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The design of re-entrant cavities for a superconducting heavy ion accelerator is considered using both approximate and
numerical analysis. The approximate analysis of the re-entrant cavities provides a surprisingly good estimate of the
electrical and mechanical properties and the transit time factor, and thus it is used to determine the general features of
the cavity design. The re-entrant cavity is then optimized using numerical calculations. The properties of an optimized
433 MHz re-entrant cavity, including the quality factor, the Rsh/QL-value, the peak electric field, the peak field ratio, the
geometric factor, the transit time factor, and the frequency shift values, are calculated numerically and presented.

INTRODUCTION

The low particle velocities encountered in a heavy
ion accelerator impose important constraints on
the design of accelerating structures. The most
obvious of these are the necessity of operating at
low frequency where beam dynamics problems are
less severe, and the necessity of fixing the amplitude
and phase of the accelerating fields in each gap of
the structure in order to produce the desired velocity
profile along the machine. The necessityofoperating
at low frequency is particularly troublesome for a
superconducting heavy ion accelerator since the
expensive structure material and the complicated
processing techniques severely limit the acceptable
physical size of the accelerating structure. One
structure which is reasonably compact and there­
fore suitable for a superconducting heavy ion
accelerator is the re-entrant cavity.

A superconducting re-entrant cavity structure
exhibits a number of features in addition to its
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size which could be quite attractive in a heavy ion
accelerator.' It might, for instance, be possible to
design a heavy ion linac as a sequence of inde­
pendent accelerating gaps, each capable of in­
dependent phase and amplitude control. This
arrangement would enable one to program the
velocity profile along the machine, thus providing
complete variability of the beam energy and great
flexibility in accelerating ions of different charge­
to-mass ratio. For superconducting re-entrant
cavities the rf power dissipation is less than one
watt, and thus even with heavy beam loading the rf
drives can be simple, compact solid-state devices
which are efficient, reliable, and inexpensive. A
linac which employs independently-controlled ac­
celerating gaps, also provides an excellent opportu­
nity to achieve both phase focusing and radial
focusing of the particle beam by alternating the sign
of the synchronous phase angle at appropriate
intervals along the accelerator length." This method
of focusing would eliminate the need for magnetic
quadrupoles. In addition, the re-entrant cavity
structure, compared to other low-velocity struc­
tures, is mechanically rigid, and thus it is less
susceptible to the electromechanical instabilities
which are important in superconducting heavy ion
accelerators.

In this paper we consider the design of super­
conducting re-entrant cavities, approaching the
problem first on the basis of an approximate anal­
ysis and then on the basis: of numerical; calcula­
tions. The approximate analysis of the re-entrant
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and r 1 and r2 are the inner and outer cavity radii.
The quantity Ao is the free space wavelength.

It is shown by Slater that in the limit that L ~ Ao
the resonant frequency of the re-entrant cavity, or
alternatively the free space wavelength, is given by

[
2n

2
(r2)J1 /2

Ao = rt. giL -In G .
The tuning sensitivity of the re-entrant cavity can
be found by differentiating Eq. (4). For a change in
the cavity gap

11/ 1 I1g

/ »«
and for a change in the cavity length

11/ 111L
/ -2L'

The rf power that must be coupled into a re­
entrant cavity in order to develop a voltage V =
Ezg across the gap is given by

V2

P = . (6)
(RshIQ)Qo

The RshIQ-value, where Rsh is the cavity shunt
resistance, is

Rsh (fl)1/2 LIAo
Q = ~ 'In(rzlr t )' (7)

and the unloaded cavity Q is

1 R 2R {11r1 + 11r2 1} (8)
Qo = r = Wfl 2In(r2Ir 1) + L '

where R is the surface resistance and r is the geo­
metric factor.

In cavity experiments we determine Qo and the
coupled power P, and from these we calculate the
stored energy U = PQolw. The stored energy is
related to the fields through

Eo . 2nz
E; = - SIn -,----,

r /Lo

(
e)1/2E 2nz

He = -j - ~cos-,fl r Ao

while in the gap the electric field is:

2EoI (r 2 ) . nl:Ez = - n - sIn-.
9 r1 Ao

As indicated in Figure 1, the quantities 9 and L are
the gap and the length of the cavity, respectively,

2 APPROXIMATE ANALYSIS OF A
RE-ENTRANT CAVITY

Electrical Properties

Although it is not possible to obtain an analytic
solution of Maxwell's equations for are-entrant
cavity, Slater:' has given an approximate analysis
which is reasonably accurate if the gap is small
compared to the other cavity dimensions. In this
approximate analysis the re-entrant cavity is
treated as a capacitively loaded section of coaxial
line; along the coaxial line the fields are of the
form:

cavity, given in Section 2, provides a surprisingly
good estimate of the electrical and mechanical
properties and the transit time factor, and it is
used to determine the general features of the cavity
design. The re-entrant cavity is then optimized
using numerical calculations. The properties of an
optimized 433 MHz re-entrant cavity that is
suitable for accelerating particles with 0.08 <
{3 < 0.16, including the quality factor, the RshIQL­
value, the peak electric field, the peak field ratio,
the geometric factor, the transit time factor, and
the frequency shift values, are calculated numerically
and presented in Section 3 of this paper.

FIGURE 1 Schematic diagram of a re-entrant cavity.

2 2
U = enr1 V 2 = enr1g E2 (9a)

2g 2 z

and

(9b)

Breakdown Optimization

In an accelerator it is important to achieve as large
a voltage gradient as practical. Since magnetic
breakdown and electron field emission can limit
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The voltage across the gap of the re-entrant cavity
is V == Ezg, and thus combining Eqs, (3), (10), and
(11) we get

should be maximized in the cavity design. As we
shall see in Section 3, in a well-designed re-entrant
cavity Emax == V/g, and thus r E is just qll». From
Eq. (4) then

69.15
3.0

17.5
10.6
2.0
8.6

1.3 x 105

208

69.15
3.0

17.5
6.4
2.0

11.8
1.8 x 105

172

)'0 (em)
V/L(MV/m)
1'2 (em)
1'1 (em)
g(em)
L(em)
e.: (V/em)
Hmax(G)

TABLE I

Parameters of optimized re-entrant cavities

2 fooB(r, k, t) == - lo(ar) £(0, z)cos tot cos kz dz
rc 0

lW
== - - cos wtlo(ar)T(k). (17)

rc e

The Fourier coefficient B(r, k, t) satisfies the Bessel
equation and with axial symmetry is of the form:

B(r, k, t) == A(k)lo(ar)cos cot, (16)

where a2 == k2
- (W/C)2. Here A(k) is independent

of rand t, and lois the modified Bessel function. It
is convenient to express the Fourier coefficient as

Approximate Transit Time Factor

It is important to find the energy gain of a particle
going across the gap at a velocity v == f3c. Following
the treatment of Chambers" we express the field
parallel to the axis as a Fourier integral:

EAr, z, t) = E(r, z)eos cot = LX) B(r, k, t)eos kz dk.

(15)
(12)

(11)

(13)

(10)

r == V/L
E- ,

Emax

r == V/L
H- H max

H
max

== (~)1/2 Eo .
J1 r1

the voltage gradient in superconducting cavities,
it is essential that the re-entrant cavity be designed
to minimize the electric and magnetic fields on the
walls.

If in practice one is limited by magnetic break­
down, then the quantity

(
J1 ) 1/2 r1 (r2)r H == 2rc - - In - .
e Ao r1

For given Ao and r2' TH has a maximum for r2/r1
== e. If in practice one is limited by electron field
emission, then the quantity

should be maximized in the cavity design. Since
the magnetic field is weak in the region of the gap,
the maximum magnetic field can be calculated
from Eg. (2):

(18)

(14)

and for given )"0 and r2' r E has a maximum for
rar, == e'!".

Consider a re-entrant cavity with a 35-cm diam­
eter and a 2-cm gap that is resonant at 433 MHz.
The two optimization conditions lead to the dimen­
sions and fields given in Table I, assuming in each
case a voltage gradient V/L of 3 MV/m.

Experiments on superconducting cavities, par­
ticularly at low frequencies," indicate that field
emission is the more serious limitation on field
strength. Therefore we adopt the ratio rdr, == e l

/
2

as our optimum. This choice of rJr, also gives the
smallest cavity diameter for a given frequency as
can be seen from Eq. (4).

The quantity W == e f~ 00 £(0, z) dz is the maximum
energy gain of an infinite velocity particle, and T(k)
is defined by

e focT(k) == - £(0, z)cos kz dz.
W -00

Now the energy gained by a particle of charge e is
just

11K = e f~ooEAz, wt p ) dz, (19)

where wt p == toz]» - ¢, and using Eqs. (15) and (17)
this can be written:

W foo foc~K == - dkT(k)lo(ar) dz cos cot cos kz
n 0 - ex;

(20)
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(25)

(22)

and for small z we have

(27)

(28)

(29)

(30)

1
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T(k1) = sm fJA
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fJA
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Ep 1

e, ~ P h(2naz) .
cos 22

g P

From the large z and the small z approximations to
the axial electric field given in Eqs. (26)and (27), we
can generate a suitable interpolation formula. Our
interpolation formula for the axial electric field is

e, = [ CYJ/
2 E

p

[ J1 + ga cosh (g2 +n:a2)1/2

Equation (28) gives a good description of E, for
2a ~ g. While it is not quite as good for 2a < g, it
is still comparable to the usual square-field approxi­
mation which is good for 2a ~ g.

Now we can calculate the transit time factor
using Eqs. (28) and (18). The integration can be
done analytically, and the only error will come from
the approximations leading to Eq. (28):

T(k 1) = [n(g2 + 4a2)1/2] .
cosh fJAo

This approximate expression for the transit time
factor can be compared to the expression for the
square-field approximation:

Frequency Tuning

The frequency of a re-entrant cavity can shift as a
result of changes in atmospheric pressure, changes
in radiation pressure, and changes in the position
of a mechanical tuner. In this section we derive
approximate expressions for these frequency
changes and then in Section 3 test them against
a more accurate computer calculation in a specific
case.

To facilitate the proposed calculations, we will
make certain simplifying approximations. First
we will assume that only the gap g and- the length
L are affected by the detuning mechanisms. The
justification for this assumption is the mechanical
stability of the re-entrant cavity against changes in
r1 and r2. Second, we will assume that the cavity
members are bent linearly. Thus the deformation is
given by two parameters: bL is the amount by which

(24)

with P= (1 - a2)1/2. We can now write Eq. (22)
in the form

EE
z

= .-E .__-:--- ...,.-
p

(26)

We can now integrate Eq. (20)with the result:

~K = WT(k 1)Io(a1r)cos <P, (21)
where

k OJ 2n 2 2 (OJ) 2

1 = -;; = fJA' and al = k1 - -;:

For p2 ~ 1 we have a1 = k1. The quantity T(k 1)
is the transit time factor.

In order to evaluate the transit time factor for
simple geometries, we have to find an analytic
expression for E z . Let us take a gap and beam tube
geometry as shown in Figure 1, where g is the gap
length and a is the beam tube radius. Since in a
re-entrant cavity g and a are much less than Ao,
an electrostatic approximation for the field is sat­
isfactory. In addition, we will make a. two-dimen­
sional approximation, solving for E; in the (r, z)
plane by the use of conformal mapping techniques.
Following Weber,6 we start with a known electric
field solution to E in the complex u plane given by

_ {I - u
2

}1/2
E; - E; 2 2

P - u

where Ep = VIg, and p = [1 + (2alg)2] 1/2. As
explained by Weber, the u plane can be related to
the (r, z) plane through a rather complicated con­
formal mapping. However along the beam axis
where r = 0, this transformation is much simpler
and is defined by:

dz g (p2 - U2)1/2 g (1 _ a2u2)1/2

du tt 1 - u2 = - an 1 _ u2 ,(23)

where a = lip. By substituting u = sin x, Eq. (23)
can be integrated, yielding

g {P [(1 - a2u2)1/2 + pu] .}
z = an 2 1n (1 _ a2u2)1/2 _ fJu + a arcsm au
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This approximate expression for the relative
frequency shift is applicable independent of whether

(38)

(36a)

(36b)

s = 3(m
Z

- 1)
-1-6-m-=-2-Y;-t3=--

while for a force F applied along the beam tube we
get

bg = - ~ SF[ri - aZ
- 4ria

z
2(ln r1) 2J,

n ri - a2 a

In these equations S is a strength parameter of the
cavity walls, given by

(37a)

the deflection is the result of radiation pressure, the
result of atmospheric pressure, or the result of an
external force exerted by a mechanical tuner.

We must now express bLand b9 in terms of the
perturbing forces. For uniform pressures, P ga p and
Pcoax' applied to the cavity walls we get 7

bg = -PgapS[ri + 3a4
- 4riaZ(1 + In ~)

16ria
4

( r1)2J
+2 2 In- ,

rl - a a

The quantity m is the reciprocal Poisson's ratio,
which we take as 2.63 for niobium at low temper­
atures, Y is Young's modulus taken as 1.27 x 1011
newtons/m', and t is the wall thickness, taken as
0.5 em, and thus S = 0.96 X 10- 5 (N-m)-l. Equa­
tions (36a) and (36b) are appropriate to use for
atmospheric pressure ·and for radiation pressure,
while Eqs. (37a) and (37b) are appropriate to use for
a mechanical tuner.

For the optimized cavity studied in Section 3 We
can now calculate the frequency shifts associated
with changes in atmospheric pressure, changes in
radiation pressure, and changes in the force

(35)

(33)

(32)

(31)

(34a)

(34b)

u'

11/ 1 f 2 2T = 4U (pH - eE ) dv,

PR,gap = 2n~ig [ 1 - (~:YJ
u

PR,coax =

+ bg(l - 3g ){[3(1 - ~)gJ.
20L In r2 r,

rl

4nr2L In r2
rl

Integrating this pressure over the perturbed volume
defined by the deflections bg , bL we obtain an
expression for 11W which, upon insertion into
Eq. (33) yields

where the integration extends over the perturbed
volume. Using Eq. (31) in Eq. (32), we get

11/ I1W

/
where 11W is the work done by the radiation force
when the cavity boundary is displaced. To cal­
culate 11W we have to express the radiation pressure
in terms of the cavity parameters. Using the approxi­
mate expressions derived for the re-entrant cavity
we find:

PR = *(8£2 - fl H2).

From Slater's perturbation method.' we have

the cavity length changes at r = rl while at r2 there
is no change, and b9 is the relative gap change
between r = a and r = rl.

Now we proceed to calculate the frequency
change in terms of bL and bg • The time-averaged
radiation pressure at any point on the surface of the
cavity is given in terms of the magnitude of surface
field:
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(43)

exerted by a mechanical tuner. For the case of
atmospheric pressure P gap = P coa x = P, and from
Eqs. (35) and (36) we get

1 I1fPI = -8.08 x 10~6 (Torr)-l. (39)

For the case of radiation pressure, Pgap and Pcoax

can be calculated as the appropriate average of
Eqs. (34a) and (34b), and combining these with
Eqs. (35) and (36) gives us

1 I1fVI = -2.51 x 10- 5 (J)~l. (40)

Similarly, for a mechanical tuner pushing with a
force F we use Eqs. (35) and (37) and get

1 I1fFI= -2.49 x 10- 6 (N)-l. (41)

In Section 3 we will compare these results with
numerical calculations worked out for the same
model cavity.

Electromechanical Instability

The extremely narrow bandwidth of supercon­
ducting cavities leads to the possibility of electro­
mechanical instabilities. 8-1 0 These instabilities can
occur when the frequency shift due to radiation
pressure exceeds the bandwidth, so that the res­
onance curve becomes overhanging, as shown in
Figure 2. In this case, the lower frequency side of
resonance is statically unstable; when the cavity is
operated at frequency L; as shown in Figure 2, the
cavity can be filled to point (c) but not to point (b).
The higher frequency side of resonance, indicated
as point (a), is statically stable, but is subject to

ponderomotive oscillations, a dynamic instability
in which radiation pressure drives a mechanical
resonance in the cavity walls. Ponderomotive
oscillations result in periodic variations of the
cavity resonant frequency accompanied by a
modulation of the rf field level and thus must be
prevented to allow stable operation of an ac­
celerator.

The mechanism responsible for ponderomotive
oscillations can be understood by considering the
effect that vibrations of the cavity walls has on the
cavity fields. Associated with wall vibration there is
an oscillation of the cavity resonant frequency. If
the cavity is being operated on the sloping portion
of its resonance curve, the frequency oscillation
results in modulation of the rf energy level in the
cavity and consequently in modulation of the
radiation pressure exerted on the cavity walls.
Depending on the relative phase, this oscillating
part of the radiation pressure either drives or
dampens the initial mechanical vibration. If the
cavity is operated on the high-frequency side of the
resonance curve, such vibrations are always driven,
and if the radiation pressure is strong enough, the
oscillations are self sustaining.

Because both types of electromechanical in­
stabilities are a result of radiation pressure which in
turn is proportional to the amount of rf energy
stored in the cavity, there is a minimum rf energy
required for their occurrence. This stored energy
level is called the threshold energy UTh' and is
given by

V~'h = (2K jQj QE)- 1 [(1 - ~2 :~~2f + 4~2],

(42)

for ponderomotive oscillations where ~ > 0, and by

US _ (2K oQE)- 1(1 + ~2)

Th - (_ 2~) ,

for static instability where ¢ < 0. The quantities
Jj, K, and Qj are the resonant frequency, the
electromechanical coupling constant, and the
mechanical Qof the jth mechanical resonance of the
cavity. The quantities fo and QEare the rf resonant
frequency and rf loaded Q of the cavity. The
normalized tuning error ~ which appears in Eqs. (42)
and (43) is defined by the relation

FIGURE 2 Overhanging resonance curve which occurs when
the frequency shift due to radiation pressure exceeds the band­
width.

(44)
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where f is the rf generator frequency. The nor­
malized mechanical frequency I] is similarly defined
as

occur even before the curve becomes overhanging.
Assuming QM == 100 and QE == 108

, and the pre­
viously stated values of K o, .fl and fo, we get

(45)
and

Min[U~h] = 0.2 mJ, (50a)

(46)

(47)

(48)

(SOb)Min[U~h] :=: 2.0,uJ.

The minimum threshold energy for pondero­
motive oscillations is quite small compared to the
energy (0.5 J) stored in a re-entrant cavity for an
accelerator gradient of 3 MV/m. However, this
minimum occurs eaf :=: fo + fl which is 75 cavity
bandwidths off resonance. A more realistic value of
U~h is obtained by considering a Min[U~h] for
a smaller range of tuning errors. For a smaller
range of tuning errors where YJ ~ 1 and I] ~ ~,

M · CUd ] - (2K j Q j Q E) - 11]3 (51)
In Th - 4~ .

In the case of our re-entrant cavity, this yields
Min[U~h] == 0.6 J, at I~ I ~ 3 or 1.5 bandwidths off
resonance. Thus we see that in this range of tuning
error, the cavity is completely stable against
ponderomotive oscillations up to an accelerator
gradient of 3 MV/m.

Equation (50a) indicates that the cavity is
statically unstable. One can stabilize it by using an
electronic feedback circuit to level the rf fields in
the cavity. To be effective the open loop gain of the
feed-back system must be at least as large as the
ratio of the cavity energy to the threshold energy,
UIU~h' which in this case equals 2.5 x 103

. In
addition, the feedback system must respond to
disturbances of frequencies up through

t; = (~J(l + e)1/2, (52)

with less than a 90° lag in response. In our case [«
equals 7 Hz for I~ I == 3. Thus the cavity can be
stabilized using an electronic leveling system with
an open loop gain of 2.5 x 103 and a gain band­
width product of (2.5 x 103

) x (7 Hz) == 18 kHz.
These seemingly mild requirements are complicated
by the fact that the cavity introduces a pole in the
feedback system at 4.3 Hz and the fact that the
cavity may be operated 1.5 bandwidths off res­
onance, at which point the gain of the leveling
system is reduced from its on-resonance value.
These effects increase the gain and bandwidth
requirements of the leveling circuitry to 2.5 x 104

The static electromechanical coupling constant,
K o, is the normalized static shift of the cavity
resonant frequency due to radiation pressure:

1 4f~
K o = V fo '

and is calculated in Eq. (40)to be -2.51 x 10- 5(J)- 1
for our re-entrant cavity. K o is related to the
dynamic K's by

In the case of the re-entrant cavity one would
expect the sum of the K /s to be dominated by the
first mechanical mode, and thus for most cal­
culations one can approximate Eq. (47)as K 1 ~ K o.
The first mechanical resonant frequency of a re­
entrant cavity is given byll

Min[U}h] == (2K jQjQE)-I, (49a)

and occurs atf == fo + fj. The minimum threshold
energy for static instabilities is

Min[U~h] == (2K oQE)- 1, (49b)

and occurs at f == fo - fo/2QE. This minimum
value of U~h corresponds to the lowest rf energy at
which the resonance curve becomes overhanging.
Equations (49a) and (49b) indicate that Min[U~h]
== QM 1

Min[U~h]' so that if QM is greater than one,
as it usually is, a cavity is more unstable against
ponderomotive oscillations than against static
instabilities. Thus ponderomotive oscillations can

t [ Ym
2 Jl/2

I, == 0.9342 -22 (2 ) ,
r2 P m - 1

where p == 8.6 X 103 kg/m' is the density of
niobium. For our example cavity, fl == 330 Hz.

Because of the extremely narrow bandwidth of
superconducting cavities, mechanical vibrations of
the cavity walls can easily lead to large tuning
errors. In such a case one is interested in the mini­
mum threshold energy for varying tuning error.
For high Q superconducting cavities where I] ==

2QEflifo ~ 1, the minimum threshold energy for
ponderomotive oscillations is



132 1. BEN-ZVI, P. H. CEPERLEY ANDH. A. SCHWETTMAN

FI GU RE 4 Surface electric field distribution for the optimized
433 MHz re-entrant cavity.

l= 0 r =0
\(CENT'ER OF

\ THE GAP)

L
"CONDENSER PLATE"
(REENTRANT PART)

at a value Ep , for then the total voltage gain across
the gap will be V = Epg.The object of the numerical
study is to design a cavity at 433 MHz, with a gap
g = 2 em, a beam tube diameter 2a = 2cm, and a
cavity diameter 2r2 = 38 em, which has a nearly
uniform peak surface electric field.

Since the LALA program is limited to treating
boundaries made of sections of ellipses (including
circles) and straight lines, the principle behind the
search for an optimum boundary is quite simple.
Where the field is peaked, the radius of curvature
of the boundary section in question is increased, or
the radial distance of the section from the center is
increased. It turns out that a rather simple se­
quence of boundary sections in the re-entrant part
of the cavity yields satisfactory results; the boundary
consists of a tapered straight line, joined at both
ends to quarter ellipses. A proper choice of the
taper, the length of the line, and the ellipse axes and
centers limits the surface field variation to less
than 4 percent.

The boundary of the optimized re-entrant cavity
using the LALA format is described in Table II. In
the LALA format a line section is described by the
coordinates (ZBl, RBI) of a point at the start of the
line and the coordinates (ZB2, RB2) of a point at
the end of a line. An ellipse section is described by
the coordinates (ZC, RC) of the ellipse center and by
the length of the axes, R1 and R2, along the Z and R
directions respectively. Positive values of Rl and
R2 imply counter-clockwise ellipsesections and
negative values imply clockwise sections. All
coordinates are given in centimeters. The surface
electric field distribution for the optimized cavity is
given in Figure 4. As we can see from the flatness of
the field distribution along the re-entrant part., this

BEAM AXIS

and 180 kHz respectively. However, these require­
ments should be quite easy to meet, if one uses a
direct rf feedback system.

FIGURE 3 Sectional view of the 433 MHz re-entrant cavity.

3 NUMERICAL ANALYSIS OF
A RE- ENTRANT CAVITY

Shape Optimization

Once the general shape of the cavity has been
determined, we can solve Maxwell's equations
numerically, and perturb the cavity boundaries to
improve the cavity properties. The numerical
analysis is done with the Los Alamos computer
program LALA. 1 2 A sectional view oJ are-entrant
cavity which is designed for particles with 0.08 S
f3 S 0.16 is shown in Figure 3. The design fre­
quency is 433 MHz. It is obvious that the surface
electric field is large in the re-entrant part of the
cavity, and that a sharp edge anywhere in this
region will enhance the local field, without
contributing to the total voltage gain across the
gap. The ideal situation is a surface field which is
constant along the re-entrant portion of the cavity
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\ ALONG BEAM AXIS

~ABOUT r = rl
ON THE WALL\ABOUT r = r l

\ AND i =0

o

w
u
~
0:::
::>
If)

cavity. Although the electric field is zero at this
point, the magnetic field is finite. The numerical
calculations of the surface magnetic field, given in
Figure 5, however, show that the ratio (field at the
weld)/(maximum field) is only 0.69.This situation is
also quite favorable.

o
...J
W
i:

FIGURE 5 Surface magnetic field distribution for the opti­
mized 433 MHz re-entrant cavity.

Electrical Properties and Transit Time Factor

The electrical parameters of the optimized re­
entrant cavity given in Table II have been cal­
culated using the LALA program. Calculated
values of the cavity frequency, the quality factor,
the Rsh/QL-value, the peak electric field, the peak
field ratio, the geometric factor, and the transit
time factor are given in Table III and compared
there to values predicted for this cavity by the
approximate analysis of Section 2. The agreement
between the approximate values calculated an­
alytically and the rather accurate numerical cal­
culations is quite good. Thus one can design a re­
entrant cavity using the various approximate

boundary is quite good. In fact, the figure of merit

as calculated from the computer results is unity, and
thus we can use the peak surface electric field for
acceleration with 100 percent efficiency.

The fast drop of the surface field, evident in
Figure 4, on going from the re-entrant part of the
cavity to the beam tube is achieved by making the
semi-minor axis of the ellipse which describes that
boundary section as small as possible. The limit on
this process is obviously local surface field en­
hancement. In Table II we find this axis under
R1(8) and it is 0.5 ern. The practical significance of
this fast drop can be understood when we consider
the manufacturing process of the cavity. Nearly one
half of the cavity can be made from a single sheet of
niobium metal in a single forming operation. The
beam tube has to be welded to this formed section.
In re-entrant cavity experiments it is found that
good internal electron beam welds which are
machined after welding to produce a smooth
surface, yield surface imperfections after chemical
polishing. The position of the beam tube weld can
be moved out of the high-field region by a drawing
operation which pulls the center of the formed
section along the ellipse contour. However, the
amount by which this can be done is limited, and
thus it is necessary to design a fast drop of the
field in this region. The numerical calculations show
that at the point where the straight section of the
beam tube starts [point ZB1(9),RB1(9)in Table II]
the surface field has dropped already to 15 percent
of Ep •

The only other weld in this cavity is on its
equator where the two halves are joined to form one

TABLE II

Cavity boundary parameters (LALA format) for optimized cavity

No. RBI ZB1 RB2 ZB2 RC ZC R1 R2

1 0 0 17.5 0
2 17.5 0 17.5 2.5
3 17.5 2.5 16.5 3.5 16.5 2.5 -1.0 -1.0
4 16.5 3.5 12.8 3.5
5 12.8 3.5 10.5 2.2 11.8 2.2 -1.3 -1.3
6 10.5 2.2 7.5 1.0 7.8 2.2 1.2 2.6
7 7.5 1.0 3.0 1.05
8 3.0 1.05 1.0 1.55 3.0 1.55 0.5 2.0
9 1.0 1.55 1.0 4.0

10 1.0 4.0 0 4.0
11 0 4.0 0 0
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TABLE III

Electrical parameters of optimized 433 MHz cavity

Quantity Symbol Units Numerical Approximate Equation

Frequency F MHz 437.18 442 (5)
Quality factor" Q 1.247 x 104 1.10 X 104 (6)
Rsh/QL Q/m 706.9 1087 (13)

V
Peak electric field Ep/(PQ)1/2

m x W I/2 356.6 344 (I2b)

V
Peak field ratio Ep/Hp m x Oe

6.67 x 104 6.9 X 104 (1Ia)

Geometric factor r Q 67 60
Transit time factor" T 0.64 0.51 (33)

3 The quality factor is calculated using the conductivity for copper at room temperature
(a = 0.591 x 108 MHO/meter).

b The transit time factor is calculated for particles with f3 = 0.1.

FIGURE 6 Numerical and approximate axial electric field
distribution for the optimized 433 MHz re-entrant cavity.

expressions given in Section 2, evaluating the
various electrical properties with reasonable con­
fidence before doing any computer work.

The axial field distribution for the re-entrant
cavity is,given in Figure 6. Curve (a) represents the
numerical calculation using the LALA program,
while curve (b) represents the exact electrostatic
solution given by Eqs. (22) and (24) and curve (c)
represents the approximate electrostatic solution

Frequency Tuning

For our optimized re-entrant cavity (see Table II)
we can compare the approximate results of Section 2
for the frequency tuning with numerical cal­
culations. The deformation of the cavity walls can
be calculated using the computer program "NON­
LIN".13 The required input to the program, in
addition to the boundary description, is the detailed
load distribution. For atmospheric pressures the
load distribution is uniform, for radiation pressure

[Eq. (28)J which is used to calculate the transit time
factor of Eq. (29). The difference between curves (a)
and (b) are due mainly to the rounding of the gap
edges. The numerical transit time factor in Table III
is calculated directly from the axial field distri­
bution given by curve (a).It is interesting to note that
the approximate result of Eq. (29) underestimates
this value by 20 percent, while the square-field
approximation of Eq. (30), if an effective gap
(g2 + 4a2)1/2 is assumed, overestimates the transit
time factor by 20 percent.

In comparing superconducting structures an
appropriate figure of merit is RshrlLQsince for
given surface resistance this quantity relates the
power dissipated per unit length to the voltage
gradient. For a helix RshlLQ is on the order of
3000 Q/m which is much larger than the 707 Q/m
calculated for the re-entrant cavity. However, the
geometric factor is on the order of 7 Q for the helix
compared to 67 Q for the re-entrant cavity, and thus
the figure of merit for the helix is approximately one
half that for the re-entrant cavity.
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Effect

Atmospheric pressure

Radiation pressure

Mechanical tuner

SUPERCONDUCTING HEAVY ION LINAC

TABLE IV

Approximate and numerical frequency shift values

Work~W

Magnitude (lb/inch) ~W/V Shift Numerical Approximate Equation

1Torr 36.76 x 10- 6 10.40 X 10- 6 ~ ~f Torr- 1 -10.4 x 10- 6 -8.1 X 10- 6 (46)
P f

0.399 J 35.60 x 10- 6 10.08 X 10- 6 1 ~f -1 - 25.3 X 10- 6 -25.1 X 10- 6 (47)--J
Vf

lIb 111.30 x 10- 6 31.52 X 10- 6 ~ ~f N- 1 -6.95 x 10- 6 -2.5 X 10- 6 (48)
Ff
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the load distribution must be calculated using the
electromagnetic fields obtained from the LALA
program, and for the mechanical tuner the load
distribution is confined to the beam tube. The work
done on the electromagnetic fields in the cavity is
calculated from the local deformation of the cavity
wall and the local radiation pressure and from this
the frequency shift is obtained. Table IV summarizes
the results. The agreement. between the approxi­
mate expressions developed in Section 2 and the
numerical calculation is remarkably good, with the
exception of mechanical tuner result, which is more
than a factor of 2 off.

Mechanical tuning of the re-entrant cavity can
be accomplished in a number of ways. One pos­
sibility is to use a stack of piezoelectric crystals.
For a commercially available crystal such as
Clevite Corp. PZT-4, a stack of 100 crystals and a
voltage range of ±400 V provides a frequency
tuning range of J1f/f ~ ±1.5 x 10- 5 which is
equivalent to a pressure change of about ±1.5 Torr,
or a cavity energy change of about ±0.6 J.
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