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Abstract

A PHYSTAT workshop on the topic of Statistical issues for LHC physics was held at CERN. The workshop
focused on issues related to discovery that we hope will be relevant to the LHC. These proceedings contain
written versions of nearly all the talks, several of which were given by professional statisticians. The talks
varied from general overviews, to those describing searches for specific particles. The treatment of background
uncertainties figured prominently. Many of the talks describing search strategies for new effects should be of
interest not only to particle physicists but also to scientists in other fields.
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Preface

The PHYSTAT LHC Workshop took place at CERN in June 2007. It brought this series of meetings back to
its birthplace — the first one was at CERN in January 2000 on Confidence Limits. Subsequent meetings were
held at Fermilab (March 2000), Durham, UK (April 2002), SLAC (March 2003), Oxford (September 2005),
and Banff (July 2006). The Fermilab workshop was also on confidence limits, but the Durham, SLAC, and
Oxford meetings were on a wide range of statistical issues in particle physics as well as in astrophysics and
cosmology.

The Programme Committee at the Oxford conference in 2005 considered what the future of these meetings
should be. Rather than have another one which dealt with any statistical issues in the relevant field, it was felt
that it would be better to change in two ways. The first was to have general educational sessions on practical
statistics, mainly for graduate students. It was felt that a whole summer school devoted to statistical problems
would not be very attractive, and it would be better to try to persuade existing summer schools to include a
few lectures on statistics. The second approach was to have workshops devoted to more specific statistical
issues. The Banff meeting thus addressed just three topics: upper limits, separating signal from background,
and discovery issues. In a similar spirit, the CERN LHC workshop concentrated on statistical issues to do with
discovery claims. It is hoped that this will be relevant for the data that will be accumulated when the Large
Hadron Collider starts running in 2008; and when astrophysics facilites such as GLAST commence operation.
It was somewhat unfortunate that, because of the narrow focus of the meeting, the Programme Committee had
to turn down some potentially interesting talks of a more general nature.

Over 200 people attended the meeting, the majority being experimental physicists. Because the meeting
concentrated on a single topic, it was felt inappropriate to have parallel sessions. There were vigorous discus-
sions, prompted by various statistical approaches to the same problem, and by the hope that the real data could
contain really exciting results. We hope that these proceedings give a flavour of this excitement.

There are several people who deserve warm thanks for the success of PHYSTAT LHC. First and foremost
is my co-Chairperson Albert De Roeck. He organized everything — yes, everything — at CERN. His activities
included battling with the CERN administration for some funding for this meeting; being the Workshop’s
photographer; organizing the Dinner; being responsible for the web site; buying and serving the drinks for the
Welcome event, and then clearing up afterwards; etc. And this was all done while looking after CMS issues
that arose during the Workshop. A really big thank you, Albert.

Thanks are also due to Dorothee Denise and Kate Ross, who were the Conference secretaries. We are also
grateful to Yves Perrin for the design of the poster and logo.

Having statisticians at PHYSTAT LHC added enormously to the usefulness of the meeting. We are very
grateful to you all for coming, and giving us the benefit of your expertise in a field in which we are just amateurs.
We appreciated your invited talks, the informed comments after other presentations, and the fact that you were
around to explain statistical issues to us during the breaks before, between, and after sessions. We hope you
continue to attend these meetings, and perhaps we can even induce some of you to join in our analyses in an
even more direct manner.

Our invited particle physics speakers clearly went to a lot of trouble to bring into focus the statistical issues
involved. It was particularly pleasing to see that ATLAS and CMS could come up with a joint talk. This bodes
well for future collaboration between these large experiments, which will make it easier to compare their results
and eventually to combine them.

Harrison Prosper deserves special mention for his willingness to take on the very large job of editing these
proceedings. He and I want to thank all the contributers who sent us their articles, and the Programme Com-
mittee who reviewed them, in some cases with enthusiasm. The session Chairpersons all played an important
role in keeping a tight programme running smoothly and on time.

Albert and I also wish to thank all participants who helped to make this a productive meeting. We wish you
well with your analyses, and in your searches for exciting new discoveries.

We would also like to acknowledge CERN for providing financial and logistical support. Without that, the
workshop would not have been possible.

Louis Lyons
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The Last Fifty Years of Statistical Research and their Implications for
Particle Physics

D.R. Cox
Nuffield College, Oxford, England

1 Introduction

The title may be interpreted in at least two ways. The last fifty years, although drawing heavily on
earlier work, have seen both the development of a large number of particular statistical techniques and
also their general availability achieved through relatively painless software packages. These procedures
are very widely used in a great range of scientific and technological fields. In so far as these methods
are based on probabilistic models of the data, the models tend to be broad descriptions of commonly
occurring patterns of haphazard variability; the models relatively rarely contain an important specific
subject-matter basis. One possible interpretation of the title is that within this vast mass of material lies
the answer to at least some of the demanding statistical issues facing particle physics. Such a source is
not the route taken in this paper. While the provision of such an armoury of methods can be claimed to
be a massive contribution to science, it seems more fruitful to regard the problems of particle physics as
ones to be tackled largely from first principles. See, however, the comments in this volume of Cox and
Reid (2007) on some of the so-called statistical wishlist.

The emphasis in this paper is therefore largely on broad principles. I have recently (Cox, 2007)
reviewed the nature of statistical considerations in scientific research, strongly emphasizing the need for
unity of statistical and subject-matter thinking. In many fields a statistician involved in discussions of
a research study will be the most quantitatively-minded member of the group. Clearly this is not the
case in discussions with physicists with their very strong and highly successful tradition of independent
mathematical thought, so that many of the points in my review hardly apply. The objective of the present
paper is therefore partly to outline some general principles and partly, in order to be more specific,
to describe in outline issues connected with discovery against a large essentially random background,
including an account of false discovery rates.

2 Some methodological themes

A very broad classification of statistical concepts is as follows:

– ideas not specifically based on probability models, for example
– clustering algorithms
– visualization of multivariate data

– design of experiments, including simulation studies, and of sampling (data capture) procedures
– construction of probability models

– families of empirical models of haphazard variation
– substantive stochastic models

– statistical methods for analysis and interpretation of data in the light of a probability model
– model checking

– formal theory of inference

Reid (2007) below discusses design of experiments, noting that the experiments discussed in the
statistical literature are comparative studies, for example of a modified condition with a control, and are
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thus unlike experiments in the present context, so that the ideas are of most relevance in particle physics
in the context of computer experiments.

The construction of special stochastic models, especially for dynamic problems, is now virtually
a special area of its own. In some countries, for example UK but not in US, it used to be firmly part of
the statistical field. It is unclear what the role of such work may be in the context of particle physics.

In the next section a few aspects of more formal theory are discussed before proceeding to more
specific matters.

3 An aspect of formal theory

The notion of probability used in formulating a statistical model for data is based on long-run frequency
under real or hypothetical repetition. It aims to capture the essence of the data-generating procedure.
Probability is used also in defining and interpreting the most appropriate method of analysis. There
are various ways in which this can be done, for example by significance tests, confidence limits and so
on or by posterior probabilities. This last usually involves a different notion of probability, namely as
in some sense a degree of belief. These two approaches are broadly called frequentist and Bayesian
respectively. Both ideas occur often in statistical discussions in particle physics and the following brief
note is intended to clarify the distinctions between them and, very importantly, the distinctions between
different interpretations of Bayesian analyses.

Key ideas of the frequentist approach were set out in very major papers by R.A. Fisher (1922,
1925). Neyman and Pearson, in a series of papers, reformulated Fishers ideas aiming, as they said,
for greater clarity. Some recent authors consider that while Neyman and Pearson certainly did achieve
mathematical clarity and introduced important new ideas, there was some loss of scientific relevance and
there has been some move towards Fisher′s original formulations. For many purposes these differences
are relatively minor; the key point is that statistical procedures are calibrated by their performance under
hypothetical repetition.

By contrast there are at least five quite different interpretations of Bayesian theory which makes
the use of the word Bayesian decidedly ambiguous if not actually confusing. The common link is the
mathematical one of using the basic laws of probability to pass from the probability of data given expla-
nation to the probability of the explanation given the data, accounting for the older and, in some ways
preferable, term inverse probability. This calculation requires the existence of and knowledge of proba-
bilities for the various explanations in the absence of the specific data under analysis, the so-called prior
distribution.

The five interpretations are in outline as follows:

– the prior distribution is a frequency distribution known or estimable from appropriate data. The
use of inverse probability is then uncontroversial, and all probabilities are frequentist. This may
be called empirical Bayes.

– the prior is intended to be neutral in the sense of introducing no or very little information about
the issue under study, leaving the data to supply that information. The idea goes back at least
to Laplace and has been developed in detail by Jeffreys and later Jaynes. Demortier (2007) has
described the latest thinking on this in a particle physics context, the contributions of Bernardo
(2005) to the notion of a reference prior being central; another major contributor is Berger as in
Berger (2007). Important contributions to a counting problem with noise have shown that some-
what casual choice of a flat prior can have very bad consequences. This approach may be called
objective Bayes.

– the prior distribution may be indirectly data-based, or at least evidence-based in some sense, and
provides a way of introducing into an analysis important additional information.

– the prior may encapsulate the opinions of a particular individual, usually called You, and as such

D.R. COX
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be the basis of Your decision making. There is no necessary implication for any other individual.
This may be called the personalistic view.

– Bayesian calculations with a suitably standardized prior may be regarded purely as a convenient
algorithm for finding procedures with good frequentist properties, no special notion of probability
being needed.

It is important that these, while united by the mathematical techniques used, represent very dif-
ferent views. The first is entirely uncontroversial. The second pursues the same objectives as those
of frequentist inference. The third offers the important possibility of incorporating additional informa-
tion; note, however, that if this is directly based on empirical data, techniques for the combination of
information may be used and these should include looking at the mutual consistency of the two sets of
data. The personalistic approach is strongly focussed on personal decision making and, while it may be
helpful to clarify personal thinking on an issue, it is not of clear relevance to the public discussions of
scientific research and to the presentation of evidence for public discussion. The position over Bayesian
calculations as algorithmic procedures with a frequency justification is not entirely clear. With a single
unknown parameter very close matching between Bayesian and frequentist solutions is achieved with
the Jeffreys prior. Such close matching is achievable with more than one parameter only in exceptional
cases, although with modest numbers of parameters reasonable results may often be achieved.

Major issues arise when the number of parameters fitted is large relative to the amount of in-
formation available. Naive use of objective priors leads to very bad answers. Direct use of maximum
likelihood may be misleading. Frequentist techniques for overcoming such difficulties stem from Bartlett
(1937) and have been the subject of much recent work; for an account with many examples, see Brazzale,
Davison and Reid (2007). Issues associated with models with many parameters are a challenge for all
approaches to statistical inference.

4 Many hypotheses

4.1 General formulation

The remainder of the paper is concerned with much more specific issues. Suppose that data are available
to test a large number n of null hypotheses, each hypothesis may or may not be true. If only the smallest
p-value is reported we are likely to be misled if in fact all null hypotheses are true, for example if the
data are totally noise. This is a well-understood selection effect.

There are two distinct problems:

– some small but almost certainly nonzero number of the hypotheses are false and it is required to
assess which those are

– it is quite possible that all the null hypotheses are true: how strong is the evidence against this on
the basis of m = min(pj)

These two questions require quite different answers.

4.2 Selection of real effects

There are two broad approaches to this issue, one involving notional error rates and the other, probably
the preferable one, empirical Bayesian in formulation. The former approach was first studied systemati-
cally by Schweder and Spjotvoll (1982). Suppose that R of the null hypotheses are rejected of which F
are in fact rejected in error. Then the false discovery rate is defined as

E(F/R | R > 0).

Procedures are required to ensure that the false discovery rate does not exceed some specified limit
(Benjamini and Hochberg, 1995; Storey, 2002). A very minor modification is to define the false rejection

THE LAST FIFTY YEARS OF STATISTICAL RESEARCH AND THEIR IMPLICATIONS FOR PARTICLE . . .
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rate F/R to be zero if R = 0. In a more elaborate version, F/R is regarded as a random variable which
is required to be less than some specified limit with suitably high probability (Genovese and Wasserman,
2006).

For the second approach in its simplest formulation suppose that the n test statistics T1, . . . , Tn

have under the respective null hypotheses the densities f0(t), whereas under the alternative hypothesis
in each case the density is f1(t). Suppose further that a proportion θ of null hypotheses are false.

In an important special case the two distributions are Gaussian distributions with unit variance and
means zero and µ1 for the null and for the alternative hypotheses respectively. The unit variance under
the null hypothesis is achieved virtually without loss of generality by definition of the test statistic. The
unit variance under the alternative is a simplifying assumption which could be tested given sufficient
data.

Then for any given t the posterior odds that the value comes from the alternative rather than from
the null distribution are

log
P (f1 | t)
P (f0 | t) = log

θ

1− θ
+ µ1(t− µ1/2).

Thus, provided θ and µ1 can be reasonably estimated, the posterior odds corresponding to any given t
can be found. Numerical work suggests that at least for a preliminary analysis estimation of the two
parameters from the first two moments of the test statistics gives good results (Cox and Wong, 2004).
A threshold in t could be set to achieve a preassigned false recovery rate; a main advantage of the
method, however, is that it attaches a measure of uncertainty to each value of t rather than merely giving
a dichotomy.

A more elaborate approach (Efron et al, 2001) assumes that both densities f0(t) and f1(t) are
unknown and need to be estimated nonparametrically. The emphasis of the discussion is rather different
depending on whether the immediate interpretation of the analysis is important or whether a multi-step
selection procedure is involved. In the latter those hypotheses chosen in step one are then tested more
searchingly in a second or further stages.

4.3 Global null hypothesis

Suppose now that we consider m = min(pj) as the test statistic for the global null hypothesis that all
individual null hypotheses are simultaneously satisfied. If the individual tests are independent the p-value
allowing for selection is

1− (1−m)n

and without the independence assumption
mn

is an upper bound, often sharp.
If n is large, for example of the order of 103, achievement of an interesting level of significance

requires m to be extremely small. In particular this involves sensitivity to the assumptions involved in
calculating the individual pj to a degree that will often be quite unreasonable.

A possible solution, which has been used independently by Professor David Clayton in a genetical
context, is as follows.

The first step is to produce a graphical summary of the {pj} that will emphasize the pj of most
interest, namely the small values. For this write yj = − log pj so that under the null hypothesis these
have an exponential distribution with unit mean. Equivalently the 2yj have a chi-squared distribution
with two degrees of freedom.

Order the values in the form
y(1) ≥ y(2) ≥ . . . y(n).

D.R. COX
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Under the global null hypothesis these have expected values

1 + 1/2 + . . . + 1/n, 1/2 + . . . + 1/n, . . . , 1/n.

These are close to the quantiles of the unit exponential distribution.
Under the global null hypothesis and, assuming that the formal distribution theory is totally ap-

propriate, a plot of the ordered y against their expected values should show a straight line of unit slope.
Failure of one or a small number of the null hypotheses is shown by the final points being well above the
line. On the other hand, provided that it is unlikely that many of the null hypotheses are false, failure in
the tails of the underlying distribution theory is shown by the plot producing a smooth curve; outlying
points can then be assessed as departures from this smooth curve.

Detailed discussion of the assessment of significance requires some further work. Under simple
assumptions the ordered y(j) considered as functions of j for j = n, n− 1, . . . , 1 form a simple Markov
process, in fact a nonstationary random walk.
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A Comparison of Testing Methodologies

James Berger
Duke University, Durham NC, USA

Abstract
This is a mostly philosophical discussion of approaches to statistical hypoth-
esis testing, including p-values, classical frequentist testing, Bayesian testing,
and conditional frequentist testing. We also briefly discuss the issue of multi-
plicity, an issue of increasing concern in discovery. The article concludes with
some musings concerning what it means to be a frequentist.

1 Introduction

Because of the tradition in high-energy physics of requiring overwhelming evidence before stating a
discovery, there has been limited attention paid to formal statistical testing. With the increasing cost
of data, and issues involving simultaneous performance of a multitude of tests, there is likely to be
an increasing interest in more formal testing. The main purpose of this article is to review the major
approaches to testing, utilizing the basic high-energy physics problem as the vehicle for the discussion.

The following are some of the conclusions that will be argued:

– Tests are very different creatures than confidence intervals or confidence bounds, and it is often
not correct to conclude an hypothesis is wrong because it lies outside a confidence interval.

– p-values are typically much smaller than actual error probabilities.
– Objective Bayesian and (good) frequentist error probabilities can agree, providing simultaneous

frequentist performance with conditional Bayesian guarantees.

There will also be a brief discussion of multiplicity in testing in Section 3, highlighting the
Bayesian approach to dealing with the problem. Section 4 contains some musings about the meaning
of frequentism, motivated by presentations and discussions at the Phystat 07 conference.

2 Hypothesis testing

We review, and critically examine, p-values, classical frequentist testing, Bayesian testing and condi-
tional frequentist testing. An ongoing example used in the discussion is a high-energy physics example
described in the next section. For pedagogical reasons, a very stylized version of the problem will be
considered here, ignoring most of the real physics.

2.1 The pedagogical testing problem and statistical model

Suppose the data, X , is the number of events observed in time T that are characteristic of Higgs boson
production in an LHC particle collision experiment. The probabilistic model for the data is that X has
density

Poisson(x | θ + b) =
(θ + b)xe−(θ+b)

x!
,

where θ is the mean rate of production of Higgs events in time T in the experiment and b is the (assumed
known) mean rate of production of events from background sources in time T . Two specific values of X
and b that we will follow through various analyses are

Case 1: x = 7 and b = 1.2; Case 2: x = 6 and b = 2.2.
The main purpose of the experiment is supposedly to determine whether or not the Higgs boson

exists which, in terms of the probability model for the data, is typically phrased as testing H0 : θ = 0
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versus H1 : θ > 0. Thus H0 corresponds to ‘no Higgs.’ (Later we will discuss the issue of whether this
statistical test is the correct representation of the desired scientific test.) There are many secondary issues
that are of interest, such as “What is a lower confidence bound for the mass of the Higgs?” We will not
discuss this issue in depth (noting that it has been the focus of many of the Phystat conferences), but will
contrast the statistical analysis of the issue with the basic existence issue answered by the test.

2.2 Classical statistical analysis

There are two types of classical analysis: use of p-values, as recommended by Fisher [1], and use of
fixed error probability tests, as recommended by Neyman [2].

2.2.1 p-values

The p-value in this example, corresponding to observed data x, is

p = P (X ≥ x | b, θ = 0) =
∞∑

m=x

Poisson(m | 0 + b) .

This is the probability, under the null hypothesis, of observing data as or more extreme than the actual
experimental data, and the tradition is to reject the null hypothesis if p is small enough. The part of
the definition that may seem odd is the inclusion of more extreme data in the probability computation.
Indeed, the oddity of doing so led to Jeffreys’s [3] famous criticism of p-values “... a hypothesis that
may be true may be rejected because it has not predicted observable results that have not occurred.” (It
is worth spending the time to understand that sentence.) For the two cases,

Case 1: p = 0.00025 if x = 7 and b = 1.2; Case 2: p = 0.025 if x = 6 and b = 2.2.
There is general agreement that a small p-value indicates that something unusual has happened, but

that the p-value does not have a direct quantitative interpretation as evidence against the null hypothesis.
Thus Luc Demortier observed in his talk at the Phystat 07 conference:

In any search for new physics, a small p-value should only be seen as a first step in the inter-
pretation of the data, to be followed by a serious investigation of an alternative hypothesis.
Only by showing that the latter provides a better explanation of the observations than the
null hypothesis can one make a convincing case for discovery.

2.2.2 Fixed α-level testing

Under this approach, one pre-specifies the set of data for which one would reject the hypothesis – the
rejection region – selecting the set so that the probability of rejection under the null hypothesis is the
desired error probability α. Often, as in our example, one can formally state the rejection region in terms
of the p-value, namely “reject if p ≤ α.” Because X has a discrete distribution in our example, α should
be limited to the possible values allowed by this discreteness; otherwise, one would have to artificially
introduce some randomization which is unappealing. (That this rejection region indeed has probability
α at the allowed values, follows from an easy computation.)

There are two major concerns with using fixed error probability testing. The first is that it does
not properly seem to reflect the evidence in the data. For instance, suppose one pre-selected α = 0.001.
This then is the error one must report whether p = 0.001 or p = 0.000001, in spite of the fact that the
latter would seem to provide much stronger evidence against the null hypothesis.

The second concern, as it applies to typical high-energy physics experiments, is more subtle:
data naturally arrives, and is analyzed, sequentially and typical frequentist computations of fixed error
probabilities must take this into account. For instance, suppose the experimental plan is to review the
accumulated data at the end of each month, with there being a possibility of claiming a discovery at each
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review. The rejection region is then a complicated set involving possible rejection at each of the time
points (together with a lack of previous rejection); the frequentist error probability is the probability of
this complicated rejection region and is typically much larger than the probability of the rejection region
at a particular time. To achieve an error probability of α = 0.001 for instance, the rejection region might
have to be something such as “reject at each review if p ≤ 0.0001”, so that the frequent looks at the
data require a higher standard of evidence to achieve the desired error probability. Note that p-values
are affected by this same issue and in roughly the same way: much smaller p-values are needed in a
sequential experiment to convey the same evidence as in a fixed sample size experiment.

Louis Lyons raised the interesting point that, with the LHC, declaration of a discovery would not
stop the data gathering process, as is common in sequential experimentation in, say, clinical trials. (In
clinical trials, claim of a discovery would ethically necessitate stopping the trial, in an attempt to save
lives while, as Louis points out, no one we know of really cares if a few more particles are smashed.) So,
in principle, a mistake made by this ‘sequential look-elsewhere effect’ could be corrected with later data.

In practice, however, declaration of a discovery often does have other effects – e.g., people stop
research along lines that are incompatible with the discovery – so there is a serious cost to erroneous
claims of discovery (in addition to having to return the Nobel prizes), even if there is a possibility of later
correction. Also, we shall see that there are readily available reports (both Bayesian and frequentist) that
can be made on an interim basis and which do not have difficulty with this sequential look-elsewhere
effect, so the entire philosophical conundrum can be avoided.

2.3 Bayesian testing

2.3.1 Bayes factor

The Bayes factor of H0 to H1 in our ongoing example is given by

B01(x) =
Poisson(x | 0 + b)∫∞

0 Poisson(x | θ + b)π(θ) dθ
=

bx e−b∫∞
0 (θ + b)x e−(θ+b)π(θ) dθ

;

in the subjective Bayesian approach, the prior density, π(θ), is chosen to reflect the beliefs of the investi-
gators (e.g., it could reflect the standard model predictions pertaining to the Higgs) while, in the objective
Bayesian approach, it is chosen conventionally and nominally reflects a lack of knowledge concerning
θ.

A reasonable objective prior here (to be justified later, but note that it is a proper prior) is π I(θ) =
b(θ + b)−2. For this prior, the Bayes factor is given by

B01 =
bx e−b∫∞

0 (θ + b)x e−(θ+b)b(θ + b)−2 dθ
=

b(x−1) e−b

Γ(x− 1, b)
,

where Γ is the incomplete gamma function. The result for the two cases is
Case 1: B01 = 0.0075 (recall p = 0.00025); Case 2: B01 = 0.26 (recall p = 0.025)

2.3.2 Objective posterior probabilities of the hypotheses

The objective choice of prior probabilities of the hypotheses is Pr(H0) = Pr(H1) = 0.5, in which case

Pr(H0 | x) =
B01

1 + B01
.

For the two cases in the example,
Case 1: Pr(H0 | x) = 0.0075 (recall p = 0.00025); Case 2: Pr(H0 | x) = 0.21 (recall p = 0.025).

Of course, one can specify subjective prior probabilities of each hypothesis and determine the
resulting posterior probabilities, but scientific communication is usually done through objective poste-
rior probabilities or Bayes factors, since any individual can take either and easily convert it into the
individual’s personal subjective answer.

J. BERGER
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2.3.3 Complete posterior distribution

In addition to the uncertainty in the hypotheses, there is also uncertainty in θ, given that H1 were true.
The complete posterior distribution is thus determined by

– Pr(H0 | x), the posterior probability of the null hypothesis;
– π(θ | x,H1), the posterior distribution of θ under H1.

For Case 1 in the example, Figure 1 presents these two parts of the full posterior distribution. One way
of thinking of this is that the vertical bar gives the probability that one has just observed noise, while the
density part says where θ is likely to be if there is a discovery.
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Fig. 1: For Case 1, Pr(H0 | x) (the vertical bar), and the posterior density for θ given x = 7 and H1.

A useful summary of the complete posterior is Pr(H0 | x) and C , a (say) 95% posterior confidence
interval for θ under H1. For the two cases, and with C chosen to be an equal-tailed 95% posterior
confidence interval (i.e., omitting 2.5% of the posterior mass on the left and the right)
Case 1: Pr(H0 | x) = 0.0075 and C = (1.0, 10.5); Case 2: Pr(H0 | x) = 0.21 and C = (0.2, 8.2).

C could, alternatively, be chosen to be a one-sided confidence bound, if desired.
Note that confidence intervals alone are not a satisfactory inferential summary. In Case 2, for

instance, the 95% confidence interval does not include 0, and so many mistakenly believe that one can
accordingly reject H0 : θ = 0. But, the full posterior distribution also has a probability of 0.21 that
θ = 0, which would hardly imply a confident rejection.
A Brief Aside: A precise null hypothesis, such as H0 : θ = 0, is typically never true exactly; rather, it
is used as a surrogate for a ‘real null’ H ε

0 : θ < ε, ε small. In the Higgs example for instance, while
the scientific null is real (i.e., the Higgs might not exist), the statistical null is based on the experimental
measurements, and there is undoubtedly some small bias ε in the experiment. Berger and Delampady [4]
show that, under reasonable conditions, if ε < 1

4 σθ̂, where σθ̂ is the standard error of the estimate of θ,
then Pr(Hε

0|x) ≈ Pr(H0|x) , so that the point null is then a reasonable approximation to the real null.
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2.4 The discrepancy between p-values and posterior probabilities

The Bayesian error probabilities given in the previous section differed from the corresponding p-values
by factors of 30 and 10 in the two cases, respectively. What explains this?

It might be tempting to say that there is something wrong with the Bayesian analysis, but even a
pure likelihood analysis (favored by many Fisherians) reveals the same effect. In particular (following
Edwards, Lindeman and Savage [10]), note that a lower bound on the Bayes factor over all possible priors
can be found by choosing π(θ) to be a point mass at θ̂ (the maximum likelihood estimate), yielding

B01(x) =
Poisson(x | 0 + b)∫∞

0 Poisson(x | θ + b)π(θ) dθ
≥ Poisson(x | 0 + b)

Poisson(x | θ̂ + b)
= min{1,

(
b

x

)x

ex−b} . (1)

In ‘likelihood language,’ this says that, for the given data, the likelihood of H0 relative to the likelihood
of H1 is at least the bound on the right hand side of (1). For the two cases, this bound is

Case 1: B01 ≥ 0.0014 (recall p = 0.00025); Case 2: B01 ≥ 0.11 (recall p = 0.025),
so that a serious discrepancy remains even when the prior is eliminated. This can be traced to the fact
that the p-value is based on the probability of the tail area of the distribution, rather than the probability
of the actual observed data.

It is well known that Bayesian analysis utilizing suitable proper priors will automatically penalize
more complex models (i.e., has an Ockham’s razor effect – cf. Jefferys and Berger [5]), and it is useful to
separate this effect from that observed above in explaining the difference between p-values and posterior
probabilities or Bayes factors. Thus in Case 1, where the p-value (≈ .00025) and the objective posterior
probability of the null (≈ 0.0075) differ by a factor of 30,

– a factor of .0014/.00025 ≈ 5.6 is due to the difference between a tail area {X : X ≥ 7} and the
actual observation X = 7 (as reflected through the likelihood ratio for the observation);

– the remaining factor of roughly 5.4 in favor of the null results from the Ockham’s razor penalty
resulting from the conventional proper prior that was used.

An Aside – Robust Bayesian Analysis: Robust Bayesian theory (cf. Berger [6] for references) takes a
more sophisticated look at the type of bounding over priors that is done in (1). For instance, it might be
deemed scientifically reasonable to restrict attention to priors π(θ) that are nonincreasing, in which case
it is easy to see that

B01(x) ≥ bx e−b

supc

∫ c
0 (θ + b)x e−(θ+b)c−1 dθ

.

For the two cases, this bound is
Case 1: B01 ≥ 0.0024 (recall p = 0.00025); Case 2: B01 ≥ 0.15 (recall p = 0.025).

2.5 Conditional frequentist testing

There is a powerful (but, alas, largely overlooked) frequentist school called conditional frequentist anal-
ysis. This school was formalized by Kiefer [7] and Brown [8], and proceeds as follows:

– find a statistic S that reflects the “strength of evidence” in the data;
– compute the frequentist measure of error conditional on S.

Artificial example (from Berger and Wolpert [9]): Observe X1 and X2 where

Xi =
{

θ + 1 with probability 1/2
θ − 1 with probability 1/2.

A classical (unconditional) 75% confidence set (here a point) for the unknown θ is

C(X1, X2) =
{

1
2(X1 + X2) if X1 6= X2

X1 − 1 if X1 = X2 ;

J. BERGER
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it is easy to compute that Pθ(C(X1, X2) contains θ) = 0.75. It is, however, clearly silly to report this;
when X1 6= X2, it is a certainty that the confidence set equals θ while, if X1 = X2, it is intuitively
50-50 as to whether the confidence set equals θ. The issue here is typically phrased in statistics as that of
desiring good conditional performance (for relevant subsets of the actual data); in the Phystat literature it
is more commonly phrased as desiring Bayesian credibility: for a reasonable prior, the Bayesian coverage
of the confidence set should be reasonable. In this example, for instance, if one uses the objective prior
π(θ) = 1, then C(X1, X2) has Bayesian credibility of 100% if x1 6= x2 and 50% if x1 = x2, so that
the report of 75% confidence in all circumstances would be seriously deficient from the viewpoint of
Bayesian credibility.

The conditional frequentist approach here would

– measure the strength of evidence in the data by, say, S = |X1 −X2| (either 0 or 2)
– compute the conditional coverage

Pθ(C(X1, X2) contains θ | S) =
{

0.5 if S = 0
1.0 if S = 2 ,

which is clearly the right answer.
Returning to the testing problem, Berger, Brown and Wolpert [11] for continuous data, and Dass

[12] for discrete data, proposed the following conditional frequentist testing procedure for testing a sim-
ple hypothesis versus a simple alternative:

– Develop S, the measure of strength of evidence in the data, as follows:
– let pi(x) be the p-value from testing Hi against the other hypothesis;
– define S = max{p0(x), p1(x)}; its use is based on deciding that data (in either the rejection

or acceptance regions) with the same p-value has the same ‘strength of evidence.’

– Accept H0 when p0 > p1, and reject otherwise.
– Compute Type I and Type II conditional error probabilities as

α(s) = P0(rejecting H0 | S = s) ≡ P0(p0 ≤ p1 | S(X) = s)
β(s) = P1(accepting H0 | S = s) ≡ P1(p0 > p1 | S(X) = s),

where Pi refers to probability under Hi.

The surprising feature of this conditional test is stated in the following theorem from those papers.

Theorem 1 The conditional frequentist error probabilities, α(s) and β(s), exactly equal the (objective)
posterior probabilities of H0 and H1, so conditional frequentists and Bayesians report the same error
probabilities.

In our ongoing example, the conditional Type I error is thus α(s) = Pr(H0 | x) = B01/(1 + B01)
(=0.0075 in Case 1; =0.21 in Case 2). Some features of this:

– The conditional test can be viewed as a way to convert p-values into real frequentist error proba-
bilities when there is an alternative hypothesis.

– The conditional error probabilities α(s) and β(s) are fully data-dependent (being smaller when p
is smaller, in contrast to the fixed α-level tests), yet are fully frequentist.

– The conditional test also applies without any change in sequential settings; since Bayesian error
probabilities are known to ignore the stopping rule, so must the conditional frequentist test (Berger,
Boukai and Wang [13]).

A COMPARISON OF TESTING METHODOLOGIES
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The conditional frequentist test thus overcomes all of the difficulties with the fixed α-level test that were
discussed earlier, and so can be used happily by frequentists. Of course, one need not go through the
formal conditional frequentist computation, since the theorem guarantees that the answer which would
be obtained is the same as the objective Bayesian answer (which can be obtained much more directly).

There is the caveat that the above discussion was given only for the testing of two simple hypothe-
ses. In our ongoing example, on the other hand, H1 was a composite hypothesis (involving an unknown
θ). The papers mentioned above do cover the extension of the theory to the composite alternative case,
with the only modification being that the conditional Type II error that is obtained is a certain average
Type II error over θ; the conditional Type I error is unaffected. Extensions to composite null hypotheses
are considered in Dass and Berger [14] for composite null hypotheses that have an invariance structure
to group operations; this class of composite null hypotheses includes most classical situations of testing.
The nice feature of this class of composite null hypotheses is that the conditional Type I error is constant
over the null hypothesis, and so no averaging over Type I error needs to be done. (There are other tech-
nical caveats to the conditional frequentist testing paradigm that are discussed in the mentioned papers,
but they have essentially no practical impact.)

2.6 Implementing Bayesian testing

To implement objective Bayesian estimation (and confidence procedures) there are, in principle, excellent
objective priors available, such as reference priors (see Bernardo [15] for a review and references). In
practice, determination of such objective priors can be challenging but the goal is, at least, clear.

In Bayesian hypothesis testing and model selection, however, determination of suitable prior dis-
tributions is considerably more challenging, in part because it is typically the case that improper prior
distributions cannot be used (or at least have to be used very carefully). Use of ‘vague proper priors’
(another staple of many Bayesians in estimation problems) is even worse, and will typically give non-
sensical answers in testing and model selection. There has thus been a huge effort in statistics to derive
objective (or at least conventional) priors for use in hypothesis testing and model selection. These issues
and this literature can be accessed through Berger and Pericchi [16].

For our ongoing example, an appealing methodology for default prior construction is the intrinsic
or expected posterior prior construction. For the situation where the data consists of i.i.d. observations
from a density f(x | θ), and for testing H0 : θ = θ0 versus H1 : θ 6= θ0, the construction is as follows:

– let πO(θ) be a good estimation objective prior, so that πO(θ | x) = [
∏n

i=1 f(xi | θ)]πO(θ)/mO(x)
is the resulting posterior, where x = (x1, . . . , xn) and mO(x) =

∫
[
∏n

i=1 f(xi | θ)]πO(θ) dθ;
– then the intrinsic prior is πI(θ) =

∫
πO(θ | x∗)[

∏q
i=1 f(xi | θ0)] dx∗, with x∗ = (x1, . . . , xq)

being (unobserved) data of the minimal sample size q such that mO(x∗) < ∞.

Note that this will be a proper (not vague proper) prior.
The idea behind this prior is that, if one were handed the data x∗ but allowed to use it only for

prior construction, one would happily compute πO(θ | x∗) and use this proper prior to conduct the test.
We don’t have x∗ available, but we could simulate x∗ from the null model, and compute the resulting
‘average’ prior. There are many other justifications of this prior; see Pérez and Berger [17] for discussion
and references. Note, however, that use of such conventional proper priors is inherently more contentious
than use of objective priors for estimation problems. Indeed, it would be better to determine π(θ) from
consensus scientific knowledge, providing the knowledge is relatively precise and quantifiable.

For our ongoing example, suppose we choose πO(θ) = 1/(θ + b). (Jeffreys prior, the square root
of πO, would probably be better, but leads to a much more difficult computation.) Following the ideas
in Berger and Pericchi [18], we represent the Poisson observation, X , over the time period T from the
distribution in the example as a sum of i.i.d observations from an exponential inter-arrival time process.

J. BERGER
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Indeed, for i = 1, . . ., consider Yi ∼ f(yi | (θ + b)/T ) = (θ + b)T−1 exp{−(θ + b)yi/T}; then
X ≡ {first j such that Sj =

∑j
i=1 Yi > T}−1. A minimal sample size for this exponential distribution

can easily be seen to be q = 1. Computation then yields πI(θ) =
∫

πO(θ | y1)f(y1 | 0)dy1 = b/(θ+b)2,
which was the conventional proper prior used for Bayesian testing in the example.

3 Multiplicities

The issue of dealing with multiplicities in discovery is increasingly being recognized to be important.
One type of multiple testing has already been discussed, namely sequential experimentation in which
one periodically evaluates the incoming data to see if a discovery can be claimed. It is interesting that
frequentist analyses often need to be adjusted to account for these ‘looks at the data,’ while Bayesian
analyses (and optimal conditional frequentist analyses) do not. That Bayesian analysis claims no need to
adjust for this ‘look elsewhere’ effect – called the stopping rule principle – has long been a controversial
and difficult issue in statistics, as admirably expressed by Savage [19]: “I learned the stopping rule
principle from Professor Barnard, in conversation in the summer of 1952. Frankly, I then thought it
a scandal that anyone in the profession could advance an idea so patently wrong, even as today I can
scarcely believe that people resist an idea so patently right.” See Berger and Berry [20] for discussion of
this controversy, and note that the controversy is no longer a frequentist versus Bayesian issue, because
of the fact that optimal conditional frequentist tests also obey the stopping rule principle.

Another common situation of multiple testing is when one is scanning many possible data sets
for a discovery. For instance, suppose 1000 energy channels are searched for a signal expected from a
non-standard theory. It is well known that one cannot proceed with separate testing of each data set, but
the classical solution – the Bonferonni adjustment – is often viewed as being too harsh. The Bonferonni
adjustment assumes each test is independent, in which case one divides the desired error probability α
by the number of tests to determine the significance level that an individual test must achieve to declare a
discovery. Thus if α = 0.001 is desired for 1000 independent tests, the per-test significance level should
be set at 0.000001 for declaring a discovery.

I have been told that the assumption of (at least approximate) independence of test statistics does
hold for many high-energy physics experiments, in which case use of the Bonferonni correction is fine.
When the various test statistics are dependent, however (as happens in most non-physics examples I
know of), the Bonferroni correction can be much too conservative, so it’s use would incur a dramatic
loss of power for discovery. Finding appropriate correction for multiple testing under dependence is,
unfortunately, quite difficult from the frequentist viewpoint. Note, also, that there are no shortcuts here;
simple alternative methods such as the ‘false discovery rate’ are fine for screening purposes, but are not
useful for claiming a discovery.

One of the highly attractive features of the Bayesian approach to multiple testing or model se-
lection is that (if done properly) it will automatically adjust for multiplicities, and do so in a way that
preserves as much discriminatory power as possible. The Bayesian adjustment for multiplicity occurs,
somewhat curiously, directly through the prior probabilities assigned to the tests or models. Consider
two illustrative cases:

Mutually exclusive hypotheses: Suppose one is testing mutually exclusive hypotheses Hi, i = 1, . . . ,m,
where it is known that one is true. An objective Bayesian would choose pi = Pr(Hi) = 1/m. Suppose,
for instance, that a signal is known to exist, but it is not known in which of 1000 energy channels it
will manifest. Then each channel would be assigned prior probability 0.001 of containing the signal, an
automatic penalization of each hypothesis.

Suppose instead that 1000 channels are searched for a signal expected from a non-standard theory
that could manifest in only one channel. Then one should assign some prior mass – e.g. 1/2 – to ‘no
signal,’ giving prior probability of 0.0005 to each channel. Note that these simple adjustments apply no
matter what the dependence is between the test statistics, indicating why it is much easier to approach
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multiplicity adjustment from the Bayesian perspective.

Independently occurring hypotheses: Consider, instead, the situation in which there are multiple possible
discoveries, and that the signal from each would appear in a separate channel. If we knew nothing about
these possible signals, we might choose to assign prior probabilities by first defining p as the probability
that any given channel will manifest a signal. This would typically be unknown, and hence would need
to be assigned a prior distribution π(p). This could be chosen according to scientific knowledge, or set
equal to a default prior such as the uniform distribution. That an assignment of prior probabilities such
as this automatically deals with multiplicity is demonstrated in Scott and Berger [21].

There is a large and increasing literature on discovery techniques in the face of multiplicity. Two
recent references are Storey, Dai and Leek [22] and Guindani, Zhang and Mueller [23].

4 Musings on the meaning of frequentism

4.1 Introduction and example

During the Phystat meeting, there were a number of interesting problems discussed that caused me to
reflect on the meaning of frequentism. To facilitate the discussion here, consider the following version of
the basic HEP problem, but now focusing on confidence bounds (see, e.g., Heinrich [24] for background).

Suppose Xs+b ∼ Poisson(Xs+b | s + b), where s is the unknown signal mean and b now an
unknown background mean. The goal is to find an upper confidence limit for s. There is also information
available about the nuisance parameter b, arising from either

– Case 1: independent sideband data Xb ∼ Poisson(Xb | b),
– Case 2: randomness in b from experiment to experiment arising from a known random mechanism,
– Case 3: agreed scientific beliefs.

4.2 Bayesian analysis

Suppose we have an agreed upon objective prior density πO(s | b) for s given b (the best objective priors
will typically depend on nuisance parameters such as b here). The information about b would be encoded
in a prior density π(b). This density would be derived differently in each case:

– Case 1: With the sideband data Xb, a standard approach would be to chose an initial objective prior
πO(b), and then choose the final π(b) to be the posterior πO(b | Xb) ∝ Poisson(Xb | b)πO(b).

– Case 2: π(b) describes the physical randomness of the (otherwise unmeasured) background from
experiment to experiment.

– Case 3: π(b) is chosen to encode accepted scientific beliefs.

In all three cases, Bayesian analysis would proceed in the same way, constructing a 100(1 − α)% upper
confidence limit U for s as the solution to

1− α =
∫ U

0
π(s | Xs+b) ds ,

where π(s | Xs+b) is the posterior distribution

π(s | Xs+b) =
∫

Poisson(Xs+b | s + b)πO(s | b)π(b) db∫ ∫
Poisson(Xs+b | s + b)πO(s | b)π(b) db ds

.

The point is that Bayesian analysis does not care about the nature of the randomness in the modeling of
the information about b.
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4.3 Frequentist analysis

Frequentist analysis can be quite different in the three cases.

4.3.1 Frequentist analysis in Case 1.

The natural frequentist goal: Frequentist coverage with respect to the joint distribution of Xs+b and Xb,
i.e. control of

P (s ≤ U(Xs+b, Xb) | s, b) =
∞∑

Xs+b=0

∞∑
Xb=0

1{s≤U(Xs+b,Xb)}Poisson(Xs+b | s + b)Poisson(Xb | b) ,

where 1{s≤U(Xs+b,Xb)} is 1 if s ≤ U(Xs+b, Xb) and 0 otherwise.
This problem has been extensively studied in the Phystat literature. It is interesting that there is,

as of yet, no solution which is agreed by all to be adequate in terms of both frequentist coverage and
Bayesian credibility (conditional performance). The objective Bayesian holy grail in this problem would
be to find the reference prior for (s, b), with s being the parameter of interest; the hope is that the upper
confidence bound arising from such a prior would do an excellent job of balancing frequentist coverage
and Bayesian credibility. Finding the reference prior is very challenging, however, as was discussed in
the Phystat talk of Luc Demortier (and see Demortier [25]).

4.3.2 Frequentist analysis in Case 2.

The natural frequentist goal: Frequentist coverage with respect to the marginal density of Xs+b, given
by f(Xs+b | s) =

∫
Poisson(Xs+b | s + b)π(b)db. The coverage target is then

P (s ≤ U(Xs+b) | s) =
∞∑

Xs+b=0

1{s≤U(Xs+b)}f(Xs+b | s) .

The reason this is the natural frequentist goal is because b changes from experiment to experiment ac-
cording to π(b), and real frequentism is about performance of a statistical procedure in actual repeated
use of the procedure in differing experiments, as discussed in Neyman [2]. (The textbook definition of
frequentism – in which one considers imaginary repetition of the same experiment – makes no sense
in terms of reality; the standard definition has mathematical relevance, but the philosophical appeal of
frequentism to scientists is presumably its relevance to real experimentation over time.)

Attaining this frequentist goal while achieving good Bayesian credibility is potentially rather
straightforward, since the problem has been reduced to a one-parameter problem. Indeed, one simply
computes the reference (Jeffreys) prior corresponding to f(Xs+b | s), namely

πJ(s) =
√

I(s) , I(s) = −
∞∑

Xs+b=0

f(Xs+b | s) d2

ds2
log f(Xs+b | s) .

The resulting Bayesian confidence bound will automatically have good Bayesian credibility (conditional
performance), and the Jeffreys prior for one-parameter problems typically results in Bayes procedures
with excellent frequentist coverage properties (except possibly at the boundary s = 0; see Bayarri and
Berger [26] for discussion).

4.3.3 Frequentist analysis in Case 3.

The natural frequentist goal: Here the situation is quite murky. Since π(b) is not physical randomness,
but simply scientific opinion, a classical frequentist could insist that, for every given s and b, we control

P (s ≤ U(Xs+b) | s, b) =
∞∑

Xs+b=0

1{s≤U(Xs+b)}Poisson(Xs+b | s + b) .
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This is actually not possible to control unless there is a known bound on b, but a classical frequentist
would philosophically wish to control this coverage.

Alternatively, one could argue that, since π(b) arises from consensus scientific opinion, it should
be treated the same as when it arises from physical randomness, and so one should seek to control
coverage as in Case 2, i.e.

P (s ≤ U(Xs+b) | s) =
∞∑

Xs+b=0

1{s≤U(Xs+b)}f(Xs+b | s)

=
∫

P (s ≤ U(Xs+b) | s, b)π(b)db .

The second expression for this coverage shows that the criterion can be interpreted as an average of the
coverage for given s and b, averaged over the consensus prior distribution for b.

There are many situations in which it has been argued that a frequentist should use an average
coverage criterion; see Bayarri and Berger [26] for examples and references. Here it seems clearly right
because of necessity; what else can be done given the available information? The point worth pondering
is – if average coverage is fine here, why should it be philosophically problematical in other cases?
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P Values and Nuisance Parameters
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Abstract
We review the definition and interpretation of p values, describe methods to
incorporate systematic uncertainties in their calculation, and briefly discuss
a non-regular but common problem caused by nuisance parameters that are
unidentified under the null hypothesis.

1 Introduction

Statistical theory offers three main paradigms for testing hypotheses: the Bayesian construction of hy-
pothesis probabilities, Neyman-Pearson procedures for controlling frequentist error rates, and Fisher’s
evidential interpretation of tail probabilities. Since practitioners often attempt to combine elements from
different approaches, especially the last two, it is useful to illustrate with a couple of examples how they
actually address different questions [1].

The first example concerns the selection of a sample of pp̄ collision events for measuring the mass
of the top quark. For each event one must decide between two hypotheses, H0 : The event is background,
versus H1 : The event contains a top quark. Since the same testing procedure is sequentially repeated
on a large number of events, the decision must be made in such a way that the rate of wrong decisions is
fully controlled in the long run. Traditionally, this problem is solved with the help of Neyman-Pearson
theory, with a terminology adapted to physics goals: the Type-I error rate α translates to background
contamination, and the power of the test to selection efficiency. In principle either hypothesis can be
assigned the role of H0 in this procedure. Since only the Type-I error rate is directly adjustable by
the investigator (via the size of the critical region), a potentially useful criterion is to define as H0 the
hypothesis for which it is deemed more important to control the incorrect rejection probability than the
incorrect acceptance probability.

The second example is encountered in searches for new phenomena, when one has observed an
enhancement in a background spectrum and one wishes to characterize and quantify the evidence this
provides against the background-only null hypothesis. When a well-defined alternative hypothesis can
be formulated, a coherent characterization is best done with the help of likelihood ratios [2] or Bayes
factors [3]. Often however, the alternative is not unique, and there is a desire to quantify the evidence
against the null hypothesis in a way that does not depend on the alternative. Although the idea that this
can be done meaningfully is rejected by some statisticians, it has a long history in the scientific and
statistics literature. The method of solution is based on p values, the focus of this contribution.

Section 2 reviews the definition and interpretation of p values. A major obstacle to their calculation
is assessing the effect of systematic uncertainties. As is standard in high energy physics, we assume
that the latter can be modelled by so-called nuisance parameters [4], so that the task of incorporating a
systematic uncertainty (physics terminology) reduces to that of eliminating the corresponding nuisance
parameter (statistics terminology). Methods for solving this problem are described in section 3. A non-
regular form of this problem, known among physicists as the “look-elsewhere” effect, is briefly discussed
in section 4. Our conclusions are contained in section 5.

2 Definition and Interpretation of p Values

Suppose we collect some data X and wish to test a hypothesis H0 about the distribution f(x | θ) of the
underlying population. The first step is to find a test statistic T (X) such that large realizations of its
observed value, t0 ≡ T (x0), are evidence against H0. One way to calibrate this evidence is to compute
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the probability for observing T = t0 or a larger value under H0; this tail probability is known as the p
value of the test:

p = IPr(T ≥ t0 |H0). (1)
Hence, small p values are evidence against H0. The usefulness of this calibration is that the distribution
of p under H0 is in principle uniform, and therefore known to the experimenter and the same in all
testing problems to which the procedure is applied. Unfortunately, in practice it is often difficult to
obtain uniform p values, either because the test statistic is discrete or because of the presence of nuisance
parameters. The following terminology characterizes the null distribution of p values:

p exact or uniform ⇔ IPr(p ≤ α |H0) = α,
p conservative or overcovering ⇔ IPr(p ≤ α |H0) < α,
p liberal or undercovering ⇔ IPr(p ≤ α |H0) > α,

where α is a number between 0 and 1. Compared to an exact p value, a conservative one tends to
understate the evidence against H0, whereas a liberal one tends to overstate it. It is of course possible for
a p value to be conservative for some values of α and liberal for others.

Even though the definition of p values is straightforward, their interpretation is notoriously subtle
and has been the subject of numerous papers in the statistics literature. Here we limit ourselves to a
few important caveats. The first one is that p values are not frequentist error rates or confidence levels.
Indeed, the latter are performance criteria that must be chosen before the experiment is done, whereas
p values are post-data measures of evidence. Secondly, p values should not be confused with posterior
hypothesis probabilities. Compared to the latter, p values often tend to exaggerate the evidence against
the null hypothesis. Finally, the notion that equal p values represent equal amounts of evidence should
be regarded with a healthy dose of scepticism. Arguments can be formulated to show that the evidence
provided by a p value depends on sample size as well as on the type of hypothesis being tested.

Because of these and other caveats, it is better to treat p values as nothing more than useful ex-
ploratory tools or measures of surprise. In any search for new physics, a small p value should only be
seen as a first step in the interpretation of the data, to be followed by a serious investigation of an alter-
native hypothesis. Only by showing that the latter provides a better explanation of the observations than
the null hypothesis can one make a convincing case for discovery. A detailed discussion of the role of p
value tests can be found in Refs.[5, 6].

3 Incorporating Systematic Uncertainties

In order to evaluate the various methods that are available to incorporate systematic uncertainties in p
value calculations, it is useful to discuss some properties one would like these methods to enjoy:

1. Uniformity: An important aspect of p values is their uniformity under H0, since this is how the
evidence provided by a test statistic is calibrated. If exact uniformity is not achievable in finite
samples, then asymptotic uniformity may still provide a useful criterion.

2. Monotonicity: For a fixed data sample, increases in systematic uncertainty should devalue the
evidence against H0, i.e. increase the p value.

3. Generality: The method should not depend on the testing problem having a special structure, but
should be applicable to as wide a range of situations as possible.

4. Power: Although p values are generally not constructed with a specific alternative in mind, it
may sometimes be useful to compare their power against a whole class of physically relevant
alternatives.

To compare methods we consider the following benchmark problem. A measurement N = n0 is
made of a Poisson variate N whose mean is the sum of a background strength ν and a signal strength µ:

IPr(N = n0) =
(ν + µ)n0

n0!
e−ν−µ. (2)

L. DEMORTIER
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We wish to test
H0 : µ = 0 versus H1 : µ > 0. (3)

Since large values of n0 are evidence against H0 in the direction of H1, the p value is simply:

p =
+∞∑

n=n0

νn

n!
e−ν , (4)

and requires knowledge of ν to be computed. A frequent situation is that only partial information is
available about ν, either from an auxiliary measurement or from a Bayesian prior. In the next subsec-
tions we examine six methods for incorporating such information in the calculation of p: conditioning,
supremum, confidence set, bootstrap, prior-predictive, and posterior-predictive. In principle all of these
methods can be applied to the case where information about ν comes from an actual measurement, but
only the last two can handle information in the form of a prior.

3.1 Conditioning Method

Suppose we make an independent, Poisson distributed measurement M of the quantity τν, with τ a
known constant. The conditional distribution of N , given a fixed value s0 of the sum S ≡ N + M , is
binomial:

IPr(N = n0 |S = s0) =
IPr(N = n0 and S = s0)

IPr(S = s0)
=

IPr(N = n0) IPr(M = s0 − n0)
IPr(S = s0)

=
(

s0

n0

) (
1 + µ/ν

1 + µ/ν + τ

)n0
(

1 − 1 + µ/ν

1 + µ/ν + τ

)s0−n0

. (5)

Under the null hypothesis that µ = 0 this distribution is independent of the nuisance parameter ν and
can therefore be used to compute a p value:

pcond =
s0∑

n=n0

(
s0

n

) (
1

1 + τ

)n (
1 − 1

1 + τ

)s0−n

. (6)

Because of the discreteness of the measurements N and M , pcond is by construction a conservative p
value. For continuous measurements it would be exact.

Note that tail probabilities of the distribution (5) cannot be used to construct confidence intervals
for µ under H1, since the dependence on ν is only eliminated under H0. Such a limitation does not exist
when the mean of the Poisson variate N is the product rather than the sum of µ and ν. The product case
leads to a well-known technique for calculating confidence intervals on the ratio of two Poisson means.

As illustrated above, the conditioning method requires the existence of a statistic S that is suffi-
cient for the nuisance parameter under the null hypothesis. This special structure is not present in most
problems encountered in high energy physics. Although other special structures are sometimes available,
it is clear that a more universal approach is needed for routine applications.

3.2 Supremum Method

A very general technique consists in maximizing the p value with respect to the nuisance parameter(s):

psup = sup
ν

p(ν). (7)

It may happen that the supremum is reached at some value νmax within the interior of the ν region
allowed by the null hypothesis. In this case psup = p(νmax). Clearly, νmax is in no sense a valid estimate
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of the true value of ν. Hence, the supremum method should not be confused with “profiling”, which
consists in substituting the maximum likelihood estimate of ν in p(ν), and which will be discussed as
one of the bootstrap methods in section 3.4.

In contrast with pcond, psup is not a tail probability. It is conservative by construction, and may
yield the trivial result psup = 1 if one is not careful in the choice of test statistic. In general the likelihood
ratio is a good choice. Suppose for example that in our benchmark problem information about ν is
available in the form of a Gaussian measurement X = x0 with mean ν and known standard deviation
∆ν (in this form the problem cannot be solved by the conditioning method). The likelihood function is
then:

L(ν, µ |n0, x0) =
(ν + µ)n0 e−ν−µ

n0!
e
− 1

2

“
x0−ν
∆ν

”2

√
2π ∆ν

. (8)

We assume that x0 can take on negative as well as positive values due to resolution effects. The likelihood
ratio statistic is:

λ(n0, x0) =
sup[ ν≥0 & µ=0 ] L(ν, µ |n0, x0)
sup[ ν≥0 & µ≥0 ] L(ν, µ |n0, x0)

=
L(ˆ̂ν, 0

∣∣ n0, x0

)
L(

µ̂, ν̂
∣∣n0, x0

) , (9)

where ˆ̂ν is the maximum likelihood estimate of ν under the constraint of the null hypothesis:

ˆ̂ν =
x0 −∆ν2

2
+

√(
x0 −∆ν2

2

)2

+ n0 ∆ν2, (10)

and (µ̂, ν̂) the unconditional maximum likelihood estimate of (µ, ν):

(µ̂ , ν̂) =


(n0 , 0) if x0 < 0,

(n0 − x0 , x0) if 0 ≤ x0 ≤ n0,

(0 , ˆ̂ν) if x0 > n0.

(11)

Plugging ˆ̂ν, ν̂, and µ̂ into equation (9) and taking twice the negative logarithm yields finally:

−2 lnλ(n0, x0) =


2n0 ln(n0/ˆ̂ν)− ˆ̂ν2/∆ν2 if x0 < 0,

2n0 ln(n0/ˆ̂ν)− (ˆ̂ν2 − x2
0)/∆ν2 if 0 ≤ x0 ≤ n0,

0 if x0 > n0.

(12)

Tail probabilities of the distribution of −2 ln λ under the null hypothesis are easily calculable by numer-
ical methods. Setting q0 ≡ −2 lnλ(n0, x0), the observed value of −2 lnλ, we have:

IPr
[
−2 lnλ(N,X) ≥ q0

∣∣∣µ = 0, ν ≥ 0
]

=
∑
n

∫
dx

−2 ln λ(n,x)≥ q0

νn e−ν

n!
e
−1

2

“
x−ν
∆ν

”2

√
2π ∆ν

. (13)

The x derivative of −2 ln λ(n, x) is strictly negative in the region x < n; one can therefore implicitly
define a function x̃(n, q0) by the equation

−2 lnλ(n, x̃(n, q0)) = q0 for q0 > 0, (14)

which can be solved numerically. The integration region −2 lnλ(n, x) ≥ q0 is equivalent with x ≤
x̃(n, q0), so that the expression for the tail probability simplifies to:

IPr(−2 ln λ(N,X) ≥ q0 |µ = 0, ν) =


+∞∑
n=1

νn e−ν

n!
1
2

[
1 + erf

(
x̃(n, q0)− ν√

2 ∆ν

)]
if q0 > 0,

1 if q0 = 0.

(15)
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According to equation (7), the dependence of this tail probability on ν is eliminated by taking the supre-
mum with respect to ν.

For ∆ν values of order 1 or larger, a graphical examination of eq. (15) shows that −2 lnλ is
stochastically increasing with ν, so that the supremum (7) equals the limiting p value:

p∞ = lim
ν→+∞ IPr(−2 ln λ(N,X) ≥ q0 |µ = 0, ν). (16)

The distribution of−2 lnλ in the large ν limit is described by asymptotic theory. In the present case, care
must be taken of the fact that the null hypothesis, µ = 0, lies on the boundary of the physical parameter
space, µ ≥ 0. The correct asymptotic result is that, under H0, half a unit of probability is carried by the
singleton {−2 ln λ = 0}, and the other half is distributed as a chisquared with one degree of freedom
over 0 < −2 ln λ < +∞; this distribution is sometimes written as 1

2χ2
0 + 1

2χ2
1. Thus, for q0 > 0, p∞

equals half the tail probability to the right of q0 in a χ2
1 distribution.

For small values of ∆ν, the discreteness of n causes the tail probabilities of −2 ln λ to oscillate
as a function of ν, and their supremum to slightly exceed the asymptotic value. In this case the correct
supremum is much more difficult to find, although p∞ is often a useful approximation.

3.3 Confidence Set Method

The supremum method has two significant drawbacks. The first one is computational, in that it is often
difficult to locate the global maximum of the relevant tail probability over the entire range of the nuisance
parameter ν. Secondly, the very data one is analyzing often contain information about the true value of
ν, so that it makes little sense conceptually to maximize over all values of ν. A simple way around these
drawbacks is to maximize over a 1− β confidence set Cβ for ν, and then correct the p value for the fact
that β is not zero [7, 8]:

pcset = sup
ν∈Cβ

p(ν) + β. (17)

Here the supremum is restricted to all values of ν that lie in the confidence set Cβ . It can be shown that
pcset, like psup, is conservative:

IPr(pcset ≤ α) ≤ α for all α ∈ [0, 1]. (18)

We emphasize that this inequality is only true if β is chosen before looking at the data. Since pcset is
never smaller than β, the latter should be chosen suitably small. If one is using a 5σ discovery threshold
for example (α = 5.7 × 10−7), then it would be reasonable to take a 6σ confidence interval for ν, i.e.
β = 1.97 × 10−9. Constructing an interval of such high confidence level may be difficult however, as
one rarely has reliable knowledge of the relevant distributions so far out in the tails.

3.4 Bootstrap Methods

Conceptually the simplest method for handling the nuisance parameter ν in the p value (4) is to substitute
an estimate for it. This is known as a parametric bootstrap, or plug-in method. Estimation of ν should
be done under the null hypothesis, to maintain consistency with the general definition of p values. For
example, in the case where information about ν comes from an auxiliary Gaussian measurement, one
should use the ˆ̂ν estimate of equation (10). The plug-in p value is thus:

pplug =
+∞∑

n=n0

ˆ̂ν(n0, x0)n

n!
e−ˆ̂ν(n0,x0). (19)

Two criticisms can be levelled at this method. First, it makes double use of the data, once to estimate
the nuisance parameter under H0, and then again to calculate the tail probability. This tends to favor H0.
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Second, it does not take into account the uncertainty on the parameter estimate. This tends to exaggerate
the significance and hence works against H0. There are several ways for correcting these deficiencies.

One option is to base the plug-in estimate of ν on the auxiliary measurement x0 only, in order
to avoid potential signal contamination from the observation n0. This is equivalent to extracting the
estimate of ν from the conditional distribution of the data given the test statistic n0, and the resulting p
value is therefore referred to as a conditional plug-in p value. Although this method avoids double use of
the data, it still ignores the uncertainty on the estimate of ν, which can lead to significant undercoverage.

A better way is to adjust the plug-in p value by the following procedure. Let Fplug(pplug | ν) be
the cumulative distribution function of pplug. It depends on the nuisance parameter ν, whose value we
don’t know. However, we can estimate it, and substitute that estimate in Fplug. This yields the so-called
adjusted plug-in p value:

pplug,adj = Fplug(pplug | ˆ̂ν). (20)

This adjustment algorithm is known as a double parametric bootstrap and can be implemented by a Monte
Carlo calculation [9]. Since double bootstrap calculations tend to require large amounts of computing
resources, methods have been developed to speed them up [10, 11, 12].

Another way to correct the plug-in p value is to work with a different test statistic. Ideally one
would like to use a test statistic that is pivotal, i.e. whose distribution under the null hypothesis does not
depend on any unknown parameters. Often this is not possible, but an asymptotically pivotal statistic
can be found; this is then still better than a non-pivotal statistic. The test statistic used above for pplug,
namely n, is clearly not pivotal, not even asymptotically. However, twice the negative log-likelihood
ratio, equation (12), is asymptotically pivotal, having a 1

2χ2
0 + 1

2χ2
1 distribution in the large-sample limit.

The parametric bootstrap evaluation of the likelihood ratio p value consists in substituting ˆ̂ν for ν in
equation (15). We will write pplug,λ for this plug-in p value, to distinguish it from the one based on n. In
finite samples, pplug,λ is usually more accurate than the asymptotic p value p∞ (eq. 16).

Figure 1 compares the relative coverage error, R ≡ (α−IPr(p ≤ α))/α, of pplug, pplug,adj , pplug,λ,
and p∞ for our Poisson benchmark problem with a Gaussian uncertainty ∆ν on ν. Positive values of R
indicate overcoverage, negative ones undercoverage. Exactly uniform p values have R = 0. In terms of
uniformity, pplug,λ performs best, followed by pplug,adj , p∞, and pplug, in that order. The first two exhibit
some minor undercoverage, which varies with the value of ∆ν.

An interesting alternative to the bootstrap, known as Bartlett adjustment, can be applied to any
log-likelihood ratio statistic T whose asymptotic distribution under the null hypothesis is chisquared
with k degrees of freedom. In finite samples one assumes that T is distributed as a scaled chisquared
variate with expectation value 〈T 〉 = k (1 + B), where B goes to zero with increasing sample size. An
estimate of B can be extracted from a Monte Carlo calculation of 〈T 〉, in which unknown parameters
are replaced by their maximum likelihood estimates under H0. For continuous data it turns out that the
Bartlett-adjusted statistic T/(1 + B) is a better approximation than T to a chisquared statistic with k
degrees of freedom. For discrete data the improvement is less consistent.

3.5 Prior-predictive Method

The last two nuisance parameter elimination methods we examine are inspired by a Bayesian approach
to model selection. It is assumed that information about the nuisance parameter ν is available in the form
of a prior distribution π(ν). The prior-predictive method consists in averaging the p value p(ν) over this
prior:

pprior =
∫

dν π(ν) p(ν). (21)
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Fig. 1: Relative coverage error, R ≡ (α− IPr(p ≤ α))/α versus significance threshold α, for pplug (short dashes),
pplug,adj (long dashes), pplug,λ (solid), and p∞ (dot-dashes). The dotted lines represent zero relative error. The
values of ν and ∆ν used to generate the reference ensemble are indicated in the lower-left corner of each plot. R

values for pplug,adj and pplug,λ are almost indistinguishable for ∆ν = 0.1 and 0.47.

Substituting expression (4) from our benchmark example into the above integral, and interchanging the
order of integration and summation, yields:

pprior =
+∞∑

n=n0

mprior(n), where mprior(n) =
∫

dν π(ν)
νn e−ν

n!
, (22)

showing that pprior is itself the tail probability of a distribution, namely the prior-predictive distribution
mprior(n) [13]. The latter characterizes the ensemble of all experimental results that one could obtain,
taking into account prior uncertainties about the model parameters. A small value of pprior is therefore
evidence against the overall model used to describe the data, and could in principle be caused by a badly
elicited prior as well as by an invalid likelihood (or unlikely data).

Despite its Bayesian motivation, the prior-predictive p value can be used to analyze frequentist
problems. If prior information about ν comes from a bona fide auxiliary measurement with likelihood
Laux(ν |x0), the prior π(ν) can be derived as the posterior for that measurement:

π(ν) ≡ πaux(ν |x0) =
Laux(ν |x0)πaux(ν)∫

dν Laux(ν |x0)πaux(ν)
, (23)

where the auxiliary measurement prior πaux(ν) is in some sense noninformative or neutral. For example,
the testing problem discussed in section 3.2 can be analyzed this way, with Laux(ν |x0) a Gaussian
likelihood. Choosing a flat prior for πaux(ν), truncated to positive values of ν, leads to:

π(ν) =
e
− 1

2

“
ν−x0
∆ν

”2

√
2π ∆ν 1

2

[
1 + erf

(
x0√
2 ∆ν

)] . (24)
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Inserting this prior and the Poisson p value (4) in equation (21) yields, after some simple algebra:

pprior =


∫ +∞

0
du

1 + erf
(

x0−u√
2∆ν

)
1 + erf

(
x0√
2∆ν

) un0−1 e−u

(n0−1)!
if n0 > 0,

1 if n0 = 0.

(25)

In this type of application it is interesting to study the characteristics of pprior with respect to a purely
frequentist ensemble, in which both n0 and x0 fluctuate according to their uncertainties. This is to be
contrasted with the prior-predictive ensemble, where n0 and ν fluctuate, and with respect to which pprior

is exactly uniform by construction. Figure 2 shows the behaviour of the prior-predictive p value (25)
with respect to the frequentist ensemble. It appears to be everywhere conservative.

3.6 Posterior-predictive Method

The prior-predictive p value is undefined when π(ν) is improper. A possible way to overcome this
problem is to average the p value over the posterior π(ν |n0) instead of the prior π(ν) [14]:

ppost =
∫

dν π(ν |n0) p(ν), with π(ν |n0) ≡ L(ν |n0)π(ν)
mprior(n0)

. (26)

This posterior-predictive p value is also a tail probability, as can be seen by the same manipulations that
led from eq. (21) to eq. (22) in analyzing our Poisson benchmark problem:

ppost =
+∞∑

n=n0

mpost(n), where mpost(n) =
∫

dν π(ν |n0)
νn e−ν

n!
. (27)

The posterior-predictive distribution mpost(n) is the predicted distribution of n after having observed
n0. Therefore, ppost estimates the probability that a future observation will be at least as extreme as the
current observation if the null hypothesis is true.

The posterior-predictive p value uses the data n0 twice, first to calculate mpost and then again when
evaluating ppost. As was the case for pplug, this makes ppost conservative, increasing the risk of accepting
a bad model. The behaviour of ppost with respect to the frequentist ensemble for our benchmark problem
is compared to that of pprior in Fig. 2. Note that for small values of ∆ν, inferences about ν are dominated
by the prior (24), so that pprior and ppost become indistinguishable.

An advantage of ppost over pprior is that the former can be used to calibrate discrepancy variables
in addition to test statistics. In contrast with statistics, discrepancy variables depend on both data and pa-
rameters. A typical example is a sum D(~x, ~θ) of squared residuals between data ~x and model predictions
that depend on unknown parameters ~θ. Whereas a frequentist approach consists in minimizing D(~x, ~θ)
with respect to ~θ, the posterior-predictive approach integrates the joint distribution of ~x and ~θ, given the
observed value ~x0 of ~x, over all values of ~x and ~θ that satisfy D(~x, ~θ) ≥ D(~x0, ~θ) [14].

In spite of its advantages, the extreme conservativeness of ppost remains troubling and has led
some statisticians to propose a recalibration [15] or modified constructions [16].

4 Nuisance parameters that are present only under the alternative

Even though p values are designed to test a single hypothesis (the “null”), they often depend on the
general type of alternative envisioned. The benchmark example of section 3 illustrates this, since only
positive excursions of the background level are of interest, and negative excursions, no matter how large,
are never considered part of the alternative. This clearly affects the calculation of the p value, which
depends on one’s definition of “more extreme than the observation”. As another example, consider
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Fig. 2: Relative coverage error (α − IPr(p ≤ α))/α versus significance threshold α, for prior-predictive p values
(solid lines) and posterior-predictive p values (dashes). At ∆ν = 0.1 the two curves are indistinguishable. The
dotted lines represent zero relative error.

a positive finding from a search for a signal peak or trough on top of a one-dimensional background
spectrum. In this case the alternative hypothesis includes excursions from the background level at any
location on the spectrum, not just where the observation was made. The significance of the latter will be
degraded due to what physicists call the look-elsewhere effect. Statisticians on the other hand, blame the
location parameter of the signal, which they characterize as “a nuisance parameter that is present under
the alternative but not under the null” [17, 18]. Since the nuisance parameter is not present under the
null, none of the methods described in section 3 can be applied here, and a separate treatment is needed.

As usual, the first step towards a solution consists in choosing an appropriate test statistic. If
the signal location θ is known beforehand, the optimal test statistic is simply the likelihood ratio λ.
Otherwise λ is a function of θ, and Ref. [19] discusses several ways to eliminate this dependence:

SupLR ≡ sup
L≤θ≤U

[−2 ln λ(θ)], (28a)

AveLR ≡
∫ U

L
dθ w(θ) [−2 lnλ(θ)], (28b)

ExpLR ≡
∫ U

L
dθ w(θ) exp

[
1
2

[−2 lnλ(θ)]
]

, (28c)

where L and U are the spectrum boundaries and w(θ) is a weight function. These are two-sided statistics;
one-sided versions also exist and do not add any particular difficulty. If there is no prior information about
the location of the signal (w(θ) uniform between L and U ), then SupLR and ExpLR appear to be equally
good choices, whereas AveLR is significantly less powerful. Note that SupLR is the likelihood ratio
statistic when θ is unknown. However, because θ is unidentified under H0, SupLR does not have the
usual asymptotic null distribution, nor does it enjoy the usual asymptotic optimality properties [19].

In general, the null distribution of the selected test statistic has to be obtained by a Monte Carlo
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simulation, or a parametric bootstrap if there are unknown parameters under the null. This is often a
very complex calculation, in which each simulated dataset must undergo many fits, one under the null
hypothesis and several under the alternative, in order to obtain the likelihood ratio as a function of θ.
Such a procedure is not easy to automate over the millions of simulated datasets required to prove a 5σ
effect, the standard of discovery in high-energy physics.

This computational burden may be somewhat alleviated by using asymptotic approximations when
the sample size allows it. For simplicity we illustrate this technique in the case of a binned spectrum with
N bins. Background and signal shapes can then be represented by N -vectors whose components are
expected bin contents. Suppose that the background spectrum is a linear combination of k independent
N -vectors ~bi, whose coefficients are unknown parameters, and that the signal shape is described by N -
vector ~s(θ). We can introduce a metric in the space of N -vectors by defining 〈~a |~b〉 ≡ ∑N

i=1 aibi/σ
2
i ,

where ai, bi are components of the N -vectors ~a and ~b, and σi is the standard deviation of bin i under the
null hypothesis. Let ~v(θ) be that linear combination of the ~bi and ~s(θ) that is orthogonal to each ~bi and
normalized to 1. It can be shown that, asymptotically:

−2 ln λ(θ) ∼
[

N∑
i=1

vi(θ)
σi

Zi

]2

, (29)

where the Zi are independent standard normal random variables, and the symbol ’∼’ stands for equality
in distribution. For known θ, eq. (29) reduces to −2 lnλ(θ) ∼ χ2

1, as expected. For unknown θ, it
properly accounts for correlations between values of −2 lnλ(θ) at different θ locations, an essential
requirement for correctly evaluating the statistics (28). That this result simplifies significance calculations
is easy to see, since it gives the likelihood ratio without having to fit a spectrum. The vector ~v(θ) should
be constructed over a fine grid of θ values before starting the simulation. Then, to simulate a dataset, one
generates N normal deviates Zi, computes −2 ln λ(θ), and plugs the result into the desired test statistic,
SupLR, ExpLR, or AveLR.

Reference [20] generalizes equation (29) to unbinned likelihoods and non-regular problems other
than the one discussed here.

5 Summary

General methods for handling nuisance parameters in p value calculations fall in three categories: worst-
case evaluation (supremum or confidence set), bootstrapping, and Bayesian predictive (prior or poste-
rior). The performance of these methods depends strongly on the choice of test statistic, and the likeli-
hood ratio is usually optimal. Of all the methods considered, bootstrapping the likelihood ratio seems
the most successful at preserving the uniformity of p values with respect to frequentist ensembles.

Significance problems in high energy physics typically involve many nuisance parameters, not all
of which can be handled in the same way. Our understanding of detector energy scales for example,
is usually far too complex to be modelled by a likelihood function. A sensible solution is to construct
a prior representing this understanding, and assume a prior-predictive approach to incorporate it into
a significance. This suggests a hybrid treatment of systematics, where the main effects are handled
by bootstrapping a likelihood ratio, whereas auxiliary effects are accounted for with a supremum or
predictive method. Such a treatment is well suited to the Monte Carlo approach often necessitated by the
complexity of physics analyses.
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Testing for a Signal

Wolfgang A. Rolke and Angel M. López
University of Puerto Rico - Mayaguez

Abstract
We describe a statistical hypothesis test for the presence of a signal based on
the likelihood ratio statistic. We derive the test for one case of interest and
also show that for that case the test works very well, even far out in the tails of
the distribution. We also study extensions of the test to cases where there are
multiple channels.

1 Introduction

In recent years much work has been done on the problem of setting limits, beginning with the seminal
paper by Feldman and Cousins [1]. A fairly comprehensive solution for limits on the signal rate in
the presence of background and efficiency, both measured with some uncertainty, was given in Rolke,
López and Conrad [2]. In this paper we will study a related problem, namely that of claiming a new
discovery, say of a new particle or decay mode. Statistically this falls under the heading of hypothesis
testing. We will describe a test derived in a fairly standard way called the likelihood ratio test. The main
contribution of this paper is the study of the performance of this test. This is essential for two reasons.
First, discoveries in high energy physics require a very small false-positive, that is the probability of
falsely claiming a discovery has to be very small. This probability, in statistics called the type I error
probability α, is sometimes required to be as low as 2.87 · 10−7 , equivalent to a 5σ event. The likelihood
ratio test is an approximate test, and whether the approximation works this far out in the tails is a question
that needs to be investigated. Secondly, in high energy physics we can often make use of multiple
channels, which means we have problems with as many as 30 parameters, 20 of which are nuisance
parameters. The sizes of the samples needed to insure that the likelihood ratio test works need to be
determined.

2 Likelihood Ratio Test

We will consider the following general problem: we have data X from a distribution with density f(x; θ)
where θ is a vector of parameters with θ ∈ Θ and Θ is the entire parameter space. We wish to test the
null hypothesis H0 : θ ∈ Θ0 (no signal) vs the alternative hypothesis. Ha : θ ∈ Θc

0 (some signal), where
Θ0 is some subset of Θ. The likelihood function is defined by

L(θ|x) = f(x; θ)

and the likelihood ratio test statistic is defined by

λ(x) =
supΘ0

L(θ|x)
supΘ L(θ|x)

Intuitively we can understand the statistic in the case of a discrete random variable. In this case the nu-
merator is the maximum probability of the observed sample if the maximum is taken over all parameters
allowed under the null hypothesis. In the denominator we take the maximum over all possible values of
the parameter. The ratio of these is small if there are parameter points in the alternative hypothesis for
which the observed sample is much more likely than for any parameter point in the null hypothesis. In
that case we should reject the null hypothesis. Therefore we define the likelihood ratio test to be: reject
the null hypothesis if λ(x) ≤ c, for some suitably chosen c, which in turn depends on the type I error
probability α.
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How do we find c? For this we will use the following theorem: under some mild regularity
conditions if θ ∈ Θ0 then −2 log λ(x) has a chi-square distribution as the sample size n → ∞. The
degrees of freedom of the chi-square distribution is the difference between the number of free parameters
specified by θ ∈ Θ0 and the number of free parameters specified by θ ∈ Θ.

A proof of this theorem is given in Stuart, Ord and Arnold [3] and a nice discussion with examples
can be found in Casella and Berger [4].

3 A Specific Example: A Counting Experiment with Background and Efficiency

We begin with a very common type of situation in high energy physics experiments. After suitably
chosen cuts we find n events in the signal region, some of which may be signal events. We can model
n as a random variable N with a Poisson distribution with rate es + b where b is the background rate,
s the signal rate and e the efficiency on the signal. We also have an independent measurement y of the
background rate, either from data sidebands or from Monte Carlo and we can model y as a Poisson with
rate τb, where τ is the relative size of the sidebands to the signal region or the relative size of the Monte
Carlo sample to the data sample, so that y/τ is the point estimate of the background rate in the signal
region. Finally we have an independent measurement of the efficiency z, usually from Monte Carlo,
and we will model z as a Gaussian with mean e and standard deviation σe. So we have the following
probability model:

N ∼ Pois(es + b) Y ∼ Pois(τb) Z ∼ N(e, σe)

In this model s is the parameter of interest, e and b are nuisance parameters and τ and σe are assumed
known. Now the joint density of N , Y and Z is given by

f(n, y, z; e, s, b) =
(es + b)n

n!
e−(es+b) (τb)y

y!
e−τb 1√

2πσ2
e

e
− 1

2
(z−e)2

σ2
e

Finding the denominator of the likelihood ratio test statistic λ means finding the maximum likelihood
estimators of e, s, b. They are given by ŝ = n− y/τ , b̂ = y/τ and ê = z.

We wish to test H0 : s = 0 vs Ha : s > 0, so under the null hypothesis we have

log f(n, y, z; 0, b, e) = n log (b)− log(n!)− b+
y log(τb)− log(y!)− (τb)− 1

2 log(2πσ2
e )− 1

2
(z−e)2

σ2
e

and we find that this is maximized for b̃ = n+y
1+τ and ẽ = z. Now

λ(n, y, z) = sup L(0,b,e|n,y,z)
sup L(s,b,e|n,y,z) = f(n,y,z|0,eb ,ee )

f(n,y,z|bs ,bb ,be )
=

( n+y
1+τ ) /n! exp (− n+y

1+τ
)( τ n+y

1+τ ) y
/y! exp (− τ n+y

1+τ
) 1√

2πσ 2
e

e
− 1

2
( z−z) 2

σ 2
e

n n /n! exp(−n) y y /y! exp(−y) 1√
2πσ 2

e

e
− 1

2
( z−z) 2

σ 2
e

=

( n+y
1+τ ) n+y

τ y

n n y y

One special case of this needs to be studied separately, namely the case y = 0. In this case we can
not take the logarithm and the maxima above have to be found in a different way. It turns out that the
maximum likelihood estimators are ŝ = n, b̂ = 0 , ê = z, and under the null hypothesis we find b̃ = n

1+τ
and ẽ = z. With this we find λ(n, 0, z) = (1 + τ)−n.

First we note that the test statistic does no involve z, the estimate of the efficiency. This is actually
clear: the efficiency is for the detection of signal events, but under the null hypothesis there are none. Of
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course the efficiency will affect the power curve: if e is small the observed n will be small and it will be
much harder to reject the null hypothesis.

Now from the general theory we know that −2 log λ(N,Y, Z) has a chi-square distribution with 1
degree of freedom because in the general model there are 3 free parameters and under the null hypothesis
there are 2. So if we denote the test statistic by L(n, y) we get

L(n, y) = −2 log λ(n, y, z) ={
2
[
n log(n) + y log(y)− (n + y) log

(
n+y
1+τ

)
− y log(τ)

]
if y > 0

2n log(1 + τ) if y = 0

and we have L(N,Y ) ∼ χ2
1, approximately.

Obviously we will only claim a disovery if there is an excess of events in the signal region, and
so the test becomes: reject H0 if n > y/τ and L(n, y) > c. Now it can be shown that c is the (1 − 2α)
quantile of a chi-squared distribution with one degree of freedom.

The situation described here has previously been studied in Rolke, López and Conrad [2] in the
context of setting limits. They proposed a solution based on the profile likelihood. This solution is
closely related to the test described here. In fact it is the confidence interval one finds when inverting the
test described above.

4 Multiple Channels

In high energy physics we can sometimes make use of multiple channels. There are a number of possible
extensions from one channel. We will consider the following model: there are k channels and we have
Ni ∼ Pois(eisi + bi), Yi ∼ Pois(τibi), i = 1, .., k, all independent. We will again find that the
efficiencies do not affect the type I error probability. We will discuss two ways to extend the methods
above to multiple channels, both with certain advantages and disadvantages.

4.1 Method 1: (Full LRT)

We can calculate the likelihood ratio statistic for the full model. It turns out that the test statistic Lk is
given by

Lk(n,y) =
k∑

i=1

L(ni, yi)I(ni > yi/τi)

where I is the indicator function, that is I(n > y/τ) = 1 if n > y/τ , and 0 otherwise. In other words
the test statistic is simply the sum of the test statistics for each channel separately. The test is then as
follows: we reject H0 if Lk(n,y) > c. It can be shown that the distribution of the test statistic under the
null hypothesis is a linear combination of chi-square distributions. Tables of critical values as well as a
routine for calculating them are available from the authors.

4.2 Method 2: (Max LRT)

Here we will use the following test: reject H0 if M = maxi{L(ni, yi)I(ni > yi/τi} > c, that is, we
claim a discovery if there is a significant excess of events in any one channel. For this method the critical
value c is found using Bonferroni’s method, see for example Casella and Berger [4]. We therefore reject
H0 if M > c, where c is the (1− 2(1 − k

√
1− α)) quantile of a chi-square distribution with one degree

of freedom.
As we shall see soon, which of these two methods performs better depends on the experiment.
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5 Performance

How do the above tests perform? In order to be a proper test they first of all have to achieve the nominal
type I error probability α. If they do we can then further study their performance by considering their
power function β(s) given by

β(s) = P (reject H0| true signal rate is s)

Of course we have α = β(0). β(s) gives us the discovery potential, that is the probability of correctly
claiming a discovery if the true signal rate is s > 0.

In simple cases the true type I error probability α and the power β(s) can be calculated explicitly,
in more difficult cases we generally need to use Monte Carlo. Moreover, if Monte Carlo is used a
technique called importance sampling makes it possible to find the true type I error probability even out
at 5σ.

First we will study the true type I error probability as a function of the background rate. In figure
1 we calculate α (expressed in sigma’s) for background rates ranging from b = 5 to b = 50. Here we
have used τ = 1 and α corresponding to 3σ, 4σ and 5σ.

It is clear that even for moderate background rates (say b > 20) the true type I error is basically
the same as the nominal one. For smaller background rates, the method is conservative, that is, the true
significance of a signal is actually even higher than the one claimed, and it is therefore safe to use the
method even for small b.

In figure 2 we have the power curves for b = 50, τ = 1, e = 1, s from 0 to 100 and α correspond-
ing to 3σ, 4σ and 5σ. This clearly shows the "penalty" of requiring a discovery threshold of 5σ: at that
level the true signal rate has to be 83 for a 90% chance of making a discovery. If 3σ is used a rate of 52
is sufficient, and for 4σ it is 67.

Let us now consider the case of multiple channels. In figure 3 we have the results of the following
simulation: There are 5 channels, all with the same background, going from 10 to 100, and the same
τ = 1. Again we see that the test achieves the nominal α even for small background rates.

For the last study we will compare the two methods for multiple channels. In figure 4 we have the
power curves for the following situations: we have 5 channels with b = 50, e = 1, and τ = 1 for all
channels. In case 1 the signal rate s goes from 0 to 75 and is the same in all channels. In case 2 we have
s1 going from 0 to 100 and s2 = .. = s5 = 0. All simulations are done using α = 5σ. Clearly in case 1
Full LRT does better whereas in case 2 it is Max LRT.

This is not surprising because the maximum makes this method more sensitive to the "strongest"
channel whereas the sum makes Full LRT more sensitive to a "balance" of the channels. In practice, of
course, a decision on which method to use has to be made before any data is seen. A discussion of the
optimum strategy for making such a decision is beyond the scope of this paper.

6 Further Extensions

Our extension to multiple channels assumes possibly different signal rates in each channel. The most
common situation involves different decay channels of a particle whose existence is being tested. In that
case, the different signal rates are due to different branching ratios such that si = ris with a common
s. A detailed discussion of this case along with the inclusion of information on certain variables in each
event (a technique generally known as marked Poisson) will be found in an upcoming paper.

7 Summary

We have discussed a hypothesis test for the presence of a signal. For the case of a Poisson distributed
signal with a background that has either a Poisson or a Gaussian distribution we have carried out the
calculations and done an extensive performance study. We have shown that the test achieves the nominal
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type I error probability α, even at a 5σ level. We extended the test to the case of multiple channels
with two possible tests and showed that both achieve the nominal α. Either one or the other has better
performance depending on the specific experiment.
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Evaluation of Two Methods for Incorporating a Systematic Uncertainty
into a Test of the Background-only Hypothesis for a Poisson Process

Jordan Tucker
Dept. of Physics and Astronomy, University of California, Los Angeles, California, USA

Abstract
Hypothesis tests for the presence of new sources of Poisson counts amidst
background processes are frequently performed in high energy physics, gamma
ray astronomy, and other branches of science. This talk briefly summarizes
work in which we evaluate two classes of algorithms for dealing with uncer-
tainty in the mean background in such tests.

This talk briefly summarizes studies, performed with Robert Cousins and described in Ref. [1],
of two methods for incorporating a systematic uncertainty into a test of the background-only hypothesis
for a Poisson process. In a situation common in both gamma-ray astronomy (GRA) and high-energy
physics (HEP), non events are observed from a Poisson process with mean µs + µb; the signal mean µs

is of interest, while the background mean µb is a nuisance parameter. In this work, we study tests of the
background-only null hypothesis (µs = 0) in two prototypical problems in GRA and HEP as follows.

The “on/off” problem. In GRA, non photons are detected with a telescope pointed on-source, i.e.
with some putative source in the field of view; and noff photons are detected with the telescope pointed
off-source. The ratio τ of observing time toff/ton is assumed known exactly. In the analogous example
from HEP, one counts non events in a signal region where one is looking for an excess above background.
One observes noff events in a background control (sideband) region where no excess is expected. The
ratio τ of sideband to signal region events under the background-only null hypothesis is again assumed
known.

The “Gaussian-mean background” problem. In another scenario, there is a subsidiary measure-
ment which determines µb with normal (Gaussian) uncertainty with rms deviation σb. We assume σb to
be precisely known, either absolutely, or as a set fraction of µb.

In either problem, for a data set one can then proceed to calculate the tail probability (p-value) un-
der the null hypothesis. In HEP, one typically quotes the significance S (known in the statistics literature
as the Z-value) of the data set, namely the p-value converted to equivalent normal standard deviations.

As detailed by Linnemann [2] at PhyStat 2003, there is an approximate correspondence between
the two problems. For the on/off problem, an estimate of the mean background in the signal region is

µ̂b = noff/τ, (1)

and the (rough) uncertainty on this estimate is then

σb =
√

noff/τ. (2)

Combining the two equations and eliminating noff , we have

τ = µ̂b/σ
2
b. (3)

This suggests that a recipe to estimate the significance for one of the prototypical problems can be applied
to the other; then the performance of the recipe can be studied. Here, we quantify performance in terms
of coverage.

There is a frequentist solution to the on/off problem, discussed by Linnemann [2] at PhyStat 2003
and by a very few references in that work. The key idea is to reformulate the null hypothesis: if the
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signal mean µs is zero, then the ratio of Poisson means in the sideband region and the signal region is
exactly τ (i.e. it is the ratio expected given background alone, and no signal). Then, one can use the
standard frequentist solution for the hypothesis test for the ratio of Poisson means, expressed in terms of
binomial probabilities. This recipe (ZBi) is then easily carried out, for example in ROOT [3]. In ROOT,
one function call returns a p-value, and another calculates the equivalent number of standard deviations,
Z . By the properties of the frequentist construction, ZBi never under-covers, but it over-covers due to
the discreteness of n, especially for small counts.

It is common in HEP to integrate out the nuisance parameter (here, the unknown background
mean µb) in an otherwise frequentist calculation (Cousins and Highland [4] integrated out an unknown
luminosity). For the Gaussian-mean background problem, starting from the Poisson probability to obtain
non or more background events:

pP =
∞∑

j=non

e−µbµj
b/j!, (4)

one can calculate the weighted average over a given pdf for the background mean µb to obtain the p-
value:

p =
∫

pPp(µb)dµb. (5)

Then, depending on the pdf one chooses for µb, one has different recipes to calculate Z-values.
Choosing a gamma function pdf for µb (the result of a flat prior times the likelihood function from

the Poisson sideband observation of noff ), one has the recipe ZΓ. Amazingly, this yields an answer which
is identical [2] to that of the frequentist-constructed ZBi!

Letting the pdf for µb be a Gaussian with rms deviation σb as above, one obtains the recipe
ZN (with the subscript denoting normal). This method was presented in a poster at PhyStat 2005 by
Bityukov [5] et al. and was the recommendation out of the CMS Higgs group, adopted by CMS. But, the
frequentist coverage of ZN is not guaranteed, and Cranmer [6] gave examples where it was poor.

We check the coverage of the two recipes, ZBi and ZN, scanning over the true background mean µb

and the other experimental setup parameter (τ for the on/off problem, or f = σb/µb for the Gaussian-
mean background problem). Choosing a “claimed” Z-value, Zclaim, from the common choices 1.28
(corresponding to a p-value of 0.1), 3, or 5, we calculate the frequency, in the absence of a signal, that
the claimed Z- value is exceeded for an ensemble of experiments with the chosen µb and τ or f . This is
then converted to the “true” Z-value, Ztrue. We then plot what we call ∆Z = Ztrue − Zclaim; then the
coverage is easily checked by looking for deviations above or below ∆Z = 0, corresponding to over or
under-coverage, respectively.

We present here just four sample plots showing the results of these scans for a claimed Z-value of
5 (i.e. a claimed p-value of 2.87 × 10−7). One pair of plots applying ZBi and ZN to the on/off problem
is shown in Fig. 1, and another pair applying the two recipes to the Gaussian-mean background problem
for absolute σb is shown in Fig. 2. Plots for other combinations of problems, recipes, claimed Z-values,
and for larger values of µb and τ or f are in Ref. [1].

For the on/off experiments analyzed using the ZBi recipe (Fig. 1 (left)), Ztrue ≥ Zclaim every-
where, as expected. Using the ZN recipe (Fig. 1 (right)), one gets under-coverage as severe as two units
of ∆Z for some regions in the plot. This agrees with the result of Cranmer [6], who (using a Monte
Carlo coverage calculation method) finds that for the ensemble of experiments with µb = 100 and τ = 1
using ZN for the on/off problem under-covers for Zclaim = 5, obtaining Ztrue = 4.2.

There is significant over-coverage for small values of n, as seen in the lower left corners of the
plots; there the discreteness issues come into play as mentioned above. We choose to leave blank those
regions in the plot where a p-value less than ∼ 10−15 is obtained and the precise calculation of Z breaks
down due to numerical precision limitations.
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Fig. 1: For the on/off problem analyzed using the ZBi (left) and ZN (right) recipes, for each fixed value of τ and
µb, the plot indicates the calculated Ztrue−Zclaim for the ensemble of experiments quoting Zclaim ≥ 5. The lower
left corner is devoid of entries due to machine round-off, as described in in Ref. [1].
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Fig. 2: For the Gaussian-mean background problem with exactly known σb, analyzed using the ZBi (left) and ZN

(right) recipes, for each fixed value of f = σb/µb and µb, the plot indicates the calculated Ztrue − Zclaim for the
ensemble of experiments quoting Zclaim ≥ 5. The upper left corner of the left plot is again devoid of entries due
to machine round-off, as described in the in Ref. [1].
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For the Gaussian-mean background experiments with exactly known σb analyzed with ZBi (Fig. 2
(left)), there is over-coverage everywhere, and by a large amount for increasing values of f = σb/µb.
Using ZN, one runs into under-coverage for increasing f and µb. This under-coverage can be even more
severe for other choices of Zclaim and values of µb and f , as seen in the full set of plots in Ref. [1].

For small values of f and larger values of µb, using the correspondence Eqn. 3 to approximate
the Gaussian-mean background problem as Poisson for calculating ZBi leads to numerical difficulties as
explained in Appendix B of Ref. [1]; therefore we leave the upper left region of the left plot in Fig. 2
blank.

Recommendations. For the on/off problem ZBi = ZΓ avoids under-coverage by construction,
but can be quite conservative for small numbers of events; we recommend ZBi for general use in this
problem. One may wish to use less conservative tests, either ones constructed directly for the ratio
of Poisson means and never under-cover, or (as our referee Nancy Reid suggested) less conservative
approximate methods for the binomial problem, such as mid p-values.

For the Gaussian-mean background problem, ZBi works as well as or better than ZN in much of
the space, but in this implementation there are numerical issues for very small uncertainties on a large
mean background. Since neither ZBi nor ZN has coverage built in by construction for the Gaussian-mean
background problem, one should check the coverage where used.

Of course, it is of interest to extend the studies to other recipes and more complex problems, as
previously begun by Tegenfeldt and Conrad [7], and by Rolke, Lopez, and Conrad [8]. For example, we
have not yet considered the uncertainty on τ .

We thank Kyle Cranmer and James Linnemann for numerous enlightening discussions. This work
was partially supported by the U.S. Department of Energy.
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Statistics for the LHC: Progress, Challenges, and Future

Kyle S. Cranmer
New York University

Abstract
The Large Hadron Collider offers tremendous potential for the discovery of
new physics and poses many challenges to the statistical techniques used within
High Energy Physics. I will review some of the significant progress that has
been made since the PhyStat 2005 conference in Oxford and highlight some of
the most important outstanding issues. I will also present some ideas for future
developments within the field and advocate a progressive form of publication.

1 Introduction

There are several direct and indirect indications that some type of new physics will show up at the TeV
scale – the energy scale being explored by the Large Hadron Collider (LHC) and the multi-purpose
detectors ATLAS and CMS. There are a plethora of theoretical models that have been proposed for this
new physics; some with few parameters that make specific predictions, some with many parameters and
diverse phenomenology1 , and some that are quite vague. For the models that make sharp predictions, I
will summarize the substantial progress that has been made recently regarding the statistical procedures
used to establish a discovery, and indicate some of the challenges and open issues that remain. In the case
of high-dimensional models or models with vague predictions, the statistical challenge is more strategical
in nature. I will outline some of the approaches that have been proposed and discuss some new directions
that may bear fruit. In addition to the work being done by experimentalists, I will review some of the
work being done by the growing community of theorists using sophisticated statistical techniques. I will
conclude with some discussion of how the theoretical and experimental communities can improve their
communication and speed the iteration cycle needed to interpret signs of new physics.

This paper is largely a continuation of my contribution to PhyStat 2005, and I urge readers to con-
sult those proceedings for a more thorough statement of the problem and introduction to notation [1]. For
completeness, it should be said that within High Energy Physics (HEP) we use a theoretical formalism
called Quantum Field Theory that allows us to predict the “cross-section” of any particular interaction,
which is proportional to the probability that it will occur in a given collision. The number of observed
events, n, is Poisson distributed. Distributions of discriminating variables (angles, energies, masses,
etc.) of the particles produced in a collision are described as a convolution of fundamental distributions
predicted by theory and complicated detector effects that can only be modeled with Monte Carlo tech-
niques. The resulting distributions are generically called “shapes” and are denoted f(m) (where m may
have many components). The “Standard Model” is a specific theory that has survived all our tests so
far, thus it is our Null, or “background-only”, hypothesis. Uncertainties in the detector performance,
deficiencies in our theoretical modeling, and finite computational resources lead to uncertainties in our
prediction of the background and often force us to resort to an effective description using a paramet-
ric model f(m|ν) instead of Monte Carlo. The parameters ν are nuisance parameters and reflect our
uncertainty in the background. Incorporating nuisance parameters into (or eliminating them from) the
statistical techniques used to claim discovery is the focus of the next section. The situation is compli-
cated when the signal hypothesis is composite (has additional free parameters). When there are relatively
few parameters in the signal model (eg. {mH} or {mA, tan β}) we refer to the problem as the “look
elsewhere effect”. A more severe form of this problem occurs when the model space has many parame-
ters (e.g. {m0,M1/2, A0, tan β}, the 105 parameters of the MSSM, or the even larger set of models in
hep-ph), calling for a more radical approach.

1Phenomenology in this context refers to the expected signature of new physics.
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2 Searches for Specific Signatures

The claim of discovery of new physics is a statement that the data are inconsistent with our current
Standard Model to a high degree. Often, the signature of new physics is evidence of an excess in some
distribution above the background. Compared to recent experiments, the LHC experiments have a com-
bination of large background uncertainties and an enormous discovery potential. The large background
uncertainties are largely due to the fact that the machine collides protons, which are not fundamental
objects, and because we will probe new kinematic regimes. There has been a noble effort by the theoret-
ical community to model these effects and improve Monte Carlo tools; however, it is expected that there
will still be significant uncertainties in the rate and shape of the various backgrounds to new physics
searches [2, 3].

The expected number of events from background processes is typically denoted b, and b is used as
a subscript when needed.2 Hence the model for our null hypothesis has the form of a “marked Poisson”
and can be written

L(m|H0) = Pois(n|b)
n∏
j

fb(mj; ν), (1)

where ν represents the nuisance parameters used to incorporate uncertainty in our background model and
the boldface m is used to indicate we have a measurement of m for each of the n events.3 Similarly, the
signal is often manifest as an excess above the background, with an expected rate and shape, denoted s
and fs(m). Thus when the signal is purely additive, the model for the alternate hypothesis can be written

L(m|H1) = Pois(n|s + b)
n∏
j

fs+b(mj ; ν) = Pois(n|s + b)
n∏
j

sfs(mj) + bfb(mj ; ν)
s + b

. (2)

When the signal is not additivie (eg. in cases like the Z ′ where interference effects lead to a deficit) the
shape for the alternate, fs+b(mj), is not a simple mixture model. Often the signal model also has free
parameters, but that complication is deferred to Section 2.4.

For quite some time, High Energy Physics has been aware of the Neyman-Pearson lemma and
heavily utilized the event-wise likelihood ratio L(mj|H1)/L(mj |H0) for the selection of signal candi-
dates or the experiment-wise likelihood ratio L(m|H1)/L(m|H0) as a test statistic in hypothesis test-
ing [4]. The main area of development in the last few years has been the treatment of the nuisance
parameters ν and uncertainty in the background rate b [1, 5, 6, 7, 8, 9].

In the LEP Higgs searches, background shapes were known quite well, and shape uncertainties
were essentially neglected – or, more accurately, were treated as a systematic error in a way that was
decoupled from the rest of the statistical formalism. Normalization uncertainties were included into an
otherwise frequentist calculation by “smearing” the background rate according to some (posterior) dis-
tribution. This technique of smearing is fundamentally Bayesian (via integrating or marginalizing the
nuisance parameter b), and is referred to by several names including Prior Predictive, Cousins-Highland,
ZN , ScP , etc [10, 11, 12]. Searches at the Tevatron have had to deal with shape uncertainties, and the
���������	��
 program developed by Tom Junk employs a mixture of integration and maximization to elim-
inate nuisance parameters. The techniques being used by the Tevatron currently appear to be adequate
for relatively low significance statements (eg. 2σ limits), but may not have good coverage properties at
high significance (eg. the 5σ customary for discovery).

2.1 Number Counting Experiments

Analyses that do not take advantage of shape information are called number-counting analyses, and rely
purely on the Poisson nature of the counts. Because there are no other discriminating variables, the

2With the exception of s and b, Roman characters are reserved for observable quantities and Latin characters are used for
model parameters

3L will be used interchangeably for a probability density function and a likelihood function
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role of background uncertainty is of utmost importance. There has been considerable attention paid to a
prototype problem in which a subsidiary measurement y is used to constrain the background rate and the
main measurement x is used to test the presence of signal [11].

L(x, y|s, b) = Pois(x|s + b)Pois(y|τb). (3)

In my contribution to PhyStat2005, I compared the coverage of several methods in High Energy Physics
for calculating significance. The surprising result from that study was that the Bayesian smearing tech-
nique, one of the most common techniques in HEP, significantly undercovered for b = 100 and τ = 1,
an important regime for the LHC. This result was generalized by Cousins and Tucker [12].

An encouraging result of the study presented in my PhyStat2005 contribution was that the use of
the Profile Likelihood Ratio4

λ(s = 0) =
L(x, y|s = 0, ˆ̂b)

L(x, y|ŝ, b̂) (4)

together with the assumption that −2 log λ is distributed as χ2
1 (under the null) had good coverage out to

5σ.5 It is somewhat surprising that the asymptotic result worked so well even with a single observation
(x, y) and modest values of the background rate (the Poisson parameter b). This result has spurred
significant interest in use of the Profile Likelihood Ratio for LHC searches since it is capable of dealing
with many nuisance parameters, has good coverage properties, and can be implemented with one of our
field’s most throughly debugged tools: �����������	� ������
� [13].

2.2 Coverage Studies With Shapes

In order to explore the coverage properties of the Profile Likelihood Ratio in the presence of shapes and
nuisance parameters associated with the shapes, Jan Conrad and I performed a massive Monte Carlo
coverage study. We considered a simple extension of the prototype problem:

L(x, y,m|s, b, ν) = Pois(x|s + b)Pois(y|τb)
x∏

j=1

sfs(mj |ν) + bfb(mj |ν)
s + b

(5)

where
fs(m|ν) =

1− e−ν

ν
eν(m−1) and fb(m|ν) =

1− e−ν

ν
e−νm.

We generated O(108) pseudo experiments for several values of s, b, and ν. For each we used �����������

to fit L(x, y,m|s = 0, ˆ̂b, ˆ̂ν) and L(x, y,m|ŝ, b̂, ν̂), and used the asymptotic distribution −2 log λ ∼ χ2
1.

We tested coverage for background-only scenarios and signal-plus-background scenarios when the shape
parameter was assumed to be known and when it was a nuisance parameter. In each of the cases we
studied, the coverage from assuming the asymptotic distribution of −2 log λ was very good. There
was some indication that for strong discrimination in the shape (large values of |ν|) that there was some
undercoverage. See Tab. 1 for the results of that study. While we had planned to compare the power of the
profile likelihood ratio with the Bayesian marginalization technique, that study has not been concluded,
partially due to the fact that the Bayesian calculation is much more computationally intensive.

This scenario is somewhat artificial because the nuisance parameter ν is shared between the signal
and background contributions. Often, the signal shape has its own nuisance parameters, ν ′, and those
nuisance parameters have no effect on the likelihood when s = 0. This results in a non-χ2 distribution
for −2 log λ and requires special care. The look-elsewhere effect is an example of this situation, and
one must either rely on another asymptotic distribution, use Monte Carlo to estimate the distribution, or
recalibrate the p-value obtained.

4The use of a singleˆdenotes the unconditional maximum likelihood estimate, while the double ˆ̂denotes the conditional
maximum likelihood estimate under the constraint s = 0.

5If one constrains s > 0, then one expects−2 log λ ∼ 1/2δ(0)+1/2χ2
1 . The factor of 2 in the p-value has a small influence

in the significance expressed in σ when one is testing at the 5σ level.
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Table 1: Performance of a 5σ test using the profile likelihood ratio in a simple model including shapes with
nuisance parameters. Coverage is expressed in σ and quantifies the probability that the true s was included in the
5σ confidence interval. Power is the probability to reject the s = 0 hypothesis at the 5σ level.

s b τ ν coverage [σ] power [%]
0 20 1 -1 5.1 -
0 40 4 -4 5.1 -

25 100 1 -1 5.1 1.4
50 100 1 -1 5.0 12
50 100 1 -3 4.8 99

2.3 Combining Search Channels

It is common that a new physics signature is manifest in multiple different particle interaction processes.
For instance, if the Higgs boson exists, it is expected to decay into different combinations of final state
particles with different rates. When the final state particles are different, a different analysis is required:
these are commonly referred to as “channels”. Obviously, we have more sensitivity to the new physics
signature if we combine the different channels. Combining multiple channels by considering the like-
lihood ratio for the multiple-channel experiment as a test statistic was used by the LEP Higgs searches
and is a widely accepted technique.

The LEP Higgs group combined multiple channels by using the multi-channel likelihood ratio

L(m|H1)
L(m|H0)

=
∏

i∈channels

Pois(ni|si + bi)
∏ni

j
sifs,i(mj,i)+bifb,i(mj,i)

si+bi

Pois(ni|bi)
∏ni

j fb,i(mj,i)

 . (6)

It should be noted that here the alternate is a simple model where each of the si are known. Moreover,
this implies that the relationship of the si’s is known and is incorporated in the discrimination with the
null hypothesis.

As previously mentioned, uncertainty in the background rate, bi, was included by marginalizing
it with respect to some distribution P (bi), which was taken as a truncated Gaussian and can be con-
sidered as a posterior distribution for bi. The ATLAS experiment used the same formalism to calculate
its sensitivity to a low-mass Higgs boson with a pure number counting analysis (eg. no use of fs or
fb) [14]. Given the undercoverage that was found in this technique of incorporating background uncer-
tainty [1, 12], the combination was repeated using the profile likelihood ratio. In that case, each channel’s
likelihood function was extended to include an auxiliary, or sideband, measurement yi that constrains the
background via Pois(yi|τibi). In order to maintain the structure between the different channels (eg. keep-
ing constant the ratios si/si′) the si were considered to be fixed and an overall signal strength, µ, (related
to the production cross-section of the particle) was introduced. Thus, the multi-channel model

L(x,y|µ, s,b) =
∏

i∈channels

Pois(xi|µsi + bi) Pois(yi|τibi), (7)

and the profile likelihood ratio

λ(µ = 0) =
L(x,y|µ = 0, s, ˆ̂b)

L(x,y|µ̂, s, b̂)
(8)

was used as the test statistic for the combination. See Tab. 2 for a comparison of profile likelihood ratio
combination and the marginalization performed with ������� 
�� 
�������	 � [17].

Rolke and López considered the same combination, but used two different approaches [18]. In
the technique they called MaxLRT, they considered a discovery to be determined not by the combined
likelihood ratio, but solely by the most significant channel. In order to re-calibrate the p-value they
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Table 2: Comparison of expected significance of ATLAS Higgs searches with 5 fb−1 of data calculated with Prior-
Predictive and Profile-Likelihood Ratio. Note, this table is based on previously published ATLAS estimates, but is
not itself a result of the ATLAS collaboration. The table is intended to draw attention to the relative difference of
the methods rather than the expected significance.

mH (GeV) Smearing [σ] Profile [σ]
110 2.11 1.83
120 3.45 2.43
130 4.76 3.83
140 6.78 5.21
150 8.78 7.45
160 10.43 9.92
170 10.19 9.65
180 8.57 8.02
190 5.77 5.57

made a Bonferroni-type correction. The technique they called FullLRT considered a likelihood ratio as a
product of each of the individual channels, but without the notion of an overall signal strength µ. Instead,
they took

LFull(x,y|ε, s,b) =
∏

i

Pois(xi|εisi + bi) Pois(yi|τibi).

The p-value for their method is based on the distribution of −2 log λ being a linear combination of χ2

distributions. The main difference in this approach to what was considered in Eq. 8 is that the ratio of
unconstrained maximum likelihood estimators ε̂iŝi are not constrained to have the same structure as µ̂si.
It seems intuitively obvious to me (as a consequence of the Neyman-Pearson lemma) that imposing the
additional structure assumed by the alternate hypothesis will translate to additional power, but this has
not been confirmed explicitly. Thus, it remains an open question if Eq. 8 is more powerful than LFull.

2.4 The Look Elsewhere Effect

So far we have considered the scenario in which the signal model is well specified, and focused on the
incorporation of the nuisance parameters ν in the background model. The coverage property that we
want our to satisfy is that the rate of Type I error is less than or equal to α for all values of the nuisance
parameter (eg. ∀ν α(ν) < α). Geometrically, the discovery region corresponds to the union of the
acceptance regions at every ν, and this union may cause over-coverage for any particular ν.

Now consider the case in which the signal is composite. Let us separately consider signal parame-
ters with physical significance, γ, and those which are more akin to background nuisance parameters, νs.
If one is interested in γ, then it is not a nuisance parameter and we should expect to represent our results
in the s − γ (or µ − γ) plane. Consider for a moment that γ corresponds to the true mass of the Higgs
boson, then our results would be reported in terms of contours in the Higgs cross-section and mass plane.
In that case, for every point in the plane, we are asking if the data are consistent with that particular point
in the plane. If we restrict ourselves to questions of this form, there is no problem and the relationship
between Frequentist confidence intervals and inverted hypothesis tests is clear.

A problem does arrise, however, if one makes a claim of discovery if there is an excess for any
value of the signal parameter γ (eg. for any mass of the Higgs boson). Clearly, we have a much larger
chance to find an excess in a narrow window if we scan the window across a large spectrum. This is
often called the “look elsewhere effect”, and is typically corrected by scaling the p-value by the “number
of places that we looked” or a “trials factor” (often the mass range divided by the mass resolution). This
approach of scaling the observed p-value by the trials factor is often called a Bonferroni-type correction.
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Formally, one might write “discovery!” ⇐⇒ ∃γ 3 ∀ν p(ν, γ) < α. Geometrically, the discovery
region now corresponds to intersection of the acceptance regions across γ, and this intersection may
cause under-coverage for all γ.

In the context of the profile likelihood ratio, one does not explicitly scan γ, but implicitly scans
when finding the maximum likelihood estimate γ̂. The look elsewhere effect is manifest by a non-χ2

distribution for−2 log λ. This is known to happen in cases where the alternate model has parameters that
do not belong to the null hypothesis (eg. the mass of a new particle sitting on a smooth background). At
this conference, Luc Demortier presented various modified asymptotic distributions for−2 log λ in these
cases [15]. Furthermore, Bill Quayle demonstrated the non-χ2 distributions via Monte Carlo simulation
and proposed an insightful technique to estimate the distribution [16]. It is worth mentioning that the
conditions that lead to non-χ2 distributions for −2 log λ seem to only be relevant for discovery, and that
all the conditions for a χ2 distribution are satisfied for measurements of γ or even setting limits on s.

For simple cases (eg. when γ is 1-dimensional), the Bonferroni-type correction is quite straight-
foward. In Section 4, I will consider cases in which γ is high-dimensional and the trials factor is either
difficult to estimate or leads to a significant loss of power. It is an open question whether in simple cases
the look elsewhere effect “factorizes” in the sense that a simple re-calibration of the “local” p-value has
the same power compared to a method that incorporates the look elsewhere effect in the distribution of
the test statistic. A counter example would be equally helpful. Another open question is what effect
other nuisance parameters in the signal νs have on the asymptotic distributions of −2 log λ.

2.5 Coverage as Calibration & Comparing Multiple Methods

In the last six months, both ATLAS and CMS have created their own statistics committees, and we have
already convened joint ATLAS-CMS statistics sessions. One of the outcomes from those discussions was
that we plan on using multiple methods for computing the significance of a (hopefully) future observa-
tion, and for incorporating systematic errors. As was shown in Ref. [1], the true rate of Type-I error from
the different methods may deviate significantly from the nominal value (eg. over- or under-coverage).
While one may argue that the accuracy of the coverage at 5σ is irrelevant in absolute terms, it is quite
important in relative terms. In particular, we do not want to be in a situation where one experiment
requires substantially less data to make a claim of discovery if it is purely due to convention and not
because it is actually more powerful. This has furthered the notion that one can think of coverage as a
way to “calibrate our statistical apparatus”.

Developments such as the RooFit/RooStats framework are being developed to allow us to easily
compare different techniques (eg. methods based on the Neyman-Construction, the “profile” construc-
tion, profile likelihood ratio, and various Bayesian methods) within the same framework [43].

3 Some Comments on Multivariate Methods

As mentioned in Sec. 2, our field has has been aware of the Neyman-Pearson lemma and heavily utilized
the event-wise likelihood ratio L(mj|H1)/L(mj |H0) for the selection of signal candidates. Here we
remind the reader that mj may be a multi-component discriminating variable and introduce the index k
for those d components. To avoid clutter, the event index j will be suppressed. The most basic multi-
variate analysis, often called “naive Bayes”, ignores correlations among the components and builds the
event-wise likelihood as a simple (naive) product, viz. L(m|H0) =

∏d
k=1 L(mk|H0). This technique is

very common within HEP, but is rapidly being displaced by other multivariate classifiers like neural net-
works, decision trees, etc. that can incorporate and leverage non-trivial correlations. It is not surprising
that those multivariate classifiers have better performance; however, there are often objections to their
“black-box” nature. Furthermore, it is less clear how to incorporate the systematic uncertainties of the
Monte Carlo procedures that produced the training data used to train these classifiers. Finally, many of
the classifiers have been borrowed from computer science and are optimized with respect to classification
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accuracy, a GINI index, or some other heuristic that may not be the most appropriate for the needs of
HEP. The next two subsections consider two aspects to multivariate analysis that I hope will complement
the other contributions in these proceedings.

3.1 Optimization

Within the context of a search for new physics, one wants to optimize the power of an experiment. In an
earlier PhyStat contribution, I introduced the notion of direct and indirect multivariate methods [19, 20].
Essentially, direct methods, such as the genetic programming approach introduced to HEP in Refs. [21,
22], attempt to directly optimize a user-defined performance measure – in this case the power of a 5σ
search including background uncertainty. It was shown that many of the common heuristics lead to a
function that is at least approximately one-to-one with the likelihood ratio. When neglecting background
uncertainty the background hypothesis is no longer composite, both the null and alternate hypotheses
are simple, and the Neyman-Pearson lemma holds; thus, in those cases optimization with respect to the
heuristic coincides with optimization of power. However, when background uncertainty is taken into
account, it is no longer obvious if the heuristic is actually optimizing the power of the search.

A similar point was made by Whiteson and Whiteson when they compared neural networks op-
timized for classification accuracy to neural networks that were directly optimizing the uncertainty in a
top mass measurement [23]. Intuitively, they realized that the top mass measurement is more sensitive
to some backgrounds than others, so classification accuracy missed an essential aspect of the problem
they were trying to solve. In that case, they found that the uncertainty on the top mass measurement for
the classifier that was directly optimizing the mass measurement was ∼ 29% smaller than the networks
optimizing classification accuracy. While genetic (a.k.a. evolutionary) strategies easily incorporate user-
defined performance measures and direct optimization, many of the “off the shelf” multivariate classifiers
from computer science do not. I can only encourage our field to be more aware of this distinction.

The Bayesian Neural Networks that have been advocated by Radford Neal [24] and used in
Ref. [26] preserve a clear connection between the statistical goals of the experiment and the optimization
of the multivariate classifier. An open question is whether the formalism that he uses provides a practical
way to incorporate rate and shape uncertainties in the optimization procedure.

3.2 Matrix-Element Methods

Often, the components of the discriminating variable m are kinematic in nature, eg. masses, momenta,
angles, or functions of those quantities. These variables are often strongly and non-trivially correlated,
which is why multivariate techniques are so powerful. The kinematic quantities and their correlations
are well modeled by a theory. By using Feynman diagrams (a perturbative expansion of Quantum Field
Theory) we can readily calculate a complex number called the “matrix element” for an arrangement of
initial- and final-state particles. The square of the modulus of the matrix element |M|2 together with
phase space dPS and the parton densities Dparton predicts the differential cross section dσ/d~r for the
kinematic quantities ~r, which is proportional to the probability density function f(~r).

In practice, we use particle-level Monte Carlo programs to sample the distribution f(~r). Since
we do not measure the kinematic quantities ~r perfectly, we must also simulate the impact of detector
effects, which gives us measured quantities ~rm. The final discriminating quantities m are then calculated
from the kinematic quantities ~rm. As previously mentioned, the simulation of the detector can be very
complicated and we rely on Monte Carlo techniques for the probabilistic mapping ~r → m. Standard
practice has been to use pseudo-data for m as training data for multivariate classifiers, and, as previously
mentioned, the resulting classifiers are often regarded as a “black box”.

While the detector simulation is very detailed, the probability that a true ~r results in a measured m
can often be approximated with a “transfer function” denoted W (~r,m). Clearly, a more transparent
multivariate approach would be to construct a multivariate classifier by numerically confronting the
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convolution of the differential cross-section with the transfer function W (~r,m).

L(mj |H1)
L(mj |H0)

=
∫

dPS(~r) |Ms+b(~r)|2 W (~r,mj)Dparton(~r)∫
dPS(~r) |Mb(~r)|2 W (~r,mj)Dparton(~r)

(9)

The success of this method is limited by the accuracy of the transfer function W (~r,m) and the
computational complexity of the convolution. Modern computers now make the numerical convolution
tractable, and experience at the Tevatron shows that these “matrix element techniques” are competitive
with other multivariate techniques. These matrix element techniques have been used for the most precise
measurements of the top mass [25] and in the context of searches for single top 6 are competitive with
boosted decision trees and Bayesian neural networks [26, 27].

In addition to experimental applications of the “matrix element technique”, the method has sub-
stantial capacity to influence phenomenological studies. A large class of phenomenological studies are
sensitivity studies, which ask “what is the sensitivity of a given experiment to a given signature pre-
dicted by a new theory?”. Traditionally, this question is addressed by generating particle-level Monte
Carlo for the kinematic quantities ~r, smearing those quantities with a parametrized detector response
W (~r, ~rm), using creativity and insight to find good discriminating variables m(~rm), designing a simple
cut-analysis to select signal-like events, and then estimating sensitivity with s/

√
b. In cases where the

estimated significance is large, then this theory should be taken seriously and studied in more detail by
the experimentalists. However, if the estimated significance is low, it is not clear if the experiment is
truly not sensitive to this signature for new physics or if the choice of the discriminating variables and
the simple cut analyses were just sub-optimal. To avoid this situation, Tilman Plehn and I considered
the use of the matrix element technique as in a phenomenological context [28]. Instead of calculating
L(mj |H1)/L(mj |H0) for an observed event’s discriminating variables mj , one can integrate over the
joint distribution fs+b(~rm) under the alternate hypothesis and calculate an expected significance. More-
over, since the kinematic variables ~rm encode all the kinematic information, this expected significance
provides an upper-bound. If the upper-bound is low, then one can be sure that the experiment truly is not
sensitive to the signature for new physics.

It is worth mentioning that the typical procedure in the matrix element method is to integrate over
the “true” particles’ kinematics ~r. This is comfortable for physicists because that is what we do when we
calculate cross-sections and we know the phase-space factors associated with ~r. Since we are integrating
over “true” quantities, this has a Bayesian feel – but it is a use of Bayes theorem that a Frequentist would
not mind because we can consider a frequency distribution for ~r. Another point of view might be that
for this particular event, the particles had some particular true value, and that it doesn’t make sense to
talk about a sampling distribution for ~r. In that vein, one could imagine ~r to be a vector of nuisance
parameters for this event, and that one should choose maximization over integration (marginalization).
Such techniques have been considered in the context of supersymmetric mass determination [29]. This
point of view brings up several open questions: a) which method is more powerful? b) how is −2 log λ
distributed if new nuisance parameters are added to the problem for each of the x events (which is itself
a random variable)? and c) is the maximization approach simpler computationally?

4 Challenges of Searches for Beyond the Standard Model Physics

Sections 2 and 3 considered the scenario in which the signal model was well specified, and focused on
the incorporation of the nuisance parameters ν in the background model. Section 2.4 considered the case
in which the signal is composite, but the dimensionality of physically significant parameters, γ, in the
alternate hypothesis was small enough that the “trials factor” can be readily estimated and no severe loss
of power is expected by recalibrating the p-value. In this section, we consider the case where the signal
model is composite and γ has many parameters and the case in which the signal is quite vague.

6The matrix element techniques used in the D0 searches did not perform as well as the other multivariate techniques;
however, it is known that they neglected the matrix element for some of the background processes.
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Before continuing, it is worth considering a few specific examples. Perhaps the most studied sce-
nario for “beyond the standard model” physics is supersymmetry (SUSY). If supersymmetry exists, it is
a broken symmetry in nature. There is no established mechanism for supersymmetry breaking, so the
minimal supersymmetric extension to the Standard Model (MSSM) parametrizes all the soft breaking
terms with ∼ 105 parameters. Thus, one might look at the unconstrained MSSM as more of a theo-
retical framework than a theory per se. Within this 105 dimensional space, are a few well-motivated
subspaces corresponding to particular scenarios for SUSY breaking, eg. mSUGRA parametrized by four
real-valued constants and a sign. Even in this restricted parameter space, the signatures for new physics
are quite diverse. In general, one is faced with a generic tradeoff between more powerful searches for
specific model points and less-powerful but more robust searches. Despite its complexity, supersym-
metric models that conserve something called R-parity, in which there is a generic signature of large
missing energy in the detector. This allows for a search strategy that is both powerful (enough) and
robust (enough); however, other models do not necessarily have an equivalent generic signature.

There are a host of models in addition to supersymmetry that have been proposed to be relevant
to the “terra scale” and accessible to the LHC. To give a feeling for the activity, there have been 32,000
papers in hep-ph since 2000. Clearly, even 4000 physicists cannot give due consideration to all of the
proposed models in the landscape. As a result, it is interesting to consider more radical approaches and
formalisms that can be applied more generically.

4.1 False Discovery Rate

In 1995, Benjamini and Hochberg introduced a technique called False Discovery Rate (FDR) to confront
the challenge of multiple hypothesis tests [30]. In contrast to the Bonferroni-type corrections (eg. trials
factor), which seeks to control the chance of even a single false discovery among all the tests performed,
the FDR method controls the proportion of errors among those tests whose null hypotheses were rejected.
Since that time, FDR has become quite popular in astrophysical data analysis [31]. The properties which
make FDR popular are

– It has a higher probability of correctly detecting real deviations between model and data.
– It controls a scientifically relevant quantity: the average fraction of false discoveries over the total

number of discoveries.
– Only a trivial adjustment to the basic method is required to handle correlated data.

The definition of the false discovery rate is given by

FDR =
N reject

null true

N reject
(10)

While it seems like a vacuous re-casting of Type-I and Type-II error, it is fundamentally different since
it controls a property of a set of discoveries. In brief the FDR technique is implemented by performing
N tests, ordering the tests according to the observed p-values (ascending), specifying an acceptable false
discovery rate q, and then rejecting the null hypothesis for the first r tests, where r is the largest j that
satisfies pj < jq/CNN . The quantity CN is only needed if the tests are correlated. This definition
means that the value of the threshold on the largest p-value is not known a priori, but is adaptive to the
data set. Furthermore, one does not need to specify an alternate hypothesis – though p-values determined
from test statistics that are designed with an alternate in mind can be expected to be more powerful.

FDR has not been widely used within High Energy Physics, but it seems to have a natural place
in the context of searches for exotica. While our experiments do not have enough resources to study
every model that will be proposed, we do have several clever collaborators and an enormous amount
of computing power, so we need to address the multiple testing problem. I do not see FDR as being
particularly relevant for searches when we expect to claim only a single discovery (eg. the Higgs);
however, I do see that it might have a role in the global analysis of LHC data.
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4.2 Interpreting New Physics: The Inverse Problem

If we are lucky enough to find evidence of physics beyond the standard model, the next order of business
will be to interpret what we have observed and measure the relevant parameters of the new standard
model (sometimes called the “inverse problem” [34] historically just called “physics”). Perhaps we will
observe new physics that is consistent with an already well-developed theory; perhaps we will observe
something consistent with several different theories and we will need to discriminate between them; or
perhaps we will observe something more unexpected and be stumped for some time to provide a concise
description or even identify the fundamental parameters to be measured.

4.3 Parameter Scans

For cases such as supersymmetry, in which we have a well-developed theory with known fundamental
parameters, it is common to simply scan the parameters on a naive grid. At each parameter point in the
scan, one might consider an optimized analysis for that point using an automated procedure [32], or test
the consistency of the model with data with the aim to measure the fundamental quantities [33]. Naive
parameter scans face two problems, one practical and one conceptual. The practical problems are that
grid-scans don’t scale to high-dimensions and that simple Monte Carlo sampling is not very efficient.
Markov Chain Monte Carlo techniques address the practical problems and are addressed below. The
conceptual problem is that the space of the parameters does not have a natural metric – why do we take
equal steps in tanβ and not in β? Information Geometry provides an elegant, though computationally
challenging, solution by equipping the space of the parameters with an experimentally relevant metric.
Information Geometry may also provide a useful tool for theorists to formalize the “cliffs” and “valleys”
in the landscape.

4.3.1 Markov Chain Monte Carlo & Hierarchical Bayes

Markov Chain Monte Carlo (MCMC) has been used successfully (mainly by the collaborations of the-
orists and experimentalists) to map out the regions of the constrained MSSM (CMSSM) preferred by
existing Standard Model and astrophysical measurements [35, 36, 37, 38]. The CMSSM is described by
four parameters and a sign. Typically, the MCMC scans provide a Bayesian posterior distribution for the
parameters. As Cousins critiqued in his proceedings to this conference, the groups often use flat priors
in relatively high dimensions.

Recently, a similar analysis was performed with a more theoretically driven choice for the prior [39].
There, the authors considered the prior probability density for a given SUSY breaking scale MS :

p(m0,M1/2, A0, µ,B, sm|MS) = p(m0|MS) p(M1/2|MS) p(A0|MS) (11)
p(µ|MS) p(B|MS) p(sm),

assuming that the SM experimental inputs sm do not depend upon MS . A particular choice was made
relating the SUSY breaking scale MS and the parameters m0, M1/2, A0, by relating them to MS at the
“order of magnitude” level:

p(m0|MS) =
1√

2πw2m0

exp
(
− 1

2w2
log2(

m0

MS
)
)

. (12)

The parameters A0 and B are allowed to have positive or negative signs and values may pass through
zero, so a prior of a different form was used:

p(A0|MS) =
1√

2πe2wMS

exp
(
− 1

2(e2w)
A2

0

M2
S

)
. (13)
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Fig. 1: CMSSM fits marginalised in the unseen dimensions for (a) flat tan β priors, (b) the hierarchical prior with
w = 1. Figure (c) shows the result of the profile likelihood ratio, in which the unseen dimensions are evaluated
at their conditional maximum likelihood values. Contours showing the 68% and 95% regions are shown in each
case. The posterior probability in each bin of (a) and (b), normalized to the probability of the maximum bin, is
displayed by reference to the color bar on the right hand side of each plot.

Finally, since one does not know MS a priori, it was treated as a “hyper-parameter” and marginalized
giving

p(m0,M1/2, A0, µ,B) =
∫ ∞

0
dMS p(m0,M1/2, A0, µ,B|MS) p(MS) (14)

=
1

(2π)5/2w5m0|µ|M1/2

∫ ∞

0

dMS

M2
S

exp
[
− 1

2w2

(
log2(

m0

MS
) + log2(

|µ|
MS

)+

log2(
M1/2

MS
) +

w2A2
0

e2wM2
S

+
w2B2

M2
Se2w

)]
p(MS),

where p(MS) is the prior for MS itself, which was taken to be flat in the logarithm of MS . The marginal-
isation over MS amounts to a marginalisation over a family of prior distributions, and as such constitutes
a hierarchical Bayesian approach. Fig. 1 shows a comparison between the results obtained with flat pri-
ors (a) and those obtained with the hierarchical approach (b). As far as I am aware, Ref. [39] is the first
example of the use of hierarchical Bayesian techniques in particle physics.

4.3.2 Frequentist Approach

It is clear from Fig. 1 that the choice of prior has a large effect on the results obtained. In the sense of
“forecasting” what the LHC might see, the hierarchical approach is playing an important role by injecting
our physical insight and sharpening our focus. However, in terms of an experimental result the depen-
dence on a prior is often seen as undesirable, thus it is interesting to consider frequentist approaches.

The MCMC scans were performed in a four-dimensional parameter space, but the figures show
two-dimensional projections. In the Bayesian approach, one marginalizes the unseen dimensions with
respect to the prior. A frequentist analysis would eliminate the unseen dimensions by maximization
instead of marginalization – eg. use the profile likelihood ratio. Fig. 1(c) shows the result of the same
analysis with the profile likelihood ratio. We see similar constraints, except that the tail at high tanβ
up to larger values of m0 > 2 TeV has been suppressed in the profile. From the difference we learn
the following facts: in this high tan β-high m0 tail, the fit to data is less good than in other regions of
parameter space. However, it has a relatively large volume in unseen dimensions of parameter space,
which enhances the posterior probability in Fig. 1(a). The difference between the two plots is therefore a
good measure of the so-called “volume effect”. While one may argue that flat priors distort the inference
by pushing all the probability away from the origin, it is clear that the hierarchical priors had much more
of an effect on the inference (reflecting the fact that the data are not dominating the Bayesian inference).
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Other groups have performed frequentist analyses of essentially the same problem, though without
the use of MCMC to scan the parameter space [40, 41]. In both cases the asymptotic distribution of
the profile likelihood ratio was used in constructing confidence intervals. Given the complexity of the
likelihood function, it is an open question if the asymptotic χ2 distributions provide good coverage
properties for these studies.

4.4 Information Geometry

Information Geometry is a synthesis of statistics and differential geometry. In essence information ge-
ometry equips model space with a “natural” metric that is invariant to reparametrization of observables,
m, and covariant to reparametrization of theoretical parameters, γ [42].

gij(γ) =
∫

dmf(m; γ)
[
∂ log f(m; γ)

∂γi

] [
∂ log f(m; γ)

∂γj

]
(15)

By equipping the space of the models with a metric, one can do many powerful things. It has been
shown in the context of machine learning that learning algorithms that take equal steps in this natural
geometry can converge exponentially faster than one that takes equal steps in the naive parameters of the
learning machine. In the context of experimental high energy physics, one can imagine that Information
Geometry could make parameter scans significantly more efficient.

Information Geometry may play an even more useful role in theoretical analyses. For instance,
the authors of Ref. [34] considered a 15-dimensional supersymmetric model and an exhaustive list of
relevant observables. The authors sought to analyze the structure of this space by finding degeneracies
(ie. points γa and γb where the observables are essentially unchanged) and “cliffs” (ie. regions where a
small change in γ gives rise to a large change in the observables). These questions could be addressed
formally if one had access to the metric gij(γ). Instead, their analysis used a rather ad hoc ∆χ2-like
discriminant for the observables and a non-invariant Euclidean-like distance for the parameter space γ.
While their results seemed quite reasonable, and the degeneracies they found correspond to physically
reasonable scenarios, it would be a significant advance if such studies could be formalized.

4.5 Interpretation and The Theory-Experiment Interface

Another challenge of beyond the standard model searches is how to represent the result of an observation
and communicate sufficient information to the field. Because of the complexity of some of the models it
is not possible to represent the results as a simple one-dimensional likelihood curve or a two-dimensional
contour without substantial loss of information. For instance, Fig. 1 only shows two of four interesting
dimensions in the theory’s parameter space. Ideally, experiments would publish a likelihood map in the
full dimensionality of relevant quantities – this is technically possible in many cases [39] and a new
feature of the RooFit/RooStats framework [43].

Another issue for publication is model-dependence; it is common for a single experimental sig-
nature to be described by several models with different fundamental parameters. It is not feasible for
the experiments to report the results tailored for each conceivable model. Instead, experiments prefer to
report their results in a model-independent way. In some cases (eg. different models for a Z ′) there is
a model-relevant and model-neutral set of parameters that can be measured, which encompass several
different theoretical models, while still providing enough information to distinguish among them. This
is an ideal case, but it is not always obvious which measurements are sufficient to distinguish between
competing models.

Recently an old theoretical tool (on-shell effective theory) was given a new spin, in the form of
a toolset called MARMOSET [44]. MARMOSET is meant to quickly provide a simplified description
of new physics, especially in cases where the data are not described by an already well-developed the-
oretical model. Despite its simplifications, the authors of MARMOSET argue that it does maintain the
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essential features of many scenarios for new physics. It is an open question if full likelihood maps
of the parameters of the best fitting on-shell effective theories provide a general purpose solution for
model-neutral and model-relevant publications for the LHC.

5 Conclusion

We are entering a very exciting time for particle physics. The LHC will be probing the “tera-scale”,
which may reveal the mechanism for electroweak symmetry breaking, new symmetries of nature, and
evidence for additional space-time dimensions. The rich landscape of theoretical possibilities and the
particularly challenging experimental environment of the LHC place particular emphasis on our statis-
tical techniques. Searches for specific signatures, like the Higgs boson, must address large background
uncertainties and consistently combine several search channels. Substantial progress has been made in
terms of incorporating systematics in our statistical machinery. Searches for beyond standard model
physics have additional challenges, which are more strategical in nature. In particular, how should we
approach the search when the signal model is vague or the model space is very large and the phenomenol-
ogy is diverse? We still have not fully addressed the multiple testing problem for the LHC, but perhaps
methods like False Discovery Rate have a role to play in the global analysis of the LHC data. If we are
fortunate enough to discover new physics at the LHC, we will begin the process of interpreting what we
saw. Perhaps we will see something expected and the process will be fairly straightforward; however,
we must be prepared for something more unexpected. Ideally, the experiments will publish their results
in terms of a full likelihood scan of a model-neutral and model-relevant parameter space. The technical
challenge of reporting a full likelihood map has been addressed by the RooFit framework, the remaining
challenge is choosing how to represent the data. In some cases the field has already converged on an ap-
propriate set of parameters to measure for a given signature, but we do not have an adequate solution in
the case of something more unexpected. A recent proposal is to use on-shell effective theories as a con-
cise summary of LHC data, which could provide a general purpose solution for publishing model-neutral
and model-relevant results. While there remain many open questions to address, the PhyStat conference
series has been very effective in preparing our field for the statistical challenges of the LHC.
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Experiences from Tevatron Searches

Wade Fisher
Fermilab, Illinois, United States

Abstract
In preparation for the possibility of new physics at the Large Hadron Collider
at CERN, experiences gained at the Fermilab Tevatron collider experiments
can be a useful guide for potential problems. This paper presents a review
of recent applied statistical techniques and the problems for which they were
required.

1 Introduction

The two Fermilab Tevatron collider experiments, CDF and DØ , both probe a broad range of elementary
particle physics. Of particular interest are searches for new particles or evidence for new physics. It
is anticipated that the new energy frontier at the Large Hadron Collider (LHC) at CERN will create
opportunities for observing new physics beyond the electroweak scale. Experiences from searches for
new physics at the Tevatron should provide insight into the problems that LHC experiments will likely
face. This paper presents a brief review of the problems addressed by several modern Tevatron searches.

Many searches at the Tevatron result in a relatively unambiguous statistical significance. Two
excellent examples of this are the direct observation of the Ξ±b baryon at DØ [1] and the observation of
orbitally excited B∗∗

s mesons [2]. Figure 1 shows the reconstructed mass of the Ξ±b baryon and Fig. 2
shows the mass difference in candidates for orbitally excited B∗∗

s decays. Although both are exciting
examples of discovery, these searches do not represent challenges or ambiguity in the estimation of
search significance. Most of the problems for Tevatron searches arise from the convergence of small
signal rates, large background rates, and large relative uncertainties on nuisance parameters inherent to
the search. It is these cases which will be the focus of this paper.

2 Systematic Uncertainties

In many searches for small signals, a significant limiting factor is the relative size and nature of systematic
uncertainties on the measurement of background processes. In the large-statistics limit of a search, a
precise knowledge of systematic uncertainties is required to reliably determine search significance. In
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searches for small signals at the Tevatron, the uncertainty on the background rate is often over an order
of magnitude larger than the signal rate itself, and is thus a dominant factor in signal sensitivity. There
are two broad classes of such uncertainties:

– Type I: Uncertainties related to gross normalizations or rates of acceptance. These are generally
constrainable by control samples and the relative size scales according to the statistics of the con-
trol samples.

– Type II: Uncertainties related to the understanding of the features of data measurements and exper-
imental resolutions. These often manifest as uncertainties on the shapes of differential distributions
involved in event selection procedures.

Type I uncertainties are generally assumed to arise from parent distributions which are Gaussian in
nature. Errors in the estimation of background process rates occur when these uncertainties are actually
non-Gaussian or asymmetric. Estimates of Type I uncertainties must also be sensitive to regions of
truncation which occur, for example, when efficiencies reach either 0% or 100%. Type II uncertainties
can present a significant challenge when their impact to an event selection is difficult to properly measure.
The size of these uncertainties are often inflated to partially accommodate this difficulty, which in turn
degrades search sensitivity. A worrying scenario arises when Type II uncertainties are not propagated
through high-dimension multivariate analyses, thus incorrectly overestimating signal significance. A
careful understanding of systematic uncertainties is considered a prerequisite to performing a detailed
statistical analysis for a search.

The finite statistics of simulated samples used to predict the rates of different classes of events
represents a particular challenge in searches for small signals. In many cases, the uncertainty on the
shape of a differential distribution or multivariate analysis discriminant is dominated by the statistical
uncertainty on the prediction. A common solution is to use a smoothing algorithm to make an estimate
of the true parent distribution. There are two smoothing techniques used frequently at the Tevatron:
the 353QH algorithm [3] which is implemented in the ROOT software package [4] and Gaussian kernel
estimation [5]. A more complete comparison of the two algorithms is presented in [5]. As an alternative
to smoothing, the true shape of the parent distribution of a statistics-limited sample can be estimated
from the shape of the same variable at a less restricted point in the selection process. For example,
an analysis that selects two quark-jets and requires that both jets be tagged by a b-quark identification
algorithm could model the shape of the double b-tagged distribution by the shape of the less restrictive
single b-tagged selection. After a proper normalization, the remaining biases of the b-tagging algorithm
are often smaller and better understood than the uncertainty on the statistics-limited shape of the double-
tagged sample. This method is often used in conjunction with a smoothing algorithm, but is sensitive to
the nature of the intermediate selection used.

3 The Tevatron Higgs Search

The search for a standard model (SM) Higgs boson at the Tevatron provides a good example of the
implementation of several statistical techniques used in searches for small signals. The statistical analysis
begins with an assumption of two hypotheses which are to be tested:

– Null hypothesis (H0): A compound hypothesis with an associated set of nuisance parameters each
with its own uncertainty. This hypothesis can be considered to be the background-only hypothesis.

– Test hypothesis (H1): The test hypothesis is the same as H0, but a signal for new physics is
added. Thus, H1 adopts the necessary signal model parameters and possibly additional nuisance
parameters.

In this example, H0 describes the SM background expectation for the results of a Higgs search
and is the sum of several contributing physical processes. The nuisance parameters are the luminosity
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normalization, acceptance, background cross sections, etc. The test hypothesis adds the SM Higgs signal
and is parameterized by Higgs mass, production cross section, and decay branching fractions. Both H0
and H1 are subdivided according to final states with unique signatures. These final states are orthogonal
search channels defined to maximize acceptance and to isolate regions with high signal significance. At
the Tevatron, two different statistical analysis treatments are utilized: a Bayesian integration [6] and the
semi-Frequentist CLS method [7]. More detailed references for the Tevatron SM Higgs searches can be
found here [8, 9].

3.1 The Bayesian Treatment

The Bayesian approach utilized in the Tevatron Higgs search begins by assuming a Poisson-distributed
probability distribution for the observed numbers of events selected. The posterior probability density
function (PDF) for a set of signal and background model parameters θR is given by:

p(θR|~x) =
∫

L(~x|θR, θS) π(θR, θS) dθS∫ ∫ θRcut−∞ L(~x|θR, θS) π(θR, θS) dθS dθR

(1)

where π(θR, θS) is the prior probability density for θR and the set of nuisance parameters θS . The likeli-
hood L(~x|θR, θS) is the joint probability density over all analysis channels and bins of the final variables
and the observed data ~x. The parameter θRcut is chosen to ensure unitarity, and for an appropriately
chosen prior can generally be infinity. The most common choices for prior probability density for the
signal is the Heaviside unit step function, and the prior for all nuisance parameters is taken as Gaussian.
The limit on the rate of signal events is then determined by integrating the posterior density function to
the desired fraction of the total integral, β:

β =
∫ θRβ

−∞
p(θR|x) dθR (2)

which defines θRβ
as the limit on the model parameter at a Bayesian confidence level of β.

3.2 The CLS Treatment

The semi-Frequentist CLS approach also assumes Poisson-distributed sources of events and begins by
constructing a joint likelihood ratio test statistic:

Q = −2 Log
L(~x|θR1, θ̂S)

L(~x|θR0,
ˆ̂
θS)

(3)

where the profile likelihood L(~x|θR1, θ̂S)) is the Poisson likelihood for the physics parameters of H1

and the set of nuisance parameters which maximize the likelihood for H1 (θ̂S). Likewise, L(~x|θR0,
ˆ̂
θS))

represents a maximization for the physics parameters of H0. This test statistic is used to describe the
outcomes of multiple repetitions of the experiment for which pseudo-experiment trials are drawn from
Poisson-distributed outcomes of the H0 and H1 hypotheses. The uncertainties on the N nuisance pa-
rameters for each source of events are assumed to have a Gaussian PDF. For each pseudo-experiment,
the mean value for the expected number of signal and background events is randomly drawn from an
N -dimensional Gaussian distribution, described by the N nuisance parameters and their uncertainties.

The PDFs for the test statistics of H0 and H1 are then used to evaluate confidence intervals of the
following definition:

CLS = 1− CLS+B

CLB
(4)
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where the confidence levels CLS+B and CLB are defined by integrating the corresponding PDFs from
the observed test statistic to infinity. An exclusion of a signal model parameter (parameterized as F ) at a
confidence level of α is achieved when the model parameter satisfies α ≤ 1− CLS+B(F )

CLB(F ) .

3.3 Drawbacks of Methodology

Practically speaking, statistical treatments with discrete numbers of events lead to imperfect coverage for
any method. This unavoidable consequence demands a conservative treatment to ensure well-understood
coverage. The Bayesian treatment suffers from both larger issues with coverage but also the choice of
prior. While priors are somewhat unpopular in the field of particle physics due to potential biases, a
careful choice of prior can generally contruct a test with the desired properties. It is generally accepted
that the CLS method is a less rigorous means of communicating exclusions of signal hypotheses. How-
ever, the properties of the CLS test appear to be robust for this purpose. The formulation of the test has
the agreeable feature of giving a conservative response for exclusion in insensitive signal regions. The
approach chosen at the Tevatron is to maintain both treatments in as many cases as possible. This serves
both as a cross check of results, but can also lead to insight in the fundamental behavior of small signal
searches.

4 The Tevatron Search for Single Top Quark Production

In 2007, the DØ collaboration announced it had observed first evidence for the electroweak production of
single top quarks [10]. At the same time, the CDF collaboration announced that with analyses of similar
sensitivity it did not find the same results [11, 12, 13]. This scenario may occur between the LHC ex-
periments and the treatment at the Tevatron therefore has pedagogical value. Adopting the nomenclature
from the previous section, the descriptions of the H0 and H1 hypotheses are identical for the Tevatron
search for single top quarks aside from the parameterization of the signal.

4.1 The DØ Single Top Search

The DØ measurement was constructed using a Bayesian calculation similar that defined in Eqn. 1. Three
semi-independent analyses observed an excess of events consistent with single top quark production near
the expected SM rate of 2.9 pb. The measurement of the observed cross section was based on a binned
likelihood derived from the analysis discriminants:

y = aσ +
Nbkgd∑
s=1

bs (5)

P (D|y) = P (D|σ, a, b) =
Nbins∏
i=1

P (Di|yi) (6)

where the index s runs over the number of background sources in H0. The Bayesian posterior PDF
was calculated as a function of cross section, assuming a Heaviside unit step function prior density
probability. As demonstrated in Fig. 3, the measured signal cross section is determined from the peak of
the posterior PDF and the uncertainty is taken from the width near the peak. Figure 4 shows the actual
measurement derived from one of the three analysis techniques.

The estimates of search sensitivity and the significance of the observed result were described using
p-values derived from pseudo-experiments. For each pseudo-experiment, the values of the nuisance pa-
rameters were sampled from Gaussian PDFs. The p-values were reported with the following definitions:

– Expected p-value: The fraction of H0 pseudo-experiments measuring at least the SM single top
quark cross section of 2.9 pb.
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Fig. 3: An example of the Bayesian posterior density
distribution for pseudo-experiments with a single top
quark signal with the SM rate of 2.9 pb for the DØ
experiment.

Fig. 4: The Bayesian posterior density distribution
for pseudo-experiments derived from the observed data
distribution for the DØ experiment.

Table 1: DZero ST Data

Expected p-value Observed p-value SM p-value Observed Cross Section
Analysis 1 0.019 (2.1σ) 0.00035 (3.4σ) 0.11 (1.2σ) 4.9 pb
Analysis 2 0.037 (1.8σ) 0.0021 (2.9σ) 0.21 (0.8σ) 4.6 pb
Analysis 3 0.097 (1.3σ) 0.0089 (2.4σ) 0.175 (0.9σ) 5.0 pb

Table 2: DZ ST Cov Matrix

Analysis 1 1.0 0.57 0.51
Analysis 3 - 1.0 0.45
Analysis 2 - - 1.0
Weight 0.401 0.452 0.146

– Observed p-value: The fraction of H0 pseudo-experiments measuring at least the observed cross
section.

– SM p-value: The fraction of H1 pseudo-experiments measuring at least the observed cross section.

The results of these measurements along with the observed cross section for each analysis are given in
Table 1. The results seem to indicate an upward fluctuation in the data rate, but are demonstrably more
compatible with the H1 hypothesis.

Given three highly correlated analyses, the DØ researchers employed the Best Linear Unbiased
Estimate (BLUE) technique [14] to combine the measurements and determine a more sensitive esti-
mate of the observed signal significance. The BLUE technique essentially describes a linear function of
weighted measurements. The weights are determined by inverting the correlation matrix for the system
of measurements. The covariance matrix obtained via pseudo-experiments and the corresponding linear
weights for the DØ analyses are shown in Table 2. Using this linear combination, a new set of pseudo-
experiments was generated to determine the observed signal significance. Via this technique, the original
best value of 4.9 ± 1.4 pb was refined to 4.8 ± 1.3 pb, reported as 3.5 standard deviations, and more
recently as 4.7± 1.3 pb [15].

4.2 The CDF Single Top Search

The CDF collaboration performed a similar search for single top quark production in an equal-sized data
sample. Using a similar analysis approach, CDF researchers applied three different multivariate analyses
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Table 3: CDF ST Data

Exp. p-value Obs. p-value Exp. CLS Obs. CLS Exp. Limit Obs. Limit
Analysis 1 0.005 (2.6σ) 0.525 (-) - - 2.9 pb 2.6 pb
Analysis 2 0.025 (2.0σ) 0.585 (-) 0.05 0.039 2.9 pb 2.7 pb
Analysis 3 0.006 (2.5σ) 0.01 (2.3σ) - - - -

Table 4: CDF ST Cov Matrix

Analysis 1 1.0 0.59 0.70
Analysis 3 - 1.0 0.65
Analysis 2 - - 1.0

to estimate significance. However, the expected and observed significance of each analysis was reported
in a slightly different manner. As in the case of the DØ statistical analyses, the values of the nuisance
parameters used in pseudo-experiments are drawn from Gaussian PDFs:

– Analysis 1:
– Expected p-value: The fraction of H0 pseudo-experiments measuring at least the SM single

top quark cross section of 2.9 pb.
– Observed p-value: The fraction of H0 pseudo-experiments measuring at least the observed

cross section.

– Analysis 2: The same p-values reported by Analysis 1 were given, and the CLS confidence level
(Eqn. 4) was also reported.

– Analysis 3: The same p-values reported by Analysis 1 were given, and the Bayesian calculation
described in the Sec. 4.1 was used to measure an observed cross section.

The analysis results were mixed, with two analyses excluding single top quark production above
2.6 pb and 2.7 pb respectively, while the third analysis observed a 2.3σ effect at 2.7 ± 1.2 pb. All
three analyses had a similar expected sensitivity and used the same data, reconstruction, and Monte
Carlo simulation. To understand the compatibility of the three measurements, the CDF researchers also
utilized the BLUE technique. The covariance matrix for the CDF analyses is given in Table 4. With the
linearly-combined estimator, a combined measurement was evaluated and a χ2 value for each pseudo-
experiment was determined. An estimate of analysis compatibility was determined by measuring the
fraction of pseudo-experiments whose χ2 value exceed the value observed data. This fraction was found
to be 0.65%.

4.3 Comparison of Results

Both Tevatron experiments devised multiple analyses, all with similar search sensitivities in the same
size data sample. The agreement of results amongst the three DØ analyses is not unexpected considering
the design of the analyses, and the additional search sensitivity gained via the linear combination of
results is indeed small. The conflicting results from the CDF analyses is perhaps more interesting. It
is conceivable that the results reflect internal biases within the analyses. It is also possible that the
analyzers were unlucky, to use the particle physics jargon, and the data reflected a downward fluctuation
of stochastic processes. At the time of this publication, the DØ researchers have updated two of their
analysis techniques and found similar results [15]. At this time, there is no public update of the CDF
single top quark search.

W. FISHER

66



)
2

Di-Electron Mass (GeV/c
50 100 150 200 250 300 350 400 450 500 550

2
N

r 
E

ve
n

ts
 / 

5 
G

eV
/c

-210

-110

1

10

210

310

410

510
Data

Drell-Yan

Jet Background

 BackgroundγγEWK+

-1 L dt = 1.3 fb∫

CDF Run II Preliminary

Di-Electron Invariant Mass Spectrum

)
2

Di-Electron Mass (GeV/c
50 100 150 200 250 300 350 400 450 500 550

2
N

r 
E

ve
n

ts
 / 

5 
G

eV
/c

-210

-110

1

10

210

310

410

510

Fig. 5: The di-electron invariant mass spectrum from
the CDF experiment.
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5 Model Independent Searches

The previous two examples of the standard model Higgs boson search and the single top quark search
exemplified directed searches for new physics at the Tevatron. Each uses very modern approaches to
analysis and statistical interpretation, but are inherently linked to assumptions which impact the interpre-
tation of the results. As an alternative, a second class of searches removes all model parameters for new
physics from the analysis design and allows them to be introduced after a statistical interpretation of the
results has been performed. There are two general categories for such searches: bump hunts and broad
spectrum searches.

5.1 Bump Hunts

Given a well-understood differential distribution, researchers can search for deviations from nominal
predictions of the shape and rate of that distribution. As an example, we will consider the model-
independent search for a high-mass resonance in the di-electron mass spectrum at the CDF experiment.
The di-electron mass spectrum is well-studied at the Tevatron as the global energy-scale calibration pro-
cedure for both experiments relies upon accurate knowledge of Drell-Yan Z boson production and high-
resolution detection of electrons. Figure 5 contains an example of the CDF di-electron mass spectrum
corresponding to 1.3 fb−1 of data [16].

The analysis of the di-electron mass spectrum proceeded by using a variable-sized sliding win-
dow of the form W (Mee) = 4.8 + 0.044 × Mee with a step size of 1 GeV/c2. For each step, the
significance of any excess above the SM prediction was evaluated via a Frequentist p-value. Assum-
ing Poisson-distributed background rates and Gaussian uncertainties on the rates of backgrounds, the
p-value is defined as the fraction of background-only pseudo-experiments which equal or exceed the
number of events observed in the window. The results of this test are shown in Figure 6 as a function
of the di-electron mass. The authors define an expected range for minimum observation probability of
5%-0.27% region as the expected range to find the minimum Frequentist p-value over the tested mass
range [16]. The minimum p-value for the spectrum is 9.7 × 10−3 with the sliding window centered at
Mee = 367 GeV/c2.

Such a search is certainly hampered the lack of a signal model, but presents a broad application
for theoretical model interpretation. As such, this technique is a valuable approach to studying the gross
features of a data sample. The analyzers went on to interpret the search using both a set of Z ′ models and
Randall-Sundrum graviton models, each resulting in a more sensitive probe to the specified new physics
model than the model-independent search.
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5.2 Broad Spectrum Searches

The range of physics processes at the Tevatron and LHC contains a rich phenomenology of search pos-
sibilities. Despite being an exciting opportunity for the observation of new physics, there are several
challenges which must be faced. First, limited human and computing resources force the prioritization
of search design and implementation. Second, a comparison and correlation of search results in a broad
range of final states is often made opaque by differing search techniques and interpretations. The Teva-
tron has seen the development of a few broad spectrum search techniques which attempt to address these
problems, amongst others. As an example, we present the two most modern versions implemented at the
CDF experiment: Vista and Sleuth.

The Vista program [17] searches for large cross-section physics in final states with high-pT (high
transverse momentum) physics objects. The basic algorithm proceeds as follows:

1. Select high-pT (pT > 17GeV/c) electrons, photons, muons, tau-leptons, hadronic jets, and neutri-
nos (manifested as missing transverse energy) which pass the detector’s physics triggers.

2. Events are passed through an offline filter to isolate interesting final states.
3. Standard model background simulations are generated and the detector response is simulated.
4. Orthogonal subsets of events are formed and kinematic distributions are populated.

The current implementation of Vista identifies a total of 344 final states and 16486 kinematic
distributions. The program forms a global χ2 for a comparison of the simulation to data and minimizes it
over 44 total nuisance parameters, 26 of which are externally constrained. Following this minimization,
the total numbers of events are compared for each final state and each kinematic distribution is evaluated
using the Kolmogorov-Smirnov statistic. An example of a discrepant distribution identified by the Vista
program is shown in Fig. 7.

The Sleuth program [18] is a quasi-model-independent tool used to search for new physics in high-
pT final states. To be sensitive to electroweak-scale new physics, the program analyses the tails of the
summed transverse momentum (

∑
pT ). The program interfaces with the Vista program by adopting its

orthogonal set of final states and its comprehensive correction model. The statistical test for each final
state in the Sleuth program is as follows:

1. Identify D regions in D data points defined by the semi-infinite integral of the
∑

pT kinematic
distribution.

2. Define the interestingness (PN ) of a region containing N data points as the Poisson probability the
SM prediction would fluctuate up to or above N.

3. The most interesting region (R) is found by minimizing PN for the final state.
4. Pseudo-experiments of the SM

∑
pT distribution are used to generate a population of PN associ-

ated with the value R for each final state.
5. The fraction of regions more interesting than Robs quantifies each final state.

Considering all final states, the program determines the most interesting region Rmax. Using this
region, the statistic P̃ is defined as the fraction of pseudo-experiments that would generate a region in
any final state more interesting than Rmax, including a proper accounting for the number of final states
considered. Assuming that the simulation and correction model are accurate, the distribution of P̃ in all
final states should be uniform in the range 0 → 1. In the presence of an unmodeled source of physics,
the value of P̃ should be small.

In 927 pb−1 of data at the CDF experiment, the Sleuth program found P̃ = 0.46. The Sleuth
program would interpret this as no indication for new physics in the distributions it probes, while the
threshold for the pursuit of potential discovery is chosen by the authors at P̃ < 0.001. The most inter-
esting final state in this data sample as identified by the Sleuth program is the two b-quark final state, as
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Fig. 7: One of the most discrepant kinematic distribu-
tions identified by the Vista program at the CDF exper-
iment.
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found by the Sleuth program at the CDF experiment.

shown in Fig. 8. It should be noted that this tool is not intended to be a bypass for directed searches, but
rather an effective means for evaluating an experiment’s data in a systematic manner.

6 Summary

The statistical techniques employed in recent Tevatron searches encompass a broad range of interpre-
tation and utility. The transition to the new energy frontier at the CERN LHC will indeed be exciting
and is eagerly anticipated by many. It is expected that the LHC experiments will face similar challenges
in searches for new physics as those seen at the Tevatron. The experiences from Tevatron searches will
hopefully be both useful and instructive for probing the data at the LHC.
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ATLAS and CMS Statistics Wish-List

Eilam Gross
Weizmann Institute, Rehovot, Israel

Abstract
A wish-list of statistics related issues, which were regarded by ATLAS and
CMS as requiring a deeper understanding and perhaps the response of a pro-
fessional statistician, is given.

1 Introduction

The first Phystat meeting was a workshop at CERN on Confidence Limits followed by a similar workshop
at Fermilab. Fred James who organized the meeting with Louis Lyons presented then his personal wish
list titled: "What I would like to see" (see Figure 1). Fred wishes that physicists learn the vocabulary
of statistics, all searches use Feldman and Cousins unified method [1] to derive confidence intervals and
Bayesian methods are used only in policy decisions. When accepting upon myself to collect a wish list
from Atlas and CMS my only experience was with LEP statistics [2] and the so called CLs method for
deriving limits which was used at LEP. In the two months of preparation of this lecture I had a steep
learning curve during which I partially fulfilled the first item in Fred’s wish list but found myself in mild
debate with his other two points. However when enquiring around I discovered that most physicists are
mainly concerned with old fashioned systematics issues and the majority have only a vague idea of the
meaning of the term "Nuisance parameters" and the meaning and difference between the Feldman and
Cousins vs the profile likelihood methods etc. It became clear to me that my mission in this lecture is
not only to communicate to the statisticians our unsolved difficulties but also to make sure that when
Atlas and CMS publish a combined limit or discovery significance not only the few statisticians amongst
the Physicists (which I propose to call "Phystatisticians") will understand but also the majority of the
HEP experimentalists. Therefore I decided to expand the contents of my talk to include also a pedestrian
guide to LHC statistics. This guide which also provides the separate title to these proceedings [3]also
provides the reader with the statistics background required to understand the wish list. The statisticians
and phystatisticians are exempted from reading it.

2 A Wish List of ATLAS and CMS

The wish-list is made of statistics related issues which were regarded by ATLAS and CMS as requiring
a deeper understanding and perhaps a professional statistician response.

2.1 Modeling of the underlying process

The raison d’etre of our meeting here are 109 Protons that will collide with 109 protons per second
in the 27 km long LHC tunnel. The Proton is made of partons which are Quarks and Gluons. The
underlying process is a collision between two partons. To understand the process we need to know the
Parton Distribution Function fi(x;Q2, αs(Q2)) of parton i in a Proton. x is the fraction of momentum
carried by the parton and Q2 is the energy scale squared. To obtain the Parton Distribution Functions a
global fit analysis is performed[4], mainly the CTEQ and MRST, [5]. However some strange phenomena
occur with these fits. For example, for most of the individual experiments from which the data is taken
the χ2/dof is around 1. However, in the global fit, the CTEQ group set ∆χ2 ∼ 100 in order to get
reasonable errors [6]. Stump [7] argues: "What we have are estimates on the uncertainties, not the true
ones. The increase of χ2 if the estimators are biased or wrong might be bigger than 1. We find that
alternate pdfs that would be unacceptable differ in χ2 by an amount of order 100". This is a very vague
statement. Robert Thorne, the "S" in MRST concludes with a wish: "It would be nice to have a more
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Fig. 1: Fred James personal wish-list presented in the first Phystat meeting, year 2000.

systematic way of accounting for this, e.g. a modified definition of goodness of fit to account for non-
Gaussian nature of errors, a quantitative way of accounting for theoretical errors, etc..." [8]. Since Throne
is elaborating the issue in this conference [6] I decided not to dwell anymore with it, though it is in the
heart of proton-proton collisions and must be sorted out in order to reduce the systematics involved with
all processes involved.

2.2 Why 5σ?

The null hypothesis is usually taken to be the background only hypothesis. The alternate hypothesis is
the signal+background hypothesis. When analyzing results in HEP (High Energy Physics) it became a
habit either to reject the signal hypothesis at the 95% Confidence Level or announce an observation at the
3σ level or a discovery at the 5σ level. Statistically speaking a 5σ discovery corresponds to a fluctuation
of a Gaussian distributed background expectation at the level of 5.4 · 10−7 (here we adopt the 2-sided
interpretation). At that level one is probing tails of distributions. In order to make such statements one
needs to understand the data and the detector response to that level. Nobody really knows where this
habit of 5σ was born. A back of the envelope calculation reveals a possible explanation which has to do
with the "look elsewhere effect". Suppose when searching for a new phenomena (Higgs boson...) one
is combining 100 search channels each with a discriminating variable distributed within 100 resolution
bins. The false discovery rate of 5σ will be 104 · 2.7 · 10−7 = 0.27%. This degrades the discovery
sensitivity to 3σ. More examples and insights into this problem can be found in [9, 10, 11].

So is there a way to clarify how many σs are needed for discovery? Is there a problem in seeking
for an effect at at tail of a pdf? How can we take a fluctuation into account?

2.3 Look Elsewhere Effect in Time

An ongoing discussion in the LHC collaborations is the need and possibility to perform a blind analysis.
Even if from the scientific integrity point of view the pros are clear, with each collaboration having over
2000 physicists it is hard to believe such a habit can be adopted. Moreover, it will take years till the
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detectors are understood, and understanding the detector necessitates looking at the data as it comes.
However, that raises another issue, the issue of sequential analysis. Should a statistical stopping rule
be established? Is it possible that by adopting a stopping rule we would achieve a discovery with less
luminosity than needed with a blind analysis? Understanding stopping rules is a complicated issue. It is
probably more relevant in medical experiments where one would like to minimize the damage that might
be referred to as patients trying new drugs. No doubt the HEP community must adopt very strict rules for
looking at the data and publishing results to minimize human bias. The HEP Physicist might be bothered
by another related issue, which might be refereed to as a "look elsewhere in time" effect: How much the
p-value is increased as a result of the fact that we have already looked at the data a few times before and
got no satisfactory significance?

2.4 Estimating Systematics

There are two issues related to systematics. Classifying and estimating them and implementing them in
the analysis. Implementation of the systematics in the statistical hypothesis tests is discussed at length in
[3]. Knowing the type of error one is dealing with is very important and make its estimation clearer. Sin-
ervo [12] classified the sytematics into three types: Class I: Statistics-like uncertainties that are reduced
with increasing statistics. Example: Calibration constants for a detector whose precision of (auxiliary)
measurement is statistics limited. Class II: Systematic uncertainties that arise from one’s limited knowl-
edge of some data features and cannot be constrained by auxiliary measurements. One has to make some
assumptions. Example: Background uncertainties due to fakes, isolation criteria in QCD events, shape
uncertainties. These uncertainties do not normally scale down with increasing statistics. Class III: The
"Bayesian" kind. The theoretically motivated ones, uncertainties in the model, Parton Distribution Func-
tions, Hadronization Models. The most accurate way to communicate the systematic error is to separate
one type from another and quote them separately. Some bad habits should cease. For example adding
all sorts of systematics in quadrature and quote only the final result.

Another unfortunate habit in estimating systematics is when Physicists do not differentiate be-
tween cross-checks and identifying the sources of the systematic uncertainty. For example we shift cuts
around and measure the effect on the observable. Very often the observed variation is dominated simply
by the statistical uncertainty in the measurement [13].

2.5 Reference Priors in Demand of a Code

Analytical derivation of reference priors might be technically complicated. Bernardo [14] proposes an
algorithm (pseudo code) to obtain a numerical approximation to the reference prior in the simple case
of a one parameter model. The pseudo code should work for any number of parameters (of interest and
nuisance) provided you make non informative priors for ALL! If the code could be extended to multiple
parameters, including some with informative priors, it would be more useful for the HEP community.
Another complication is that the order of the parameters matter. This should be further investigated and
clarified. The wish is to have a generalized routine (REAL CODE) to numerically calculate reference
priors for parameters {θ} given the Likelihood L({θ}) as an input.

2.6 Subsequent Inference

Often the background distribution is fitted with a polynomial,
∑n

i=0 aix
i with the degree n determined

with a stepwise test. However, the fitted coefficients ai were obtained as if we know a priori the degree
of the polynomial. How does one take the prior test into account? Perhaps the degree was wrong to start
with?
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Table 1: Hypothesis Test Methods. The columns indicate if the method obeys the Likelihood Principle (LP), if it
has a coverage and if it uses priors.

LP Coverage Priors Comments
1 F&C No Yes No Pioneering in HEP
2 F&H&C2 No No Yes
3 Profile Likelihood (PL) Yes Asymptotic No ����������	�
������������������

4 PL F&C Construction No Satisfactory No
5 PL Full Construction No Yes No Cumbersome
6 Bayesian Yes No Yes Choose priors with care
7 CLs with C&H Yes Partial Yes For upper limits only

2.7 Multivariate Analysis

The number of Physicists objecting to MultiVariate (MV) analyses (like ANN, Decision Trees) is getting
smaller as the average year of birth of the active physicists go up. Evaluating the systematics with MV
analyzes is very unclear. Many physicists have the habit of changing the input parameter by what they
believe is a standard deviation, do it one at a time or randomly with all of them together. There must
be a better way to do it. Can the community come up with good figures of merit for the robustness
optimization of a MV analysis (and not only for the significance )?

Note that the articles by Linnemann (’A pitfall in estimating systematic errors’) and by Reid
(’Some aspects of experiment design’) in these proceedings also deal with this issue of problems with
changing one variable at a time.

2.8 Telling Between Multi Hypotheses

Is the scalar particle we have just discovered a Standard Model one, a CP-odd SUSY one or a CP-even
SUSY one [15]? Here are three hypotheses regarding the nature of the Higgs Boson. The Neyman
Pearson lemma tell us the best test statistic to tell between two simple hypotheses. In case of more than
one equivalent alternate hypotheses, what is the best test statistics to use besides testing them one against
the other? Is there anyway to do it without a Bayesian assumption that all hypotheses have an a priori
degree of belief?

2.9 Hypothesis Test

Testing a preferred hypothesis includes the estimation and incorporation of systematic errors. The result
is then interpreted in terms of exclusion, measurement or discovery. Hypothesis testing is a science by
itself. The LEP collaboration has chosen the CLs method integrating out the systematics using the C&H
method. This was one possibility out of many. In the years since LEP we have grown up to understand
many more methods. The frequently used ones in HEP are introduced in [3] and compared in Table 1.
Since each method has its pros and cons the ATLAS and CMS combined statistics forum has expressed
its wish that the analyses be interpreted in a few of them. The frequentist based Profile Likelihood and a
Bayesian method are highly recommended. CLs will certainly be practised for exclusion (the power of
a habit...). It is also recommended to try one of the Neyman construction methods. If all methods agree
a trust in the result will be established, however, if one method gives completely different inference from
others, this should be further investigated.

3 Conclusion and a Personal Wish

Some of the statistical issues raised in this paper are quite picky. The level of the discussions on hy-
pothesis tests is quite advanced, which indicates that the HEP community’s understanding of statistics
has matured since the days of LEP (thanks in large measure to the Phystat meetings). It is therefore my
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personal wish that when the real data analysis phase arrives (one hopes soon) every physicist will make
the effort to become a Phystatistician to some degree, so he or she understands what is a p-value, what is
Profile Likelihood, a Confidence Limit, a Confidence Interval etc.
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Some Statistical Issues in the LHCb Experiment

Yuehong Xie
The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK

Abstract

This paper describes statistical issues that are of particular importance and
interest to the LHCb experiment in probing new physics beyond the Standard
Model through study of CP violation and rare phenomena in B decays. A
wish list for statistical methods and tools that will help LHCb to exploit its full
physics potential is given at the end.

1 Introduction

The LHCb experiment is a dedicated B physics experiment at the Large Hadron Collider (LHC). Its
physics aim is to study CP violation and rare phenomena in B decays with very high precision in order
to test the Standard Model (SM) in the quark flavour sector and to look for physics beyond the SM.
Different from the ATLAS and CMS experiments, which will explore the high energy frontier to search
for new physics particles directly produced in proton-proton collisions at the LHC, the LHCb exper-
iment will pursue precision measurements to understand the quantum effects of possible virtual new
particles appearing in loop diagrams. LHCb will need to put enormous efforts to understand how to deal
with background, control systematic uncertainties and incorporate theoretical errors. Improving signal
significance is also very important, especially for measurements of very rare decay processes.

This paper discusses the major issues in LHCb physics analysis that require special statistical
treatments. These are illustrated using examples of analysis. In addition a list of statistical methods and
tools that LHCb wishes to develop, improve or understand better is given.

2 The physics of the LHCb experiment

In the SM, quark-flavour mixing and CP violation are fully described by the Cabibbo-Kobayashi-Maskawa
(CKM) matrix with four independent parameters. The task of flavour physics is to determine these pa-
rameters and more importantly to check the validity of the CKM mechanism. LHCb will take two routes
to achieve this task. LHCb will make many measurements to over-constrain the CKM matrix. These
will provide stringent tests of the SM. Any inconsistency will mean that some new source of flavour
mixing and CP violation must exist. LHCb will also study Flavour-Changing-Neutral-Current (FCNC)
loop decays. The FCNC decays are forbidden at tree level in the SM, therefore new physics may have
significant effects in these processes. Comparing asymmetries or rates in these decays with their SM
expectations will be a sensitive test of the SM. Any established discrepancy will indicate new FCNC
couplings beyond CKM mixing.

3 A statistical view of the LHCb experiment

Statistics plays an important role in quantifying the level of consistency/inconsistency between physics
models and experimental data. In the language of statistics, LHCb will perform hypothesis testing. The
null hypothesis is that "the SM is valid at the energy scale relevant to B meson decays". No alternative
hypothesis is explicitly given, but rejecting the null hypothesis implies new physics is needed to explain
the data. What LHCb needs to do for a hypothesis test of the SM is

– Identify a test statistic, i.e. an observable, in flavour physics which has high power to separate the
SM and potential new physics models;
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– Measure the test statistic from data;
– Evaluate the tail probability of the null hypothesis, that is, the p-value;
– If the p-value is judged too small, reject the null hypothesis and look for a possible alternative;
– Otherwise go for another observable and repeat the test.

4 Application of statistics in LHCb physics analysis

Statistical methods and concepts are used in almost every aspect of B physics experiments, ranging
from pattern recognition to averaging measurements. Since many of these issues have been widely
discussed in the B physics community, this paper focuses on those aspects of LHCb data analysis which
can potentially benefit a lot from improvement of statistical methods.

4.1 B flavour tagging

For most CP measurements with neutral B decays it is necessary to know the flavour of the B meson at
production. This can be inferred from the information carried by the following tagging categories:

– Same side tagger: charge of the particle accompanying the signal B at production;
– Opposite side tagger: charge of muon, electron or kaon from the decay of the opposite side B

hadron;
– Vertex charge tagger: the weighted sum of the charges of all particles found to be compatible with

being from the opposite side B decay.

The tagging result is a decision made on a statistical basis combining all available taggers. The
figures of merit of tagging is the effective tagging power ε(1−2ω)2, where ε is the tagging efficiency and
ω is the mistag probability. The current estimates using simulated data are ε ∼ 50−60%, ω ∼ 30−35%
and ε(1 − 2ω)2 ∼ 4 − 10%. Since the statistical errors of the CP asymmetries in neutral B decays
decrease linearly with the square root of the tagging power, it is crucial to maximize the tagging power
using appropriate statistical methods.

In LHCb neural network methods are employed to get event-by-event mistag probability of each
tagger, the performance of which depends on the way the neural networks are constructed and trained.
We expect some room for improvement here. Combining different tagging categories is non-trivial when
these are correlated. For example, if the opposite side tagger and the vertex charge tagger use the same
particle, correct handling of this correlation requires splitting the data sample into sub-samples depending
on whether there is a particle used by the opposite side tagger and the vertex charge tagger or not. LHCb
is developing new techniques to optimize the procedure of combining taggers. A possibility for tagging
improvement is to investigate using better methods to assign particles to vertices. The tagging algorithm
needs determine if a particle originates from a primary vertex or from a tagging B vertex. It may lead to
a wrong tagging decision if for example a charged lepton from a primary vertex is mistakenly regarded
as being from the tagging B hadron or loss of tagging efficiency if a charged lepton from the tagging B
hadron is mistakenly treated as being from a primary vertex. In both cases, the effective tagging power
is compromised. We have already investigated various methods to minimize this loss of tagging power,
but room for further improvement is still possible.

4.2 Separating signal and background events

Separating signal and background events is a demanding task in LHCb for two reasons: after trigger the
ratio of inclusive bb̄ background events to signal events is at the order of one million to one in a typical
decay channel and can be even larger for a very rare decay channel such as Bs → µ+µ−; in each bb̄ event
there are not only the two B hadron decays but also about 50 tracks from proton-proton interactions.

SOME STATISTICAL ISSUES IN THE LHCB EXPERIMENT
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The following information can be used for signal and background separation

– Particle identification;
– Kinematic information such as particle momenta and invariant masses of particle combinations;
– Geometrical information such as the secondary vertex χ2 and event topology.

There are typically 10-20 variables to look at in an analysis, each alone with limited discrimination power.
Therefore, a cut-based analysis method is usually not optimum in terms of statistical precision. Multi-
variate analysis methods can be more powerful for signal and background separation but this involves
more complexity to understand the systematic issues. In a real analysis one needs to find a trade-off
between better statistical precision and smaller systematic uncertainty.

A multivariate analysis entails constructing a best test statistic from multiple input variables for a
hypothesis test. In principle the Neyman-Pearson lemma tells us the likelihood ratio is the best choice
(for simple hypotheses). A straightforward application is to represent the probability density functions
(PDFs) of signal and background by multi-dimensional histograms which can be obtained from Monte
Carlo simulation. The likelihood ratio then can be computed as the ratio of the two PDFs. However, this
procedure becomes impractical when the dimensions of the PDFs are too large.

There are alternative methods which construct estimators to approach the likelihood ratio under
certain conditions. Examples include decorrelated likelihood classifier, linear estimators such as Fisher’s
discriminants, nonlinear estimator such as neural networks and Boosted decision trees. The Toolkit for
MultiVariate data Analysis (TMVA) [1], an integrated part of the Root framework, hosts a variety of
these multivariate algorithms and provides many techniques that are useful in LHCb data analysis.

The TMVA package has been applied in a simulation study of the decay channel Bs → e±µ∓ [3],
which is forbidden in the SM and therefore requires high selection efficiency and low background level.
In this study, variables showing very clear separation between signal and background are directly cut on
first. TMVA is used to deal with the less powerful variables. This effectively reduces the complexity in
understanding systematics. In this particular case no non-linear correlations between these are expected.
A sample of simulated data is used to train several classifiers and an independent data sample is used
to evaluate their performances. The results are shown in Fig. 1. Just as the Neyman-Pearson lemma
implies, the decorrelated likelihood method, denoted as LikelihoodD in Fig. 1, gives the highest signal
efficiency for the same number of background events. This is not necessarily the case in other more
complicated analyses with non-linear correlations between the input variables. There are indications
that the current TMVA mechanism to monitor over-training of classifiers using independent samples
for training and testing may not be sufficient. A way to control over-training in the training phase is
desirable.

4.3 Setting confidence limits in case of a small signal

As in all HEP experiments, we need to quote confidence intervals/limits for experimental measurements.
This issue is especially important when working on very rare decays with small signals and large back-
ground. Here we use the analysis of Bs → µ+µ− [3] as an example to illustrate the statistical procedure
which LHCb adopts for determination of the experimental sensitivity in very rare decay channels. We
know that Bs → µ+µ− is highly suppressed in the SM and its branching ratio is expected to be around
3.4 × 10−9. This can be greatly enhanced in new physics models. We use the average exclusion limit
as a measure of the experimental sensitivity, which is defined as the average upper limit that would be
obtained from an ensemble of experiments with the expected background and no true signal [4]. We
evaluate the average exclusion limit by generating toy experiments with only background events and
using the "N-counting" method described below to set an upper limit for each toy experiment. The
"N-counting" method includes the following steps:

– Construct geometrical, muon-ID and µ+µ− invariant mass likelihood ratios between signal and
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Fig. 1: Number of retained background events per fb−1 as a function of signal efficiency (%) for various multi-
variate methods.

background hypotheses for each event, where the decorrelated likelihood method is used for the
geometrical likelihood ratio;

– Divide the 3-dimensional space of the three likelihood ratios into a number of bins and count the
number of events in each bin, denoted as di;

– Estimate the number of expected background events bi and signal events si for each examined
branching ratio in each bin;

– Construct a total likelihood ratio between the signal+background and background-only hypotheses
for the whole experiment

X =
∏

i

P (di, < di >= si + bi)
P (di, < di >= bi)

, (1)

where P (x,< x >) denotes the Poisson probability of a variable x with the average value < x >;
– Evaluate the p-value of the signal+background hypothesis: probability(X < Xobserved;S + B)

and that of the background-only hypothesis: probability(X > Xobserved;B);
– Form a statistic called CLs [5] from the ratio

CLs =
p _value of signal plus background hypothesis

1− (p _value of background hypothesis)
; (2)

– Make a statistical statement: if CLs(BR) < α, then the branching ratio BR is excluded at 1 − α
confidence level.

The comparison of the N-counting method and a simple counting method is shown in Fig. 2. It can
be clearly seen that the N-counting method requires less data to reach the same average exclusion limit at
10% confidence level. While the CLs test statistic has some advantages over the likelihood ratio X and
the CLs limit is easy to compute, the way the confidence level is set is known to be conservative [6]. The
normal procedure requires the p-value of the signal+background hypothesis, not the CLs, to be smaller
than α in order to exclude the signal+background hypothesis at 1− α confidence level.

It should be noted that the significance of a measured result is given by the p-value of the background-
only hypothesis, which should not be confused with the p-value of the signal+background hypothesis or
the CLs value.

4.4 Analysis tools for data modelling and fitting

The maximum likelihood fit method is generally used in B physics experiments. This is largely facilitated
by the data modelling and fitting package RooFit [7]. The RooFit package has been widely used in LHCb
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Fig. 2: Bs → µ+µ− average exclusion limit (10−9) at 90% confidence level as a function of the integrated
luminosity (fb−1) for the N-counting method and the simple counting method as a comparison.

sensitivity studies. The experience shows that LHCb can better benefit from this package if:

– The event generation for complicated PDFs can be made faster;
– We learn how to make fits converge that employ non-factorizable multi-dimensional PDFs that

have no analytical normalization and can only be numerically integrated.

4.5 Controlling systematic errors

Systematic errors arise from incorrect modelling of the detector and/or background effects. Delicate
statistical methods are needed to acquire knowledge of these effects from real data and to model them.
An example is the efficiency as a function of the proper decay time t and phase space position Ω, denoted
as ε(t,Ω). Correct modelling of ε(t,Ω) is very important for time-dependent and/or an angular analysis.
Here we discuss a technique [8] to absorb the effect of ε(t,Ω) into a normalization factor. Generally the
PDF describing a signal decay has the form

p(t,Ω;A) =

∑
j hj(A)fj(t)gj(Ω)ε(t,Ω)∑

j hj(A)
∫
t

∫
Ω fj(t)gj(Ω)ε(t,Ω)dtdΩ

, (3)

where hj(A), fj(t) and gj(Ω) are functions that depend only on the physical parameters A, decay time
t or phase space position Ω respectively. The likelihood of all signal events is

L =
∏

i

li =
∏

i

p(ti,Ωi;A). (4)

Varying parameters A to maximize L requires evaluating

d ln li
dA

=
d

dA
ln

∑
j hj(A)fj(t)gj(Ω)ε(t,Ω)∑

j hj(A)
∫
t

∫
Ω fj(t)gj(Ω)ε(t,Ω)dtdΩ

≡ d

dA
ln

∑
j hj(A)fj(t)gj(Ω)∑

j hj(A)Φj
, (5)

where we have defined Φj ≡
∫
t

∫
Ω fj(t)gj(Ω)ε(t,Ω)dtdΩ. These factors Φj are independent of the

physical parameters A and therefore can be obtained from Monte Carlo simulation before fitting. Note
the acceptance function ε(t,Ω) in the numerator of Eq. 3 drops out in the last step of Eq. 5 because it
only contributes a constant to the log-likelihood function. There is no need to know the explicit form of
ε(t,Ω) in the maximum likelihood fitting. In addition to the general problem of a lack of goodness-of-fit
in a unbinned likelihood fit, a lack of knowledge of ε(t,Ω) makes it difficult to check the fit quality by
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Fig. 3: Schematic view of signal and sideband regions defined with invariant mass.

comparing measured distributions and fitted projections. A solution must be found to ensure the fit result
is reliable. This is still under investigation.

When background events are taken into account the total PDF becomes

ptot = f · psig + (1− f) · pbkg, (6)

where f is the fraction of signal events in the data sample and psig, pbkg denotes signal and background
PDF respectively. The total PDF no longer has the form of Eq. (3). Therefore the normalization trick of
Eq. (5) cannot be employed.

One solution to this problem is to use a pseudo-log-likelihood method [9], which avoids the use of
any background PDF. Instead of maximizing the usual likelihood defined using the total PDF in Eq. (6),
one maximizes the pseudo-log-likelihood defined using only the signal PDF

lnLpseudo =
Nsig∑
i=1

ln(psig(ti,Ωi;A))− Nsb

Nb

Nb∑
j=1

ln(psig(tj ,Ωj ;A)), (7)

where Nsig/b is the total number of events in the signal/sideband region and Nsb is the number of ex-
pected background events in the signal region. The signal and sideband regions can be defined in terms
of invariant mass as shown in Fig. 3. While the minimization of the negative pseudo-log-likelihood leads
to a unbiased estimate of the physical parameters A, the errors returned by Minuit at the end of the
minimization are generally under-estimated. There are efforts underway to derive a formalism to give
the correct estimates of parameter errors [10]. Useful discussions on the topic of background-subtraction
during this workshop can be found in [11]. Every effort needs to be made to model the detector and back-
ground effect correctly in order to minimize systematic errors. In addition, a proper statistical procedure
should be established and strictly followed when estimating systematic errors so that the arbitariness in
assigning systematic uncertainties can be minimized.

4.6 CKM fit and other global fits

An area in B physics where statistical analysis plays a major role is the CKM fit. The goal of the CKM fit
is to test if different measurements of the sides and angles of the Unitarity Triangle are consistent or not.
Currently there are two groups working on this using the B factory measurements: the UTFit group [12]
which uses a Bayesian method and the CKMFitter group [13] which employs a frequentist approach.
While the two methods are very different from each other, the basic conclusions made by the two groups
are the same: no inconsistency between measurements is found so far. Once LHCb starts to produce
precision measurements, a more stringent test of the CKM mechanism can be done. At that time it might
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be necessary to consider improving the statistical treatments of these existing tools to make best use of
the high precision measurements at LHCb. For example, we may want to know how better to incorporate
theoretical uncertainties and how to tell if an inconsistency is due to new physics or to under-estimated
systematic uncertainties or under-estimated theoretical uncertainties.

LHCb will also measure many rare decay channels. Individually they test the SM and probe new
physics in one way or another. We may want to perform a global fit in the SM in order to achieve
better sensitivity to new physics. This is not an easy job as the SM relations between the measured
quantities in the rare decay channels are not precisely known and the SM predictions of these quantities
are usually subject to sizable uncertainties. A lot of analysis efforts are first needed to understand the
SM and make better predictions. In terms of statistical methods, some thinking is required to understand
how to construct a test statistic using the measurements in rare decay channels and their SM predictions
and taking into account the uncertainties of these predictions and the correlation between the predicted
errors due to common theoretical sources.

5 LHCb’s statistical wish list

Having discussed the aspects of the LHCb experiment that will need a careful statistical analysis, we can
give a specific list of topics that LHCb wishes to develop or to improve:

– A well supported tool for data modelling and fitting that can handle general multi-dimensional
problems;

– A multivariate analysis tool that is capable of dealing with multiple discriminating variables with
non-linear correlations and has a reliable mechanism to monitor and control over-training of clas-
sifiers;

– Better understanding of how to treat systematic and theoretical uncertainties;
– New statistical methods to improve flavour tagging;
– Better understanding of how to set confidence limits in case of insignificant signals;
– Recommendation on statistical procedures in data analysis.

References
[1] A. Hocker et al., CERN-OPEN-2007-007.
[2] W. Bonivento and N. Serra, CERN-LHCb-2007-028.
[3] D. Martinez et al., CERN-LHCb-2007-033.
[4] G. J. Feldman and R.D. Cousins, Phys. Rev. D57, 3873 (1998).
[5] T. Junk, CERN-EP/99-041.
[6] W.-M. Yao et al., Review of Particle Physics, Journal of Physics G 33, 1 (2006).
[7] W. Verkerkear and D. Kirkby, Xiv:physics/0306116.
[8] S. T. Jampens’s thesis, available at https://oraweb.slac.stanford.edu/pls/slacquery

/BABAR_DOCUMENTS.DetailedIndex?P_BP_ID=3629.
[9] B. Aubert, Phys. Rev. D71, 032005 (2005).

[10] Private communication with Joe Boudreau at CDF.
[11] J. Linnemann and A. J. Smith, these proceedings.
[12] M. Bona et al., UTfit Collaboration, J. High Energy Phys. 0610, 081 (2006), updated results avail-

able at http://www.utfit.org/.
[13] J. Charles et al., CKMfitter Group, Eur. Phys. J. C41, 1 (2005), and updated results available at

http://www.slac.stanford.edu/xorg/ckmfitter/.

Y. XIE

82



ALICE Statistical Wish-list

Iouri Belikov for the ALICE collaboration
CERN, Geneva, Switzerland

Abstract
A few statistical problems faced by the event reconstruction in ALICE exper-
iment at CERN are discussed in this paper. We outline several ad-hoc ex-
tensions of traditional Kalman-filter track finding which seem to increase the
quality of tracks reconstructed in high multiplicity events anticipated for Pb–
Pb collisions at LHC. These extensions, however, need a stricter formulation
and justification from the theoretical side. The particle identification in ALICE
is done by combining the information from different detecting systems using
a Bayesian method. Having many clear advantages, this approach introduces
into the analysis additional complications which are also discussed here.

1 Introduction

A Large Ion Collider Experiment (ALICE) [1] at CERN is a general-purpose heavy-ion experiment de-
signed to study the physics of strongly interacting matter and the Quark-Gluon Plasma in nucleus-nucleus
collisions at the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of
lower-mass ions, in order to vary the energy density, and protons (both pp and pA), which primarily
provide reference data for the nucleus–nucleus collisions. The pp data will also allow for a number of
genuine pp physics studies.

The detector consists of a central part (see Fig. 1), which, event-by-event, measures hadrons, elec-
trons and photons, and of a forward spectrometer to measure muons. The central part, which covers
polar angles from 45◦ to 135◦ over the full azimuth, is embedded in the large L3 solenoidal mag-
net. It consists of an Inner Tracking System (ITS) of high-resolution silicon detectors; a cylindrical
Time-Projection Chamber (TPC); three particle identification arrays, a Time-Of-Flight (TOF) detector, a
Transition-Radiation Detector (TRD) and a single-arm ring imaging Cherenkov detector (HMPID) and a
single-arm electromagnetic calorimeter (PHOS). The forward muon spectrometer (covering polar angles
180◦−θ = 2◦−9◦) consists of a complex arrangement of absorbers, a large dipole magnet, and fourteen
planes of tracking and triggering chambers. Several smaller detectors for global event characterization
and triggering are located at forward angles.

The detector is optimized for charged-particle density dNch/dy = 4000 and its performance is
checked in detailed simulations up to dNch/dy = 8000. The track reconstruction efficiency in the
acceptance of the TPC is about 80% down to transverse momentum of pt ∼ 0.2 GeV/c and about 90%
for tracks with pt > 1 GeV/c. It is limited only by the particle decays and small dead zones between
the TPC sectors. Typical momentum resolution obtained with the magnetic field of 0.5 T is ∼ 1% at
pt ∼ 1 GeV/c and ∼ 4% at pt ∼ 100 GeV/c. The secondary vertices can be reconstructed with the
precision better then 100 µm.

The detector has excellent particle identification (PID) capabilities. From p ∼ 0.1 GeV/c to a
few GeV/c the charged particles are identified by combining the PID information provided by ITS, TPC,
TRD, TOF and HMPID. Statistically, the charged particles can be identified up to a few tens GeV/c using
the relativistic rise of dE/dx in the TPC. Electrons above 1 GeV/c are identified by the TRD, and muons
are registered by the muon spectrometer.

To achieve the benchmarks described above, the ALICE reconstruction has to cope with a few
statistical problems. We will discuss some of them in this paper (the details can be found in Chapter 5 of
the ALICE Physics Performance Report [2]).
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Fig. 1: Schematic layout of the ALICE detector.

2 Statistical problems with track finding in ITS

The track reconstruction in ALICE starts in the TPC, and then the tracks have to be prolonged in the ITS.
This is difficult, because the distance between the inner wall of the TPC and the outer layer of the ITS is
rather large and the track density inside the ITS is so high that there are always many ITS clusters found
within the prolongation ‘window’ defined, mainly, by the multiple scattering in the material. The same
often happens between the ITS layers as well (see Fig. 2). All this leads to a non-negligible probability
of assigning to tracks many wrong clusters, if we use just the criterion of minimal χ2 at each layer.
Therefore we have to find the ways to improve the classical Kalman filter track-finding procedure [3].

For each event, we do two reconstruction passes over the set of clusters in the ITS: first, with
a ‘primary vertex constraint’ (see below) and then without the constraint. In the both cases, we try to
assign to a track, one by one, all the hits within the predicted window that have a χ2 below a given limit,
and not only the one with minimal χ2. This way, for each track from TPC, we build a whole ‘tree’ of
all possible prolongations in ITS. To speed up building the tree, the branches are sorted after each layer
according to χ2 and only a restricted number of acceptable branches are propagated further. Finally, we
choose the most probable track candidate (i.e. the path along the tree) taking into account the quality of
the whole path (sum of χ2s at the layers, total number of assigned clusters and a few other criteria).

Because most of tracks are expected to be primary, the first reconstruction pass is done applying an
ad-hoc ‘primary vertex constraint’ (see Fig. 3). Since the primary vertex in ALICE can be reconstructed
in advance sufficiently well, the idea is to use this additional information during the track finding. When
going over the clusters within the ‘window’, we take into account not only the positions of clusters and
the track intersection point with the layer, but also the direction towards the primary vertex. Technically,
this is done by extending the vector of measurement m

mT = {y, z} → {y, z, sin(φ), tan(λ)},

where {y, z} are the coordinates of the cluster position and the angles {φ, λ} define the direction to the
primary vertex and are calculated using the current value of the track curvature. The elements of the
covariance matrix of the extended measurement vector that correspond to the two angles are evaluated
considering the material which this track would cross on its way to the primary vertex. The subsequent
evaluation of the χ2 and update of the track parameters become thus 4-dimensional problem.
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Fig. 2: The problem of track finding in ITS in high multiplicity events: Several clusters are found within the
prolongation ‘window’ from one layer to another.

Fig. 3: Taking into account the information about the primary vertex position by applying a ‘vertex constraint’
(see the text).
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Detailed Monte-Carlo studies performed with ALICE offline simulation and reconstruction frame-
work AliRoot [1] show that the outlined ad-hoc ‘vertex constraint’ significantly reduces the probability
of wrong cluster assignment, and so the quality of reconstructed tracks improves. Unfortunately, the
procedure is not free of flaws. For example, for each of the tracks, it uses several times (even though
with different ‘weights’) the same information about the primary vertex position. This is done as many
times per a track as there are detector layers. Consequently, one of the undesirable features is that the
resulting covariance matrix of the track parameters becomes underestimated (which can be overcome by
an additional refitting step, however).

In future, we would like to incorporate the vertex constraint into the Kalman-filter track finding
in a stricter way. A possible solution can probably be found by introducing the information about the
primary vertex position in the form of Bayesian priors.

3 Statistical problems with particle identification

The ALICE experiment is able to identify particles with momenta from 0.1 GeV/c and up-to a few tens
GeV/c (statistically, on the relativistic rise of dE/dx in TPC). This can be achieved by combining several
detecting systems that are efficient in some narrower and complementary momentum sub-ranges. The
situation is complicated by the amount of data to be processed (about 107 events with about 104 tracks
in each). Thus, the particle identification (PID) procedure should satisfy the following requirements:

1. It should be as much as possible automatic.
2. It should be able to combine PID signals of different nature (e.g. dE/dx and time-of-flight mea-

surements).
3. When several detectors contribute to the PID, as it is shown in Fig. 4, the procedure must profit

from this situation by providing an improved PID.
4. When some of the detectors can not separate the particle species, the signals from the other detec-

tors must not affect the combined PID.
5. It should take into account the fact that, due to different event and track selection, the PID depends

on the kind of analysis.

The method described here is similar to that in Ref. [4]. Let r(s|i) be a conditional probability
density function to observe in some detector a PID signal s if a particle of type i (i = e, µ, π,K,p, ...) is
detected. The probability to be a particle of type i if the signal s is observed, w(i|s), depends not only on
r(s|i), but also on how often this type of particles is registered in the experiment (a priori probabilities
Ci to find a particle of i-type in the detector). The corresponding relation is given by Bayes’s formula:

w(i|s) =
r(s|i)Ci∑

k=e,µ,π,... r(s|k)Ck
. (1)

If Ci and r(s|i) are not strongly correlated we can rely on the following approximation:

– The functions r(s|i) reflect only properties of the detector (‘detector response functions’) and do
not depend on other external conditions like event and track selections.

– On the contrary, the quantities Ci (‘relative concentrations’ of particles of type i) do not depend
on the detector properties, but reflect the external conditions, selections etc.

In the case of several detectors, the signal s is replaced by a vector of the PID measurements s̄ in
the detectors. The response function r(s|i) becomes some ‘combined response function’ R(s̄|i) of the
whole system of the detectors involved (in the simplest case, this is the product of the single-detector
PID response functions). The PID procedure is then done in steps:
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– First, the detector response functions are obtained (theoretically, or in beam tests). This can be
done ‘once and forever’ before the reconstruction starts as a part of detector calibration.

– Second, for each track, a value R(s̄|i) is calculated using the PID signals measured for this track.
This is done during the event reconstruction.

– Third, the relative concentrations of particle species Ci are estimated for the subset of events and
tracks selected for a specific physics analysis. For obtaining better results, the particle concentra-
tions Ci can be considered as functions of momentum.

– Finally, for each track within the selected subset, the array of probabilities w(i|s̄) is calculated
using the formula (1). This steps, as well as the previous one, can be done only during the physics
analysis of the data.

Doing the particle identification in this way, we naturally satisfy all the requirements mentioned at the
beginning of this paragraph. However there are two problems which we are still working on.

Fig. 4: The particle identification for the shown track is done by combining PID signals from five detectors: ITS,
TPC, TRD, TOF and HMPID.

Since the results of such a PID procedure depend explicitly on the choice of a priori probabilities
Ci (and, in fact, this kind of dependence is unavoidable in any approach), the question of stability of
the results with respect to the choice of Ci becomes important. This problem seems to be related to the
‘Punzi effect’ discussed in Ref. [5]. At lower momenta, there is always some momentum region where
the single-detector response functions for different particle types of at least one of the detectors do not
significantly overlap, and so the stability is guaranteed. The final PID weights w(i|s̄) are defined by
the detector response functions. The more detectors enter the combined PID procedure, the wider this
momentum region becomes and the results are more stable. But, finally, as the momentum goes up, all
the detectors lose separation power, and the PID decision is given by the bare priors Ci (which we can
not in this case estimate independently). The question is: can we somehow quantify the ‘contribution of
priors’ to the final PID weights so that if they become dominant, relative to the ‘contribution of detector
responses’, we know when to stop trying to identify particles of higher momenta?
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The second problem is of a different nature. The formula (1) fundamentally assumes that all
the components of vector s̄ are the results of PID measurements done for the same particle. In other
words, the procedure of assigning clusters to tracks has to be ideal, which is not the case in reality. The
consequences are seen, for example, in Fig. 5, where the PID efficiency and contamination in ALICE
TOF detector are shown. In spite of the fact that separation of the particle species by the time of flight
method improves greatly with decreasing momentum (Fig. 5, upper pad), the actual situation with the
PID becomes worse, especially for the particles below 0.5 GeV/c (Fig. 5, lower pad). This is because
the low-momentum particles decay, suffer from scattering in material and so have a higher probability
of being assigned to the wrong cluster in the TOF detector. This mismatching effect is not taken into
account by the formula (1), and so the combined PID result becomes biased at low momenta.

The effect of mismatching can be corrected by excluding from the vector s̄ the components that
deviate too much from ‘reasonable expectation’. This is possible, for example, in the case of the ALICE
TOF detector, because we calculate the expected time of flight during the track finding in ITS, TPC and
TRD. However, in general case, we may not know what the ‘reasonable expectation’ is. Also, applying
sharp cuts in an otherwise smooth procedure based on formula (1) may cause additional difficulties
with finding the best values for the cuts. Thus, a better solution for the problem of dealing with the
mismatching is still to be found.

p (GeV/c)
0.5 1 1.5 2 2.5 3

<b
et

a>

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Kaons

p (GeV/c)
0.5 1 1.5 2 2.5 3

E
ff

ic
ie

n
cy

 (
C

o
n

ta
m

in
at

io
n

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kaon identification: TOF only

  PID efficiency

  PID contanimation

Fig. 5: PID efficiency and contamination for charged kaon identification with ALICE TOF detector. The deterio-
ration of PID at low momenta is the consequence of the mismatching effect (see the text).
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4 The wish-list

The statistical problems arising in event reconstruction in ALICE and discussed above represent the
ALICE reconstruction statistical wish-list. In short, we would like to find better, theory supported, ways
for

1. introducing constraints in the standard Kalman filter (needed for improving the track finding in
high-multiplicity events in the ALICE ITS);

2. quantifying the relative importance of prior information and the results of actual measurements
when making Bayesian decision (needed to define the highest momentum up-to which the Bayesian
particle identification still makes sense);

3. taking into account mismeasurements in Bayesian combination of information (needed for im-
proving the low-momentum particle identification in ALICE).
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Dilution of a Statistical Significance of a Signal in the Higgs Boson
Searches in the H → ZZ(∗) → 4µ Channel at LHC

A. Drozdetskiy, A. Korytov, G. Mitselmakher
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Abstract
Should an event excess compatible with the H → ZZ(∗) → 4µ decay channel
be observed at LHC, the statistical significance of the access must be properly
scaled down to account for the systematic errors and the fact that the search is
performed in a wide-open range of possible Higgs boson masses. We present
results of studies addressing both of the two contributions and show that the
required corrections in Higgs boson search in this particular channel are by far
not negligible.

1 Introduction

The H → ZZ(∗) → 4µ process is one of the cleanest channels for discovering the Standard Model Higgs
boson at the LHC. Signal events have a relatively narrow resonance peak in the four-muon invariant mass
m4µ distribution, which allows for effective background suppression. This channel is the frontrunner for
discovering the Higgs boson in a broad range of its possible masses [1]. Figure 1 shows distributions of
m4µ for signal and background events after all analysis cuts [2] for the CMS detector. Figure 2 shows
integrated luminosity needed for discovering the Higgs boson in its four-muon decay channel with a 5σ
significance.

If an excess of events is indeed observed in such a search, to evaluate its true significance, one
needs to address two issues [2]: background uncertainties (cross sections, efficiencies, etc.) and the fact
that the search is actually carried in a broad range of masses (see e.g. Refs. [3]–[5]). Both will result in
a dilution of an observed event excess significance. This paper quantifies these two effects in the context
of a counting experiment approach 1. The first effect is evaluated by folding a background probability
density function f(b) into significance calculations, while the second effect is addressed by a brute force
of generating a large number of pseudo-experiments.

In these studies we use ScL as a significance estimator:

ScL = sign(no − b)
√

2no ln(no/b) − 2(no − b), (1)

where no is the number of observed events and b is the expected background; the signal is then defined
as s = no − b. The signed ScL takes negative values for the cases when a lack of events is observed. It is
worthwhile pointing out that this definition of significance follows very closely the significance defined
as the probability P to observe n ≥ no background events:

P =

∫ +∞

S

1√
2π

exp(−x2/2) dx. (2)

2 Including ZZ(∗) → 4µ background uncertainties in significance calculations

After applying analysis cuts, ZZ production is the dominant irreducible background, with all other
processes giving much smaller contributions. This reduces the analysis of systematic errors to the ZZ →

1Although we use the counting experiment approach as the case study, the problem is of a very general nature. For example,
an analysis based on Log-Likelihood Ratio built for the entire m4µ spectrum would suffer from the same problems and with a
similar scale of the effect.
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Fig. 1: Four-muon invariant mass distribution for the
three background subprocesses and a Higgs-boson sig-
nal at MH = 150 GeV/c2, after applying cuts on muon
isolation and pT .

Fig. 2: Integrated luminosity needed for discovering
the Higgs boson in its four-muon decay channel with
a 5σ significance. Systematic errors are not included;
neither is included the effect of significance dilution
due to the fact that the Higgs boson mass is not known
a priori.

4µ process. The main uncertainties are as follows: parton distribution function (PDF) and QCD scale
uncertainties, differences between the predictions of leading order (LO) Monte Carlo models and the
observed data, uncertainty in integrated luminosity, trigger efficiency, muon reconstruction efficiency,
muon isolation cut efficiency, four-muon invariant mass scale and resolution. To minimize systematic
errors due to these uncertainties, we developed methods for evaluating muon reconstruction and isolation
cut efficiencies directly from data. Furthermore, we propose to estimate the ZZ-background around a
particular m4µ point (signal region) via a reference to a measured control sample. We explored two
options for a control sample: an inclusive Z → 2µ process and sidebands in the m4µ-distribution itself.
Use of appropriate control samples completely eliminates uncertainties associated with measuring the
luminosity and reduces significantly the sensitivity to theoretical uncertainties in PDF and QCD-scales.
See Ref. [2] for details on all of the above.

Figure 3 shows systematic errors in estimation of the ZZ → 4µ background via a measured
number of Z → 2µ events. We further assume a log-normal form for a probability density function f(b)
with the expected number of background events b0 and a combined relative uncertainty δ:

f(b) =
1√

2π ln(k)
exp

(
− ln2(b/b0)

2 ln2(k)

)
1

b
, (3)

where k = 1 + δ. For relatively small errors, this form of equation gives a Gaussian distribution
with average b0 and σ = δ · b0. However, unlike the Gaussian distribution, the log-normal distribution is
always positively defined, gives an intuitively correct representation for very large uncertainties ("a factor
of two uncertainty" would mean k = 2), and has more conservative tails than the Gaussian distribution.

When the background b is estimated from a number of events B in sidebands via b = ρB, one
needs to take into account systematic errors in the factor ρ and statistical fluctuations in the number B.
The latter is dominant in the case of a Higgs search at LHC. The background pdf f(b) associated with
statistical fluctuations in sidebands can be obtained using Bayes’ theorem and a flat prior:

f(b) =
1

ρ

(b/ρ)Be−b/ρ

Γ(B + 1)
. (4)

Then, the probability of observing at least no events becomes
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Fig. 4: Dilution of significance due to uncertainties on
the backgrounds at luminosity corresponding to S=5:
solid line – no uncertainties, curve with filled circles –
normalization to Z, curve with empty circles – normal-
ization to ZZ (syst+stat uncertainties).

P = p(n ≥ no|b) ⊗ f(b) =

∫ +∞

0
p(n ≥ no|b) f(b) db, (5)

which can be easily converted into significance as defined in Eq. 2. Dilution of significance due to the
background uncertainties at luminosities at which significance would be 5, if not for these uncertainties
(Fig. 2), is shown as a function of the Higgs boson mass in Fig. 4.

3 Dilution of significance due to a search being carried out in a broad ranges of possible
Higgs boson masses

The analysis is based on performing ≈ 108 pseudo-experiments. Each pseudo-experiment is an ensem-
ble of N randomly generated events with the m4µ probability density function as given by the expected
background. The number of events N per pseudo-experiment is sampled according to the Poisson dis-
tribution. For each pseudo-experiment, we conduct a pseudo-search for a Higgs signal. Within a priori
defined range of search (110-600 GeV/c2), we slide a m4µ-dependent mass window ∆m(m4µ), whose
width is driven by the expected signal peak width in such a way that it would give the best significance
ScL, should the Higgs boson be indeed present at that mass. The scanning step of 0.4 GeV/c2 is much
smaller than the mass window width. The mass point Mmax at which the observed ScL is maximum
(Smax) is a Higgs candidate with a naive significance Smax. Figures 5 and 6 give an example of a
pseudo-experiment where a plain statistical fluctuation results in a pseudo-discovery with S > 5.

After performing 108 pseudo-experiments, we obtain a cumulative probability function P (Smax >
S), Fig. 7. The dashed (lower) line in Figure 7 shows the integrated probability that one associates with
the true significance via Eq. 2. One can see that the observed probability P (Smax > S) is substantially
higher. If desired, the real probability P (Smax > S) as obtained in such studies can be used to derate
the observed Smax to its true significance Strue via Eq. 2. The result of such significance derating is
presented in Fig. 8. We also checked (Ref. [2]) that the obtained results depend only on a m4µ-range of
search and signal width; they do not depend on an integrated luminosity and/or the actual background
shape.

4 Summary

Should an event excess compatible with the H → ZZ(∗) → 4µ decay channel be observed at LHC, statis-
tical significance of the access must be properly scaled down to account for uncertainties in background
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evaluation and the fact that the search is performed in a broad range of possible Higgs boson masses. We
present methodologies for taking into account both effects. We show that systematic/statistical errors in
background estimations may result in significance derating by as much as ∼0.4 units. Moreover, since
the search will be conducted in the Higgs boson mass range as broad as 100-600 GeV/c2, the significance
will have to be further derated by as much as one unit.

Acknowledgments

The authors would like to thank R. Cousins, S. Nikitenko, and G. Quast for very fruitful discussions of
the analysis methodology and the obtained results.

References
[1] M.Della Negra, A. Petrilli, A. Ball, L. Foa et al., J. Phys. G: Nucl. Part. Phys., vol34 (2007), 995-

1579.
[2] S. Abdullin et al., CMS Note 2006/122.
[3] E. L. Lehmann, The Annals of Mathematical Statistics, Vol. 28 1, 1, (1957).
[4] R. O’Neill and G. B. Wetherill, Journal of the Royal Statistical Society. Series B (Methodological),

Vol. 33 2, 218, (1971).
[5] B. Knuteson, thesis, 2000.

DILUTION OF STATISTICAL SIGNIFICANCE OF A SIGNAL IN THE HIGGS BOSON SEARCHES IN . . .

93



A Pitfall in Evaluating Systematic Errors

James T. Linnemann
Michigan State University, 3245 BPS Building, E. Lansing, Michigan 48823; linnemann@pa.msu.edu

Abstract
A common practice in evaluating the contribution of systematic uncertainties
is to change the parameter by±1σ of systematic uncertainty, then to add the in-
duced changes in the result in quadrature. This is typically justified by arguing
that the individual systematic effects are statistically independent. However,
if the response to one parameter depends on the value of another parameter
("interaction" in the statistical Design of Experiments jargon), a significant
portion of the actual uncertainty may be missed by applying the usual formula.
In particular, any terms such as xy are completely missed unless more than
one systematic parameter is varied in a single evaluation.

1 Introduction: Ideal Evaluation of Systematic Errors?

We have a result f and we wish to express our uncertainty in f due to our imperfect knowledge of
parameters the results depends upon (the systematic uncertainties). The result f might be a single top
cross section, or a Higgs mass upper limit.

This often involves an implicitly Bayesian point of view in which we have a prior distribution π of
possible values for the unknown parameters. Here I’ll use a 2-dimensional example π(x, y), where the
imperfectly known parameters might be a jet energy scale factor, or a luminosity calibration constant.

For algebraic simplicity in what follows, consider the coordinates for (x, y) to be centred about
their nominal values, and define d = f − fo = f(x, y) − f(0, 0) to be the change in the response in
moving away from the nominal values.

Then the ideal evaluation of the variance V in the output d induced by our imperfect knowledge
of the systematic parameters x, y can be written as

V [f ] =
∫

dx dy d2(x, y) π(x, y) (1)

This formulation takes fo as the reference point for the variance calculation; it implicitly assumes
that fo is the expected value of f–a symmetry assumption about f and π. Unfortunately, to carry out this
integral requires two things we don’t have: an analytical form for d(x, y), and a reliable probabilistic
description of our knowledge of the parameters, π(x, y).

2 Standard Evaluation of Systematics

In contrast to this ideal procedure, typical practice is to instead run simulations to evaluate f at (0, 0),
and then at +1σi for each systematic. Then defining the differences di = d(0 + 1σi), one combines in
quadrature:

S2 =
∑

d2
i (2)

and reports the result with systematic error
f0 ± S (3)

How do we justify this procedure? I believe we appeal to the first order covariance formula [1]:

V1[f ] ≈
∑

i

∑
j

∂f

∂xi

∂f

∂xj
Cov(xi, xj) (4)
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Table 1: OFAT vs. ideal variance estimation vs. DOE

f S2 V 22 DOE comment
x + y a2 + b2 a2 + b2 a2 + b2 truly linear

x2 + y2 a4 + b4 3a4 + 2a2b2 + 3b4 0 quadratic; S2 not so hot, DOE worse
xy 0 a2b2 a2b2 bilinear; S2 fails completely, DOE fine

where the partials are evaluated at the origin. Three features of this expression are worth noting. First,
the distribution π has vanished completely, having been replaced by its first two moments. Second, we
have again implicitly assumed that f(0) = f0 is the expected value of f over π. Third, if the systematic
parameters xi are uncorrelated, the covariance matrix may be replaced by its diagonal elements:

Vd[f ] ≈
∑

i

(
∂f

∂xi

)2

σ2
i . (5)

On approximating the partial derivatives by finite differences ∂f
∂xi
→ ∆f

∆xi
= di/σi we have arrived

at Eq. 2. We justified this standard procedure by appealing to the lack of correlation between our
systematic parameters in π(x, y), and by approximations appropriate to measuring a first order effect.

3 One Factor At A Time

I learned at my thesis advisor’s knee: “A good physicist should be able to diagnose and fix almost any
single problem. It should require two things both wrong simultaneously to seriously confuse a physicist.”
This leads to an immediate corollary: “Changing more than one thing at a time is asking for trouble.”
This is another, practical, justification for the procedure in Eq. 2. The statisticians have a name for this
procedure: One Factor at a Time (OFAT).

Let’s see how well OFAT works, compared to the ideal evaluation. Assume an uncorrelated normal
distribution for the systematics

π(x, y) = N(0, a) ⊗N(0, b) (6)

and consider its effects on several functional forms for f . Table 1 gives the results; for now concentrate
on the S2 and V columns.

If all you are interested in is the linear terms, OFAT does fine. But the whole reason we perform
a MC evaluation is that we don’t know the functional form f , which may not be politely linear in all
parameters.

What went wrong with the nonlinear terms? First, the quadratic terms are underestimated sub-
stantially: finite differences are not enough to fully account for the nonlinearities. Second, the diagonal
covariance matrix does not protect us from the xy terms. This is because xy and its derivatives are all
zero on the axes, as if f were actually independent of x, y. But f = xy has a twisted surface: the x
derivatives depend on y and vice versa. To be sensitive to such behavior one must consider points off
the axes: that is, change more than one thing at a time. If you are considering any nonlinearities of f to
evaluate V , you need at least all the quadratic terms in the Taylor series for V , which puts (by rotation)
xy terms on the same footing as the “curvature” terms involving x2, y2. Another way of stating the
matter is that accounting for the nonlinear effects in f means estimating the higher moments from the
lower ones–assuming a fair bit about the shape π(x, y) describing our knowledge of the parameters. But
to know which higher moments are relevant also requires knowing f , and we typically don’t.

I have slightly oversimplified the standard procedure. Very often, one runs MC at 0 and both of
±1σ . In part this is intended to make us sensitive to curvature terms, where a nonlinearity changes
our response differently in the ± directions, though there are issues as to how to treat the resulting
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Table 2: Top: values of x, y for Runs of 22 design, and results for various f . Bottom:Analysis of Runs.

Run x/σx y/σy Sgn(xy) f = x + y f = x2 + y2 f = xy

f1 +1 +1 + a + b a2 + b2 ab
f2 +1 -1 - a− b a2 + b2 −ab
f3 -1 +1 - −a + b a2 + b2 ab
f4 -1 -1 + −a− b a2 + b2 −ab

A = [(f1 − f3) + (f2 − f4)]/4 = a 0 0
B = [(f1 − f2) + (f3 − f4)]/4 = b 0 0
C = [(f1 − f2) + (f4 − f3)]/4 = 0 0 ab
f0 = [(f1 + f4) + (f2 + f3)]/4 = 0 a2 + b2 0

asymmetric errors [2]. However, even this improved sensitivity to the quadratic on-axis terms still leaves
us completely blind to the bilinear xy terms.

4 Design of Experiments (DOE): not a funding agency

DOE aims to choose good patterns (“designs”) for exploring the x, y space. In an OFAT design, each
MC “run” (evaluation of f ) changes only one parameter from nominal. DOE typically suggests designs
(sets of MC runs) in which every parameter is varied from its nominal value, in every run.

OFAT is not a term of endearment. Statisticians wish you had talked to their thesis advisor,
who told them to always change more than one thing at a time [3, 4]. I believe we should take such
exhortations seriously, even though Roger Barlow, whose advice I normally try to follow assiduously, has
commented [5] that in particle physics, “The whole experimental design field–Latin squares and similar
techniques used to minimize uncontrollable effects–is not needed as such effects are not a problem.” But
missing xy effects while looking for x2 effects does seem like a problem to me.

4.1 A 2-D Example of DOE

Many treatises [6, 7] are devoted to DOE methods. In Table 2 gives a 2 variable example. Though it
is too simple to exhibit all the features and the advantages of more sophisticated designs, it’s enough to
glimpse how things work. There are four MC runs, each of which vary both parameters.

The top part of the table gives the (x, y) values to use in evaluating f , and the resulting f values,
assuming σx = a, σy = b, for the same functional forms of f as used in Table 1. The bottom part of the
table shows how the evaluations can be linearly combined to “fit” the data to the model f0 +Ax+By +
Cxy appropriate for this design. There are two evaluations of each term which can be cross-checked; the
redundancy could be used to assess statistical errors if these were not already available.

How well does this simple design perform? The DOE variance deduced from the model param-
eters is just A2 + B2 + C2. Referring back to the DOE column on Table 1, as advertised it correctly
extracts the linear and interaction terms. To recover the curvature term, a more complex “ composite”
design with more runs is needed, to fit coefficients missing from our oversimplified model.

4.2 OFAT vs. Design

DOE procedures assume each run has sufficient statistical power to measure effects of interesting size.
Then for the same number of runs, you can learn (by averaging) more than you could in OFAT (with a
single run for each coefficient). The difference becomes more dramatic, the larger number of parameters
you have to explore. DOE methods intend to allow you to search for effects in order of likely importance–
linear (“main”) effects first, then 2-variable bilinear (“interaction”), then 3-variable effects. Typically, a
few effects dominate and one expects small interaction effects if the corresponding main effects are
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small; of course a pure f = xy would violate that hope. “Interaction” is the DOE term for a twisting in
the response surface f , i.e. a slope wrt. a variable depending on the value of another variable.

OFAT is not without advantages. It is simpler to set up (change only one thing per run), and works
well if the main (linear) effects dominate; and it’s easier to analyze without specialized software. One
bad run loses less information, and curvature can be recognized with help of the zero point. Designed
experiments can estimate interactions or show them to be negligible, give savings (especially for larger
numbers of parameters), result in more accurate determinations for fixed effort (since multiple runs
contribute to measurement of each significant effect), and with the use of the nominal point can also
identify curvature effects.

4.3 A DOE glossary

The DOE literature requires translation for physicists. Understanding the terminology, and motivations
behind standard designs, may help when reading (or applying to non-analysis tasks we do).
Response surface f

Factor xi a systematic parameter; from Analysis of Variance, also a linear combination of variables
Level a value used in a design. ±σ is two levels; adding 0 makes three
Additive (effects or models) f linear in xi’s; also called main effects
Active factors main effects which are significant
Interaction multilinear terms in f : xixj or trilinear or higher
Curvature quadratic terms x2

i

Twisting of Response Surface ∂xf(x, y) 6= ∂xf(x, 0)

Factorial Design (or simply Design) Nothing to do with a gamma function. A plan for sampling from
the xi space. The name comes from Factor Analysis, related to Analysis of Variance.

Full Factorial Design (Lk) All Lk combinations of L levels of k factors; our example was 22.
Fractional Factorial Design (Lk−m) Not all Lk combinations; can’t distinguish (“confounds”) m kinds

of interactions; if you were fitting a k-dim polynomial model to the data you wouldn’t have enough
data points to separately distinguish all the coefficients that you could with a Lk design. “Screen-
ing” designs are examples, chosen to focus directly on main effects.

Confounding A fractional design can’t distinguish all interactions; it can detect whether one class is
active, but may confound higher order interactions with lower order ones or main effects.

4.4 Motivation for typical Designs

Typical goals of DOE are optimization, or robustification, which are somewhat different than our goal,
which is sensitivity analysis. In optimization (finding a local minimum or maximum), one seeks the best
pattern of points for searching for the best yield from epoxy curing time and temperature for building a
tracker system, or finding a minimum variance set of cuts for a mass determination. One picks points
which are good for calculating numerical derivatives, seeks an uphill direction or checks for a hilltop.
Response surface methodology [8] is fully quadratic DOE; “composite” designs add more points (includ-
ing the nominal 0 setting) to the classic designs to better characterize quadratic curves. In robustification
[9] one looks instead for stationary points (maxima, or ridges, for which the outcome locally does not
depend on parameters which are hard to control: say, the humidity when curing epoxy). The methods
also treat compromise among multiple objectives (f ’s). Warning: this “Taguchi” design literature has a
number of strangely named metrics.
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5 Summary

Even if your systematics are independent, your measurement probably correlates them for you. If you
worry about curvature (asymmetry of response to ±1 σ ), you should worry about xy terms too–they’re
at the same order in the Taylor expansion. But OFAT is blind to multi-linear (xy-like) terms; you must
leave OFAT to see these terms. OFAT also does not get all the nonlinear effects you might have hoped
for (even if you don’t ignore the point at the nominal settings). Design of Experiments just might help.

Note Added: After the conference I was encouraged to coordinate a workshop on this subject. A
conversation with Jim Berger led me to the SAMSI web site and the literature [10] in the closely related
field of computer “experiments”.
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Some Aspects of Design of Experiments

Nancy Reid
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Abstract
This paper provides a brief introduction to some aspects of the theory of design
of experiments that may be relevant for high energy physics experiments and
associated Monte Carlo investigations.

1 Introduction

‘Design of experiments’ means something specific in the statistical literature, which is different from
its more general use in science. The key notion is that there is an intervention applied to a number of
experimental units; these interventions are conventionally called treatments. The treatments are usually
assigned to experimental units using a randomization scheme, and randomization is taken to be a key
element in the concept in the study of design of experiments. The goal is then to measure one or more
responses of the units, usually with the goal of comparing the responses under the various treatments. Be-
cause the intervention is under the control of the experimenter, a designed experiment generally provides
a stronger basis for making conclusions on how the treatment affects the response than an observational
study.

The original area of application was agriculture, and the main ideas behind design of experiments,
including the very important notion of randomization, were developed by Fisher at the Rothamsted Agri-
cultural Station, in the early years of the twentieth century. A typical agricultural example has as exper-
imental units some plots of land, as treatments some type of intervention, such as amount of or type of
fertilizer, and as primary response yield of a certain crop. The theory of design of experiments is widely
used in industrial and technological settings, where the experimental units may be, for example, man-
ufactured objects of some type, such as silicon wafers, the treatments would be various manufacturing
settings, such as temperature of an oven, concentration of an etching acid, and so on, and the response
would be some measure of the quality of the resulting object. In so-called computer experiments, the
experimental units are simulation runs, of, for example, a very complex system such as used for cli-
mate modelling or epidemic modelling; the ‘treatments’ are settings for various systematic or forcing
parameters, and the response is the output of the climate model or epidemic model. Principles of experi-
mental design are also widely used in clinical trials, where the experimental units are often patients, the
treatments are medical interventions, and the response is some measure of efficacy of the treatment.

If the experimenter is able to ensure that the experimental units are homogeneous, and the treat-
ments are assigned randomly, then there is some basis for attributing a difference in response under
different treatments to the effect of the treatment; in some contexts the effect might be presumed then
to be a causal effect. In most settings the randomization is subject to some constraints; for example
experimental units might be subdivided into more homogeneous groups, conventionally called blocks,
and treatments assigned to units at random within blocks. In clinical trials it is more or less impossible
to ensure homogeneity of treatment groups, and several background variables will be recorded in order
to attempt to assess whether an observed difference between two treatments might be ascribed to some
other feature, such as, for example, a possibly small but important age difference between the groups.
Randomization will on average balance out differences on all these so-called confounding variables, but
with small groups of patients the balance may be far from perfect. In computer experiments such elab-
orate protections will not normally be needed, although it might be used if there could be, for example,
some potential drift in conditions over time.
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Table 1: A 24 factorial design of 16 runs, with the response labelled according to conventional notation for the
factor levels.

run A B C D response
1 −1 −1 −1 −1 y(1)

2 −1 −1 −1 +1 yd

3 −1 −1 +1 −1 yc

4 −1 −1 +1 +1 ycd

5 −1 +1 −1 −1 yb

6 −1 +1 −1 +1 ybd

7 −1 +1 +1 −1 ybc

8 −1 +1 +1 +1 ybcd

9 +1 −1 −1 −1 ya

10 +1 −1 −1 +1 yad

11 +1 −1 +1 −1 yac

12 +1 −1 +1 +1 yacd

13 +1 +1 −1 −1 yab

14 +1 +1 −1 +1 yabd

15 +1 +1 +1 −1 yabc

16 +1 +1 +1 +1 yabcd

2 Factorial experiments

A very useful class of designed experiments are factorial experiments, in which the treatments are com-
binations of levels of several factors. These are used in many applications of experimental design, but
especially in technological experiments, where the factors might be, for example, time, concentration,
pressure, temperature, etc. It is very common to use a small number of levels for each of the factors,
often just two levels, in which case a design with k treatment factors has 2k treatments and is called a 2k

factorial design. As an example, in a computer experiment, if there were 10 systematic parameters then
a full 210 factorial might have each systematic parameter set at ±1σ; of course in this case it would be
usual as well to have one or more runs at the central ‘mean value’ or ‘best guess’ of all the systematics.

A 2k factorial design is to be contrasted with a one-factor-at-a-time, or OFAT, design, where, for
example, a single simulation run would keep 9 of the 10 systematics at their mean values and use +1σ for
the 10th systematic; the next run would do the same but use −1σ for the 10th systematic, and subsequent
runs would proceed through the other values. An OFAT design has the advantage that if a large change
is observed in a single run, the change can be attributed to the systematic that was altered in that run, but
it is a very inefficient way to extract this information. In fact the mean effects of each systematic can be
estimated in a 2k factorial design with considerable savings.

Table 1 gives the settings for a 24 factorial experiment; usually the order of the runs would be
randomized, but the structure of the experiment is easier to see in the un-randomized form. The run
called ‘1’, for example, has all four factors set to their low level, whereas the run called ‘2’, has factors
A, B and C set to their low level and D set to its high level. Note that the estimated effect in going from
the low level of A, say, to the high level of A, is based on comparing the averages of 8 observations taken
at the low level with 8 observations taken at the high level. Each of these averages has a variance equal
to 1/8 the variance in a single observation, or in other words to get the same information from an OFAT
design we would need 8 runs with A at 1σ and 8 runs with A at +1σ, all other factors held constant.
Repeating this for each factor would require 64 runs, instead of 16. The balance of the 24 design ensures
that we can estimate the effects for each of the four factors in turn from the average of 8 observations at
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Table 2: The 24 factorial showing all of the interaction effects.

run A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 +1
2 −1 −1 −1 +1 +1 +1 −1 +1 −1 −1 −1 +1 +1 +1 −1
3 −1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1
4 −1 −1 +1 +1 +1 −1 −1 −1 −1 +1 +1 +1 −1 −1 +1
5 −1 +1 −1 −1 −1 +1 +1 −1 −1 +1 +1 +1 −1 +1 −1
6 −1 +1 −1 +1 −1 +1 −1 −1 +1 −1 +1 −1 +1 −1 +1
7 −1 +1 +1 −1 −1 −1 +1 +1 −1 −1 −1 +1 +1 −1 +1
8 −1 +1 +1 +1 −1 −1 −1 +1 +1 +1 −1 −1 −1 +1 −1
9 +1 −1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1 −1 −1

10 +1 −1 −1 +1 −1 −1 +1 +1 −1 −1 +1 −1 −1 +1 +1
11 +1 −1 +1 −1 −1 +1 −1 −1 +1 −1 −1 +1 −1 +1 +1
12 +1 −1 +1 +1 −1 +1 +1 −1 −1 +1 −1 −1 +1 −1 −1
13 +1 +1 −1 −1 +1 −1 −1 −1 −1 +1 −1 −1 +1 +1 +1
14 +1 +1 −1 +1 +1 −1 +1 −1 +1 −1 −1 +1 −1 −1 −1
15 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1 +1 −1 −1 −1 −1
16 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

the high level compared to 8 observations at the low level: for example the main effect of D is estimated
by

(yabcd − yabc + yabd − yab + yacd − yac + yad − ya + ybcd − ybc + ybd − yb + ycd − yc + yd − y(1))/8,

and similar estimates can be constructed for the effects of B and C .
Note that by constructing these four estimates we have used four linear combinations of our 16

observations. One linear combination, the simple average, is needed to set the overall level of response,
leaving 11 linear combinations not yet used to estimate anything. These combinations are in fact used to
estimate the interactions of various factors, and the full set of combinations is given by the set of signs
in Table 2.

For example, the interaction of factors A and B is estimated by the contrast given by the fourth
column of table 2:

{yabcd + yabc + yabd + yab− ybcd− ybc− ybd − yb− (yacd + yac + yad + ya − ycd− yc− yd − y(1))}/8

which takes the difference of the difference between responses with A at high level and A at low level
with the difference between responses with B at high level and B at low level. The column of signs in
Table 2 for the interaction effect AB was obtained simply by multiplying the A column by the B column,
and all the other columns are similarly constructed.

This illustrates two advantages of designed experiments: the analysis is very simple, based on
linear contrasts of observations, and as well as efficiently estimating average effects of each factor, it is
possible to estimate interaction effects with the same precision. Interaction effects can never be measured
with OFAT designs, because two or more factors are never changed simultaneously.

The analysis, by focussing on averages, implicitly assumes that the responses are best compared
by their mean and variance, which is typical of observations that follow a Gaussian distribution. However
the models can be extended to more general settings, as will be briefly discussed in the next section.
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Table 3: A screening design for 7 factors in 8 runs, built from a 23 factorial design.

run A B C D E F G
1 −1 −1 −1 +1 +1 +1 −1
2 −1 −1 +1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 −1 +1 +1 +1 −1 −1 −1
5 +1 −1 −1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 +1 +1 −1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

In most applications the interpretation of 3- and 4- factor interactions would be rather difficult,
and in fact these higher order interactions might be expected to be zero. If they are indeed zero, then 5
of the contrasts outlined in Table 2 are estimating zero, and their squares could then be pooled to provide
an estimate of the variance of a single observation, with 4 degrees of freedom. This pooling of higher
order interactions is often used in settings where the interactions are expected to be small, and no external
estimate of variance is available. Sometimes even two-factor interactions are pooled and used to estimate
the error.

Alternatively, we could assign new factors to the higher order interactions, leading to the class of
fractional factorial designs. For example, we could use introduce a fifth factor, E, to the 24 factorial of
Table 2, using the signs for the ABCD interaction. That is, in the first run E would be set to its high
level, in the second run to its low level, in the third run to its low level, and so on, following the pattern
of +1 and −1 in the last column of Table 2. The resulting contrast (y(1) − ya − yb + yab ± . . . )/8 is
estimating the main effect of factor E (i.e. the difference between responses on the high level of E to the
low level of E), but it is also estimating the ABCD interaction: these two effects are completely aliased.
The working assumption is that the ABCD interaction is likely to be very small, so any observed effect
can be attributed to E. The main effects of A, B, C and D are estimated as before, and we now have
information on 5 factors from a 16 run design. However all the main effects are aliased with 4 factor
interactions: for example A is aliased with BCDE, B with ACDE, and so on. Further, all 2 factor
interactions are aliased with 3 factor interactions. Again, the working assumption is typically that any
observed effect is more likely to be due to a 2 factor interaction than a 3 factor interaction.

This process can be continued; we might for example assign a new factor F , say, to the ABC
interaction (which is aliased with DE), giving a 26−2 design, sometimes called a 1/4 fraction of a 26.
This allows us to assess the main effect of 6 factors in just 16 runs, instead of 64 runs, although now
some 2 factor interactions will be aliased with each other.

There are very many variations on this idea; one is the notion of a screening design, in which only
main effects can be estimated, and everything else is aliased. The goal is to quickly assess which of the
factors is likely to be important, as a step in further experimentation involving these factors and their
interactions. Table 3 shows an 8 run screening design for 7 factors. The basic design is the 23 factorial in
factors A, B and C shown in the first 3 columns; then 4 new factors have been assigned to the columns
that would normally correspond to the interactions BC , AC , AB and ABC .

There is a very large literature on fractional factorial designs; a good introduction aimed at physi-
cists is given in [1] and much of this paper draws on those ideas. A detailed but quite accessible intro-
duction is given in [2]. Some advantages of these fractional factorial designs is the ability to screen a
large number of factors in a few runs, in settings where many factors are expected to be inactive. More
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Table 4: Data and design for a 25−1 factorial.

A B C D E response
−1 −1 −1 −1 +1 29.17
−1 −1 −1 +1 −1 29.39
−1 −1 +1 −1 −1 22.13
−1 −1 +1 +1 +1 27.64
−1 +1 −1 −1 −1 11.53
−1 +1 −1 +1 +1 16.20
−1 +1 +1 −1 +1 14.99
−1 +1 +1 +1 −1 19.29
+1 −1 −1 −1 −1 16.30
+1 −1 −1 +1 +1 22.40
+1 −1 +1 −1 +1 19.42
+1 −1 +1 +1 −1 23.85
+1 +1 −1 −1 +1 6.70
+1 +1 −1 +1 −1 13.17
+1 +1 +1 −1 −1 8.53
+1 +1 +1 +1 +1 19.04

complete fractional factorials, such as 1/2 fractions or 1/4 fractions permit assessing a small number of
main effects and two-factor interactions. Often a number of the inactive effects can be pooled to provide
an internal estimate of variability.

These designs are more complicated to run than OFAT designs, as several factors settings need
to be changed with each run. If some factor levels are difficult to change, for example temperature of
an oven, in a manufacturing context, then a full factorial design will not be feasible. In such cases it
is often possible to have an ‘outer’ factorial with the difficult-to-change factors, and an ‘inner’ factorial
of the other factors; the analysis of these split plot designs is a little more complex. There is a lot of
information in a single run of a factorial design, so if a run is lost, the associated balance is lost along
with quite a bit of information. It is often necessary to block runs to ensure homogeneity; for example if
all runs cannot be completed in a single day and there is concern about changes in conditions from one
day to the next. This is relatively straightforward to implement but the analysis of the results is again a
little more complicated.

3 Analysis of the data

Implicit in the discussion above is a linear model with Gaussian error

y = Zβ + ε

where y is an n × 1 vector of responses, and Z is the so-called design matrix, with n rows and p, say,
columns, and we assume ε follows a Gaussian distribution with mean 0 and covariance matrix σ2 times
the identity. This is exactly a linear regression formulation, but the design matrix Z has a particularly
simple form. The first column is a column of +1, and the remaining columns have elements±1 according
to the factorial structure. Table 2 gives an example: in a single run of a 24 factorial, y will have length
16, and the 16× 16 matrix Z has columns 2 through 16 given by the columns of this table. Any standard
regression package will fit this model, although there will be no degrees of freedom available to estimate
the error. By specifying a simpler model with just main effects and 2-factor interactions, so that Z now
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has dimension 16 × 11, we will have 5 degrees of freedom left to estimate σ2. The design matrix Z is
completely orthogonal, which makes the least squares fitting of the model particularly simple; in fact it
can be computed by hand, and an early algorithm to do this computation invented by Yates is a pre-cursor
to the fast Fourier transform.

Most statistical software can deduce from the specification of the model which effects are aliased,
and in some packages, including � and � plus it is relatively easy to produce a graphical display of the
estimated effects that allows one to assess which effects are non-zero, at least in part so that the ‘nearly
zero’ effects can be pooled to estimate the error.

An example of the standard linear analysis for a 25−1 factorial, carried out in � is given in Figure
1. Figure 2 gives the display of estimated effects described above. It is conventional to ignore the sign
of the effects, so the ordered (absolute) values are then plotted against the expected values of ordered
(absolute) standard Gaussian variables. The data and design are given in Table 4, following the 24 design
of Table 1, but assigning factor E to the 4-factor interaction.

If the response is non-Gaussian, then the model will normally assume that some transformation
of the mean of the response follows a linear structure of the form Zβ; these models are often called
generalized linear models in the statistical literature. For example if y follows a Poisson distribution with
mean µ, we might assume log µ = Zβ, and fit the model by maximum likelihood. If y is a proportion,
then a version of logistic regression is often used, assuming that log{p/(1 − p)} = Zβ, where p is
the mean value of y. These models can be fit using the ����� command of � . An example of a fractional
factorial fit to Poisson data is given in [3], §5.4. An alternative is to transform the responses to something
approximately Gaussian, and use the linear model formulation above. If the response is more complex,
such as a histogram, then analysis might proceed by constructing one or more derived responses, at least
as a first step.

4 Response surface designs

Very often, especially in manufacturing settings, the factors correspond to underlying quantitative vari-
ables, and the levels, denoted ±1 in the previous section, are codes for particular numerical values:
temperatures at 80 and 100 degrees, for example. In such cases the choice of factor levels involves both
subject matter expertise, and at least in the early stages, considerable guesswork. As well, the goal of the
experiment might not be to compare responses at different factor settings, but to find the combination of
factor settings that leads to minimum or maximum response.

Factorial designs adapted to these conditions are called response surface designs. The basic idea
is that the response y is a continuous function of some input variables x1, x2, and so on, and factorial
designs are used sequentially to explore the shape of the response surface. Sequential experimentation
in the relevant range of x-space usually begins with a screening design, to quickly assess which of
several factors have the largest effect on the response. Then second stage is a factorial design at new
values of the underlying variables, chosen in the direction of increasing (or decreasing) response. Near
the maximum additional factor levels are added, to model curvature in the response surface. In the
setting of simulation experiments, the goal might be to see which values of the systematics produce
simulated data consistent with the observations; thus we would be seeking to minimize a derived response
measuring discrepancy of the simulation with the data would be. Another goal might be simply to see
which systematic parameters affect the simulation output, and whether they affect it linearly or in a more
complex fashion.

Figure 3 is adapted from [4], although similar pictures can be found in, for example [2], and other
treatments of response surface methods, such as [5]. The contours of a smooth response surface in two
quantitative variables are indicated, along with an initial 22 factorial design. The + symbols indicate the
design points for the first experiment, and the results could lead to a second 22 factorial carried out at
the circles indicated. The results would show that the maximum is ‘surrounded’, so to speak, at which
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Fig. 1: Some T code illustrating analysis of a factorial design
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Fig. 2: A graphical display of the estimated effects for the data from Table 4; the two largest effects are labelled.

stage it would be usual to add center points and radial points to attempt to quantify the curvature at the
maximum. Note that with an OFAT design, the sequential stages of experimentation could only proceed
along lines parallel to the coordinate axes, which is less efficient unless the axes of the elliptical contours
are aligned with the coordinate axes.

A two-level factorial design can only detect linear effects of x1 and x2, and their interaction,
x1x2. The other quadratic effects, x2

1 and x2
2 need a minimum of three levels to be estimated. A very

common approach to estimating a smooth, curved, response surface is to add center points at (0, 0), often
replicated, to give an internal estimate of error, and then to add further points on the radius of a circle.
Such designs are called central composite designs. This is illustrated for two factors in Figure 4, but the
idea is very general.

5 More specialized designs

The 8 run screening design illustrated in Table 3 is a 27−4 fractional factorial, but is also an example of
an orthogonal array, which is by definition an array of symbols, in this case ±1, in which every symbol
appears an equal number of times in each column, and any pair of symbols appears an equal number of
times in any pair of columns. An orthogonal array of size n× (n− 1) with two symbols in each column
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Fig. 3: Two 22 experiments to explore a response surface: + shows the design points for the first experiment, and
o shows the design points for the second.

Fig. 4: A series of experiments adding points to capture (to first order) the nonlinearity in the response surface; the
third is a central composite design.
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Table 5: An orthogonal array for 6 factors each at 3 levels

run A B C D E F
1 −1 −1 −1 −1 −1 −1
2 −1 0 0 0 0 0
3 −1 +1 +1 +1 +1 +1
4 0 −1 −1 0 0 +1
5 0 0 0 +1 +1 −1
6 0 +1 +1 −1 −1 0
7 +1 −1 0 −1 +1 0
8 +1 +1 −1 +1 0 −1
9 +1 +1 −1 +1 0 +1

10 −1 −1 +1 +1 0 0
11 −1 0 −1 −1 +1 +1
12 −1 +1 0 0 −1 −1
13 0 −1 0 +1 −1 +1
14 0 0 +1 −1 0 −1
15 0 +1 −1 0 +1 0
16 +1 −1 +1 0 +1 −1
17 +1 0 −1 +1 −1 0
18 +1 +1 0 −1 0 +1

specifies an n-run screening design for n− 1 factors. The designs with symbols ±1 are called Plackett-
Burman designs and Hadamard matrices defining them have been shown to exist for all multiples of four
up to 424. A Plackett-Burman design is used for studying simulations in [9].

More generally, an n × k array with mi symbols in the ith column is an orthogonal array of
strength r if all possible combinations of symbols appear equally often in any r columns. The symbols
correspond to levels of a factor. Table 5 gives an orthogonal array of 18 runs, for 6 factors with three
levels each.

Orthogonal arrays are particularly popular in applications of so-called Taguchi methods in techno-
logical experiments and manufacturing. An extensive discussion is given in [6]. In the discussion of the
talk at CERN, Jim Linneman pointed out that these applications could be relevant to HEP experiments
at the stage at which the equipment is being designed, tested and manufactured.

A related approach to the exploration of possibly complex response surfaces is the use of space
filling designs. These are especially popular in computer experiments and simulation experiments, as
well as in numerical integration, where the method is known as quasi Monte Carlo. In the approximation
of a multi-dimensional integral ∫

Rk

f(x)dx ≈ 1

n

∑
f(Xi)

the Xi are taken to be ‘space-filling’ points, whereas in simple Monte Carlo the Xi would be sampled
randomly, possibly using a uniform distribution on each coordinate. The difficulty with the simple ap-
proach is that in high dimensions the compounding of the uniform points tends to concentrate on the
outer shell, and interior points are too rarely sampled. Orthogonal arrays can be used as the basis of
space-filling designs, and in this application are often called Latin hypercube designs. A good reference
is [7]; however in the discussion of the talk at CERN Fred James said that in fact he had little success
with space-filling designs in high dimensional integrations.
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6 An example motivated by miniBoone

In this section I report on some preliminary work by Zi Jin, Radford Neal and myself. This does not in
fact use the orthogonal constructions described in the preceding sections, but is some preliminary work
to see if these methods could provide improvement in simulation experiments. The basic ideas were
described in the context of the miniBoone experiments by Byron Roe at the Banff workshop in summer
2006.

Suppose that a simulation run generates M background events and mistakenly identifies y of these
a signal, with some small probability p, say p = 0.001 or p = 0.0001. We use as a first approximation
the Poisson model for y with mean p. This mean is assumed to depend on various settings for the
systematics, presumably in a fairly complex way that could be explored using factorial designs and other
concepts from the previous sections.

We bypass that by making the very rough approximation that p depends on these systematics via
a Gamma distribution with parameters a and b. The mean and variance of the gamma distribution are
a/b and a/b2, respectively, so a and b would be chosen to allow p to vary between, say ±3σ about its
mean. We then explore how the Fisher information in a full set of N simulation runs depends on the
trade-off between sampling K different values of these systematics or sampling M events at each value
of the systematics, under the constraint N = MK .

For example, suppose p is approximately 0.0001. If we fix the total number of simulations N at
2, 000, 000, then the optimal split is roughly M = 160, 000 runs at each of K = 13 different parameter
settings. This represents a 10-fold increase in precision (inverse variance) over the rather arbitrary choice
of M = 100, 000 and K = 20. The improvement indicated by these preliminary results suggests that it
will be worthwhile to investigate the information in the more complex orthogonal array based designs.
A more complete account of these results will be presented elsewhere.

7 A short guide to the references

Much of this paper was inspired by two articles by Gunter, [1] and [4], which are written for scientists.
The book by Box, Hunter and Hunter, [2] has very detailed explanation of the sequential nature of exper-
imentation in industrial applications, and the book by Montgomery [5] has a more concise discussion, in
something of a cookbook style. A somewhat more theoretical approach is given in [3]. Ref. [6] has a lot
of material on orthogonal arrays, but their use in numerical integration is probably best approached from
[7]. Ref [8] is an introduction to the general field of computer experiments, but [9] describes applications
that are probably closer to those needed for HEP simulations.
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Computing Likelihood Functions for High-Energy Physics Experiments
when Distributions are Defined by Simulators with Nuisance Parameters

Radford M. Neal
Dept. of Statistics, University of Toronto

Abstract
When searching for new phenomena in high-energy physics, statistical analy-
sis is complicated by the presence of nuisance parameters, representing uncer-
tainty in the physics of interactions or in detector properties. Another compli-
cation, even with no nuisance parameters, is that the probability distributions
of the models are specified only by simulation programs, with no way of eval-
uating their probability density functions. I advocate expressing the result of
an experiment by means of the likelihood function, rather than by frequentist
confidence intervals or p-values. A likelihood function for this problem is dif-
ficult to obtain, however, for both of the reasons given above. I discuss ways
of circumventing these problems by reducing dimensionality using a classifier
and employing simulations with multiple values for the nuisance parameters.

1 The Problem

I will discuss a class of problems that I hope at least resemble those encountered in high-energy physics
experiments, such as searches for the Higgs Boson with the LHC. The solutions that I examine will
have much in common with some present practice, though I will not attempt to provide comprehensive
references. I hope that my discussion will clarify the role of existing techniques, such as the training of
classifiers for ‘signal’ vesus ‘background’ events, and also point to possible new approaches.

In this paper, I deal with experiments where we will observe O events, indexed by i = 1, . . . , O,
that are described by variables, vi, computed from the raw observational data. Events can either be
from the ‘background’ or (if it exists) from the ‘signal’ — for instance, an event in which a previously-
unobserved particle appears. I assume that simulation programs for background and signal events exist,
which stochastically generate the variables from either a background distribution, which has probability
density function p0(v), or a signal distribution, which has probability density function p1(v). The real
events come from a mixture of signal and background distributions, with an unknown proportion, f ,
of signal. We may be most interested in whether or not f is zero — since f > 0 may, for instance,
correspond to the existence of a previously-unknown particle.

Our first difficulty is that no explicit formulas for p0(v) and p1(v) exist. We may ‘know’ p0 and
p1 in some sense, or we couldn’t have written the simulator programs, but we have no way of translating
this knowledge into a practical method for computing these density functions.

Our second difficulty is that, typically, we don’t actually know p0 and p1 exactly. The simulators
for generating from these distributions have some parameters — relating either to the physics or to the
behaviour of the detector — whose values are not known precisely. Call these parameters φ. I’ll assume
that although φ is not known, we have a suitable prior distribution for φ, with density p(φ). Note that
φ is a ‘nuisance’ parameter, since our only real interest is in f . The fact that φ is unknown is just an
annoyance. (Though φ might be of interest to other people, such as the designers of the detector.)

2 The Role of the Likelihood Function

The likelihood function is the probability (or probability density) of the observed data, seen as a function
of the model parameter(s). The likelihood function is defined only up to an arbitrary constant factor, and
hence only ratios of likelihoods for different values of the parameters are meaningful.
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When there are no nuisance parameters, the likelihood function for our problem (assuming inde-
pendent observations) is a function of f alone:

L(f) =
O∏

i=1

[
fp1(vi) + (1−f)p0(vi)

]
(1)

Here, fp1(vi) + (1−f)p0(vi) is simply the probability density for obtaining the observation vi from
either the signal distribution (with probability f ) or the background distribution (with probability 1−f ).
When there are nuisance parameters, φ, the likelihood is a function of both f and φ. I defer consideration
of nuisance parameters to Section 4.

According to the likelihood principle (see, for example, the discussion by Cox and Hinkley [1],
Section 2.3), the likelihood function contains all the information from the experiment that is relevant to
inference for the parameters. So inference should not depend on aspects of the data that do not enter into
the likelihood function. (An exception is that checks of the appropriateness of the model on which the
likelihood function is based may utilize other aspects of the data.) Note that the likelihood function is
itself a function of the data, and sometimes (not always!) depends only on some low-dimensional statistic
computed from the data, such as the sample mean and/or the sample variance. A quantity computed
from the data that can be used to compute the likelihood function is known as a ‘sufficient statistic’. The
likelihood function itself is a ‘minimal sufficient statistic’, containing no irrelevant information.

This ‘weak’ form of the likelihood principle is accepted by most statisticians. The ‘strong’ form,
which is not universally accepted, says that the same conclusions should be drawn from two experiments
(involving the same parameters) if they produced the same likelihood function. Bayesian inference obeys
the strong likelihood principle, since it simply combines the likelihood with a prior distribution (which
presumably does not vary with the choice of experiment). The strong likelihood principle is accepted
by some non-Bayesian statisticians as well, however, partly because it follows from the weak likelihood
principle together with a form of the principle that one should condition on an ancillary statistic (whose
distribution does not depend on the parameters).

Classical (ie, non-Bayesian, frequentist) confidence intervals and p-values (other than those used
for model checking) often violate the likelihood principle. For example, consider observations of n
independent binary events, of which k turned out to be 1, with the remaining n−k being 0. If we
are interested in inferring the probability, θ, that an event is 1 (assumed the same for all events), the
likelihood function will be L(θ) = θk(1−θ)n−k. In particular, if n = 10 and k = 1, the likelihood
function is L(θ) = θ(1−θ)9. This likelihood function is the same regardless of whether we had decided
to observe n = 10 events and found that k = 1 of them were 1, or we had decided to observe events until
k = 1 of them were 1, and found that this was reached when n = 10. Hence, according to the likelihood
principle, our conclusions should be the same in these two scenarios. However, the one-sided p-value for
testing the null hypothesis that θ = 1/2 versus the alternative that θ < 1/2 is P (k ≤ 1) = (10 +1) 2−10

when the number of events is fixed at n = 10, but is P (n ≥ 10) = 2−9 when the number of 1 events
is fixed at k = 1. Of the many arguments why such differing results should not be accepted, I will
mention only consideration of an observer who knows everything that the experimenter does and sees,
but doesn’t know the experimenter’s thoughts. Does this observer really need to ask the experimenter
whether the stopping condition was n = 10 or k = 1 in order to draw an inference from the data? And
would inference really be impossible if the experimenter had forgotten?

This issue arises also with Feldman and Cousins’ [2] method for constructing confidence intervals
from data, n, that is a sum of Poisson-distributed counts of ‘signal’ events (with unknown mean, µ) and
‘background’ events (with known mean, b). (We will see in Section 3 that this problem can arise as a
much-reduced form of the problem discussed in this paper.) Their method (as well as some others) pro-
duces different confidence intervals for µ from an observed count of zero depending on the mean number
of background events — the interval is tighter (with smaller upper limit) when the mean number of back-
ground events is higher. This violates the strong likelihood principle, since the likelihood functions for a
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count of zero from experiments with different background means differ only by a constant factor (which
is irrelevant for likelihoods):

L(µ) = exp(−(b + µ)) = exp(−b) exp(−µ) ∝ exp(−µ) (2)

It makes intuitive sense that the inference drawn when the count is zero should not depend on the mean
background — with a count of zero, we know that no background events occurred, so how many would
occur on average if we were to repeat the experiment is of no relevance.

Feldman and Cousins are aware of this issue, but in responding to it, appear to have lost track of
the scientific purpose of a statistical analysis, as is not uncommon in such discussions. They say that
“for making decisions, [ Bayesian inference ] is probably how many scientists do (and should) think”,
but that “[ classical ] confidence intervals provide the preferred option for publishing numerical results
of an experiment in an objective way. However it is critical not to interpret them as Bayesian intervals,
i.e., as statements about P (µt|x0)”. They remark with respect to the dependence of their intervals on
the expected background when the observed count is zero that “We find that objections to this behaviour
are typically based on a misplaced Bayesian interpretation of classical intervals, namely the attempt to
interpret them as statements about P (µt|n0).” In further discussion of this situation, and in particular
their method’s production of confidence intervals for a count of zero that are tighter when the experiment
is more poorly designed (with higher mean background), they say “The origin of these concerns lies in
the natural tendency to want to interpret these results as the probability . . . of a hypothesis given data
rather than what they really are related to. . . It is the former that a scientist may want to know in order to
make a decision, but the latter which classical confidence intervals relate to.” In their discussion, they say
nothing about what actual scientific use their classical confidence intervals might have, leaving (at least
to me) the impression that they believe classical confidence intervals should be computed and reported
simply as a ritual activity.

Fortunately, Feldman and Cousins do say that “it is important to publish relevant ingredients to the
calculation so that the reader. . . can (at least approximately) perform alternative calculations or combine
the result with other experiments”. The “relevant ingredient” is in fact the likelihood function. Nothing
more is needed, and nothing less than the full likelihood function would allow (for example) any Bayesian
with any prior to make inferences.

When there is only a single parameter, such as f , the result of an experiment can easily be commu-
nicated fully by a plot of L(f) versus f . In general, such a plot contains more information than a classical
confidence interval, or any other interval that attempts to summarize the result. However, in many situ-
ations, the likelihood function approaches the exponential of a quadratic function as the amount of data
increases (see [1], Section 10.6), and for simple Gaussian models, the log likelihood may be a quadratic
function even for small samples. In such situations it is possible to specify the likelihood function using
only two numbers (recall that the likelihood is defined only up to a constant factor). The end-points of a
classical confidence interval can sometimes serve this purpose. If the parameter space is also unbounded,
it is possible to develop intuitions about the meaning of classical confidence intervals that reflect what
really matters — the likelihood function — explaining (in my view at least) how their use has survived.

However, when the log likelihood is not approximately quadratic, or when the parameter space is
bounded, as in the example above where L(µ) ∝ exp(−µ), with µ ∈ (0,∞), applying these intuitions
about confidence intervals, developed in another contexts, is dangerous. One simply cannot represent the
various forms that a likelihood function can in general take using only two numbers. Obtaining the full
likelihood function, or a good approximation to it, is therefore a crucial objective of statistical inference.

3 First Difficulty: We Can’t Compute the Likelihood

Consider again our model with no nuisance parameters, with likelihood function given by equation (1).
For a model like this with only a single scalar parameter, the full result of the experiment can easily be
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communicated by simply plotting the likelihood function. In typical problems, one can also easily find
the maximum likelihood parameter estimate, as well as various Bayesian inferences, such as the posterior
density obtained when some prior distribution is assumed.

But for our problem, we don’t know how to compute the likelihood! So we can’t easily produce
a plot of L(f) versus f . The likelihood involves p0 and p1, which are known only through simulation
programs. If the vi are low-dimensional (not more than around four dimensional), we could generate
many points from p0 and p1, and use them to get good estimates for these density functions, but for high-
energy physics experiments, it seems that it is more typical for each event to be described by dozens or
hundreds of values. It might be possible to compute the p0 and p1 densities by using techniques similar
to those used to compute free energies from Monte Carlo simulations, but these techniques would likely
be too slow for this application, since the number (O) of observations for which these densities would
need to be computed is typically quite large.

Fortunately, we only really need to compute the ratio p1(vi)/p0(vi) for each observation. Since
constant factors in the likelihood can be ignored, we can reduce the likelihood as follows:

L(f) =
O∏

i=1

[
fp1(vi) + (1−f)p0(vi)

]
(3)

=
O∏

i=1

p0(vi)
[
f

p1(vi)
p0(vi)

+ (1−f)
]

(4)

=
[ O∏

i=1

p0(vi)
]
·

O∏
i=1

[
f

p1(vi)
p0(vi)

+ (1−f)
]

(5)

∝
O∏

i=1

[
f

p1(vi)
p0(vi)

+ (1−f)
]

(6)

Here, we can ignore the product of the p0(vi) since factors in the likelihood not depending on f can be
ignored. So we can look for a way to compute p1(v)/p0(v) without having to compute p0(v) and p1(v).

One way to compute p1(v)/p0(v) is to produce a classifier to distinguish signal and background
events, training it on many simulated signal and background events, drawn according to p1 and p0.
This is commonly done, as illustrated, for example, by [3]. The classifier could be based on neural
networks, decisions trees, or many other methods, though I will assume here that the classifier can
produces probabilities for the two classes, not just a guess at the class, with no indication of how likely it
is to be correct. Suppose that the fraction of simulated events used to train such a classifier that are from
the signal distribution is s. If we manage to train an excellent classifier, the probability it outputs that an
event described by variables v is a signal event (call this c(v)) will match the true probability that such a
simulated event is signal, so that

c(v) =
s p1(v)

(1−s) p0(v) + s p1(v)
(7)

Once we have this classifier, we can find the desired ratios as follows:

p1(v)
p0(v)

=
c(v)

1−c(v)
1−s

s
(8)

If we really trust our classifier, we can now compute the likelihood function for f , and present a plot of
L(f) as the result of the experiment.

If we don’t totally trust our classifier, we can still use it to get good results. We just treat it as a
way of reducing the dimensionality of the data — from the multidimensional measurements, vi, to the
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scalar ri = c(vi) produced using the classifier. If the classifier were perfect, this reduction would not lose
any useful information (since the ri determine the likelihood function). If it’s not perfect, it will throw
away a bit of information, but the reduction to a scalar allows us to easily estimate p0(r) and p1(r) from
simulation data, and use them to compute a likelihood function given the ri. The results will be valid (ie,
not systematically misleading), since this likelihood captures what can be learned from the experiment
if one insists on reducing dimensionality in this way. However, the results may not be as precise (ie, as
informative) as would have been obtained using a perfect classifier, which would have produced the true
likelihood given all the information in the data.

One could reduce the data further by binning the ri values, but this loses information. Using a
fairly large number of bins might be OK, however, if it loses little information, and makes estimating
the probabilities easier. If only two bins are used (ie, the output of the classifier is thresholded at some
value), we get a Poisson count with background problem, of the sort discussed in Section 2 — assuming
there are many events and signal events are rare, the number of events in the “signal” bin will be Poisson
distributed, with some being real signal events and some being mis-classified background events. But
such a drastic reduction of the data might throw away quite a bit of relevant information.

4 Second Difficulty: Nuisance Parameters for the Physics and the Detector Behaviour

In practice, we probably don’t know p0 and p1 exactly. The simulators for generating from these distri-
butions will have some parameters, φ, relating either to the physics or to the behaviour of the detector,
which are not known precisely. (As a convenience, we can assume that φ is the same for simulating p0

and p1, since we can let some components of φ be used by only one of these simulators.)
We have to assume that these φ parameters are known to some degree, or there’s no hope of

solving the problem. I’ll assume that based on theory or previous experiments, a prior distribution for
φ is available, with density p(φ). It’s unlikely that this prior will be perfect — eg, it might assume
independence of components of φ when it really ought not to. We must hope that the results are not too
sensitive to this — formally checking whether this is true is a difficult problem.

Once there are φ parameters, the likelihood is a function of both f and φ:

L(f, φ) =
O∏

i=1

[
fp1(vi|φ) + (1−f)p0(v|φ)

]
(9)

where p0(v|φ) and p1(v|φ) denote probability densities for generating v from the background and signal
simulators with parameters set to φ.

This is a high dimensional function (since φ is typically high dimensional), and hence will be
difficult to visualize. Just plotting L(f, φ) will not be a feasible way of presenting the results of the
experiment. Many ways of dealing with this type of problem have been proposed. For instance, we
might look at the “profile likelihood”, a function of f alone defined as supφ L(f, φ). This ignores many
aspects of the likelihood function, however. A Bayesian approach is to instead integrate L(f, φ) with
respect to a prior distribution for φ, to obtain a marginal likelihood function for f alone:

L(f) =
∫

L(f, φ) p(φ) dφ (10)

We often could compute this fairly easily by simple Monte Carlo (sampling from the prior for φ), if
we could compute L(f, φ). Since the marginal likelihood is one-dimensional, we would then be able to
present the result of the experiment by simplying plotting L(f), if we could compute it.

The role of the prior, p(φ), in producing a marginal likelihood is worth examining. When there are
no nuisance parameters, the likelihood function L(f) is an ‘objective’ presentation of the experimental
result (if one ignores subjectivity in the choice of model). Inferences can then be drawn using this
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likelihood in various, possibly ‘subjective’, ways. There is no need for the experimenters to draw such
inferences (though they may of course do so if they wish), and hence no need for them to choose a
prior for the parameter of interest, f . The situation is different for the nuisance parameters, φ, since
many components of φ will relate to experimental details about which the experimenters are much more
knowledgeable than anyone else. It therefore seems most sensible for the experimenters to decide on
a suitable prior, p(φ), and use this to produce a marginal likelihood, L(f), that can be interpreted by
others.

Unfortunately, actually computing L(f, φ), and from it L(f), is at least as difficult as computing
L(f) when there are no nuisance parameters. We might try, as in Section 3, to rewrite the likelihood in
terms of ratios of probabilities:

L(f, φ) =
O∏

i=1

[
fp1(vi|φ) + (1−f)p0(vi|φ)

]
(11)

=
[ O∏

i=1

p0(vi|φ)
]
·

O∏
i=1

[
f

p1(vi|φ)
p0(vi|φ)

+ (1−f)
]

(12)

However, unlike before, the first factor is now relevant, since it depends on the parameter φ. Properties
of events that are irrelevant for classifying them as signal versus background may still be relevant for
inferring φ, and hence indirectly for inferring f .

As we did in Section 3, we might try to avoid our difficulties by reducing the dimensionality
of the data. If we can map the high-dimensional vi to quantities ri that are low-dimensional (and then
possibly binned), it will be feasible to estimate p0(ri|φ) and p1(ri|φ) using a reasonable number of events
generated by the simulators. We probably can’t expect to reduce dimensionality in a way that preserves
all relevant information, but we can hope to keep the loss of information small.

We can define a likelihood function based on this reduced data:

Lr(f, φ) =
O∏

i=1

[
fp1(ri|φ) + (1−f)p0(ri|φ)

]
(13)

Since we have likely lost information by going from vi to ri, this is not the same function as L(f, φ).
But it can be used to make valid (though less efficient) inferences, provided that the mapping from v to r
was not chosen based on the observed data. We can again define a marginal likelihood, integrating over
the prior for φ:

Lr(f) =
∫

Lr(f, φ) p(φ) dφ (14)

If we can compute this, plotting it will display the results of the experiment, as well as possible given our
computational limitations, which forced the reduction from vi to ri.

To compute Lr(f), we could choose K values for φ from the prior, labelled φ1, . . . , φK , either
randomly or by some quasi-Monte Carlo scheme, and then average Lr(f, φk) over these K values to
approximate the integral above. Computing Lr(f, φk) will require simulating many events from the
background and signal distributions with parameters φk, and then using these to estimate the probability
densities p0(r|φk) and p1(r|φk) (or the bin probabilities, if the ri were binned).

Though not easy, this computation seems to be feasible, provided a value for K in the hundreds
or thousands is adequate, and the dimensionality of the ri is small enough that for each φk the densities
p0(r|φk) and p1(r|φk) can be adequately modeled using a few thousand events generated by each of the
simulators. (Alternatively, one might try to build one general model for the conditional densities p0(r|φ)
and p1(r|φ) using data generated with all values φk.) The total number of simulated events required
would then be no more than a few tens of millions.
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The choice of K is not easy, however. If one is sure that Lr(f, φ) does not vary drastically with φ,
a value for K of a few hundred would suffice. However, if drastic variation is conceivable, a much larger
value of K might be needed in order to be confident that the results are valid. Suppose, for example, that
the actual observations are such that for most φ, L(0, φ) is small (compared to L(f, φ) for some f > 0),
but that in some region of φ values with small but not negligible prior probability, L(0, φ) is very much
larger, sufficiently so that this region dominates the integral defining L(0) — or to put it another way,
if φ is in this region, the experiment will produce many more background events that look like signal
events than for other values of φ. If none of the K values for φk that were chosen happen to lie in this
region, the value for L(0) that is computed will be much smaller than the true value. If this situation
is a possibility, one would need to use a value for K that is sufficiently large for the p-value, or other
measure of confidence, that one aims to report for a discovery (certainly no smaller than the reciprocal
of this p-value, and preferrably somewhat larger), in order to reduce to the required level the chance that
such problematic values for φ might have been missed.

The most difficult problem is deciding how to reduce dimensionality. Training a classifier to
distinguish signal from background still seems to be a useful way of isolating relevant information. This
might be done in several ways, however, and we may also wish to preserve other information, relating to
the first factor in equation (12).

We could train a classifier using background and signal events generated using a single value for
the nuisance parameters (eg, the prior mean), reducing the data from vi to ri = P (signal|vi), as approx-
imated by this classifier. This is much the same as we would do if there were no nuisance parameters
(equivalently, if the correct φ were known). The predictions could of course be binned, and with only
two bins, we would end up with Poisson-distributed counts in which the mean background is uncertain,
but with a distribution that can be estimated from simulations, as described more generally above.

The danger of this approach is that the classifier that is trained may not work well for events
generated with other values of φ, and in particular, may not work well for the true φ. If so, the number
of background events misclassified as signal may be large, leading to a substantial loss of information
(though not to misleading results, if the rest of the inference task is properly done).

Another simple approach is to generate events with many values of φ, drawn from the prior (a
different φi for every vi), and train a classifier with vi as inputs on all of this data. The classifier might
then learn how to distinguish signal from background in a robust way, that works for all φ. Of course, it
could well be that there is no way to accurately classify without knowing φ, in which case this method
will also lose much information.

When neither of these approaches work, it seems that one must rely on the data being informative
about φ. I sketch here a scheme that may perhaps provide a feasible solution in this situation, based on
reducing the dimensionality of both φ and v.

As before, we will train a classifier for signal versus background events, using data generated
from the two simulation programs, with some fraction s of signal events, using values for φ drawn from
its prior. This classifier will take both φ and v as inputs — ie, it learns to classify for any value of φ,
provided that the correct φ is known. Furthermore, this classifier will contain “bottlenecks” for both φ
and v, which force the classifier to learn to use reduced-dimension versions of these inputs. In detail,
we specify some small dimensionality for φ∗ and some small dimensionality for v∗ (eg, perhaps both
are two-dimensional), and then train a classifier that has the following functional form for the estimated
probability that an event is from the signal distribution:

P (signal|v, φ) ≈ d(g(φ), h(v)) (15)

where φ∗ = g(φ) is the reduced form of φ and v∗ = h(v) is the reduced form of the variables describing
the event. The functions d, g, and h are parameterized in some way, such as with a multilayer perceptron
(‘backprop’) neural network. Training of the classifier is done by adjusting these parameters to match the
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data as sell as possible (eg, by some maximum penalized likelihood criterion). Dimensionality reduction
schemes similar to this have long been used with neural networks (eg, see [4]).

We cannot use this classifier on real data, since we don’t know the correct value for φ — nor
for φ∗, which is all we would need. The only reason to train this classifier is to obtain the mappings
φ∗ = g(φ) and v∗ = h(v), which, if the classifier is successful, must preserve most of the relevant
information from φ and v. Note that we can obtain v∗i = h(vi) for all the real events, since (once
training is finished) h does not depend on the unknown value of φ. To obtain information about φ∗

from the real events, we use simulated data to train a regression model (probably non-linear, perhaps a
neural network) that approximates the expectation of φ∗ given a single observation, v, by e(v), where e is
another parameterized function, learned from the data. Using data simulated only from the background
distribution, p0, may be sufficient, since even when the fraction of signal events is non-zero, it is typically
quite small. This regression model also is merely used for dimensionality reduction, and will not be
directly used to predict φ∗.

We are now in a position to produce the reduced data we will use for inference, consisting of the
pairs ri = (h(vi), e(vi)). If the dimensionality of these pairs is quite small, we can hope to build good
models of the conditional densities p0(r|φ) and p1(r|φ) — most crudely, just by binning values for r,
and using many simulated events with each value for φ, though more sophisticated methods may work
better. Inference for f is then based on the marginal likelihood defined in equation (14), along with
equation (13), computed by Monte Carlo, using a sample of values for φ drawn from its prior.

Note that the validity of the inference will depend only on the accuracy with which these densities
are estimated, not on the quality of the classification and regression models described above. However,
if these models are poor, much information may be lost, so the inferences may be uninformative. If
instead our models are good, the e(vi) component of the ri values will carry information about φ∗, with
the result that most of the weight in the integral of (14) will be on values of φ close to the true value (or
at least for which φ∗ is close to its true value). For these values of φ, the likelihood will tend to favour
values for f near the true value, because of the information carried in the h(vi) portion of ri.

This scheme is untested, and may prove in practice to either lose too much information or be com-
putationally infeasible — it may, for instance, prove necessary to train something more than a simple
regression model in order to learn about φ∗. We can hope that success will be achievable using some
such strategy for reducing dimensionality so that estimates for probabilities or probability density func-
tions become feasible, allowing an approximation to the marginal likelihood function to be computed.
When the parameter of interest (f in this problem) is one-dimensional (or more generally, of low enough
dimension that a plot is intelligible), such a likelihood function is the most complete, and most useful,
report of the experimental result.
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The Wish-lists: Some Comments

D.R. Cox and N. Reid
Nuffield College, Oxford and University of Toronto, Canada

Abstract
We provide brief comments on some common threads arising from the ‘wish-
lists’ set out in some of the other papers in this volume. The discussion is
necessarily incomplete: in particular we have dealt only with points for which
a reasonably compact answer seems possible.

1 Introduction

The wish-lists are wide-ranging and raise issues of varying difficulties, ranging up to the seemingly
impossible. The following comments concern just some of the topics raised.

2 Combination of independent sets of data

In the simplest situation there are m independent sets of data from each of which a common parameter θ
can be estimated, representing for example some constant of interest. Separate analyses of the individual
sets give estimates t1, . . . , tm with uncorrelated estimates of the variances s2

1, . . . , s
2
m. For an initial

discussion ignore errors in the s2
j .

If there are no additional sources of variation and the studies do indeed estimate the same unknown,
there is the implicit model

tj = θ + εj,

where the εj are independent Gaussian errors of zero mean and variances estimated by s2
j . The parameter

θ is estimated by weighted least squares or equivalently by ordinary least squares applied to a modified
version of the model, namely

tj/sj = θ/sj + εj/sj,

where now the errors have unit variance. The estimate is

θ̃ =
Σtj/s

2
j

Σ1/s2
j

,

with
var(θ̃) =

1
Σ1/s2

j

.

Importantly also the residual sum of squares from the modified model, namely

Σ(tj/sj − θ̃/sj)2 = Σt2j/s
2
j − θ̃2Σ1/s2

j ,

has under the model a chi-squared distribution with m− 1 degrees of freedom.
The argument can be refined, essentially by an empirical Bayes approach, to allow for errors

in estimating the variances. The main practical point is that there can be major drawbacks to giving
relatively high weight to individual estimates that have very small values of s2

j arising by chance.
Suppose now that the chi-squared test indicates clear heterogeneity, that is, the tj vary too much.

There are a number of possible explanations:

– the internal estimates of variance are unrealistically small
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– there may be a small number of anomalous values
– there may be characteristics of the different studies which if entered into a regression equation for

the tj account for the additional variation.

If none of these is applicable and provided m is not too small, for example is at least, say, 10 it
may be reasonable to suppose that there is an additional source of random error producing inter-study
variation and to replace the starting model by

tj = θ + ηj + εj ,

where the εj are as before and the ηj are independent random variables of zero mean and unknown
variance σ2

η .
If in fact that variance were known, the least squares estimate of θ is

Σtj/(s2
j + σ2

η)
Σ1/(s2

j + σ2
η)

a value intermediate between the simple weighted mean θ̃ and the unweighted mean Σtj/m. The com-
ponent of variance σ2

η can be estimated by maximum likelihood or, slightly less efficiently, by equating
a sum of squares to its expectation. The assumptions involved in this formulation are quite strong and
estimation of σ2

η is fragile if m is small. When the estimates are based on Poisson-distributed counts,
the variances are functions of the counts themselves and this involves some changes in any more refined
formulae. The additive representation for additional variation may be better replaced by a multiplicative
form.

These issues are treated in more depth in [2].

3 Comparison of fit of a small number of models

Suppose first there are just two models neither of which is nested within the other. Two broad approaches
might be considered. There are formidable practical difficulties in most situations with a Bayesian dis-
cussion, not so much connected with specifying the prior probabilities of the two models as with the
conditional densities of the (different) parameters within each model. Unless these priors can be speci-
fied at least approximately on external evidence there is difficulty in computing the posterior probabilities
required for model assessment.

A frequentist approach is to test model 1 for departures in the direction of model 2 and compute a
p-value. Then switch the roles of the two models. There results information about whether both models
give an adequate fit in the respect tested, whether one but not the other fits or whether neither model is
adequate. In the last case, further analysis to develop an improved model would normally be required.
Note that such a possibility cannot be directly obtained from the formal Bayesian approach.

With three or more models the best procedure is usually to test model 1, say, in turn against model
2 and then model 3 and to take the smaller p-value adjusted for selection as an assessment of model 1,
and so on.

4 Systematics

Most statistical analysis focuses on random errors, it being assumed that the impact of systematic errors
has been eliminated by design, that is by arranging that the effects of interest are estimated by com-
parisons of groups of data equally affected by systematic errors. There is also a substantial literature
on estimating sources of variability in complex measurement systems intended, in particular, to aid the
standardization of measurement techniques.

D.R. COX AND N. REID

120



In the present context these methods are largely not applicable and explicit consideration of sys-
tematic errors seems unavoidable. A common approach seems to be to estimate the effect of an estimated
physical constant on the final result of interest by re-computing this final result with the physical constant
changed by plus and minus one standard error. Half the difference between these two resulting values
is then approximately the derivative of that quantity with respect to the physical constant. This could be
combined with other estimated sources of error in a propogation of errors formula, but it is essential to
note that the errors in estimating the constant must be independent of errors from other sources. A less
formal approach would be to investigate the sensitivity to the result of interest to errors in the physical
constant by re-computing the results over a range of plausible values for the constant.

If there are k sources of systematic error and these can be given bounds, taken without loss of
generality as say (−∆j,∆j) for j = 1, . . . , k, a very cautious approach is to do 2k possible analyses
based on the set of extreme possibilities, each with its confidence limits for the effect of interest and to
take the union of these intervals as the basis of inference. Assumptions that the ∆j are random variables
may be reasonable but the key issue will often concern the independence assumptions involved which
may have very strong implications. Ref. [3] has given a careful account of these issues from a Bayesian
perspective.

Systematic errors that are essentially nuisance parameters in a model that is fully specified, or
even partially specified, can be eliminated from the full likelihood by either maximizing over them or
by integrating over them, with respect to a weight function. The integration approach is emphasized in
[4]. . The maximization approach results in a profile likelihood, discussed in [5], and is implemented
as MINOS in MINUIT. The limiting distribution of statistics based on the profile likelihood is the same
as that for a simple likelihood. However the approximations given by this limiting theory, such as the
χ2 approximation to twice the log-(profile) likelihood ratio, can be quite inaccurate, especially if there
are large numbers of nuisance parameters. Several adjustments to profile likelihood have been suggested
in the statistical literature (see for example [1], Chs. 2 and 3), to take account of the uncertainty in
estimating the nuisance parameters. These adjustments are implicit in the weight function applied in
the integration approach, although the weight function is best thought of as a prior distribution on the
nuisance parameters. The choice of the prior is important, and a large body of evidence now indicates
that flat priors on the nuisance parameters are not appropriate, and can lead to very poorly calibrated
inference, especially if there are large numbers of nuisance parameters. In some applications it may be
possible to construct an empirical prior distribution from previous observations or from simulations.

5 Comparison of alternative test statistics

Tests are conventionally assessed by the power curve. In the simplest case of testing a null hypothesis H0

that a single parameter θ is equal to θ0 against alternatives θ > θ0, the power curve shows the probability
that the test “rejects” H0 at level α as a function of θ. Equivalently the power curve shows the probability
of a p-value less than α versus θ. If correctly calibrated the curve should pass through (θ0, α). It is often
a good idea to plot Φ−1(power) against θ, where Φ(x) =

∫ x
∞{1/

√
(2π)} exp(−y2/2)dy is the standard

Gaussian distribution function. This produces a series of roughly parallel curves, or even approximately
lines, for different α. In comparing two tests the steeper the curves the better.

More mathematically for test statistics that are approximately normally distributed we may define
the efficacy of a test T as

{ ∂E(T ; θ)
∂θ

∣∣∣∣
θ=θ0

}2/var(T ; θ0).

This measures the sensitivity of the expectation of T near the null hypothesis relative to the variance.
For two test statistics T1, T2 of the same null hypothesis the ratio of their efficacies is the asymp-

totic relative efficiency (ARE) of T1 relative to T2. Because efficacy usually scales as sample size, the
ARE compares the sample sizes needed to achieve the same power with the two tests. Thus for testing
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the mean of a Gaussian distribution the ARE of the median relative to the mean is 2/π so that tests based
on the median of n observations and on the mean of 0.63n observations have about the same power.

These ideas may be useful even if the properties of the tests are studied primarily by simulation.

6 p-values and limits

The CLs or CLs+b methods combine size and power in a very ad hoc way and are unlikely to have
satisfactory statistical properties. As is emphasized in Neal [4], upper and lower one-sided confidence
limits should replace confidence intervals, and a full plot of the log-likelihood function is better still.
A related point is that the construction of a p-value for discoveries, i.e. for confirming the existence
of a particular effect, should be treated as a separate problem from the establishment of limits on the
magnitude of a well-established effect. When there are several parameters of interest, a decision is needed
about whether they can be assessed separately, treating the other parameters as nuisance parameters for
each of these assessments, or whether it is physically more relevant to consider two (or more) of the
parameters as forming a single vector. In the latter case approximate p-values can be computed using
the usual asymptotic theory of likelihood, or a more refined version, but the construction of confidence
regions is considerably more difficult and often not very illuminating.
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Review of the Banff Challenge on Upper Limits

Joel Heinrich
University of Pennsylvania

Abstract
We report the results of the Limits Challenge project, in which participants
were asked to provide upper limits on a cross section s measured in a counting
experiment with nuisance parameters.

1 Introduction

In July of 2006, 40 physicists and statisticians met at the Banff International Research Station (BIRS)
for the Statistical Inference Problems in High Energy Physics and Astronomy Workshop [1] organized
by James Linnemann, Louis Lyons, and Nancy Reid. Here we report on the resulting Limits Challenge
project. The specification of the challenge was:

The main experiment observes events with a Poisson rate that derives from a signal of cross section
s (with acceptance ε) and background b. Nuisance parameters (ε, not constrained to be ≤ 1, is actually
acceptance times integrated luminosity) are measured via Poisson subsidiary measurements:

ni ∼ Pois(εis + bi) (main measurement)
yi ∼ Pois(tibi) (subsidiary background measurement)
zi ∼ Pois(uiεi) (subsidiary acceptance measurement)

Channels i = 1, 2 . . . N . Constants ti and ui are known. Upper limits (or 2-sided intervals if required by
the method) on parameter of interest s to be calculated at 90% and 99% level. The 2N parameters εi and
bi are to be considered nuisance parameters.

It was decided that participants would provide intervals for two situations, single channel and 10
channels. The data to be used was as follows: N = 1: I provided a list of ∼ 100000 (n1, y1, z1, t1, u1)
cases for which the intervals were returned by the participants. I made coverage curves from these (using
importance sampling) and calculated the Bayesian credibility of the returned intervals. N = 10: Same
as for N = 1 (I provided 50 numbers for each case). Participants were warned of possible coverage
problems for Bayesian methods in higher dimensions[2, 3]. The test cases I provided to the participants
consisted of 3 files obtainable from [4], described as follows.

Single channel data sets: two files in ASCII text format. Each line of each file has an (n, y, z, t, u)
instance for which the participants provided two upper limits: at the 90% and 99% level. (Some meth-
ods provide 2-sided intervals for some (n, y, z, t, u) combinations.) Set-1 (60229 lines) has nuisance
parameters with uncertainties of about 10%, while in set-2 (39700 lines) this is increased to about 30%.

One 10 channel data set: a single file (70000 lines) in ASCII text format. Each line of each file
has the (n, y, z, t, u) for each of the 10 channels (for a total of 50 numbers per line). Nuisance parameter
uncertainties are about 30%. Upper limits to be provided as specified above.

2 The Submitted Methods

Eleven methods were submitted. The raw files submitted by the participants are available from [4].
Not all the participants have submitted results for all data sets. Some of the methods have built-in
preferences for upper limits or 2-sided intervals. Table 1 summarizes the received entries. General
reviews of strategies that have been applied to this problem are available in [5] and [6].
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Table 1: Submitted methods: • for ‘90% and 99% intervals’, ◦ for ‘90% intervals only’.

upper limits 2-sided intervals
designation type set-1 set-2 set-3 set-1 set-2 set-3 Section

MINUIT profile • • • • • • 2.1
RLC profile′ • • • • 2.1

Davison–Sartori H-O likelihood • • • 2.2
Demortier Bayesian • • • 2.3

FHC2 mixed • 2.4
MBT mixed • 2.4

Baines Bayesian • • • • 2.5
Baines-2 Bayesian • • 2.5
Edlefsen Bayesian • • • 2.6

Yu Bayesian • 2.7
Punzi frequentist ◦ • 2.8

2.1 MINUIT and RLC

This is the profile likelihood method, submitted by Wolfgang Rolke, historically known as the MINUIT
[7] method in high energy physics. Jan Conrad has written a ROOT class ����������� [8] that implements
the scheme for Poisson upper limits in a convenient way for ROOT users. ����������� actually has two varia-
tions on the profile likelihood: the default ‘unbounded likelihood’ method (here designated ‘MINUIT’),
and the ‘bounded likelihood’ method (designated ‘RLC’). The main reference for the methods is [9],
which shows coverage curves that can be compared with the 1-channel coverage curves in this study.
As MINUIT is based only on the likelihood, the likelihood principle is obeyed. That is, the resulting
intervals depend only on the form of the likelihood, not the probability (as in the frequentist approach).
Nevertheless, profile methods are neither frequentist nor Bayesian, so both the coverage and credibility
are of interest in this study.

2.2 Davison–Sartori

This submission, a higher order likelihood method, is from statistics professors Anthony Davison and
Nicola Sartori. The method is described in [10], which lists the following features: parameterization-
invariant; computation almost as easy as first order asymptotics; more accurate than use of Bartlett
correction; error O(n−3/2) in continuous response models; gives continuous approximation to discrete
response models, with error O(n−1) at support points of the discrete distribution; relative (not absolute)
error, so highly accurate in tails; see [11] for a recent review.

2.3 Demortier

This submission is from Luc Demortier. It is a Bayesian approach using reference priors for the main
and subsidiary measurements considered separately, not the full reference prior, which would consider
the three Poisson measurements simultaneously.

2.4 FHC2 and MBT

Jan Conrad and Fredrik Tegenfeldt have implemented a mixed method that is Bayesian with respect to
the nuisance parameters and frequentist with respect to the parameter of interest. The Poisson probabil-
ity is multiplied by priors for the nuisance parameters and integrated (marginalization), leaving only a
dependence on the parameter of interest. Then the unified method of Feldman and Cousins [12] is em-
ployed to extract intervals. This approach is analogous to the procedure of Cousins and Highland [13],
hence the designation ‘FHC2’.
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The MBT method (‘modified Bayesian treatment’) is a variation of the FHC2 method described in
Section 2.4, in which the ordering rule is modified. This modification is a suggestion of Gary Hill [14].
Conrad and Tegenfeldt implement MBT and compare it with FHC2 in [15].

2.5 Baines and Baines-2

This submission is from Harvard PhD statistics student Paul Baines, who presented the matching prior
approach at this conference [16]. He has provided the following brief description of the method:

The method uses a basic ‘one-level’ Bayesian approach (i.e. fixed hyperparameters, no hyperpri-
ors). A limited ‘grid search’ was performed in a simulation study, using priors of the form:

p(s, b, e) ∝ (sαs−1)(bαb−1)(eαε−1)

for numerous (αs, αb, αε) triplets. From simulation studies, ‘Pseudo-Jeffreys’ priors (1/√.) for the
nuisance parameters and a flat prior for the interest parameter appear to perform better than most ‘one-
level’ schemes, although slight undercoverage is expected. The approach is simple, fast to compute, and
provides a benchmark for comparison with other schemes. Other ‘one-level’ Empirical Bayes schemes
were tried with limited success. Indeed, fully Bayesian hierarchical models (e.g., as implemented by
Yaming Yu) appear to offer more flexibility in accurately modelling the three-Poisson structure of the
problem.

The ten-channel submission is an implementation of Jeffreys prior (i.e.
√

det I) where I is the
Fisher Information matrix). The one-channel entry is a minor modification of Jeffreys prior: (1/ε)∗Jeffreys.
Jeffreys prior has excellent coverage properties in the absence of nuisance parameters (it is ‘first order
probability matching’, see below). However, coverage properties are known to deteriorate in many cases
when nuisance parameters are present. This implementation was used to measure the deterioration in
this particular example.

His description of Baines-2 is:
This submission was another Bayesian implementation, this time using a class of priors from

Tibshirani (Biometrika, 1989). I am actually giving a contributed talk at the conference about this class
of priors, they are related to ‘Probability Matching Priors’ which give Bayesian posterior intervals with
Frequentist validity. The actual submission is not of this form and is a (poor!) approximation to it. I’ve
made some progress on this class of priors since the submission.

2.6 Edlefsen

This submission is from Harvard PhD statistics student Paul Edlefsen. He has provided the following
explanation of the method:

I have produced one-sided intervals for the BIRS A1 Challenge using a numerical approxima-
tion to the Dempster-Shafer (DS) relative plausibility of singletons function. This approach results in
a Bayesian posterior, but uses an intermediate calculus (DS) that is a superset of the Bayesian calcu-
lus. Unlike pure-Bayesian approaches, this does not necessitate the use of a prior. Simply put, we
consider random intervals that contain the true unknown s. The intervals have distributions deduced
logically from the model using the relationship between Poisson processes and exponential sums. The
one-channel posterior probability distribution for s, F (s), is proportional to the probability that the ran-
dom interval contains s. The ten-channel distribution is proportional to the product of these one-channel
distributions. The method is simpler than non-DS Bayesian methods, and requires less time to compute.

2.7 Yu

This submission is from statistics Professor Yaming Yu. He has provided the following description:
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This approach treats the 10 channels as exchangeable and builds a fully Bayesian hierarchical
model. We specify a common prior distribution for the nuisance parameters εi’s, and vague but proper
hyper-priors for the parameters of this distribution. (Likewise for the bi’s.) The hyper-priors as well as
the prior on the parameter of interest (s, or source intensity) are chosen to have good frequency properties
as evaluated by separate simulations. After the model is specified, posterior inference is done through
Markov chain Monte Carlo. Though Monte Carlo error is present in the reported 90 and 99 percent upper
bounds, it can be reduced by running a longer chain or by using more sophisticated methods to estimate
quantiles from the Monte Carlo output.

2.8 Punzi

Giovanni Punzi has been developing a fully frequentist method for this problem[17, 18]. He has col-
laborated with Pierluigi Catastini to calculated the submitted intervals, and they provided the following
summary:

The limits are obtained by implementing in a C program the method described in [17]. Limits
can be produced in the same way from any desired ordering (you can have two-sided FC limits, central
limits, or whatever you like), but for this challenge they were explicitly required to be upper limits. The
limits are constructed to always have coverage for any value of the physical and nuisance parameters.
The program takes about 1 day to run for each of the proposed files. The step size in s was 0.2, and the
scan goes up to s = 20. This limitation has no effect on the standard coverage plots of the challenge, but
causes an underestimate of the actual credibility of the intervals (we thought of this side effect only after
the run).

3 Coverage

Frequentist coverage is the first criterion by which the submissions are compared. The coverage proba-
bility is defined in the single channel case as

C(s, b, ε) =
′∑ e−µµn

n!
e−ννy

y!
e−ρρz

z!

where µ = εs + b, ν = tb, and ρ = uε, and ε and b are fixed representative values for the coverage
calculation (t and u are fixed values specified without uncertainty). Here

∑′ means sum only over
values of (n, y, z) that yielded an interval that includes s.

This is the classic definition of frequentist coverage probability. s, ε and b are thought of as the
‘true’ values of the parameters that are unknown in real life. One investigates how the method performs
for (representative) fixed true values of the parameters.

The ‘true’ values somewhat arbitrarily selected for the nuisance parameters to produce C(s) for
0 ≤ s ≤ 20 are:
set-1: b = 3, ε = 1

set-2: b = 3, ε = 1

set-3: bi = 0.31, εi = 0.1

Because of the range of (n, y, z, t, u) values provided in the 3 sets, the b and ε values assumed for a
plot of C(s) can be varied somewhat, e.g., for set-1 ∼ 2.5 ≤ b ≤∼ 3.5 is doable, but not much further
outside that range. But no significant changes were observed for other values in the allowable range, so
just one representative set is shown here.

Figure 1 shows C(s) for selected 90% intervals, and Fig. 2 shows 99% intervals. Coverage curves
for all submitted sets are available at [4]. Briefly summarizing:

– MINUIT covers at ∼ nominal for sets 1 and 2; set-3 is a bit lower, but is still acceptable.
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– RLC’s coverage can oscillate in the 0 < s < 5 region, but otherwise OK.
– Davison–Sartori often undercovers at small s.
– Demortier undercovers in set-3.
– FHC2 and MBT overcover slightly.
– Baines undercovers set 3.
– Baines-2 shows slight undercoverage.
– Edlefsen covers ∼ nominal for sets 1 and 3; for set-2 overcovers.
– Yu shows slight undercoverage.
– Punzi shows moderate overcoverage.

0 20
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0.90

1.00

strue

C

Edlefsen set-2
Yu set-3
FHC2 set-1
Davison-Sartori set-2

MINUIT set-2
Baines2 set-3
Baines set-2
Punzi set-1

Fig. 1: Coverage of selected 90% intervals as a function of the true value of s.

All methods with submitted results on all 3 data sets show at least moderate deviations from
nominal coverage (either overcoverage or undercoverage) for at least one of the sets, but most of these
methods still seem usable. MINUIT, for example, achieves coverage properties similar to the more
sophisticated Bayesian methods, but with much less computational cost.

4 Credibility

To further characterize the performance, one would like to have the Bayesian credibility for each of the
supplied intervals. While the coverage calculation is completely specified by the definition, calculating
the Bayesian credibility of the intervals supplied by the participants presents a bit of a problem, as
one needs to select priors for the parameter of interest and the nuisance parameters. I have somewhat
arbitrarily selected the following priors:
sets 1 and 2: flat for s, b and ε

set-3: flat for s. Priors for b and ε are b−0.9
i and ε−0.9

i

The priors for the nuisance parameters (applied to the likelihood for the auxiliary measurements)
in the 10-channel case are chosen so that the effective priors for the total background b ′ =

∑
i bi and

total acceptance ε′ =
∑

i εi are flat.
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Fig. 2: Coverage of selected 99% intervals as a function of the true value of s.

Sample distributions of credibilities are shown in Figs. 3–5; see [4] for a complete set.
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Fig. 3: Distribution of set-1 credibilities for selected methods.
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Fig. 4: Distribution of set-2 credibilities for selected methods.
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Fig. 5: Distribution of set-3 credibilities for selected methods.
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Large deviations in credibility from nominal require investigation, but as the choice of prior is not
unique, moderate deviations are not considered significant.

Table 2 shows some set-1 upper limits and calculated credibilities for comparison. The estimate
of b (based on the observed y) increases as one moves down the table. RLC shows some intervals with
rather low credibility. Focusing on the set-1 90% upper limits, one finds some intervals with credibilities
as low as 2%. With n = 1, as y, the number of background events observed in the subsidiary back-
ground measurement, increases, the resulting upper limit drops rapidly to 0.02 at y = 95, then jumps
discontinuously to 1.4 at y = 96:

Table 2: Selected 90% upper limits with credibilities for set-1 with n = 1, z = 111, t = 33, u = 100.

RLC D–S Punzi FHC2 MINUIT
y ul cred ul cred ul cred ul cred ul cred

79 0.458 0.307 0.727 0.445 1.0 0.560 2.013 0.819 1.13 0.606
84 0.322 0.229 0.591 0.383 0.8 0.483 1.861 0.796 1.10 0.601
89 0.187 0.141 0.455 0.313 0.6 0.392 1.664 0.760 1.08 0.598
90 0.160 0.122 0.428 0.297 0.6 0.393 1.664 0.760 1.08 0.599
91 0.133 0.103 0.401 0.282 0.6 0.393 1.664 0.761 1.07 0.599
92 0.106 0.083 0.374 0.266 0.6 0.394 1.664 0.761 1.07 0.597
95 0.025 0.020 0.292 0.216 0.4 0.284 1.664 0.763 1.06 0.595
96 1.366 0.692 0.265 0.198 0.4 0.284 1.664 0.764 1.05 0.592
98 1.312 0.678 0.211 0.162 0.4 0.285 1.512 0.731 1.05 0.594

101 1.230 0.656 0.130 0.103 0.4 0.287 1.512 0.732 1.04 0.592
103 1.175 0.640 0.076 0.061 0.2 0.155 1.512 0.734 1.03 0.590
107 1.066 0.605 0.000 0.000 0.2 0.156 1.375 0.701 1.02 0.589
114 0.876 0.537 0.000 0.000 0.0 0.000 1.375 0.704 1.00 0.586

Davison–Sartori also shows intervals with low credibility. As the background estimate increases,
the upper limit drops gradually to zero, and stays there. Punzi, implementing a fully frequentist method,
shows similar behaviour.

One of the benefits of the unified method of Feldman and Cousins is that it tends to avoid this
behaviour. MINUIT also shows good performance with respect to this criterion; the credibility staying
reasonably large:

4.1 Behaviour with zero observed events

With n = 0, the Poisson likelihood is exp[−(εs + b)]. The shape of the likelihood with respect to the
parameter of interest s is, in this special case, independent of the true value of b. Methods that obey the
likelihood principle will consequently show no dependence of the upper limit for s on the background
estimate or its uncertainty.

Alternatively: When zero events are observed in the main measurement, one knows that zero
signal events were observed (and also zero background events). For the n = 0 special case, we have
absolute separation between signal and background; consequently the uncertainty associated with not
knowing if the events were signal or background is absent.

I check each submitted method to see whether the resulting intervals depend on the background es-
timate. Looking at set-1, for example, MINUIT, Demortier, Baines, Baines-2, and Edlefsen demonstrate
background-independent n = 0 intervals.

For set-1, both Davison–Sartori and Punzi always produce zero-length 90% intervals whenever
n = 0. As shown in Table 3, RLC and FHC2 show a strange dependence of the limit on the background
estimate when n = 0, and at 99%, Davison–Sartori shows a few rather narrow but finite intervals.
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Table 3: Selected upper limits for set-1 with n = 0, z = 110, t = 33, u = 100.

y RLC 90% FHC2 90% D–S 99%
84 0.325 0.908 0.180
90 0.161 0.825 0.017

102 1.213 1.000 0.000
112 0.939 0.908 0.000
119 0.746 0.825 0.000
128 0.500 0.750 0.000

5 Conclusions

Comparison of the submitted results leads to the following conclusions about the performance of the
methods. The conclusions are specific to the particular type of Poisson problem investigated in this
project; they will not necessarily generalize to other applications (measurements of particle masses or
lifetimes, for example) or to 5-σ confidence level. Comparing the methods:

– Overall, MINUIT (i.e. profile) is the easiest of the methods computationally, and its performance
seems quite acceptable on the whole. The RLC variant performs less well, and was not provided
for the 10-channel case.

– The fully Bayesian methods can perform excellently, but take more computational effort. One
needs some care in selecting the priors, especially for the 10-channel case.

– The FHC2 and MBT methods (mixed frequentist-Bayesian providing two sided intervals) behave
well in general with respect to the coverage and credibility criteria, but it’s not numerically clear
what happens when n = 0 events are observed. (Of course, the frequentist component of FHC2

and MBT does not necessarily satisfy the likelihood principle.)
– The fully frequentist method of Punzi and the higher order likelihood method of Davison–Sartori

can produce zero-length or excessively narrow (i.e. low credibility) intervals. Punzi is not yet
available for 10-channels. Davison–Sartori shows oscillations of coverage.

General conclusions are:

– Bugs are a ubiquitous problem; no software package is immune. Coverage and credibility checks
were useful in uncovering some of these bugs. (Several of the entries were re-submitted after the
initial coverage plots were viewed by the submitters.)

– Coverage is a well defined performance criterion. Bayesian credibility depends on the choice of
prior(s), but intervals with very low credibility are worth investigating.

– Zero-length intervals are widely viewed as undesirable; very low credibility intervals seem unde-
sirable for essentially the same reasons. Nevertheless, a document Why Frequentists Should Care
About Bayesian Credibility may be necessary to convince hard core frequentists. (Does such a
document already exist?)

– The companion document Why Bayesians Should Care About Frequentist Coverage would also be
useful, and probably already exists.

– The Limits Challenge project has attracted significant interest, including both physicists and statis-
ticians. It seems likely that after the PHYSTAT-LHC workshop more submissions will be sent to
fill some of the gaps (or to fix some bugs) still present in the current submissions. These are
certainly welcome.

– It would be useful to preserve the software that calculates the coverage and credibility, as well as
the data sets and submitted files.
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Probability Matching Priors in LHC Physics

P.D. Baines and X.-L. Meng
Department of Statistics, Harvard University

Abstract
Probability matching priors (PMPs) provide a bridge between Bayesian and
frequentist inference by yielding Bayesian posterior intervals with frequentist
validity. PMPs are, in general, challenging to implement as they are defined
as solutions to a potentially high-dimensional and non-linear PDE. Outside
the orthogonal case, no general framework exists for the implementation of
PMPs. Recent work has made progress in this area, although no approach can
yet be applied in generality. We consider PMPs for the three Poisson system
arising in LHC experiments. Connections to reference and reverse reference
priors are also considered. Theoretical and simulation results are presented,
with comparison to other Bayesian techniques.

1 The Problem & Motivation

The problem of reliably estimating the intensity of a ‘signal’ in the presence of background and calibra-
tion uncertainties is a common one in LHC Physics and throughout the scientific world. Here we consider
application of a class of Bayesian prior distributions to this problem, known as probability matching pri-
ors (PMPs). PMPs provide a bridge between the two main paradigms of statistical inference: frequentist
and Bayes. Direct implementation of PMPs is, in general, extremely challenging as a result of possibly
high-dimensional and non-linear partial differential equations (PDEs) that must be solved. This paper
introduces both the rich rewards that may be reaped from applying PMPs in LHC Physics analyses, as
well as the challenges that must first be overcome.

The primary criterion for the methods considered here will be their coverage properties. Other
criteria such as credibility, length, bias and behavior in ‘boundary’ cases are also of importance and shall
be addressed where space permits. PMPs are constructed to have (approximate) frequentist validity, will
have good credibility over a range of prior distributions, and avoid many undesirable properties such as
zero-length intervals. In this sense, where the desired coverage can be achieved, PMPs would appear
to provide an ‘optimal’ solution likely to be accessible to both Bayesians and frequentists. However,
existence of a PMP is not guaranteed. In the LHC example presented here, a large class of candidate
priors are shown to not be PMPs.

While the theoretical properties of PMPs are well understood (see Ref. [1] for a review), their
implementation remains an immense challenge. Recent papers by Levine & Casella [2] and Sweeting
[3] have attempted to address this challenge, albeit not yet in full generality. In section 2 we provide a
brief introduction to PMPs and orthogonality. Implementation is discussed in section 3, with an LHC
application presented in section 4. Brief discussion is provided in section 5.

2 Introduction to Probability Matching Priors

2.1 Probability Matching Priors

The definition of a PMP for ψ ∈ R, is that the posterior quantiles of ψ have (approximate) frequentist
validity. See Ref. [1] for a formal definition. Peers [4] derived a PDE that a prior distribution must
satisfy if it is to be first order probability matching (PM) (i.e., coverage of ψ (1−α), the 100(1 − α)
posterior percentile of ψ, is 1− α+ o(n−1/2) for all 0 < α < 1, where n is the sample size).

135



Theorem 1 First Order PMP Condition: Let ψ be a univariate parameter of interest, with φ ∈ Rp−1

a nuisance parameter. The data are assumed to be generated from the family f(·;ψ, φ). Let Iij and I ij

denote the corresponding elements of the Fisher Information matrix and its inverse respectively. A prior
π(·) is first order PM if and only if it satisfies the PDE:

∂

∂ψ

{
π(ψ, φ) · (Iψψ)1/2

}
+

p−1∑
j=1

∂

∂φj

{
π(ψ, φ)Iφjψ(Iψψ)−1/2

}
= 0. (1)

Analytic solutions to this generally nonlinear p−dimensional PDE are rarely possible, and numerical
solutions are often equally as elusive. However, in the case of an orthogonal parameterisation, that is,
Iψ,φj = 0 for all j, the solution is trivially given by:

π(ψ, φ) = I
1/2
ψψ · d(φ) (2)

where d(φ) is an arbitrary smooth function of the nuisance parameter (see Tibshirani, Ref. [5]). We,
therefore, naturally attempt to extend the utility of (2) even when the parameterisation fails to be exactly
orthogonal. The arbitrary function d(φ) can have a strong impact on finite-sample properties: the reverse
reference prior [6] is a recommended tool for selecting within this class.

2.2 Orthogonality

The formal definition of orthogonality, from Cox & Reid [7], is that the partitioned Fisher Information
(FI) is block diagonal, that is, Iψ,φj = 0 for all j. Cox & Reid showed that for a scalar parameter
of interest there always exists a transformation to achieve orthogonality with a (p − 1)−dimensional
nuisance parameter. However, the transformation is defined as the solution to a set of (p − 1) PDE’s.
These equations are in general not solvable by standard methods, and pose arguably a greater challenge
than the PMP PDE (1). Hence, two obvious routes to finding probability matching priors, from the
definition and via orthogonal parameterisation, are blocked by the obstacle of an intractable (set of)
PDE(s). A third route is to derive either the reference prior of Berger and Bernardo [8], or reverse
reference prior and check whether it is probability matching (frequently they are). However, outside the
orthogonal case, their derivation can also become extremely challenging.

3 Existing Implementation Methods & Their Limitations

Levine & Casella [2] (LC) describe a Monte Carlo scheme to sample from the posterior distribution
under a prior that is a solution to (1), when the nuisance parameter is univariate. The high run-time for
the algorithm also makes it infeasible for large-scale simulation studies as considered here. Sweeting
[3] proposes a more general approach that removes the restriction to univariate nuisance parameters, by
seeking a local probability matching prior, using data-dependent approximations. The approach requires
a non-trivial condition on the parameterisation, a condition that is not satisfied in the LHC application of
section 4. In the general case it is unclear how to construct a parameterisation satisfying the condition if
one is not immediately obvious. Indeed, in the LHC examples of section 4 the condition is not satisfied.

4 LHC Physics Example

The following problem is a common one in LHC Physics. The parameter of interest, s, represents the
signal, monitored for M decay channels, with εi and bi unknown channel-specific effective area and
background parameters. Consider,

ni|s, εi, bi ∼ Pois (εis+ bi) , yi|bi ∼ Pois (tibi) , zi|εi ∼ Pois (uiεi) , (3)

with i = 1, . . . ,M , {t1, . . . , tM , u1, . . . , uM} known constants and observations assumed to be indepen-
dent. The goal is to find a PMP for s under this model. For simplicity we consider only the single channel
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Fig. 1: Coverage surfaces for Jeffreys’ [L] and the reverse reference [R] priors. The z−axis displays the coverage,
x and y-axes indicate nominal coverage and the value of s. A ‘perfect coverage method’ would give a plane at 45°.

(M = 1) case and drop the subscripts. The multi-channel setting is known to be more challenging, see
Heinrich [9]. The first order PMP PDE can be shown to be:
∂

∂s

(
π

r
εst(u + s) + bu(1 + t)

ε2tu

)
− ∂

∂b

(
π

s
b2u

εst2(u + s) + but(1 + t)

)
− ∂

∂ε

(
π

s
s2εt

εstu(u + s) + bu2(1 + t)

)
= 0

(4)
This cannot be directly solved by standard software, which may suggest that no solution exists. The prior
from (2) here becomes π(s, b, ε) ∝ d(b, ε)/

√
sε+ b. Jeffreys prior is found to be a special case, where

d(b, ε) =
√
εtu/b. This is not the case for M > 1. In all cases posterior propriety must be checked. The

general M−channel reverse reference prior πrr can be fully derived. The regular reference prior πr for
the ordered parameterisation ψ = s, φ = (b, ε), if it exists, is of the form:

πrr(s,b, ε) ∝
√√√√∑M

j=1 εjuj∏M
j=1 bjεj

·
M∑
j=1

ε2j
sεj + bj

· 1∑M
j=1 εj

, (5)

πr(s,b, ε) ∝ g(s)

√√√√ M∏
j=1

bjuj(1 + tj) + εjstj(s+ uj)
bjεj(bj + εjs)

. (6)

By plugging in the form of the prior distribution into (4), it can be proved that, for the single-channel
case, neither the regular reference prior nor any priors within the Tibshirani class of priors from (2) can
be a PMP. For example, plugging the reference prior into (1), we obtain an ODE for the function g(s).
However, this ODE can be shown to have no solution. An analogous proof holds for the Tibshirani class
from (2), hence, also the reverse reference prior. These results, combined with the failure to directly
solve (4), strongly suggest that there in fact may be no PMP in this example.

Instead, we considered three priors of the form (2):

dJ (b, ε) =
√
ε/b d(b, ε) = 1/

√
bε d(b, ε) = 1, (7)

where dJ corresponds to Jeffreys prior and d = 1/
√
bε to a form of pseudo-Jeffreys’ prior for b and ε.

For comparison, priors of the form π(s, b, ε) ∝ 1√
s

and 1
s are also considered. 110,000 datasets were

simulated from (3) with b = 3, ε = 1, t = 33.0, u = 100.0 and with s taking on 22 values in the range
0.1 to 48.0. Posterior intervals were obtained under all of the above prior distributions. Figure 1 displays
the coverage surface for Jeffreys’ prior. Numerical results are presented in Table 1. Both Jeffreys’ and
the d = 1√

bε
prior have excellent coverage properties over a wide range of s. For M ≥ 8, say, coverage

properties often deteriorate. Overcoverage for small s is inevitable under the Bayesian methodology, and
a necessary price to pay for any method that does not produce zero-length intervals.
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Table 1: For s = 20, the actual coverage of nominal 5, 10, 25, 50, 75, 90, 95 & 99th percentiles produced by using
each of the different priors discussed in section 4

s(α) πrr: d = 1√
b

Jeffreys’: d =
q

ε
b

d = 1√
bε

d = 1 π ∝ 1 π ∝ 1√
s

s(0.05) 0.06 0.05 0.05 0.05 0.06 0.06
s(0.10) 0.12 0.10 0.11 0.11 0.12 0.12
s(0.25) 0.29 0.25 0.27 0.28 0.29 0.29
s(0.50) 0.54 0.49 0.51 0.52 0.54 0.54
s(0.75) 0.78 0.74 0.75 0.76 0.78 0.78
s(0.90) 0.91 0.89 0.90 0.91 0.91 0.91
s(0.95) 0.96 0.95 0.95 0.96 0.96 0.96
s(0.99) 0.99 0.99 0.99 0.99 0.99 0.99

5 Discussion

Since the primary goal is to produce intervals with frequentist validity: “why not just be a frequen-
tist?” One benefit of PMPs is that they produce intervals accessible to frequentists and Bayesians alike.
Moreover, this accessibility is independent of the criteria by which they are evaluated. Other criteria
are discussed in Heinrich [9]. In many of these respects PMPs may provide a more satisfactory solution
than other methods produced from frequentist principles alone. For example, as discussed in Heinrich
[9], both frequentist and likelihood-based methods can produce undesirable zero-length intervals. This
behaviour cannot occur under the Bayesian construction presented here, a side-effect of this is overcov-
erage for small signal s.

PMPs, where they exist, may provide an ‘optimal’ solution to coverage problems. In the LHC
example considered here, no exact PMP has been found so far, but approximate PMPs seem to exist over
restricted ranges of the parameter space, and may be all that is required for practical purposes. Reference
and reverse priors are also recommended as an effective default prior for Bayesian inference, often sat-
isfying the PMP property. Further progress on both computational issues and operational properties will
help give practitioners another option for making reliable inference about important physical parameters
arising in LHC experiments.
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The Role of Uncertainties in Parton Distribution Functions
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Abstract
I consider the uncertainties in parton distributions and the consequences for
hadronic cross-sections. There is ever-increasing sophistication in the rela-
tionship between the uncertainties of the distributions and the errors on the
experimental data used to extract them. However, I demonstrate that this un-
certainty is frequently subsumed by that due to the choice of data used in fits,
and more surprisingly by the precise details of the theoretical framework used.
Variations in heavy flavour prescriptions provide striking examples.

1 Introduction

When calculating cross-sections for scattering processes involving hadronic particles one requires de-
tailed knowledge of the input parton distributions. The uncertainties in the latter propagate into the
uncertainties on the former, and are often significant and sometimes dominant. The parton distribu-
tions can be derived within QCD using the Factorization Theorem, i.e. the cross-section for a physical
cross-section at the LHC can be written in the factorised form

σ(pp → XP ) ∝
∑

i

∑
j

CP
ij (x1, x2, αs(M2))⊗ fi(x1,M

2)⊗ fj(x2,M
2), (1)

up to small corrections, where P represents some arbitrary process with hard scale (e.g. particle mass,
jet ET , ...). The coefficient functions CP

ij (x1, x2, αs(M2)) describing the hard scattering process of the
two incoming partons are process dependent but calculable as a power-series in αS(M2). The fi(x,M2)
are the parton distributions – heuristically the probability of finding a parton of type i carrying a fraction
x of the momentum of the proton. The parton distributions are not calculable from first principles, but
evolve with M 2 in a perturbative manner governed by the splitting functions Pij(x, αs(M2)) which are
calculable order by order in perturbation theory. Hence, once measured at one scale the distributions can
be predicted at other scales.

In this article I will briefly review the extraction of the parton distributions and the resulting un-
certainties. This is an update of a previous article in this series of Workshops [1], so I will concentrate on
new developments. A full discussion of fitting procedures and uncertainties due to experimental errors
on the input data is found in [1], but I will very briefly restate the essentials, including some updates.

There are a variety of sets of parton distributions which are obtained by a comparison to all avail-
able data (so-called global fits) [2, 3] or to smaller subsets of mainly structure function data [4, 5, 6],
sometimes only in the nonsinglet sector [7, 8]. All follow the same general principle. The fit usually
proceeds by starting the parton evolution at a low scale Q2

0 and evolving partons upwards (sometimes
also downwards) using fixed order evolution equations. The default has long been next-to-leading order
(NLO), but the next-to-next-to-leading order (NNLO) splitting functions were recently calculated [9],
and sets of NNLO distributions are also available [11, 10]. In principle, there are 11 different parton
distributions (assuming isospin symmetry and ignoring the top quark) – the 5 quarks, up, down, strange,
charm, and bottom and their antiquarks, and the gluon distribution. Until recently these were not all
considered independent, but there is now some evidence for asymmetry between strange quarks and an-
tiquarks [13], and moreover all quarks evolve slightly differently from their antiquarks due to evolution
effects which begin at NNLO. However, in practice mc,mb � ΛQCD, so the heavy parton distributions
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Fig. 1: The best value of σW and the uncertainty using ∆χ2 = 1 for each data set in the CTEQ fit (left) and the
90% confidence limits for each data set as a function of

√

∆χ2 for one particular eigenvector (right)

are usually determined perturbatively and there are 7 independent input parton sets, each parameterised
in a particular form, e.g.

xf(x,Q2
0) = A(1− x)η(1 + εx0.5 + γx)xδ. (2)

The partons are constrained by a number of sum rules: i.e. conservation of the number of valence up and
down quarks, zero number asymmetry for the other quarks and the conservation of the momentum carried
by partons. The last is an important constraint on the form of the gluon, which is only probed indirectly.
In determining partons one needs to consider that not only are there many different distributions, but there
is also a wide distribution of x from 0.75 to 0.00003. One needs many different types of experiment for
full determination, as discussed in [1]. For instance, the MRST (now MSTW [14]) group use 29 different
types of data set.

The quality of the fit is determined by the χ2 of the fit to data, which may be calculated in various
ways. The simplest is to add statistical and systematic errors in quadrature, which ignores correlations
between data points, but is sometimes quite effective. Also, the information on the data often means that
only this method is available. More properly one uses the full covariance matrix which is constructed as

Cij = δijσ
2
i,stat +

n∑
k=1

ρk
ijσk,iσk,j, χ2 =

N∑
i=1

N∑
j=1

(Di − Ti(a))C−1
ij (Dj − Tj(a)), (3)

where k runs over each source of correlated systematic error, ρk
ij are the correlation coefficients, N is the

number of data points, Di is the measurement and Ti(a) is the theoretical prediction depending on parton
input parameters a. An alternative that produces identical results if the errors are small is to incorporate
the correlated errors into the theory prediction

fi(a, s) = Ti(a) +
n∑

k=1

sk∆ik, χ2 =
N∑

i=1

(
Di − fi(a, s)

σi,unc

)2

+
n∑

k=1

s2
k, (4)

where ∆ik is the one-sigma correlated error for point i. One can solve analytically for the sk [15].
Having defined the fit quality there are a number of different approaches for obtaining parton

uncertainties. The most common is the Hessian (Error Matrix) approach. One defines the Hessian matrix
by

χ2 − χ2
min ≡ ∆χ2 =

∑
i,j

Hij(ai − a
(0)
i )(aj − a

(0)
j ). (5)

One can then use the standard formula for linear error propagation:

(∆F )2 = ∆χ2
∑
i,j

∂F

∂ai
(H)−1

ij

∂F

∂aj
. (6)

This has been used to find partons with errors by H1 [6] and Alekhin [4]. In practice it is problematic due
to extreme variations in ∆χ2 in different directions in parameter space. This is improved by finding and
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Fig. 2: Comparison of the benchmark gluon distributions and dV distributions

rescaling the eigenvectors of H , a method developed by CTEQ [16, 17], and now used by most groups.
The uncertainty on a physical quantity is

(∆F )2 =
1
2

∑
i

(
F (S(+)

i )− F (S(−)
i )

)2
, (7)

where S
(+)
i and S

(−)
i are PDF sets displaced along eigenvector directions by the given ∆χ2.

One can also investigate the uncertainty on a given physical quantity using the Lagrange Multiplier
method, first suggested by CTEQ [15] and also used by MRST [18]. One performs the global fit while
constraining the value of some physical quantity, i.e. minimise

Ψ(λ, a) = χ2
global(a) + λF (a) (8)

for various values of λ. This gives the set of best fits for particular values of the parameter F (a) without
relying on the quadratic approximation for ∆χ2, but has to be done anew for each quantity.

In each approach there is uncertainty in choosing the “correct” ∆χ2. In principle this should be
one unit, but given the complications of a full global fit this gives unrealistically small uncertainties. This
can be seen in the left of Fig. 1 where the variation in the predictions for σW using ∆χ2 = 1 for each
data set has an extremely wide scatter compared to the uncertainty. CTEQ choose ∆χ2 ∼ 100 [15].
The 90% confidence limits for the fits to the larger individual data sets when

√
∆χ2 in the CTEQ fit is

increased by a given amount are shown in the right of Fig. 1. As one sees, a couple of sets may be some
way beyond their 90% confidence limit for ∆χ2 = 100. The MRST/MSTW group chooses ∆χ2 = 50
to represent the 90% confidence limit for the fit. Other groups with much smaller data sets and fewer
complications still use ∆χ2 = 1.

There are other approaches to finding the uncertainties. In the offset method the best fit is obtained
by minimising the χ2 using only uncorrelated errors. The systematic errors on the parton parameters ai

are determined by letting each sk = ±1 and adding the deviations in quadrature. This method was used
in early H1 fits [19] and by early ZEUS fits [20], but is uncommon now. There is also the statistical
approach used by Neural Network group [8]. Here one constructs a set of Monte Carlo replicas σk(pi)
of the original data set σdata(pi) which gives a representation of P [σ(pi)] at points pi. Then one trains
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Fig. 3: Comparison of the benchmark gluon and dV distribution with the corresponding MRST2001E partons

a neural network for the parton distribution function on each replica, obtaining a representation of the
pdfs q

(net)(k)
i . The set of neural nets is a representation of the probability density – i.e. the mean µO and

deviation σO of an observable O is given by

µO =
1

Nrep

Nrep∑
1

O[q(net)(k)
i ], σ2

O =
1

Nrep

Nrep∑
1

(O[q(net)(k)
i ]− µO)2. (9)

One can incorporate full information about measurements and their error correlations in the distribution
of σdata(pi). This is does not rely on the approximation of linear propagation of errors but is more
complicated and time intensive. It is currently done for the nonsinglet sector only.

2 Sources of Uncertainty

In recent years there has been a great deal of work on the correct and complete inclusion of the ex-
perimental errors on the data when extracting the partons and their uncertainties. However, to obtain a
complete estimate of errors, one also needs to consider the effect of the decisions and assumptions made
when performing the fit, e.g. cuts made on the data, data sets fit and parameterization for the input sets.

As an exercise for the HERA-LHC [21] workshop, partons were produced from fits to some sets of
structure function data for Q2 > 9GeV2 using a common form of parton inputs at Q2

0 = 1GeV2. Partons
were obtained using the rigorous treatment of all systematic errors (labelled Alekhin) and using the
simple quadratures approach (labelled MRST), both using ∆χ2 = 1 to define the limits of uncertainty.
This benchmark test is clearly a very conservative approach to fitting that should give reasonable partons
with bigger than normal uncertainties. As seen in Fig. 2 there are small differences in the central values
and similar errors, i.e. the two sets are fairly consistent. It is more interesting to compare the HERA-
LHC benchmark partons to partons obtained from a global fit [18], where the uncertainty is determined
using ∆χ2 = 50. There is an enormous difference in the central values, sometimes many σ, as seen in
Fig. 3, although the uncertainties are similar using ∆χ2 = 1 compared to ∆χ2 = 50 with approximately
twice the data. Moreover, αS(M2

Z)=0.1110 ± 0.0015 from the benchmark fit compared to αS(M2
Z)=

0.119 ± 0.002. Something is clearly seriously wrong in one of these analyses, and indeed partons from
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the benchmark fit fail when compared to most data sets not included. This implies that partons should be
constrained by all possible reliable data.

The benchmark partons above are not a realistic set of partons, but similar examples are found
when comparing different sets of published parton distributions. For example, the valence quarks ex-
tracted from the nonsinglet analysis in [7] (see Figs. 9 and 10) are different from a variety of alternatives
by much more than the uncertainties. Indeed, various gluon distributions, all obtained by fitting to small
x HERA data [6, 22] are very different despite what is meant to be the main constraint on the data being
the same in each case. It is particularly illustrative to look at the difference in the high-x gluons of MRST
and Alekhin in Fig. 4. This is for NNLO, but is similar at NLO. Here the difference above x = 0.2 is
a large factor, and very much bigger than each uncertainty (calculated using ∆χ2 = 1 for Alekhin and
∆χ2 = 50 for MRST.) It seems that the HERA data require a gluon distribution for the very best fit
which is incompatible with the Tevatron jet data [23], and the standard error analysis does not accommo-
date this. As a further point, at NNLO one of the few hard cross-sections required in a global fit which
is not fully known is that for the jet cross-section. It might be argued that one should leave the data out
rather than rely on the NLO hard cross-section, as done by MRST. However, this correction is very likely
to be ∼ 5%, whereas the change in the gluon distribution if the data are left out can be > 100%. This
implies, to the author at least, that it is better to include a data set relying on a slight approximation than
to leave it out and obtain partons which are completely incompatible with it.

Even when similar data sets are fit, there can still be significant differences in parton distributions
and their predictions.The prediction for σW at NLO at the LHC using CTEQ6.5 partons is 202 ± 9 nb
and using MRST04 partons is 190±5 nb. This is despite the rather similar data sets and procedures used
in the two fits. The different predictions are easily explained by looking at the left of Fig. 5. The CTEQ
gluon is much bigger than MRST at small x and drives quark evolution to be larger. This difference
is not fully understood but is probably partially due to the fact the MRST have lower Q2 cuts on the
structure function data, and also due to the different input parameterisations for the gluon. MRST allow
their gluon to be negative at small x at input (Q2

0 = 1GeV2) while the CTEQ gluon is positive at small
x input (Q2

0 = 1.69GeV2), but is very small indeed. (Further analysis suggests a slightly negative input
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Fig. 5: The MRST gluon distribution with percentage uncertainties, and the central CTEQ distribution (left) and
the uncertainties on the MRST, CTEQ and Alekhin gluon distributions at Q2 = 5GeV2(right)

gluon is preferred, but only barely [12] so the freedom is not introduced.)
The parameterization can have an even more dramatic effect on the uncertainty than on the central

value. The uncertainties on the gluon distributions for MRST, CTEQ and Alekhin are shown in the right
of Fig. 5. One would expect the uncertainty to increase significantly at very small x as constraints die
away. This happens for the MRST gluon. The Alekhin gluon does not have as much freedom, but is
input at higher scales and behaves like x−λ at small x. The uncertainty is due to the uncertainty in λ (the
situation is similar for ZEUS and H1 partons). The CTEQ input gluon behaves like xλ at small x where
λ is large and positive. The small-x input gluon is tiny and has a very small absolute error. At higher Q2

all the uncertainty is due to evolution driven by the higher-x, well-determined gluon. The very small x
gluon no more uncertain than at x = 0.01 − 0.001.

Another important source of uncertainty only now becoming clear is due to the strange distribution.
Until recently this was taken to be a fixed and constant fraction of the total sea quark distribution. This did
not allow any intrinsic uncertainty on the strange quark. It is now being fit more directly by comparison
to dimuon data in neutrino scattering [13]. In the MSTW fits [14] this results in an increased uncertainty
on all sea quarks since allowing the strange to vary independently gives the up and down quarks more
freedom. CTEQ have produced specific parton sets with fits to the strange quark [24], and in Fig. 6 we
see predictions from these for production of W + + c̄. CTEQS0 represents the best fit when the strange
is fit directly. Worryingly, this can be outside the uncertainty band for the default set.

3 Theoretical Uncertainties

Even if we had an unambiguous definition for the parameterization and the data sets and cuts used, there
would still be additional uncertainties due to the limited accuracy of the theoretical calculations. The
sources of theoretical error include higher twist at low scales and higher orders in αS , and it now seems
likely that there may be sizable corrections from higher order electroweak corrections at the LHC (see
e.g. [25]), due to αW ln2(E2/M2

W ) terms in the expansion. The higher order QCD errors are due not only
to fixed order corrections, but also to enhancements at large and small x because of terms of the form
αn

s lnn−1(1/x) and αn
s ln2n−1(1 − x) in the perturbative expansion. This means that renormalization
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and factorization scale variation are not a reliable way of estimating higher order effects because a scale
variation at one order will not give any indication of an extra ln(1/x) or ln(1−x) at higher orders. Hence,
in order to investigate the true theoretical error we must consider some way of performing correct large
and small x resummations, and/or use what we already know about going to higher orders.

We are now able to look at the size of the corrections as we move from NLO to NNLO. The up
quark distribution at the two orders is illustrated in Fig. 7. As one can see, the change in the central
value is somewhat larger than the uncertainty due to the experimental errors. The predictions for various
physical processes have been calculated. The change for quark-dominated processes, such as W and Z
production, is not very large, i.e. 4% or less [26], but is sometimes bigger than the quoted uncertainty
at each order. Changes in gluon dominated quantities, such as FL(x,Q2), can be much larger [27].
Similarly there are implications that resummations may have significant effects on LHC predictions,
particularly at high rapidity [28].

Very recently it has become clear that a less obvious source of theoretical errors can have surpris-
ingly large effects, i.e. the precise treatment of heavy quark effects. For many years CTEQ have had
a procedure for extrapolating from the limit where quarks are very heavy to the limit where they are
effectively massless, i.e. a general-mass variable flavour number scheme (GM-VFNS) [29]. Neverthe-
less, they have chosen the scheme where the quark masses are zero as soon as the heavy quark evolution
begins, i.e. zero-mass variable flavour number scheme (ZM-VFNS), to be the default parton set. In the
most recent analysis [3] they have switched to the GM-VFNS definition as default and noticed that this
has a very large effect on their small-x light quark distributions, mainly determined by fitting to HERA
data, where mass corrections are important, and on LHC predictions. This is shown in Fig. 8, where one
sees the prediction for σW increase by 8%.

Perhaps even more surprising is the change observed by MRST at NNLO. Because early approx-
imate “NNLO” sets (e.g. [26]) were based on approximate splitting functions the MRST group used a
(fully explained) approximate treatment of heavy quarks at NNLO, in particular not including the dis-
continuities at transition points that occur at this order [30]. The correction of this approximate NNLO
VFNS between [2] and [10] using the scheme in [31] led to large corrections to the gluon distribution
at small x and by evolution, also to the light quark distributions at higher scales, as seen in Fig. 9. This
results in the corrections to LHC cross-sections shown in Table 1, i.e. up to 6%. In this case the change
in procedure was less dramatic than that for the CTEQ6.5 result, where the original approximation was
of massless quarks, and was also at one order lower. The size of the change was certainly unexpected.
It is important to note that in both these cases the change is not really representative of an uncertainty,
since each represents a correction of something that was known to be wrong. However, in each case the
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Table 1: Total W and Z cross-sections multiplied by leptonic branching ratios at the Tevatron and the LHC,
calculated at NNLO using the updated NNLO parton distributions. The predictions using the 2004 NNLO sets are
shown in brackets.

Blν · σW (nb) Bl+l− · σZ(nb)
Tevatron 2.727 (2.693) 0.2534 (0.2518)
LHC 21.42 (20.15) 2.044 (1.918)

“wrongness” was thought to be an approximation requiring only a small correction, an expectation that
was optimistic. Some parton sets currently available are still extracted using similar (or worse) “approx-
imations”, and even in the best case the limited order of the calculation means that everything is to some
extent an approximation, with the size of the correction being by definition uncertain.

4 Conclusions

One can determine the parton distributions from fits to existing data and predict cross-sections at the
LHC. The fit quality using NLO or NNLO QCD is fairly good. There are various ways of looking
at uncertainties due to the errors on data. For genuinely global fits, using ∆χ2 = 1 is not a sensible
option due to incompatibility between data sets and possibly between data and theory. Uncertainties
due to parton distributions from experimental errors lead to rather small, ∼ 1 − 5% uncertainties for
most LHC quantities, and are fairly similar for all approaches. However, sometimes the central values
using different sets differ by more than this. The uncertainties from input assumptions, e.g. cuts on data,
sets used, parameterisations etc., are comparable and sometimes larger than statistical uncertainties. In
particular, the detail of uncertainties on the flavour decomposition of the quarks is still developing.

Uncertainties from higher orders/resummation in QCD are significant, and electroweak corrections
are also potentially large at very high energies. At the LHC measurement at high rapidities, e.g. W,Z ,

THE ROLE OF UNCERTAINTIES IN PARTON DISTRIBUTION FUNCTIONS

149



would be useful in testing our understanding of QCD. Our limited knowledge of the theory is often
the dominant source of uncertainty. There has recently been much progress: more processes known
at NLO, and some at NNLO; improved heavy flavours treatments; developments in resummations etc..
In particular, essentially full NNLO parton distribution determinations are now possible. But further
theoretical improvements and complementary measurements are necessary for a full understanding of
the best predictions and their uncertainties.
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Abstract
Often a full maximum likelihood (ML) estimate is inconvenient for computa-
tional reasons (e.g., iteration over large data sets). If a variable x is a discrim-
inating variable (s(x) 6= b(x)), a weight function can be found which allows
estimation of the number of signal events with a variance approaching that of
a ML estimate of the same quantity. We derive a formula and discuss it in
the context of more general results on event weighting from earlier papers by
Barlow and Tkachov, which also find weighting out-performs cutting.

1 Introduction

The origin of this talk lies within the Milagro cosmic ray experiment [1]. However, the results apply
just as well within LHC experiments, because both have to subtract backgrounds in order to see signals.
Milagro’s physics goal is to look at structure with TeV gamma rays, which are outnumbered by charged
cosmic rays by 103. Thus our analysis procedures must calculate backgrounds correctly to 1 ppt. We
make background-subtracted sky maps of measured photon excess m = n−B̂. To enhance our statistical
significance, we seek discriminator variables x whose probability density distributions differ for signal
s(x) and background b(x). We then consider the background subtracted excess m(x) = n(x)− B̂b(x).

What is the best way to combine (say) bins of m(x) for a best overall estimate of the excess?
The naive solution is just to sum all the bins. My colleague Andy Smith argued you could do better by
weighting the bins by the ratio of expected signal and background contributions to each bin

w(x) = E[S(x)]/E[B(x)] = K s(x)/b(x) = K r(x) (1)

where K is a constant (independent of x) which can be ignored for calculating relative weights of bins
of x. My first reaction was that this was cheating, since you’ve already used the expected background in
the subtraction that led to the observed m(x). But Andy was right!

2 Event Weighting

The underlying hypothesis is that the signal distribution across x bins is governed by an overall intensity
M , and the signal distribution s(x). The naive estimate (from x bins i) of M and its variance would be:

M̂1 =
∑

mi; V [M1] =
∑

V (mi) =
∑

Vi (2)

But this is not using the information about the expected relationship between bins, s(x), which allows
each bin to independently estimate M :

E[mi] = Msi; M̂i = mi/si; V [M̂i] = Vi/s
2
i (3)

How should these independent estimates M̂i be best combined? The Best Linear Unbiased Estimate
(BLUE) method invokes the Gauss-Markov theorem (James [2] §7.4.4) for the solution, which is to
weight the estimates by the inverse of their variance, so that smaller-variance estimates are more heavily
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weighted; the result has the minimum variance among the class of unbiased linear estimators (of which
M̂1 is an inferior member).

M̂ =
∑

M̂iwi/
∑

wi =
∑

(misi/Vi)/
∑

(s2
i /Vi); (4)

This solution holds for any distribution of uncorrelated, unbiased, variables. But it does require
that the actual variance be used (and fluctuations to low estimated variance are particularly damaging
[3]). M̂ is identical to the minimum M found for

χ2 =
∑

(mi −Msi)2/Vi . (5)

M̂ can also be regarded as applying for each event in bin i a weight ui as defined below:

M̂ = k
∑

(misi/Vi) = k
∑

miui; ui = si/Vi; 1/k =
∑

(s2
i /Vi) (6)

Finally, we arrive at Andy’s weight by recognizing that for a large Poisson background, Vi ≈ Bi = Bbi,
so that ui = K ′si/bi, as in Eq. 1. Milagro deals with billions of events, so it is a considerable advantage
to sum event weights, rather than minimizing for each pixel of sky.

We can calculate the variance of the BLUE solution (using the definitions of k, u in Eq. 6):

V [M̂ ] = k2
∑

V [mi]u2
i = k2

∑
Viu

2
i = 1/

∑
(s2

i /Vi) = k (7)

For sufficient data, the BLUE solution approaches the Cramer-Rao minimum variance bound (James
§7.4.5). Because we can formulate the BLUE solution as event weighting (often referred to as the
method of moments) we find that despite the “suboptimal” reputation of the method of moments (James
§8.2.2), in this case it is competitive with ML (assuming Gaussian uncertainties).

3 Sensitivity to Assumptions

It is worth clarifying here how the solution depends on the assumptions made. Since we have inde-
pendently normalised the shapes s, b, their absolute normalisation S,B does not matter. But we are
sensitively dependent on the shapes s(x), b(x). In Milagro we determine b(x) from the data and can use
it to check the simulations. But s comes from the simulation, and depends on the input shower physics,
and (if the variable x is correlated with energy) on the assumed source energy spectrum. We test by
comparing the MC s(x) distribution with data.

4 Barlow’s Event Weighting

Was the good performance of event weighting a fluke of this particular problem? Remarkably, no! In a
1987 paper, Barlow [4] found the best event weight function to count signal events. He first wrote the
expected weight E[w(x)] in terms of s, b as

E[wd] = (Mµs + Bµb)/N = (aµs + µb)/(a + 1); a = M/B = M/(N −M) (8)

where µs, µb are the expected mean weights for signal and background. Substituting the observed data
weight wd =

∑
w(xj)/N for the expected and solving for M gives:

M̂B =
∑

(wj − µb)/(µs − µb) (9)

These two equations are independent of the specifics of w, though µs, µb depend on the form of w
and its parameters. Eq. 9 makes it crystal clear that M̂B is unchanged by multiplicative or additive
x-independent constants in w(x) → Cw(x) + D.

The method of moments is quite general: calculate any function of the data, then solve for param-
eters, considering expected moments as functions f(u) of the parameters of the true pdf. Eq. 9 is an
example. Typically one chooses power moments w′ = xn and hopes for the best.
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4.1 Barlow’s Optimal Weight

But Barlow did (much) better: he calculated a completely general equation for the variance V [M̂B ] and
used the calculus of variations to minimise V [M̂B ] with respect to the function w(x). He found the
variance with the optimal weight function approached the ML variance (and Cramer-Rao bound), but
unlike the ML solution, required no iteration through all the events! Further, the variance is less than
the variance resulting from cutting on the optimal weight variable, though fitting to the distribution of
w(x) is also close to optimal. The optimum weight function Barlow found (after choosing a suitable
normalization) was

w(x) = aos(x)/(aos(x) + b(x)) or (10)
w(x) = aor(x)/(1 + aor(x)); r(x) = s(x)/b(x) (11)

Clearly w ∈ [0, 1] (though Eq. 9 reminds us M̂ 6= ∑
w). This optimal weight function should look

remarkably familiar. The Neyman-Pearson lemma (James §10.3.1) tells us that the best variable for
testing the hypothesis of whether an event is signal or background is r(x) = s(x)/b(x); and as a result
the best Bayesian discriminant (ideal neural net output) is the posterior signal probability d(s|x) =
as/(as + b), where a = πs/(1− πs) is the prior odds ratio.

There is a mild catch: one has to make an initial guess at Mo/B (why we wrote ao instead of a).
But the optimum is quadratic, so close (ao ≈ a) is quite good. Further, guessing is actually advantageous:
it relieves you of iterating through the data. Since E[w] already has a near-optimal dependence on the
pdf parameters, and all you lose by the guess is a bit of variance increase, not a bias. However, wrong
s, b functions still give a biased M̂ since you are fitting normalisation to an incorrect shape and µs, µb.

4.2 Comparison with BLUE Weight

Barlow notes that knowing the expected Poisson mean B reduces V [M̂ ], but finds the same w(x) is
optimal. When the fraction ao of signal events is small, as it is in Milagro, then the Eq. 10 weight
becomes w ≈ K ′′s/b, showing the subtraction weight of Eq. 1 to be near-optimal for large backgrounds.

5 Tkachov Weights and the ML Solution

Barlow solved the specific problem of the best weight for separating signal and background. But Tkachov
[5] later solved the more general problem of choosing the optimal w(x) (“generalized moment”) to
estimate any pdf parameter u with minimum variance, again using the calculus of variations. His result
is both more general, and simpler! Having fixed w, one estimates û through the dependence E[w] =
f(u) of the expected moment on the pdf parameters u, solving wd = f(û) . Functional differentiation
relates the variance of V [û] in first order to the moment variance V [w]. More functional differentiation
minimises V [û] wrt w, giving the optimum w(x) choice, intimately related to the ML solution:

wopt(x) = C(u)
∂Ln[p(x;u)]

∂u
+ D(u) (12)

Specializing to our case, u = a, and seeking â with p = (as + b)/(1 + a), C = a, D = a/(1 + a) , and
a → ao (our pre-data guess)

w = s/(as + b)− 1/(1 + a) → w = aos/(aos + b) , (13)

matching Barlow’s Eq. 10 weight. The expected data weight is then

E[wd(ao, a)] =
∫

w(x; ao) p(x; a) dx =
∫ ( aos

aos + b

)(as + b

a + 1
)
dx =

ao + (a− ao)µs

a + 1
(14)

which can be compared with the iterative ML solution written in terms of the weight function:∑
j

∂Ln[p(xj; a)]
∂a

= 0 ⇒
∑

j

w(xj , ao → a)
Na

=
1

a + 1
(15)
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Tkachov shows that with the optimal weight function choice, no matter what the parameter, the method
of moments gives a variance approaching the best possible.

One final comment: the optimal weight function of Eq. 10 is strongly reminiscent of the Wiener
optimal frequency filter [6] with squared amplitudes (absolute power) instead of pdf’s. The derivation
minimises the reconstructed variance wrt the true signal, again using the calculus of variations.

6 Summary

A near-optimal weight can achieve near-ML accuracy. Weighting methods are powerful and simple.
There is a rational scheme leading to choice of optimal weight (moment) functions. And both Barlow
and Tkachov show that weighting (or fitting to a weight distribution) is more accurate (lower variance)
than making cuts in even an optimal weight variable. A longer version of this paper is in preparation for
submission to the Astrophysical Journal (and the arxiv server).
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Abstract
It is known that many interesting signals expected at LHC are of unknown
shape and strongly contaminated by background events. These signals will
be difficult to detect during the first years of LHC operation due to the initial
low luminosity. In this work, one presents a method of subtracting histograms
based on the profile likelihood function when the background is previously
estimated by Monte Carlo events and one has low statistics. Estimators for
the signal in each bin of the histogram difference are calculated so as limits
for the signals with 68.3% of Confidence Level in a low statistics case when
one has a exponential background and a Gaussian signal. The method can also
be used to fit histograms when the signal shape is known. Our results show a
good performance and avoid the problem of negative values when subtracting
histograms.

1 Introduction

The search for signals of low statistics has led to a strong development on statistics methods for high
energy physics. Recently, methods based on profile likelihood has been widely used in problems related
to setting limits to a signal and to test hypotheses. This approach shows very good performance in
extracting signal information in the presence of nuisance parameters [1].

In this work one considers a χ2-function obtained from the profile likelihood for subtracting his-
tograms where the signal to backgrounds ration is small, and both distribution have unknown shape.
One also shows that, when the signal distribution is known, one can use this χ2-function to fit the signal
without fitting the background. It is presented in the next Section the road map to this new χ2-function.
Section 3 presents the results for extracting signal information by subtracting histograms, and limits to
signal are computed using the proposed χ2-function. Section 4 shows an example on the fit method.

2 Likelihood and Profile Likelihood

Let us assume a counting experiment such that the signal and background events are completely indepen-
dent and both obey to Poisson distributions. The background events are first estimated using the Monte
Carlo method, running the experiment in "idle" mode or by any other technique. Suppose that during
the experiment k data events are obtained and that m background events were previously estimated us-
ing Monte Carlo(MC) techniques. Since the number of previously estimated MC events depends on
computational resources, it is possible to generate τ samples, such that

τ = LMC/LEXP , (1)

where LEXP and LMC are the experimental and MC luminosities, respectively, and τ > 0. When one
has limited computer resources, τ may be restricted τ to the range 0 < τ < 1. Any information about
the background is helpful in order to extract as clean a signal as possible. The likelihood corresponding
to the above discussion is

L(s, b; k,m, τ) ∝ (s + b)ke−(s+b)(τb)me−τb, (2)

where s and b are related to the signal and background distributions, respectively.
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To obtain a b independent likelihood, one can find the maximum likelihood estimator of the back-
ground b̂ as a function of s and replace the true value b by b̂ in Eq. (2). Taking the derivative of that
equation, and solving it for b ≥ 0, one gets

b̂(s) = max

(
0,

k + m− (1 + τ)s + ∆(s)
2(1 + τ)

)
, (3)

where
∆(s) =

√
[k + m− (1 + τ)s]2 + 4m(1 + τ)s ≥ 0. (4)

Replacing b by b̂(s) in Eq. (2), one obtains the profile likelihood LP (s; k,m, τ), which does not depen-
dent on b [2].

LP (s; k,m, τ) ∝ (s + b̂(s))ke−(s+bb(s))(τ b̂(s))me−τbb(s). (5)

The maximum value of LP and the most probable value of s, ŝ, are obtained by solving Eq (5). The
simple analytical solution for ŝ is an unbiased value

ŝ = max
(
0, k − m

τ

)
, (6)

since s ≥ 0 due to physical constrains. The parameter ŝ is just the maximum profile likelihood estimator
of s.

Let us construct now an approximate χ2-function using Eq (5). The maximum profile likelihood
ratio is given by

λP =
LP (s, k,m, τ)
LP (ŝ, k,m, τ)

, (7)

where the denominator is the maximum profile likelihood, which occurs when s = ŝ. According to the
maximum likelihood ratio theorem χ2

P ≈ −2 log λP and hence, the profile χ2
P -function is written as

χ2
P = 2

{
(s− ŝ) + (τ + 1)

(
b̂(s)− b̂(ŝ)

)
+ k ln

(
ŝ + b̂(ŝ)

s + b̂(s)

)
+ m ln

(
b̂(ŝ)

b̂(s)

)}
, (8)

where b̂(s) and ŝ are given by Eqs (3,6), respectively, so as b̂(ŝ).

3 Subtracting Histograms and Setting Limits

In order to show the applicability of the χ2
P -function obtained we generated 500 Toy Monte Carlo events,

such that 50 were signal and 450 were background, distributed in a histogram of 50 bins. The signal and
background were generated according to Gaussian and Exponential functions, respectively,

S ∼ Gauss(1.2, 0.2), B ∼ Exp(−x). (9)

The number of background events in each bin was previously estimated by generating 2250 back-
ground events, corresponding to τ = 5. It is useful to mention at this point that there is no advantage in
taking τ > 5 when one estimates the background from MC, since there is no relevant change in the χ2

P -
function for τ > 5. Figure 1 shows the ’data’, the background previously estimated and the signal. To
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extract the signal histogram from the ’data’, one can use Eq (6), which give us the signal estimated for
each bin. Its limits (smin, smax) are obtained by solving the system



∫ smax

smin
fP (s; k,m, τ)ds = 1− α

χ2
P (smin) = χ2

P (smax)

0 ≤ smin < smax

(10)

where fP (s; k,m, τ) is the normalized probability distribution of s given k, m and τ obtained normaliz-
ing LP (s; k.m, τ) with respect to s, and α depends on the chosen confidence level.
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Fig. 1: Toy Monte Carlo Example. The full line rep-
resents the signal contained in the ’data’. The back-
ground was previously estimated with τ = 5.
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Fig. 2: Extracted signal. The signal limits were calcu-
lated for a confidence level of 68.3%. The constraining
ŝ > 0 avoid bins with negative values.

The subtracted histogram result is shown in Fig. 2. The points are the signal estimated for each bin
and the error bars were calculated using Eq (10) for a confidence level of 68.3%. Notice that we have no
bin with negative values due the constraint ŝ > 0. It is important to mention also that one did not need
to know the true background rate b in order to get signal limits, since the χ2

P -function, given by Eq. (8),
does not depend on that parameter since it has been replaced by an estimate.

The signal significance can be obtained by looking at the P-value under the hypothesis that one
has no signal. Taking into account just the bins between x = 0.85 and x = 2.5, one gets a P-value of
0.022.

4 Fitting Histograms

When the signal shape is known, one can use Eq. (8) to fit histograms. In such case, the χ2
P -function that

will be minimized is given by the sum of all χ2
Pi

(si, ki,mi, τ) which correspond to N bin contributions,
where si must be substituted by the function f(xi,θ) to be fit, xi being the corresponding ordinate in the
ith bin and θ the parameter vector to be fitted.

One can apply this approach to fit the signal in the Monte Carlo sample shown before, but now the
events are distributed in a histogram of 100 bins, since one knows now the signal distribution shape, as
shown in Fig. 3. The number of previously estimated background events in each bin mi is given by the
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Fig. 3: Previously estimated background, ‘data’ and fitted curve.

histogram labeled BG in Fig. 3, and ki is the number of ’data’ events in each bin. The signal distribution
si is substituted by a Gaussian function, and τ = 5. By the minimization of the χ2

P -function, one gets
the fitted parameters µ = 1.19 ± 0.08 and σ = 0.21 ± 0.07, which are in very good agreement with
the “true” values 1.2 and 0.2, respectively. The full line in Fig. 3 shows the fitted curve.

Notice that as Eq. (8) depends just on f(xi,θ), ki, mi and τ , one did not need to fit the back-
ground distribution, and the only necessary information from background was its number of events m i

estimated by MC. This is the great advantage of this method. The χ2
P -function already incorporates

the background statistical fluctuations. Besides reducing the numbers of fitted parameters, this method
presents no problems when one has few or no events in one or more bins as can occur in data with long
tails. Even the bins with ki = 0 and/or mi = 0 contributes to the χ2

P -function. It is is only necessary to
fit the signal function parameters which will allow us to obtain a much cleaner and less noisy analysis.
This will affect in a positive way the parameter covariance matrix. A systematic study of this method
was done for different τ values and different signal and background distributions, and in all cases the
method showed very good performance.

5 Summary

The proposed χ2
P -function can be used to extract signal information without need to know the back-

ground distribution shape. The fact that one just needs to fit the signal reduce the number of parameters
to be fitted and avoid the uncertainties carrying by the lack of knowledge of the exact background pa-
rameters. The method works well even in situation where there is very low statistics.
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Abstract
If supersymmetry (or a similar complex phenomenon) is found at the LHC,
the goal for all colliders over the coming decades will be to extract the funda-
mental parameters of an underlying model from the measurements. Dedicated
state–of–the–art tools will be necessary to link a wealth of measurements to
an e.g. 20–dimensional MSSM parameter space. Starting from a general log–
likelihood function of this high-dimensional parameter space we show how
we can find the best–fit parameter values and determine their errors. Beyond
a single best–fit point we illustrate how distinct secondary minima occur in
complex parameter spaces. In cases where there are flat dimensions in the
likelihood we comment on the benefits and limitations of marginalizing over
additional dimensions.

1 Introduction

The LHC start is now a matter of months, and high energy physicists are eager to see the first sign of a
Higgs boson or any alternative to such a fundamental particle. However, fundamental scalars naturally
lead to the existence of an ultraviolet completion of the the Standard Model. Such an extension of the
current Standard Model, might even at the same time solve the second main mystery of high–energy
physics, the existence of cold dark matter.

Supersymmetry is one appealing extension of the Standard Model and is already constrained by
previous experiments such as LEP and Tevatron. The LHC era might give many hints about new–physics
scenarios and it will certainly rule out large classes of extensions to the Standard Model. However, it will
not give us anything like a one–to–one map between a limited number of observables and a well–defined
small set of parameters.

The SFitter[1] program aim at extracting parameters compatible with the available observables,
while relying on as few assumptions as possible. For example, assuming an MSUGRA scenario, the
LHC might provide sufficient measurements to give good uncertainties on the fundamental parameters,
with the use of well–known fitting techniques. But to test the assumption of the GUT scale unification,
one needs to scan a full 20 parameter space at the TeV scale. This task requires a subtle and careful
scanning of the parameter space, and is better performed with the use of techniques such as Markov
chains.

2 Fitting principles

The SFitter program uses as input high–energy physics experimental data and low–energy scale con-
straints and compare them to theoretical predictions to compute a likelihood value. Theoretical quantities
are computed to the highest order (NLO in most cases) available thanks to SUSY spectrum calculators[2,
3]. Other quantities, such as cross–sections, branching ratios and dark matter relic density can then be
derived using other available programs [4, 5, 6].

The likelihood can be computed using two different scheme, depending on the final use:

– The RFit scheme as defined by Höcker et al.[7] should be used for the sake of correctness in
frequentist analysis. In this case, the theoretical errors are interpreted as a lack of knowledge on a
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parameter. The combined likelihood (including both experimental uncertainty σexp and theoretical
error σth) is defined as:

−2 lnL =

{
0, ∀ |xexp − xth| < σth( |xexp−xth|−σth

σexp

)2 ∀ |xexp − xth| ≥ σth
(1)

– The standard convolution of experimental and theoretical uncertainties. This is done assuming the
theoretical error has a probability density function (either flat or Gaussian) following Bayesian
statistics.

The region of the parameter space in which the likelihood is to be computed depends greatly
on the fitting techniques used. Ideally, a scan covering the whole parameter space region of interest,
is performed to find local likelihood maxima. Then, a gradient fit around each maximum allows to
determine the parameter values and errors.

The parameter space region of interest definition and how the scan is performed relies on priors.
There is no way around this. But hopefully if the likelihood shape is sufficiently smooth compared to the
scan steps, the gradient fit will converge to the true minima. The main problem with a 20–dimensional
parameter space (like with the phenomenological MSSM) is to perform an efficient scan. Efficient in
terms of coverage and computing time. This is were the Markov chains come into play.

SFitter provides all relevant frequentist or Bayesian answers in three steps: first (1), we compute
a likelihood map of the entire parameter space, using either a simple grid method or a Markov Chains
approach (described later). This map is completely exclusive, i.e., it includes all dimensions in the
parameter space. Then (2), we rank the best local likelihood maxima in the map according to their log–
likelihood values. This way we identify the global maximum, and everybody can include their personal
prior towards secondary maxima (i.e., SUSY breaking scenario), without mistaking such a prior for
actual likelihood. Last (3), we compute likelihood or probability maps of lower dimensionality, down to
one–dimensional distributions, by properly removing or marginalizing unwanted parameter dimensions.

3 Markov Chains

A Markovian process is defined as a stochastic process in which the conditional probability distribution
of future states depends only on the present state and not on any past state.

For the purpose of fitting the state is defined as a point in the parameter space and its associated
likelihood value. The future parameter values (new) are then chosen according to the current position
(cur) and kept (as the next point of the chain) if it satisfies one of the two following conditions:{ Lnew > Lcur

���������	�
[0, 1] < lnLcur

lnLnew

(2)

If the new point is chosen randomly over the whole parameter space without any dependence on the
current point, then the Markov chain is equivalent to a Monte–Carlo fitting method. The main drawback
in this case is that high likelihood regions will not be favored with respect to low likelihood ones unless
we a–priori know the likelihood shape and can generate new points accordingly (as in Monte–Carlo
resonant process generation). Another way to improve the Markov chains efficiency is to generate the
new point depending on the current point. In SFitter, this is done using a Landau distribution separately
for each parameter. The Landau peak is taken as the current value of the parameter and the distribution
extends to the parameter limits.

The main advantage of the Markov chains method compared to a crude scan is its convergence
speed, which can go linearly with the number of parameters. Indeed, parameters which have no influence
on the likelihood value do not slow down the convergence process. Also, it does not rely on the likelihood
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χ2 m0 m1/2 tanβ A0 µ mt

0.09 102.0 254.0 11.5 -95.2 + 172.4
1.50 104.8 242.1 12.9 -174.4 − 172.3
73.2 108.1 266.4 14.6 742.4 + 173.7
139.5 112.1 261.0 18.0 632.6 − 173.0
. . .

Table 1: SFitter output for MSUGRA in SPS1a. List of the best log–likelihood values over the MSUGRA param-
eter space. All masses are given in GeV.

shape in the parameter space, and like any other scanning process, it has the ability to find secondary
minima. However, it should be used cautiously as it is not meant to find the exact value of the minima,
and a bad choice of priors can lead to scans on limited parameter space regions. Theoretically increasing
the number of points in the chain can overcome these problems. Alternatively, one can try different priors
to make sure the whole parameter space is correctly scanned and then use a gradient fit to find the exact
minima.

4 MSUGRA as a toy model

Clearly, in the LHC era no model for supersymmetry breaking should be assumed for analysis. Instead,
the breaking mechanism should be inferred from data. At the LHC (and certainly in combination with
the ILC) there is little need for top–down analysis, which are known to reveal more about their author’s
imagination than about physics. As a matter of fact, supersymmetry should only be considered one
possible interpretation of for example cascade decays. However, completely generalizing an intelligent
analysis to a general new–physics model space seems not viable at the moment. We will therefore assume
that supersymmetry, little–Higgs models or extra–dimensional models can be distinguished by simpler
hypothesis testing.

Running the Markov chains algorithm on the MSUGRA SPS1a point[9] using 300 fb−1 LHC toy
data[8], we obtain the results summarized in Table 1. As discussed before this ranked list of likelihood
maxima has to be refined with a gradient fit. Building a profile likelihood map (i.e., looking for the
maximum likelihood in all directions but the ones of interest) can be compared to the Bayesian approach
(marginalizing over all other dimensions to obtain a probability density function). The two illustrations
shown in Fig. 1 look similar. However, there are two differences in the details: first, the area around the
true parameter point is less pronounced in the Bayesian pdf, compared to the profile likelihood. When we
integrate over a direction in parameter space we largely collect noise from regions with small likelihood.
This noise washes out the peaked structures. The second effect is the more pronounced branch structure
for the Bayesian pdf, while in the profile likelihood the area between the two branches is filled by single
good parameter points in the parameter projected away; the marginalization provides us with ‘typical’
likelihood values in this region which in general does not fit the data well.

The washing–out effect also smears considerably the one–dimensional Bayesian pdf distribution
in m0 as shown in Fig. 2. But here the marginalization over m1/2 also creates a higher peak at m0 =
50 GeV, which should only be interpreted as higher likelihood density. The only reliable source of
information on likelihood value being the profile map.

5 Conclusions

It will be hard for the LHC to give a conclusive answer to the crucial question, namely what is the
‘correct’ ultraviolet completion of the Standard Model. The impact of the LHC on the vast model space
will at best be locally conclusive. Be it from a frequentist or a Bayesian point of view, the use of improved
fitting techniques, such as used in SFitter, will prove to be very useful. At least until we reach sufficient
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experimental and theoretical precision to narrow down the Next Standard Model parameters.
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Abstract
We present a new analysis of the Constrained MSSM in terms of Bayesian
statistics. We illustrate our results with the light Higgs boson whose inferred
mass range one should be able to exclude at the Tevatron with high confidence.

1 Introduction

Softly-broken low-energy supersymmetry (SUSY) offers a promising framework within which many
questions challenging particle physics and cosmology, such as the hierarchy problem or the nature of
dark matter, can be addressed. Despite many attractive features, without a reference to grand (or string)
unification, SUSY models suffer from the lack of predictivity due to a large number of free parameters
(e.g., over 120 in the Minimal Supersymmetric Standard Model (MSSM)). The MSSM with one partic-
ularly popular choice of universal boundary conditions at the unification scale is called the Constrained
MSSM, or CMSSM [1]. The CMSSM is defined in terms of five free parameters: common scalar (m0),
gaugino (m1/2) and tri-linear (A0) mass parameters (all specified at the unification scale), plus the ratio of
Higgs vacuum expectation values tan β and sign(µ), where µ is the Higgs/higgsino mass parameter. The
economy of parameters makes the CMSSM a useful framework for exploring SUSY phenomenology.

Many studies have explored the CMSSM or other SUSY models, mostly by evaluating the goodness-
of-fit of points scanned using fixed grids in parameter space. However, this approach has a number of
severe limitations. Firstly, the number of points required scales as kN , where N is the number of a
model’s parameters and k the number of points for each of them, making the approach highly inefficient
for exploring with sufficient resolution parameter spaces of even modest dimensionality, say N > 3.
Secondly, narrow “wedges” and similar features of parameter space can easily be missed by not setting
a fine enough resolution (which, on the other hand, may be completely unnecessary outside such spe-
cial regions). Thirdly, extra sources of uncertainties (e.g., those due to the lack of precise knowledge of
SM parameter values) and relevant external information (e.g., about the parameter range) are difficult to
accommodate in this scheme.

Here we present a different approach, encoded in the publicly available package SuperBayes [2]. It
is based on Bayesian statistics and Markov Chain Monte Carlo scanning methods. After introducing our
procedure we will present our results obtained in the framework of the CMSSM. In particular we focus
on the lightest Higgs boson h0. We also comment on prospects for superpartner searches at the LHC and
on direct neutralino dark matter detection. We refer the reader to [3, 4, 5] for a detailed presentation.
The Bayesian approach has several technical and statistical advantages over the more traditional fixed-
grid scan technique, the most important being perhaps the ability to incorporate all relevant sources of
uncertainties, e.g., the residual uncertainty in the value of SM parameters. This means that the inferred
high probability regions of the CMSSM parameters (or resultant observables) take fully into account all
sources of uncertainty relevant to the problem. For other recent works applying a similar approach to the
CMSSM, see [6, 7, 8, 9].
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2 Parameter space, priors and data used

We consider the 8 dimensional parameter space m = (θ, ψ), where θ = (m0,m1/2, A0, tan β) is a
vector of CMSSM parameters, while ψ = (Mt,mb(mb)MS , αem(MZ)MS , αs(MZ)MS) is a vector of
relevant SM parameters, where Mt is the pole top quark mass, mb(mb)MS is the bottom quark mass at
mb, and αem(MZ)MS and αs(MZ)MS are the electromagnetic and the strong coupling constants at the
Z pole mass MZ . The last three quantities are evaluated in the MS scheme. Since we are only interested
in the effect of the residual uncertainty in the experimental determination of the SM parameters on our
observables (see below), we treat them as “nuisance parameters” and at the end we integrate them out
from our probability distribution function (pdf). It turns out that including them has an important impact
in widening high probability regions of the CMSSM parameters.

In Bayesian statistics the posterior probability distribution p(m|d) is computed using the Bayes
theorem, p(m|d) = p(d|m, f(m))π(m)/p(d). The likelihood p(d|m, f(m)) supplies the information
provided by the data, by comparing the base parameters m or any derived function f(m) to the data d.
The quantity π(m) denotes a prior probability density function (hereafter called simply a prior) which
encodes our state of knowledge about the values of the parameters before we see the data. Here we
first take the prior to be flat (i.e., constant) in the variables m; below we specify their ranges. If the
constraining power of the likelihood is strong enough to override the choice of the prior, than the latter
does not matter in the final inference based on the posterior pdf. We have adopted a wide prior region
of up to 4 TeV for m0,m1/2 (in order to include the so-called “focus point” (FP) region at large m0),
|A0| ≤ 7 TeV and 2 ≤ tanβ ≤ 62. The prior range on the nuisance parameters does not influence the
final results, since the SM parameters are rather tightly constrained by the data: Mt = 171.4(2.1) GeV ,
mb(mb)MS = 4.20(0.07) GeV, αs(MZ)MS = 0.1176(0.002) and 1/αem(MZ)MS = 127.955(0.018).

In our analysis, for each choice of m we compute a series of derived observable quantities f(m).
We list them here along with their experimental values and (estimated) theoretical errors, which are
added in quadrature: the W gauge boson massMW = 80.392(0.029)(0.015) GeV, the effective leptonic
weak mixing angle sin2 θeff = 0.23153(0.00016)(0.00015), a SUSY contribution to the anomalous
magnetic moment of the muon, δaSUSY

µ = aexpt
µ − aSM

µ = 28(8.1)(1) × 10−10, the branching ratio
BR(B̄ → Xsγ) = 3.55(0.26)(0.21) × 10−4 and the cosmological neutralino relic abundance Ωχh

2 =
0.104(0.009)(0.1 Ωχh

2). For existing limits we take: BR(Bs → µ+µ−) < 1.0 × 10−7, the light Higgs
mass mh > 114.4(3 th. error only) GeV (91.0 GeV) and superpartner masses; see [5] for a complete
list. The above data are included in the likelihood and used to constrain high posterior probability regions
of the model. The likelihood is modified in such a way that it includes estimated theoretical errors in the
mapping from CMSSM and SM parameters to derived quantities, another major advantage of employing
a Bayesian approach (see [3, 5] for details).

3 Numerical results

First, in the left panel of Fig. 1 (from [5]) we present the 2-dim posterior pdf for m1/2 and m0, with all
other parameters marginalized over. The 68% total probability region lies mostly at large m0 ∼> 1 TeV
and not as large m1/2, predominantly in the FP region. This is caused mostly by a recent downwards shift
of the SM value of BR(B → Xsγ) [10], below the current experimental world average, as explained
in [5]. Surprisingly enough, with this new value, SUSY predictions from our analysis fit the experimental
distribution of BR(B → Xsγ) better for µ < 0 (the case which we have also explored) than for µ > 0.
(Despite this, the case of µ < 0 shows a rather poor overall fit to the data - for details see [5].) Most
other observables fit the data well (or even very well), except for the anomalous magnetic moment of the
muon. The overall preference for large m0 makes δaSUSY

µ rather small. As a result, for both signs of µ
the peaks of the relative probability of δaSUSY

µ are far below the central experimental value (about 3.2σ
for µ > 0 versus about 3.7σ for µ < 0), and close to each other.

Clearly, while the 95% total probability region lies well within the assumed prior of m1/2 (as well
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Fig. 1: Left panel: The 2-dimensional probability density in the m1/2 and m0 plane (with all other parameters
marginalized), with the contours containing 68% and 95% probability also marked. Right panel: The 1-dim relative
probability density for the light Higgs boson mass mh for µ < 0 (dotted red) and µ > 0 (dashed blue).

as A0 and tanβ, see [5]), this is not the case for m0. This should be kept in mind in deriving conclusions
from the pdfs of any observables that depends directly on m0, such as sfermion masses. There are also
sizable uncertainties associated with the FP region, in particular with the reliability of existing numerical
codes in computing mass spectra. Also, the SM value of BR(B → Xsγ) may still change somewhat
after the NNLO calculation is completed. Thus this result should still be treated with a pinch of salt.

Note also that the above high-probability regions do not necessarily coincide with the best fitting
points in parameter space if the pdf is strongly non-Gaussian, as in the present case. See [3, 5] for a
detailed description of the discrepancy and a discussion of its meaning in terms of probabilistic inference.

Despite these outstanding issues, some results seem fairly robust. One is the properties of the
lightest Higgs boson h0. In the right panel of Fig. 1 (from [5]) we present, for each sign of µ, the
1-dim relative pdf of the h mass, obtained after marginalizing over all other parameters. (A previous
plot, obtained in [4] with the previous value of BR(B → Xsγ) is nearly identical, and also agrees
rather well with ref. [8].) It is clearly well confined, with the ranges of posterior probability given by
115.4 GeV < mh < 120.4 GeV (68%) and 112.5 GeV < mh < 121.9 GeV (95%). A finite tail on
the l.h.s. of the 1-dim pdf for mh, below the final LEP-II lower bound of 114.4 GeV (95% CL) is a
consequence of the fact that our likelihood function does not simply cut off points with mh below some
arbitrary CL, but instead it assigns to them a lower probability. On the other hand, a sharp drop-off on the
r.h.s. of the relative probability density is mostly caused by the assumed upper bound on m0 < 4 TeV.
For instance, adopting a much more generous upper limit m0 < 8 TeV would lead to changing the above
ranges to 120.4 GeV ∼< mh ∼< 124.4 GeV (68% CL) and 115.4 GeV ∼< mh ∼< 125.6 GeV (95% CL).
Other properties of the lightest Higgs boson, including its couplings to ZZ and WW pairs, for the most
part closely resemble those of the SM Higgs with the same mass [4]. This means that ongoing SM
Higgs searches at the Tevatron almost directly apply to h0. According to ref. [11], with about 2 fb−1 of
integrated luminosity per experiment (with around 3 fb−1 already on tape), a 95% CL exclusion limit
can be set for the whole 95% posterior probability light Higgs mass range given derived for m0 < 4 TeV
(∼ 2.5 fb−1 for m0 < 8 TeV). It is remarkable that negative Higgs searches at the Tevatron should allow
one to make definitive conclusions about the ranges of CMSSM parameters, in particular m0, which
extend well beyond the reach of even the LHC in direct searches for superpartners.

We have also studied in detail prospects for dark matter detection, both direct [5] and indirect [12].
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To give some highlights, for µ > 0 the neutralino dark matter direct detection elastic scattering cross
section σSI

p shows two main features (see Fig. 11 in [5]). Firstly, there is a strong probability peak around
10−8 pb, mostly due to a contribution from the FP region. Secondly, there is another high probability
region of σSI

p which extends between about 10−10 pb and about 10−7 pb (which is roughly today’s ex-
perimental sensitivity) and which shows a strong anticorrelation with mχ. The largest values of σSI

p

correspond, for the most part, to the FP region of large m0. Thus this region will soon be tested in DM
searches while remaining inaccessible to the LHC, except for smallest values of m0 in the FP region.

4 Conclusions

We have presented a new method of exploring the CMSSM parameters using a state-of-the-art Bayesian
method, encoded in the package SuperBayes [2]. The power and flexibility of the approach allows one to
probe many previously unexplored choices of parameters and to fully incorporate the effects of remaining
uncertainties in relevant SM parameters and other theoretical uncertainties in computing observables.

Using the method, we derived high probability ranges of the CMSSM parameters and showed
that current data (most notably the SM value prediction for BR(B → Xsγ)) favour the focus point
region. Despite some theoretical uncertainties in that region, we delineated high probability ranges of
mh which one should be able to rule out with high confidence on the basis of the data already collected
at the Tevatron (although not yet fully analyzed). Prospects for dark matter detection in the CMSSM
also look very promising. So far, as a starting point, we only assumed flat priors in the CMSSM and SM
parameters - studies using different priors are in progress. Higgs properties are fairly robust with respect
to changes in the a priori allowed range for the parameters or to the exclusion of the anomalous magnetic
moment of the muon measurement from the analysis. The observables which depend on m0 are not.
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Abstract
I give an overview of existing statistical software for high energy physics and
present a proposal for the organization of new high level statistics tools for the
LHC in a common framework that will simplify exchange of information and
cross validation of techniques.

1 Introduction

The Large Hadron Collider (LHC) is expected to start taking data in 2008 and will produced unprece-
dented amounts of data to be processed and analyzed. I present an overview of software for the statistical
analysis of this data that is currently available or being developed, focusing on analysis working envi-
ronments, classification tools to separate signal and background, and in some more detail on software
fitting, minimization, error analysis and tools for calculating significances and limits.

2 Analysis Working Environment

In the 2005 PHYSTAT conference several presentations were given describing and promoting the R
analysis environment[1]. R is a language and environment for statistical computing and graphics, is
related the commercial S environment, and is popular among statisticians. The R analysis environment
has many features that are appealing to analysis of HEP data: R has many tools for data visualization, can
read many data formats including ROOT ��������� s and sessions can be saved to disk and recovered at a later
time. Extensions of the R environment come in packages and the distributed package management is
integrated in R. This structure allows users to download an install new features from a central repository
on the fly in their R session (e.g. ���
	������������������� � 	������
����� � �! "� � � � ��� � �
��� � 	$#%� � ��&('
) ). One of the
points of concern of R for HEP is that the performance of R does not scale well to very large datasets of
order million events and larger.

While R has a user community in HEP, the field has a strong tradition of home grown analysis
environments starting with PAW in 1985 developed by R. Brun et al., and the ROOT[2] environment,
developed by the same team in 1995 with a market share close to 100% for the physicists associated with
one the LHC experiments. This market share has made ROOT the de facto standard analysis environment
for High Energy Physics. ROOT components are integrated in the common software infrastructure of all
LHC experiments and the data format of LHC experiments is based on ROOT. For physics analysis sev-
eral LHC experiments are developing software libraries that allow to read centrally reconstructed detector
data (the ’AOD’) directly into the ROOT analysis environment. A key asset in ROOT data management
is its performance in the handling Terabyte-sized data volumes. The ROOT command line interface is
a C++ interpreter, which exposes the object-oriented structure of the underlying C++ code directly to
the end user. The standard ROOT distribution provides several libraries with C++ classes that manage
histogramming and graphics, define standard mathematical functions, random number generators, linear
algebra tools, numerical algorithms and provide function minimization and error analysis tools.

Both the R and ROOT environment have their own repository function. While ROOT doesn’t
have the modular and automated package structure of R a growing number of external tools packages
such as TMVA[3], RooFit[4] have found their way in the ROOT software repository, as well a grow-
ing number of smaller scale tools such as �(* ���!��� and ��+%� ����
�-,�� + ����� �-� that are contained in a sin-
gle C++ class. A number of classical software repositories are alive as well. Specifically for High
Energy Physics tools there are ��.�/
	�����0�1, � � , which contains among others StatPatternRecognition[5],
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TMVA and LepStats4LHC[6], . � ����, � � � � � � � , which provides mostly physics Monte Carlo generators
and � ����� . � �0��� � � . For non HEP-specific repositories the web page[7] compiled by Jim Linneman for
PHYSTAT 2005 still an excellent resource.

3 Signal and Background, tools for Multivariate analysis

A large range of techniques is nowadays available to construct classifiers to separate signal from back-
ground, despite the fact HEP physicists have traditionally been reluctant in embracing the use of novel
multivariate analysis. The software tool with the longest history in HEP is the multi-layer perceptron
neural network, available as the MLPFit package in PAW since 1999 and still available in ROOT as the����� ���
� * -/ �-�����-� � � ��� � ,-� class. Since the PHYSTAT 2005 conference two software libraries, targeted
primarily to an HEP audience, and with a much broader scope have been developed: TMVA (Tool for
MultiVariate Analysis) and StatPatternRecognition. The existence of these new tools now make it possi-
ble for the average HEP physicist to get started with a relatively modern technique like boosted decision
trees in less than a day of work. The easy availability of large number of new techniques will be crucial
in the development of their acceptance and use in HEP.

3.1 Tool design and available classifiers

TMVA is an interactive-style tool strongly coupled to the ROOT environment. The kit implements the
following classifiers: Optimized rectangular cuts, projective and multi-dimensional likelihood estima-
tors, Fisher and H-matrix discriminants, artificial neural networks (three types of multi-layer percep-
trons,), boosted/bagged decision tress with automatic node pruning, a rule fitter and a support vector
machine. Plans exists for the addition of generalized non-linear discriminants and committee classifiers.
TMVA provides a framework for testing, training, evaluation and application of multi-variate classifiers.
Each classifier provides a ranking of the input variables. Input variables can be de-correlated or projected
upon their principle components. The training results and full configuration are written to weight files
and applied by a separate Reader class.

The StatPatternRecognition toolkit is a standalone C++ tool. It is designed to be a production
tool rather than an interactive tool and care has been taken to ensure processing scalability to very large
datasets and large number of dimensions while retaining reasonable CPU and memory consumption. At
the moment of writing StatPatternRecognition implements the following classifiers: decision split/stump,
decision trees (regular and top-down), bump hunting (PRIM, Friedman and Fisher), linear and quadratic
discriminants, logistic regression, boosting (discrete and real AdaBoost, epsilon-Boost) of any sequence
of classifiers, Arc-x4 (a variant of boosting from Breiman), bagging of any sequence of classifiers, ran-
dom forests, back propagation neural networks with logistic activation function, multiclass learners (All-
wein, Shapire and Singer), and an interface to SNNS neural net.

3.2 Training, analysis and validation tools

Both tools provide training tools for all classifiers that require training and include facilities to detect
over training through comparison with statistically independent control samples and provide information
on the discrimination power of input observables e.g. by ranking them.

TMVA developers has put a lot of emphasis on graphical presentation of results and classifier
structures such as network topologies and decision trees and promote easiness of use. One of the toolkits
strong points is the easy (graphical) comparison of the performance of the various discriminants. Several
benchmarks are implemented: signal versus background efficiency as function of a cut on the classifier
output, the separation, and the discrimination significance.

StatPatternRecognition pays in addition particular attention to cross validation and bootstrap. For
cross validation data samples are split into N sub samples. Then one subsamples is removed, the dis-
criminant is re-optimized on the N-1 subsamples the predicted error is estimated for the removed sample,
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and the procedure is repeated for all N subsamples. For bootstrap, N events are randomly drawn with
replacement out of the data sample. The discriminant is optimized on the bootstrap sample and seen how
well it predicts the behavior of the original sample.

It should be noted that even though there is a fair amount of overlap in the classifiers provided by
TMVA and SPR, the implementations of these are quite different and their performance is sometimes
also different as this often depends on implementation details.

3.3 Distribution and availability

Both packages are available on the Open Source development platform SourceForge ( ������ � 	�, ��� � � ��, � � � � � � �
and ����� � 	 � � � � � � � � ,�� � ��� 	 � 	���-����-� ��� � ). TMVA is distributed with the ROOT in addition. Both
packages are described in more detail in contributed proceedings of this conferences.

4 Fitting, Minimization and Error Analysis

From a software point of view a fit of a model to data involves three separate steps: first a model must
be constructed. This is usually a (probability density) function. Next, a test statistic is constructed from
the model and the data. For fitting likelihood and χ2 are the most common test statistics. Finally, the test
statistic is minimized with respect to its parameters and an error analysis is performed to determine the
uncertainty on the parameters.

Historically there is no common language or software tool to construct models. In the early days
models were implemented as FORTRAN subroutines, more recently C and C++ functions are used.
While minimally sufficient, any support for common operations on models such as integration, toy Monte
Carlo sampling and visualization are left as a problem to the physicist. Since 1995, the ROOT envi-
ronment provides dedicated C++ classes that represent 1,2,3-dimensional functions that provide basic
common functionality such as numeric integration and toy Monte Carlo sampling, though do not scale
to very complex models. The RooFit toolkit, integrated in the ROOT environment, has recently taken
the concept of data modeling further by providing a modular collection of classes that can be used to
compose models of arbitrary complexity and provide extensive support for p.d.f normalization, fitting,
toy Monte Carlo generation and visualization in a computationally optimized way.

High quality software tools for minimization and error analysis on the other hand have been around
for several decades. While several commercial or public packages exist that contain tools to perform
function minimization, notable the NAG software library and more recently the GNU Scientific Library,
the industry standard for function minimization and error analysis in HEP is, and has been, MINUIT[8]
for nearly 40 years. It is highly regarded for its robustness and ability to deal with difficult problems. Its
multi decade track record started in the Fortran-based CERNLIB, which was later interface to the PAW
analysis environment and is now available in ROOT as well. The default version in ROOT is a straight
Fortran-to-C++ port of the original application by the ROOT team. A rewrite in C++ by the authors
of Minuit, known as Minuit2, is available as well since a couple of years and has a cleaner interface.
MINUIT contains aside from the MIGRAD minimization code, two algorithms to do error analysis:
HESSE, based on the analysis of second derivatives and MINOS, a hill climbing algorithm that can also
quantify asymmetric errors.

A number of alternative fitter/minimizers have been added to ROOT in recent years that deal with
specific problems. These are �(+�� � �-��� , an implementation of the Fumili algorithm[9] that achieves faster
convergence for certain types of problems, �(* ��� �  ��+ ����� �-� , which implements an analytical solution
for problems linear in their parameters and ��+�� ����
��,-� + ����� ��� and ��� ����,$�!�-���'�� � ����� � �
��/ + ����� �-� for
fitting of Monte Carlo templates and efficiencies from ratio respectively.

STATISTICAL SOFTWARE FOR THE LHC

171



5 Constructing models to describe the data

I focus in some more detail on the topic of ROOT and RooFit data modeling language as this will be an
important aspect for the design of future statistical analysis tools and because it is not covered in much
detail in other contributions of this conference. This section assumes a basic knowledge of the C++
programming language.

5.1 ROOT function classes

Basic ROOT function classes have an elegant design for uses cases of lower complexity. For example a
1-dimensional function named �(�� with a single observable � is instantiated as

�����	��
����������������������
������������ ��!�#"%$	&�"����(')�*��'�$,+

Functions that cannot be easily expressed in a single line of code can be created as generic C++ functions
bound to ��+ � objects.

The advantage of a common interface for all types of function implementations is easy access
to common functionality. For example series of toy Monte Carlo events can be sampled from any �(+ �
object through

��-��.�%��/��0�1���	����-��.�2���*/� ��4365������	�	��78%96 .��:;5�
07%<
>=��@?�������'�')�(')����'%$,+
/��>A	B��� 	9�9	C�	�6D5�7E���F7%<�
>=��@?6���(G>'�'�'�'�$H+

or be fit to a TH1 histogram through

��>A	B>I��>3�J6�	K6��7��>3�	K@���#L�'�'M�.�>$,+
/��>A	B��� �32���(7%<
>=��@?6���(G>'�'�'�'�$H+

ROOT function classes provide a basic concept of modularity as all functions are named and registered
in a central repository, and can reference each other by name. Issues that are not addressed by ROOT
classes are: support for normalized probability density functions, calculation of an unbinned likelihood,
automatic computational optimization of function expressions and advanced introspection and modifica-
tion tools for complex composite objects. The ROOT authors are currently working on redesigning their
function structure and fitting interface to address a number of these issues.

5.2 The RooFit toolkit for data modeling

The RooFit toolkit for data modeling was developed in the BaBar collaboration in 1999 to address all of
these issues, as a spin-off from the flag-ship measurement of the CP violation parameter sin 2β. This
measurement required a fit to a five dimensional dataset with over 30 floating parameters. The initial
implementation of the model was written in FORTRAN, but this solution turned out not to scale well to
other analyses and presented problems with maintenance over time. While initially developed for BaBar,
the toolkit is available in the general ROOT distribution since 2005.

5.2.1 Basic concepts

The key concept of RooFit is to take modularity in terms of C++ objects one step further than was done
for the ROOT function classes by making each mathematical component of a model a separate software
object, i.e. not only functions are represented by objects but also the variables that appear in them are
represented by separate objects. Consequently, RooFit code to write a simple function like a Gaussian is
somewhat more elaborate than when done through a ROOT ��+ � :

C65�5>C���9	N6�	K;"2���*"������."����*A6��'M����'�$,+ &�&OD�6?>9��>K6�;P�>K� ��	Q�9���"
C65�5>C���9	N6�	K�7R���(7M�����F7@���	�����SA6��'M�.��'%$,+
C65�5>C���9	N6�	K������(7M�����	�� �:�7������('!TS���.��'%$,+
C65�5�U��	=���� 4�	�O:2���.:������*:2�#"!�V7R�S�$���W"!�V7E�S��$,+ &�&OD�6?>9��>K6��8ETWDXTW
Y ���36�>K47��;5�
1"!�V7Z�S�
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Name Math concept RooFit class
variable x, p ��,�,-� � ����� �
function f(~x) ��,�,����
	�� � ��
p.d.f. F (~x, ~p) ��,�,���� 	 � � �
space point ~x ��,�,�� � ��� � �
integral

∫ xmax

xmin
f(x)dx ��,�,-� � ��
	���� � � � ��

list of space points ~xk ��,�,���� 	���-��

Table 1: Mapping between mathematical concepts and RooFit classes

The upside of this approach is that a number of configuration and documentation issues is interfaced in a
very transparent way. Each variable has a intrinsic name, an optional more descriptive title, and associ-
ated information concerning the allowed range of each variable that is stored with the object representing
the variable. The value of all objects can be retrieved with the universal � � ������ � ) method and objects
that represent variables or invertible transformations can also be assigned a value with the corresponding
	 � ������ ��) method
7 TF�	�>3�N6�9 ��2T��%$H+ &�&,�	�>3%��P�9�=��15�
�7Y365�2T��
"ET :6�>3�N6�9 �.$Y+ &�&OK6�>3>=K���� P6��9�=��15�
 P6�>K� 4�	Q%9���"
:ET :6�>3�N6�9 �#"@$ + &�&OK6�>3>=K���� P6��9�=��15�
�U�	=���� ��	�O8ETWDXTW
��>318K6�6�	�	�3

&�&OP6�94=�����5�
 "!�V7Z� � � ��5>K�7@�9� ���>DO5>P6�	K,5�Q��	�>K�P�	Q%9�� "

5.2.2 Parameters, observables and normalization

The evaluation of the probability density function � takes an argument that specifies which of the vari-
ables of � should be interpreted as observables because RooFit p.d.f. objects have no intrinsic notion
of observables and parameters. This may seem confusing at first, but has several important advantages.
First, it allows a natural use of p.d.f.s in both Bayesian and Frequentist contexts. For example a call to
� � � � ������ ��	() ruturns a normalized probability density function in the observable 	 . Second, it allows for
a clean extension and composition concept reusing existing p.d.f classes. One can for example substitute
the variable � with a polynomial function m = a0 + a1 · y as follows:

C65�5>C���9	N6�	K;<2���*<������.<����*A6��'M����'�$,+
C65�5>C���9	N6�	K1��'M������'����.����'����.�
C65�5>C���9	N6�	K1���������������.���������SA�%$,+
C65�5>J59	<�N6�	K�7R���(7M�����F7E�#<!�(��'M�(���	$��� <!� C65�5���K�:��% ��432�F��')�(�@�	$�$,+��

In this case the argument � of the Gaussian is neither observable nor parameter and is unproblematic
because class ��,�,��� � 	�	���-� , like any other RooFit function object, makes no assumption other than that
its argument is a real-valued entity. This example effectively makes a p.d.f. that could be used as a
two-dimensional probability function in � and / . Substitutions of this type are generically possible for
any variable argument of any function or p.d.f.

5.2.3 Function class library, writing new functions

RooFit is shipped with library of about 20 p.d.f. classes that include basic shapes (Gaussian, polynomial
etc), non-parametric shapes (histogram-based, kernel estimation [10]) and physics inspired shapes (Breit-
Wigner, CrystalBall, several B physics decay models) that can all be adapted to a specific use case as
described above. If a particular shape is missing a new class is easy to write. Code for a new p.d.f class
can be generated semi-automatically with a class factory: e.g.

C65�5��9������4���?4365>K�<���� 7%����	J�D�
)�.�.C5�5����>P% ���:�J�D�
��@�����M� QX� "����.���� 	Q��>?	56���#"@$6��$,+
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generates a fully functional p.d.f class ��,�,��� � ���(� � ��� with three variables a, b, x and above definition
that is ready to use in ROOT. A normalization term to make the above function expression a proper
normalized probability density function is automatically inserted by RooFit, with the exact expression
depending on which variable is considered observable in the use context. If users know how to analyti-
cally integrate or normalize their expression, this knowledge can be integrated into the p.d.f and will be
used, otherwise numeric integration is used, for which a variety of techniques is available.

5.2.4 Composing complex models

Composition operations like addition, multiplication and convolution are expressed through dedicated
operator p.d.f classes that allows the core code to recognize such operations and apply computational
optimizations accordingly. Additions require a number of fraction parameters to be specified with the
components to be added:

C65�5>C���9	N6�	K�� �:���K6��?����	� �:���K6��?6���.��
)� � �:@$���(')T��M�#'2T>����T $,+
C65�5���D�D�JD�
 ��=	7E���	��=	7 �����	� �:� >Q���:���� C�5�5 ��K�:��@ 	�43)�S�� �:!� Q���:@$�� � .:���K��?�$,+

Multiplication of p.d.f.s can be done for terms without correlations or with correlations.
C65�5>J�K65�D�JD�
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Correlations expressed through conditional p.d.f.s, such as f(x|y) ·g(y), are computationally most
efficient, but other forms are also accepted. Similar classes exist for generic convolution of p.d.f.s either
through brute-force calculation ( ��,�,�� � ����,-��� � � � ) or by using the convolution theorem ( ��,�, +�+%� ��,���� � � � ).
Conversely, existing p.d.f can be reduced in dimensionality by integrating out observables. This example

C65�5��>Q��4JD�
���
�"���
>"�<�A	B6?�K6���>36�	J�K65����?43@ 45��!�#<%$,+

constructes a one-dimensional p.d.f fx(x) through integration of the two-dimensional p.d.f fxy(x, y).

5.2.5 Fitting, likelihood calculations and toy MC event generation

Once a p.d.f. object has been created, it has universal functionality for fitting, toy Monte Carlo generation
and visualization, regardless of its internal complexity. Basic operations are one-line operations:

7�5�D��9�A	B>
@ �3��65M�(D��	36�%$,+ &�&O
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C65�5	��>36��I��	3@��D�	36�1�;7�5>D�92T :�	���>K6�	36�M� "2�.��'�'>'�'�$,+ &�&��	��7�8%9>�OD�>36�1
�K65�7�7@5�D�9

While the �
��� � , ��) method takes care of both creating the (unbinned) likelihood object and its
subsequent minimization and error analysis, these steps can also be separated for a greater degree of user
control. The likelihood itself is a regular RooFit function that can be manipulated in any way any RooFit
function can be. The minimization can be controlled interactively by creating a ��,�, � ��� � ��� interface
object and performing the various minimization steps one by one.
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The result of the minimization by MINUIT is automatically propagated to the value of the parameters of
the p.d.f. The result of the error analysis by HESSE is is stored in the error property of those parameters.
The ��,�, � ��� � ��� interface can minimize any real-valued function so that is easy to e.g. add a penalty term
to a likelihood to be minimized
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5.2.6 Computational optimization

The base class for the calculation of test statistics like ��,�,�� *�* �� � contains several algorithms that op-
timize the performance of the test statistic calculation using generic optimization algorithms. Prior to
each use it detects and pre-calculates all terms that depend exclusively on constant parameters. It caches
integral values and only recalculates them if any of the parameters of the integrand has changed. In gen-
eral multi-dimensional problems are factorized as much as possible to achieve maximum granularity and
optimization performance. This automatic optimization keeps the users code clean, yet yields optimal
performance for every use case. The typical speedup of a likelihood calculated of realistic complex fits
ranges from a factor 3 to a factor 10. Test statistic calculations can be parallelized for use on multi-CPU
and multi-core machines: it suffices to indicate the number of CPUs to be used in the �
��� � , ��) function
call to activate this feature.

The toy Monte Carlo generator code is optimized is a similar way. Each p.d.f can optionally adver-
tise an internal generator if a generation method exists that is more efficient that accept/reject sampling.
Each generation request to a composite p.d.f will use the most efficient combination of internal and ac-
cept/reject methods available, generation components of summed p.d.f.s and multiplied p.d.f separately.
The generation order of observables for expressions containing conditional p.d.f.s is automatically deter-
mined. If cyclical conditional dependencies are present the entire cyclical expression is generated with
the accept/reject technique.

6 Calculating significances and confidence intervals

The calculation of a signal significance, a Frequentist confidence interval or limits of various types
require complex interactions with both model and data. In many cases these calculations have been
performed with code specifically tailored to the analysis in question. A number of smaller and larger
software tools have been made available in the past years, often a cleaned and generalized version of the
code that was once used for a specific physics analysis. Several of these tools are found in the ROOT
distribution, others are published in external repositories. The following is a short survey of available
tools.

ROOT class TRolke calculates the confidence intervals for the rate of a Poisson in the presence of
background and an efficiency. It makes a fully Frequentist treatment of the uncertainties in the efficiency
and and background estimate using the profile likelihood method. The signal is always assumed to be a
Poisson. Seven different models are included with varying choices for background and efficiency models
(Poisson, Gaussian, binomial or known). The class only handles the count of signal and background
events, treatment of discriminating variables is not included.

ROOT class TFeldmanCousins calculates the fully Frequentist construction as described by
Feldman and Cousins. It is not capable of treating uncertainties in nuisance parameters and is intended to
be used for cases with no or negligible uncertainties. It only handles the count of signal and background
events, treatment of discriminating variables is not included.

ROOT class TLimit contains an algorithm to compute 95% C.L. limits using the likelihood ratio
semi-Bayesian method. It takes signal, background, data histograms as input. It runs a set of Monte Carlo
experiments to compute the limits. If needed, inputs can be fluctuated according to their quoted system-
atic uncertainties. The ROOT class is a rewrite of the original �!�-��� � ���0� � FORTAN software. Class��* � � ��� does work with discriminating variables. The TLimit code, like the original fortran code does
not take systematics on the shapes of inputs into account. A newer version of that code �!����� � �������%	��
does have that capability
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Standalone C++ tool � �-��� �!��� ���%	�� is designed to calculate limits for complex realistic analyses
such as the CDF Standard Model Higgs Boson search in which two disjoint samples “single-tagged”
and “double-tagged” are analyzed and in which nuisance parameters affect both in a correlated way.
The � �-��� �!��� ���%	�� tool used binned input data, can handle multiple signal and background sources. The
model predictions are sums of template histograms from different sources. Most importantly, each source
of signal and background can have a rate and shape uncertainty from multiple sources of systematic un-
certainty. Shape uncertainties are handle by a template morphing algorithm or by simple linear interpo-
lation within each bin. Uncertain parameters can be fit for, in the data and in each pseudo-experiment.
Finite MC statistical errors in each bin are included in the fits and the pseudo experiments. The output
consists of the p values given the data and the model. In addition CLs and CLS-based cross section limits
can be computed as well as Bayesian limits using a flat prior in the cross section. The code is available
at [11].

Standalone C++ tool
*(� ���-��-�
	 � *�� � comprises a series of tools for Frequentist limit calcula-

tions that implement the LEP-style calculation of significances in C++. It uses the external Fast Fourier
Transform package FFTW[12] to implement the required convolution calculations. The interface is a
series of command line utilities. � ,���	�	%,-������� calculates the significance of a number counting analysis.� ,��%	�	�,-�
���$� �(	$/ 	$� calculates the significance including a systematic error on the background expecta-
tion. * ��� � ����.�,�,�� calculates the combined significance of several search channels or to calculate the
significance of a search channel with a discriminating variables. Finally * ��� � ����.�,�,�� �(	$/ 	�� does that
taking a systematic error associated with each channel into account.

ROOT class TSplot is in a separate category of statistics tools. The sPlot concept [13] provides a
techniques for the analysis of multi-dimensional likelihood models and for the subtraction of background
by exploiting information of the full correlation matrix in event weighting. The details of the sPlot tech-
nique are described in detail in PHYSTAT 2005 proceedings. A basic version of sPlots is implemented
in the ROOT class � �-����,-� .

7 Toward a common framework for statistical tools

Experiments at LEP, Tevatron and the B factories have created tools that combine multiple channels
and included systematic uncertainties. These tools generally implement a specific technique and the
construction of combined results requires significant manual intervention. The survey of the last section
shows that the interfaces for these tools are very different from each other and that tools generally avoid
dealing with analytical models. Tools either do not deal at all with discriminating variables or represent
them through histograms.

7.1 Desired properties of a common framework for the LHC

For the LHC it would be desirable to have a more versatile, generic solution for statistics tools. In ad-
dition to providing tools for simple calculations, this framework should be able to combine the results
of multiple measurements, be able to incorporate systematic uncertainties and facilitate the technical as-
pects of code sharing. Such a framework should implement all major classes of statistical techniques,
i.e. likelihood based techniques, where all inference is made from likelihood curves; Bayesian tech-
niques, where a prior on parameters is used to compute P(theory|data), and Frequentist techniques which
are restricted to statements on P(data|theory). Within each of these classes there are several ways to
approach the problem and the framework should support each of these types of techniques and provide
some common abstractions. The usefulness of this approach has already been demonstrated: in the
PHYSTAT2005 workshop Kyle Cranmer compared the coverage of several common methods which can
incorporate systematic errors on an identical problem and found significant discrepancies in significance
for these methods. It will be beneficial for the LHC if tools and methods can be cross calibrated before
they are used for physics publications.

W. VERKERKE

176



7.2 Toward common tools - the RooStats project.

An initiative has been started by Rene Brun and Kyle Cranmer to organize a suite of common statistics
tools in ROOT. Essentially all of the three basic classes of statistical methods start with the probability
density function or the likelihood function. Thus building a good model is the hard part as such a model
should be reusable for multiple methods and be able to interface to common tools. Following a survey
of existing software and feedback from the user community it has been proposed to build this tools suite
on top of the RooFit toolkit for data modeling as that already provides solutions for most of the hard
problems. Since RooFit has no static notion of parameters and observables in the core code it is naturally
suitable to work with both Bayesian and Frequentist techniques. The idea of the initiative is to have a
few core developers maintaining the framework and have a mechanism for users and collaborators to
contribute concrete tools.

7.3 Sharing and publishing models

In the spring of 2007 Kyle Cranmer and I have worked out a basic design of the class structure of
RooStats to identify which existing part of RooFit can be used and which parts are missing. The first
concrete development from this design study is to enhance the RooFit data modeling language with
persistence, i.e. the ability to store any models constructed in memory in a ROOT file. To this end a new
concept has been introduced, the ��,�, ��, � �
�-���� � , which can contain all components of a RooFit model
definition (p.d.f.s, variables, functions) as well as RooFit datasets.

A ROOT file with a workspace in essence a universal language to describe, store and share models.
Effectively, the ��,�,���, � � 	$���� � can be the ultimate publication of a physics results, as it allows to share
the actual likelihood function of a measurement in a form that can be read and manipulated by anyone in
ROOT without requiring any experiment- or analysis-specific software. The language of these models is
generic and universal, so that e.g. a theorist should be able to use a likelihood published by an experiment
without the need for any experiment-specific software. Similarly, it will be possible to perform statistical
analysis on combined results given an number of supplied workspaces and just a few lines of code.

A few code examples below illustrate the simplicity of using workspaces. Given a p.d.f � of
arbitrary complexity and a dataset � , we can publish the actual likelihood of our measurement as follows:

C65�5	
�����N6�>K0�%9�9 ���*�%9�9@�����49� ��9� ./65�5�D��@�S��:2� ��D@$,+ &�&,?	5	���43�K�=�?4319� �6�96 �/�5�5�D
C65�5 �65>K��@��86��?	� �!���F7%<1��5	K��@��8��6?	���>$Y+ &�&,?4K6���>3����5>K��@��8���?	�
�RT  S768�5>K�32�W�%9�9�$H+ &�&,�4365>K6� 96 �6�9� ./�5�5�D� ����65>K��@��86��?	�

���� 	9>�O
)���F7%<�K6����=%9�3ET K65�5	3������SC����>C����������	$,+ &�& 5	8��	��C������ 
@ 	9��
�RT �K@ �36�M�.$Y+ &�&,�	�>P6�;��5>K��@��8���?��

The importing of the likelihood object, as shown above, recursively imports and stores all the necessary
dependent objects: p.d.f.s function, variables and datasets, which can comprise hundreds of objects for
complex realistic models. All these components will remain individually accessible in the workspace. At
this point, any physicists with a working ROOT environment and can analyze and interpret these stored
data. For example, to access the likelihood one does

���� 	9>�O
)���F7%<�K6����=%9�3ET K65�5	3��>$,+
C65�5��>Q��4C6����96� �%9�91�1�RTW
	=���?43� 45	�!���*��9�9@�	$,+ &�&1�>"�3�K6�6?43�9� �6��9� �/�5�5>D
C65�5���K�:6I��>3%� �%9�9���8��>K@��� �%9�9�A	B	:6�	3�N6�>K� 4�	Q%9������.$,+ &�&�5	Q�36�% ��Y�	�	3,5>
,�9�9;86�>K6��7��	36�>K@��5�
��

The universal introspection functions of RooFit classes like the � � ���� � �-���� � 	���) method above allow
to access all of its properties. The following continuation performs a profile likelihood analysis:

C65�5>J�K65�
@ 	9>�	
�����8��%9�9 ���*8��%9�9@�����*8�K5�
@ 49��09� �6��9� �/�5�5>D2�W�%9�9 �S��8�$,+ &�&,?	5	���43�K�=�?4308K65�
@ �9�� �
C65�5>J69�5>3@� 
>K6��7��O� 8�A	B>
�K��7��M�.$Y+
8��%9�9)T 8%9�5>3����!�(
�K��7��%$,+
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On other words, if e.g. an Atlas physicist were given a CMS workspace, these few lines of code are
all that are needed to resurrect the actual CMS likelihood of the analysis in question without the need
for any CMS specific code libraries. Along similar lines a combination analysis can be performed by
opening multiple ROOT files with workspaces previously created by various authors or even various
experiments. Generic RooFit utility classes allow to add likelihoods a posteriori and to perform a joint
statistical analysis. The workspace class is equipped with utility functions that allow to renames variables
and functions on the fly to solved naming conflicts and mismatches that may arise when combining
workspaces from different sources.

7.4 Development plans for RooStats

The workspace concept, already available in ROOT 5.17, provides in addition to a vehicle for shar-
ing and publishing models, a common interface for new statistics tools to be developed. The next
step in the RooStats project, expected for ROOT release 5.18, is to implement new and to refactor
existing statistics tools to form an initial set tools that interface to the workspace and perform vari-
ous types of limit and confidence interval calculations, envisioning classes like ��,�, � -/ � 	���-� 	���� �-� ���� ,
��,�,�� � /��
-� ��,-�
	�� � � ���
��,-� , ��,�, ��� , �
�-� ��* ��� � ����.�,�,%� and ��,�,�� � ��,�� . An important design goal for this
next step is to aim for an easy-to-use interface for these tools, which sometimes require a substantial
amount of input information, and to aim to abstract all common aspects in required inputs in a common
interface to promote similarity and interoperability of these tools.

8 Summary

The software landscape for statistics tools for HEP is evolving rapidly. A decade ago most physicists
were performing analyses in FORTRAN and writing their own (statistical) analysis tools. The enormous
progress object-oriented programming, brought to the analysis environment in HEP by the C++ ROOT
environment has promoted modularity and interoperability and offers unprecedented new possibilities.
While most statistics tools for LEP and Tevatron were experiment specific and written during data taking
it now looks technically feasible for the LHC to have a fully functional set of common statistics tools
and electronic publishing and sharing of results before data taking has started.
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ROOT Statistical Software

L. Moneta, I. Antcheva, R. Brun, A. Kreshuk
CERN, Geneva, Switzerland

Abstract
Advanced mathematical and statistical computational methods are required by
the LHC experiments for analyzing their data. Some of these methods are pro-
vided by the ROOT project, a C++ Object Oriented framework for large scale
data handling applications. We review the current mathematical and statistical
classes present in ROOT, emphasizing the recent developments.

1 ROOT Math Work Package

The ROOT MATH work package is responsible to provide and to support a coherent set of mathematical
and statical libraries required for simulation, reconstruction and analysis of high energy physics data.
Existing libraries provided by ROOT are in the process of being re-organized in a new set of mathematical
libraries with the aim to avoid duplication, increase modularity and to facilitate support in the long term.
The main library components are the followings and shown in figure 1.

Fig. 1: New structure of the ROOT Mathematical Libraries. A different color code is used to distinguish compo-
nents already existing from those which are in the process of being developed.

– MathCore: a self-consistent minimal set of mathematical functions and C++ classes for the basic
needs of HEP numerical computing.

– MathMore: a package incorporating functionality which might be needed for an advanced user
(as opposed to MathCore which addresses the primary needs of users) and dependent on external
libraries like the GNU Scientific Library [1].

– Linear Algebra: vector and matrix classes and their related linear algebra functions. Two libraries
exist: a general matrix package completed with a large variety of linear algebra algorithms and
SMatrix, a dedicated package for small and fixed size matrices with optimal performances.

– Fitting and minimization libraries: classes and libraries implementing various types of fitting
and function minimization methods, like Minuit and the new object-oriented version Minuit2.
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– Statistical libraries: packages providing various algorithms for multi-variate analysis or classes
for computing confidence levels and discovery significances using frequentist or Bayesian statis-
tics.

– Histogram libraries: advanced classes for displaying and analyzing one, two and three dimen-
sional data. It provides the histograms and profiles classes. Multi dimensional data sets are handled
by the tree library.

In the following sections a detailed description is given for some of these components which have
been recently developed and released. A brief description will be given also for those components that
are planned to be introduced in ROOT.

2 Mathematical functions

New mathematical functions have been added recently in the MathCore and MathMore library to com-
plement the functions existing in the namespace TMath and present in the ROOT core library. The new
special functions are those proposed in the next extension of the C++ Standard Library [2] and follow
the same naming scheme. These functions include all the major special functions, like the gamma, beta,
error functions and also Bessel functions, hypergeometric functions, elliptic integrals, Legendre and La-
guerre polynomials. Furthermore the MathCore and MathMore libraries provide all the major statistical
distribution functions such as normal, χ2, Cauchy, etc.., in a coherent naming scheme. For each sta-
tistical function, the probability density function, with suffix � ����� , (for example ���	�	
��� � ����� for the
normal distribution), the cumulative distribution function with suffix ��� ��� , the complement of the cdf
with suffix ��� ��� ��� , the quantile function (inverse of the cdf), with suffix �	��� �	�����	�� , and the inverse of
the complement of the cdf, with suffix �	��� �	�����	�� ��� are provided.

Extensive tests of these functions have been performed [3] by comparing the numerical results
obtained with the functions from other packages like Mathematica or Nag [4]. Often an accuracy at the
level of 10−16 (double numerical accuracy) is reached for these functions.

3 Random Numbers

In ROOT pseudo-random numbers can be generated using the ������� � ��
 classes. A base class provides
the methods for generating uniform and non-uniform numbers (according to specific distributions) while
the derived classes, �����	� � ��
�� , �����	� � ��
�� and ������� � ��
�� implement pseudo-random number genera-
tors. These classes have been recently improved by replacing some obsolete generators. The following
pseudo-random number generators are currently provided:

– Mersenne and Twister generator [5] implemented in the class ������� � ��
�� . This is the default gen-
erator in ROOT and the recommended one for the very good random propriety and its speed. It
can also be seeded automatically using a 128 bit UUID number in order to generate independent
streams of random numbers.

– RanLux generator [6] provided by the class ������� � ��
 � .
– Tausworthe generator [7] from L’Ecuyer provided by the class ������� � ��
�� . This generator has the

advantage to use only 3 words of 32 bits for its state.

The CPU time results for generating a pseudo-random number using the ROOT generators are shown in
table 3.

The base class ������� � ��
 provides also a Linear Congruential Generator. This generator has a state
of only 32 bits and therefore a very short period and should not be used in any statistical application.
������� � ��
 implements as well methods for generating random numbers according to specific distribu-
tions. Recently a new faster algorithm for generating normal distributed random numbers, based on the
acceptance-complement ratio method (ACR) [8], has been added to ROOT. This algorithm is much faster
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Random Number Generator Intel 32 Intel 64
MT ( ������� � ��
�� ) 22 ns 9 ns
Tausworthe ( ������� � ��
�� ) 17 ns 6 ns
RanLux ( ������� � ��
 � ) 120 ns 98 ns

Table 1: CPU time (in nanoseconds) for generating one pseudo-random number on a Linux box with the 32 or 64
bit architecture running CERN Scientific Linux 4 and using the GNU gcc version 3.4 compiler

than the traditional Box-Muller (polar) method used previously in ROOT which requires the evaluation
of mathematical functions like � � ��� or ���� . For example, on a 64 Intel Linux box running ROOT com-
piled with gcc 3.4, the time for generating one random gaussian number has been decreased from 183 to
42 ns.

The latest releases of ROOT contains in addition an interface to UNU.RAN [9], a software pack-
age for generating non-uniform pseudo-random numbers. It contains universal (also called automatic
or black-box) algorithms that can generate random numbers from large classes of continuous (in one or
multi-dimensions), discrete distributions, empirical distributions (like histograms) and also from prac-
tically all standard distributions. Efficient methods based on Markov-Chain Monte Carlo are as well
provided for multi-dimensional distributions.

4 Numerical Algorithms

New numerical algorithms based on the GNU Scientific Library (GSL) [1] are provided by the Math-
More library. Classes for numerical differentiation, various adaptive and non-adaptive integration, inter-
polation, minimization and root finding algorithms for one-dimensional functions are currently present.
Algorithms for multi-dimensional functions like Monte Carlo integration and minimizations are in the
process of being added. Fast Fourier Transforms are as well provided via an interface to the FFTW [10]
package. The new algorithms are designed by presenting a single interface to the user for the various
implementations. Alternative implementations which can be present in different libraries can then be
loaded at run-time using the plug-in manager system.

5 Minimization and Fitting

Fitting in ROOT is possible directly via the �����������
	 methods of the various data object classes like
histograms (classes ��� � , ����� , ����� ), graphs (classes ������ ��� , �� ��� ����� ��������� , �� ��� ����� ��� 
�
 � ��������� and
������ ��� ��� ) and trees (class ��������� ). Methods like least-squares or binned and un-binned likelihood fits
are supported. An interface class, ��������� � ������������	� exists to perform more sophisticated fits and to
interface the minimization packages, like Minuit [11], Fumili [12] or Minuit2 [3]. In the case of linear
fits, a dedicated class ����� �����	������������� exists to solve the resulting linear system. An extension to the
linear fitter (robust fitter) for removing bad observations, outliers, based on the approximate Fast Least
Trimmed Squares (LTS) regression algorithm for large data sets [13] exists as well. More complex fits
can be performed by using the RooFit package [14], which is now distributed within ROOT.

A new object-oriented version of Minuit has been recently developed and it is now integrated in-
side ROOT as a new package, called Minuit2. It provides and enhances all the functionality of the original
version. The profits from basing on an object oriented design are increased flexibility, easy maintainabil-
ity in the long term and opening to extensions such as integration of new algorithms, new functionality
and changes in user interfaces. For example, the Fumili algorithm has been integrated directly inside the
minimization framework provided by Minuit2. Various extensive tests have been performed to study and
validate the numerical quality, convergence power and computational performances of this new version.
In the future it is expected to improve the functionality by adding the possibility of supplying constraints
on the parameters.
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A new GUI for fitting has been introduced in order to drive the fitting process. It is possible
to select the fitting function, to set the initial parameter values, fitting and minimization options with
possibility of choosing the minimization engine. It is foreseen to be improved soon by adding advance
drawing functionality such as contour plots, residuals and confidence levels.

In the future it is planned to improve the existing ROOT fitting classes, by extending the functional-
ity of the ����� ��� � ������ ������� class, by providing support for parallel fits, various fitting and minimization
methods and easier integration with RooFit.

6 Statistical tools

For multi-variate analysis and signal-background discrimination a new package, TMVA [15], has been
integrated recently in ROOT. It provides various algorithms, like automatic cuts optimizations, like-
lihood estimators, neural networks and boosted decision trees with common interfaces to use them
easily together. Neural networks can also be used directly via the class ��� � ���� � ��������� �	� � � � ������� .
��� � 	��� � � 
���� � is another multi-dimensional method present in ROOT, which provides the possibility to
find the parametrization of multi-dimensional functions with polynomials, Chebyshev or Legendre func-
tions. It is used for example to parametrize the LHCb magnetic field from the measured field map. The
class ��� � � � � � � �� gives the possibility to perform principal component analysis to reduce dimensionality
of the data while keeping as much information as possible. The class ������� � ��� � ����� 
�������� implements
the Minimum Covariance Determinant estimator, a robust technique [16] to find the location and scatter
of multi-dimensional data.

For estimating confidence levels, the class ��� �� � 
�������� � ����� computes upper limits for Poisson
processes in the presence of background using the Feldman-Cousin method [17]. The class �������	��
computes again the confidence intervals for Poisson processes but including the treatment of uncertainties
in the background and in the signal efficiency using a profile likelihood method [18]. The class ����� 
 � �
computes instead the confidence intervals using the CLs method used for LEP Higgs searches [19]. It is
applied to histograms representing the data, the simulated signal and the background and it incorporates
the systematic uncertainty using a Bayesian approach.

A new package is also currently being developed to extend and improve the functionality of es-
timating confidence levels to satisfy the LHC requirements and focusing in particular on estimating
discovery significances. It will both include frequentists and Bayesian methods and it will be based on
the RooFit data modeling framework [20]. Tools for easy statistical combinations of results will be as
well provided by this new package.

7 Conclusions

ROOT contains already a large variety of mathematical and statistical functionality required for the
analysis of LHC data. An effort is on-going to consolidate and improve the existing libraries by replacing
obsolete algorithms, by making them easier to use and by improving their modularity to gain in long
term maintainability. The needs and the feedback received from users working on data analysis and
reconstruction of the experiment data are as well taken into account in this consolidation process. Many
of the statistical tools currently present in ROOT have been developed by various contributors from
the high energy physics community. It is therefore important to ensure a continuation of these user
contributions and to provide as well an easy way for the users to plug-in their developed tools. This
consolidation effort should as well aim to remove duplications and provide implementations which are
considered standard by the community.
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Abstract
Multivariate classification methods based on machine learning techniques have
become a fundamental ingredient to most physics analyses. The classification
techniques themselves have also significantly evolved in recent years. Statisti-
cians have found new ways to tune and to combine classifiers to further gain in
performance. Integrated into the analysis framework ROOT, TMVA is a toolkit
offering a large variety of multivariate classification algorithms. TMVA man-
ages the simultaneous training, testing and performance evaluation of all the
classifiers with a user-friendly interface, and also steers the application of the
trained classifiers to data.

1 Introduction

The Toolkit for Multivariate Data Analysis (TMVA) provides a ROOT-integrated framework for the pro-
cessing and parallel evaluation of many different multivariate classification techniques. The classification
is done in terms of two event categories, e.g. signal and background. The idea of TMVA is to integrate
a large variety of powerful multivariate classifiers in one common environment with a single interface
allowing the user to compare all classification techniques for any given problem. TMVA offers conve-
nient preprocessing possibilities for the data prior to feeding them into any of the classifiers. Auxiliary
information about the data is provided such as the correlations between the input variables, their sepa-
ration power and ranking, various classifier specific validations and finally efficiency versus background
rejection curves for all trained classifiers. These criteria allow the user to choose the optimal classifier
for the given problem. The package currently includes implementations of:

– Multi-dimensional rectangular cut optimisation using a genetic algorithm or Monte Carlo sam-
pling;

– Projective likelihood estimation;
– Multi-dimensional likelihood estimation (k-nearest neighbour (k-NN) and probability density es-

timator range-search (PDERS));
– Linear and nonlinear discriminant analysis (Fisher, H-Matrix, Functional Discriminant Analysis);
– Artificial neural networks (three different multilayer percpetron implementations);
– Support Vector Machine;
– Boosted/bagged decision trees with pruning;
– Predictive learning via rule ensembles.

A detailed description of the individual classifiers including the configuration parameters available for
their tuning is given in the TMVA Users Guide [1]. TMVA provides training, testing and performance
evaluation algorithms, visualisation scripts and auxiliary tools such as parameter fitting and variable
transformations.

2 Data Preprocessing, Training and Testing

Training and testing of the classifiers is performed with user-supplied data sets with known event classifi-
cation. This data is given in form of either ROOT trees or ASCII text files. The data sets are divided into
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Fig. 1: Correlation between input variables. Left: correlations between var3 and var4 for signal training events
from a Gaussian toy Monte Carlo. Right: the same after applying a linear decorrelation transformation.

statistically independent samples of training and testing data, omitting here an independent validation
sample. Individual event weights may be attributed when specified in the data set. All classifiers see
the same data sets and use the same prescription for the evaluation allowing for an objective comparison
between them. A Factory class organises the interaction between the user and the TMVA analysis steps
including preanalysis and preprocessing of the training data.

During the preanalysis, a preliminary ranking of the input variables is provided and their linear
correlation coefficients are displayed. The variable ranking is later superseded by the ranking provided
for each of the classifiers.

Preprocessing of the data set includes the application of conventional preselection cuts that are
common for all classifiers. In addition one can apply two different variable transformations, decorrela-
tion via the square-root of the covariance matrix and via a principal component decomposition. These
transformations can be individually chosen for any particular classifier. Removing linear correlations
from the data sample may be useful for classifiers that intrinsically do not take into account variable
correlations as for example rectangular cuts or projective likelihood. A demonstration of the decorrela-
tion procedure is shown in Fig. 1. It shows the decorrelation applied to a toy Monte Carlo with linearly
correlated and Gaussian distributed variables that is supplied together with the TMVA package.

After the training, each classifier writes the entire information needed for its later application to
weight files1. The classifiers are then tested and evaluated to assess their performance. The optimal
classifier to be used for a specific analysis strongly depends on the problem at hand and no general
recommendations can be given. To simplify the choice, TMVA computes and displays for each classifier
a number of benchmark quantities such as:

– The signal efficiency and background rejection obtained from cuts on the classifier output. The
area of the background rejection versus signal efficiency function is used for ranking the different
classifiers.

– The separation 〈S2〉 of a classifier y, defined by the integral [2]

〈S2〉 =
1
2

∫
(ŷS(y) − ŷB(y))2

ŷS(y) + ŷB(y)
dy , (1)

1A stand alone C++ code of the trained classifier which is independent of the TMVA libraries is also provided.
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Fig. 2: The top left shows and example plot for classifier output distributions for signal and background events
from the Neural Network (MLP) analysis on a toy Monte Carlo data sample. The background rejection versus
signal efficiency obtained by cutting on the classifier output for the events of the test sample is shown at the top
right.

where ŷS and ŷB are the signal and background PDFs of y, respectively. The separation is zero for
identical signal and background shapes, and it is one for shapes with no overlap.

– The discrimination significance of a classifier, defined by the difference between the classifier
means for signal and background divided by the quadratic sum of their root-mean-squares.

A cut placed on the classifier’s output value y is typically used to classify an event as either signal
or background. Upon user request TMVA also provides the classifier’s signal and background PDFs,
ŷS(B). The PDFs can be used to derive classification probabilities for individual events. It is also used to
compute the Rarity transformation.

– Classification probability: The probability for event i to be of signal type is given by,

PS(i) =
fS · ŷS(i)

fS · ŷS(i) + (1 − fS) · ŷB(i)
, (2)

where fS = NS/(NS + NB) is the expected signal fraction, and NS(B) is the expected number of
signal (background) events (default is fS = 0.5).

– Rarity: The Rarity R(y) of a classifier y is given by the integral [3]

R(y) =

y∫
−∞

ŷB(y′) dy′ , (3)

which is defined such that R(yB) for background events is uniformly distributed between 0 and
1, while signal events cluster towards 1. The signal distributions can thus be directly compared
among the various classifiers. The stronger the peak towards 1, the better is the discrimination.
Another useful aspect of the Rarity is the possibility to directly visualise deviations of a test back-
ground (which could be physics data) from the training sample, by exhibition of non-uniformness.

In addition, the variable distributions, correlation matrices and scatter plots, overtraining validation
plots, as well as classifier specific information such as likelihood reference distributions, the neural
network architecture and decision trees are conveniently plotted using ROOT macros executed via a
graphical user interface that comes with TMVA. An example of the output is given in Fig. 2.
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3 Classifier Application

The application of the trained classifiers to the selection of events from a data sample with unknown
signal and background composition is handled via a light-weight Reader object. It reads and interprets
the weight files of the chosen classifier and can be included in any C++ executable, ROOT macro or
python analysis job.

For standalone use of the trained classifiers, TMVA also generates stand alone C++ response
classes for most classifiers, which contain the encoded information from the weight files and the clas-
sifier’s functionality. These classes do not depend on TMVA or ROOT, neither on any other external
library.

4 Summary

TMVA is a toolkit that unifies highly customisable sophisticated multivariate classification algorithms
in a single framework thus ensuring convenient use and an objective performance assessment since all
classifiers see the same training and test data, and are evaluated following the same prescription.

Emphasis has been put on the clarity and functionality of the Factory and Reader interfaces to
the user applications, which will hardly exceed a few lines of code. All classifiers run with reasonable
default configurations and should have satisfying performance for average applications. It is stressed
however that, to solve a concrete problem, all classifiers require at least some specific tuning to deploy
their maximum classification capability. Individual optimisation and customisation of the classifiers is
achieved via configuration strings that are detailed in [1].

TMVA is an open source project. The newest TMVA development version can be downloaded
from Sourceforge.net at �������������	�	
�������	�������	�	���	������������� . It is also part of the standard ROOT distri-
bution kit (v5.14 and higher).
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StatPatternRecognition in Analysis of HEP and Astrophysics Data

I. Narsky
California Institute of Technology, Pasadena, CA, USA

Abstract
StatPatternRecognition (SPR) is a C++ package for supervised machine learn-
ing. Introduced in 2005, it has been used by several HEP and astrophysics
collaborations, as well as non-academic researchers, for analysis of complex
multivariate data. The package implements powerful classification algorithms
such as boosting (three flavors), arc-x4, bagging, random forest, neural net-
works, decision trees (two flavors), bump hunter (PRIM), multi-class learner,
logistic regression, linear and quadratic discriminant analysis, combiner of
classifiers, and others. It also offers a suite of tools for data analysis: estima-
tion of variable importance, bootstrap, cross-validation, computation of data
moments, multivariate goodness-of-fit estimation, and others. SPR is a stan-
dalone package with an optional dependency on Root for data input/output.
The user can access major SPR methods from an interactive Root session by
loading the SPR shared library. The package is under active development and
shows a growing number of users in the HEP community and elsewhere. The
latest source release of the package can be obtained under General Public Li-
cense from Sourceforge [1]. A full list of notes and talks about the package
can be found on the author’s web page [2].

1 Introduction

For several decades the HEP community has been using various classification methods to separate signal
from background. Among these methods, only binary decision splits, also known as “cuts” in physics
jargon, Fisher discriminant [3], and neural networks [4] have become truly popular. Stimulated by dis-
cussion at the Phystat workshops and related publications in physics journals and web archives, the
community is now exploring new powerful classifiers recently introduced in the statistics literature. In
particular, boosted decision trees [5] and random forest [6, 7] are becoming increasingly popular.

One cannot apply these advanced methods to physics data without software. In the past, physicists
used to adapt packages from other communities or write their own implementations of desired algo-
rithms. This practice is still ongoing. Both approaches require a substantial investment of manpower and
often involve replication of effort. A package that can be used for physics analysis off the shelf should
reduce this waste of effort to minimum.

What are the code requirements for such a package? First and foremost, it must be written in C++.
It is by far the most popular choice among HEP researchers and the base for software frameworks main-
tained by large HEP collaborations. A package for multivariate classification must implement various
methods and provide tools for comparison of their performance on the same dataset. Such a package
should offer methods particularly useful for physics analysis, for example, optimization and monitoring
of HEP-specific figures of merit (FOM’s) such as the signal significance S/

√
(S + B), a 90% upper

limit and others. One of the distinctive features of HEP analysis is the enormous amount of experimental
data available. Thus, the package should perform well on big datasets in many dimensions. This package
needs to be interfaced to Root [8], a widely accepted framework for data storage and access within the
HEP and astrophysics communities. Prior to SPR, such a package was not available.
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2 Distribution

SPR is distributed as source code off Sourceforge [1] under General Public License. Installation instruc-
tions are included in INSTALL. Users reported successful builds on 32-bit (Scientific Linux 3 and 4,
RedHat Enterprise 4, and Solaris 9) and 64-bit Unix platforms (Fedora and Debian). Enthusiasts have
adapted the package to Windows and MacOS. SPR has been included as an extra package in Fedora Core
6 and later versions.

I am committed to supporting two versions of the package: a standalone version that uses ASCII
text for input and output of data, and a Root-dependent version. The user can choose between the two
versions during installation by setting an appropriate parameter of the configuration script. The ASCII
version found consumers outside of the HEP community, while the Root-dependent version is more
popular among physicists. No graphical tools are offered for the ASCII version of the package; however,
one can go through the full analysis chain using ASCII output from SPR executables, as long as one can
tolerate digesting information in the form of text tables instead of plots.

From day one it has been my goal to deliver a package ideal for CPU-intensive long-running job
batch submissions. A typical HEP user trains boosted decision trees or random forest on datasets with up
to millions of events in up to hundreds of dimensions. The package includes two dozen executables, one
for each implemented classifier plus other analysis methods. For the most part, graphical tools have not
been in the focus of development. However, recently I introduced SprRootAdapter — this class wraps
SPR functionality in a shared library that can be loaded in Root. Now the user has access to major SPR
methods from an interactive Root session. Scripts for making Root plots of various SPR quantities are
also provided. For Root users, this should make the graphical analysis of SPR data much easier.

Documentation is supplied in the README file distributed with the package. All implemented
methods and executables are described in sufficient detail.

3 Methods

It is impossible to fit a description of all SPR algorithms into a 4-page note. It is not necessary either
because these algorithms have been described in many books on machine learning, advertised in several
recent publications by physicists, and discussed at numerous seminars and workshops. Below is a brief
summary of what is available.

The full analysis chain for a classifier of choice consists of training and testing. At the training
stage, the user creates a trainable classifier and trains it for a specified number of cycles, either by
supplying parameters for this classifier to one of the SPR executables or by using the SprRootAdapter
interface from an interactive Root session. For a classifier that requires more than one training cycle,
the user can monitor classification error computed for validation data. After the training is completed,
the user can save the trained classifier configuration into a file. The saved configuration contains full
information about the classifier. At any time the user can read the saved configuration from the file back
into memory and either continue accumulating more training cycles or apply the trained classifier to test
data. SPR allows to read configurations from several files and apply them to test data simultaneously
turning the classifier comparison into an easy task.

SPR decision trees [9, 10] come in two flavors — a “regular” decision tree and a top-down tree.
They use the same algorithm for training but store their configurations in different formats. A “regular”
tree stores its terminal nodes as rectangular regions. If the number of nodes is small, this tree can be
easily interpreted by a human. A top-down tree stores its configuration as a full path from the root of the
tree. A top-down tree is faster because the lookup time grows as log(N) versus the number of nodes N
while for the “regular” tree the lookup time grows linearly.

The bump hunter algorithm [11] finds one rectangular region in a multidimensional space by
optimizing a chosen FOM. Both the bump hunter and the decision tree can optimize FOM’s widely used
in the machine-learning research such as Gini index or cross-entropy, as well as FOM’s suited for physics
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analysis such as S/
√

S + B, a 90% upper limit and others.
Boosting [5] works by adding many weak classifiers sequentially and increasing weights of mis-

classified events at each step. By focusing on events that are misclassified most of the time, boosting
typically achieves a very good predictive power. SPR implements three flavors of boosting: Discrete
AdaBoost, Real AdaBoost, and ε-Boost. Although boosted decision trees have lately become popular
in HEP analysis, one can successfully boost other classifiers as well. Boosted binary splits and boosted
neural networks are two other typical applications of boosting found in the machine-learning literature.
SPR allows the user to boost an arbitrary sequence of classifiers.

The bagging (bootstrap aggregation) algorithm [6, 12] averages over many weak classifiers built
on bootstrap replicas of a training set. SPR allows the user to bag an arbitrary sequence of classifiers.
Bagged decision trees have been often used in machine-learning research and are now being applied
to physics analysis, in particular, for particle identification at BABAR. Another popular method, bagged
neural networks, will hopefully find its way into physics analysis as well.

Random forest [7], typically used in conjunction with bagging, represents a set of decision trees.
Each tree is built using randomly selected input variables for each decision split. Random sampling
of input variables reduces correlation among the decision trees and improves the overall classification
power. This method has been applied with success to several BABAR physics analyses.

SPR implements a feedforward backpropagation neural net with a logistic activation function [4]
well known to physicists.

SPR implements a tool for combining several powerful classifiers. One can train several classifiers
on subsets of input variables and then train a global classifier in the space of their outputs. The user needs
to specify how the classifiers are to be combined through a configuration file.

All algorithms described above can be only used for separation of two classes, signal and back-
ground. A multi-class method [13] reduces a problem with an arbitrary number of classes to a set of two-
class problems and then converts the solutions to these binary problems into an overall multi-category
classification label.

SPR offers various methods for estimation of variable importance. For decision trees, the impor-
tance of an input variable can be estimated by adding changes in the optimized FOM due to decision
splits on this variable. For any classifier, the importance of an input variable can be estimated by ran-
domly permuting class labels across this variable and estimating an increase in the overall classification
error due to this permutation.

SPR implements other tools for data analysis that will not be described here due to limited space.

4 Examples of Use

In 2005 the SPR implementation of the random forest algorithm was applied to muon identification
at BABAR, and a significant improvement over the traditional neural-net approach was achieved. This
exercise, presented at the CHEP 2006 and ACAT 2007 conferences, instigated development of an SPR
muon selector. At present the BABAR PID group is working on electron, proton and kaon SPR selectors
as well. An SPR-based KL selector is also available. These selectors outperform likelihood-, cut- and
neural-net-based selectors that are still used in BABAR. An SPR-based electron selector has been recently
introduced at CMS.

Several BABAR physics analyses use SPR methods for background suppression. A search for B+ →
K+νν and a measurement of the branching fractions for the decays B → ργ and B → ωγ exploit the
SPR bump hunter algorithm to find the optimal combination of orthogonal cuts and apply the random
forest method with dozens or hundreds of input variables to achieve the ultimate classification power.
SPR boosted decision trees are used in a search for B+ → τ+ν and a measurement of exclusive b→ sγ
modes.
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There are several published results as well. SPR boosted decision trees and random forest were
applied to identify supernovae [14]. 32 input variables were used to separate signal modeled as fake
supernovae inserted into real sky images from background. The decision tree methods reduce back-
ground by 1-2 orders of magnitude in a broad range of the true positive identification rate compared to
the traditional threshold-cut approach and a support vector machine classifier.

Another study [15] used SPR boosted decision trees for tagging of b-jets. W → lνqq̄ events
were generated by simulating the environment of the LHC collider with pp̄ collisions at a center-of-mass
energy of 14 TeV. The training sample consisted of 50k b-jet events and 50k u-jet events with 7 input
variables. For moderate b-tagging efficiencies, the boosted decision trees improve the u-jet rejection by
several dozen percent compared to the multi-layer perceptron implemented in Root.

This is by far an incomplete list of analyses using SPR. I have little or no knowledge of how the
package is used by collaborations other than BABAR or CMS, and even less so by analysts outside the HEP
and astrophysics communities.
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Concluding remarks





PhysStat-LHC Conference Summary

Robert D. Cousins
Dept. of Physics and Astronomy, University of California, Los Angeles, California, USA

Abstract
This timely conference in the PhyStat series brought together physicists and
statisticians for talks and discussions having an emphasis on techniques for use
at the Large Hadron Collider experiments. By building on the work of previous
generations of experiments, and by developing common tools for comparing
and combining results, we can be optimistic about our readiness for statistical
analysis of the first LHC data.

1 Introduction

In attempting to summarize the content of such a dynamic conference, for my commentary I selected a
subset of the many talks, based either on the significance, or simply on my somewhat arbitrary interest.
I have also tried to make some connections to earlier PhyStat meetings.

Data analysis at the LHC will benefit from, and build on, the vast experience coming from LEP,
B factories, the Tevatron, and earlier experiments. The task during the next year is to consolidate this
experience into common tools that the LHC experiments can use, while continuing to add to them.
Already there has been progress in this area, and we have good reason to expect that ATLAS and CMS
will be better positioned to compare and combine results than were experiments at first turn-on of other
accelerators. I begin by mentioning a few selected topics, then discussing some aspects of the Bayesian
analyses presented, and then turning to the more global issues of statistics at the LHC.

2 Topical Talks

2.1 P values and Nuisance Parameters

Luc Demortier has written an extensive review (174 pages!) [1] on p values (roughly speaking, the prob-
ability of obtaining a value of a test statistic as extreme or more extreme than that observed), including
many aspects of the inclusion of nuisance parameters [3]. I take the opportunity to mention as well my
recently posted annotated bibliography [4] on combining p-values. Especially since p-values are easy to
misinterpret, Demortier’s work deserves to be widely read.

One of many issues we face in computing p-values is what is the best way to enumerate all the
possibilities used in computing the probability entering into the p-value, while accounting for the effect
of the many places one looks. This is coupled to the issue of what value of a p-value corresponds to
a “discovery”. A. Drozdetskiy (with A. Korytov and G. Mitselmakher) and W. Quayle each described
ways to account for the multiple Higgs masses at which one looks for a signal; an interesting practical
issue is to what extent this effect can be factorized out of the more complicated analysis.

I neglected to mention in my talk what I perceive to be an alarming propagation in HEP generally
of the notion that there can be universal values of p-values which correspond to “evidence”, “discovery”,
and other words in the scientific process. Without getting into even more fundamental objections to p-
values, I hope that it is clear (to paraphrase Carl Sagan) that the more extraordinary the claim, the more
extraordinary the evidence must be, so that there cannot be a universal p-value for all claims.

2.2 Weighting Background-Subtracted Events

Jim Linnemann (with Andrew Smith), also citing Roger Barlow and F. Tkachov, discussed optimal
weighting. Historically, HEP seems to have under-utilized these “direct" calculational ways of well-
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approximating a maximum-likelihood estimate. Is our computing now so advanced that we have less use
for it? Even if so, it would seem that this should be part of our statistics toolkit.

2.3 Banff Challenge on Upper Limits, and other studies

Joel Heinrich reported on the performance of methods employed by many physicists and statisticians in a
challenge in which participants were asked to provide upper limits or 2-sided intervals on cross sections
measured in a counting experiment with nuisance parameters. Heinrich then evaluated the results by
both frequentist and Bayesian criteria. This fascinating study has a lot of food for thought. In a related
paper Tucker (with myself) evaluated the frequentist performance of several algorithms, in particular
high-lighting the little-known application of the binomial test to a common problem [6]. Also, Rolke
(with Lopez) presented studies using the likelihood ratio test statistic.

2.4 Design of Experiments

Statistician Nancy Reid reviewed some of the theory of experimental design. This is another example
where most high energy physicists seemed to have missed a whole area of study that has some relevance
to our work. In particular, as emphasized in a talk by Jim Linnemann, it seems that the usual way of
checking the influence of variations in parameters has missed important cross terms. We should all take
a look at these talks and the references.

2.5 The “Other PDF’s”

As he did at the 2002 conference in Durham [8], Robert Thorne (the “T” of MRST PDFs) reviewed the
status of calculating uncertainties on Parton Distribution Functions. This is still a very tough business,
which is however important for our experiments. Any consumer of these uncertainties (especially one
contemplating interpreting them literally out to several sigma) is well-advised to learn how hard this
problem is. Since “For Global Fits, using ∆χ2 = 1 is not a sensible option”, CTEQ uses ∆χ2 ∼ 100,
and MRST/MSTW use ∆χ2 ∼ 50, for 90% C.L. intervals (for which the book value of ∆χ2 is 2.7). This
is in the spirit of a (large!) PDG scale factor, and points to inconsistencies in the input data and/or the
model.

2.6 Multivariate Methods

Multivariate methods using machine learning techniques have been a very common theme in the PhyStat
workshops since the Durham workshop in 2002 (where Harrison Prosper provided a useful overall per-
spective on the several methods discussed there). At PhyStat 2003 (SLAC) and 2005 (Oxford), we were
fortunate to have one of the world’s experts, Jerome Friedman, actively involved. At the present confer-
ence, we heard talks on packages implementing many of these methods, TMVA (Fredrik Tegenfeldt and
collaborators) and SPR (Ilya Nasky). General frameworks (ROOT, RooStats) for incorporating these and
many other tools were described by Lorenzo Moneta and by Wouter Verkerke; I return to these in my
discussion below.

2.7 A Statistician’s view of Nuisance Parameters

Statistician Radford Neal emphasizes the likelihood principle, and therefore uses the likelihood function
as input to a classifier. He urges us not to use frequentist confidence intervals, particularly not two-sided
ones. He integrates out the nuisance parameters using a prior.

2.8 Use of Bayes’ Theorem for Particle ID

Iouri Belikov, while presenting the statistical “wish-list” of the Alice collaboration, showed a nice ap-
plication of Bayes’ Theorem to particle identification. It reminded me of a similarly nice application at
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the 2002 Durham Conference [9], and I have the same comment [10], namely a semantic one: while this
technique was called “Bayesian”, it would appear to be perfectly valid with the frequentist definition of
probability.

Bayes’ Theorem applies to any P which obeys the axioms of probability, including both the degree-
of-belief P commonly referred to as “Bayesian” and the frequency definition of P more commonly used
in HEP. The example of Belikov would seem to be perfectly consistent with the frequentist definition of
P , and hence pleasing to frequentists and Bayesians alike. At PhyStat 2003, statistician Bradley Efron
put it this way: “Bayes’ rule is satisfying, convincing, and fun to use. But using Bayes’ rule does not
make one a Bayesian; always using it does, and that’s where difficulties begin.” [11]

3 Discussion of Bayesian Methods

3.1 Cox’s Five faces of Bayesian statistics (and the sixth from HEP)

Renowned statistician David Cox, in a stimulating talk, compared a number of approaches to the problem
of inference when there are many parameters or many hypotheses. I chose for the summary talk one slide
in which he described five types of Bayesians among statisticians. What is notable is that typical HEP
Bayesians do not fall into any of these categories, if they are using priors which are uniform in arbitrary
variables (sometimes claimed to be preferred on the grounds that they are “fundamental” or “what is
directly measured”). This has been tolerated, I think, partly because typically the likelihood overwhelms
the prior (and frequentist coverage is in the end good), and partly because flat priors for the Poisson
mean yield upper limits with conservative frequentist properties. However, it is unfortunate that there
are workers in HEP who are using (or even advocating) Bayesian techniques but who are completely
unfamiliar either with the subjective Bayes foundations of Savage and De Finetti, or with writings on
non-subjective priors such as those of James Berger and the review of Kass and Wasserman [12]. The
Jeffreys prior does not seem to be commonly used in HEP, and I am not aware of any examples in HEP
of the use of the Reference Priors of Bernardo and collaborators, although Luc Demortier has advocated
their use [13] (and in this conference put such software on our wish-list for statisticians).

Furthermore, the flat priors used in HEP can be susceptible to ill behavior in high dimensions,
where one can easily add undesired “information" without realizing it. As Bradley Efron noted at Phy-
Stat 2003, “Perhaps the most important general lesson is that the facile use of what appear to be unin-
formative priors is a dangerous practice in high dimensions.”[11]. Joel Heinrich gave a specific example
relevant to HEP at PhyStat 2005 at Oxford, noting a problem encountered with a multi-dimensional nui-
sance parameter and observing, “In hindsight, this should have led us to distrust a prior flat in multiple
dimensions, since this is well known to lead to problems” [14].

Thus, I had a somewhat questioning reaction to the talk by Leszek Roskowski on “A Bayesian ap-
proach to Constrained MSSM”, but I hope in a constructive way. The problem described is an important,
difficult one, namely trying to synthesize particle and cosmological data in order to constrain supersym-
metric models. Closely related work was presented by Lafaye (with Plehn, Rauch, Zerwas) regarding
Sfitter. While I have not studied the physics inputs and models for these talks, it would appear that the
latter talk explored more of the “space” of methods, as I would advocate. Once one has the likelihood
function, one can obtain either approximate frequentist confidence regions via the profile likelihood (MI-
NUIT MINOS in HEP), or Bayesian credible regions by adding priors and integrating. As has been much
discussed at past PhyStat conferences, the first step (plotting contours of the likelihood) is always useful,
if only to be used as comparison with other methods. For a Bayesian analysis, before multiplying the
likelihood by the prior, it can be very instructive to take only the multi-dimensional priors, marginalize
over the nuisance parameters, and see what one is left with, i.e., the posterior one would obtain if the
likelihood function were constant.

It would seem that only after performing these two exercises is one truly prepared to multiply the
likelihood and the prior, and start integrating. With a sensitivity analysis to compare various priors, and
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with comparison to the profile likelihood answer, one can understand if one is faced with a pathological
situation (for example where the likelihood has a spike that is so narrow that there is negligible area under
it in any reasonable metric), or is in asymptopia (where all methods agree), or somewhere in between.

Statistician Paul Baines (with Xiao-Li Meng) gave an enticing, if somewhat sobering talk on Prob-
ability Matching Priors, i.e., priors which lead to posterior intervals with good frequentist coverage. A
bottoms-up approach is extremely difficult. Meanwhile in HEP we have gained quite a bit of experience
regarding specific cases when Bayesian calculations give reasonable coverage; it important to continue
to do so.

3.2 James Berger on Bayesian analysis: objectivity, multiplicity and discovery

It was a pleasure to have statistician Jim Berger back, as he was first introduced to our community at
the Fermilab Confidence Limits Workshop in 2000 [15]. He is a leading proponent of the “Objective
Bayes” approach in which one uses Bayesian techniques (thereby building in the likelihood principle
and consistent treatment of probabilities once the all-important priors are chosen) with priors which do
not always represent personal belief, but rather are chosen by some formal rules.

One striking aspect of Berger’s talk is that, for an unknown binomial parameter, it is obvious to
him that the objective prior to use is the Jeffreys prior, from both the objective Bayesian (invariance)
and frequentist (approximate coverage) points of view. And yet, in HEP, on several occasions I have
seen people seeking a non-informative prior for a binomial parameter and without any thought taking
the uniform prior. In higher dimensions, Berger advocates the use of Reference Priors, and we discussed
with him how useful it would be to have some software tools for this.

Berger conveyed a key part of his message to us in both 2000 and 2007. In 2000 [15], Berger
said, “What should be the view today: Objective Bayesian analysis is the best frequentist tool around.”
(This was after quoting M.G. Kendall, whom we in HEP know best via his book with A. Stuart, as
giving the ‘old’ frequentist viewpoint of Bayesians: “...if they [Bayesians] would only do as he [Bayes]
did and publish posthumously we should all be saved a lot of trouble.” [16].) An important part of
his message this year is that “Good versions [of Objective Bayes] are argued to yield better frequentist
answers than asymptotic frequentist methods”, concluding that “There is great appeal to simultaneously
being objective Bayesian and frequentist.”

In Durham in 2002, we had the pleasure of interacting with a Bayesian statistician of a different
flavor, Michael Goldstein [17], who is solidly in the (personalistic) subjective camp. He understood of
course that one cannot publish only a posterior probability based on one’s personal subjective prior. The
key point, which I believe our community has been rather feeble in undertaking, is to study the sensitivity
of the result to changing the prior. In the 2002 Proceedings, Goldstein says, “Again, different individuals
may react differently, and the sensitivity analysis for the effect of the prior on the posterior is the analysis
of the scientific community, so that the answer should now be an interval of posterior values which may
be reasonably held by individual scientists...In this view, a sensitivity analysis over the reasonable a priori
judgments of the scientific community gives the full analysis.” I copied from his transparencies at the
time a slogan which I think Bayesians in HEP should take to heart: “Sensitivity Analysis is at the heart
of scientific Bayesianism.”

As we go forward in HEP, I hope that high energy physicists using Bayesian methods will look to
both of these points of view for understanding.

4 Collider Physics

Complementary overview talks with lots of food for thought were presented by Wade Fisher (Tevatron
methods), Kyle Cranmer (practical problems in LHC searches), and Eilam Gross (ATLAS+CMS wish-
list), with related talks by Yuehong Xie (LHCb wish-list) and Iouri Belikov (ALICE wish-list). As to
summarize these important talks would be tantamount to repeating them, I urge everyone to consult the
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writeups in these proceedings.
In trying to synthesize all the experience from past experiments, we have the sociological lessons

as well as the statistical ones. At the 2002 Durham workshop, Chris Parkes provided some fascinating in-
sight into the combination of LEP results [18], and the Tevatron experience demonstrated similar issues.
Meanwhile, as a result of the PhyStat conferences and our interaction with statisticians, we have learned
a lot about the technical and foundational aspects of many of our methods. Like the statisticians before
us, we seem to be getting over the hump of foundational wars and becoming pragmatists, and we are
getting some residual skirmishes out of the way before we have data. And we understand the necessity
to compare and combine results in order to maximize return on society’s huge investment in us.

For me the ideal situation, which is indeed already underway, is for ATLAS and CMS to have
a technical framework in which results can be compared and combined in a transparent way, while
allowing for differences of opinion about which method is preferred. One of the key aspects is to make
it “easy” for an experimenter to compute a result (statistical significance of an effect, a measured value,
or an interval) by multiple techniques, so that the consuming physicist is not confined to the narrow
preferences of one analyst.

In this respect, I am quite enthusiastic about all the work (by many people) described in talks
by Lorenzo Moneta and Wouter Verkerke. From the ROOT environment, one will be able to perform
analyses, share the results, and combine analyses, both for multiple channels within one experiment, and
with other experiments. Since the workshop, progress has continued in this direction, with involvement
of physicists from both ATLAS and CMS.

If we take interval estimation (including nuisance parameters) as an example, the three main
classes of methods were discussed during the workshop:

– Profile likelihood, known in HEP as the MINUIT MINOS method, based on likelihood ratios
(differences in log likelihood), without attaching a metric to the unknown parameters.

– Bayesian methods, based on the likelihood function, with metric attached via the prior pdf.
– Frequentist confidence intervals, either constructed a la Neyman, or by a technique meant to assure

frequentist coverage.

It is common to mix aspects of the methods, for example integrating out some nuisance parameters in
a profile likelihood or frequentist confidence interval treatment. The RooStats framework is gathering
momentum as a forum where technical implementations of all of the above techniques (and popular
variants thereof) can be implemented with a common interface. Our community could then effectively
demand that a result derived from one technique also be derived from the other techniques, and that the
sampling properties be studied.

This will help to educate students and veterans alike. When the methods agree, one is happily
in asymptopia; when the methods disagree, one will be reminded that the methods answer different
questions and have different definitions of probability. Bayesian answers depend on the prior and can
have poor frequentist coverage properties, while frequentist confidence intervals typically violate the
likelihood principle and the probability of containing the true value is a property of the set, not of any
one interval. Furthermore, as more advanced methods continue to be developed and are “plugged in”, in
this environment one should be able to evaluate the new methods in a controlled way.

All this points to a future which I believe will be quite productive, as we eagerly await first data
from the LHC. By the time of the next PhyStat, we expect to have to have real LHC data on which to
demonstrate our techniques!

5 Thanks

On behalf of all participants of the meeting, I am pleased once again to thank Louis Lyons for his
continuing efforts to organize this series of workshops, and to thank his co-organizer of this meeting,
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Albert De Roeck. On behalf of the physicists, we thank again the statisticians who helped educate us and
showed only good-natured tolerance as we sometimes abused their discipline’s techniques and principles.

This work was partially supported by the U.S. Dept. of Energy and by the National Science Foun-
dation.
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The Early History of Bayesian Ideas

F. James
CERN, Geneva, Switzerland

Abstract
A brief after-dinner talk presented at the PhyStat LHC Workshop, in which I
present some unexpected Bayesian thinking dating back to the Middle Ages.

As I am often accused of being an incorrigible frequentist, I thought I should do some more
studying of the Bayesian methodology and in particular the early history and foundations of Bayesian
thinking.

I found to my great surprise that many of the ideas and even the terminology I thought originated
in the 18th, 19th and 20th centuries can actually be traced back long before Reverend Thomas Bayes’
famous paper on the Doctrine of Chances.

The earliest traces I could find are from the 12th and 13th centuries. In those days in Europe, there
were many ways in which one could lead a religious life. Probably the most devoted servants of the faith
were the monks, who lived in monasteries (as their name implies), and the friars, who led humble lives
in the outside world. The name of the latter group derives from the French frère, or brother.

Although we tend to have a romantic view of monasteries now, by all accounts life in the monas-
teries was not very comfortable. Everything was in stone or hard wood, and meals were taken while
seated on long wooden or even stone benches. Although quite uncomfortable, these benches were very
important, for it was here that one encountered the highest posterior densities.

The friars, on the other hand, were not concentrated in monasteries, so the friar density was much
more spread out and uniform, as it should be. Not completely uniform, of course, because friars were
believers, so the friar density reflected the degree of belief, or faith, for a given region.

In the beginning, friars were supposed to have no possessions and live from begging alone, but this
was not an entirely workable arrangement, so most of them eventually took on regular jobs. Those who
worked in the library were known as reference friars, and those who did ironing were called flat friars.

As it must happen with any social group, some friars, and indeed those most often encountered
in public, were accused of improper behaviour. These improper friars soon became a source of scandal,
starting with their provocative dress often characterized by considerable undercoverage. There was some
discussion about how much coverage a friar should have, and it was decided that, at the very least, their
posteriors should have adequate coverage.

Finally, one case was reported of a friar with no coverage at all! This friar was arrested, but was
later released for lack of evidence.

There was a suggestion to organize the friars into groups, with leaders that would oversee the
behaviour of the group members, but the idea of hierarchical friars was not well received. Finally, a
physicist friar by the name of Jeffrey decided to form his own group of friars known as Jeffrey’s friars,
who would promise to behave themselves better. Most importantly, their behaviour was to be invariant.

But even if it was invariant, the behaviour of some of Jeffrey’s friars was still improper. Moreover,
they were accused of being unprincipled, since they refused to obey an obscure religious dogma known
as the Principle of Likelihood.

Just at this time an additional problem arose with those friars who (like many monks) had taken
vows of silence. These friars were called noninformative friars, and there was considerable discussion
about just how noninformative they were. An influential author in Valencia even published a pamphlet
with the provocative title "Noninformative Friars do not Exist!"
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Further problems arose as an unexpected group, the Multidimensional Friars, exhibited a new form
of unacceptable behaviour: inconsistency. But by this time, the Reformation was in full swing in much
of Europe, and in the confusion that followed, the trail of early Bayes history has been lost.

Fred James,
with help from Bob Cousins, Kyle Cranmer and Jim Linnemann

F. JAMES
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LHC Statistics for Pedestrians

Eilam Gross
Weizmann Institute, Rehovot, Israel

Abstract
A pedestrians guide aimed at the LHC laymen statisticians is presented. It
is not meant to replace any text book but to help the confused physicist to
understand the jargon and methods used by HEP Phystatisticians1

1 Introduction

The first Phystat meeting was a workshop at CERN on Confidence Limits followed by a similar workshop
at Fermilab. Fred James who organized the meeting with Louis Lyons presented then his personal wish
list titled: ‘What I would like to see‘. Fred wishes that physicists learn the vocabulary of statistics. This
pedestrian guide is aimed at the Atlas and CMS physicists who wish to become Phystatisticians so that
when ATLAS or CMS publish a combined limit or discovery significance they will know what it is all
about.

When interpreting the result of the experiment, there are two alternate questions and one must
not confuse between them. Question number one would be: Did I or did I not establish a discovery?
Question number two would be: How well does my alternate model describe this discovery? The first
question has to do with the goodness of the fit of the observed data to the good and old Standard Model
while the second question has to do with hypotheses testing and the derivation of confidence intervals
and upper limits. The LHC physics community is not only a mixture of physicists speaking all sorts of
languages, from Hebrew and Chinese to English, German and French but who are also refugees of all
sorts of experiments each with its preferred statistical method. Physicists educated at LEP advocate the
CLs method while some Tevatron physicists prefer Bayesian methods with some of their friends from
BaBar and Belle using pure frequentist methods. It seems that the only way out is to do it all... But, in a
way, as we will show, conceptually one way leads to another.

But in order to introduce the different methods and compare them a basic lesson in the related
statistics jargon is necessary.

2 Test Statistics

A test statistic is a quantity calculated from our sample of data. Its value can be used to estimate how
probable is the result that we observe with respect to some null hypothesis. A physicist’s intuition will
attribute the null hypothesis to the ’background only’ hypothesis. Normally it depends on the nature
of the problem, but in this write up we will stick to this definition. In this context the value of the test
statistic is used to decide whether or not the null hypothesis should be rejected in our hypothesis test.

It is important to note that the observed test statistics is based on our ONE experiment and could
be a result of years of data collecting! Normally to conclude anything based on the observed test statistic
one needs the pdf of the test statistic. This can sometimes be calculated analytically but can always be
generated with toy Monte Carlo experiments.

A consequence of the Neyman-Pearson lema is that if H0 is the null hypothesis (background only)
and H1 is the alternate hypothesis (say, a Higgs Boson with a mass m) then the most powerful test
statistic one can construct (in absence of systematics) is the Likelihood ratio

Q(m) =
L(H1)
L(H0)

=
L(s(m) + b)

L(b)
(1)

1A Phystatistician is a Physicist who knows his way in Statistics and knows how Kendall‘s advanced theory of statistics
book looks like....
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Fig. 1: An illustration showing the control area α and the p − value of a Gaussian distribution. Note, in this
example Xobs > X5σ.

In a counting experiment s and b would be the average number of the expected signal and background
events and the Likelihoods would be derived from the data using Poisson statistics.

3 p-value

At LEP, trying to discover the Higgs boson, people examined the distribution of the observed 1 − CLb

as a function of the hypothesized Higgs mass and looked for troughs.... That might have been the right
thing to do but the wrong statistical jargon. A discovery by definition is a deviation from the Standard
Model, i.e. the "background only" hypothesis (H0). Given the pdf of the test statistic for background
only experiments, it is common in HEP to announce a discovery if the result is at least 5 σ away from
the expectation. Given a pdf g(x|H0) of the test statistic x, one can define a control area of size α at
the tail of the pdf distribution (for this example let us assume that the less probable result is on one side
of the distribution only), i.e. α =

∫∞
x5σ

g(x|H0)dx (Figure 1). If the observed result xobs > x5σ then
the probability to get a result which is as or less compatible with the background hypothesis is given by
p =

∫∞
xobs

g(x|H0)dx and it is smaller than α. This probability is called the p − value and a discovery
is considered when p < α. This means also that the background-only hypothesis is rejected with a
probability of 1 − p.

Historically physicists have the tendency to mix confidence with p-value. In looking for the Higgs,
the LEP experiments used the ‘confidence level in the background, 1 − CLb(mH), where CLb(mH) is
defined as the tail area CLb =

∫ xobs

−∞ g(x|H0)dx, with the statistic x being the log likelihood ratio for
the background plus signal model (i.e. Standard Model with Higgs of mass mH ) as compared with
background only (i.e. H0, the Standard Model with no Higgs in the observable mass range). This

E. GROSS
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implies that in an ensemble of backgound only experiments, a fraction 1 − CLb would be expected to
have a larger value than the observed value. The terminology is confusing since 1 − CLb is in fact a p
value. The LEP experiments were looking for tiny values of 1−CLb, which would indicate a very large
fluctuation of the background (or the presence of a signal), but none was found. The correspondence
between the hypothesis test property 1 − p and the background confidence estimation, CLb is further
discussed in [1].

4 The Look Elsewhere Effect

The Standard Model predicts a Higgs Boson but not its mass. It can be anywhere up to a few hundreds of
GeV. We can specify an hypothesis with a specific Higgs mass but had we observed some possible signal
we should take into account that this signal could be a fluctuation which could be observed anywhere in
our sensitivity range [2]. Here we change the signal hypothesis from a Higgs with a specific mass mH to
a Higgs with some mass in the observed region. It is not clear how to take these effects into account. One
common way is to degrade the observed p-value by multiplying it by the size of the sensitivity region
divided by the experimental resolution. A common claim is that the control region for discovery is so
small that "who cares".... Another common belief is that the "look elsewhere effect" is the reason for the
habit of defining a discovery as a 5σ and not for example 4σ, because even if you quote 5σ your effective
significance is lower.

5 Confidence Intervals and Coverage

Assume you have a measurement mmeas of m with mt being the true value of m and suppose you know
the pdf p(mmeas|m). You use some method to calculate a 90% confidence interval [m1,m2]. What does
it mean?

Most physicists interpret it as if the probability that there is a Higgs Boson with mt ∈ [m1,m2] is
90%. However, this is totally wrong. If you run a bunch of toy Monte Carlo experiments, each one will
yield a different interval. The correct statement is that if there is a Higgs with a mass, mt, then, in an
ensemble of experiments, 90% of the obtained confidence intervals will contain the true value of m, m t.
More on the source of this misconception in section 6.

Subsequent to the above definition of interval is the notion of coverage. The confidence interval is
estimated using the physicist preferable method. If in an ensemble of Monte Carlo experiments the true
value of m is covered within (e.g.) 90% of the estimated confidence intervals, we claim a coverage. If it
occurs less than 90%, the method is claimed to undercover.

Some physicists doubt the importance of coverage. Their claim is that coverage answers the wrong
question. What we really want to know, so they claim, is the probability that the Higgs Boson exists and
is in the specified mass interval. So there are two possibilities here. Either educate the physicists about
the correct meaning of coverage or try to answer the "right" question...

6 Subjective Bayesian

What is the "right" question? It must be: Is there a Higgs Boson? When pronouncing this question, I
cannot escape from an immediate association to the question: Is there a God? Can one really answer this
question based on the data (earth)? The answer is yes, but with many significant prior assumptions....
each weakens the credibility of the answer.

I believe that the source of the common misconception regarding the interpretation of a confidence
interval is that our mind is sometimes acting in a Bayesian manner. We try to deduce something about
the Higgs ("asking the right question"), we derive a confidence integral and translates it to our degree of
belief that there is a Higgs given the data, i.e. Prob(mt ∈ [m1,m2]|data).
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A model (A Higgs Boson with a mass m) can only be assigned a degree of belief, but not a
probability in a frequentist manner (i.e. as a random variable in a repetitive set of experiments).

The relation between the degree of belief and the true probabilities is given by the Bayesian rela-
tion

Prob(Higgs|data) =
L(data|Higgs)π(Higgs)

Normalization

where π(Higgs) is the prior for a Higgs Boson which many times is taken to be uniform in the Higgs
mass (or simply 1) without even noticing!

Last comment here; in this approach instead of talking about confidence intervals we talk about
credible intervals, where p(Higgs|data) is the credibility of the Higgs given the data.

7 The Likelihood Principle

Bayesian inference obeys by definition the Likelihood Principle (LP). According to this, the Likelihood
function L({θ}) contains the full information from the experimental data. A consequence to the LP is
that methods that provide different results for a measurement yet have proportional likelihood functions
are inconsistent. A nice discussion about the LP can be found in [3].

8 Who is Afraid of Nuisance Parameters?

The answer to the question appearing in the title is nobody, yet everybody.... Nobody, because Nuisance
parameters is just the term used by statisticians for what we physicists refer to as systematics. Everybody,
because systematics can kill an experimental observation if not under control. The significance of an
observation is given in the limit of large numbers as S/

√
B, however, this number is degraded in the

presence of a systematic uncertainty ∆ on the background and becomes S/
√

B(1 + ∆2 · B), which in
the limit of infinite luminosity (and large B) becomes S

B·∆ . So if there is 10% background uncertainty,
one will never reach a 5σ significance if S/B < 0.5.

Physicists find difficulties in both classifying and estimating the systematic uncertainties and im-
plementing them in the analysis interpretation. There are systematic errors that reduce with increasing
statistics and therefore can be handled, and those that do not. In what follows, we will concentrate on the
possible treatment of systematics in the interpretation phase of the analysis.

9 Integrating Out the Systematic Errors

When applied to Bayesian credibilities, integrating out the systematics via marginalization with a prior is
a natural thing to do. If we denote by s the Higgs signal, by b the background which has some systematic
uncertainty, the equation in section 6 becomes

p(s, b|data) =
L(s, b|data)π(s, b)
Normalization

The prior is often assumed to factorize π(s, b) = π(s)π(b) with the signal prior taken to be flat. Hence
the background systematics is explicitly included in the background prior. We can then integrate the
background systematics via p(s|data) =

∫
p(s, b|data)db.

Integrating the nuisance parameters is also used in the so called Cousins-Highland hybrid-frequentist
technique [4]. Here the recipe is given by p(data, data′|s) =

∫
p(data|s, b)p(b|data′)db where the data

is used for the main measurement and the data′ for the auxiliary measurement of the background (e.g.
via a side band). It is to be noted that one can fake an auxiliary measurement in order to apply for exam-
ple a 5% systematics to the background. The Bayesian nature of this method is apparent by the use of
the posterior p(b|data′).
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10 Priors

A prior, e.g. π(λ) is interpreted as a description of what we believe about a parameter λ preceding the
current experiment. One can distinguish two kinds of priors. Informative priors which are based on some
information one has on λ and uninformative priors. When the parameter is that of no-interest (nuisance)
an auxiliary measurement might supply a legitimate basis for an informative prior. The Higgs signal, on
the other hand, is a parameter of interest. Some would say that all priors of the parameters of interest
should be uninformative. I would say that using the lower bound of 115 GeV on the Higgs mass as part
of a prior, is hard to argue with..... But note also that choosing a prior is a science by itself. A prior flat
in the coupling g is not flat in the cross section σ ∼ g2. That led to the development of reference priors
[5]. Reference priors have a minimal effect (relative to the data) on our prospective final inference. In
the simple one dimensional case, with one parameter, the reference prior is reduced to the Jeffry’s prior
which is metric invariant, i.e.

∫
L(data|s, λ)π(λ)dλ =

∫
L(data|s, λ)π(f(λ))df and can be easily

obtained in an analytic way.

11 Doing Justice with the CLs Method

In section 3 we defined the confidence level CLb. In a similar manner one can define the signal+background
confidence level CLs+b. But what is the meaning of a signal confidence level? Using the terminology of
confidence levels CLs was defined as CLs ≡ CLs+b

CLb
[6].

The CLs method is the most discredited method in HEP statistical inference.The reason is that
it lacks a frequentist coverage. However, it lacks it in places where the experiment is insensitive to the
expected signal! And this is not necessarily a disadvantage from some physicists point of view! Here is
what happens:

One uses the Neyman-Pearson likelihood ratio as a test statistics (see section 2) and construct its
pdf for background only and signal+background experiments. When the expected signal is very low
the two pdf are almost overlapping (see Figure 2). When the number of observed events fluctuates far
below the expected background, both hypotheses s(mH), s(mH) + b are not favored, yet, given the low
p-value of the s + b hypothesis ps+b = 3% for example, one might exclude the s(mH) + b hypothesis
and the common physicist will interpret the result as if a Higgs with a mass mh (e.g. 116 GeV in LEP
case) is excluded at the 97% Confidence Level. But this is a false statement. To protect against such
an inference one defines a new quantity with an unfortunate name CLs = ps+b

1−pb
. In the limit of a light

Higgs mass CLs
mH↓
−→ CLs+b. As a result the false exclusion rate is too low for heavy Higgs Bosons, i.e.

the method undercovers where the experiment lacks sensitivity. However this is conservative because it
avoids excluding when there is no sensitivity, while simple usage of the pure frequentist CLs+b could
result in an exclusion.

12 Neyman Construction

The Neyman construction is a method of parameter estimation that ensures coverage. One scans over
all the possible true values of some parameter s and defines an acceptance interval for each s, based
on the known pdf, g(sm|s), of the measured sm given a possible true s (there is only ONE unknown
true s though). The (e.g.) 68% acceptance interval [sl, sh](s) is defined via the integration [sl, sh](s) =
{sm|

∫ sh

sl
g(sm|s)dsm = 68%} (Figure 3). Even in the simplest case where g is a Gaussian, there is

an ambiguity in the choice of the integration limit, which will lead to two-sided intervals, or one-sided
integral bounded from below or above. To sort out the integration limits one needs to specify an ordering
rule. The construction of the acceptance intervals for all s turns out to be a belt from which one can easily
get the corresponding (e.g.) 68% confidence interval [sd, su](so) (see section 5), given one measurement
so via inversion (Figure 3). Due to space limitations there is no way I can describe here the Neyman
construction in the necessary detail. Full descriptions can be found in [7].
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Fig. 2: An illustration showing the reasoning of the CLs method. In this situation a signal+background hypothesis
might be rejected though the experiment has no sensitivity to observe that particular signal.

13 The Feldman-Cousins Method

The full Neyman construction was introduced to HEP by Feldman and Cousins [8]. The test statistic is the
likelihood ratio Q(s) = L(s+b)

L(ŝ+b) where ŝ is the physically allowed mean s that maximizes the Likelihood
L(ŝ + b). To construct an acceptance 68% interval in the number of observed events, [n1, n2], one is
using Q as an ordering rule, i.e.

∑n2
n1

p(n|s, b) ≥ 68% where only terms with decreasing order of Q(n)
are included in the sum, till the sum exceeds the 68% confidence. When no events are observed, one is
using this constructed Neyman belt to derive a confidence interval, which, depending on the observation,
might be a one-sided or a two-sided interval. This method is therefore called the unified method, because
it avoids a flip-flop of the inference (i.e. one decides to flip from a limit to an interval if the result is
significant enough...).

The difficulty with this approach is that an experiment with higher expected background which ob-
serves no events might set a better upper limit than an experiment with lower or no expected background.
This would never occur with the CLs method.

Another difficulty is that this approach does not incorporate a treatment of nuisance parameters.
However, it can either be plugged in "by hand", using the hybrid Cousins and Highland method [9] or a
Neyman construction can be performed, as described below.

14 The Profile Likelihood Full Construction Method

Treating the background as a nuisance parameter, one can perform a full Neyman construction with the
Feldman-Cousins test statistic used as an order `(s) = L(s,

ˆ̂
b)

L(ŝ,b̂)
. This is a very cumbersome construction.

In this relatively simple example, the construction is done in a 4-dimensional space, the two observables
(n, bm) and the two possible true values (s, b) . For each s the MLE of b is found, ˆ̂

b(s, n). So far only
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Fig. 3: An illustration showing the Neyman belt. The horizontal lines are the acceptance intervals in the mea-
sured parameter space sm for a given possible true s, [sl, sh](s). Given an observation so one can construct the
confidence interval [sd, su].

low dimensional toy models were fully constructed [10]. To ease the procedure an approximate Neyman
construction was suggested [11] by fixing ˆ̂

b to be ˆ̂
b(s, nobs). Gary Feldman does not recommend to try

the full construction at home for many reasons [12]. One of them is that using a simple Profile Likelihood
method works quite well.

15 The Profile Likelihood Method

The simplest way to incorporate systematics into hypothesis inference is the Profile Likelihood. High
Energy Physicists are unaware of their familiarity with this method via its implementation in the MINOS
process within MINUIT [13].

For simplicity let us define the Profile Likelihood for one channel as λ(s) = L(s,
ˆ̂
b(s))

L(ŝ,b̂)
. Here ˆ̂

b(s)

is the MLE of b given s and ŝ, b̂ are the MLE of s and b. When generating experiments, each with data
distributed according to Poisson(n, s + b) we find that the pdf of −2lnλ(s) is distributed as a χ2(1).
This is not surprising since in the asymptotic limit the Likelihood function L(s) becomes a Gaussian
centered about the ML estimator ŝ, i.e. lnL(ŝ ± Nσŝ) = lnLmax − N2

2 . The magic of the Profile
Likelihood method is that the χ2 approximation works very well and there is no need for toy Monte
Carlo experiments... One can calculate the exclusion or discovery sensitivity or significance in a fraction
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of a second.
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