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Abstract

The Large Hadron Collider (LHC) will produce heavy ion collisions at the nucleon-nucleon center of
mass energy of 5.5 TeV, the highest energy ever available in a controlled environment. This represents
an opportunity to study nuclear matter in systems with unprecedented energy densities. Due to the
high incident energy, semi-hard and hard processes will be a dominant feature at the LHC. The Com-
pact Muon Solenoid (CMS) heavy-ion program is ideally suited to study the physics of these probes,
addressing open questions in the field of Quantum Chromodynamics (QCD). In this paper an overview
of the heavy-ion physics capabilities of the CMS detector is presented.
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1 Introduction
During the last few years, the four experiments at the Relativistic Heavy Ion Collider (RHIC) have collected a large
set of data on nuclear collisions over a wide range of incident energy and system size. There is strong evidence of
the formation of a high energy density medium in these collisions, which is strongly interactive, seems thermalized
and appears almost opaque to jet-like partons. Furthermore, the data is consistent with the creation of a system with
energy densities higher than the critical density expected for the transition to a system where quarks and gluons
have achieved asymptotic freedom. A summary of the key observations leading to this description is in Fig. 1: Left
panel, normalized charge particle distribution as function of the collision energy for several systems [1]. With the
point at 200 GeV, one can estimate that the initial energy density created at τ 0 = 1 cm/c at RHIC is ∼ 5 GeV/fm3,
about a factor of ten larger than the energy density of nuclear matter [2]. Center panel, elliptic flow signal v 2

near mid rapidity as a function of the number of participants (centrality) [3]. The large signal of elliptic flow is
evidence of early interactions between the produced particles, also the flow signal is close to the value predicted
by relativistic hydrodynamics calculation [4], an indication of fast thermalization. Right panel, suppression of the
yield on the opposite side on back to back correlation in high p T charged hadrons [5].
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Figure 1: Left panel evolution of the midrapidity charged particle density dN ch/dη�|η|≤1, per participating nucleon
pair, Npart/2, as a function of center of mass energy [1], the solid line is a logarithmic extrapolation of the
data from lower energies to guide the eye. Center panel elliptic flow of charged particles near mid rapidity as
function of centrality in Au+Au collisions [3]. The curve shows the prediction from a relativistic hydrodynamics
calculation [4]. Right panel shows azimuthal correlations for p+p, central d+Au and central Au+Au collisions
(background subtracted) [5].

At the LHC, the energy densities are predicted to be around 20 times higher than at RHIC, implying a factor of 2
higher for the initial temperature [6]. This is well above the phase transition region between hadronic matter and
quark gluon plasma (QGP). Furthermore, at the LHC the higher densities of the produced partons will result in
more rapid thermalization, so that the time that the matter will be in a QGP phase is increased by almost a factor
of three when compared to RHIC. These conditions may allow the creation of a weakly interacting gas-like QGP
state in contrast to the strongly interacting liquid-like state believed to be created at RHIC [7]. In addition to the
study of the RHIC base-line measurements, the LHC expands the heavy-ion physics possibilities in the kinematic
phase space: larger momentum transfer (Q2) and lower momentum fraction (x). For example the production of
hard probes like high pT jets, photons, heavy-quark particles (J/ψ) and gauge bosons (W ±, Z0) will be available
at LHC, while many of them are not experimentally accessible at RHIC.

2 Overview of the CMS Detector
CMS offers a high resolution tracking and calorimetry over a uniquely large range in rapidity and 2π-azimuthal
coverage. The acceptance of the different elements of the detector is represented in Fig. 2. In addition CMS
is complemented with several detector components to characterize particle production at very forward rapidities:
CASTOR calorimeter (5.3 < |η| < 6.6), TOTEM roman pots (7 < |η| < 10), and the Zero Degree Calorimeter
(ZDC) (|η| > 8.3 for photons and neutrons).

A detailed description of the detector elements is given in the Technical Design Reports [8, 9, 10, 11, 12, 13].
The dominant element of the CMS detector is a superconducting solenoidal coil magnet. It is 13 m long and 6 m
in diameter, providing a 4 T field throughout the inner portion of the detector. This inner region holds the highly
segmented Si tracker that provides precision tracking of the particle trajectories close to the interaction point. This
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information can be used to determine the momentum of the particles going to the more exterior calorimeters and
muon detectors. Similar to the tracker the electromagnetic and hadronic calorimeters are arranged in barrels and
endcaps located inside the magnet coils. The electromagnetic calorimeter (ECAL) consists of PbWO 4 crystals,
while the hadronic sampling calorimeters (barrel and endcap) are formed by layers of scintillator and copper.
Finally outside the magnet the muon detection system is made of drift tubes, cathode-strip chambers and resistive
plate chambers.
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Figure 2: Acceptance of CMS tracking, calorimetry, and muon identification in pseudorapidity and azimuth. The
size of a typical jet cone (R = 0.5) is included as an illustration

3 Heavy Ion Physics Capabilities of CMS
The capabilities of the CMS detector provide a unique opportunity to study the new physics potential provided by
the heavy ion collisions at the LHC. CMS is designed to deal with p+p collisions at luminosities of 10 34cm−2s−1.
At full luminosity there will be, on average, 25 p+p collisions per bunch crossing. In this environment the design
resolution and granularity of all detector components have been maximized in order to resolve the high momentum
(pT > 5 GeV/c) observables. This makes the detector ideal for the high multiplicity conditions in central heavy
ion collisions: the technologies chosen for tracking, calorimetry, and muon identification will allow a read out of
CMS with a minimum bias trigger at the full expected 1027 cm−2 s−1, Pb+Pb luminosity. The CMS and TOTEM
detectors will form the largest acceptance system at the LHC. The ZDC and CASTOR will enhance further the
acceptance in the forward region, allowing low-x measurements. As for particle identification, the muon system in
combination with the silicon tracker will allow studies of the interaction of identified quark jets with the medium.
In addition the physics of meson vs. baryon production at large p T can be studied via the the reconstructed π0s.

3.1 Global Observables

One of the first measurements of CMS from heavy ion collision will be the charged particle multiplicity. The
performance of the Si tracker for this measurement was fully simulated for central Pb+Pb collisions for a range
of maximum rapidity charged particle yields. The reconstructed charge particle pseudorapidity distribution from
simulation is shown in the left panel of Fig. 3, this was calculated using the pixel detector and for dN ch/dη ∼ 4000.

For the study of different physics topics in heavy ions, as heavy quarkonium or hard jet production, it is important
to perform measurements at different centralities. Since the forward rapidity region is almost free of final state re-
interactions, the transverse energy deposition in the hadron forward calorimeter (HF) or in the ZDC is determined
mainly by the initial nuclear geometry of the collision, rather than by final state dynamical effects. These are then
the signal that can be better correlated to the impact parameter of the collision. Figure 4 shows the correlation
between the transverse energy deposition in HF for 1000 minimum bias Ar+Ar and 1000 Pb+Pb collisions at√

sNN = 5.5 TeV (left panel), and the resolution of this measurement (σET /ET ) (right panel) [14]. The resolution
is of about 20% up to 〈ET 〉 ∼ 500 GeV, for lower values of transverse energy the resolution is degraded due
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Figure 3: Reconstructed charged particle density dNch/dη�|η|≤1 for Pb+Pb collisions at 5.5 TeV. The charge
particle density was calculated using the Si tracker with a 2% average occupancy.

to screening of particles produced in the beam pipe. It is expected however that the ZDC response will help to
characterize the centrality for more peripheral collisions.
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Figure 4: Correlation between transverse energy deposition in HF and impact parameter for minimum bias Ar+Ar
and Pb+Pb collisions.

The rescattering and energy loss of hard partons in an azimuthally asymmetric volume can result in an observ-
able azimuthal anisotropy of high-pT particles and jets. At RHIC studies of the elliptic flow of the azimuthal
distributions of produced hadrons relative to their reaction plane have been used to study the question of thermal
equilibration at the early stages of the heavy ion collisions. The CMS calorimeters are well suited to measure
energy flow and jet azimuthal anisotropy. The ability to reconstruct the event plane and the possibility to observe
jet azimuthal anisotropy is shown in Fig. 5 for Pb+Pb collisions at impact parameter b = 6 fm. The left panel
is the energy deposition in the barrel and end cap regions, and the right panel the difference between the gener-
ated and reconstructed azimuthal reaction plane angle. The jet spectra were generated with PYTHIA5.7 and the
hydrodynamics input with CMSIM125+ORCA6.2.0 as described in [15].

3.2 Jets and hadron yields

The study at RHIC of the hadron yield and back-to-back hadron correlations above p T ≥ 3 GeV/c indicate a pro-
nounced energy loss of fast partons from their interaction with the dense medium created during the collisions. The
kinematic region available at the LHC will allow the study of fully reconstructed jets and will extend significantly
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Figure 5: Left panel energy deposition in barrel and endcap regions. ECAL, dashed histogram, HCAL dotted his-
tograms and total deposition (HCAL+ECAL) solid histogram. Right panel is the difference between the generated
and reconstructed azimuthal angle Ψ2 of the reaction plane.

the hadron suppression studies in pT . For example at the LHC, 107 jets with ET
jet > 100 GeV are produced at

|η| ≤ 2.6 for Pb+Pb collisions in one month of running at nominal luminosity. Event jets with E T > 50 GeV
can be reconstructed with good efficiency and purity using the calorimeters at CMS. The capabilities for jet recon-
struction studies will be enhanced with the Si pixel and tracker detectors that allow the momentum reconstruction
of charged hadrons of pT > 400 to 700 MeV/c depending on the multiplicity; with good efficiency, low level of
contamination (10% for pT � 400 MeV tracks) and good momentum resolution [16]. Figure 6 shows the tracker
reconstruction efficiency (left panel), the jet-finding efficiency and purity for jet reconstruction studies [17] (cen-
ter), and the nuclear modification factor, RAA, which quantifies the suppression of particle production as function
of pT in simulated Pb+Pb collisions relative to a pp reference (right).
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Figure 6: Left panel tracker reconstruction efficiency (full symbols) and fake track rate (open symbols) as a function
of the transverse momentum near mid rapidity for central Pb+Pb collisions with dN ch/dη|η=0 = 3000, the quality
cuts for this figure are optimized for low fake track rate. Center panel is the jet reconstruction efficiency and
purity using barrel calorimeters for PYTHIA generated jets in Pb+Pb events with dN ch/dη|η=0 = 5000. Right,
nuclear modification factor as function of transverse momentum for charged particles for Pb+Pb events triggered
on high-ET jets.

3.3 Quarkonia

One of the proposed signatures of the QCD phase transition is the suppression of the quarkonium production,
in particular of the charmonium family (J/ψ,ψ ′).The charmonium suppression has been observed at CERN SPS
and at RHIC but competing mechanisms to color deconfinement (hadronic co-movers interactions and charm
quark recombination respectively) have been proposed to explain the observed cross sections. The study of the
much heavier bottomonia spectroscopy accessible at LHC is free from the distorting hadronic and coalescence
contributions, and can help to clarify this issue. Υ resonances can be detected in the µ +µ− decay mode with good
efficiency (33% for Υ vs. 6% for J/ψ in the CMS detector). Furthermore, studies of the relative yield production
of the Υ and Υ’ as a function of pT have been predicted to be highly sensitive to the temperature and size of
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the medium created in the collisions addressing information about the dynamics of the high density QCD matter.
The feasibility of quarkonia detection shows good resolution efficiency over |η| ≤ 2.4. The expected di-muon
invariant reconstructed mass spectra for J/ψ and Υ family after background subtraction are shown in Fig. 7. This
reconstruction was studied with a detailed simulation and detector acceptance within central dN ch/dη|η=0 = 2500
Pb+Pb collisions [18].
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Figure 7: The signal invariant mass distribution, after background subtraction in J/ψ (left) and Υ (right) mass
regions. In each case, both muons have |η| < 0.8.

3.4 Forward Physics

TOTEM and the forward calorimeters CASTOR and the ZDC will enhance the CMS physics program. Parton
distribution functions will be mapped out at CMS at low momentum fractions of x ∼ 10−6 and scales of few GeV 2

of momentum transfer. This coverage will allow the study of the predicted gluon saturation in the framework of the
Color Glass Condensate model [19]. For example heavy quark production from ultra-peripheral collisions (UPCs)
would be reduced in the presence of CGC relative to the predictions using parton distributions of a free proton.
The CMS experiment can measure Υ → e+e− and Υ → µ+µ− produced in electromagnetic Pb+Pb UPC using
the tracker, the ECAL, and the muon chambers tagged with forward neutron detection in the ZDC. Figure 8 shows
the expected dimuon invariant mass distributions around the Υ mass predicted by STARLIGHT within the CMS
acceptance for integrated Pb+Pb luminosity of 0.5 nb−1. The details of the simulation can be found in [20].
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