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Abstract

The reconstruction of non-pointing photons is a key feature for studying Gauge Mediated
Supersymmetry Breaking (GMSB) models at the LHC. In this note the polar angular reso-
lution of the ATLAS electromagnetic calorimeter for non-pointing photons is characterized
from a detailed simulation of the detector. Resulting performance is used to reconstruct
GMSB events with a fast simulation program, taking into account reconstruction effects. Fi-
nally, the sensitivity in extracting the sparticles masses and the lightest neutralino lifetime
is estimated.
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1 Characterization of the polar angular resolution of

the ATLAS electromagnetic calorimeter

1.1 Introduction

The required performance of the ATLAS electromagnetic calorimeter, in terms of energy
and also of angular resolution, has been set by the most demanding physics channels, one
of them being the H → γγ (Higgs boson decaying to two photons). The resolution on the
reconstructed invariant di-photon mass is strongly dependant on the polar angular resolu-
tion of the electromagnetic calorimeter. The granularity of the cells of the electromagnetic
calorimeter has been designed so that the angular resolution for particle coming from the in-
teraction point is better than 60 mrad/

√
E(GeV) [1]. For particles coming from a displaced

secondary vertex, such as the photons predicted by Gauge Mediated Supersymmetry Break-
ing (GMSB) models, this resolution is worsened. The aim of this section is to characterize
the polar angular resolution that it is possible to reach with the electromagnetic calorimeter
for non-pointing photons. It is performed on fully simulated single photons, reconstructed
with a non-validated version of the ATLAS software.

1.2 Production of simulated photons

This study has been done using a detailed simulation of the ATLAS detector (DICE/ATLSIM
version 3.2.1 [2]). Several sets of single photons were generated inside the detector and
have been fully simulated. Each of these sets consist of 50000 photons generated with
pT = 60 GeV. This value is typical of the energy of the photons produced by the decay of
neutralinos in GMSB models. Photons were randomly generated so that they were uniformly
distributed in the pseudo-rapidity range covered by the barrel and the end-cap part of
the electromagnetic calorimeter, i.e. with |η| < 2.5. The non-pointing photons sets were
generated at several different positions along the beam axis, from Zvertex = 0 cm to 150 cm.
No spread was applied on the generated vertex position.

1.3 Characterization of the polar angular resolution

In this section the polar angular resolution of the electromagnetic calorimeter to non-pointing
photons is determined.

1.3.1 Principle

The capacity of extracting the particle directions relies on the accurate measurement of
the position along η of the electromagnetic shower, in each layer of the electromagnetic
calorimeter. The principle of this method is shown on figure 1. This method requires to
have a parametrization of the shower depth for each layer. This has been done from a detailed
simulation of the detector. The distances, from the beam axis R(η) for the barrel part, and
from the interaction point Z(η) for the end cap part, are determined by the average position
of the energy deposited by electromagnetic showers in each layer. This depth is fitted by
second order polynomial functions for the barrel part, as shown on figure 2, that are defined
as following:
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Front layer

R1(η) = 156.78− 1.8975 η − 1.7668 η2 (η < 0.8) (1)

R1(η) = 150.32− 7.1716 η − 4.1008 η2 (η > 0.8)

Middle layer

R2(η) = 169.71− 1.5311 η − 6.4153 η2 (η < 0.8) (2)

R2(η) = 173.91− 7.5648 η − 1.8501 η2 (η > 0.8)

For the end cap part, the shower depth is constant with Z1 = 376 cm and Z2 = 388 cm
respectively for the front and middle layers.

These parameterizations of the shower depth are the one used in the reconstruction
algorithms from the ATHENA development release 7.2.0. They were updated in later recon-
struction releases to account for geometry changes.

From these parameterizations of the shower depth, and from the two positions η1 and η2,
the direction ηp of the particle, for the barrel and the end cap part, is reconstructed using
the relations:

Barrel part

sinh(ηp) =
R2(η2) sinh(η2)−R1(η1) sinh(η1)

R2(η2)−R1(η1)
(3)

End cap part

sinh(ηp) = (Z2(η2)− Z1(η1))

[
Z2(η2)

sinh(η2)
− Z1(η1)

sinh(η1)

]−1

(4)

The transformation from the polar angle θ to the pseudo-rapidity η is done through the
usual relation η = − ln | tan(θ/2)|, which leads to the following useful relations:

cosh(η) =
1

sin θ
sinh(η) =

1

tan θ
tanh(η) =

1

cos θ
(5)

1.3.2 Reconstruction of non-pointing photons

The reconstruction of the simulated photons was done using the ATLAS standard reconstruc-
tion algorithms from the ATHENA development release 7.2.0 [3]. During the simulation and
reconstruction stages neither electronic noise nor pile-up effects were added. These last two
effects will certainly contribute to decrease the reconstruction performance. The contribu-
tions should be at the level of 10% [1], however this point is not considered here and will
have to be carefully studied from detailed simulations.

The standard reconstruction algorithms are tuned for pointing particles, hence their per-
formance is not optimal when reconstructing non-pointing particles. When applied to non-
pointing photons, the polar angular resolution from the standard reconstruction increases
from 60 mrad/

√
E [1] to 700 mrad/

√
E, for a z-position Zvertex of the generation vertex

varying from 0 to 100 cm, as shown on figure 9. This degradation has several origins:
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Figure 1: Sketch of the barrel part of the electromagnetic calorimeter and its first two layers
showing the principle of the direction reconstruction for a photon generated at a
distance Zvertex from the ATLAS interaction point.
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Figure 2: Parametrization of the electromagnetic shower depth extracted from a detailed
simulation of the ATLAS detector, for the front and middle layers of the barrel
part of the electromagnetic calorimeter. The red dashed line represents the change
of sampling fraction at η = 0.8.
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• The reconstruction of the position in each layer suffers of a systematic bias due to the
finite size of the calorimeter cells, called the S-shape effect. In the standard recon-
struction algorithms, the correction of this bias is tuned from pointing particles. For
non-pointing photons this correction is no longer valid and contributes to the degra-
dation of the angular resolution. In the following, an alternative method to correct
for the S-shape bias is used. This method, called logarithmic weighting, takes into
account the exponential fall off of the transversal shape of the shower to reconstruct
its η position as following:

η ≡
∑

ηiωi∑
ωi

with ωi = max [0, ω0 + ln(Ei/Ec)] (6)

where the position ηi of the cell i is weighted by the ωi coefficient. Ec is the total
energy of the cluster and w0 is a dimensionless free parameter. Studies performed
on test beam data showed that in order to optimize the resolution the value of this
parameter must be 2.0 and 4.4 respectively for the front and middle layers [4]. This
method is used here to get rid of the S-shape bias for the middle layer. Concerning the
front layer, since the size of the readout cells is smaller (∆ηmiddle = 8∆ηfront), the
S-shape bias is 10 times smaller and negligible, therefore no correction for the front
layer cells is applied here.

• Another source of degradation comes from the finite size of the clusters. The elec-
tromagnetic shower of a non-pointing photon has a wider, non symmetrical, spatial
extension. The standard cluster size is not wide enough to contain transversally such
a shower, leading to energy leakage outside of the cluster (figures 3 and 4). To reduce
these leakages, the size of the clusters is extended in this study to ∆η ×∆φ = 5 × 3,
in cell unit of the middle layer.

• Finally the parametrization of the shower depth, tuned for pointing photons, is no
longer valid for such large incidence angles.

To estimate the bias introduced at the level of the reconstructed position, the true position
ηcluster of the electromagnetic shower in the calorimeter must be computed out of the
position Zvertex of the generation vertex and the photon direction ηgen. This is done by
solving for each layer these two equations:

Barrel part

sinh(η
1 cluster)− sinh(ηgen) =

Zvertex
R1(η1 cluster)

(7)

sinh(η
2 cluster)− sinh(ηgen) =

Zvertex
R2(η2 cluster)

End cap part

sinh(η
1 cluster)−

L1(η1 cluster)

L1(η1 cluster)− Zvertex
sinh(ηgen) = 0 (8)

sinh(η
2 cluster)−

L2(η2 cluster)

L2(η2 cluster)− Zvertex
sinh(ηgen) = 0
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Figure 3: Event display of the energy deposited in the front and middle layers of the elec-
tromagnetic calorimeter for a pointing photon with pT = 60 GeV.
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where Ri and Li are the shower depth parameterizations, respectively for the barrel and
the end cap parts.

The figure 5 shows the difference between the predicted position ηpred and the recon-

structed one ηrec for middle layer cells. A systematic bias in the reconstructed position is
clearly visible and this one increases with the value of Zvertex. The same phenomenon can
be seen for front layer cells but with a amplitude ten times smaller. This biased measure-
ment of the position in the middle layer is the main restricting factor on the polar angular
resolution for non-pointing particles.

For each Zvertex value, fourth and second order polynomial functions, respectively for
the barrel and for the end cap parts, are fitted to this bias. The variation of the coefficients
defining these correction functions are interpolated by a second order polynomial functions.
This allows to get a position correction function for each intermediate Zvertex positions.

An iterative algorithm using the parametrization is used to correct for the position bias.
From the position of the electromagnetic shower, the position of the generation vertex Zrec
is computed. Position corrections are then applied to each layer which allow to calculate a
new position Zrec. The algorithm loops until Zrec converges, which usually takes two or
three iterations.

Results of this correction on the reconstructed positions are shown on figures 6, 7 and
8 for the middle layer. For |Zvertex| < 100 cm, the spread of these distributions decreases
clearly. For |Zvertex| > 100 cm, the algorithm efficiency is lower and improvements are less
effective.

The angular resolution obtained after correction is shown on figures 9 and 10. For the
barrel part and for small shifts of the vertex position (Zvertex < 10 cm), the results are
close to the 60 mrad/

√
E expected from the standard reconstruction. For greater shifts

(Zvertex > 30 cm), the specific reconstruction algorithm for non-pointing photons allows
to improve the angular resolution by 30% to 40% up to Zvertex = 100 cm. Beyond, the
improvement are less significative and would need a closer study of phenomena not taken
into account here, such as the modification of the shower depth parametrization.

For the end cap part, the obtained resolution with the correction algorithm is systemati-
cally better by 40%, in particular for Zvertex = 0 cm. This point shows that the used version
of the reconstruction program was not properly optimized for this part of the calorimeter.
This come from the previously mentioned bias in the position reconstruction for the mid-
dle layer. In that case, the non-pointing photon reconstruction algorithm minimizes these
systematics biases and improves the angular resolution.
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Figure 5: Scatter plot of the difference between the predicted position ηpred and the recon-
structed one ηrec as a function of the position ηrec for middle layer cells of the
calorimeter and for each value of Zvertex. The blue squares represent the average
distribution.
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Figure 6: Scatter plot of the difference, after correction, between the predicted position
ηpred and the reconstructed one ηrec is drawn as a function of the position ηrec
for the middle layer cells and for each value of Zvertex. The blue squares represent
the average distribution.
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Figure 8: Distribution for each Zvertex value of the difference between the predicted and
the reconstructed position, before (dashed blue line) and after (yellow-filled distri-
bution) corrections for the middle layer of the end cap part of the electromagnetic
calorimeter.
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1.4 Conclusion

In this study, the ATLAS standard reconstruction algorithms, from the ATHENA devel-
opment release 7.2.0, were used to reconstruct non-pointing photons. It comes out that
a special treatment can be applied to improve the polar angular resolution of the electro-
magnetic calorimeter with respect to non-pointing photons. However this method has only
a good efficiency for photons generated from an effective vertex with a position along the
beam axis smaller than Z = 100 cm. Beyond, a detailed study of the shower depth for non-
pointing photons would be mandatory to improve the efficiency of this method. A study
on the transversal profile of non-pointing electromagnetic showers may also allow to extract
alternative weighting methods to compute η barycenters and to minimize the associated
systematic biases introduced.

The polar angular resolution finally achieved is acceptable for the decay channel studied
in the next section. The resolution for the barrel and the end cap part of the electromagnetic
calorimeter are parameterized using polynomial functions and integrated into a fast simu-
lation of the ATLAS detector. The resulting performance in reconstructing the neutralino
mass and lifetime is detailed in the next part.
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2 Gauge Mediated Supersymmetry Breaking models

and non-pointing photons

2.1 Introduction

The origin of the supersymmetry (SUSY) breaking and its mediation to the MSSM sector
are key features of SUSY models. In Gauge Mediated SUSY Breaking (GMSB) models [5],
the breaking of SUSY takes place in a hidden sector at a high energy scale

√
F0. Contrary

to SUGRA type models, SUSY breaking is not generated at the Planck scale but at a much
lower energy scale. This breaking is then transmitted to the MSSM sector through chiral
superfields belonging to an intermediate messenger sector at an energy scale Mmess. The
coupling between the messenger and the MSSM sector is made through classical SU(3)c ⊗
SU(2)L ⊗ U(1)Y gauge interactions. Gravitational interactions are still present but their

contributions are small. Since the gravitino G̃ gets its mass only through gravitational
interaction, it is the lightest SUSY particle (LSP). It is assumed here that the R-parity
is a conserved quantity so that all heavier SUSY particles will decay into chains leading
in the end to the production of gravitinos. The minimal GMSB model is driven by six
arbitrary parameters. Depending on these parameters, the next to lightest SUSY particle
(NLSP) can either be the lightest neutralino (χ̃0

1) or a right handed slepton (˜̀R). One of
the feature of GMSB models is that the NLSP lifetime cτ may be macroscopic and can vary
from micrometers up to kilometers. The value of cτ is linked to mNLSP and to

√
F0 through

the relation [6]

cτ =
1

kγ

(
100 GeV

mNLSP

)5 ( √
F0

100 TeV

)4

× 10−2 cm (9)

where kγ ≡ |N11cosθW + N12sinθW | with θW the Weinberg angle and Nij the mixing angles
of the neutralinos.

Measuring the NLSP lifetime provides a way to access
√

F0, the fundamental supersym-
metric breaking scale. This can be done by reconstructing the decay vertex of the neutralino
from the photon direction and its arrival time.

This part is dedicated to the study of the following GMSB signal ˜̀→ `χ̃0
1 → `γG̃, where

the lightest neutralino χ̃0
1 has a macroscopic lifetime generating a non-pointing photon in the

final state. This analysis reproduces rigorously the one performed in [7], however it make
use of a more detailed experimental treatment of the various sub-detectors. In particular
the parameterized polar angular resolution of the electromagnetic calorimeter, determined
in section 1, is used to characterize the performance of the reconstruction of sleptons and
neutralinos masses and to determine the lightest neutralino lifetime.

2.2 Events kinematics

Neutralinos with an intermediate lifetime are considered so that the characteristic decay
length is typically of the order of one meter. From the original method developed and
described in [7], it becomes possible to reconstruct the gravitino direction and to access the

sleptons ˜̀ and neutralino χ̃0
1 masses. Once these masses are known, one can determine the

χ̃0
1 decay vertex position and extract its lifetime.

Figure 11 represents the typical topology of a neutralino decay inside the ATLAS detector.
It is produced at time t = 0 at the center of the detector and it decays at time tD (M point)
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into one photon and one gravitino. To reconstruct the position of the χ̃0
1 decay vertex, it is

essential to be able to determine the photon direction (α angle) and its arrival time tγ in the
electromagnetic calorimeter. From these observables, the ψ angle, between the photon and
the gravitino, is determined from the following relations:

cos ψ =
1− ξ2

1 + ξ2
(10)

with ξ =
ctγ + L(1− cos α)

L sin α

where L is the distance between the interaction point O and the impact point A in the
electromagnetic calorimeter. From the ψ angle and the photon momentum −→pγ , the gravitino
momentum −→pG̃ can be fully determined.
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Figure 11: Graphical representation of a χ̃0
1 decay into one gravitino and one photon inside

the ATLAS detector.

As the slepton and the neutralino belong to the same decay chain, it is possible to
establish a relation between the slepton mass m˜̀ and the neutralino mass mχ̃0

1
. This last

mass can be expressed as

m2
χ̃0

1
=

(
pγ + pG̃

)2
(11)

= 2EγEG̃ (1− cos ψ)

The invariant mass m2
˜̀ can be written as

m2
˜̀ =

(
pγ + pG̃ + p`

)2
(12)
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Using relation 11 and neglecting gravitino and lepton masses leads to this expression

m2
˜̀ =

(
1 +

E`(1− cos θG̃`)

Eγ(1− cos ψ)

)
m2

χ̃0
1
+ 2E`Eγ(1− cos θ`γ) (13)

≡ am2
χ̃0

1
+ b (14)

where a and b parameters are defined accordingly

a ≡
(

1 +
E`(1− cosθG̃`)

Eγ(1− cos ψ)

)
(15)

b ≡ 2E`Eγ(1− cos θ`γ) (16)

The E`, Eγ, cos ψ, cos θG̃` and cos θ`γ quantities being all measured, the a and b param-
eters can be computed for each event. If points of coordinates (a,b) are placed in a plane,
they will regroup along the line of equation b = m2

˜̀− am2
χ̃0

1
. Each event from the considered

decay chain adds an independent constraint to determine m˜̀ and mχ̃0
1

masses.

2.3 Event generation and simulation

In this study the standard set of GMSB parameters called G1 [8] (table 1) is chosen. At this
point, sleptons and neutralino masses are respectively of 161.4 and 117.1 GeV (table 2). 105

events were generated with HERWIG [9], corresponding to one year of LHC running at low
luminosity (10 fb−1). These events were passed through ATLFAST [10], the fast simulation
of the ATLAS detector, which smears particles observables according to each sub-detector
performance. At this level, the NLSP is kept stable and is decayed only at the analysis stage,
depending on the input characteristics decay time cτ .

Further in the analysis, a conversion into an e+e− pair of the photon coming from the
neutralino is required. This conversion is done at the analysis stage and the conversion rate
is tuned so that 30% of the photons are converted in the volume of the inner detector. This
conversion rate is extracted from the datasets described in section 1.2

Point Λ (TeV) Mmess (TeV) N5 tan β sgn(µ) Cgrav
G1 90 500 1 5.0 + -

Table 1: GMSB model parameters at point G1 [8]. Cgrav is a free parameter linked to the
gravitino mass and to the NLSP decay length. Topology of GMSB events depends
on the Cgrav value.

The resolutions used to smear non-pointing photons observables are summarized in table
3. The energy resolution is parameterized according to the electromagnetic calorimeter
performance measured during test beam. The noise term, 245 MeV/

√
E, corresponds to

the expected noise for fixed size clusters (∆η × ∆φ = 0.125 × 0.075) at low luminosity.
The resolution on photon arrival time is 100 ps, however this value remain conservative
since test beams have shown that a better time resolution could be achieved [12]. The
measurement of the electromagnetic shower position is done accordingly to these resolutions,
ση = 0.004/

√
E(GeV) and σφ = 5 mrad/

√
E(GeV). These two values are reasonable

approximations of the real resolutions which vary with the η position of the electromagnetic
shower.
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Particle Mass (GeV) Particle Mass (GeV) Particle Mass (GeV)
g̃ 733 ũL 958 ẽL 324

χ̃±1 218 ũR 915 ẽR 161

χ̃±2 456 d̃L 961 ν̃e 315

χ̃0
1 117 d̃R 911 τ̃1 161

χ̃0
2 218 t̃1 824 τ̃2 324

χ̃0
3 436 t̃2 938 ν̃τ 314

χ̃0
4 457 b̃1 909 h 109

b̃2 919 H 545
A 543

H± 549

Table 2: Supersymmetic particle masses at GMSB point G1 (table 1) generate from ISAJET
7.64 [11]. The first two squarks generations being degenerated in mass, only the
first one is shown. Gravitino mass is not indicated since it depends on Cgrav which
is not a fixed parameter in this study.

The resolution σθ on the measurement of the polar angle θ was determined in section 1. If
the electromagnetic calorimeter can be used to obtain the polar angle of the incident photon,
its bad granularity along the φ direction does not allow to determine the photon direction
in the Rφ plane. Since this information is mandatory for the first part of the analysis in
order to compute the ˜̀ and χ̃0

1 masses, converted photons are required. About 20 to 30%
of the photons are converted into an e+e− pair inside the volume of the inner detector. For
such converted photons, the transition radiation tracker (TRT) can be used to get the φ
direction with a σ∆φ = 1 mrad resolution [13]. However, the reconstruction efficiency for
such tracks would need a careful study relied on a detailed simulation of the detector, this
was not performed here.

Observable Detector Resolution

Energy EM CAL. δE
E

= 10%√
E
⊕ 245 MeV

E
⊕ 0.7%

Time EM CAL. σt = 100 ps
Position EM CAL. ση = 0.004√

E(GeV)
, σφ = 5 mrad√

E(GeV)

Direction EM CAL. σθ

TRT σ∆φ = 1 mrad

Table 3: Resolutions used to smear the reconstructed observables of non-pointing photons
during the analysis stage.

2.4 Reconstruction of sparticle masses

The method describe in 2.2 is used here to reconstruct the m˜̀ and mχ̃0
1

masses. This requires
the knowledge of the complete photon direction, along η and φ. That is why it is required
here that the photons coming from the χ̃0

1 converts into an e+e− pair inside the volume of the
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inner detector where they can be efficiently reconstructed (r < 80 cm and |z| < 280 cm). The
neutralino lifetime is arbitrary fixed to cτ = 100 cm. Hence, a large part of the neutralinos
will decay inside the TRT volume (radius r = 107 cm and half length z = 300 cm).

Standard pre-selection cuts are applied to suppress noise contributions from the standard
model. The complete background analysis was not realized here, cuts from [14] were used
instead to keep standard model noise contributions to a negligible level.

To be selected, an event must have at least 4 jets and satisfy the following conditions:

Meff > 400 GeV (17)

Emiss
T > 0.1Meff

where Emiss
T is the missing transverse energy and Meff an effective mass defined by the sum

of the missing ET and the transverse momentum of the four hardest jets:

Meff ≡ Emiss
T + pT,1 + pT,2 + pT,3 + pT,4 (18)

This cut, represented on figure 12, keeps 93% of the generated events. Since sparticles are
pair-produced (it is assumed here that the R-parity is a conserved quantity), each event is
required to have at least two photons and two isolated leptons. This last cut has an efficiency
of 21% and accepted events are the source of about 29000 χ̃0

1.
About 53% of the produced neutralinos decay in the inner detector and only 24% of them

are converted. The following cuts are then sequentially applied to select good non-pointing
photons candidates:

Eγ > 30 GeV (19)

α > 0.2 rad

∆tγ > 1 ns

where ∆tγ ≡ tγ −L/c is the difference between the arrival time recorded by the electromag-
netic calorimeter and the time that a direct pointing photon would have taken. These cuts
are shown on figures 13, 14 and 15. Their efficiencies are respectively of 92, 23 and 75%.
The Eγ cut rejects 85% of the pointing photons, but the cut on the α angle remains the most
constraining and allows to reject all the pointing photons since pointing photons generated
with |Zvertex| < 10 cm have α < 0.05. This very tight cut should be optimized; it has not
done here in order to remain as close as possible to the study from [7]. We finally end up
with 594 non-pointing photons. The resolution on the ψ angle, between the photon and the
gravitino, is σψ = 60 mrad as shown on figure 16.

To compute for each event the a and b parameters, and so to extract the m˜̀ and mχ̃0
1

masses, non-pointing photons need to be paired with a lepton (either electron or muon).
Leptons are required to have a minimum transverse energy of 20 GeV. The efficiency of this
cut is 46%. If several leptons are available, only the one which minimizes the lepton-photon
invariant mass m`γ is selected.

Figure 17 shows the distribution of the a and b parameters, computed for each lepton-
photon pair, in the corresponding parameter space plane. Points group along the line of
slope −mχ̃0

1
and intercept the y-axis at m˜̀. Points which are deviating from the average
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Figure 12: Effective mass Meff and missing transverse energy Emiss
T distribution for events

generated at GMSB point G1. The yellow-hatched area is rejected by the cuts
from equation 17.
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Figure 13: Energy distribution Eγ of the detected non-pointing photons (dark blue) and
the ones converted inside the inner detector (light blue). The red distribution
represents the energy spectrum of pointing photons. The yellow-hatched area is
rejected by the cuts from equation 19.
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distribution come from bad lepton-photon pairing or from poorly reconstructed photon di-
rection. A detailed analysis work is required here to work out discriminating topological or
kinematical variables in order to reduce the pairing efficiency.

A selection area is arbitrary defined: the right plot on figure 17 represents the averaged
distribution of the selected points. The fit of the distribution by a linear function gives the
following results:

mχ̃0
1

= 115.5 GeV (20)

m˜̀ = 159.9 GeV

that should be compared to the input values respectively of 117.1 and 161.4 GeV.

To estimate the error on the mass determination, the simulation is reproduced indepen-
dently one hundred times . Results are shown on figure 18 where each distribution is fitted
by a Gaussian. The standard deviations on masses measurement are σm

χ̃0
1

= 1.7 GeV and

σm˜̀ = 2.1 GeV, corresponding to an 1.5% relative error.
As comparison, with a fixed angular resolution of 60 mrad, the sensitivity would have

been smaller by 30 to 40% (σm
χ̃0
1

= 1.2 GeV and σm˜̀ = 1.3 GeV). The biases on reconstructed

masses would also have been reduced, with mχ̃0
1

= 116.2 GeV and m˜̀ = 160.7 GeV.

This deterioration of reconstruction performance with the decrease of the angular resolu-
tion is linked to the degradation of the ψ angle determination. The resolution on this angle
is tabulated in table 4.

σθ(mrad)×√E 60 100 200 300 400 500 1000
σψ(mrad) 32 36 42 50 56 63 99

Table 4: Resolution on the ψ angle as a function of an arbitrary and constant calorimeter
angular resolution σθ.

2.5 Reconstruction of neutralino lifetime

2.5.1 Reconstruction of decay vertex position

Now that the masses are measured, it becomes possible to fully reconstruct the slepton
decay chain. At this stage, a photon conversion inside the volume of the inner detector is no
longer needed because the photon direction along φ may be inferred indirectly. Therefore the
detection volume is notably increased, as the decay of the neutralino is now only required
to take place inside the volume delimited by the electromagnetic calorimeter, i.e.

r < 156 cm (21)

|z| < 300 cm (22)

where r is the radial distance to the beam axis.
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Figure 16: Distribution of the difference between the reconstructed and the true ψ angle,
for non-pointing photons selected by the cuts from equation 19.
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simulation is reproduced one hundred times. The true input masses are respec-
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If the electromagnetic calorimeter does not allow to measure the photon φ direction, this
one can be indirectly determined by considering the rest of the decay cascade. Indeed, for
each event the following relations have to be simultaneously satisfied:

tγ =
OM

βχ̃0
1
c

+
AM

c

p̃2
˜̀ =

(
p̃χ̃0

1
+ p̃`

)2

(23)

p̃2
χ̃0

1
=

(
p̃G̃ + p̃γ

)2

where the OA and AM distances refer to figure 11, and where tγ is the time difference
between the interaction and the photon arrival in the calorimeter.

The photon position ~xγ ≡ −→
OA inside the calorimeter, its energy Eγ, its η direction θ

and its delay ∆tγ ≡ tγ − L/c can all be measured for each event. The energy E` and the
momentum −→p ` of the associated lepton are also measured.

The photon impact point ~xγ and polar angle θγ define a plane on which is located the neu-
tralino decay vertex ~xD (figure 19). The decay vertex position must also meet the conditions
from 23. These equations can be re-expressed as following:

Eχ̃0
1
E` −−→p χ̃0

1

−→p ` =
1

2

[
m2

˜̀−m2
χ̃0

1
−m2

`

]
≡ A (24)

Eχ̃0
1
Eγ −−→p χ̃0

1

−→p γ =
m2

χ̃0
1

2
≡ B

where the gravitino mass mG̃ has been neglected. An estimator ξ is then defined as:

ξ ≡

∣∣∣Eχ̃0
1
E` −−→p χ̃0

1

−→p ` −A
∣∣∣

A +

∣∣∣Eχ̃0
1
Eγ −−→p χ̃0

1

−→p γ − B
∣∣∣

B (25)
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Calorimeter

Figure 19: Graphical view of the Pχ plane (violet) defined by the incident photon impact
point and polar angle θ.

Adjusted position

Non physical area

Figure 20: Graphical view of values taken by the ξ estimator for one event. The view is a
projection of the Pχ plane in the transversal plane XY of the ATLAS detector.
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The decay vertex position is obtained by minimizing the values taken by ξ on the Pχ

plane. For each M point the decay time is calculated, allowing to determine βχ̃0
1

and to get

the Eχ̃0
1

and −→p χ̃0
1

quantities.
Figure 20 shows the distribution of values taken by ξ for a particular event. Equations

23 leads to two possible solutions. The non-physical solutions and the ones giving a decay
vertex outside the calorimeter volume are rejected. When it is possible, only the closest
solution to the detector center is kept. A cut on ξ is applied to reject events of which the
fit does not converge. A more detailed study is required here to correlate the choice of the
good vertex with kinematical or topological variables in order to reach a better efficiency in
the vertex selection.

2.6 Analysis

In this part, the same pre-selection cuts as previously are applied (equation 17) and non-
pointing photons are selected with the following constraints:

Eγ > 30 GeV (26)

θp > 0.2 rad

∆tγ > 1 ns

where θp is defined here as the difference of the polar angles θγ and θ~xγ . This cut is different
from the one in equation 19 because in this part the photons φ direction is not known. The
selection on the θ angle is also less restrictive than the one on the α angle.

The analysis is based on the same set of 105 GMSB events used in the previous section, but
here the neutralino characteristic decay length cτ is changed between 10 cm and 2000 cm.
An isolated lepton is associated with each non-pointing photon that passes the selection
cuts. This lepton must have a 20 GeV minimum transverse momentum. If several leptons
are available, only the one that minimizes the m`γ invariant mass is chosen. For each lepton-
photon pair, the neutralino decay vertex is reconstructed using the method described in
section 2.5.1. Finally, the neutralino βχ̃0

1
function and its lifetime tD in the laboratory frame

are extracted.
The correlation between the true and the reconstructed neutralino lifetime is shown on

figure 21 for a characteristic decay length of cτ = 100 cm. The standard deviation of this
distribution remains constant at a value of σ ∼ 2 ns over the whole considered cτ range.
The tails of the distributions come from bad lepton-photon pairing or poorly reconstructed
decay vertices.

The lifetime tD corrected for the γχ neutralino function for different cτ values is shown
on figure 22. The reconstructed cτ is determined by fitting an exponential function to the
previous distribution. However this requires to have a significant amount of events. In this
case, a data set of at least 106 events is necessary, corresponding to an integrated luminosity
of 100 fb−1.

This study was done for cτ values varying from 10 cm to 180 cm. In order to study the
sensitivity the experiment is reproduced 10 times successively in an independent way for each
cτ value. Results are summarized on figure 23. A systematic bias could be observed as the
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Figure 21: Correlation between the true and the reconstructed neutralino lifetime tD in the
laboratory frame, for cτ = 100 cm.
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input cτ value increases. This comes from the fact that neutralino with a higher tD/γχ are
more likely to escape the detector without being detected, which bias the tD/γχ distribution.
The error bars represent the cτ root mean square over the 10 reproduced experiments. The
sensitivity ∆cτ/cτ is shown on figure 24. For cτ < 40 cm, the sensitivity is below 3% but
quickly increases to 8% for cτ = 180 cm.
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Figure 24: Sensitivity on the measure of the χ̃0
1 lifetime cτ .

2.7 Sensitivity on
√

F0

The neutralino lifetime is linked to the fundamental supersymmetric breaking scale
√

F0 by
the equation 9, hence the determination of the cτ parameter allows to constraint

√
F0. The
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previous section has shown that the resolution on cτ , in the range from 10 to 200 cm, is
typically of the order of 5%. For cτ = 100 cm, the study from section 2.4 shows that a
resolution of 2% on the neutralino mass could be expected. In that case, the sensitivity
∆
√

F0/F0 on the fundamental supersymmetric breaking scale is 4% for a value of 1200 TeV
and the sensitivity on the gravitino mass is 8% for a mass of 0.3 keV.

2.8 Trigger and background

2.8.1 Triggering on events with 2 non-pointing photons

The topology of the considered events is the following:

• A high energy lepton pair

• A isolated lepton pair

• Jets

• Missing energy

These events would pass the level-1 trigger selection thanks to high transverse energy jets
(4j110) and to the two photons (2γ20i). The reconstructed energy by the standard algorithms
that are used by the level-2 trigger are sufficient to ensure a good trigger efficiency for such
events. Biases on the reconstructed energy do not exceed 6% for non-pointing photons with
pT = 60 GeV, generated from an effective vertex at Zvertex = 150 cm.

A more detailed study of the triggering efficiency would require to check the effects intro-
duced by the energy and time reconstruction algorithms performed in the read-out drivers
for each cell. Indeed, the particle time arrival is dominated by the time measurement of
the most energetic cell in the cluster. This time is reconstructed using an optimal filtering
technique from the five samples of the physics signal with respect to a reference time. Re-
construction performance will need to be studied for particle with such a time lag (several
nanoseconds). It may be interesting to know if it would be possible for the algorithm to
transfer the digitization values in the case the energy in greater than 10-20 GeV and the
signal shape different from a reference one.

2.8.2 Signal background

Events studied here, predicted from GMSB models with long lived neutralinos, have two high
transverse momentum photons. This topology allows to reduce considerably the background.
The main background sources for this channel come from Standard Model processes [15]:

• Processes with bad photon identification and missing energy (figure 25).

• Processes with missing energy due to a bad reconstruction of the energy balance.

Selection cuts described in this section allow to reduce these contributions. Studies made
by D∅ and CDF show that the background level may be constraint not to perturb the
detection of GMSB events and the reconstruction of the model parameters. Studies made
by D∅ and CDF were looking for pointing photons; here they are mainly non-pointing and
time lagged; these two characteristics will allow to suppress more effectively the background.
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Figure 25: Missing energy distribution for di-photons events and for the background of
the D0 experiment [15]. The expected GMSB signal is also represented for
Λ = 80 TeV and

√
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2.9 Conclusion

In this section a realistic electromagnetic calorimeter angular resolution has been imple-
mented in a fast simulation of the ATLAS detector. With such performance, it has been
shown that it is possible to reconstruct the neutralino and slepton masses with a 2% preci-
sion. It is also possible to get a sensitivity close to 5% on the neutralino lifetime, leading to a
determination of the fundamental supersymmetric breaking scale within 4% for cτ between
10 to 200 cm.

The results in this section do not take into account systematics errors from measurements
and only the statistical uncertainty is taken into account. The detector systematics will
require a careful study from a detailed detector simulation.

Probable sources of systematic errors are:

• Effects of pile-up and underlying events on the direction reconstruction

• Quality of the electromagnetic shower description.

This study shows that it would possible to extract a GMSB supersymmetric signal in
case the NLSP is the lightest neutralino and for a characteristic lifetime from 10 to 200 cm.

30



Acknowledgements

I would like to thank Giacomo Polesello and Isabelle Wingerter-Seez for their valuable advices
all along this study. Giacomo helped me to set up the various Monte Carlo generators and
guided me, answering my questions. I am grateful to Isabelle for her help understanding the
electromagnetic calorimeter performance from the simulation.

31



List of Figures

1 Sketch of the barrel part of the electromagnetic calorimeter and its first two
layers showing the principle of the direction reconstruction for a photon gen-
erated at a distance Zvertex from the ATLAS interaction point. . . . . . . . 3

2 Parametrization of the electromagnetic shower depth extracted from a detailed
simulation of the ATLAS detector, for the front and middle layers of the barrel
part of the electromagnetic calorimeter. The red dashed line represents the
change of sampling fraction at η = 0.8. . . . . . . . . . . . . . . . . . . . . . 3

3 Event display of the energy deposited in the front and middle layers of the
electromagnetic calorimeter for a pointing photon with pT = 60 GeV. . . . . 5

4 Event display of the energy deposited in the front and middle layers of the
electromagnetic calorimeter for a non-pointing photon with pT = 60 GeV,
generated at Zvertex = 100 cm. One can notice the difference of the average η
position of the electromagnetic shower in the two layers due to the asymmetric
shape of the non-pointing photon. . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Scatter plot of the difference between the predicted position ηpred and the

reconstructed one ηrec as a function of the position ηrec for middle layer cells
of the calorimeter and for each value of Zvertex. The blue squares represent
the average distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Scatter plot of the difference, after correction, between the predicted position
ηpred and the reconstructed one ηrec is drawn as a function of the position

ηrec for the middle layer cells and for each value of Zvertex. The blue squares
represent the average distribution. . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Distribution for each Zvertex value of the difference between the predicted
and the reconstructed position, before (dashed blue line) and after (yellow-
filled distribution) corrections for the middle layer of the barrel part of the
electromagnetic calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 Distribution for each Zvertex value of the difference between the predicted
and the reconstructed position, before (dashed blue line) and after (yellow-
filled distribution) corrections for the middle layer of the end cap part of the
electromagnetic calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

9 Angular resolution σθ and position resolution σZ on the generation vertex,
before (red crosses) and after corrections (blue squares), for the barrel part of
the electromagnetic calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . 11

10 Angular resolution σθ and position resolution σZ on the generation vertex,
before (red crosses) and after corrections (blue squares), for the end cap part
of the electromagnetic calorimeter. . . . . . . . . . . . . . . . . . . . . . . . 12

11 Graphical representation of a χ̃0
1 decay into one gravitino and one photon

inside the ATLAS detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
12 Effective mass Meff and missing transverse energy Emiss

T distribution for
events generated at GMSB point G1. The yellow-hatched area is rejected
by the cuts from equation 17. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

13 Energy distribution Eγ of the detected non-pointing photons (dark blue) and
the ones converted inside the inner detector (light blue). The red distribution
represents the energy spectrum of pointing photons. The yellow-hatched area
is rejected by the cuts from equation 19. . . . . . . . . . . . . . . . . . . . . 20

32



14 α angle distribution of the selected non-pointing photons. The yellow-hatched
area is rejected by the cuts from equation 19. . . . . . . . . . . . . . . . . . 21

15 ∆tγ arrival time distribution of the selected non-pointing photons. The yellow
filled area is rejected by the cuts from equation 19. . . . . . . . . . . . . . . 21

16 Distribution of the difference between the reconstructed and the true ψ angle,
for non-pointing photons selected by the cuts from equation 19. . . . . . . . 23

17 Left plot: distribution of (a, b) parameters for each lepton-photon pair (blue
dots). The dashed lines represent the selection area. Right plot: averaged
distribution of dots inside the selection area. The red line is the result of a
linear fit on the distribution. Only events with a paired lepton pT > 20 GeV
enter this plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

18 Reconstructed mass of the lightest neutralino (left) and the slepton (right)
when simulation is reproduced one hundred times. The true input masses are
respectively 117.1 GeV and 161.4 GeV. . . . . . . . . . . . . . . . . . . . . . 24

19 Graphical view of the Pχ plane (violet) defined by the incident photon impact
point and polar angle θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

20 Graphical view of values taken by the ξ estimator for one event. The view is a
projection of the Pχ plane in the transversal plane XY of the ATLAS detector. 25

21 Correlation between the true and the reconstructed neutralino lifetime tD in
the laboratory frame, for cτ = 100 cm. . . . . . . . . . . . . . . . . . . . . . 27

22 tD/γχ distribution for different cτ values for an integrated luminosity of 100 fb−1. 27
23 Reconstructed decay length cτ . The experiment is reproduced 10 times for

each input cτ value. Points are the mean values and error bars are the root
mean square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

24 Sensitivity on the measure of the χ̃0
1 lifetime cτ . . . . . . . . . . . . . . . . . 28

25 Missing energy distribution for di-photons events and for the background of
the D0 experiment [15]. The expected GMSB signal is also represented for
Λ = 80 TeV and

√
s = 1.8 TeV. . . . . . . . . . . . . . . . . . . . . . . . . . 30

33



References

[1] ATLAS detector and physics performance. Technical design report. Vol. 1. CERN-
LHCC-99-14.

[2] A. Artamonov, A. Dell’Acqua, D. Froidevaux, M. Nessi, P. Nevski, and G. Poulard.
ATLAS-SOFT/95-14c.

[3] For information concerning ATLAS reconstruction tools, see the offline software web-
page. http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/Applications/.

[4] J. Colas et al. Position resolution and particle identification with the atlas em calorime-
ter. Nucl. Instrum. Meth., A550:96–115, 2005.

[5] G. F. Giudice and R. Rattazzi. Theories with gauge-mediated supersymmetry breaking.
Phys. Rept., 322:419–499, 1999.

[6] S. Ambrosanio, Gordon L. Kane, Graham D. Kribs, Stephen P. Martin, and S. Mrenna.
Search for supersymmetry with a light gravitino at the fermilab tevatron and cern lep
colliders. Phys. Rev., D54:5395–5411, 1996.

[7] Kiyotomo Kawagoe, Tomio Kobayashi, Mihoko M. Nojiri, and Atsuhiko Ochi. Study
of the gauge mediation signal with non-pointing photons at the cern lhc. Phys. Rev.,
D69:035003, 2004.

[8] ATLAS detector and physics performance. Technical design report. Vol. 2. CERN-
LHCC-99-15.

[9] G. Corcella et al. HERWIG 6: An event generator for hadron emission reactions with
interfering gluons (including supersymmetric processes). JHEP, 01:010, 2001.

[10] E. Richter-Was, D. Froidevaux, and L. Poggioli. ATLFAST 2.0 a fast simulation package
for ATLAS. ATL-PHYS-98-131.

[11] Frank E. Paige, Serban D. Protopescu, Howard Baer, and Xerxes Tata. ISAJET 7.69:
A Monte Carlo event generator for p p, anti-p p, and e+ e- reactions. 2003.

[12] I. Nikolic-Audit. Time resolution of the ATLAS barrel liquid argon electromagnetic
calorimeter. ATL-LARG-2004-002.

[13] ATLAS inner detector: Technical design report. Vol. 1. CERN-LHCC-97-16.

[14] I. Hinchliffe and F. E. Paige. Measurements in gauge mediated SUSY breaking models
at LHC. Phys. Rev., D60:095002, 1999.

[15] V. M. Abazov et al. Search for supersymmetry with gauge-mediated breaking in dipho-
ton events at D0. 2004. hep-ex/0408146.

34


