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~ seco~d-orderdifferential equation for the beam envelope, originally designed to calculate envelope changes inside non­
IsperSlve magnets, has been adapted ~o pe~mit calcu!at~on of the envelope of an off-central momentum beam in the

dIspersIve plane InsIde any bending magnet.

1 INTRODUCTION

There is now available to the particle beam
~esigner a variety of extremely powerful computa­
tIonal codes for following the motion of an individ­
ual particle or beam ofparticles through a magnetic
channel. The most complete and undoubtedly the
most generally employed code is the TRANSPORT
code devised by K. L. Brown, l which contains
d~spersive terms, second-order coupling, and pro­
VISIon for .ot~er refinements in channel design,
s~~h .as frIngIng field corrections, tilt and po­
SItIonIng errors, and finite momentum spread.
The TRANSPORT code can be used only with a
relat~vely large computer because of storage
reqUIrements. Another code which has (in its
present form) only first-order terms is the TRACE
code, the creation of K. R. Crandall,2 which has
fewer options than TRANSPORT but can be
operated on a smaller computer; such a code can
be extremely useful to the experimenter when
adjusting the electrical parameters. of a channel
whose mechanical design is already fixed.

In its original form, TRACE could treat only
the motions of particles of a central momentum
Po, which precluded using it for a first-orde;
determin~tion of the effects of momentum spread,
P =1= Po, In an aperture of finite size. The inter­
pretation given in Section 2, below, was developed
to overcome this deficiency and arose rather
incidentally from a previously published observa-

t This work done under the auspices of the U.S. Atomic .
Energy Commission.

t Permanent Address: Department of Physics Washington
State University. '
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tion on the value of the use of a dispersive spatial
offset, ~, in a graphical solution for particle
motions in a bending magnet. 3 The development
to t~is point will treat only individual particle
motIon, although the particle can have a variable
mo~ent.um. In Section 3, a few cases of particle
motIon In several types of dispersive magnets are
discussed. But with this method, the concept of
offset, ~, was readily added to the TRACE code
which calculates, among other parameters, th~
beam envelope (the total lateral space occupied
by a beam of finite size) a result which can be most
helpful to the channel designer or experimenter.
However, there is a method still simpler than the
TRACE code for obtaining only the envelope
of a beam of finite lateral size. This is a second­
order differential equation which can be solved
eith.er an~l~tically or by digital or analog computer.
In Its orIgInal form, the differential equation is
unfortunately incapable of treating particles of
momentum other than Po. Its origin is described in
~ection 4, both because of its subsequent applica­
tIon and also because the development is not well
k~own i.n spit~ of the value of the equation.
Flnal~y, I~ SectI~n 5, the nondispersive envelope
equatIon IS modIfied to permit inclusion of off­
momentum particles so that effects of momentum
spread in a beam channel of finite aperture can be
simply determined. (The author intends to devote
a future paper to the details of momentum accep­
tance of a channel based upon solutions to the
modified dispersion-envelope equation and trunca­
tion ?fthe emittance ellipse by finite apertures.)

It IS helpful to compare the three computational
methods and the amount of computer memory
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pI! +~ [CJ pB(p) - pJ = 0 (6)
PP c

in which the prime represents differentiation with
respect to s.

A bending magnet in a beam channel is always
devised to bend a particle 'of "central" momentum
Po at a radius Po.t This condition is met when the
second derivative, p", is equal to zero and the

; expression in brackets in Eq. (6) goes to zero:

But the absence of radial acceleration can also be
achieved for a different momentum, p = (1 + a)po'
at a different radius, p = Po + ~, where the value
of the offset, ~, can be determined by Taylor's
expansion of the bracketed term in Eq. (6):

q ( OB(P»)
~(Po + A) Bo + Aap = (1 + e)po (8)

in which the field derivative has the value, from
Eq. (4), for p near Po:

oB(p) ~ _ n(Bo) (9)
op Po

where m = ymo is the relativistic mass and q the
charge. Gaussian units are used. For a particle
of positive charge, let the z-component of the
magnetic field be directed in the negative z­
direction, and also require that the p-component
of B be symmetrical about the z = 0 plane. It is
assumed that the z-component of B has a P­
dependence given by the equation,

Bz = -Bo(:J -n = -B(p) (4)

in the near vicinity of a mean radius, Po, to be
defined subsequently. In general n may be either a
positive or negative number.

The momentum is generally given by the relation:

p = mp¢ = ms (5)

But it is conventional to eliminate time dependence,
represented by the dot, in favor of dependence on
position along the (mean) path of the particle, s,
by the transformation s(djds) = djdt. The radial
equation then takes the form:

(7)
q
- PoBo = Po
c

(1)

In nondispersive magnetic beam transport systems
it is customary to employ equations of the form:

needed in the following way: for calculations in the
plane of dispersion, TRANSPORT requires at
least a (3 x 3) matrix, TRACE a (2 x 2) matrix
but the envelope differential equation can work
with only one parameter. The envelope equation
conveys of course much less information than the
other two codes but is entirely adequate for a great
variety of preliminary design purposes, and is
moreover readily adaptable to small computers.

2 DYNAMICAL EQUATIONS FOR A
PARTICLE

-2 q .
m(p - p¢ ) = - p¢Bzc

to describe the behavior of the particle in either
direction, ~, perpendiculat to the direction ofmotion,
s.. In Eq. (1), the prime indicates differentiation with
respect to s. Clearly, if the sign is positive in
Eq. (1), it represents focusing, while if it is negative,
defocusing is implied. Using ~0' ~~ for the initial
displacement and slope, one obtains a (2 x 2)
matrix solution of the type:

(i') = (~~:) ~~:))GO (2)

for particle motion in the ~ direction, when
C(s) and S(s) are respectively the "cosine-like"
and "sine-like" solutions-trigonometric if focus­
ing and hyperbolic if defocusing. The determinant
of the transformation matrix of Eq. (2) is neces­
sarilyunity, in conformance with the Sturm­
deLiouville equation. When a bending magnet
of any type must be treated, a third row and
column is usually added to the matrix, incor­
porating two dispersive terms usually called
D(s) and D'(S).l By this method, it is possible
to follow particles ofa slightly different momentum,
p, from the selected mean momentum, Po.

To demonstrate that simplification can be
achieved in a bending magnet, it is convenient to
start with the equations of motion of a charged
particle in a cylindrical coordinate system. Let the
directions p and z be perpendicular to the direction
of motion, <p, and let p, <p, z be right-handed
coordinates:

(3)
.. q ~B

mz = - Po/ p
c t Strictly, momentum per unit charge, Po /q.
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with the result, from Eq. (6), that the radial offset,
d, needed to achieve stability at the new momentum,
P, is given by the relation

epo
Ll ~ (1 _ n) (10)

The radial equation of a particle of arbitrary
momentum P near Po around its stable position
is most simply obtained by rewriting Eq. (5) in its
more familiar form:

P" + Ii B(p) _ ! = 0
c p P

Now, by expanding ina small displacement, x,
about Po, one obtains:

~ = Po ~ x ~ :0 (1 - :J Ix I ~ Po

It is also noted that the momentum term can be
expanded:

manner, it is possible to avoid the complexity of
using a (3 x 3) matrix for determining the be­
havior of particles of variable momenta in bending
magnets. As will be shown, certain conceptual
matters are alslo simplified.

In the other direction perpendicular to s, the
requirement of symmetry about the z-plane, to­
gether with the Maxwell equation applicable to a
current-free region of space,

(V x H) = (V x B) = 0

can be shown to lead to the equation,

n
z" + - z = 0 (14)

p~

which is correct (to first order) for all particles of
momenta near Po.

3 SOLUTIONS IN SPECIFIC TYPES OF
BENDING MAGNETS

Oscillation must now be about the displaced
position of radial stability, (Po + d). In this

1 1 1
---~ -(1 - e)

P Po(l + e) Po

so that the equation of motion (now in x rather
than p), may be written in the approximate form:

" (1 - n) _ (1 - n) A (11')x +--2-X---2-n
Po Po

The position x is the outward displacement from
Po, and for a particle of momentum Po, oscillation
must be about Po. But if the following substitutions
are made,

(16)

(18)

In focusing conditions, which require that n does
not exceed unity when the radial motion is being
considered, the elements of the transfer matrix
of Eq. (2) are known to have the form:

C(s) = cos ks S(s) = k- 1 sin ks (1 )
C(s) = - k sin ks S'(s) = cos ks 5

where the radial value of the constant k must
necessarily be:

(1 - n)1/2
k=---

Po
Defocusing in a magnet described by Eq. (4)

results, in the radial direction, if n exceeds unity
and thus leads to the matrix elements:

C(s) = cosh ks S(s) = k - 1 sinh ks (17)
C'(s) = k sinh ks S'(s) = cosh ks

and here k is given by the relation of Eq. (16),
because the lower sign applies in Eq. (1).

In both instances, sfPo = ex, the actual angle
through which the particle of mean momentum
Po is bent. Comparable formulas are valid in the
z-direction, as is well-known, except that the
condition n > 0 provides transverse focusing and
n < 0 leads to defocusing, with respective applica­
tion of Eqs. (15) and (17), and of the relations:

(n)1/2
k = -- (n > 0, focus)

Po
( _n)1/2

k = (n < 0, defocus)
Po

(12)

" + (1 - n) 011 --11 =
P6

x e
x" + (1 - n) 2: ~ - (11)

Po Po

This can be readily interpreted as a simple­
harmonic oscillator equation [or that of a "hyper­
bolic oscillator," if n exceeds unity, as suggested
by Eq. (1)] but with an offset stable position.
Thus, if the parameter, d, from Eq. (10) is intro­
duced, it becomes, to first order:

11(S) = x(s) - d
11'(S) = x'(s)

Eq. (11') takes the familiar form of Eq. (1),
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(20')

For n = 0, a uniform-field magnet, the magnet
simply acts as a drift space in the z-direction.
Consider the solutions of Eq. (13) in a uniform­
field magnet, where k is equal to Po 1 :

tf(s) = tfo(cos :J + tf~(po sin :J
(19)

rl'(s) = - '10(2 sin ~) + 11~(COS ~)
Po Po Po

which was obtained with the aid of Eqs. (15) and
(16). Now if the relations of Eq. (12) are substituted
in Eqs. (19) they may be rewritten:

x(s) = xo( cos :J + x~(po sin :J
+ L\(1 - cos :J

(19')

x'(s) = - xo(~ sin ~) + x~(cos ~)
Po Po Po

+ d(~ sin~)
Po Po

(with the relation 110 = X o - d explicitly noted).
Upon the use of the 8 parameter instead of d, as
given by Eq. (10), to represent a particle of mo­
mentum unequal to Po, Eqs. (19') now take the
readily recognized form:

x(s) = xo( cos :J + x~(po sin :J
+ 8PO( 1 - cos :J (19")

x'(s) = -xo(~ sin~) + x~(cos~) + 8(sin~)
Po Po Po Po

In the special case where 0 < n < 1, the condition
for which "betatron" oscillations occur, and es­
pecially for n = 1/2, where focusing of equal
strength occurs in both directions, it can be shown
that all familiar dispersive relations can be similarly
retrieved. It is particularly noted that as n ap­
proaches unity from a lower vaiue that the radial
offset, d, becomes very large and such a magnet has
an unusual amount of momentum dispersion.
But when n becomes exactly equal to unity, the
radial motion is simply that of a drift space with a
bend through angle rt = s/Po, because in this
condition, all values of Bp are equal to BoPo.

An important case not commonly treated in the

literature is that of dispersion in alternating­
gradient (AG) magnets, in which n alternately
assumes a value much less than and much greater
than unity in successive magnets. Typical values
of Ii might be - 6 and +6. In the n < 1 magnet,
there is obviously radial focusing and transverse
defocusing. One can add the observation that the
radial offset, d, for off-momentum particles, is
relatively small, and from this develop a simple
explanation of the high "momentum-compaction
factor" that is characteristic of AG accelerators. In
the n > 1 magnets, (which have comparably small
values of the offset), the solution of Eq. (13) with
the appropriate set of matrix elements of Eq. (17)
and corresponding k-values of Eqs. (18), lead to the
11,11' solutions:

(
(n - 1)1/2 s)

I1(S) = 110 cosh -
Po Po

, ( Po· h( 1)1/2 s)+ tfo (n _ 1)1/2 sm n - Po
(20)

(
n - 1)1/2 s )

11'(S) = 110 sinh(n - 1)1/2_
Po Po

+ tf~(cosh(n - 1)1/2 :J
The value of the offset of the stable orbit, d, is seen
to be negative for positive 8 in such magnets. That
is, a particle of momentum higher than Po has its
position of stability at a radius inside Po. But since,
from Eq. (4), Bp is seen to be greater than BoPo at
the smaller radii, this result is completely in agree­
ment with the definition of d. When Eq. (2) is
expanded in terms of x, x' and d, one obtains the
following:

x(s) = xo( cosh(n - 1)1/2 :J
, ( Po· h( 1)1/2 s)+ X o (n _ 1)1/2 SIn n - Po

+ L\[1 - cosh(n - 1)1/2 :J
(

n - 1)1/2 s )
x'(s) == X o sinh(n - 1)1/2_

Po Po

+ x~(cosh(n - 1)1/2 :J
_ (L\ (n - 1)1/2 sinh(n _ 1)1/2~)

Po Po
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with the concomitant result:

the system (unless truncation occurs). The ellipse
equation is commonly given in the Courant­
Snyder parameters4 as:

y~2 + 2rt~ ~' + /3~'2 =e (21)

where rt, /3, and y vary with s. In any channel element
~here ~ and ~' motion can be described by Eq. (2),
It can be shown that rt, /3, and y obey the following
matrix transformation equation 4:

(25)

- 2C(s)S(s)

C(s)S'(s) + S(s)C'(s)
-2C'(s)S'(s)

[

/3(S)]
a(s)
y(s)

[

C2(S)

= - C(s)C'(s)
C'2(S)

/3'(s) = - 2rt(s) (23)

Indeed, the parameters rt, /3, and yare not indepen­
dent but must satisfy the normalization relation:

y/3 = 1 + a2 (24)

There are no dispersive terms in these equations
(as they stand) and therefore they apply only to
particles of momenta p = Po. The ellipse shape at
any s value may be computed by the above method.
However, SteffenS presents a singularly elegant
method (originated by Wiinster6

) for calculating
the envelope value E(s) by an ordinary second­
order differential equation, and this is briefly
recapitulated below because it must be extended to
the dispersive case. In Figure 1 is shown the phase­
space ellipse and its dimensions in terms of both the
a, /3, y parameters and E, the envelope, A, the
equivalent angular envelope, and E', the derivative
of E with respect to s. The Courant-Snyder
parameters are related to E, A, and E' in the follow­
ing manner:

4 THE NONDISPERSIVE ENVELOPE
EQUATION

To a beam ofparticles one can attribute an envelope,
E, which is the maximum excursion of the outer­
most particle in the direction ~ at position s. The
envelope is not allowed to exceed the aperture
dimension at position s without the phase space
suffering truncation. However, the equation of an
envelope is not the same as that for an individual
particle. In practice, an ensemble of particles is
assumed to occupy a region of ~, ~' phase-space,
bounded by a (centered) ellipse which has a con­
stant area in ~, ~' phase-space equal to n times the
emittance, e.t Emittance e is a constant throughout

In Eq. (20') the coefficients of~ are both intrinsi­
cally negative for a positive value of s. When they
are further rewritten in the alternate form em­
ploying 8, the results are the following:

xes) = x o( cosh(n - 1)1/2 :J
., ( Po· h( 1/2 s)+ X o (n _ 1)1/2 sm n - 1) Po

+ e((n~ 1) [COSh(n - 1)1/2 :0 - 1J)
(

(n - 1)1/2 s ) (20")
x'(s) = Xo sinh(n - 1)1/2 -

Po Po

+ X~(cosh(n - 1)1/2 :J
+ e((n _11)1/2 sinh :J

Equations (20") imply a feature that at first appears
to contradict the derived condition that sets
stability at a lower radius: particles of momentum
higher than Po still tend to move outward, as one
would intuitively expect. But their position of
stability, rather curiously, lies at a radius P smaller
than Po. However, it can be shown that if a particle
of momentum (1 + 8)Po is introduced under the
conditions X o = d, x~ = 0, it retains the position
x(s) = ~ without deviation. The fundamental effect
of the dispersion-related offset, d, in this particular
case, is to induce rather large oscillations in the
radial direction.

t The notation "e" rather than the more common £ is used
to indicate emittance to avoid confusion with I1pjp.

EE'
rt=

e
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FIGURE 1 Emittance ellipse y~2 + 2et ~~' + {3~'2 = e showing
relation of parameters et, {3, Y to E, E' A.

The relation of Eq. (23) between r:t and P' is.
seen to be consistent with that from Eqs. (25). The
ellipse and the two different sets of parameters
appear in Figure 1. When the values of Eq. (25) are
inserted into the boundary ellipse equation, Eq. (21),
one obtains

A2~2 - 2EE'~~' + E2~'2 = e2 (26)

and the normalization relation of Eq. (24) is
similarly given by

2

A 2 = ~ + E'2 (27)
E2

When this value for A 2 is substituted into Eq. (26),
one obtains a mixed first order differential equation
in ~ and E:

(E' ~ - E~'f = e2
( 1 - i:) (28)

Now let Eq. (23) be differentiated by s. Because the
Wronskian of E and ~ is not equal to zero (that is,
because E and ~ must originate from distinct
differential equations) the following second-order
differential equation is developed:

e2

(E"~ - E~") = 3 ~ (29)
E

Upon substituting into Eq. (29) the value of ~"

derived from Eq. (1), the desired differential
equation for the envelope appears:

e2

E" + k2E = - (30)
- E 3 '

where again, the upper sign gives focusing and the
lower, defocusing.

In regions of constant k, it is interesting to note
that Eq. (30) can be completely integrated by
analytic methods although the complete solutions
are complicated and their final form is difficult
to interpret. It is, however, helpful to note that the
first integration is easily achieved by multiplication
of Eq. (29) by an integrating factor 2E', which leads
to this relation:

e2

E'2 ± k2E2 = - 2 + Constant
E

and, by the use of Eq. (21), to obtain the following
result:

(31)

which provides a most useful relation between the
envelope and the angular envelope.

5 THE DISPERSIVE ENVELOPE
EQUATION

When a group of particles of mixed momentum
enter a bending magnet, momentum dispersion will
occur. Equations of motion for a particle of
momentum P i= Po have been presented [cf., Eqs.
(19, 19', 19") for a uniform field magnet, Eqs.
(20, 20', 20") for a magnet with n > 1] but the
envelope equation for off-momentum particles
is not yet known. To obtain this, first consider
schematically what occurs when a particle beam of
mixed momentum (but with all momenta having
the same emittance ellipse) is injected into a
bending magnet. For the purpose of illustration
only, the x, x' plane for a focusing (n < 1) magnet
is shown in Figure 2. Steffen has shown that if k is
equal to unity in such a plot, the action of the
magnet of a particle of p = Po can be represented
as clockwise rotation of all points on the x, x'
plane about the center. The angle, (), through which
the points are rotated on the plot is equal to ks and
increases linearly as the particles are taken farther
in s. The result is that the entire ellipse is rotated
about its geometrical center, as shown in Figure 2.t
Next, the behavior of a group of particles with
momentum P > Po may be followed in the same
bending magnet. In this example the offset, Ll, is
positive and the emittance ellipse rotates through ()

t Had an aroitrary k-value been selected, both distortion
and rotation would appear. The choice of k = 1 leads only to
rotation.



BEAM ENVELOPE IN A BENDING MAGNET 199

FIGURE 2 Rotation of emittance ellipse for particles of
momentum P = Po about x = x' = O. (Focusing magnet illus­
trated.)

about the point, P, (x = ~, x' = 0) as shown in
Figure 3. This motion follows from Eqs. (12) and
(13), the latter of which is equivalent to Eq. (1).
Again for this particular example, the ellipse is on
the average displaced toward a higher value of x'
(as might be expected of a group of high-mo­
mentum particles in a focusing magnet) and the
ellipse center has been displaced from 0 (0, 0) to a
new position 0' (xc, x~). It is convenient therefore
to define new coordinates ( and (', in the following
way:

(34)
xc(S) = 1Jc + ~ = [1 - C(s)J~

x~(s) = 1]~ = - C'(s)~

in order to write the ellipse equation and also to
obtain a reference point from which to calculate
the envelope.

At this point, the focusing condition used for
illustration can be abandoned and, in a very general
way, the coordinates Xc and x~ can be computed
using Eqs. (2) (but with 1] in place of~) together with
the definitions of Eq. (12):

I'/c(s) = C(s)l'/co + S(s)l'/~o = - C(s)i\ (33)
1]~(s) = C'(s)1]co + S'(s)1]~o = - C'(s)~

The equation for the emittance ellipse may
consequently be written in coordinates ( and (':

y2(2 _ 2V V'((' + V 2(2 = e2 (36)

Therefore, the coordinates ( and (' may be con­
veniently expressed in the following way:

, = x - Xc = X - [1 - C(s)]i\ = 1'/ + C(s)i\ (35)
(' = x' - x~ = x' + C'(s)~ = 1]' + C'(s)~

because the ellipse center 0 has the location
(-~, 0) in 1]' coordinates. Thus one obtains these
equations for Xc and x~:

where V, V' and Y replace E, E' and A, respectively,
in the formalism of the previous section (and are, in
fact, identical to them at s = 0). The size of the
emittance ellipse remains constant (assuming that
truncation does not occur, of course) and develop­
ment of the V equation from Eq. (26) through
Eq. (29) is exactly the same. One arrives at the
relation:

(32)

Xl

(' = x' - x~

by identical arguments to those used for obtaining
Eq. (29). The distinction between V and V; E and A,
is that the former are measured from xc, x~ posi­
tions rather than from 0, O. It is now necessary to
substitute for (" in Eq. (37) and thus the second of
Eqs. (35) is differentiated and related to the first.

I
X

~' 2

(U'" - Ucr) = ~3 , (37)

(" = 1]" + C"(s)~ = ±k21] + C"(s)~

= ±k2( + [C"(s) ± k2C(S)J~

FIGURE 3 Rotation of emittance ellipse for particles of high
momentum p > Po about x = ~,X' = o. (Focusing magnet
illustrated.)

But the coefficient of L\-the term in square
brackets-is identically equal to zero for either
sign of k2 or for k2 equal to zero, because C(s) is
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(38)

one solution of Eq. (1). Consequently, the dif­
ferential equation for V is formally identical to that
for E:

2

V" + k2 V =~- V 3

and may be solved by the same analytical method.
But, as seen in Figure 4, once the solution for V(s)
has been found, the beam envelope E is no longer
symmetrical about x = x' = 0 but must be ob­
tained by adding and subtracting U(s) from xc:

the key to achieving this simplicity. It is additionally
useful in computational applications to note that
(in first order) that Figure 3 shows not only the
behavior of an x, x' emittance ellipse of momentum
p greater than Po [such that the offset, L\, is defined
by Eq. (10)J but equally well the behavior of the
emittance ellipse of momentum Po in the·bending
plane of a magnet which has been incorrectly
positioned by a distance ( - L\) in the x direction or
whose field value B has been set too low by an
amount bB, given by:

6 CONCLUSION

The envelope equation can be solved for a particle
beam of momentum unequal to Po as readily as can
the equation for beam with Po momentum. The
introduction of the offset distance, L\, appears to be

The same treatment will yield A 1(s) and A 2(s), if
desired, noting that V(s) andU(s) have the same
interrelation as do A(s) and E(s) in Eq. (31),

V 2 ± k2 U2 = Constant (40)

In using any of these relations, especially in a
defocusing (n > 1) magnet, care must be taken to
ensure that the momentum offset, L\, be given the
correct sign.

L\
bB = - Bo - (1 - n)

Po

The positioning and field error equivalences had
previously been incorporated into the TRACE
code, which has not as yet been modified to com­
pute dispersive envelopes for magnets of non­
uniform field, but provides all other features
needed for following beams in a magnetic beam
channel.

Edge effects are of course not included in­
trinsically in this method but can be treated by the
conventional thin-lens approximation.
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E 1(s) = [1 - C(s)JL\ + U(s)

E 2(s) = [1 - C(s)]L\ - U(s)

FIGURE 4 Relation of U, V to E, A.
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