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Abstract 
The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at 
the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss 
Monitoring (BLM) system. At each turn, there will be several thousands of data to record and 
process in order to decide if the beams should be permitted to continue circulating or their safe 
extraction is necessary to be triggered. The processing involves a proper analysis of the loss pattern 
in time and for the decision the energy of the beam needs to be accounted. This complexity needs 
to be minimized by all means to maximize the reliability of the BLM system and allow a feasible 
implementation.  
In this paper, a field programmable gate array (FPGA) based implementation is explored for the 
real-time processing of the LHC BLM data. It gives emphasis on the highly efficient Successive 
Running Sums (SRS) technique used that allows many and long integration periods to be 
maintained for each detector’s data with relatively small length shift registers that can be built 
around the embedded memory blocks. 

 
 
 
 

Presented at IEEE NSS 2006 – Oct. 29 / Nov. 4 2006 – San Diego/USA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44171172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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for Real-Time Processing of the LHC Beam Loss 

Monitoring System's Data 
Christos Zamantzas, Bernd Dehning, Ewald Effinger, Jonathan Emery, Gianfranco Ferioli

 Abstract–The strategy for machine protection and quench 
prevention of the Large Hadron Collider (LHC) at the European 
Organisation for Nuclear Research (CERN) is mainly based on 
the Beam Loss Monitoring (BLM) system. At each turn, there 
will be several thousands of data to record and process in order 
to decide if the beams should be permitted to continue circulating 
or their safe extraction is necessary to be triggered. The 
processing involves a proper analysis of the loss pattern in time 
and for the decision the energy of the beam needs to be 
accounted. This complexity needs to be minimized by all means 
to maximize the reliability of the BLM system and allow a 
feasible implementation.  

In this paper, a field programmable gate array (FPGA) based 
implementation is explored for the real-time processing of the 
LHC BLM data. It gives emphasis on the highly efficient 
Successive Running Sums (SRS) technique used that allows many 
and long integration periods to be maintained for each detector’s 
data with relatively small length shift registers that can be built 
around the embedded memory blocks. 

I. INTRODUCTION 

HE strategy for machine protection and quench prevention 
of the Large Hadron Collider (LHC) at the European 

Organisation for Nuclear Research (CERN) is mainly based 
on the Beam Loss Monitoring (BLM) system. At each turn, 
there will be several thousands of data to record and process in 
order to decide if the beams should be permitted to continue 
circulating or their safe extraction is necessary to be triggered. 
The processing involves a proper analysis of the loss pattern in 
time and for the decision the energy of the beam needs to be 
accounted. This complexity needs to be minimized by all 
means to maximize the reliability of the BLM system and 
allow a feasible implementation.  

Processing data in real-time requires dedicated hardware to 
meet demanding time or space requirements where 
performance is often limited by the processing capability of 
the chosen technology. To overcome such a limitation, as a 
first step, the BLM system is making use of modern field 
programmable gate arrays (FPGAs), which include the 
resources needed to design complex processing and can be 
reprogrammed making them ideal for future upgrades or 
system specification changes. Consecutively, a great effort has 
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been committed to provide a highly efficient, reliable and 
feasible implementation of the real-time processing by 
employing various digital techniques and optimizing across all 
of its levels of abstraction. 

II. BLM SYSTEM OVERVIEW 
Around 4000 Ionization Chambers are the detectors of the 

system. Tunnel cards, called BLECFs [1], acquire and digitize 
the data from the detectors and transmit those at the surface 
using Gigabit Optical Links (GOL) [2]. There, the data 
processing cards, named BLETCs [3], receive those data and 
decide whether or not the beam should be permitted to be 
injected or continue circulating.  

Each surface card receives data from two tunnel cards, 
which means that it can treat up to 16 channels 
simultaneously. In addition, it provides data to the Logging, 
the Post Mortem and the Collimation systems that will be used 
to drive on-line displays in the control room, to allow off-line 
analysis of the losses and to setup automatically the 
collimators. 

III. SURFACE FPGA’S PROCESSES 
Between the blocks responsible for the correct reception 

and the comparison with the relevant for the channel and the 
beam energy threshold values lays the BLM’s real-time data 
processing block. Fig. 1 shows a block diagram of the 
processes assigned in the FPGA and a more detailed 
explanation of its major parts follows.  

A. Receive, Check and Compare (RCC)  
The RCC process is part of the effort to provide very 

reliable implementations of the physical and data link layers 
for the BLM system. Because of the radiation environment in 
the tunnel, the evaluation of the detector signal has to be 
performed in the surface buildings. This leads to long 
transmission distances of up to 2 km between the front-end in 
the tunnel and the processing module on the surface. The link 
operates in the gigabit region to provide low system latency 
and it is using radiation tolerant devices for the parts residing 
in the tunnel installation.  

This reception process, i.e. the RCC, is facilitated in the 
entry stage of the surface FPGA and its implementation has 
been done in a way that ensures the correct reception and 
detection of erroneous transmissions by redundancy in the 
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transmission and by using digital techniques like the Cyclic 
Redundancy Check (CRC) [4] and the 8B/10B [5] algorithms.  

In addition, a significant portion of the transmitted packet is 
occupied with extra information which is used by this process 
to monitor constantly the correct operation of the tunnel 
installation. 
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Fig. 1.  Block Diagram of the processes assigned in the BLM system’s 

surface installation FPGA.  

B. Data processing  
The proton loss initiated quench of magnets is depending on 

the loss duration and on the beam energy. Given the tolerance 
acceptable for quench prevention given by the specifications, 
the quench threshold versus loss time curve has been 
approximated with a minimum number of steps fulfilling the 
tolerance. That has resulted into reducing the number of 
sliding integration windows to twelve. 

In the configuration chosen, each processing module of the 
system is able to treat 16 channels in parallel and maintain 12 
integration periods for each of them spanning in various 
lengths with the smallest starting from 40µs and the longest 
reaching up to 84s.  

Moreover, the system in order to achieve the nine orders of 
dynamic range requested by the specifications it is making use 
of both Current-to-Frequency Converter (CFC) and ADC 
circuitries for the acquisition and the processing module needs 
to merge those data subsequently.  

Both of these parts are discussed in more detail on the 
following sections IV and V. 

C. Threshold Comparator and Masking 
The Running Sums, after every new calculation, need to be 

compared with their corresponding threshold values that were 
chosen by the beam energy reading given that moment. If on 
any of them the level is found to be higher, the comparator 
will initiate the necessary beam dump request.  

All dump requests will initially be gathered by a Masking 
process with the main purpose of distinguishing between 
"Maskable", "Un-Maskable" and unconnected channels. 
Consequently they will be forwarded to the Beam Interlock 

System (BIS) [6], which will initiate the beam dump. The 
operators from control room will have the ability to inhibit 
some of the used channels, i.e. the "Maskable", under specific 
and strict conditions. At the same time, highly critical 
channels will not be possible under any circumstance to be 
disabled. 

The proposed implementation of a quench level threshold 
comparator that allows also the possibility of channel masking 
is using unique tables for each detector to provide the 
threshold values depending on the beam energy reading.  

In order to minimize that table and the memory needed to 
be stored, instead of using a global table the load will be 
spread between the processing modules. Thus, a unique block 
of values will be created for each of the cards of the complete 
system. The information included will be still for its moving 
windows, but for less beam energy levels and the specific 
detectors, each card is reading. 

More specifically, on each card it was shown that 12 
Running Sums for each of the 16 detector channels will be 
calculated. The beam energy information will be scaled into 
32 levels (0.45 to 7 TeV) and each processing module will 
hold data only for those 16 detectors connected. That would 
give a total of 6,144 threshold values (i.e. 32 KB of data) 
needed to be held on each card. 

D. Logging and Post-Mortem 
In the LHC, storage of the loss measurements are needed to 

allow to trace back the loss signal developments as well as the 
origin of the beam losses in conjunction with other particle 
beam observation systems. Such data will be sent over the 
VME-bus for on-line viewing and storage by the Logging and 
Post-Mortem systems.  

For supervision, the BLM system will drive an online event 
display and write extensive online logging at a rate of 1 Hz. 
The data available for this purpose will include the error and 
status information recorded by the tunnel electronics and the 
RCC process as well as the maximum loss rates seen by the 
running sums (in the last second) together with their 
corresponding quench level thresholds for the given beam 
energy. The Logging system will be able to normalize the loss 
rates with respect to their quench levels before displaying 
them so that abnormal or high local rates can thereby be 
spotted easily.   

Additionally, there are two types of post-mortem data 
available from the system for more detailed offline analysis. 
Those will be, the acquired data (40 µs samples) from the last 
20,000 turns, i.e. the last 1.75 seconds, and 82 ms summed 
values of the acquired data for the last 45 minutes. 

E. Collimation  
Finally, for the Collimation system and to support the 

correct alignment and setup of the collimators one more set of 
data is available. Those data contain whenever requested the 
losses seen on the last 81.28 ms organized in the form of 32 
consecutive 2.54 ms sums of the acquired data for each 
detector. 



 

IV. CFC & ADC DATA MERGING ALGORITHM 
The Data Combine process will receive the two types of 

data, the counter and the ADC data, coming from the same 
detector and will merge them into one value, filtering at the 
same time noise passing through the ADC circuitry. 

On the beginning stage, the ADC value is normalized by its 
effective range.  The min and max of the ADC values received 
are continuously calculated. Their difference signifies the 
effective range of the ADC circuitry and is used to normalize 
each received value. (see Fig. 2) 

 

 
Fig. 2.  Block diagram of the Data Combine process (first part). The ADC 

data normalizer part of the process operates by calculating the operating range 
of the ADC circuit and consecutively multiplies this as a normalization factor 
to the ADC value received. The multiplier is making use of the embedded 
DSP element in the FPGA device. 

The two types of data acquired from each detector are of 
different type and a pre-processing is needed in order those to 
be combined seamlessly. The measurement of the frequency 
produced by the CFC with a counter relates to the current 
accumulated between the last acquisitions. On the other hand, 
the voltage measured by the ADC is the fraction remained 
between the last count and the first from the next acquisition. 

 

 
Fig. 3.  Block diagram of the Data Combine process (second part). This 

part of the function outputs a 20 bit value comprising of the CFC and the 
ADC data. A Minimum-Value-Hold (MVH) block is also added in the ADC 
data input to filter out various types of noise coming from the acquisition 
circuit. 

In order to merge those data the difference of the last two 
ADC measurements is needed. It corresponds to the counter 
fraction of the last 40 µs and thus could be added to the 
counter value. This could be described in an equation as: 

( ) ( ) ( ) ( )
N

ADCADC
CounterMerged 2

nV-1-nVnVnV +=    (1) 

Where, VCounter and VADC are the recorded values from the counter and the 
ADC respectively, and N is the number of bits used from the ADC. The 
difference is divided by its full scale in order to be normalized as a fraction. 

Of course in the implementation, since the difference could 
be a negative number, signed number arithmetic is used for the 
addition and in order not to loose in accuracy the values are 

transformed to 20 bit, which can be considered equal to the 
multiplication by 212 both parts of Equation 1. (see Fig. 3) 

V. SUCCESSIVE RUNNING SUMS 
The procedure for the data processing, which was chosen to 

be followed, is based on the idea that a constantly updated 
moving window can be kept by adding to a register the 
incoming newest value and subtracting its oldest value. The 
number of values that are kept under the window, or 
differently, the difference in time between the newest and the 
oldest value used, defines the integration time it represents.  

A. Basic principles used  
A similar configuration for the production of the running 

sums, but more efficient, would be to delay each incoming 
new value with a fixed number of cycles by passing them 
through a shift register and add the difference of the new and 
the outputted from the shift register to an accumulator. As a 
result, the depth of the shift register will then signify the 
integration time of this running sum. (see Fig. 4) 

 
Fig. 4.  Block diagram showing an efficient way (w.r.t. speed and 

resources) to produce and maintain a continuous running sum of arriving 
values.    

Additionally, long histories of the acquired data are needed 
for the construction of long moving windows. The technique 
employed to reach long integration periods with relatively 
small in length shift registers is overcome by consecutive 
storage of partial sums of the received values.  
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Fig. 5.  Block diagram showing a configuration for efficient summation 

(w.r.t. resources) of many values. Instead of storing all the values needed for 
the sum, this technique stores successively parts of the total sum using only a 
fraction of the otherwise needed memory space.  



 

In general, it works by feeding the sum of one shift 
register’s contents, every time its contents become completely 
updated, to the input of another shift register. By cascading 
more of these elements it manages to construct very long 
moving sum windows that overcome the storage problem of 
preserving long histories of the acquired data. (see Fig. 5) 

B. Optimal Configuration for the BLM system 
Combining those two techniques alone, unfortunately it is 

not enough to solve all of the difficulties with the needed 
resources. Nevertheless, by following some more straight 
forward design rules for the construction the wanted result can 
be achieved.  

For example, by doing such an operation it emerges that the 
already calculated running sums can be used in order to 
calculate bigger in length running sums without the need of 
extra summation points (as proposed in the example before) 
which translates to a huge data reduction and resource sharing. 
In the designs realization, the sum of the Shift Register 
contents is always kept and updated in the running sums. 
Thus, some of the running sums' outputs are also used directly 
to feed the following stage’s inputs. 
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Fig. 6.  Block diagram of the Successive Running Sums configuration in 

the BLM system. The process is making use of successive multipoint shift 
registers of 64 or 128 values to continuously update and maintain 12 sums 
with the longest providing a sum of more than 2 million acquired values or 
differently an integration time of 84 seconds. 

One more step is the use of multipoint shift registers. That 
is, shift registers that are configured to give intermediate 
outputs, usually referred to as taps. The taps provide data 
outputs at certain point in the shift register chain. This feature 
can be effectively employed to combine overlapping memory 
contents, therefore minimizing even more the resource 
utilization. (see Fig. 6) 

Finally, since the shift registers will be constructed by the 
FPGA's embedded memory blocks, where the width and depth 
of the memory block is fixed, any unused memory space will 
be wasted. If a longer or wider shift register is needed then 
two or more memory blocks will be combined but no other 
process can use the memory bits left unused by each shift 

register implemented. Fig. 7 illustrates an example where the 
contents needed for each detector are 32 x 8-bit values. If each 
detector is treated independently, its shift register will occupy 
one 512 bit memory block. For the same case, if the data from 
two detectors were pre-combined, the resource usage would 
drop to half. 
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Fig. 7.  Example showing the optimization that can be achieved in the 

usage of the FPGA's embedded memory blocks by the shift registers.  

Of course, this example is not always the case and there is 
not a generic way to discover such optimizations. Probably 
this is also the reason why none of the synthesis tools 
available performs such resource sharing. Thus, it was found 
necessary an investigation to be made to find the optimal 
configuration and later the results were constrained into the 
synthesis tool. 

VI. EVALUATION OF THE SRS TECHNIQUE 
The optimal achievable latency in the response of each 

stage in such a system is equal to the refreshing time of the 
preceding shift register. That is, the time needed to completely 
update its contents. In Fig. 5, the supervision circuit, denoted 
as "Read Delay", which is making sure that the sum is 
calculated every time with new values, holds a delay equal to 
this latency to guarantee the correct operation. Thus, the delay 
is every time equal to the preceding shift register’s input clock 
period multiplied by the elements planned to be used in the 
sum.  

For example (and using the notation of Fig. 5):  

nf2SR NewValueDELAY *=            (2) 

m2SR3SR DELAYDELAY *=            (3) 
Where, SR2DELAY, SR3DELAY are the read delays needed for the first and the 
second shift register respectively, fNewValue is the frequency of the input, and the 
n, m are the number of elements held in each of the shift registers. 

Furthermore, as it can be seen in Table I where it is shown 
the configuration of the running sums optimized for the LHC's 
BLM system, the latency introduced has little effect to the 
optimal approximation accuracy. This is a result from the fact 



 

that it varies between them. More specifically, the running 
sums that span to the low range (fast losses) have zero or very 
small additional latency. The latency gradually increases as 
the integration time increases, reaching up to 0.65 seconds for 
the 21 and 84 seconds integration time range. 

 
TABLE I 

SUCCESSIVE RUNNING SUMS CONFIGURATION FOR THE BLM SYSTEM.  

Range Refreshing 
40 µs  
steps Ms 40 µs  

steps ms 

Shift 
Register 

Name 

Running 
Sum 

Name 

1 0.04 1 0.04  RS00 
2 0.08 1 0.04  RS01 
8 0.32 1 0.04 RS02 

16 0.64 1 0.04 
SR1 

RS03 
64 2.56 2 0.08 RS04 
256 10.24 2 0.08 

SR2 
RS05 

2048 81.92 64 2.56 RS06 
16384 655.36 64 2.56 

SR3 
RS07 

32768 1310.72 2048 81.92 RS08 
131072 5242.88 2048 81.92 

SR4 
RS09 

524288 20971.52 32768 655.36 RS10 
2097152 83886.08 32768 655.36 

SR5 
RS11 

The red colored running sums (RSxx) outputs, i.e. RS01, RS04, RS06, and 
RS07, represent their additional utilization as the inputs for adjacent shift 
registers (SRxx), i.e. SR2, SR3, SR4, and SR5. 

 
Finally, by cascading just five of these elements, holding 

only 64 or 128 values each, it is enough to reach the 100-
second upper integration limit requested by the specifications. 
This gained efficiency was necessary for this system to be 
applicable in a configuration with relatively very low memory 
available. In a different configuration of this system, where 

only Running Sums would be used, the shift registers would 
need to hold approximately 3 million values for each of the 16 
detectors to achieve the same approximation error which 
translates to a total of approximately 150 MB of memory 
space. Instead, by using the Successive Running Sum 
technique the system is using only some of the FPGA’s 
internal memory since it does not need more than 100 KB of 
memory space. 
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