
● Motivation: Alignment of Si-tracker

● Tests with random matrices

● Case-studies using ATLAS MC dataM
K

U

Parallel Computing Studies for the
Alignment of the ATLAS Silicon Tracker

Computing in HEP,
T.I.F.R., Mumbai

13-17 February, 2006

Müge Karagöz Ünel
(the University of Oxford)

K. Bernardet, P. Brückman, A. Hicheur
the Atlas Collaboration

1
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

Temple in Tamil Nadu, www.sacredcities.com

The Fact: Atlas Silicon System has ~ 35k DoF
M

K
U

2
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

The Idea: Global χ2 Method for Alignment
M

K
U

3
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

● The method consists of
minimizing a giant χ2 resulting
from a simultaneous fit of all
particle trajectories and
alignment parameters.

● See Adlene Hicheur’s talk for
more on Global χ2 algorithm as
well as ATLAS alignment issues.

The Problem: Limitations

● Global χ2 formalism requires solving large number of linear equations and
handling large sized-matrices in its full scope, due to the large number of DoF in
the Atlas tracker system.

● Using 32-bit single-CPU platforms is a limiting factor in performance (ATLAS-
Marseille):

● Size: * A matrix of N=35k needs 9.8GB disk space and at least the same
amount of virtual space for computations. * A 32-bit program can only
address 4GB of virtual memory. * By default, Atlas software infrastructure
allows only 2GB of memory per job.

● Precision: Conventional 32-bit libraries are not fully adequate for full size
solution computational accuracy (35k-DoF). The matrices of alignment
problems can have large condition numbers which may compete with the
machine precision.

● Execution time: Single-CPU machines can take a good number of hours
to solve large-size problems, even if they can!

M
K

U
4

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

The Solution: //-processing with 64-bit Architecture

Solution: 64-bit architecture with parallel processing

and distributed-memory libraries for matrix algebra!

● Size:

● e.g., distributed on 16 processors, required memory for 35k-size matrix is
only 0.6GB/CPU.

● Allowance of up to 16GB virtual memory.

● Precision: Hope to increase the numerical precision, making use of the enlarged
data type sizes and extended-precision libraries.

● Execution times: Parallel processing allows faster execution times distributing
the CPU load.

M
K

U
5

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

● SCARF is a 64-bit AMD Opteron cluster at Rutherford Lab, shared by
various groups within the CCLRC users.

● Its hardware matches (and exceeds) the suggested requirements for Atlas
alignment algorithms.

The Platform: Beowulf cluster at RAL (SCARF)
M

K
U

6
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

2x Gigabit 1x Gigabit -Network
2x 120 GB IDE 40 GB IDE-Persistent

4G (122 nodes),
8G (16 nodes)

4G1 G RAM
AMD Opteron 248 2.2. GHz AMD Opteron 2 GHzPIII 500/600 MHzCPU

dual, 128 Large N dual, 240 # nodes
64bit 64-bit32-bit Architecture

SCARF (RAL)SuggestedAsgard (ETH Zurich)

● SCARF executes x86 code natively.

● It runs Red Hat Enterprise (ES) Linux 3.0.

● Equipped with PGI and GNU compilers for C, C++ and Fortran,

● LSF (v6.1) for queuing system and MPI (v1.2.6..14a) for message-passing,

● AMD Core Math Library (ACML) (v2.5.0) with ScaLAPACK (v1.7) and BLACS
(v1.1).

● We used AMD ScaLAPACK libraries

for 64-bit compilation.

The Platform: Available Software
M

K
U

7
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

The Choices: Available Infrastructure
M

K
U

8
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

● Available compiler options on SCARF: GNU (GCC 3.2.3-53) vs PGI (5.2).
● Pros&cons:

● GNU is publicly available, PGI is not.
● GNU long double size is 16B on 64-bit architecture. PGI does not

support quad. precision (l.d. size is 8B).
● We test time and precision performance, by calculating A=B*3-1, B=1.3.

● Time performances are slightly better for optimized (O3) GNU. 3 orders
of magnitude improvement in precision from double to l.d. with GNU.
(Note: AMD Opteron holds 80-bit f.p. registers & l.d. f.p. is a 80-bit extended
type.)

● We chose to continue to use GNU compiler.

The Choices: Possible Software and Libraries
M

K
U

9
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

● A variety of matrix algebra and solver software exists. Some examples:
● ScaLAPACK and PLAPACK (based on LAPACK)
● NAG parallel libraries (contains also ScaLAPACK)

● Pros & cons for ScaLAPACK:
● AMD-ScaLAPACK is optimized for high performance on AMD Opteron.
● Previous tests showed that ScaLAPACK eigenvalue solver (upcoming

slides) performs faster than that of PLAPACK’s (HPCx group).
● ScaLAPACK (non-optimized) is a public domain software and can be

downloaded from the web. NAG libraries require licence. However, this
means they come with guaranteed tech. support!

● No general quad. precision library exists for NAG or SCALAPCK…
ScaLAPACK has been working on implementation for a new release.
NAG already has in place iterative refinement procedures – not real
extended precision, however, slows down the solution. Preconditioning
the system should help in any case.

● We used ScaLAPACK on SCARF for our initial proof-of-principle studies.

Performance using Randomly-Generated Matrices
● We tested direct matrix inversion, with pdgesvx of ScaLAPACK, an expert driver
routine to solve linear equations.

● AMD ScaLAPACK for distributed-memory computing for matrix operations; MPI
for intra-processor communication, were used.

● The test matrices are symmetric, generated randomly, kept in binary format,
double precision. Sizes scale as ~ N*N*8B.

● Processing time and accuracy as a function of Size(A) and N(CPU) were
measured.

● A scan of Size(A) and N(CPU) for various block sizes of the matrix distribution
was also obtained.

M
K

U
10

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

49005.65sWallTime (for routine)
0.0000000047526382||A*A-1-I||

0.00000000000000011102Machine ε
0.0000000024834271Reciprocal Cond(A)

64x64Size(Block)
16 (4x4)N(CPU)
16384Size(A)

Performance in Processing Time:
● We measured the wall and CPU times for the ScaLAPACK routine.

● We observed minor dependence of performance on the processor grid block
size. However, we found that 32 CPUs with 64MB is optimum for the range we’d
like to cover.

● For an 8000 matrix, WallTime shows ~ N(CPU)-0.2 dependence.

● 64-bit AMD showed and improvement of a factor of 2.5 in WallTime when
compared with a 32-bit AMD @ 2.4GHz using the same parameters.

● We 2D-scanned the time performance in NCPU and S(grid).

● Large CPU cases not easy to test:

queue-waiting long – it’s a shared machine!

● The results for the scan is linked here
4x4 grid

M
K

U
11

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

● Random matrix Inversion results using system specified earlier (Asgard)
● As a function of size of random matrices: N3 dependence of CPU time.
● Accuracy loss at around sizes of N=14k.
● No scan of parameters as a function of grid block size was performed.
● Quadrupole precision was tested on MAPLE for N=200 (processing times
enormously long) and results used to extrapolate to large sample sizes.

Earlier Results with a 32-bit //-cluster:
M

K
U

12
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

Performance in Precision

~16k

M
K

U
13

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

● The number of accurate decimal digits is related to the exponent of condition
number of matrix: cond(A).

● Number of digits preserved in the final solution can be calculated as acc=
log[(AAT -I) x cond(A)].

● The precision loss in the final result is improved over earlier results (~N=16k),
however not substantially, as we are not able to use quadrupole precision.

● Note: ScaLAPACK has plans on extended precision (iterative refinement using
XBLAS), but not in place yet...

Atlas MC Data – The Setup and the Sample
M

K
U

14
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

for 5000 events

● A single μ sample was simulated and reconstructed in ATLAS inner detector.
825k events exist in the sample: ~1/2 being μ+.
● Generation, simulation and reconstruction were performed using a very recent
release of the ATLAS software framework (ATHENA, v11.0.3).
● Production was carried out on the Oxford Particle Physics Linux cluster, running
SLC3, using PBS. One full chain per event took ~5-10 s, integrated processing
time of ~1000 hrs .
● Track transverse momenta distribution is flat: 20 < pT< 100 GeV.
● η-range is chosen with a flat distribution: [-2, 2], φ is full and uniform.
● Full setup consist of barrel Pix+SCT region, which corresponds to
3568 modules, and 21408 DoF.

Note: As track statistics are not abundant,
we will discuss solution performances rather than
try to demonstrate the ultimate achievable precision
in the solution properties.

The Software Setup for Solution
M

K
U

15
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

● pdsyevd: a simple Divide-and-Conquer routine (i.e., recursive reduction of an
instance of the problem into one or more smaller instances.)

2.4.21-37.ELsmp2.4.21-32.0.1.ELsmpLinux version
gcc (GCC 3.2.3-53)g++ (GCC 3.2.3-49)Compiler

pdsyevddspevRoutine
ScaLAPACKLAPACKLibrary

//-cluster AMD Opteron (64-bit)Intel PentiumIV (32-bit)

● After track processing, the global χ2 algorithm generates a binary matrix to be
solved for the eigenvalues and eigenvectors of the problem.
● For this study, we used a standalone version of the algorithm, ported it also to
SCARF, and solved the matrix on the cluster.
● The solution was then used to extract the alignment corrections.
● We compared two platforms for the solver: SCARF vs Intel Pentium machines
with 2GB RAM, 2GB swap, and 2.8/2 GHz CPU.

Solving Various Size Problems for Barrel Tracker:
M

K
U

16
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

~800k~550k~250k#tracks
21408126726180#DoF
356821121030#modules

PIX+SCTSCTcone

η=2

SCT

PIX

Start with the “cone” Size Problem (6k-DoF)
M

K
U

17
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

● Cone Configuration: Align the limited geometry by using muon tracks in restricted
η (~1030 PIX+SCT modules).
● This configuration is the only one studied extensively earlier: small problem size.
● Agreement between Single-CPU and //-CPU is very good.

Solve Barrel SCT Problem (12k-DoF):
M

K
U

18
//-

C
om

pu
tin

g
 fo

r A
TL

A
S

Si
-T

ra
ck

er

● 1 SCT module remains unpopulated: 6 real spurious modes in matrix as well as
some others due to limited statistics.
● This size of a problem can be “solvable” in both single and parallel platforms.
● A factor of ~50 is gained in time performance.

Solve Full Barrel Problem (21k DoF):

● Extended the problem to solve full barrel size.
● A number of pixel modules unpopulated (37), due to coverage limitation in
current sample.
● Problem only can be solved on SCARF cluster, unless matrix is written in
triangular format (libraries linked with ATLAS software imposes file size
limitations of 2GB on the P4 machines)
● Size dependence ~N2.3 and N(CPU) dependence ~ N-0.5 (using results from
our earlier samples with an obsolete Athena release).

M
K

U
19

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

Comparison of Platforms for Global χ2 Solution:

>20 hrs---43m43s/ 121m51s3.4 (1.7)214083568 (37)

5h28m7h34m (2GHz)10m30s / 26m58s1.2 (0.6)126722112 (1)

39m35m (2.8GHz)1m53s / 3m0.3 (0.15)61801030 (0)

SCARF

single-CPU
Intel PentiumIV

SCARF

NCPU=16 / 4 (2.2GHz,
MB=256MB)

Processing time*
File size(GB)

NxN(triang)
NDoFNmodule

● Parallel-computing allowed for large problem solutions in a very efficient way.
● The time performance looks very advantageous!
● Number of modules in parantheses show the modules not taken into account for
alignment.

● Also attempted invert these singular matrices. Matrices either found completely singular (as expected)
(RCOND=0.0) or RCOND< ε (DoF=6180), and no solution is provided.

M
K

U
20

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

* Measurements include the binary file I/O.

Summary & Conclusions:

● We performed tests on using distributed-memory parallel-computing for ATLAS
alignment.
● For large scale problems, parallel-computing is very adventageous.
● The performances we obtained are improvements over earlier test results on
other platforms.
● Now that we can run on large system sizes and able to obtain final alignment
constants, the algorithm and numerical issues will be debugged and understood
better.
● ATLAS has plans to port the offline software to 64-bit mid-summer in conjunction
with gcc 3.4.4 migration. When this happens, a better infrastructure will be in place
for global χ2 alignment processing.
● We are exploring all possibilities other than we used here (libraries, etc..): this is
still work in progress…

M
K

U
21

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

Acknowledgments:
● We are grateful to the CCLRC group for their permission to use their Beowulf cluster.
● We are grateful to the OxPP SysOps and Laura Gilbert who is responsible for
ATLAS software installations on the OxPP cluster.

Backup Slides
SCT modules
“Weak” modes

M
K

U
22

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

M
K

U
23

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

~140mm~140mm

~70m
m

~70m
m

ASICs

● PIXel detectors provide real 2-D readout.

● Pixels are of size 50×400 μm resulting in 14×115 μm resolution.

● SCT modules are double-sided strip detectors with 1-D readout per side.

● Sensitive strips have pitch of 80 μm giving 23 μm resolution.

● Stereo-angle of 40 mrad gives 580 μm resolution in the other direction.

● Entire tracker is equipped with binary readout.

TPG+BeO Baseboard Si Sensor

Hybrid with ASICsSi Sensors

The Building Blocks: Barrel Modules

M
K

U
24

//-
C

om
pu

tin
g

 fo
r A

TL
A

S
Si

-T
ra

ck
er

Examples of ‘Weak Modes’:

“clocking”
δφ=λ+β/R
(VTX constraint)

“telescope”
δz~R

radial distortions
(various)

φ dependent sagitta
δX=a+bR+cR2

η dependent sagitta
“Global twist”
δφ=κRcot(θ)

We need extra handles in order to tackle these.
The natural candidates are:
• Requirement of a common vertex for a group of
tracks (VTX constraint),
• Constraints on track parameters or vertex position,
• External constraints on alignment parameters.

