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Abstract— In this work we derive steady-state cornering
conditions for a single-track vehicle model without restricting
the operation of the tires to their linear region (i.e. allowing the
vehicle to drift). For each steady-state equilibrium we calculate
the corresponding tire friction forces at the front and rear tires,
as well as the required front steering angle and front and rear
wheel longitudinal slip, to maintain constant velocity, turning
rate and vehicle sideslip angle. We design a linear controller
that stabilizes the vehicle dynamics with respect to the steady-
state cornering equilibria using longitudinal slip at the front
and the rear wheels as the control inputs. The wheel torques
necessary to maintain the given equilibria are calculated and
a sliding-mode controller is proposed to stabilize the vehicle
using only front and rear wheel torques as control inputs.

I. I NTRODUCTION

Stability control for passenger vehicles is usually imple-
mented via differential braking (independent braking control
on all four wheels) [1], active steering [2], [3], and, more
recently, via integrated chassis control [4], [5], [6]. Thelatter
incorporate and coordinate active chassis systems including
differential braking, traction control, active steering and sus-
pension. Alternative means of power transmission for electric
and hybrid vehicles have also allowed the development of
vehicle stability systems based on independent wheel torque
control [7], [8]. The common objective of all of the above
systems is to restrict the operation of the vehicle, such that
the tires operate within the linear region of the wheel slip-tire
friction characteristic, and to match the vehicle’s response to
that of a simple vehicle model in steady-state cornering [9].
In this way, the average driver can maintain control of the
vehicle during an emergency.

Accident avoidance during an emergency may require
taking advantage of the full handling capacity of the vehicle,
and the employment of expert driving skills, rather than
restricting the response of the vehicle. It is envisioned that a
new generation of active safety systems will take advantage
of the increased situational awareness of modern and future
vehicles and use expert driver skills to actively maneuver
vehicles away from accidents. With this vision in mind,
an analysis of expert driving techniques using nonlinear
programming optimization was initiated in [10], [11], [12]
and [13]. The driving techniques investigated in these ref-
erences were those used by rally drivers, which involve
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operation of the vehicle outside the stable operation envelope
enforced by the current stability systems. The analysis in
[10], [11], [12] and [13] provided a significant understanding
of the dominant effects during execution of expert driving
techniques, but the open-loop approach of the optimization
is not implementable in the presence of uncertainties.

A study of the stability of vehicle cornering equilibria
with the tires operating at their full range (including linear
and nonlinear range) and the design of a stabilizing front
wheel steering controller appeared in [14]. The authors of
that work used a single-track vehicle model and assumed
pure cornering conditions, that is, complete absence of
longitudinal forces (tractive or braking) at the wheels. A
phase-plane analysis of the cornering equilibria in this work
was followed by the design of a linear robust stabilizing
steering controller.

The existence of steady-state cornering conditions with
excessive vehicle sideslip was demonstrated in [15]. In that
reference the author derived explicit steady-state cornering
conditions for a single track vehicle model with its tires op-
erating at their full range, using the simplifying assumption
of a free rolling rear wheel.

Building on the approach of [15], in this work we allow
for the combined cornering and traction/braking tire forces
to develop and derive explicit expressions of the steady-
state conditions. We design a sliding mode controller using
independent wheel torque inputs to stabilize the vehicle
with respect to the above steady-states. In the proposed
control scheme the steering angle is fixed at its steady-
state value, and stabilization is achieved purely by regulation
of tractive/braking forces in analogy to well-known and
previously studied expert driving techniques [10], [11], [12]
and [13].

In the following, we first introduce a single-track model
with nonlinear tire characteristics and a static map of lon-
gitudinal acceleration to normal load transfer at the wheels.
For a given triplet of corner curvature, vehicle speed and
sideslip angle, we calculate the necessary front and rear
wheel longitudinal slip amounts, and front wheel steering
angle, necessary to maintain the steady-state cornering. A
linear controller is designed to stabilize the vehicle along
the derived equilibria using longitudinal wheel slip control
and constant steering angle. The steady-state wheel speeds
and the corresponding torques at the front and the rear axles
are then calculated, and a sliding mode controller using
independent front and rear wheel torque inputs is proposed.
A vehicle model of increased fidelity, namely a single-track
model with suspension dynamics, is used to demonstrate the
efficiency of the controller.
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II. V EHICLE MODEL

In this section we introduce a single-track vehicle model
with nonlinear tire characteristics. We employ a static mapto
calculate the normal load transfer from front to rear wheels,
and vice-versa, arising from the longitudinal acceleration of
the vehicle.

A. Equations of Motion of the Single-Track Model

The equations of motion of the single-track model (Fig. 1)
may be expressed in a body-fixed frame with the origin at
the vehicle’s center of mass (C.M.) as follows:
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Fig. 1. Single-track vehicle model.

m
(

V̇x − Vyψ̇
)

= fFx cos δ − fFy sin δ + fRx, (1)

m
(

V̇y + Vxψ̇
)

= fFx sin δ + fFy cos δ + fRy, (2)

Izψ̈ = (fFy cos δ + fFx sin δ) ℓF − fRyℓR, (3)

whereVx = V cosβ, Vy = V sinβ. In the above equations
m is the vehicle’s mass,Iz is the polar moment of inertia
of the vehicle,Vx andVy are the body-frame components of
the vehicle velocityV , ψ is the yaw angle of the vehicle, and
δ is the steering angle of the front wheel. Byfij (i = F,R
andj = x, y) we denote the longitudinal and lateral friction
forces at the front and rear wheels, respectively. The vehicle
sideslip angle is given byβ = tan−1(Vy/Vx).

B. Tire Forces

In [16] the theoretical longitudinal and lateral slip quanti-
ties are defined, respectively, as:

six =
Vix − ωiri
ωiri

, siy =
Viy

ωiri
= (1 + six) tanαi.

where the indexi = F,R denotes the front and rear axle of
the single-track model respectively,ωi is the rotational speed
of the wheel,ri is the wheel radius, andVij , (i = F,R, i =
x, y) are the tire frame components of the vehicle body
velocity vector at the front and rear axles. The slip angle
at each wheel is given bytanαi = Viy/Vix. The overall, or

total, slip at each tire is defined bysi =
√

s2ix + s2iy.
The relative velocities of the front and rear wheels of

the single-track model along each wheel’s longitudinal and
lateral axes are given by:

VFx = V cos(β − δ) + ψ̇ℓf sin δ, VRx = V cos(β),

VFy = V sin(β − δ) + ψ̇ℓf cos δ, VRy = V sin(β) − ψ̇ℓR.

Assuming linear dependence of the tire friction forces on
the tire normal force, we obtain

µi = fi/fiz, µij = fij/fiz, i = F,R, j = x, y, (4)

wherefi =
√

f2
ix + f2

iy is the total friction force at each tire,
µi is the total friction coefficient,µij are the longitudinal and
lateral friction coefficients, andfiz are the normal loads at
the front and rear tires.

We calculate the total friction coefficient using Pacejka’s
“magic formula” (MF) [16] as follows:

µi(si) = MF(si) = D sin(C atan(B si)).

Assuming symmetric tire characteristics, with respect to the
longitudinal and lateral directions, the total friction force for
each tire lies within the so-called friction circle. In thiscase,
the tire friction force components are given by:

µij = −(sij/si)µ(si). (5)

Neglecting suspension dynamics, the equilibrium of forces
in the vertical direction and the equilibrium of moments
about the body-y axis are used to find front and rear axle
normal loads:

0 = h (fFx cos δ − fFy sin δ + fRx) + fFzℓF − fRzℓR, (6)

0 = fFz + fRz −mg, (7)

whereh is the height of C.M. from the road surface.

III. STEADY-STATE CORNERINGCONDITIONS

In this section we derive steady-state cornering conditions
for the vehicle model of the previous section. For a given
corner curvature, vehicle speed and sideslip angle, we cal-
culate the corresponding tire friction forces of the front and
rear wheels.

Steady-state cornering is characterized by a trajectory of
constant radiusR, negotiated at a constant speedV , and
constant yaw rate and slip angle:

R = Rss, V = V ss, ψ̇ = ψ̇ss =
V ss

Rss
, β = βss.

Under steady-state cornering conditions, equations (1), (2),
(3), (6) and (7) are summarized below:

0 = f ss
Fx cos δss − f ss

Fy sin δss + f ss
Rx

−
m(V ss)2

Rss
sinβss, (8)

0 = f ss
Fx sin δss + f ss

Fy cos δss + f ss
Ry

−
m(V ss)2

Rss
cosβss, (9)

0 =
(

f ss
Fx sin δss + f ss

Fy cos δss
)

ℓF − f ss
RyℓR, (10)

0 = f ss
Fz + f ss

Rz −mg, (11)

0 = h
(

f ss
Fx cos δss − f ss

Fy sin δss + f ss
Rx

)

+ f ss
FzℓF − f ss

RzℓR. (12)

In the following, we derive the conditions that the rear
and front wheel slipsij (i = F,R, j = x, y), and the
corresponding wheel forcesfij , need to satisfy in order for
the vehicle to maintain a steady-state condition defined by
the triplet (V ss, Rss, βss).



A. Rear Axle Steady-State Equations

Equations (9) and (10) can be solved forfRy as a function
of V ss, Rss, andβss, resulting in

f ss
Ry =

m(V ss)2

Rss
cosβss ℓF

ℓF + ℓR
.

Equations (8), (11) and (12) lead to the following expres-
sions for the front and rear axle normal loads as functions
of V ss, Rss andβss:

f ss
Rz =

mgℓF −mh(V ss)2 sinβss/Rss

ℓF + ℓR
, (13)

f ss
Fz =

mgℓR +mh(V ss)2 sinβss/Rss

ℓF + ℓR
. (14)

Hence, givenV ss,Rss andβss we can compute the steady-
stateµss

Ry from µss
Ry = f ss

Ry/f
ss
Rz, as well as tan(αss

R), from

tan(αss
R) =

V ss sinβss − V ssℓR/R
ss

V ss cosβss
.

Pacejka’s Magic formula and the slip definitions result in
the following three equations with three unknowns, namely
sssR, sssRx andsssRy:

tan(αss
R) = sssRy/(1 + sssRx) , (15)

sssR =
√

(sssRx)2 + (sssRy)2 , (16)

µss
Ry = −(sssRy/s

ss
R)MF(sssR). (17)

Solving equations (15), (16) and (17) for the rear tire slip
quantities, finally leads to the computation of the longitudinal
friction force at the rear wheel:

f ss
Rx = µss

Rxf
ss
Fz, µss

Rx = −
sssRx

sssR
µss

R, µss
R = MF(sssR).

B. Front Axle Steady-State Equations

Equations (8) and (9) result in the following calculation
of the total front axle friction force, as a function of the rear
axle forces and the steady-state triplet(Rss, V ss, βss):

f ss
F =

(

m2(V ss)4

(Rss)2
+ (f ss

Rx)2 + (f ss
Ry)2+

+ 2
m(V ss)2

Rss

(

f ss
Rx sinβss − f ss

Ry cosβss
)

)

1

2

.

Given the front axle normal load from (13), we also get

µss
F = f ss

F /fFz, sssF = MF−1(µss
F ).

Applying the friction circle equation (5) and the friction
coefficient definition (4) at the front axle forces in equation
(8) results in:

(V ss)2

Rss
=

(f ss
F /s

ss
F )(sssFx cos δss − sssFy sin δss) − f ss

Rx

m sinβss
. (18)

Recalling the definitions of front lateral slip and total front
slip

sssFy

1 + sssFx

=
V ss sin(βss − δss) + V ssℓF cos δss/Rss

V ss cos(βss − δss) + V ssℓF sin δss/Rss
, (19)

sssF =
√

(sssFx)2 + (sssFy)2, (20)

and solving equations (18)-(20) for the front tire slip quan-
tities and steering angle, leads finally to the computation of
the longitudinal and lateral friction forces at the front wheel:

f ss
Fj = −(sssFj/s

ss
F )MF(sssF )f ss

Fz, j = x, y.

IV. CORNERINGCONTROL USING TIRE SLIP

In this section we design an LQR stabilizing controller
using purely longitudinal control, that is, assuming frontand
rear wheel longitudinal slipssFx andsRx as control inputs.
We consider the steering angleδ as a parameter fixed to its
steady-state value as calculated above.

We first express the equations of motion of the single-track
model (1)-(3) in terms of the state variablesV , β and ψ̇:

d

dt
V = f1(V, β, ψ̇, sFx, sRx) =

=
1

m
[fFx cos(δ − β) − fFy sin(δ − β)

+ fRx cosβ + fRy sinβ] , (21)
d

dt
β = f2(V, β, ψ̇, sFx, sRx) =

=
1

mV
[fFx sin(δ − β) + fFy cos(δ − β)]

− fRx sinβ + fRy cosβ −mV ψ̇
]

, (22)

d

dt
ψ̇ = f3(V, β, ψ̇, sFx, sRx) =

=
ℓF
Iz

[fFy cos δ + fFx sin δ] −
ℓR
Iz
fRy. (23)

The steady-state triplet(Rss, V ss, βss) results in the equi-
librium point (V ss, βss, ψ̇ss = V ss/Rss) of the above equa-
tions, that is

fi(V
ss, βss, ψ̇ss, sssFx, s

ss
Rx) = 0, i = 1, 2, 3,

wheresssix (i = F,R) are the steady-state front and rear wheel
longitudinal slips, as calculated in Sections III-A and III-B.

Equations (21)-(23) can now be linearized as follows

dx̃

dt
= Assx̃+ Bssũ, ỹ = Cx̃,

whereAss andBss are the Jacobian matrices (with respect
to the vehicle’s state and slip inputs), computed at the
equilibrium point(V ss, βss, ψ̇ss), and

x̃ =





V − V ss

β − βss

ψ̇ − ψ̇ss



 , ũ =

[

sFx − sssFx

sRx − sssRx

]

, C = I3×3.

The control law

ũ = −Kx̃, (24)

where the control gain matrix is given byK = R−1(Bss)TP,
and P is the symmetric positive-definite solution to the
following algebraic Riccati equation

(Ass)TP + PAss − PBssR−1(Bss)TP + CTQC = 0,



stabilizes the equilibrium̃x = [0 0 0]T and minimizes the
quadratic cost

J =

∫

∞

0

[

ỹ(t)TQỹ(t) + ũ(t)TRũ(t)
]

dt.

The matrixQ is real, symmetric and positive semi-definite,
and matrixR is real, symmetric and positive definite.

V. STEADY-STATE WHEEL SPEEDS ANDTORQUE INPUTS

In Sections III-A and III-B we calculated the front and
rear tire forcesf ss

ij , (i = F,R, j = x, y, z), the associated
tire slip quantitiessssij , (i = F,R, j = x, y) and the front
wheel steering angleδss required to maintain a steady-state
triplet (Rss, V ss, βss). Next, we calculate the steady-state
wheel speedsωss

i , (i = F,R) and input wheel torques
T ss

i , (i = F,R).
From the definition of the longitudinal wheel slip we find:

ωF =
VFx

(1 + sFx)r
=
V cos(β − δ) + ψ̇ℓF sin δ

(1 + sFx)r
, (25)

ωR =
VRx

(1 + sRx)r
=

V cosβ

(1 + sFx)r
. (26)

The equation describing the rotation of the wheels is as
follows:

Iwiω̇i = Ti − fixri, i = F,R, (27)

whereIwi (i = F,R) is the moment of inertia of each wheel
about its axis of rotation,ri (i = F,R) is the radius of
each wheel andTi is the driving/braking torque applied at
each wheel. In steady-state motion the wheel speeds maintain
constant values as in (25) and (26), thus equation (27) can
be used to calculate the steady-state torques at each wheel:

T ss
i = f ss

ixri, i = F,R.

A. Steady-State Conditions Using Wheel Torque Inputs

In this section we present steady-state cornering conditions
over several fixed corner radii, a range of vehicle speeds
and a range of vehicle sideslip angles. For a given steady-
state triplet (Rss, V ss, βss), we seek the steady-state slip
quantities, steering angle and tire friction forces at the front
and rear tires using the derivations of Sections III-A and III-
B. In addition, we calculate the steady-state torque inputs
using the derivations of Section V. The parameters of the
vehicle used for the calculations are given in Table I.

In Table II we present a number of the steady-state
conditions including the values of steady-state steering angle
and front and rear wheel torques. We observe that multiple
steady-states corresponding to the same radius and vehicle
speed are possible, as revealed by cases (a) and (b) in
Table II. If we were to consider more traditional types of
transmission, such as front-, rear-, and all-wheel-drive (FWD,
RWD and AWD) we would need to classify these steady-
states according to their feasibility with respect to a specific
type of transmission. For instance, we notice that for the
steady-state conditions (c), (e) and (g) the input torques
satisfy T ss

F ≥ T ss
R ≥ 0, which are not achievable by a

FWD or a RWD vehicle. The above steady-states require
both front and rear powered wheels (AWD) with appropriate
torque distribution, or the simultaneous application of throttle
and handbrake to reduce the rear wheel torque. On the other
hand, for the steady-state conditions (d), (f) and (h) the
input torques satisfyT ss

F ≤ 0 and T ss
R ≥ 0, which are

not achievable by a FWD vehicle. This classification of the
steady-state equilibria according to the require wheel torques
will be considered in a future research of this subject.

TABLE I

Vehicle Parameters.

m (kg) Iz (kg m2) ℓF (m) ℓR (m) h (m) IwF (kgm2)
1450 2741.9 1.1 1.59 0.4 1.8

rF (m) rR (m) B C D IwR (kgm2)
0.3 0.3 7 1.6 1 1.8

TABLE II

Steady-state cornering conditions and associated torque and steering inputs.

Case Rss V ss βss T ss

F
T ss

R
δss

(m) (m/s) (deg) (Nm) (Nm) (deg)
(a) 7 7 -10.4 -543 1194 3.2
(b) 7 7 -51 -56 1471 -40.7
(c) 7 8 -14 856 673 -13.7
(d) 7 8.3 -2 -106 401 -3.3
(e) 15 12 -14 1058 793 -20.6
(f) 15 11.7 -6 -49 877 -9.9
(g) 1.5 3.5 -40 1175 1149 0.5
(h) 1.5 3.45 -17 -273 612 19.4

VI. STABILIZATION OF STEADY-STATE CORNERING VIA

SLIDING -MODE CONTROL

In this section we design a sliding-mode control scheme
to stabilize the vehicle with respect to steady-state equilibria
incorporating the wheel speed dynamics, and using indepen-
dent front and rear wheel torque control.

Consider the system (21)-(23) complemented by the dy-
namics of the rotating front and rear wheels (27). Recall
that for a given operating condition of the vehicle(V, β, ψ̇),
a reference pair of front and rear longitudinal slip quantities
sFx and sRx correspond to reference front and rear wheel
speedsωF andωR, as in (25) and (26), respectively.

Define

z̃i = ωi − φi(V, β, ψ̇), i = F,R, (28)

whereφi(V, β, ψ̇) = Vix/(r + sixr), and the slip quantities
six are given by the stabilizing control law (24).

Equation (28) results in

˙̃zi =
1

Iw
Ti −

r

Iw
fix −

∂φi

∂V
f1(V, β, ψ̇)

−
∂φi

∂β
f2(V, β, ψ̇) −

∂φi

∂ψ̇
f3(V, β, ψ̇). (29)

Consider the control input

Ti = T eq
i + Iwv̂i, (30)

where

T eq
i = fixr + Iw

(

∂φi

∂V
f1 +

∂φi

∂β
f2 +

∂φi

∂ψ̇
f3

)

. (31)



The control componentT eq
i is referred to as theequivalent

control. TakingTi = T eq
i results in ˙̃zi = 0 and ensures that

the vehicle’s states will remain in thesliding manifold z̃i = 0.
Equations (29), (30) and (31) yield

˙̃zi = v̂i, i = F,R. (32)

Finally, we take

v̂i = −λisat(z̃i), λi > 0, i = F,R. (33)

It has been shown that the control (33) stabilizes (32) [17].
In fact, all trajectories starting off thesliding manifold z̃i = 0
will reach it in finite time under the control input (30).

A. Sliding Mode Control Implementation

We consider two steady-state equilibrium points, namely,
cases (a) and (b) from Table II. Both cases correspond to
unstable equilibria along the same path radius, negotiated
at the same speed. Case (a) is a steady-state condition of
moderate vehicle sideslip angle, while case (b) is one of
excessive slip angle.

The initial conditions in case (a) are:

V (0) = 1.2 V ss, β(0) = 2 βss, ψ̇(0) = 1.2 ψ̇ss, (34)

whereas in case (b):

V (0) = 1.2 V ss, β(0) = βss/2, ψ̇(0) = 1.2 ψ̇ss. (35)

In addition, we consider initial wheel speedsωF (0) and
ωR(0), such that the initial longitudinal slip at the front and
rear wheels are both zero (pure rolling). The controller (30)
is implemented in both cases withλi = 1000, (i = F,R).
The parameters of the vehicle model used are the same as
in Section V-A.

The resulting trajectories for the two simulation scenarios
are shown in Fig. 2. The vehicle states and control inputs
for the simulation cases (a) and (b) are shown in Figs. 3 and
4, respectively. We observe that the controller successfully
stabilizes the vehicle with respect to both equilibria in the
presence of significant perturbations of the initial states.
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Fig. 2. Steady-state cornering stabilization via sliding mode control

VII. I NCORPORATINGSUSPENSIONDYNAMICS

In this section we implement the same controller using
a vehicle model of increased fidelity. In particular, we
introduce a single-track model with suspension dynamics,
and demonstrate the performance of the controller in the
same simulation scenarios as in the previous section.

Let z be the vertical displacement of the center of gravity
of the vehicle andθ the pitch angle of the suspended
mass. The dynamics of the vertical translation and pitch
rotation motions of the suspended mass are described by
the following equations

mz̈ = fFz + fRz −mg, (36)

Iy θ̈ = fRzℓR cos θ − fFzℓF cos θ

− ΣfRx

(

h+ z
)

− ΣfFx

(

h+ z
)

, (37)

whereIy is the moment of inertia of the vehicle about the the
y body axis,h is the vertical distance of the C.M. from the
ground in an equilibrium state wherez = 0, andΣfix (i =
F,R) is the projection of the total friction force of each
wheel on thex body axis.

Given the vertical displacement of the C.M.z, and the
pitch angleθ, the normal load of each wheel is given by

fFz = fo
Fz −KF ∆zF − CF ∆żF ,

fRz = fo
Rz −KR∆zR − CR∆żR,

where

∆zR = z + ℓR sin θ , ∆zF = z − ℓF sin θ,

∆żR = ż + θ̇ℓR cos θ , ∆żF = ż − θ̇ℓF cos θ,

and fo
Fz, fo

Rz are the static normal loads on the front and
rear wheels respectively.

We present simulation results of the implementation of
the sliding mode control law of Section VI using the single-
track model with suspension dynamics (21)-(23), (27), (36)
and (37). The parameters of the vehicle model used are the
same as in Section V-A. In addition, we useKF = KR =
5000 N/m, CF = CR = 1000 Ns/m andIy = 2741.9 kgm2.
We consider the same simulation scenarios as in Section VI-
A. In addition, we assume zero initial vertical displacement
and velocity and zero pitch angle and pitch rate (z(0) =
ż(0) = 0, θ(0) = θ̇(0) = 0). The vehicle states and control
inputs for the simulation cases (a) and (b) are shown in
Figs. 3 and 4 respectively. We observe that the controller
successfully stabilizes the vehicle model with suspension
dynamics to the steady-state cornering conditions derived
using the simplified single-track model.

VIII. C ONCLUSIONS

In this work we studied the control of wheeled vehicles in
extreme operating conditions. We explicitly derived steady-
state cornering conditions for a vehicle operating in the
nonlinear tire region. The resulting trajectories included cases
of aggressive sideslip angle similar to driving techniques
used by expert rally drivers. We also demonstrated that
stabilization of these extreme steady-states may be achieved
using only longitudinal (accelerating/braking) control.Use
of longitudinal control to stabilize the vehicle dynamics
during cornering was motivated by similar race driving
techniques (e.g. “left-foot-braking”). While the steady-states
and stabilizing controller design was based on a low order
single-track vehicle model, the controller’s performancewas
validated by implementation using a model of higher level
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Fig. 3. Vehicle states and torque control inputs during stabilization of case
(a). The dotted lines correspond to the response of the single-track model
(21)-(23), (27). The solid lines correspond to the single track model model
with suspension dynamics (36) and (37).

of detail. The extension of these results using vehicle models
of increasing fidelity (e.g., four wheel models incorporating
lateral load transfer effects), as well as the implementation of
the controller using an actual autonomous vehicle platform
will be addressed in the immediate future.
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