
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN ⎯ AB DEPARTMENT

Geneva, Switzerland
March, 2007

CERN-AB-2007-010 BI

An FPGA Based Implementation for Real-
Time Processing of the LHC Beam Loss

Monitoring System’s Data

B. Dehning, E. Effinger, J. Emery, G. Ferioli, C. Zamantzas.

CERN – Geneva - Switzerland

Abstract
The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at
the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss
Monitoring (BLM) system. At each turn, there will be several thousands of data to record and
process in order to decide if the beams should be permitted to continue circulating or their safe
extraction is necessary to be triggered. The processing involves a proper analysis of the loss pattern
in time and for the decision the energy of the beam needs to be accounted. This complexity needs
to be minimized by all means to maximize the reliability of the BLM system and allow a feasible
implementation.
In this paper, a field programmable gate array (FPGA) based implementation is explored for the
real-time processing of the LHC BLM data. It gives emphasis on the highly efficient Successive
Running Sums (SRS) technique used that allows many and long integration periods to be
maintained for each detector’s data with relatively small length shift registers that can be built
around the embedded memory blocks.

Presented at IEEE NSS 2006 – Oct. 29 / Nov. 4 2006 – San Diego/USA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44171172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An FPGA Based Implementation
for Real-Time Processing of the LHC Beam Loss

Monitoring System's Data
Christos Zamantzas, Bernd Dehning, Ewald Effinger, Jonathan Emery, Gianfranco Ferioli

 Abstract–The strategy for machine protection and quench
prevention of the Large Hadron Collider (LHC) at the European
Organisation for Nuclear Research (CERN) is mainly based on
the Beam Loss Monitoring (BLM) system. At each turn, there
will be several thousands of data to record and process in order
to decide if the beams should be permitted to continue circulating
or their safe extraction is necessary to be triggered. The
processing involves a proper analysis of the loss pattern in time
and for the decision the energy of the beam needs to be
accounted. This complexity needs to be minimized by all means
to maximize the reliability of the BLM system and allow a
feasible implementation.

In this paper, a field programmable gate array (FPGA) based
implementation is explored for the real-time processing of the
LHC BLM data. It gives emphasis on the highly efficient
Successive Running Sums (SRS) technique used that allows many
and long integration periods to be maintained for each detector’s
data with relatively small length shift registers that can be built
around the embedded memory blocks.

I. INTRODUCTION

HE strategy for machine protection and quench prevention
of the Large Hadron Collider (LHC) at the European

Organisation for Nuclear Research (CERN) is mainly based
on the Beam Loss Monitoring (BLM) system. At each turn,
there will be several thousands of data to record and process in
order to decide if the beams should be permitted to continue
circulating or their safe extraction is necessary to be triggered.
The processing involves a proper analysis of the loss pattern in
time and for the decision the energy of the beam needs to be
accounted. This complexity needs to be minimized by all
means to maximize the reliability of the BLM system and
allow a feasible implementation.

Processing data in real-time requires dedicated hardware to
meet demanding time or space requirements where
performance is often limited by the processing capability of
the chosen technology. To overcome such a limitation, as a
first step, the BLM system is making use of modern field
programmable gate arrays (FPGAs), which include the
resources needed to design complex processing and can be
reprogrammed making them ideal for future upgrades or
system specification changes. Consecutively, a great effort has

Manuscript received November 19, 2006.
All authors are with CERN, CH-1211 Geneva 23, Switzerland

(e-mails: firstname.lastname@cern.ch).
C. Zamantzas is the corresponding author (telephone: +41 22 767 3409,

e-mail: christos.zamantzas@cern.ch).

been committed to provide a highly efficient, reliable and
feasible implementation of the real-time processing by
employing various digital techniques and optimizing across all
of its levels of abstraction.

II. BLM SYSTEM OVERVIEW
Around 4000 Ionization Chambers are the detectors of the

system. Tunnel cards, called BLECFs [1], acquire and digitize
the data from the detectors and transmit those at the surface
using Gigabit Optical Links (GOL) [2]. There, the data
processing cards, named BLETCs [3], receive those data and
decide whether or not the beam should be permitted to be
injected or continue circulating.

Each surface card receives data from two tunnel cards,
which means that it can treat up to 16 channels
simultaneously. In addition, it provides data to the Logging,
the Post Mortem and the Collimation systems that will be used
to drive on-line displays in the control room, to allow off-line
analysis of the losses and to setup automatically the
collimators.

III. SURFACE FPGA’S PROCESSES
Between the blocks responsible for the correct reception

and the comparison with the relevant for the channel and the
beam energy threshold values lays the BLM’s real-time data
processing block. Fig. 1 shows a block diagram of the
processes assigned in the FPGA and a more detailed
explanation of its major parts follows.

A. Receive, Check and Compare (RCC)
The RCC process is part of the effort to provide very

reliable implementations of the physical and data link layers
for the BLM system. Because of the radiation environment in
the tunnel, the evaluation of the detector signal has to be
performed in the surface buildings. This leads to long
transmission distances of up to 2 km between the front-end in
the tunnel and the processing module on the surface. The link
operates in the gigabit region to provide low system latency
and it is using radiation tolerant devices for the parts residing
in the tunnel installation.

This reception process, i.e. the RCC, is facilitated in the
entry stage of the surface FPGA and its implementation has
been done in a way that ensures the correct reception and
detection of erroneous transmissions by redundancy in the

T

transmission and by using digital techniques like the Cyclic
Redundancy Check (CRC) [4] and the 8B/10B [5] algorithms.

In addition, a significant portion of the transmitted packet is
occupied with extra information which is used by this process
to monitor constantly the correct operation of the tunnel
installation.

B
ea

m
 P

er
m

it
(U

n-
M

as
ka

bl
e)

B
ea

m
 P

er
m

it
(M

as
ka

bl
e)

Si
gn

al
 B

Pr
im

ar
y

 R

ed
un

da
nt

R
ec

ei
ve

, C
he

ck
 &

 C
om

pa
re

 (R
C

C
)

... Lo
gg

in
g

V
M

E
Po

st
M

or
te

m

...
...

C
ol

lim
at

io
n

Si
gn

al
 A

Pr
im

ar
y

 R

ed
un

da
nt

Fig. 1. Block Diagram of the processes assigned in the BLM system’s

surface installation FPGA.

B. Data processing
The proton loss initiated quench of magnets is depending on

the loss duration and on the beam energy. Given the tolerance
acceptable for quench prevention given by the specifications,
the quench threshold versus loss time curve has been
approximated with a minimum number of steps fulfilling the
tolerance. That has resulted into reducing the number of
sliding integration windows to twelve.

In the configuration chosen, each processing module of the
system is able to treat 16 channels in parallel and maintain 12
integration periods for each of them spanning in various
lengths with the smallest starting from 40µs and the longest
reaching up to 84s.

Moreover, the system in order to achieve the nine orders of
dynamic range requested by the specifications it is making use
of both Current-to-Frequency Converter (CFC) and ADC
circuitries for the acquisition and the processing module needs
to merge those data subsequently.

Both of these parts are discussed in more detail on the
following sections IV and V.

C. Threshold Comparator and Masking
The Running Sums, after every new calculation, need to be

compared with their corresponding threshold values that were
chosen by the beam energy reading given that moment. If on
any of them the level is found to be higher, the comparator
will initiate the necessary beam dump request.

All dump requests will initially be gathered by a Masking
process with the main purpose of distinguishing between
"Maskable", "Un-Maskable" and unconnected channels.
Consequently they will be forwarded to the Beam Interlock

System (BIS) [6], which will initiate the beam dump. The
operators from control room will have the ability to inhibit
some of the used channels, i.e. the "Maskable", under specific
and strict conditions. At the same time, highly critical
channels will not be possible under any circumstance to be
disabled.

The proposed implementation of a quench level threshold
comparator that allows also the possibility of channel masking
is using unique tables for each detector to provide the
threshold values depending on the beam energy reading.

In order to minimize that table and the memory needed to
be stored, instead of using a global table the load will be
spread between the processing modules. Thus, a unique block
of values will be created for each of the cards of the complete
system. The information included will be still for its moving
windows, but for less beam energy levels and the specific
detectors, each card is reading.

More specifically, on each card it was shown that 12
Running Sums for each of the 16 detector channels will be
calculated. The beam energy information will be scaled into
32 levels (0.45 to 7 TeV) and each processing module will
hold data only for those 16 detectors connected. That would
give a total of 6,144 threshold values (i.e. 32 KB of data)
needed to be held on each card.

D. Logging and Post-Mortem
In the LHC, storage of the loss measurements are needed to

allow to trace back the loss signal developments as well as the
origin of the beam losses in conjunction with other particle
beam observation systems. Such data will be sent over the
VME-bus for on-line viewing and storage by the Logging and
Post-Mortem systems.

For supervision, the BLM system will drive an online event
display and write extensive online logging at a rate of 1 Hz.
The data available for this purpose will include the error and
status information recorded by the tunnel electronics and the
RCC process as well as the maximum loss rates seen by the
running sums (in the last second) together with their
corresponding quench level thresholds for the given beam
energy. The Logging system will be able to normalize the loss
rates with respect to their quench levels before displaying
them so that abnormal or high local rates can thereby be
spotted easily.

Additionally, there are two types of post-mortem data
available from the system for more detailed offline analysis.
Those will be, the acquired data (40 µs samples) from the last
20,000 turns, i.e. the last 1.75 seconds, and 82 ms summed
values of the acquired data for the last 45 minutes.

E. Collimation
Finally, for the Collimation system and to support the

correct alignment and setup of the collimators one more set of
data is available. Those data contain whenever requested the
losses seen on the last 81.28 ms organized in the form of 32
consecutive 2.54 ms sums of the acquired data for each
detector.

IV. CFC & ADC DATA MERGING ALGORITHM
The Data Combine process will receive the two types of

data, the counter and the ADC data, coming from the same
detector and will merge them into one value, filtering at the
same time noise passing through the ADC circuitry.

On the beginning stage, the ADC value is normalized by its
effective range. The min and max of the ADC values received
are continuously calculated. Their difference signifies the
effective range of the ADC circuitry and is used to normalize
each received value. (see Fig. 2)

Fig. 2. Block diagram of the Data Combine process (first part). The ADC

data normalizer part of the process operates by calculating the operating range
of the ADC circuit and consecutively multiplies this as a normalization factor
to the ADC value received. The multiplier is making use of the embedded
DSP element in the FPGA device.

The two types of data acquired from each detector are of
different type and a pre-processing is needed in order those to
be combined seamlessly. The measurement of the frequency
produced by the CFC with a counter relates to the current
accumulated between the last acquisitions. On the other hand,
the voltage measured by the ADC is the fraction remained
between the last count and the first from the next acquisition.

Fig. 3. Block diagram of the Data Combine process (second part). This

part of the function outputs a 20 bit value comprising of the CFC and the
ADC data. A Minimum-Value-Hold (MVH) block is also added in the ADC
data input to filter out various types of noise coming from the acquisition
circuit.

In order to merge those data the difference of the last two
ADC measurements is needed. It corresponds to the counter
fraction of the last 40 µs and thus could be added to the
counter value. This could be described in an equation as:

() () () ()
N

ADCADC
CounterMerged 2

nV-1-nVnVnV += (1)

Where, VCounter and VADC are the recorded values from the counter and the
ADC respectively, and N is the number of bits used from the ADC. The
difference is divided by its full scale in order to be normalized as a fraction.

Of course in the implementation, since the difference could
be a negative number, signed number arithmetic is used for the
addition and in order not to loose in accuracy the values are

transformed to 20 bit, which can be considered equal to the
multiplication by 212 both parts of Equation 1. (see Fig. 3)

V. SUCCESSIVE RUNNING SUMS
The procedure for the data processing, which was chosen to

be followed, is based on the idea that a constantly updated
moving window can be kept by adding to a register the
incoming newest value and subtracting its oldest value. The
number of values that are kept under the window, or
differently, the difference in time between the newest and the
oldest value used, defines the integration time it represents.

A. Basic principles used
A similar configuration for the production of the running

sums, but more efficient, would be to delay each incoming
new value with a fixed number of cycles by passing them
through a shift register and add the difference of the new and
the outputted from the shift register to an accumulator. As a
result, the depth of the shift register will then signify the
integration time of this running sum. (see Fig. 4)

Fig. 4. Block diagram showing an efficient way (w.r.t. speed and

resources) to produce and maintain a continuous running sum of arriving
values.

Additionally, long histories of the acquired data are needed
for the construction of long moving windows. The technique
employed to reach long integration periods with relatively
small in length shift registers is overcome by consecutive
storage of partial sums of the received values.

+

+

+

. . .

. . .

. . .

Fig. 5. Block diagram showing a configuration for efficient summation

(w.r.t. resources) of many values. Instead of storing all the values needed for
the sum, this technique stores successively parts of the total sum using only a
fraction of the otherwise needed memory space.

In general, it works by feeding the sum of one shift
register’s contents, every time its contents become completely
updated, to the input of another shift register. By cascading
more of these elements it manages to construct very long
moving sum windows that overcome the storage problem of
preserving long histories of the acquired data. (see Fig. 5)

B. Optimal Configuration for the BLM system
Combining those two techniques alone, unfortunately it is

not enough to solve all of the difficulties with the needed
resources. Nevertheless, by following some more straight
forward design rules for the construction the wanted result can
be achieved.

For example, by doing such an operation it emerges that the
already calculated running sums can be used in order to
calculate bigger in length running sums without the need of
extra summation points (as proposed in the example before)
which translates to a huge data reduction and resource sharing.
In the designs realization, the sum of the Shift Register
contents is always kept and updated in the running sums.
Thus, some of the running sums' outputs are also used directly
to feed the following stage’s inputs.

Running Sum

Running Sum

R.Sum 00

R.Sum 01

R.Sum 02

R.Sum 03

Running Sum
R.Sum 04

R.Sum 05

R.Sum 10

R.Sum 11

Next
Block

.

.

.

Data

Successive Running Sums

New Value

Accumulate

Shift Register

V(n-64)

V(n-128)

 A
 A-B
 B

 A
 A-B
 B

signed

 Vn

 Vn

Acc

Acc

Subtract

signed

Running Sum
Configuration

R.Sum 04

R.Sum 05

Fig. 6. Block diagram of the Successive Running Sums configuration in

the BLM system. The process is making use of successive multipoint shift
registers of 64 or 128 values to continuously update and maintain 12 sums
with the longest providing a sum of more than 2 million acquired values or
differently an integration time of 84 seconds.

One more step is the use of multipoint shift registers. That
is, shift registers that are configured to give intermediate
outputs, usually referred to as taps. The taps provide data
outputs at certain point in the shift register chain. This feature
can be effectively employed to combine overlapping memory
contents, therefore minimizing even more the resource
utilization. (see Fig. 6)

Finally, since the shift registers will be constructed by the
FPGA's embedded memory blocks, where the width and depth
of the memory block is fixed, any unused memory space will
be wasted. If a longer or wider shift register is needed then
two or more memory blocks will be combined but no other
process can use the memory bits left unused by each shift

register implemented. Fig. 7 illustrates an example where the
contents needed for each detector are 32 x 8-bit values. If each
detector is treated independently, its shift register will occupy
one 512 bit memory block. For the same case, if the data from
two detectors were pre-combined, the resource usage would
drop to half.

D
etector’s D

ata

U
nused Space

1
st D

etector’s D
ata

2
nd D

etector’s D
ata

Fig. 7. Example showing the optimization that can be achieved in the

usage of the FPGA's embedded memory blocks by the shift registers.

Of course, this example is not always the case and there is
not a generic way to discover such optimizations. Probably
this is also the reason why none of the synthesis tools
available performs such resource sharing. Thus, it was found
necessary an investigation to be made to find the optimal
configuration and later the results were constrained into the
synthesis tool.

VI. EVALUATION OF THE SRS TECHNIQUE
The optimal achievable latency in the response of each

stage in such a system is equal to the refreshing time of the
preceding shift register. That is, the time needed to completely
update its contents. In Fig. 5, the supervision circuit, denoted
as "Read Delay", which is making sure that the sum is
calculated every time with new values, holds a delay equal to
this latency to guarantee the correct operation. Thus, the delay
is every time equal to the preceding shift register’s input clock
period multiplied by the elements planned to be used in the
sum.

For example (and using the notation of Fig. 5):

nf2SR NewValueDELAY *= (2)

m2SR3SR DELAYDELAY *= (3)
Where, SR2DELAY, SR3DELAY are the read delays needed for the first and the
second shift register respectively, fNewValue is the frequency of the input, and the
n, m are the number of elements held in each of the shift registers.

Furthermore, as it can be seen in Table I where it is shown
the configuration of the running sums optimized for the LHC's
BLM system, the latency introduced has little effect to the
optimal approximation accuracy. This is a result from the fact

that it varies between them. More specifically, the running
sums that span to the low range (fast losses) have zero or very
small additional latency. The latency gradually increases as
the integration time increases, reaching up to 0.65 seconds for
the 21 and 84 seconds integration time range.

TABLE I

SUCCESSIVE RUNNING SUMS CONFIGURATION FOR THE BLM SYSTEM.

Range Refreshing
40 µs
steps Ms 40 µs

steps ms

Shift
Register

Name

Running
Sum

Name

1 0.04 1 0.04 RS00
2 0.08 1 0.04 RS01
8 0.32 1 0.04 RS02

16 0.64 1 0.04
SR1

RS03
64 2.56 2 0.08 RS04
256 10.24 2 0.08

SR2
RS05

2048 81.92 64 2.56 RS06
16384 655.36 64 2.56

SR3
RS07

32768 1310.72 2048 81.92 RS08
131072 5242.88 2048 81.92

SR4
RS09

524288 20971.52 32768 655.36 RS10
2097152 83886.08 32768 655.36

SR5
RS11

The red colored running sums (RSxx) outputs, i.e. RS01, RS04, RS06, and
RS07, represent their additional utilization as the inputs for adjacent shift
registers (SRxx), i.e. SR2, SR3, SR4, and SR5.

Finally, by cascading just five of these elements, holding

only 64 or 128 values each, it is enough to reach the 100-
second upper integration limit requested by the specifications.
This gained efficiency was necessary for this system to be
applicable in a configuration with relatively very low memory
available. In a different configuration of this system, where

only Running Sums would be used, the shift registers would
need to hold approximately 3 million values for each of the 16
detectors to achieve the same approximation error which
translates to a total of approximately 150 MB of memory
space. Instead, by using the Successive Running Sum
technique the system is using only some of the FPGA’s
internal memory since it does not need more than 100 KB of
memory space.

ACKNOWLEDGMENT
The authors would like to thank Stephen Jackson for

implementing the server application and the Expert GUI for
the visualization of the data collected by the processing
modules, and Daryl Bishop and Graham Waters at TRIUMF
for building and supporting the DAB64x module.

REFERENCES
[1] E. Effinger, B. Dehning, J. Emery, G. Ferioli, G. Gauglio, C. Zamantzas,

"The LHC Beam Loss Monitoring System's Data Acquisition Card", 12th
Workshop on Electronics for LHC and future Experiments (LECC 06),
Valencia, Spain.

[2] P. Moreira, G. Cervelli, J. Christiansen, F. Faccio, A. Kluge, A.
Marchioro, T. Toifl, J. P. Cachemiche and M. Menouni "A Radiation
Tolerant Gigabit Serializer for LHC Data Transmission", Proceedings
of the Seventh Workshop on Electronics for LHC Experiments
(DIPAC), Stockholm, Sweden, 10-14 September 2001

[3] C. Zamantzas, E. Effinger, B. Dehning, J. Emery, G. Ferioli, "The LHC
Beam Loss Monitoring System's Surface Building Installation", 12th
Workshop on Electronics for LHC and future Experiments (LECC 06),
Valencia, Spain

[4] Rajesh Nair, Gerry Ryan and Farivar Farzaneh, "A Symbol Based
Algorithm for Hardware Implementation of Cyclic Redundancy Check
(CRC)", 1997 VHDL International User's Forum (VIUF '97), p. 82.

[5] A.X.Widmer, P.A.Franaszek, "A DC-balanced, partitioned-block,
8B/10B transmission code", IBM Journal of Research and Development,
vol 27, no 5, 1983, pp. 440-451.

[6] Engineering Specification, "The Beam Interlock System For The LHC",
LHC Project Document No. LHC-CIB-ES-0001-00-10, version 1.0, 17-
02-2005.

