
Particle Accelerators
1975, Vol. 7, pp. 41-47

© Gordon and Breach Science Publishers Ltd.
Printed in the United Kingdom

SOLENOID-LENS EFFECTS IN
BEAM-TRANSPORT EQUATIONSt

RICHARD K. COOPERt

Lawrence Livermore Laboratory, University of California,
Livermore, California 94550, USA

(Received March 17,1975,. in /inalform June 13, 1975)

Beam-transport equations governing the transport of low-energy charged-particle beams are modified to include the
effects of magnetic (solenoid) lenses. The rms beam-transport equations are modified for the case in which the beam
entering the magnetic lens has the same particle distribution in both x and y (the transverse coordinates) and the beam
is symmetric in both coordinate directions. An alternative treatment is presented for the case where space-charge forces
can be neglected.
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1 INTRODUCTION

Analysis of the transport of low-energy charged
particle beams frequently makes use of the govern
ing differential equations for beam transport
derived by Emigh,! Sacherer,2 or Kapchinsky and
Vladimirsky. 3 These formulations include space
charge effects and the effects of linear, external
focussing elements. The effects of magnetic
(solenoid) lenses are not included in the formalisms,
however, and it is· desirable to include them. This
paper develops the appropriate modifications to
the rms beam-transport equations for the case in
which the beam entering the magnetic lens has the
same particle distribution in both x and y, the
transverse coordinates. The beam is further as
sumed to be symmetric in each coordinate
direction. We will follow the notation of Ref. 1
for the most part.

For those instances in which space-charge forces
can be neglected, an alternative treatment is
presented, which is based on the direct integration
of the equations of motion and requires only the
assumption that the incoming beam is symmetric
in each coordinate direction.

2 BEAM-TRANSPORT EQUATIONS

We briefly summarize here, for the sake of
co~mpleteness, the derivation of the rms transport
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equations. The rms value squared of the x-position
of all the particles at position z(t)§ within an
interval ~z (unspecified, but large enough to
have a statistically significant number N of
particles in it) is defined to be

2 1 ~ 2
RAt) = N j~14Xj(t),

and the rms velocity squared is defined as:

2 1 ~ ,2
VAt) = N j~14xj(t).

The factor 4 is introduced to make R x for a uni
form density distribution correspond to the
physical boundary of the distribution.

Differentiating Eq. (1) twice yields the governing
differential equation for Rx(t):

The last term of this equation can be written as
the sum of two terms, namely an internal (space
charge) force term and an external force term.
Reference 1 gives expressions for these various
terms for pulsed beams and for dc beams, and for
various beam-line components such as quadrupole
magnets, bending magnets, and accelerating col
umns. In this work we will derive the expressions
necessary to include magnetic (solenoid) lenses.

§The particles are followed as a function of time.
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The rms emittance squared, occurring in the
second term of Eq. (3) is given by

and can be related to an area in x - x space
that is constant for most cases, but not for motion
in a solenoid, as will be shown.

Similar equations to Eqs. (1) through (4) for the
Y direction clearly exist, it being necessary only to
change the letter x into y.

E 2 R2 V 2 R 2R· 2x = x x - x x, (4)

L and then decreases quickly to O. The radial
magnetic field is nonzero only at the ends. If the
particles of the beam have no angular momentum
about the z axis before entering the solenoid (i.e.,
in cylindrical polar coordinates, () = 0) then by
Busch's theorem4 they will have an angular velocity
by

(5)

where q is the charge and m is the mass of a beam
particle. (Rationalized mks units will be used
throughout this work.)

Consider then the contribution to the last term
of Eq. (3) produced by the longitudinal magnetic
field:

3 THE SOLENOID LENS

Figure 1 shows the magnetic field assumed to be
produced by the lens. Figure 2 shows the variation
of the longitudinal component of the field, which
is assumed to rise quickly from °to a value B near
z = 0, whence it remains constant for a distance

4 ~ ( .. ) 4 ~ q. B
NR ~Xj Xj solenoid = NR ~ Xj - Yj .

x J x J m
(6)

Expressing the x and Y coordinates in terms of
cylindrical polar coordinates gives

Xj = rit)cos 0it), (7a)

Yj = rit)sin 0it), (7b)

so that the transverse speeds are given by

---- - --<t-

..
• II qB . II

= rj cos OJ +2m rj SIn OJ, (8a)

• •. II qB II
Yj = r j sIn OJ - 2m r j cos Uj. (8b)

Inserting Eqs. (8b) and (7a) into Eq. (6) gives, for
the term of interest,

z

:!oooI..I----- L

FIGURE 1 Assumed magnetic-field distribution.
4

N R ~ xlx j),olenoid
x J

= _4_ qB L (r.r. cos O. sin O. - qB X~) (9)
NR

x
m j J J J J 2m J •

Consider the subset of particles having a given
value of the product rjrj , within a specified
small interval. These particles will, under the
assumptions of equal, symmetric x and Y distri
butions, be randomly located in azimuth and hence
will yield zero for the average of the product
sin OJ cos OJ' averaged over the subset. Thus only
the second term on the right-hand side of Eq. (9)
will survive, and it is equal to - (qB/m)2R x/2.

B

N
ce

FIGURE 2 Variation of longitudinal field component with
distance.
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With this development, Eq. (3) can be written

.. _ E~ ~ (qB)2R
Rx R; + 2 m x

- N~ L x/Xj)spacecharge = 0, (10)
x

with a similar equation for the Y values. In Refs. 1
through 3 it is shown that the last term in this
equation has, for circularly symmetric beams, the
value -(qI/2n8omv)R- 1 where R = R x = Ry, I
is the beam current, and v is the longitudinal
speed of the beam particles.

4 END EFFECTS

Pillbox:
radius r,
length I1z

I
I
I
I
I
!

I
I
I
I IL J

------ -<t

yieldingt

The angular velocity possessed by a particle
while in the solenoid is the result of the particle's
having passed through a region in which the radial
component of the magnetic field, B r , differs from
zero, yielding a torque about the z axis. We first
evaluate the value of Br for the assumed field
geometry by drawing a Gaussian pill box straddling
the end region of the solenoid, as shown in Figure 3.
The flux integral of the magnetic field over the pill
box is then

(11)

FIGURE 3 Geometry for calculation of the radial component
of the magnetic field.

For the x motion of particle j, then, we have the
equation

.. qvB . e
Xj = 2m~z rj SIn j'

so that, integrating over the (brief) time interval
~t = ~z/v, we obtain for the change in x:

. qB
~Xj = 2m Yj, (13)

while for the motion in the Y direction we have the
result

(14)In traversing the end region, the particles are
subjected to an impulsive force, which will change
the values of x and y for a given particle, without
changing the x and Y values. The longitudinal
speed v is assumed constant throughout the inter
action with the solenoid (it actually decreases
upon entry and increases upon exit); the impulse
force is given by

Fimpulse = - iqvBr sin e+ jqvBr cos e. (12)

The term corresponding to an impulse opposite
to the direction of motion has been omitted; it is
proportional to r 2/p2, where p == (mv/qB) is the
bending radius of the particles in the field of the
solenoid.

qB
~Yj = - 2m Xj.

Equations (13) and (14) are valid for particles
entering the solenoid; upon leaving the solenoid
similar equations are obtained, the only difference
being that the algebraic signs of the right-hand
sides are reversed.

Since the emittance is related to the amount of
energy in the transverse motion, and since the
transverse speeds have been changed upon entry
into the solenoid, it is logical to expect that the
emittances have been changed. This expectation
can be verified by calculating the emittance just
after entry (+ means "after entry," - means
"before entry"):

t In a cylindrically symmetric system, with B z not a function
of r, V· B = 0 gives Br = -!r(oBz/oz). Integration of this
result through the end region gives the result (11) independently
of the assumed z dependence at the end field.

R~ + = R; -, since positions are not changed.

2 4 ~.2 4 ~ (. qB)2
V x + = N~Xj+ = N~ Xj- + 2m Yj .

(15)

(16)
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(21)

Now xj - = r j - cos f)j, since before entry OJ = 0,
so that the cross term that appears in the squared
expression under the summation can be written as
(qB/m)rjrj cos f)j sin f)j' which will average to zero
as explained in the text following Eq. (9). Therefore
we have

v~+ = V~- + (~~yR;, (17)

for the change in the mean square velocity upon
entering the solenoid.

The second term in the expression for the emit
tance, Eq. (4), involves the product RxRx. We
have for this product after entry

(RxRx)+ = ~LXj+Xj+ = ~LX{Xj- + ~~ Yj}

The term L XjYj vanishes due to the assumed
symmetry of the beam in each coordinate direction.
Thus we have,

Then the emittance squared just after entry is
given by

Upon leaving the solenoid similar considerations
yield the result

(19)

In Eqs. (18) and (19) it must be understood that
the product R~R; is a function of z and must be
evaluated at the appropriate end of the solenoid.

5 THE TIME DEPENDENCE OF THE
EMITTANCE

That the emittance changes value upon entry and
exit from the solenoid is simply a reflection of the
fact that the emittance as defined by Eq. (4) is not
a constant of the motion in the presence of a

solenoidal field. In this section we will discover that
there exists a constant of the motion that reduces
to the emittance when the solenoidal field vanishes.
Starting with Eq. (16) it can readily be shown that

Ej~x = ~~ (L xJ L X{Xj - L XjXj L XjXj} (20)

But inside the solenoid we have

.. qB.
Xj = -Yj.

m

Hence the term LXjXj will become proportional
to L xjYj, which will vanish because of the assumed
identity of distributions in the x and Y directions.

The term L XjXj is equal to (qB/m) L XjYj,
which is calculated in the following way. From
Eq. (8b) we have

L X{Yj = L rj cos o{rj sin OJ - ~~ rj cos OJ}

Again we observe that the first term averages to
zero, so that,

qB . 1 (qB)2 2mLXjYj = -2 m LXj'

Thus Eq. (20) becomes,

· 16 1 (qB)2 ~ . ~ 2
ExEx = N 22 m f...JXjXjf...JXj

_ 1 (qB)2 · 2- 2 --;;; (RxRx)Rx·

This last equation may also be written as,

dE~ = (qB)2 ~ R4

dt 2m dt x,

which implies that the quantity E~ - (qB/2m) 2R~
is a constant of the motion. The value of this
constant is obtained from Eq. (18) (recall, R y = R x )

and is seen to be simply the emittance squared of
the beam prior to entry into the solenoid.t That is,
we may write,

E~(t) = E~(O) + (~:yR~(t), (22)

where Ex(O) is the emittance of the beam just before
entering the solenoid.

t LeeS has derived this result for relativistic, cylindrically
symmetric beams. The result is not dependent on the details of
the variation of Bz with z.
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(25)

We again assume that the longitudinal speed v is
constant, in which case the equation of motion for
the radius of a particle is6

r
lt

+ (2~;Yr = 0,
or, for constant Bz = B, we have

r
lt + 4~2 r = O. (26)

The solution of this last equation gives r(z = L)
in terms of r(z = 0) and r'(z = 0):

r(L) = r(O)cos ~ + 2pr'(0)sin ~ ' (27)

which gives us, upon differentiation, an expression
for r'(z = L):

r'(L) = - 2~ r(O)sin 2~ + r'(O)cos ~ . (28)

(From this point on, the argument indication z = 0
will generally be suppressed, while z = L will
always be indicated.)

The last two equations, together with Eq. (25)
allow us to calculate the x and y coordinates of a
particle, as well as the values of x' and y'. Denoting
the quantity L/2p by <1>, these quantities are given by

x(L) = r(L)cos 8(L)

= [r(O)cos <I> + 2pr'(0)sin <I>]cos(8(0) - <1»,

= (r cos <I> + 2pr' sin <1»

x (cos 8 cos <I> + sin 8 sin <1»

= X cos2 <I> + Y cos <I> sin <I>

+ 2px' sin q> cos <I> + 2py' sin2 <1>, (29)

y(L) = r(L)sin 8(L)

= y cos2 <I> - x cos <I> sin <I>

+ 2py' sin <I> cos <I> - 2px' sin2 <1>, (30)

x'(L) = r'(L)cos 8(L)

= x' cos2 <I> + y' cos <I> sin <I>

1 . <I> <I> 1 ·2 (3)- - x SIn cos - - Y SIn <I> 1
2p 2p'

y'(L) = r'(L)sin 8(L)

6 THE OVERALL PICTURE

In this section we summarize the various bits and
pieces required for calculating beam transpor~. In
the derivations employed above it was necessary to
assume equal symmetric distributions in x and y,
and so in this section we can drop the x and y
subscripts.

The rms size squared of the beam obeys the
equation [cf. Eqs. (10) and (22)J.

R _ £2(0) + (qB)2R _ qI ! = 0 (23)
R 3 2m 2ne,omv R '

where E2(0) is the initial emittance of the beam.
Equation (23) can be written in the more con

ventional form with z as the independent variable
by making the substitution t = z/v, with the
results being (the prime indicates differentiation
with respect to z):

RIt _ 1'2(0) + _1_ R _ _ q_~! = 0 (24)
R 3 4p2 m2neo v3 R '

where e2 = E2
/V

2 is the conventional normalized
emittance, i.e., (x - x'·phase-space area)2/n2.

Although Eqs. (23) and (24) have been derived
assuming an especially simple Bz(z), they. are
correct for any z variation; thus the equations
may be integrated right through the end regions.

7 AN ALTERNATIVE APPROACH

When space-charge forces can be neglected, we can
integrate the equations of motion for a given
particle and determine its position and velocity
upon leaving the solenoid in terms of the values of
these quantities upon entrance. Thus, given the
statistical characterization of the beam at one end
of the solenoid, it is possible to deduce the values
of these statistical parameters at the other end.

We assume the same magnetic-field distribution
as before, i.e., uniform Bz over the length L, and
sharp ends. From Busch's theorem a particle will
have its azimuth changed, upon traversing the
length of the solen€>id, according to,

eeL) = e(o) _ qB ~,
2m v

L
= e(O) - 2p.

= y'cos2 <I> - x' cos <I> sin <I>

1. 1. 2
- 2p y sm <1> cos <1> + 2p x sm <1>. (32)
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(35)

1 .
- - cos <I> SIn <I>(RxR~ cos2 <I>

p

+ RyR~ sin2 <1».

and

x'(z) = r'(z)cos O(z) + 2~ r(z)sin O(z).

U~(L) = cos2 <I> (U; cos2 <I> + U; sin2 <1»

+ _1_ sin2 <I>(R 2 cos2 <I> + R2 sin2 <1»4p2 x Y

where

R;, we square Eq. (31) for each particle and sum
over all particles. The result is

From Eq. (36) it is readily seen that if the x and Y
distributions are identical then £~(L) = £~(O), i.e.,
the emittance is conserved. It is also readily
verified that if <I> = nl2 then the x and y emittances
are interchanged.

Having passed the beam through the solenoid,
we can then continue the rms beam-transport
integration by using Eqs. (33), (34), and (36).
However, if the beam is not round (identical x
and y distributions) the solenoid will have rotated
the spatial pattern of the beam and, for <I> not a
multiple of n12, the principal axes of the spatial
distribution will not lie along the coordinate
axes. The latter observation only affects the space
charge term in the beam-envelope equation and
mayor may not be significant in any calculation.

Finally, to make contact with the previous
calculations relating to emittance within the
solenoid, we point out first that, on the inside,
Eq. (31) becomes, since () is a function of position,

Another whole page of compact algebra using
Eqs. (33) through (35) brings us to the result

Dealing with these four expressions clearly in
volves great quantities of simple algebra; the
intent here is to point out the key features of the
manipulations without going into all the details.

In order to calculate the rms beam size squared,
R~(L), we need to evaluate L xJ(L). That is, for
each particle we need to square the expression (29)
and sum the result over all particles in the ensemble
of interest. In this squared expression there occur,
among other terms, terms involving L XjYj,
L xjyj, and L (Xjyj + xjy). The first two of these
sums vanish due to the assumed symmetry of the
distributions in each coordinate direction in the
incoming beam, while the third sum is the
derivative of the first and therefore also vanishes.
One should note that once the beam is inside the
solenoid these sums would only vanish if the in
coming beam had the same distributions in x and y.

With these observations it is tedious but straight
forward to verify that

R~(L) = cos2 <I> (R~ cos2 <I> + R; sin2 <1»

+ 4p2 sin2 <I>(U~ cos2 <I> + U; sin2 <1»

+ 4p sin <I> cos <I>(RxR~ cos2 <I>

+ RyR~ sin2 <1», (33)

where U;(O) = (4IN) L (xj)2. The expression cor
responding to Eq. (33) for the beam size in the Y
direction is obtained from Eq. (33) by replacing all
x's by y's and vice versa.

The derivative of the rms beam size at the exit
of the solenoid is obtained by calculating the sum
L xiL)xj(L). The result is

Rx(L)R~(L) = (cos2 <I> - sin2 <1»

x (RxR~ cos2 <I> + RyR~ sin2 <1»

1 .
- 2p cos <I> sm <I>

x (R~ cos2 <I> + R; sin2 <1»

+ 2p cos <I> sin <I>

x (U~ cos2 <I> + U; sin2 <1». (34)

Equations (33) and (34), together with their y
counterparts, allow one to establish the values of
Rx , R~, Ry , and R~ at the end of the solenoid.
The only other parameters required to specify
the beam for further beam-transport calculations
are the emittances.

For the emittances we need to evaluate U~(L) =
(4IN) L (xj(L))2 and the corresponding y param
eter. In exactly the same fashion as was done for
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Tracing the added term through all the manipula
tions above gives the result, for a round beam,

1
s;(z) = s;(O) + 4

p
2 [R 2 cos2 <I>(z)

+ 4p2 U2 sin2 <I>(z)

+ 2pRR' cos <I>(z) sin <I>(Z))2

2 R4(z)
= sAO) + 4p2 .

This last equality follows from Eq. (33), evaluated
for a round beam. Thus we have arrived at the
result (22) by another means.

8 OBSERVATIONS

In this final section we restrict ourselves to round
beams, for which we can drop the x and y sub
scripts. We rewrite Eqs. (33) and (34) to obtain

R2(L) = R2 cos2 <I> + 4p2U2 sin2 <I>

+ 4pRR' sin <I> cos <1>, (38)

and

R(L)R'(L) = RR'(cos2 <I> - sin2 <1»

R2

- 2p cos <I> sin <I>

+ 2p U 2 cos <I> sin <1>. (39)

The first of these two equations can be put into
a more suggestive fotm by using the relation
U2 = R,2 + E21R2 [cf. Eq. (36)):

4p2 E2

R 2(L) = (R cos <I> + 2pR' sin <l>f + Ji2 sin2 <1>.

(40)

This equation says, among other things, that if
R' == 0 upon entering the solenoid, then the
smallest value that R(L) can have occurs for
<I> = n12, for which R(L) has the value 2pEIR. In
this circumstance, since Eq. (39) gives us, for
<I> = n12, R(L)R'(L) = - R(O)R'(O), we observe that
the beam exits with R' = O. Thus a <I> = nl2
solenoid acts upon a beam at a waist or anti
waist simply as a beam-size reducer.
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