter. Solar generation is also spread across a wider
range of hour during the summer months relative to winter generation.
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midday throughout the year. Occasional cloudy days with lower solar generation are

also clearly illustrated. The difference in shape between the curves illustrated here

and the shape of hourly energy prices to be discussed below creates the opportunity

for energy storage to add economic value to photovoltaic installations.

2.5.2 Wholesale energy prices

Historical energy prices are also required by the model formulated above. Hourly

energy prices from the New England power market are used as input to the model.

The New England power market is comprised of several regulated and semi-regulated

submarkets governing the sale of a variety of products and services related to the

delivery of reliable electricity to end users. These submarkets can be grouped roughly

into three primary categories: (1) markets that deal in the actual sale of electricity,

(2) markets for the transmission and distribution of electricity, and (3) markets to

maintain reliabiliy in the operation of the grid. This last set of markets includes the

sale of ancillary services such as voltage and frequency stability, the operation of short

term reserves, and capacity markets to ensure sufficient future capacity.

Utility-scale energy storage can participate in most of the markets listed above.

Energy storage’s relative value in each of the markets depends on the specific technical

attributes of the energy storage and the location where it is deployed. For example,

energy storage would have greater value in transmission markets in locations with

significant transmission system congestion. In realistic installations, energy storage

is likely to be operated in a manner that allows it to participate in multiple markets.

For example, an energy storage system could simultaneously be used for commodity

arbitrage and for the provision of ancillary services. Energy storage technologies such

as solid-state batteries that are not designed to be discharged deeply are ideally suited

for this type of use.

This thesis focuses on the participation of solar generation with energy storage

in markets for the actual sale of electricity. In New England, there are two primary

markets for the sale of electricity: a day-ahead market and a real-time market. The

day-ahead market is the primary market where wholesale electricity is bought and
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sold. Each day, generators submit quantity and price bids to the grid operator, the

New England Independent System Operator (ISO-NE), for their operation in each

hour of the following day. ISO-NE then performs a least-cost security-constrained unit

commitment and dispatch analysis on all of the submitted bids in order to determine

the generation units that should operate in each hour to meet the predicted load at

the lowest cost. In order to bid into the day-ahead market, generators must have

some level of certainty regarding their operations on the following day. In addition to

other penalties that may be assessed, generators that are unable to actually supply

the energy that they were dispatched for in the day-ahead market must buy the

difference in the real-time market.

The real-time market is a balancing market that makes up for differences in the

actual load and the predicted load and differences between dispatched generation and

real generation in each hour. Photovoltaics typically sell their generation in the real-

time market. The analysis in this thesis assumes photovoltaic generators are able to

sell electricity in the real-time market.

Historical real-time energy price data from ISO-NE is used as an input to the

model [36]. Hourly real-time energy price data is available for free download from ISO-

NE’s website for every hour from May 1, 1999, the date New England restructured

wholesale markets began preliminary operation. The ISO-NE data includes the energy

price in each hour as well as congestion and marginal loss components at 940 different

nodes throughout New England. The “energy price”, congestion component, and

marginal loss component together define the locational marginal prices at each of

these locations in each hour. In this analysis I have only used the “energy price”

component in calculating the changes in revenue due to energy storage. Using only the

“energy price” values gives a conservative estimate of changes in revenue that would

have resulted from the addition of energy storage to photovoltaics in most locations

throughout New England. The increases in revenue could be significantly higher in

specific locations with high congestion or high losses where locational marginal prices

can spike during high load periods.

Figure 2-5 displays the hourly real-time energy prices in New England for the years

38



Figure 2-5: Hourly real-time energy prices in New England. Each plot displays the
final real-time hourly energy prices for one year. The 24 hours in each day are
represented on the horizontal axis while the 365 days of the year are on the vertical
axis. As illustrated by the color bar at right, Brighter colors indicate higher prices
while dark areas represent lower prices. It is difficult to isolate reliable seasonal
changes in energy prices. However, peak prices in white appear more commonly in
the winter and summer periods. In New England, energy prices are typically set by
natural gas generating facilities. Therefore, the differences in prices from year to year
likely reflect the changes in natural gas prices. (This is the most likely explanation
for the high prices in 2005.)
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Figure 2-6: Maximum real-time daily energy prices. The maximum real-time price of
electricity can vary dramatically from day to day. Since 2001 New England has had a
price cap on generator bids of $1000/MWh. This price cap was reached in both 2001
and 2002 but then was not reached from 2003 to 2005. The data indicates that very
high price hours are relatively rare and can occur in any season.

2000 to 2005. Brighter colors in these plots indicate higher prices while dark areas

represent lower prices. A number of notable features are visible in these plots. First,

two vertical stripes are apparent in each of the plots corresponding to price peaks

both in the morning period and the evening period throughout the year. These peaks

are more pronounced in the winter. The second of these peaks occurs later in the

evening during the summer months. Comparing these plots to the solar generation

plots in Figure 2-1 illustrates the time shift between peak solar generation and peak

energy prices in New England. Energy storage is expected to be able to eliminate the

shift between peak prices and peak solar generation illustrated in these two figures.

While there is significant variation in prices from one day to the next, there do
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not appear to be any consistent seasonal variations from year to year. For the most

part, the highest price peaks occur in summer and winter. However, price spikes can

also occur during other periods. Figure 2-6 plots the daily maximum energy prices

for the years 2000 to 2005. This plot clearly shows the infrequency of peak energy

prices. The plot also illustrates that peak prices can occur at any time of the year.

Given the infrequency of peak energy prices, the primary value of adding energy

storage to photovoltaics is unlikely to result from shifting solar generation to very

high priced periods. Instead, the value from adding energy storage to photovoltaics is

more likely to arise primarily from intra-day shifts in generation. Figure 2-7 displays

the hourly energy prices for four selected weeks in 2005. It is difficult to identify a

typical daily cost curve shape during any of these weeks. The shape of the energy

price curve in any given day can vary significantly from the previous day. Evening

price peaks are observed in both the winter and spring weeks. Consistent with the

data displayed earlier in this section, this plot confirms that the overall level of prices

does not appear to be correlated with season. Natural gas sets the marginal prices in

New England during most peak hours. Therefore, the overall level of the energy prices

in any given week appears to be a reflection of the underlying cost of natural gas.

The level of prices is not the most important feature that determines the economic

value added by energy storage. Instead, the relative changes in prices within each

day will determine the magnitude of the impact on revenues that energy storage can

yield.

2.5.3 Marginal emissions rates

An estimate of the marginal emissions rates during each hour is required to estimate

the impact on emissions resulting from the addition of energy storage to photovoltaics.

Marginal emissions rates describe the emissions that are offset by adding a small

amount of renewable generation to the power grid. When a small quantity of solar

generation is added to the grid, the fossil generators are required to serve a smaller

load. Reductions in the output of the fossil generators lead to reductions in emissions.

The use of marginal emissions rates is an attractive way to estimate the benefits of
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Figure 2-7: Hourly real-time energy prices in selected weeks. It is difficult to identify
a typical daily cost curve shape. The shape of the energy price curve in any given
day can vary significantly in shape from the previous day. Evening price peaks are
observed in both the winter and spring week illustrated above. This plot confirms
that the overall level of prices does not appear to be correlated with season.
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small to mid-scale renewable installations that do not change the operation of the

grid as a whole.

The Analysis Group for Regional Energy Alternatives (AGREA) at MIT, has de-

veloped a framework for calculating historical marginal emissions rates. Previously,

the framework has been used to assess the emissions impacts of wind and solar gener-

ation as well as the impact of exposing consumers to real-time prices [37][38][39][40].

This thesis is the first attempt to apply the avoided emissions framework to estimate

the impact of utility-scale energy storage.

The AGREA avoided emissions methodology uses data from the US Environ-

mental Protection Agency’s Continuous Emissions Monitoring (CEM) dataset and

Emissions & Generation Resource Integrated Database (eGRID) [41][42]. The CEM

dataset includes hourly measurements of emissions data and operating parameters

for every fossil generating unit throughout the United States. The CEM dataset was

orginally designed as part of the Acid Rain Program initiated by the 1990 Clean Air

Act. Every electricity generating unit using high sulfur fuel or with a capacity greater

than 25 MW must measure and report hourly emissions of CO2, SO2, and NOX. In

addition to the emissions data, units must also report other operating parameters

such as heat rate and generation output in each hour. The data in the CEM dataset

is available for free download from the EPA website [43]. The eGRID database is

used to identify the geographic location of the units with operational data in CEM.

The geographic location of the units is then used to separate units into different re-

gions. For the purposes of this thesis, the eGRID data was used to identify all of the

generation units in New England.

The calculation of marginal emissions rates has been discussed in some depth else-

where [40]. The method to calculate marginal emissions rates is briefly summarized

here.

First, we identify generating units that are following the load shape in each hour.

These units are identified by first calculating the current output of each unit as

a fraction of total capacity. Units that are not operating, operating at full load,

or operating at very low output (i.e., turning on or off) are not counted as “Load
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Shape Following.” The change in output from one hour to the next for each of the

remaining generation units is compared to the change in total system load. If a

generation unit’s output and the system load change in the same direction then that

unit is designated as “Load Shape Following.” Further, if a unit was identified as

“Load Shape Following” in a previous hour and that unit’s ouput and the system

load did not change, that unit is still considered to be “Load Shape Following” in the

subsequent hour.

Finally, to calculate the marginal emissions rates in each hour, we take a weighted

average of the emissions from units following the system load in each hour. We

perform the weighted average for each hour by taking the rate of emissions for each

“Load Shape Following” generation unit (i.e., emissions divided by electricity output

in that hour) and weight it by the change in load for that unit with respect to the

total change in load of all units that are following the load in that hour. This is

expressed mathematically as follows:

hourly marginal emissions rate =
∑
LSF

CO2emissions

unitload
× ∆unitload∑

LSF ∆unitload
(2.8)

Once the marginal emissions rates have been calculated, the emissions avoided as a

result of renewable generation are determined by multiplying the hourly solar genera-

tion in each hour [MWh] by the marginal emissions rate in each hour [kg/MWh]. This

calculation is repeated for each of the different emissions types under consideration

(CO2, SO2, and NOX).

Figure 2-8(a) displays the calculated CO2 marginal emissions rates in each hour

for the years 2000 to 2005. As in the previous plots, each subplot in this figure

contains data for all the hours in one year. The figure shows significant variation in

the hourly rate of CO2 emissions each day. There are two features to this plot that

are interesting. First, marginal CO2 emissions exhibit two distinct peaks each day in

the early morning hours and late evening hours. These peaks are observed as vertical

lines in Figure 2-8(a). Second, in contrast to the solar generation and energy prices
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(a)

(b) (c)

Figure 2-8: CO2 marginal emissions rates. (a) Hourly CO2 marginal emissions rates
2000 to 2005. (b) and (c) Daily average CO2 marginal emissions rates by season in
2005.
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discussed earlier, the marginal CO2 rates show little seasonal variation throughout

the year. The magnitude of CO2 emissions in each day is smiilar in the winter and

summer.

Figure 2-8(b) displays the average hourly CO2 emissions rates for the summer and

winter in 2005 (a typical year). The emissions rate is observed to peak during the 5th

hour of each day (4:00 am to 5:00 am)in both the winter and summer seasons. The

evening peak appears to shift later during the summer relative to the winter. The

evening peak in the winter occurs in the 22nd hour of the day (9:00 pm to 10:00 pm).

The summer evening peak occurs in the last hour of the day (11:00 pm to 12:00 am).

This figure also illustrates the magnitude of the changes throughout the day. The

peak average hourly emissions rate in the winter is 1038 kg/MWh while the minimum

is 667 kg/MWh.

Figure 2-9(a) and Figure 2-10(a) display the calculated SO2 and NOX marginal

emissions rates in each hour for the years 2000 to 2005, respectively. The most

striking feature in these plot is the observed reduction in SO2 and NOX emissions

during these years. The emissions rates for both quantities are far higher in 2000 and

2001 than in 2004 and 2005. The drop in emissions of these two quantities can be

attributed to emissions trading programs implemented as a result of the Clean Air

Act. Second, in contrast to the CO2 rates, the SO2 and NOX emissions rates show

clear seasonal trends. The emissions of both quantities are highest during the winter

months and lowest during summer months. This pattern is particularly clear in 2005.

Figure 2-9(b) and Figure 2-10(b) display the daily average SO2 and daily average

NOX emissions rates, respectively, for the summer and winter seasons in 2005 (a

typical year). The SO2 emissions rate is observed to peak less predictably than the

CO2 rates described above. The average SO2 rate appears to be slightly higher in

the winter in most hours compared to the summer. The average NOX emissions rate

is fairly constant throughout the day. Therefore, it is unlikely that energy storage

will change the avoided emissions of NOX dramatically. The average daily NOX

emissions rate is significantly higher in the winter compared to the summer.

Figure 2-11 displays hourly marginal emissions rates for four selected, representa-

46



(a)

(b) (c)

Figure 2-9: SO2 marginal emissions rates. (a) Hourly SO2 marginal emissions rates
2000 to 2005. (b) and (c) Daily average SO2 marginal emissions rates by season in
2005.
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(a)

(b)

Figure 2-10: NOX marginal emissions rates. (a) Hourly NOX marginal emissions
rates 2000 to 2005. (b) Daily average NOX marginal emissions rates by season in
2005.
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Figure 2-11: Marginal emissions rates in selected weeks.
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tive weeks. These plots indicate the uncertainty in the emissions rates in each hour

of each day. The marginal emissions rates’ hourly fluctuations and the lack of a clear

daily shape in each season indicate the importance of studying the interaction of pho-

tovoltaics, storage, and emissions rates on an hourly basis. It would be quite difficult

to estimate the avoided emissions due to photovoltaics and/or storage using seasonal

averages or statistical descriptions of emissions rates alone.

The CO2 marginal emissions rate is fairly consistent across most hours of the

day with specific spikes during some periods. The hours with significantly higher

emissions can occur at any time of day. These shifts are determined by the specific

generator dispatch in each hour. Therefore, without knowing the specifics of the

dispatch procedure (including a detailed system model) it is difficult to isolate exactly

what causes sharp increases in the CO2 marginal emissions rate. The SO2 and NOX

emissions rates experience larger fluctuations each day relative to the CO2 emissions

rate. As in the case of the CO2 emissions rate, there is no consistent daily shape to

the emissions rates.

2.6 Summary

This chapter has discussed the data and methodology utilized in this thesis to assess

the impacts of coupling energy storage and photovoltaics. The chapter started by

detailing the methodology employed and it’s key assumptions and limitations were

discussed. Next, the specific optimization model employed by the analysis was formu-

lated. Finally, the solar generation, electricity prices, and marginal emissions rates

to be used as inputs to the model were characterized.
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Chapter 3

Results with Perfect Information

This chapter discusses the results of solving the model formulated in Chapter 2 with

perfect information about hourly energy prices, hourly solar generation, and hourly

marginal emissions rates. First, revenue and avoided emissions for photovoltaic instal-

lations with no storage are calculated. These results serve as a base case to compare

to results with energy storage. As discussed in Chapter 2, a photovoltaic installation

size of 1 MW is assumed throughout this thesis. This size installation makes it easy

to scale the results to other system sizes. Energy storage capacity and power are also

defined relative to the solar installation size.

3.1 Photovoltaics with no storage: revenue and

avoided emissions

Without storage, energy generated by photovoltaics must be used or sold immedi-

ately; there is no ability to shift generation to higher priced hours. Therefore, the

revenue and avoided emissions achieved with photovoltaics alone are straightforward

to calculate. The solar generation in each hour is multiplied by the energy prices

and marginal emissions rates in each hour. Figure 3-1 displays the calculated hourly

revenue for a 1 MW photovoltaic installation with no energy storage. Brighter colors

indicate higher revenue. As expected, the overall shape of the hours with positive
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Figure 3-1: Hourly wholesale revenue for photovoltaics only.

revenue in this plot matches the shape of solar generation hours. Figure 3-2 displays

the calculated CO2 avoided emissions for photovoltaics with no energy storage.

Table 3.1 includes the calculated total and average revenue and avoided emissions

for 2000 to 2005. Unfortunately, these values, the baseline for the analysis in this

thesis, are not consistent from year to year. In the case of the revenue results, the

changes are likely a result of changes in natural gas prices driving changes in the

wholesale energy prices in New England. Higher energy prices overall is certainly

the reason for the high revenue increase found for 2005. The reduction in the CO2

emissions is most likely a reflection of the increasing quantity of cleaner, natural

gas fired generation plants in the early part of this decade. The reduction in CO2

emissions rates could also be due to changes in the operation and dispatch of nuclear

and/or hydroelectric generating plants as the the New England power market evolved.

Finally, as mentioned earlier, the dramatic reductions in the SO2 and NOX emissions

rates are likely the result of the implementation of the Clean Air Act.
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Figure 3-2: Hourly CO2 emissions for photovoltaics only.

The shifts apparent in the baseline should remind the reader that this thesis does

not intend to predict in any definitive way the exact revenues or avoided emissions that

would be associated with any future photovoltaic and storage installation. Instead,

the focus of this thesis is the relative impact of adding energy storage to photovoltaics.

Therefore, most of the results to follow will focus primarily on the relative impacts

of adding energy storage in any given year.

3.2 Maximizing revenue with energy storage

As expected, energy storage can increase revenues derived from generating electricity

using photovoltaics. Initially, an energy storage capacity of 1 MWh and an energy

storage power of 1 MW are selected and the optimization model is solved. These

capacities, the same size as the photovoltaics generation capacity, were selected as a

starting point for analysis. In order to give an upper bound on the possible impacts of
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energy storage, in these initial results, the efficiency of storage is assumed to be 100%.

The impact of energy storage efficiency is discussed later in this section. Results with

different energy storage capacities, powers, and efficiencies are also discussed later in

this chapter.

Figure 3-3: Hourly revenue for photovoltaics with energy storage, optimizing for
revenue.

Figure 3-3 illustrates the calculated hourly revenue for a photovoltaic installation

with energy storage. In contrast to Figure 3-1, the hourly revenue with energy storage

is concentrated over fewer hours. The hours with revenue (i.e., the hours that solar

generation is actually sold to the grid) are also, on average, shifted later in the day

with storage. These results are consistent with the description of energy prices in

Chapter 2. In particular, the evening peak in prices throughout the year, illustrated

by a vertical stripe on the right side of each plot, is clearly visible. The optimal use

of solar generation appears to be to store generation during the day and use it during

the evening.

55



Figure 3-4: Optimal use of energy storage and photovoltaics in selected weeks. Pho-
tovoltaics generation used directly (without entering storage) in red, energy storage
use is in blue. Negative values correspond to charging the energy storage system.
Positive values correspond to selling power in the wholesale electricity market.
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Figure 3-4 displays the optimal hourly use of energy storage for selected weeks.

Negative values on this plot corespond to using solar generation to charge energy

storage instead of selling it immediately. Positive values corespond to selling energy

in the wholesale electricity market. This plot reveals that the storage nearly always

discharches energy equal to the storage power during the highest priced hour in the

early evening. The storage system is also used to shift some morning solar generation

to just before mid-day on some days. In these cases, the storage system is charged

twice each day, once in the morning and once in the afternoon.

With a 1 MW/1 MWh energy storage system, with optimal storage operation,

58% of the solar generated energy throughout the year entered the energy storage

system instead of being sold immediately. The other 42% of the solar generated

energy was sold immediately.

Table 3.2 summarizes the results of solving the model with 1 MW/1 MWh energy

storage. The table displays both absolute values and the percentage change in each

quantity relative to the base case with no energy storage. Positive avoided emissions

changes in this table are desirable; a positive change denotes a larger emissions re-

duction. The objective of the model was to maximize revenue. The total revenue

with energy storage increased in each year between 19.3% and 30.5%. Interestingly,

the magnitude of the increase in revenue appears to decrease sharply after 2001 from

approximately 30% to approximately 20%. This change is likely due to evolution in

the operation of the New England wholesale power market. New England adopted

the “Standard Market Design” in 2003 adding a day-ahead power market and other

rule changes. The increases in revenue appear somewhat stable after 2002 at approx-

imately 19.5%

The changes in avoided emissions with energy storage are small compared to the

changes in revenue. The avoided emissions for CO2 are unchanged or slightly positive

on average. This means that adding energy storage to photovoltaics has a negligible

effect on the emissions offset by the photovoltaics. The avoided emissions are actually

reduced for SO2 from -1.8% to -5.6% with the introduction of energy storage. This

means that the addition of energy storage has a negative impact on SO2 emissions
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Figure 3-5: Seasonal impacts of adding energy storage to photovoltaics, optimizing
for revenue.

compared to photovoltaics alone. Finally, the avoided emissions for NOX appear

unchanged or slightly negative. NOX emissions were reduced 4.8% in 2004. However,

this change is inconsistent with the other years in the study.

3.2.1 Seasonal variations

Figure 3-5 illustrates the contributions to the changes listed above in each season of

each year. These plots illustrate that while revenue increases in every season, the

avoided emissions for CO2, SO2, and NOX can increase or decrease. The avoided

emissions values for SO2 and NOX decrease more often than they increase. This is

consistent with the annual decreases in these two quantities discussed above. Un-

fortunately, it is difficult to isolate consistent seasonal trends. The largest revenue

increases occur in the winter for 5 of the 6 years. However, the relative difference in

revenue increases between the winter and other seasons varies from year to year. The

avoided emissions changes show no clear seasonal correlation.
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Figure 3-6: Impact of energy storage efficiency. Storage efficiency is a critical feature
of energy storage systems coupled to photovoltaics. This is especially true during the
later years in this study.

3.2.2 Energy storage efficiency

The results discussed above assume perfectly efficient energy storage. In reality the

efficiency of energy storage technologies vary widely. For example, grid-scale energy

storage using pumped hydro has a typically efficiency in the range of 70-85% while

thermal energy storage technologies can achieve greater than 90% efficiency [10]. As

might be expected, the round-trip energy storage efficiency has a dramatic impact

on the possible increased revenues when coupling energy storage to photovoltaics.

Figure 3-6 displays the increases in revenue achieved with the energy storage system

discussed above (1 MW/1 MWh) with varying energy storage efficiencies. There are

several interesting features in this figure. First, there is a clear efficiency threshold

below which energy storage is unable to provide an increase in revenue. With very

low efficiency, the difference in prices between hours is not great enough to overcome
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Table 3.3: Revenue with varied energy storage efficiencies.

Year

Quantity Units 2000 2001 2002

Revenue (No Stor.) $ 42731 N/A 44812 N/A 38147 N/A

Revenue (60% Eff.) $ 47434 +11.0% 51328 +14.5% 40637 +6.5%

Revenue (80% Eff.) $ 50694 +18.6% 54337 +21.3% 42620 +11.7%

Revenue (100% Eff.) $ 55758 +30.5% 58777 +31.1% 46400 +21.6%

Year

Quantity Units 2003 2004 2005

Revenue (No Stor.) $ 49983 N/A 52013 N/A 75784 N/A

Revenue (60% Eff.) $ 52011 +4.1% 53848 +3.5% 78042 +3.0%

Revenue (80% Eff.) $ 54765 +9.6% 57001 +9.6% 82703 +9.1%

Revenue (100% Eff.) $ 59661 +19.4% 62137 +19.5% 90389 +19.3%

the storage losses. Next, storage efficiency appears to become even more important

throughout the study period. The later years studied (2003 to 2005) are shifted to

the bottom right of this plot with a higher threshold efficiency. This is likely due to

reduced price volatility in these later years due to the maturation of the New England

power markets. Finally, the concave shape of these curves indicates that increased

energy storage effiency exhibits increasing returns with greater efficiency. This gives

strong incentives to pursue higher efficiency energy storage.

Table 3.3 displays the revenue increases that would have been achieved from 2000

to 2005 for a 1 MW photovoltaic installation with energy stoarge (1 MW / 1MWh)

with varying energy storage efficiencies. As expected, given the previous figure, en-

ergy storage systems with lower energy efficiencies achieve significantly lower revenue

increases. An energy storage system with an efficiency of 80% would have achieved

less than half the revenue increase possible with an energy storage efficiency of 100%

from 2003 to 2005. Very small revenue gains of approximately 3.5% are observed with

an energy storage efficiency of 60% in these later years.
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3.2.3 Varied storage capacity and power ratings

Figure 3-7 illustrates the results of solving the model for maximum revenue with

varying energy storage capacity (MWh) and power (MW) ratings in 2005. Figure 3-

7(a) gives a summary schematic to aid the reader in understanding the full results

shown in Figure 3-7(b). The base case revenue for photovoltaics with no energy

storage is denoted by a green dot at the lower left. The black lines represent different

energy storage capacities. The energy storage capacity is varied from 0.1 MWh to 2

MWh or 1/10 of the assumed solar capacity to 2 times the solar capacity. Each black

line represents an increase of 0.1 MWh in capacity. The horizontal axis corresponds

to the ratio of storage power to storage capacity. This ratio is sometimes used to

differentiate energy storage technologies. For the purpose of this study, systems with

energy storage power less than or equal to energy storage capacity are considered.

Therefore, values along the right edge of the plot correspond to energy storage systems

with matching values for power and capacity (i.e., 0.5 MW and 0.5 MWh, 1 MW and

1 MWh, etc.) The dotted red lines correspond to different storage power ratings.

Storage powers are varied between 0.1 MW to 2 MW. Systems with a storage power

greater than capacity are only relevant to intra-hour interactions with the power grid

and are outside the scope of this thesis. (The data used here is limited to hourly

intervals.) The solar capacity is constant at 1 MW and the efficiency of storage is

assumed to be 100%. The vertical axis corresponds to the absolute revenue with

energy storage (indicated on the left) and the relative increase in revenue with energy

storage (indicated on the right). The point marked by the blue star corresponds to

a storage capacity of 0.8 MWh and a storage power of 0.3 MW. For this system, the

storage power to storage capacity ratio is 0.375. The point corresponds to a total

revenue of $85,700.

The revenue optimization results with varying storage capacity and power ratings

reveal several interesting characteristics. First, at a given storage capacity (i.e., a

single black line), the majority of the potential revenue benefit is achieved with rel-

atively low storage power. This is especially true for systems with higher capacities.
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(a)

(b)

Figure 3-7: Revenue increases for photovoltaics with varying energy storage capacities
and powers (a) Results plot schematic (to aid understanding of full results of plot
below) (b) Revenue increases for photovoltaics with varying energy storage capacity
and powers. See text for full explanation.
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For example, studying the top black curve, corresponding to a storage capacity of 2

MWh, with a storage power rating of 0.6 MW (0.3 power to capacity ratio) a 20.3%

revenue increase is achieved. Increasing the storage capacity to 2 MW (greater than

a threefold increase in storage power) yields a 26% revenue increase. Adding addi-

tional energy storage power (at a constant capacity) suffers from diminshing returns.

The plot indicates that storage capacity also experiences diminishing returns with

increasing capacity.

These results indicate that if the costs of storage capacity and storage power were

similar, the ideal system would have higher storage capacity and lower storage power.

A power to capacity ratio of approximately 0.3 or 0.4 would likely be ideal. Of course,

as the relative costs of storage power and storage capacity change, the ideal balance

of the two is also likely to change. The results also indicate that energy storage

systems with very low charging and discharging rates can yield significant revenue

enhancements. The curves at the left of the figure rise rapidly at low storage power

to storage capacity ratios. This plot, however complex, can be used to quickly map

the potential benefits for any proposed energy storage system with a given power to

capacity ratio and size.

The optimal strategy for using energy storage changes as the ratio of storage

power to storage capacity increases. At low power to capacity ratios, the energy

storage must be charged and discharged over several hours. Therefore, the energy

storage system is in the process of charging for most of the day and the energy is

discharged over multiple evening hours. With high ratios of storage power to capacity,

the discharge becomes significantly more peaked. As discussed earlier in this chapter,

when the storage power equals the storage capacity, the storage system is typically

fully discharged during a single hour in the early evening.

With low storage power (i.e. slow charging and discharging rates) only a small

portion of the energy storage capacity can be discharged during the highest priced

hour. This limitation causes less solar generated energy to be stored. For example,

as discussed above, with a 1 MW/1 MWh storage system, 58% of the solar generated

energy was stored rather than used immediately, the other 42% of the generated
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Table 3.4: Maximum revenue with unlimited energy storage.

Year

Quantity Units 2000 2001 2002

Total Revenue $ 60943 +42.6% 69878 +56.0% 52512 +37.7%

Average Revenue $/MWh 66.10 +42.6% 75.89 +56.0% 57.03 +37.7%

Year

Quantity Units 2003 2004 2005

Total Revenue $ 67282 +34.6% 69978 +34.5% 100608 +32.8%

Average Revenue $/MWh 73.07 +34.6% 75.90 +34.5% 109.26 +32.8%
1 Energy storage efficiency = 100%.

energy was sold immediately. For a system with the same energy storage capacity

but a power rating of only 0.1 MW, the fraction of energy stored drops to 23% of

the total generation. With this system, 77% of the solar generated energy is sold

immediately.

Finally, the model was solved to maximize revenue for a 1 MW photovoltaic

installation with unlimited energy storage capacity and power. The results represent

the maximum possible revenue increases that could be achieved with energy arbitrage

using energy storage. The maximum attainable revenue is given in Table 3.4. Adding

unlimited energy storage to photovoltaics yielded annual revenue increases as high

as 56%. The maximum revenue increases stabilized at approximately 33% during

the last several years studied. These increases are approximately 50% higher than

the revenue increases discussed previously with energy storage ratings equal to the

photovoltaics capacity. In order to achieve these results, the capacity and power for

the energy storage system must be approximately five times greater than the capacity

of the solar generation. Of course, given the high cost of energy storage it is unlikely

one would actually want to install storage to achieve these maximums. Instead these

results are offered to give a sense of the fundamental limit of the increases possible

with energy storage.
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3.3 Maximizing avoided emissions with energy stor-

age

Absent policy mechanisms to incentivize emissions reductions, the impacts of adding

energy storage to photovoltaics described in the previous section are the most likely

results. In the vast majority of cases, owners of photovoltaics generation facilities

are likely to try to maximize their revenue increase from adding energy storage in

order to maximize the return on their investment. However, in recent years, a variety

of policies have been proposed that promise to value emissions of greenhouse gases

(GHG), including CO2. These policies, aimed at achieving emissions reductions in a

wide variety of industries (including the electric power sector) could provide incen-

tives for photovoltaics owners to optimize for emissions reductions instead of revenue

maximization. Many of these schemes propose giving payments (or credits) to those

who achieve emissions reductions. In these schemes, the value of the emissions re-

ductions achieved with storage could be greater than the increased revenue possible.

With these potential policy mechanisms in mind, this section discusses the results

of solving the model with the objective of maximizing avoided emissions increases

instead of revenue.

As in the previous section, the model is first solved with an assumed energy storage

capacity of 1 MWh and power of 1 MW. The solar generation capacity is assumed

to be 1 MW. The model and inputs are unchanged except that the objective for the

model is now to maximize avoided emissions of CO2. In Chapter 2, it was observed

that CO2 emissions are at a maximum in the late night and early morning periods.

Therefore, in order to achieve the highest avoided emissions value as possible, the

model was modified to consider the time period from 5:00am to 5:00am instead of

midnight to midnight. This change does not impact the revenue calculations above

but does have a large impact on the optimized emissions reductions. The change has

little impact on revenue because the highest priced periods are in the late afternoon

or evening periods and there is typically no solar generation prior to 5:00 am each

day. This thesis only considers the optimization of the use of energy storage for 24
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Figure 3-8: Hourly revenue for photovoltaics with energy storage, optimizing for
avoided emissions.

hour periods. Multiple day energy storage is an important area for further study.

Figure 3-8 illustrates the results of optimizing the use of storage to maximize

emissions reductions. The plot shows the hourly revenue from an energy storage-

coupled photovoltaic system. In contrast to the results described earlier, the use of

solar generated electricity is shifted to the early morning hours with energy storage.

This is not surprising given the peak in the CO2 emissions rate described earlier. A

significant portion of the solar generation is also shifted into the late evening hours

corresponding to the other peak in the CO2 emissions rate. Consistent with greater

solar generation during the summer, the number of hours with revenue are more

plentiful during the summer months in these plots.

Table 3.5 gives the results of the avoided emissions maximization for a 1 MW/1

MWh energy storage system. The results differ dramatically from those found in

the previous section. The total revenue derived with an energy storage coupled
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photovoltaic system consistently decreases when optimizing for emissions reductions.

Adding energy storage and maximizing avoided emissions causes revenues to decrease.

The decrease in revenue fell throughout the study period except for the final year.

The largest decrease in revenue was an 11.8% drop in 2000. The smallest decrease

was a 5.2% decrease observed in 2004. As expected, when energy storage is used to

maximize CO2 avoided emissions, the avoided emissions for CO2, SO2, and NOX

all increase relative to the avoided emissions achieved with photovoltaics alone. The

CO2 avoided emissions were observed to increase by as much as 56.2% and increased

by more 43% or more in every year. For example, in 2005, a 1 MW photovoltaic

installation would have achieved a 624 metric ton reduction in CO2. The avoided

emissions jumps to 975 metric tons with a 1 MW/1 MWh energy storage system.

The magnitude of the increases in avoided emissions for SO2 and NOX are smaller

than those for CO2 but are also consistently positive. The avoided emissions of SO2

increase between 11.4% and 17% while the increases for NOX are between 19.7% and

34.6%. The magnitude of the increase in NOX avoided emissions appears to increase

towards the end of the study period.

3.3.1 Seasonal variations

The seasonal impacts of solving the model for maximum CO2 avoided emissions are

summarized in Figure 3-9. There does not appear to be any correlation between

revenue reductions, SO2 avoided emissions, or NOX avoided emissions and season.

However, there is a clear correlation between increased CO2 avoided emissions and

season. Adding energy storage to photovoltaics has the greatest impact on CO2

emissions during the winter and fall. The smallest impact occurs during the summer

periods.

3.3.2 Varied storage capacity and power ratings

Figure 3-10 displays the results of maximizing CO2 avoided emissions with a variety of

energy storage capacities and powers. The shape of the results is similar to the shape
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Figure 3-9: Seasonal impacts of energy storage, optimizing for avoided emissions.

found for revenue maximization. However, the relative magnitude of the changes are

far larger. The largest emissions reduction observed here is for a 2 MW / 2MWh

system which yields an increae in avoided emissions of CO2 of 84%. Energy storage

systems with capacity equal to power achieve the highest magnitude of additional

CO2 emissions reductions. However, the majority of the increase is also achieved

using the same storage capacity and a much smaller storage power. In the case of

maximizing emissions reductions, storage capacity also appears more important a

parameter than storage power.

As in the previous section, the model was solved for photovoltaics with unlimited

energy storage to find the fundamental limit on the impacts of adding energy storage

to photovoltaics. The results represent the maximum possible increases in the quan-

tity of avoided emissions for a photovoltaics system with energy storage compared to

the same photovoltaics system with no storage. The results are given in Table 3.6.
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Figure 3-10: CO2 avoided emissions increases for photovoltaics with varying energy
storage capacities and powers. The base case avoided emissions for photovoltaics with
no energy storage is denoted by a green dot at the lower left. The black lines represent
different energy storage capacities. The energy storage capacities vary from 0.1 MWh
to 2 MWh (10% of the solar capacity to 200% of the solar capacity) each black line
represents an increase of 0.1 MWh in capacity. The horizontal axis corresponds to the
ratio of the energy storage power to energy storage capacity. Therefore, values along
the right edge of the plot correspond to energy storage systems with matching values
for power and storage (i.e., 0.5 MW and 0.5 MWh, 1 MW and 1 MWh, etc.) The
red dotted lines represent constant energy storage power curves. The solar capacity
is constant at 1 MW and the efficiency of storage is assumed to be 100%.
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Table 3.6: Maximum CO2 avoided emissions with unlimited energy storage.

Year

Quantity Units 2000 2001 2002

Total kg 1340600 +90.7% 1317289 +91.4% 1392901 +99.4%

Average kg/MWh 1454 +90.7% 1431 +91.4% 1513 +99.4%

Year

Quantity Units 2003 2004 2005

Total kg 1377037 +108.8% 1280660 +98.8% 1351457 +116.6%

Average kg/MWh 1495 +108.8% 1389 +98.8% 1468 +116.6%
1 Energy storage efficiency = 100%.

Adding unlimited energy storage to photovoltaics yielded annual increases in avoided

emissions of CO2 as high as 116.6%. This means adding energy storage to photo-

voltaics has the potential to double the emissions offset with the photovoltaics alone.

As before, these results are offered simply to give a sense of the fundamental limit

of the increases that are possible with energy storage. Achieving these results would

require an energy storage system with capacity and power approximately four times

greater than the photovoltaics capacity. They are not likely to be achieved given the

current high cost of storage technologies.

At first glance, the large increases in avoided emissions with energy storage dis-

cussed here appear attractive. However, shifting large amouts of solar generation

into the evening hours may not be desirable. Fossil generating units are often already

operating at reduced output during the evening hours. The efficiency of these units

typically falls as the output falls. Shifting large amounts of solar generation to the late

evening or early morning would cause fossil units to reduce their output and, there-

fore, their efficiency even more. Furthermore, causing fossil plants to reduce output

further and/or turn off during the overnight periods could have implications on costs

and prices the following day. Coal generation facilities have slow turn-on rates and

are not designed to turn on and off routinely. Thus, shifting solar generation to late

night hours could have impacts on the stability of the energy price markets and the
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efficiency of generation during the overnight periods.

3.4 Summary

This chapter has discussed the optimal use of photovoltaics with energy storage.

The model was first solved with the objective of maximizing the revenue increase

from adding energy storage to photovoltaics. The results indicate that while large

increases in revenue are possible, when maximizing for revenue there is negligible

change in avoided CO2 emissions. The model was then solved with the objective

of maximizing avoided emissions. The results reveal that large increases in avoided

emissions are possible with energy storage. However, revenues decrease when energy

storage is used to maximize avoided emissions.
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Chapter 4

Results with Imperfect Information

The results discussed in Chapter 3 use perfect information about solar generation,

energy prices, and/or marginal emissions rates to optimize the use of energy storage-

coupled photovoltaics. The results represent an upper bound on the potential eco-

nomic and emissions benefits possible with energy storage. However, as described in

Chapter 2, in reality energy prices and marginal emissions are both highly volatile.

It would be impossible for an owner of an actual photovoltaic system to predict with

certainty future prices and/or emissions rates. Therefore, it is unlikely that the results

in Chapter 2 could actually be achieved.

Owners of energy storage-coupled photovoltaics installations will instead try to

predict future prices and emissions rates and use the results of these forecasts to opti-

mize the use of energy storage in any given day. Forecasting is a very broad, complex

field of study that has been successfully used in a wide range of industries. Many re-

searchers have devoted significant effort in forecasting renewable generation for both

wind and solar [44]. Energy price forecasting is already done routinely by financial

participants in electricity markets and a range of advanced price forecasting methods

have been proposed [45][46]. As electricity wholesale markets continue to evolve and

participants become more sophisticated, modelling methodologies are likely to con-

tinue to improve. Policies aimed at emissions reductions could also prompt efforts in

forecasting grid emissions rates.

State-of-the-art forecasting algorithms for hourly solar generation, energy prices,
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and marginal emissions rates are beyond the scope of this thesis. Such forecasting

studies are an important area of future work as they hold great promise for unlocking

some of the potential benefits of adding energy storage to photovoltaics. Instead, in

this thesis I study two simple, relatively straight-forward prediction schemes. The

results of solving the model with these simple forecasting schemes give a sense of the

difficulty of achieving the impacts discussed in the previous chapter.

4.1 Information to inform optimizations

The analysis in the previous Chapter uses three sets of input data to inform the

optimization: (1) solar generation, (2) energy prices, and (3) marginal emissions rates.

The problem of solar generation is one that has been studied extensively before. The

shape of generation each day is very consistent while the magnitude changes with

the weather. However, short term (i.e, next day) forecasts relying on day-ahead

weather forcasts are fairly straight forward. The optimization routine discussed in

this thesis focuses on finding the optimal schedule for using solar generated electricity

each day subject to the constraints imposed by the energy storage. Uncertainty in

solar generation would be difficult for this modelling framework to handle and is best

left for a study that relies on linear decision making in each hour. Such a treatment

would require the ability to make hourly adjustments to the scheduling of storage

based on a comparison between prediction and reality in each hour. Including these

decisions in the current framework would be quite difficult and are therefore left as

future work.

Instead, the forecasting schemes discussed here attempt to forecast the inputs di-

rectly impacting the actual objective function: the energy prices in case of maximizing

revenue and marginal emissions rates in the case of maximizing avoided emissions. In

the case where an owner of energy storage-coupled photovoltaics wants to maximize

revenue, a careful prediction of energy prices in each hour would be desired. There

are likely a wide range of variables that could be used to predict energy prices. One

input in particular that could be a useful predictor of real-time prices is the price
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of electricity in the day-ahead wholesale energy market. The next section optimizes

the use of energy storage using day-ahead energy prices. However, the model still

assumes the energy will actual be sold at real-time prices (the storage owner remains

a price taker in the real-time energy market). Therefore, while the optimization uses

day-ahead energy prices to schedule the use of energy storage, the actual revenue is

calculated using real-time energy prices.

In the case where the owner attempts to maximize avoided emissions, estimates

of marginal emissions rates would be needed. Once again, there are many sources of

information that could be used to inform these estimates. One source of information

is the seasonally averaged shape of daily emissions discussed in Chapter 2. The second

set of results in this chapter adopts these seasonal average emissions rate profiles in

the optimization to maximize avoided emissions. However, the ultimate magnitude

of avoided emissions will rely on the actual marginal emissions rates. Therefore, the

results are calculated based on the actual emissions rates.

4.2 Revenue optimization with day-ahead prices

As discussed in Chapter 2, the market for energy in New England is split into two

separate markets: a day-ahead market and a real-time balancing market. Photo-

voltaics, due to their variability, typically participate as price takers in the real-time

market. The analysis in this thesis is restricted to photovoltaics and energy storage

also participating in the real-time market. The energy prices discussed in the previ-

ous chapter were real-time energy prices. This section explores the use of day-ahead

prices as a forecasting tool in the optimization of the use of energy storage.

4.2.1 Day-ahead prices

Day-ahead energy prices are established by clearing the market for energy in each

hour based on bids submitted by generators each day for the next operational day.

Generator bids in New England are submitted in the morning and day-ahead prices

are typically published in the late afternoon. Therefore, along with a forecast for
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solar generation based on weather reports and other data, day-ahead prices could be

used as an input for optimizing the use of solar generation to maximize revenue.

The stronger the correlation between day-ahead prices and real-time prices the

better day-ahead prices are likely to perform as a forecasting tool. Figure 4-1 com-

pares day-ahead prices (red lines) to real-time prices (black lines) during four selected

weeks in 2005. The figure indicates that while the day-ahead prices do not capture

all of the changes in real-time prices there is a clear correlation between the two. The

real-time prices appear to have sharper changes from hour to hour throughout the

day that are not reflected in the day-ahead prices. However, the two sets of prices

often share the same peak hour. This coincidence of the peak hours is an important

factor in the strength of the day-ahead prices as a forecasting input to the model.

4.2.2 Results

The optimization model was solved with the objective of maximizing revenue for the

same 1 MW solar installation studied in the previous chapter. However, day-ahead

prices were used to estimate the best use of energy storage instead of actual real-

time prices. The day-ahead energy market was started in early 2003, so there are

only two years of complete day-ahead energy price data available overlapping the

available solar generation data (up to 2005). Therefore, the model was only solved

for the years 2004 and 2005. The day-ahead prices are used only to schedule the

use of energy storage in each hour. The resulting revenues are calculated using real-

time prices; the photovoltaic system is still assumed to only sell electricity into the

real-time wholesale energy market.

Table 4.1 displays the results of the revenue optimization using day-ahead prices.

As expected, the magnitude of the increases in revenue using imperfect information

(day-ahead prices) instead of real-time energy prices are smaller. The increases in

revenue in 2004 and 2005 were 13.0% and 12.9%, respectively. The analogous increases

using perfect information (real-time prices) were 19.5% and 19.3%.

These results indicate that simply using day-ahead prices in the optimization, with

no other forecasting strategies, revenue increases approximately 2/3 of the maximum
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Figure 4-1: Real-time and day-ahead wholesale energy prices in selected weeks. The
correlation between real-time energy prices (black) and day-qhead prices (red) is not
perfect. However, the two prices do exhibit roughly the same shape and the peaks
often align. Therefore, day-ahead prices are likely to help optimize energy storage
use.
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possible revenue increases can be achieved. It is likely that a more sophisticated

forecasting strategy could yield results close to the theoretical maximum.

Figure 4-2 displays the results of solving the model with day-ahead prices using a

range of storage capacity and power ratings. The shape of this plot is similar to the

shape of the results figures discussed in the previous chapter. However, the magnitude

of the revenue increases illustrated here are approximately 2/3 of the magnitude of

revenue increases calculated using actual real-time energy prices.

Overall, the results using day-ahead prices in the place of real-time energy prices

indicate that even a very simple price forecasting scheme can achieve well over half

of the theoreticaly maximum revenue increases with storage. The use of day-ahead

prices is clearly not a perfect forecasting strategy. However, the results indicate that

more sophisticated forecasting schemes might be able to achieve revenue increases

close to the theoretical maximum.

4.3 Emissions optimization with seasonal average

emissions profiles

Next, the optimiztion model was solved with the objective of maximizing avoided

emissions of CO2. The same 1 MW solar installation that was studied in the previous

chapter is assumed here. However, marginal emissions rates were assumed not to

be known in advance. Instead, seasonal average daily emissions profiles were used

to forecast the relative CO2 emissions rates in each hour. The average marginal

emissions rates were used only to schedule the use of energy storage in each hour.

The magnitude of the resulting avoided emissions were calculated using actual real-

time marginal emissions rates.

4.3.1 Seasonally averaged emissions rate profiles

Seasonally averaged daily marginal emissions rate profiles were discussed in detail in

Chapter 2. The CO2 emissions rate was observed to exhibit two peaks each day:
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Figure 4-2: Revenue increases for photovoltaics with varying energy storage capacities
and powers using day-ahead prices in revenue optimization. The base case revenue
for photovoltaics with no energy storage is denoted by a green dot at the lower left.
The black lines represent different energy storage capacities. The energy storage
capacities vary from 0.1 MWh to 2 MWh (10% of the solar capacity to 200% of the
solar capacity) each black line represents an increase of 0.1 MWh in capacity. The
horizontal axis corresponds to the ratio of the energy storage power to energy storage
capacity. Therefore, values along the right edge of the plot correspond to energy
storage systems with matching values for power and storage (i.e., 0.5 MW and 0.5
MWh, 1 MW and 1 MWh, etc.) The red dotted lines represent constant energy
storage power curves. The solar capacity is constant at 1 MW and the efficiency of
storage is assumed to be 100%.
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one peak during the 5th hour of each day (4:00 am to 5:00 am) and a second peak

in the late evening. The early morning peak was consistent throughout the year

while the evening peak shifted later during the summer months. The emissions rate

profiles exhibited peak values approximately 1/3 greater than the rest of the days.

For the purposes of this analysis, the year was divided into four seasons: (1) Winter:

December 1 to February 28 (or 29 in the case of a leap year), (2) Spring: March 1 to

May 31, (3) Summer: June 1 to August 31, (4) Fall: September 1 to November 31.

The emissions rates for each day in each season where averaged for each hour of the

day. In the results that follow, the daily average emissions rate profile was used as

an input for scheduling the use of solar generation with energy storage.

4.3.2 Results

Seasonally averaged daily emissions profiles were less successful as a forecasting tool

than the day-ahead prices used in the previous section. Optimizing the use of pho-

tovoltaics with energy storage using average emissions rates profiles in each season

was successful at increasing the avoided emissions relative to photovoltaics alone.

However, the increases were small compared with those calculated with perfect in-

formation on emissions rates. Table 4.2 displays the results of optimizing the use of

energy storage using seasonally averaged CO2 emissions rate profiles. The increases

in avoided emissions for CO2 were calculated to be between 11.4% and 20.7% during

the study period. The corresponding increases with perfect information on marginal

emissions rates were significantly higher, between 43.0% and 56.2%. The increases in

SO2 and NOX avoided emissions were also lower than the avoided emissions achieved

with perfect information.

Seasonally averaged daily emissions profiles are a less sophisticated forecasting

tool than day-ahead energy prices. Therefore, the difference in the results found here

are not unexpected. It is likely that more sophisticated methods of estimating avoided

emissions could be designed. This is an important area for future work.
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4.4 Summary

This chapter has discussed the impacts of adding energy storage to photovoltaics

assuming perfect information about electricity prices and emissions rates are unavail-

able. These cases are closer to what might actually be achieved with a realistic

system. The model was solved for the optimal use of energy storage with forecasted

input values. First, day-ahead electricity prices were substituted for real-time prices to

schedule the use of energy storage. Revenue increases of approximately 2/3 the max-

imum possible increases were achieved; day-ahead electricity prices are a good, but

not perfect, forecast for real-time prices. Next, seasonally averaged daily emissions

profiles were used in the model with the objective of maximising avoided emissions.

The results revealed increases in avoided emissions of between 1/4 and 1/3 of the

potential maximum increases. It is expected that these results could be improved

significantly with more sophisticated forecasting methods.
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Chapter 5

Discussion and Policy Implications

The results described previously indicate that it is possible to achieve increases in

revenue or increases in avoided emisisons by adding energy storage to photovoltaics.

However, the results indicate that the two results may be mutually exclusive. This

chapter discusses the policy implications of these findings and discusses the insights

the results offer on the most important characteristics of energy storage including

power, capacity, and cost. Finally, this chapter compares the short and long run

implications of the results.

5.1 Policy implications

The results described in the previous chapters have several important implications

for policies relating to energy storage. First, the results indicate that adding en-

ergy storage to photovoltaics is unlikely to offer additional greenhouse gas emissions

reductions beyond those achieved with the photovoltaics alone without policies to

incentivize emissions reductions (i.e., monetization of emissions reductions). When

owners optimize the use of energy storage to maximize revenues, there is negligible

change in avoided emissions with storage relative to with photovoltaics alone. In fact,

in some instances, the magnitude of avoided emissions could actually be reduced when

energy storage is added to photovoltaics. Therefore, policies that focus on expanding

the use of energy storage such as tax credits, rebates, or other incentives to purchase
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energy storage should not be expected to produce immediate emissions reductions.

Policymakers whose primary goal is to formulate technology-based policies to reduce

GHG emissions might be more successful by focusing on other technologies such as

photovoltaics themselves.

Next, the results described in the previous chapters indicate that it is possible to

achieve significant increases in emissions reductions from photovoltaics. In fact the

potential relative increases in avoided emissions can actually be larger than the po-

tential increases in revenue. When a large storage system is added to photovoltaics,

the avoided emissions can increase by over 100%. However, these emissions reduc-

tions are unlikely to be achieved without well-designed policies. In order to achieve

maximum emissions reductions with energy storage, policies must give generators eco-

nomic incentives to optimize the use of photovoltaic generation with energy storage

for emissions reductions.

A wide range of potential policy mechanisms are currently being proposed to

value GHG emissions reductions including renewable energy credit schemes, carbon

taxes, and cap and trade programs. Cap and trade programs for CO2, in particular,

appear to be gaining significant traction. The details of establishing a successful cap

and trade program are complex and beyond the scope of this thesis. However, the

results here provide insight into the potential role for energy storage in such schemes.

The results indicate that if avoided emissions are valued sufficiently, the additional

reductions achieved from photovoltaics after adding storage could be significant.

The magnitude of the emissions reductions achieved are dependent on how the

energy storage is actually dispatched. Therefore, in order to achieve large increases in

avoided emissions, the payment for emissions reductions to photovoltaic generators

should depend on how the owner uses the energy storage. If the owner sells most

of the solar generated electricity during the daytime, significant emissions reductions

are unlikely to be achieved. However, if the owner shifts solar generation to the

late evening or early morning, reductions could be large. It is likely that renewable

generators will have to be paid depending on what hour of the day they sell solar

generation. Policies could be designed to pay owners flat rates for different periods
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Table 5.1: Value of CO2 avoided emissions necessary to incentivize emissions opti-
mization.

Units Year
2000 2001 2002 2003 2004 2005

Revenue (Rev. Opt.) $ 55758 58777 46400 59661 62137 90389
Revenue (Em. Opt.) $ 37674 40393 34736 46107 49296 70040
∆ CO2 (Em. Opt.) metric ton 310.8 295.9 322.9 345.7 304.5 351.0
CO2 value $/metric ton 58.19 62.13 36.12 39.21 42.17 57.97

of the day or could be established such that they try to estimate the actual emissions

reductions achieved using data collected through a program similar to the EPA’s

CEM program. The infrastructure to calculate these payments could be costly.

Finally, the results offer some indication of the magnitude of the payments that

would be necessary to give owners of photovoltaics with energy storage sufficient

incentive to maximize emissions reductions as opposed to maximizing revenue from

the direct sale of energy in higher price hours. With energy storage, photovoltaics

owners can increase revenues simply by shifting power to higher priced periods. In

order to give owners the incentive to instead maximize emissions reductions, the

economic value of those greater emissions reductions must be greater than the value

offered by simple energy arbitrage. The value (or price) of CO2 emissions that would

achieve the maximum possible emissions reductions can be calculated by dividing the

difference in revenues under revenue optimization and avoided emissions optimization

by the increase in CO2 avoided emissions under emissions optimization.1 Table 5.1

displays the values calculated from the results in Chapter 3.2 The final row in the

table is the value for carbon emissions that would need to be paid to a generator in

order to make that generator indifferent between optimizing the use of energy storage

for maximum revenue (via selling energy during higher priced periods) and optimizing

1The changes in avoided emissions when optimizing to maximize revenues were found to be
negligible in Chapter 3. Therefore, they are not included in these calculations.

2The values calculated here refer to the net values to the photovoltaic generator after transaction
costs are accounted for. Depending on the complexity of the cap and trade program, transaction
costs could be significant.
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for maximum avoided emissions.3

The values in Table 5.1 represent the price of CO2 necessary to achieve the max-

imum achievable emissions reductions (assuming perfect optimization). These values

are high compared to many of the prices currently being discussed in the context of

cap and trade programs in the US. However, some researchers believe values in the

$40 to $60 per metric ton of CO2 emissions could be realized. These prices for CO2

are not necessary to achieve additional emissions reductions from photovoltaics with

energy storage. Owners of solar generation with energy storage will optimize the use

of storage to maximize revenue regardless of where that revenue is derived. Therefore,

while lower values for CO2 emissions will not achieve all of the emissions reductions

possible, some of the generation is still likely to be shifted to hours with higher emis-

sions rates. Therefore, smaller increases in avoided emissions are likely to be achieved.

Higher CO2 avoided emissions values will yield larger increases in avoided emissions.

However, if the value associated with CO2 avoided emissions climbs higher than the

values listed in Table 5.1 no additional avoided emissions would be possible.

5.2 Wholesale vs. retail electricity prices

The analysis in this thesis assumed owners of the photovoltaics sell the energy gener-

ated in the wholesale market for electricity. Therefore, the analysis and results refer

to the economic benefits of photovoltaics with energy storage as revenue. However, in

the case of smaller photovoltaics installations subject to net-metering, the owner may

simply use the generated electricity locally in lieu of purchasing electricity from the

grid. In these cases the economic benefits of coupling energy storage to photovoltaics

would actually be in the form of savings instead of revenue.

In the case where solar generated power is used locally, as in a net-metering

arrangement, the owner avoids the need to pay for transmission, distribution, and

delivery costs associated with grid purchased electricity. The “savings” yielded by

3It is important to recall here that a central assumption in this thesis holds that the solar
generation does not impact the power grid dispatch order or the market prices for electricity.
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photovoltaics in these cases are equivalent to the retail price of electricity rather than

the wholesale price. Historically, the additional costs associated with retail electricity

(i.e., transmission, distribution, etc.) have constituted a significant portion of total

electricity bills. Currently, the retail market for electricity is still evolving rapidly

in New England. Reasonably complete data sets of hourly retail prices would be

needed to perform the analysis in this thesis assuming savings against retail prices

instead of selling energy at wholesale prices. Currently, relatively few consumers in

New England are subject to time-varying retail prices (i.e., real-time hourly prices,

time-of-use prices, etc.)

The difference between the wholesale and retail pricing results will depend on

the specific retail pricing regime. For example, the revenue and emissions impacts

of adding energy storage with time-of-use (TOU) retail pricing would depend on the

specific time periods selected in the rate design process. If solar generation were to

take place during the peak pricing period, adding energy storage would not increase

revenue. However, if solar generation were to take place during a lower price time

period, energy storage could add value by shifting that generation into the highest

price time period. TOU pricing would likely amplify the importance of storage capac-

ity over storage power as the peak price period would most likely be multiple hours

in duration. The energy storage system could discharge over multiple hours without

reducing revenue.

When energy storage is added to photovoltaics with hourly real-time retail pricing

(RTP) the savings offered by photovoltaics could be somewhat larger than the revenue

results discussed in this thesis. However, the relative increases in revenue/savings

would be the same as those discussed with wholesale pricing; the costs associated

with delivering electricity do not change on an hourly basis. The unchanging nature

of these prices is subject to regulation. In principle, these costs could change on an

hourly basis. In a regime where these costs change hourly, the increases in revenue

possible with energy storage would likely increase.

Studying the impacts of adding energy storage to photovoltaics in the context of

the retail price of electricity will become increasingly important as the retail market
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continues to evolve and real-time or time-of-use retail-pricing becomes more common.

5.3 Most important characteristics of energy stor-

age

In Chapter 3, it was found that at a given storage capacity, the majority of the

potential revenue increase can be achieved with relatively low storage power. This

was found to be especially true for systems with high storage capacities relative to

photovoltaic capacity. Storage power and storage capacity both experience diminish-

ing returns with increasing size. However, it appears storage power saturates more

quickly than storage capacity. The greater relative importance of energy vs. power

would make energy storage technologies such as compressed air, flow batteries, and

NaS batteries particularly attractive.

These observations are only relevant to discussions of the impacts derived from

energy arbitrage using energy storage-coupled photovoltaics. For other applications,

such as providing short term operating reserves or frequency regulation, high power

storage would be more valuable. Therefore, the ideal balance of energy storage power

to energy storage capacity will depend heavily on the anticipated application(s) for

the energy storage. The results discussed in this thesis, focusing on the application of

energy arbitrage, indicate that if the costs of storage capacity and storage power are

similar, the ideal system would have higher storage capacity and lower storage power.

A power to capacity ratio of approximately 0.3 to 0.4 appears ideal. Of course, as the

relative costs of storage power and storage capacity change the ideal ratio between

the two will also change.

5.4 The cost of energy storage

Energy storage cost is a critical parameter in determining the potential impact of en-

ergy storage. While adding energy storage to photovoltaics can increase the revenues

generated by photovoltaics, adding energy storage is not without cost. The costs of
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different energy storage technologies vary widely. It is difficult to pin down specific

costs for energy storage. For example, compressed air energy storage has been re-

ported to cost approximately $1-$5/kWh of capacity while flow batteries are report

to cost approximately $500-$1300/kWh of capacity [10]. These costs are likely to fall

rapidly given the increased attention from both the scientific and investment commu-

nities that storage has found recently. These costs are actually quite low relative to

the cost of installing photovoltaics. Installed photovoltaics typically cost more than

$5000/kWh. Therefore, in instances where investments in photovoltaics and energy

storage are being made simultaneously, it may make sense to reduce the size of the

photovoltaics slightly and add energy storage capacity.

Since the cost of energy storage is a moving target that is very difficult to pin

down, this thesis has avoided focusing on energy storage costs. However, the analysis

would be incomplete without an attempt to consider the results in the context of

energy storage costs. This section provides such an analysis.

One way to consider the results given here in the context of energy storage costs is

to calculate the present value of adding energy storage to photovoltaics for a variety of

energy storage costs. Present value is a way to calculate the current value of a series

of future payments, discounted to reflect the time value of money. The calculation of

present value and expected investment costs can be used to calculate the net present

value (NPV) of a given investment. A positive NPV represents an investment that

would net positive value and therefore should be considered. A project with a negative

NPV represents an investment that should be rejected. In order to evaluate whether

it is advantageous to add energy storage to photovoltaics, one should compare the

cost of adding energy storage to the present value of the additional revenue derived

from the storage over the life of the storage system.

Table 5.2 displays the present value of adding energy storage to photovoltaics

under a variety of assumptions. In Chapter 3, adding a 1 MW/1 MWh energy stor-

age system to a 1 MW photovoltaic installation was found to increase the revenue

derived from the photovoltaics by an average of $11,609 dollars per year. However,

the range of revenue increases was from $8,253 to $14,605. Table 5.2 considers each
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Table 5.2: Present value of adding 1 MW/1 MWh storage to 1 MW photovoltaics.

Project Lifetime 10 years 25 years
Discount Rate 5% 10% 5% 10%

Low Revenue $63,727 $50,711 $116,320 $74,913
Average Revenue $89,642 $71,332 $163,620 $105,380
High Revenue $112,780 $89,741 $205,840 $132,570
1 Energy storage efficiency = 100%.

of these different revenue values throughout the life of the storage. The lifetime of

storage technologies also varies widely. Therefore, the table includes calculations for

an assumption of a 10 year lifetime and a 25 year lifetime. A 25 year lifetime is likely

to be more compatible with photovoltaics installations that often have 20 or 25 year

warranties.

The present values in Table 5.2 represent the maximum capital costs (for a 1

MW/1 MWh storage system) for which adding energy storage to photovoltaics would

make economic sense. Dividing each of these numbers by 1000 yields the threshold

capital costs in $/kWh. The range of costs that must be achieved (depending on the

assumptions used regarding lifetime and discount rate) is approximately $50/kWh to

$205/kWh. The present value of the increases in revenue possible with energy storage

do not appear high enough to justify the addition of energy storage to photovoltaics

given the current high costs of storage. In locations where space constraints are not

the key factor determining photovoltaic size, owners who wish to invest additional

capital would likely be better off simply increasing the size of their photovoltaic

intallation. However, as the cost of energy storage falls, the net present value of adding

energy storage to photovoltaics could become positive. It might also be possible to

achieve effective cost reductions by fully integrating energy storage into a photovoltaic

installation. For example, it might be possible to utilize the same power conversion

equipment (i.e., inverter, meter, etc.) for both the photovoltaics and the energy

storage. Innovations such as these could lower the barriers to adding energy storage

to photovoltaics.
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In reality, as discussed in Chapter 1, energy storage can provide a variety of

services on the power grid. The combined revenues and collective present value of

providing all of these services would determine the actual value of adding energy

storage to photovoltaics. The revenue from energy arbitrage explored in this thesis

is simply one piece of the total picture.

5.5 Short run vs. long run implications of results

The results described in the previous chapters and discussed above are concerned only

with the short run impacts of adding energy storage to photovoltaics. The results

primarily deal with the economics of individual photovoltaic installations with energy

storage. The economic analysis does not consider broader market-wide impacts. In

fact, one of the primary and necessary assumptions in this analysis is that the en-

ergy stoage-coupled photovoltaics do not impact the markets as a whole. The results

indicate that, in the short term, adding energy storage to photovoltaic installations

can be expected to have little GHG emissions impact above and beyond that already

achieved with the photovoltaics alone. The increased revenues associated with adding

energy storage to photovoltaics only consider energy storage’s ability to enable arbi-

trage. Taken alone, these short run results underestimate the potential economic and

environmental benefits of adding energy storage to photovoltaics.

There are a variety of additional ways energy storage can add value to photo-

voltaics. First, energy storage can smooth minute-to-minute variations in the power

output of photovoltaics. Minute-to-minute variations can make it difficult to effi-

ciently manage the power grid. The power variations can cause irregularities in both

frequency and voltage requiring additional procurement of ancillary services by the

grid operator. Ultimately, increased requirements for ancillary services will increase

the costs of operating the power grid and in most cases will also increase emissions.

Energy storage can reduce these requirements.

Energy storage can also enable photovoltaics to participate in markets that the

photovoltaics alone would not be able to access. Many energy storage systems are
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ideally suited to provide ancillary services such as frequency regulation and voltage

support. In fact, in one analysis, it was found that the primary source of value for en-

ergy storage in the markets operated by the New York ISO was frequency regulation

[18]. Energy storage could also allow photovoltaics to receive higher installed capac-

ity payments in forward capacity markets. In New England, intermittent resources

receive reduced capacity payments compared to traditional dispatchable generation

sources. Energy storage that allows interday storage as opposed to the intraday stor-

age considered in this thesis would allow photovoltaics to participate in day-ahead

energy markets.

Further, energy storage capabilities can also be used to provide fast-start reserve

capabilities. Used in this way, energy storage facilities can reduce the number of

traditional fossil units that must be running to provide reserve capacity. This is

another way that energy storage can provide environmental benefits. However, in

many cases the infrastructure and market designs to allow energy storage to provide

reserve capabilities are very much still in development.

Finally, if photovoltaics achieve large grid penetration levels, energy storage has

the potential to enable additional phtovoltaics installations. Many researchers believe

there is a peak penetration level for photovoltaics that current power grids can handle

without major upgrades or redesigns. By firming intermittency, energy storage could

play an enabling role in allowing greater amounts of photovoltaics. In this role, the

environmental benefits of energy storage are very strong.
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Chapter 6

Conclusion

Energy storage technologies have the potential to alleviate some of the challenges

associated with intermittent renewable generation sources. Solar resource variability

and intermittency are important limiting factors in the deployment and growth of

photovoltaics at large scale. As new storage technologies emerge and the costs of

conventional storage technologies fall, energy storage has the potential to become an

important complementary technology to photovoltaics.

6.1 Summary

This thesis has attempted to quantify some of the economic and emissions impacts of

adding energy storage to photovoltaics in New England using historical solar genera-

tion, energy prices, and greenhouse gas emissions rates. Understanding these impacts

in detail could be critical to designing the most effective policies to drive the growth

and deployment of photovoltaics and/or energy storage with environmental motiva-

tions. In particular, this thesis has attempted to answer the following central question:

Does coupling energy storage to photovoltaics enhance or reduce the economic and

emissions benefits associated with small to mid-scale photovoltaic installations?

The results reveal that significant revenue increases can be achieved when energy

storage is added to photovoltaics. The annual increases in revenue that photovoltaics

installations could have achieved with energy storage capacity and power equal to the
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Figure 6-1: Revenue increases for photovoltaics with varying energy storage capacities
and powers. The blue box corresponds to ideal energy storage system capacity and
power combinations. The area covered by the green box indicates that significant
revenue increases are possible even with relatively small investments in energy storage.

98



solar capacity between 2000 and 2005 were found to be between 19.3% and 31.1% with

an energy storage efficiency of 100%. Unfortuneately, the potential revenue increases

were found to fall to between 9.1% and 21.3% with 80% efficient storage and between

3% and 14.5% with 60% efficient storage.

Figure 6.1, from Chapter 3, summarizes the revenue increases that are possible

with varying energy storage capacities and powers. The blue shaded box in this fig-

ure corresponds to what are likely the ideal combinations of energy storage capacities

and powers. The points within the blue box correspond to energy storage systems

that achieve the majority of the increases in revenue possible while avoiding over-

investments which would suffer from large diminishing returns to both capacity and

power. Second, the green box in the figure indicates energy storage and power com-

binations for which significant revenue gains are possible even with relatively small

investment. The slope of the lines in these regions are quite steep, indicating that

even with relatively little investment in energy storage, large revenue increases are

possible.

The results also indicate, however, that when owners utilize energy storage only to

maximize revenue, the changes in avoided emissions with energy storage are negligi-

ble. Adding energy storage to photovoltaics does not yield additional environmental

benefits beyond those achieved by the installation of photovoltaics alone.

However, the results also reveal that it is possible to achieve significant increases

in the emissions offset by photovoltaics by adding energy storage. Adding energy

storage with equivalent capacity and power to the capacity of the solar generation

yielded maximum avoided CO2 emissions increases of up to 56.2% with 100% efficient

storage. With large storage installations, it was found that avoided CO2 emissions

could increase as much as 116%. This means that with large amounts of energy storage

the CO2 emissions offset by photovoltaics could be more than doubled depending on

the efficiency of energy storage. However, in cases where energy storage is utilized

to maximize emissions reductions, revenue is found to always decrease. The revenue

reductions were found to be between 5% and 12% depending on the year.

Overall, these results indicate that there is a tradeoff between the economic and
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environmental benefits that can be achieved when energy storage is added to pho-

tovoltaics. While it is possible to increase revenues with energy storage and it is

possible to increase avoided emissions, these two objectives directly compete with

each other. It is not possible to simultaneously achieve large increases in revenue

and large increases in avoided emissions. Policy mechanisms that pay owners for ver-

ifiable CO2 emissions reductions could overcome this trade-off. However, the value

owners derive from CO2 emissions reductions would have to be large enough to ensure

the photovoltaics yield the same or greater revenue than if energy storage was used

to maximize revenues without considering emissions reductions. The value of CO2

emissions reductions that would be necessary to achieve the maximum possible CO2

emissions reductions was found to be in the range of $40 to $60 per metric ton.

Finally, the results of the analysis in this thesis may also be of interest to energy

storage researchers. The results indicate that for the appliation of adding energy

storage to photovoltaics for energy arbitrage, storage capacity is a more important

parameter than storage power. If the cost of capacity (MWh) and power (MW) for

a given technology are similiar, the ideal ratio of storage power to storage capacity,

as indicated in Figure 6.1, is likely approximately 0.3 or 0.4.

6.2 Future work

“Finish each day and be done with it. You have done what you could.”

- Ralph Waldo Emerson

There are a number of areas of future work that would extend or complement the

analysis in this thesis.

First, there are a number of ways in which the model formulated in this thesis

could be extended. First, the model could be extended to consider inter-day storage

use. Perhaps the most straightforward method of doing this would be to use the same

model but to optimize over a 25 hour period. The 25th hour would have an artificial

“transfer” price assigned to it which reflects the expected value of holding energy in

storage until the following day. The energy used in the final hour at the transfer
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price would not be counted in calculations of revenue but would instead be passed

to the following day’s optimization. This method of considering inter-day energy

storage optimization would likely be consistent with the way actual energy storage

installations would be optimized. Owners would likely pick a price threshold below

which they would hold stored energy (assuming minimal losses) until the next day.

Multiple-day storage could also be studied by extending the optimization model

to optimize the use of storage over multiple days, weeks, months, or even the entire

year. The complexity of the model and the computation time required to find a

solution grows very quickly as additional time is added. Extending the optimization

time likely would only make sense if owners of photovoltaic installations with storage

could be expected to also attempt to optimize storage use over extended periods of

time. It is very difficult to forecast solar generation, energy prices, and emissions rates

well into the future, limiting how far into the future owners would likely attempt to

optimize the use of energy storage-coupled photovoltaics.

The model could also be expanded to consider day-ahead energy storage capabil-

ities. The solar generation in a given day could be stored and used the following day.

Optimization under these conditions would be significantly easier as the total energy

available from storage would be known a day in advance. Considering day-ahead

energy storage would also require a detailed analysis of how owners of photovoltaics

with energy storage could also participate in day-ahead energy markets.

A second important area for future work is the detailed analysis of specific policy

mechanisms that could be formulated to unlock the increase in avoided emissions

that are possible when adding energy storage to photovoltaics. Giving owners the

incentive to maximize emissions reductions would require both putting a value on CO2

emissions and developing a detailed method of calculating and/or verifying hourly

emissions rates. The current cap and trade policies being discussed to put a price on

CO2 emissions are unlikely to immediately have capabilities such as these.

Another important area for future work is in the development of advanced algo-

rithms for forecasting solar generation, energy prices, and hourly marginal emissions

rates. The results of the optimization of the use of energy storage with imperfect
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information indicate the importance of good forecasting algorithms for these input

parameters. The accuracy of forecasting tools could determine whether or not it is

economically favorable to add specific energy storage technologies to photovoltaics.

More accurate forecasting tools could also hasten the adoption of energy storage.

There are also many potential economic and emissions impacts associated with

adding energy storage to photovoltaics that were not discussed in detail in this thesis.

Ultimately, it was only possible to focus on a somewhat narrow set of potential impacts

of adding energy storage to photovoltaics here. As discussed in Chapter 1, energy

storage could enable photovoltaics to participate in a variety of additonal electricity

markets including markets for ancillary services, reserves, and/or capacity markets.

Participation in each of these markets could have both economic and environmental

impacts. Studying the role of energy storage-coupled photovoltaics in these markets

is an important area for additional work.

Finally, the analysis in this thesis can be expanded to study the impacts of adding

energy storage to other intermittent renewable generation technologies. While the

trade-off between revenue enhancements and avoided emissions are likely to also be

present for other renewable generation, the magnitudes of the potential changes could

be different. Wind generation, for example, typically changes rapidly throughout the

day and is often strongest during the overnight hours. Therefore, in the case of adding

energy storage to wind generation, one might expect a reduction in avoided emissions

when optimizing for revenue. Further, the duration of energy storage would likely

be significantly longer than that required with photovoltaics. The delay between

peak generation and peak prices is typically only a few hours for photovoltaics where

it could be nearly a full day for wind. The intermittency of wind may also make

multiple day storage optimization more important. Studying how easily the results

of this thesis transfer to other renewable generation technologies is an important area

for future work.

102



Appendix A

Solar Generation Data

Normalization

Ideally, the analysis in this thesis would use actual historical measured values for solar

generation. Unfortunately, measured data of solar generation is difficult to find and

the data is often incomplete. Therefore, this thesis instead uses modeled hourly solar

radiation data from the National Solar Radiation Database (NSRD) [35]. The data in

the NSRD is given in units of W/m2 of solar radiation. Current photovoltaic systems,

however, are only able to convert a fraction of this energy into electric power. System

efficiencies vary widely based on photovoltaic device properties as well as installation

location. The NSRD data must be normalized for use in this analysis. This appendix

describes the normalization of the NSRD data for use in the optimization model

formulated in Chapter 2.

The normalization described here impacts the absolute values of revenue and

emissions increases found in the analysis. However, the relative changes in revenue

and avoided emissions, the primary focus of the analysis, are not impacted by the

selected normalization procedure.

In this study I used measured hourly PV generation data to normalize the radia-

tion data in the NSRD. Unfortuneately, measured generation data was only available

for years prior to 2003 and, therefore, was insufficient to be used directly in the anal-

ysis. Measured data from five PV sites in New England were selected to perform
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Figure A-1: Normalized hourly solar generation data.

the normalization. The five sites collected data during various periods during the

the years 1998 to 2002. Two of the systems are located in North Dartmouth, MA

with rated capacities of 14 kW and 1 kW. The other three systems are located in

Cambridge, MA, Lynn, MA, and Middletown, RI with ratings of 23 kW, 5 kW, and

40kW, respectively. The systems were selected for their high data availability rather

than their geographic distribution. While data was collected for these sites between

1998 to 2002, the dataset was most complete for the year 2002. Therefore, data from

2002 was selected to perform the normalization.

The measured data was used to quantify the expected capacity factor of actual

installed PV systems. I first divided the sum of the measured generation from the

sites described above in each hour by the sum of the sites’ rated capacities. The

result yields the sites’ hourly capacity factor, or the sum of the actual generation in

each hour divided by the sum of the sites’ rated capacities. I then scaled the results

to represent the generation that would be expected from a hypothetical site with a

rated capacity of 1 MW.
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Next, the solar radiation data from the 66 NSRD sites in New England were

averaged in each hour [35]. The averaged data was then scaled uniformly in all hours

such that the maximum value matched the maximum hourly capacity factor for a 1

MW system calculated from the measured generation data. The result is illustrated

in Figure A-1. The green line in the figure represents the normalized NSRD data

while the blue line represents the normalized measured generation data. A uniform

normalization factor was applied to all of the NSRD data used in this study (2000 to

2005).

Interestingly, the difference between summer peak and winter peak generation

apppears to be smaller for the measured data relative to the data normalized from

the NSRD solar radiation data. This same discrepancy was found when the same

calculation was performed for data from 2000 and 2001. I considered trying to correct

for this difference. However, for simplicity’s sake, I decided to leave the normalized

data as is. Therefore, the normalized solar generation data used in this thesis may

make a conservative estimate of the magnitude of winter generation. This will impact

the baseline values for revenue and avoided emissions from photovoltaic systems.

However, this difference should have only a minimal impact on the relative changes

in revenue and avoided emissions with energy storage.

Figure A-2 compares the normalized measured solar generation data with the

normalized data from the NSRD. While there are some differences, the two datasets

have similar shapes and magnitude in most days, indicating the normalization of the

NSRD data is reasonable. Sometimes the normalized solar radiation data appears to

over estimate the actual solar generation while in other hours the normalized dataset

underestimates the actual solar generation. Some of these discrepancies may be due

to the wider geographic distribution of sites in the NSRD.

105



Figure A-2: Comparison of normalized NSRD solar radiation data to normalized
measured solar generation data in selected weeks. The blue lines represents the nor-
malized measured solar generation data while the green lines represent the normalized
NSRD data.
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Appendix B

GAMS Optimization Model

Formulation

This appendix contains the source code for the optimization model used in this the-

sis. The model was formulated and solved using the General Algebraic Modeling

System (GAMS). The input data and model parameters are passed to the model

from MATLAB using the GAMS GDXMRW utility function. The GDXMRW utility

allows MATLAB to read and write files in GAM’s GDX file format. Once the model

is solved, the results are returned to MATLAB for processing and plotting.

GAMS Code:

$title Energy Storage and Solar Revenue Maximization

$offsymxref

* The model optimizes the use of storage over a 24 hour period

sets t scheduling hours / 1*24 /

* This code loads that data parameters from the file that MATLAB wrote

execute_load ’DataToGAMS.gdx’ storagecapacity, storagepowercharge,

storagepowerdischarge,storageefficiency, price, newgen, CO2er,

SO2er, NOXer;

variables

pstorage(t) energy used from storage during hour t

pstored(t) solar energy stored during hour t
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pused(t) solar generation used directly during hour t

storedenergy(t) the volume of energy in storage after hour t

revenue total operating revenue during entire day

hourlyrevenue(t) revenue generated in hour t

CO2emissionsreduction total CO2 emissions reduction

hourlyCO2emred(t) CO2 emissions reduction in hour t

SO2emissionsreduction total SO2 emissions reduction

hourlySO2emred(t) SO2 emissions reduction in each hour

NOXemissionsreduction total NOX emissions reduction

hourlyNOXemred(t) NOX emissions reduction in each hour

positive variables pstorage, pstored, pused, storedenergy;

* The energy in storage cannot exceed the storage capacity

storedenergy.up(t) = storagecapacity;

storedenergy.lo(t) = 000;

* The energy stored or used from storage in a single hour

* cannot exceed the storage power

pstorage.up(t) = storagepowerdischarge;

pstored.up(t) = storagepowercharge;

* The total power used directly each hour is given by the

* new solar generation in that hour.

pused.up(t) = newgen(t);

equations

revfn total revenue -- an objective fn

hourlyrev(t) hourly revenue

CO2emfn total CO2 emissions reduction -- an objective fn

hourlyCO2em(t) hourly CO2 emissions reductions

SO2emfn total SO2 emissions reduction

hourlySO2em(t) hourly SO2 emissions reductions

NOXemfn total NOX emissions reductions

hourlyNOXem(t) hourly NOX emissions reductions

storeeq(t) the balance in the storage tank

geneq(t) generation must be used or stored

onefunc(t) make sure the storage is only doing one thing

revfn..

revenue =e= sum(t, pstorage(t)*price(t)+pused(t)*price(t));

hourlyrev(t)..

hourlyrevenue(t) =e= pstorage(t)*price(t)+pused(t)*price(t);
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CO2emfn..

CO2emissionsreduction =e= sum(t, pstorage(t)*CO2er(t)+pused(t)*CO2er(t));

hourlyCO2em(t)..

hourlyCO2emred(t) =e= pstorage(t)*CO2er(t)+pused(t)*CO2er(t);

SO2emfn..

SO2emissionsreduction =e= sum(t, pstorage(t)*SO2er(t)+pused(t)*SO2er(t));

hourlySO2em(t)..

hourlySO2emred(t) =e= pstorage(t)*SO2er(t)+pused(t)*SO2er(t);

NOXemfn..

NOXemissionsreduction =e= sum(t, pstorage(t)*NOXer(t)+pused(t)*NOXer(t));

hourlyNOXem(t)..

hourlyNOXemred(t) =e= pstorage(t)*NOXer(t)+pused(t)*NOXer(t);

storeeq(t)..

storedenergy(t) =e= storedenergy(t-1) - pstorage(t) +

storageefficiency*pstored(t);

geneq(t)..

newgen(t) =e= pstored(t)+pused(t);

onefunc(t)..

pstorage(t)*pstored(t) =e= 0;

model ucom / all / ;

* The solve statement for revenue optimization

solve ucom using nlp maximizing revenue;

* The solve statement for emissions optimization

* solve ucom using nlp maximizing CO2emissionsreduction;

parameter hourlyrevenuesol(t);

parameter hourlyCO2emredsol(t);

parameter hourlySO2emredsol(t);

parameter hourlyNOXemredsol(t);

parameter endingstoragesol;

parameter hourlypusedsol(t);

parameter hourlypstoragesol(t);

parameter hourlypstoredsol(t);

parameter hourlystoredenergysol(t);
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* These lines gather the data to be returned to MATLAB

hourlyrevenuesol(t) = hourlyrevenue.l(t);

hourlyCO2emredsol(t) = hourlyCo2emred.l(t);

hourlySO2emredsol(t) = hourlySO2emred.l(t);

hourlyNOXemredsol(t) = hourlyNOXemred.l(t);

hourlypusedsol(t) = pused.l(t);

hourlypstoragesol(t) = pstorage.l(t);

hourlypstoredsol(t) = pstored.l(t);

hourlystoredenergysol(t) = storedenergy.l(t);

* These lines write the results to a file to be read by MATLAB.

execute_unload ’DataFromGAMS.gdx’ hourlyrevenuesol,

hourlyCO2emredsol, hourlySO2emredsol, hourlyNOXemredsol,

hourlypusedsol, hourlypstoragesol, hourlypstoredsol,

hourlystoredenergysol;
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