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Abstract
We study boosting algorithms for learning to rank. We give a general margin-based bound for
ranking based on covering numbers for the hypothesis space.Our bound suggests that algorithms
that maximize the ranking margin will generalize well. We then describe a new algorithm, smooth
margin ranking, that precisely converges to a maximum ranking-margin solution. The algorithm
is a modification of RankBoost, analogous to “approximate coordinate ascent boosting.” Finally,
we prove that AdaBoost and RankBoost are equally good for theproblems of bipartite ranking and
classification in terms of their asymptotic behavior on the training set. Under natural conditions,
AdaBoost achieves an area under the ROC curve that is equallyas good as RankBoost’s; further-
more, RankBoost, when given a specific intercept, achieves amisclassification error that is as good
as AdaBoost’s. This may help to explain the empirical observations made by Cortes and Mohri, and
Caruana and Niculescu-Mizil, about the excellent performance of AdaBoost as a bipartite ranking
algorithm, as measured by the area under the ROC curve.
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1. Introduction

Consider the following supervised learning problem: Sylvia would like to get some recommenda-
tions for good movies before she goes to the theater. She would like a ranked list that agrees with
her tastes as closely as possible, since she will probably go to see the movie closest to the top of the
list that is playing at the local theater. She does not want to waste her time andmoney on a movie
she probably will not like.

The information she provides is as follows: for many different pairs of movies she has seen, she
will tell the learning algorithm whether or not she likes the first movie better thanthe second one.1

This allows her to rank whichever pairs of movies she wishes, allowing for the possibility of ties

∗. Also at Center for Computational Learning Systems, Columbia University, 475 Riverside Drive MC 7717, New York,
NY 10115.

1. In practice, she could simply rate the movies, but this gives pairwise information also. The pairwise setting is strictly
more general in this sense.

c©2009 Cynthia Rudin and Robert E. Schapire.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4417047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RUDIN AND SCHAPIRE

between movies, and the possibility that certain movies cannot necessarily becompared by her (for
instance, she may not wish to directly compare cartoons with action movies). Sylvia does not need
to be consistent, in the sense that she may ranka> b > c> a. (The loss function and algorithm will
accommodate this. See Martin Gardner’s amusing article (Gardner, 2001) on how nontransitivity
can arise naturally in many situations.) Each pair of movies such that Sylvia ranks the first above
the second is called a “crucial pair.”

The learning algorithm has access to a set ofn individuals, called “weak rankers” or “ranking
features,” who have also ranked pairs of movies. The learning algorithmmust try to combine the
views of the weak rankers in order to match Sylvia’s preferences, and generate a recommendation
list that will generalize her views. In this paper, our goal is to design and study learning algorithms
for ranking problems such as this collaborative filtering task.

The ranking problem was studied in depth by Freund et al. (2003), where the RankBoost algo-
rithm was introduced. In this setting, the ranked list is constructed using a linear combination of
the weak rankers. Ideally, this combination should minimize the probability that a crucial pair is
misranked, that is, the probability that the second movie in the crucial pair is ranked above the first.
RankBoost aims to minimize an exponentiated version of this misranking probability.

A special case of the general ranking problem is the “bipartite” ranking problem, where there
are only two classes: a positive class (good movies) and a negative class(bad movies). In this case,
the misranking probability is the probability that a good movie will be ranked belowa bad movie.
This quantity is an affine transformation of the (negative of the) area under the Receiver-Operator-
Characteristic curve (AUC).

Bipartite ranking is different from the problem of classification; if, for a given data set, the
misclassification error is zero, then the misranking error must also be zero,but the converse is not
necessarily true. For the ranking problem, the examples are viewed relative to each other and the
decision boundary is irrelevant.

Having described the learning setting, we can now briefly summarize our three main results.

• Generalization bound:In Section 3, we provide a margin-based bound for ranking in the gen-
eral setting described above. Our ranking margin is defined in analogy withthe classification
margin, and the complexity measure for the hypothesis space is a “sloppy covering number,”
which yields, as a corollary, a bound in terms of theL∞ covering number. Our bound indicates
that algorithms that maximize the margin will generalize well.

• Smooth margin ranking algorithm:We present a ranking algorithm in Section 4 designed
to maximize the margin. Our algorithm is based on a “smooth margin,” and we present an
analysis of its convergence.

• An equivalence between AdaBoost and RankBoost:A remarkable property of AdaBoost is
that it not only solves the classification problem, but simultaneously solves thesame problem
of bipartite ranking as its counterpart, RankBoost. This is proved in Section5. One does
not need to alter AdaBoost in any way for this property to hold. Conversely, the solution of
RankBoost can be slightly altered to achieve a misclassification loss that is equally as good
as AdaBoost’s.

We now provide some background and related results.
Generalization bounds are useful for showing that an algorithm can generalize beyond its train-

ing set, in other words, that prediction is possible. More specifically, bounds indicate that a small
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probability of error will most likely be achieved through a proper balance of the empirical error and
the complexity of the hypothesis space. This complexity can by measured by many informative
quantities; for instance, the VC dimension, which is linked in a fundamental wayto classification,
and the Rademacher and Gaussian complexities (Bartlett and Mendelson, 2002). The use of these
quantities is tied to a kind of natural symmetry that typically exists in such problems,for instance,
in the way that positive and negative examples are treated symmetrically in a classification setting.
The limited bipartite case has this symmetry, but not the more general ranking problem that we
have described. Prior bounds on ranking have either made approximations in order to use the VC
Dimension for the general problem (as discussed by Clemençon et al., 2005, 2007, who work on
statistical aspects of ranking) or focused on the bipartite case (Freund et al., 2003; Agarwal et al.,
2005; Usunier et al., 2005). For our bound, we choose a covering number in the spirit of Bartlett
(1998). The covering number is a general measure of the capacity of thehypothesis space; it does
not lend itself naturally to classification like the VC dimension, is not limited to bipartite ranking,
nor does it require symmetry in the problem. Thus, we are able to work around the lack of symme-
try in this setting. In fact, a preliminary version of our work (Rudin et al., 2005) has been extended
to a highly nonsymmetric setting, namely the case where the top part of the list is considered more
important (Rudin, 2009). Several other recent works also consider this type of highly nonsymmetric
setting for ranking (Dekel et al., 2004; Cossock and Zhang, 2008; Clemençon and Vayatis, 2007;
Shalev-Shwartz and Singer, 2006; Le and Smola, 2007).

When deriving generalization bounds, it is important to consider the “separable” case, where
all training instances are correctly handled by the learning algorithm so thatthe empirical error is
zero. In the case of bipartite ranking, the separable case means that all positive instances are ranked
above all negative instances, and the area under the ROC curve is exactly 1. In the separable case
for classification, one important indicator of a classifier’s generalization ability is the “margin.” The
margin has proven to be an important quantity in practice for determining an algorithm’s generaliza-
tion ability, for example, in the case of AdaBoost (Freund and Schapire, 1997) and support vector
machines (SVMs) (Cortes and Vapnik, 1995). Although there has been some work devoted to gen-
eralization bounds for ranking as we have mentioned (Clemençon et al., 2005, 2007; Freund et al.,
2003; Agarwal et al., 2005; Usunier et al., 2005), the bounds that we are aware of are not margin-
based, and thus do not provide this useful type of discrimination between ranking algorithms in the
separable case.

Since we are providing a general margin-based bound for ranking in Section 3, we derive al-
gorithms which create large margins. For the classification problem, it was proved that AdaBoost
does not always fully maximize the (classification) margin (Rudin et al., 2004). In fact, AdaBoost
does not even necessarily make progress towards increasing the marginat every iteration. Since
AdaBoost (for the classification setting) and RankBoost (for the ranking setting) were derived anal-
ogously for the two settings, RankBoost does not directly maximize the ranking margin, and it does
not necessarily increase the margin at every iteration. In Section 4.1 we introduce a “smooth mar-
gin” ranking algorithm, and prove that it makes progress towards increasing the smooth margin for
ranking at every iteration; this is the main step needed in proving convergence and convergence
rates. This algorithm is analogous to the smooth margin classification algorithm “approximate co-
ordinate ascent boosting” (Rudin et al., 2007) in its derivation, but the analogous proof that progress
occurs at each iteration is much trickier; hence we present this proof here, along with a theorem
stating that this algorithm converges to a maximum margin solution.
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Although AdaBoost and RankBoost were derived analogously for thetwo settings, the parallels
between AdaBoost and RankBoost are deeper than their derivations.A number of papers, including
those of Cortes and Mohri (2004) and Caruana and Niculescu-Mizil (2006) have noted that in fact,
AdaBoost experimentally seems to be very good at the bipartite ranking problem, even though it
was RankBoost that was explicitly designed to solve this problem, not AdaBoost. Or, stated another
way, AdaBoost often achieves a large area under the ROC curve. In Section 5, we present a pos-
sible explanation for these experimental observations. Namely, we show that if the weak learning
algorithm is capable of producing the constant classifier (the classifier whose value is always one),
then remarkably, AdaBoost and RankBoost produce equally good solutions to the ranking problem
in terms of loss minimization and area under the ROC curve on the training set. More generally, we
define a quantity called “F-skew,” an exponentiated version of the “skew” used in the expressions
of Cortes and Mohri (2004, 2005) and Agarwal et al. (2005). If theF-skew vanishes, AdaBoost
minimizes the exponentiated ranking loss, which is the same loss that RankBoostexplicitly mini-
mizes; thus, the two algorithms will produce equally good solutions to the exponentiated problem.
Moreover, if AdaBoost’s set of weak classifiers includes the constantclassifier, the F-skew always
vanishes. From there, it is only a small calculation to show that AdaBoost and RankBoost achieve
the same asymptotic AUC value whenever it can be defined. An analogous result does not seem to
hold true for support vector machines; SVMs designed to maximize the AUC only seem to yield the
same AUC as the “vanilla” classification SVM in the separable case, when the AUC is exactly one
(Rakotomamonjy, 2004; Brefeld and Scheffer, 2005). The main result may be useful for practition-
ers: if the cost of using RankBoost is prohibitive, it may be useful to consider AdaBoost to solve
the ranking problem.

The converse result also holds, namely that a solution of RankBoost canbe slightly modified so
that the F-skew vanishes, and the asymptotic misclassification loss is equal to AdaBoost’s whenever
it can be defined.

We proceed from the most general to the most specific. First, in Section 3 we provide a margin-
based bound for general ranking. In Sections 4.1 and 4.2 we fix the form of the hypothesis space
to match that of RankBoost, that is, the space of binary functions. Here, we discuss RankBoost,
AdaBoost and other coordinate-based ranking algorithms, and introduce the smooth margin ranking
algorithm. In Section 5, we focus on the bipartite ranking problem, and discuss conditions for
AdaBoost to act as a bipartite ranking algorithm by minimizing the exponentiated loss associated
with the AUC. Sections 3 and 4.2 focus on the separable case where the training error vanishes, and
Sections 4.1 and 5 focus on the nonseparable case. Sections 6, 7, and 8contain the major proofs.

A preliminary version of this work appeared in a conference paper with Cortes and Mohri (Rudin
et al., 2005). Many of the results from that work have been made more general here.

2. Notation

We use notation similar to Freund et al. (2003). The training data for the supervised ranking problem
consists ofinstancesand theirtruth functionvalues. Theinstances, denoted byS, are{xi}i=1,...,m,
wherexi ∈X for all i. The setX is arbitrary and may be finite or infinite, usuallyX ⊂R

N. In the case
of the movie ranking problem, thexi ’s are the movies andX is the set of all possible movies. We
assumexi ∈ X are chosen independently and at random (iid) from a fixed but unknown probability
distributionD onX (assuming implicitly that anything that needs to be measurable is measurable).
The notationx ∼D meansx is chosen randomly according to distributionD. The notationS∼Dm
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means each of themelements of the training setSare chosen independently at random according to
D.

The values of thetruth functionπ : X ×X →{0,1}, which is defined over pairs of instances, are
analogous to the “labels” in classification. Ifπ(x(1),x(2)) = 1, this means that the pairx(1),x(2) is a
crucial pair: x(1) should be ranked more highly thanx(2). We will consider a non-noisy case where
π is deterministic, which meansπ(x(1),x(1)) = 0, meaning thatx(1) should not be ranked higher
than itself, and also thatπ(x(1),x(2)) = 1 impliesπ(x(2),x(1)) = 0, meaning that ifx(1) is ranked
more highly thanx(2), thenx(2) should not be ranked more highly thanx(1). It is possible to have
π(a,b) = 1, π(b,c) = 1, andπ(c,a) = 1, in which case the algorithm will always suffer some loss;
we will be in the nonseparable case when this occurs. The total number of crucial training pairs can
be no larger thanm(m−1)/2 based on the rules ofπ, and should intuitively be of the orderm2 in
order for us to perform ranking with sufficient accuracy. We assume that for each pair of training
instancesxi ,xk we receive, we also receive the value ofπ(xi ,xk). In a more general model, we allow
the valueπ(xi ,xk) to be generated probabilisitically conditional on each training pairxi ,xk. For the
generalization bounds in this paper, for simplicity of presentation, we do notconsider this more
general model, although all of our results can be shown to hold in the more general case as well.
The quantityE := Ex(1),x(2)∼D [π(x(1),x(2))] is the expected proportion of pairs in the database that
are crucial pairs, 0≤ E ≤ 1/2.

Back to the collaborative filtering example, to obtain the training set, Sylvia is given a random
sample of movies, chosen randomly from the distribution of movies being shownin the theater.
Sylvia must see these training movies and tell us all pairs of these movies such that she would rank
the first above the second to determine values of the truth functionπ.

Our goal is to construct a ranking functionf : X → R, which gives a real valued score to each
instance inX . We do not care about the actual values of each instance, only the relative values;
for instance, we do not care iff (x(1)) = .4 and f (x(2)) = .1, only that f (x(1)) > f (x(2)), which we
interpret to mean thatx(1) is predicted byf to be ranked higher (better) thanx(2). Also, the function
f should be bounded,f ∈ L∞(X ) (or in the case where|X | is finite, f ∈ ℓ∞(X )).

In the usual setting of boosting for classification,| f (x)| ≤ 1 for all x and themargin of training
instance i(with respect to classifierf ) is defined by Schapire et al. (1998) to beyi f (xi), whereyi is
the classification label,yi ∈ {−1,1}. Themargin of classifier fis defined to be the minimum margin
over all training instances, mini yi f (xi). Intuitively, the margin tells us how much the classifierf
can change before one of the training instances is misclassified; it gives us a notion of how stable
the classifier is.

For the ranking setting, we define an analogous notion of margin. Here, wenormalize our
bounded functionf so that 0≤ f ≤ 1. Themargin of crucial pairxi ,xk (with respect to ranking
function f ) will be defined asf (xi)− f (xk). Themargin of ranking function f, is defined to be the
minimum margin over all crucial pairs,

marginf := µf := min
{i,k|π(xi ,xk)=1}

f (xi)− f (xk).

Intuitively, the margin tells us how much the ranking function can change before one of the crucial
pairs is misranked. As with classification, we are in the separable case whenever the margin off is
positive.

In Section 5 we will discuss the problem of bipartite ranking. Bipartite rankingis a subset of
the general ranking framework we have introduced. In the bipartite ranking problem, every training

2197



RUDIN AND SCHAPIRE

instance falls into one of two categories, the positive classY+ and the negative classY−. To transform
this into the general framework, takeπ(xi ,xk) = 1 for each pairi ∈Y+ andk∈Y−. That is, a crucial
pair exists between an element of the positive class and an element of the negative class. The class
of each instance is assumed deterministic, consistent with the setup describedearlier. Again, the
results can be shown to hold in the case of nondeterministic class labels.

It may be tempting to think of the ranking framework as if it were just classification over the
spaceX × X . However, this is not the case; the examples are assumed to be drawn randomly
from X , rather than pairs of examples drawn fromX ×X . Furthermore, the scoring functionf has
domainX , that is, in order to produce a single ranked list, we should havef : X → R rather than
f :X ×X →R. In the latter case, one would need an additional mechanism to reconcile the scores to
produce a single ranked list. Furthermore, the bipartite ranking problem does not have the same goal
as classification even though the labels are{−1,+1}. In classification, the important quantity is the
misclassification error involving the sign off , whereas for bipartite ranking, the important quantity
is perhaps the area under the ROC curve, relying on differences between f values. A change in the
position of one example can change the bipartite ranking loss without changing the misclassification
error and vice versa.

3. A Margin-Based Bound for Ranking

Bounds in learning theory are useful for telling us which quantities (such as the margin) are involved
in the learning process (see Bousquet, 2003, for discussion on this matter). In this section, we
provide a margin-based bound for ranking, which gives us an intuition for separable-case ranking
and yields theoretical encouragement for margin-based ranking algorithms. The quantity we hope
to minimize here is the misranking probability; for two randomly chosen instances,if they are a
crucial pair, we want to minimize the probability that these instances will be misranked. Formally,
this misranking probability is:

PD{misrankf } := PD{ f (x̄) ≤ f (x̃) | π(x̄, x̃) = 1} = Ex̄,x̃∼D [1[ f (x̄)≤ f (x̃)] | π(x̄, x̃) = 1]

=
Ex̄,x̃∼D [1[ f (x̄)≤ f (x̃)]π(x̄, x̃)]

Ex̄,x̃∼D [π(x̄, x̃)]
=

Ex̄,x̃∼D [1[ f (x̄)≤ f (x̃)]π(x̄, x̃)]

E
. (1)

The numerator of (1) is the fraction of pairs that are both crucial and incorrectly ranked byf , and the
denominator,E := Ex̄,x̃∼D [π(x̄, x̃)] is the fraction of pairs that are crucial pairs. Thus,PD{misrankf }
is the fraction of crucial pairs that are incorrectly ranked byf .

Since we do not knowD, we may calculate only empirical quantities that rely only on our
training sample. An empirical quantity that is analogous toPD{misrankf } is the following:

PS{misrankf } := PS{marginf ≤ 0} := PS{ f (xi) ≤ f (xk) | π(xi ,xk) = 1}

=
∑m

i=1 ∑m
k=11[ f (xi)≤ f (xk)]π(xi ,xk)

∑m
i=1 ∑m

k=1 π(xi ,xk)
.

We make this terminology more general, by allowing it to include a margin ofθ. For the bound
we takeθ > 0:

PS{marginf ≤ θ} := PS{ f (xi)− f (xk) ≤ θ | π(xi ,xk) = 1}

=
∑m

i=1 ∑m
k=11[ f (xi)− f (xk)≤θ]π(xi ,xk)

∑m
i=1 ∑m

k=1 π(xi ,xk)
,
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that is,PS{marginf ≤ θ} is the fraction of crucial pairs inS×Swith margin not larger thanθ.
We want to boundPD{misrankf } in terms of an empirical, margin-based term and a complexity

term. The type of complexity we choose is a “sloppy covering number” of the sort used by Schapire
et al. (1998). Since such a covering number can be bounded by anL∞ covering number, we will
immediately obtainL∞ covering number bounds as well, including a strict improvement on the one
derived in the preliminary version of our work (Rudin et al., 2005). Here, we implicitly assume that
F ⊂ L∞(X ), f ∈ F are everywhere defined.

We next define sloppy covers and sloppy covering numbers.

Definition 1 For ε,θ ≥ 0, a setG is aθ-sloppyε-coverfor F if for all f ∈F and for all probability
distributionsD onX , there exists g∈ G such that

Px∼D[| f (x)−g(x)| ≥ θ] ≤ ε.

The correspondingsloppy covering numberis the size of the smallestθ-sloppyε-coverG , and is
writtenN (F ,θ,ε).

TheL∞ covering numberN∞(F ,ε) is defined as the minimum number of (open) balls of radius
ε needed to coverF , using theL∞ metric. Since‖ f −g‖∞ < θ implies thatPx∼D[| f (x)−g(x)| ≥
θ] = 0, we have that the sloppy covering numberN (F ,θ,ε) is never more thanN∞(F ,θ), and in
some cases it can be exponentially smaller, such as for convex combinationsof binary functions as
discussed below.

Here is our main theorem, which is proved in Section 6:

Theorem 2 (Margin-based generalization bound for ranking) Forε > 0, θ > 0 with probability at
least

1−2N

(

F ,
θ
4
,

ε
8

)

exp

[

−m(εE)2

8

]

over the random choice of the training set S, every f∈ F satisfies:

PD{misrankf } ≤ PS{marginf ≤ θ}+ ε.

In other words, the misranking probability is upper bounded by the fractionof instances with margin
belowθ, plusε; this statement is true with probability depending onm, E, θ, ε, andF .

We have chosen to write our bound in terms ofE, but we could equally well have used an
analogous empirical quantity, namely

Exi ,xk∼S[π(xi ,xk)] =
1

m(m−1)

m

∑
i=1

m

∑
k=1

π(xi ,xk).

This is an arbitrary decision; we can in no way influenceExi ,xk∼S[π(xi ,xk)] in our setting, since we
are choosing training instances randomly.E can be viewed as a constant, where recall 0< E ≤ 1/2.
If E = 0, it means that there is no information about the relative ranks of examples,and accordingly
the bound becomes trivial. Note that in the special bipartite case,E is the proportion of positive
examples multiplied by the proportion of negative examples.

In order to see that this bound encourages the margin to be made large, consider the simplified
case where the empirical error term is 0, that is,PS{marginf ≤ θ} = 0. Now, the only place where
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θ appears is in the covering number. In order to make the probability of success larger, the covering
number should be made as small as possible, which implies thatθ should be made as large as
possible.

As a special case of the theorem, we consider the standard setting wheref is a (normalized)
linear combination of a dictionary of step functions (or “weak rankers”).In this case, we can show
the following, proved in Section 6:

Lemma 3 (Upper bound on covering numbers for convex combinations of binaryweak classifiers)
For the following hypothesis space:

F =

{

f : f = ∑
j

λ jh j , ∑
j

λ j = 1, ∀ j λ j ≥ 0, h j : X →{0,1},h j ∈H

}

,

we have

lnN (F ,θ,ε) ≤ ln |H | ln(2/ε)
2θ2 .

Thus, Theorem 2 implies the following corollary.

Corollary 4 (Margin-based generalization bound for ranking, convex combination of binary weak
rankers) Forε > 0, θ > 0 with probability at least

1−2exp

(

ln |H | ln(16/ε)
θ2/8

− m(εE)2

8

)

over the random choice of the training set S, every f∈ F satisfies:

PD{misrankf } ≤ PS{marginf ≤ θ}+ ε.

In this case, we can lower bound the right hand side by 1− δ for an appropriate choice ofε. In
particular, Corollary 4 implies that

PD{misrankf } ≤ PS{marginf ≤ θ}+ ε

with probability at least 1−δ if

ε =

√

4
mE2

[

8ln|H |
θ2 ln

(

4mE2θ2

ln |H |

)

+2ln

(

2
δ

)]

. (2)

This bound holds provided thatθ is not too small relative tom, specifically, if

mθ2 ≥ 64ln|H |
E2 .

Note that the bound in (2) is only polylogarithmic in|H |.
As we have discussed above, Theorem 2 can be trivially upper boundedusing theL∞ covering

number.
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Corollary 5 (Margin-based generalization bound for ranking, L∞ covering numbers) Forε > 0,
θ > 0 with probability at least

1−2N∞

(

F ,
θ
4

)

exp

[

−m(εE)2

8

]

over the random choice of the training set S, every f∈ F satisfies:

PD{misrankf } ≤ PS{marginf ≤ θ}+ ε.

Consider the case of a finite hypothesis spaceF where every function is far apart (inL∞) from every
other function. In this case, the covering number is equal to the number of functions. This is the
worst possible case, whereN

(

F , θ
4

)

= |F | for any value ofθ. In this case, we can solve forε
directly:

δ := 2|F |exp

[

−m(εE)2

8

]

=⇒ ε =
1√
m

√

8
E2 (ln2|F |+ ln(1/δ)).

This indicates that the error may scale as 1/
√

m. For the ranking problem, since we are dealing
with pairwise relationships, we might expect worse dependence, but this does not appear to be the
case. In fact, the dependence onm is quite reasonable in comparison to bounds for the problem of
classification, which does not deal with examples pairwise. This is true not only for finite hypothesis
spaces (scaling as 1/

√
m) but also when the hypotheses are convex combinations of weak rankers

(scaling as
√

ln(m)/m).

4. Coordinate-Based Ranking Algorithms

In the previous section we presented a uniform bound that holds for allf ∈ F . In this section, we
discuss how a learning algorithm might pick one of those functions in order tomakePD{misrankf }
as small as possible, based on intuition gained from the bound of Theorem 2. Our bound suggests
that given a fixed hypothesis spaceF and a fixed number of instancesm we try to maximize the
margin. We will do this using coordinate ascent. Coordinate ascent/descentis similar to gradient
ascent/descent except that the optimization moves along single coordinate axes rather than along
the gradient. (See Burges et al., 2005, for a gradient-based ranking algorithm based on a proba-
bilistic model.) We first derive the plain coordinate descent version of RankBoost, and show that
it is different from RankBoost itself. In Section 4.2 we define the smooth ranking marginG̃. Then
we present the “smooth margin ranking” algorithm, and prove that it makes significant progress to-
wards increasing this smooth ranking margin at each iteration, and converges to a maximum margin
solution.

4.1 Coordinate Descent and Its Variation on RankBoost’s Objective

We take the hypothesis spaceF to be the class of convex combinations of weak rankers{h j} j=1,...,n,
whereh j : X →{0,1}. The functionf is constructed as a normalized linear combination of theh j ’s:

f =
∑ j λ jh j

||λ||1
,

where||λ||1 = ∑ j λ j , λ j ≥ 0.
We will derive and mention many different algorithms based on different objective functions;

here is a summary of them:
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F(λ) : For theclassificationproblem, AdaBoost minimizes its objective, denotedF(λ), by coor-
dinate descent.

G(λ) : Forclassification limited to the separable case, the algorithms “coordinate ascent boosting”
and “approximate coordinate ascent boosting” are known to maximize the margin (Rudin
et al., 2007). These algorithms are based on the smooth classification marginG(λ).

F̃(λ) : For ranking, “coordinate descent RankBoost” minimizes its objective, denotedF̃(λ), by
coordinate descent. RankBoost itself minimizesF̃(λ) by a variation of coordinate descent
that chooses the coordinate with knowledge of the step size.

G̃(λ) : For ranking limited to the separable case, “smooth margin ranking” is an approximate
coordinate ascent algorithm that maximizes the ranking margin. It is based onthe smooth
ranking marginG̃(λ).

The objective function for RankBoost is a sum of exponentiated margins:

F̃(λ) := ∑
{i,k:[π(xi ,xk)=1]}

e−(∑ j λ j h j (xi)−∑ j λ j h j (xk)) = ∑
ik∈Cp

e−(Mλ)ik ,

where we have rewritten in terms of a structureM , which describes how each individual weak
ranker j ranks each crucial pairxi ,xk; this will make notation significantly easier. Define an index
set that enumerates all crucial pairsCp = {i,k : π(xi ,xk) = 1}. Formally, the elements of the two-
dimensional matrixM are defined as follows, for indexik corresponding to crucial pairxi ,xk:

Mik, j := h j(xi)−h j(xk).

The first index ofM is ik, which runs over crucial pairs, that is, elements ofCp, and the second
index j runs over weak rankers. The size ofM is |Cp|×n. Since the weak rankers are binary, the
entries ofM are within{−1,0,1}. The notation(·) j means thej th index of the vector, so that the
following notation is defined:

(Mλ)ik :=
n

∑
j=1

Mik, jλ j =
n

∑
j=1

λ jh j(xi)−λ jh j(xk), and (dTM) j := ∑
ik∈Cp

dikMik, j ,

for λ ∈ R
n andd ∈ R

|Cp|.

4.1.1 COORDINATE DESCENTRANK BOOST

Let us perform standard coordinate descent on this objective function, and we will call the algorithm
“coordinate descent RankBoost.” We will not get the RankBoost algorithm this way; we will show
how to do this in Section 4.1.2. For coordinate descent onF̃ , at iterationt, we first choose a direction
jt in which F̃ is decreasing very rapidly. The direction chosen at iterationt (corresponding to the
choice of weak rankerjt) in the “optimal” case (where the best weak ranker is chosen at each
iteration) is given as follows. The notationej indicates a vector of zeros with a 1 in thej th entry:

jt ∈ argmax
j

[

−∂F̃(λt +αej)

∂α

∣

∣

∣

α=0

]

= argmax
j

∑
ik∈Cp

e−(Mλt)ikMik, j

= argmax
j

∑
ik∈Cp

dt,ikMik, j = argmax
j

(dT
t M) j , (3)
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where the “weights”dt,ik are defined by:

dt,ik :=
e−(Mλt)ik

F̃(λt)
=

e−(Mλt)ik

∑ĩ k̃∈Cp
e−(Mλt)ĩ k̃

.

From this calculation, one can see that the chosen weak ranker is a natural choice, namely,jt is the
most accurate weak ranker with respect to the weighted crucial training pairs; maximizing(dT

t M) j

encourages the algorithm to choose the most accurate weak ranker with respect to the weights.
The step size our coordinate descent algorithm chooses at iterationt is αt , whereαt satisfies

the following equation for the line search along directionjt . DefineIt+ := {ik : Mik, jt = 1}, and
similarly, It− := {ik : Mik, jt = −1}. Also definedt+ := ∑ik∈I+ dt,ik anddt− := ∑ik∈I− dt,ik. The line
search is:

0 = −∂F̃(λt +αejt )

∂α

∣

∣

∣

α=αt

= ∑
ik∈Cp

e−(M(λt+αtejt ))ikMik, jt

= ∑
ik∈It+

e−(Mλt)ike−αt − ∑
ik∈It−

e−(Mλt)ikeαt

0 = dt+e−αt −dt−eαt

αt =
1
2

ln

(

dt+

dt−

)

. (4)

Thus, we have derived the first algorithm, coordinate descent RankBoost. Pseudocode can be
found in Figure 1. In order to make the calculation fordt numerically stable, we writedt in terms
of its update from the previous iteration.

4.1.2 RANK BOOST

Let us contrast coordinate descent RankBoost with RankBoost. Theyboth minimize the same ob-
jectiveF̃ , but they differ by the ordering of steps: for coordinate descent RankBoost, jt is calculated
first, thenαt . In contrast, RankBoost uses the formula (4) forαt in order to calculatejt . In other
words, at each step RankBoost selects the weak ranker that yields the largest decrease in the loss
function, whereas coordinate descent RankBoost selects the weak ranker of steepest slope. Let us
derive RankBoost. Define the following for iterationt (eliminating thet subscript):

I+ j := {ik : Mik, j = 1}, I− j := {ik : Mik, j = −1}, I0 j := {ik : Mik, j = 0},
d+ j := ∑

ik∈I+ j

dt,ik, d− j := ∑
ik∈I− j

dt,ik, d0 j := ∑
ik∈I0 j

dt,ik.

For eachj, we take a step according to (4) of size1
2 ln d+ j

d− j , and choose thejt which makes the

objective functionF̃ decrease the most. That is:

jt : = argmin
j

F̃

(

λt +

(

1
2

ln
d+ j

d− j

)

ejt

)

= argmin
j

∑
ik∈Cp

e−(Mλt)ike−Mik, j
1
2 ln

d+ j
d− j

= argmin
j

∑
ik

dt,ik

(

d+ j

d− j

)− 1
2Mik, j

= argmin
j

[

2(d+ jd− j)
1/2 +d0 j

]

. (5)
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1. Input: Matrix M , No. of iterationstmax

2. Initialize: λ1, j = 0 for j = 1, ...,n, d1,ik = 1/m for all ik

3. Loop for t = 1, ..., tmax

(a) jt ∈ argmaxj(d
T
t M) j “optimal” case choice of weak classifier

(b) dt+ = ∑{ik:Mik, jt =1}dt,ik, dt− = ∑{ik:Mik, jt =−1}dt,ik

(c) αt = 1
2 ln
(

dt+
dt−

)

(d) dt+1,ik = dt,ike−Mik, jt αt /normaliz. for each crucial pairik in Cp

(e) λt+1 = λt +αtejt , whereejt is 1 in positionjt and 0 elsewhere.

4. Output: λtmax/||λtmax||1

Figure 1: Pseudocode for coordinate descent RankBoost.

After we make the choice ofjt , then we can plug back into the formula forαt , yieldingαt = 1
2 ln d+ jt

d− jt
.

We have finished re-deriving RankBoost. As we mentioned before, the plain coordinate descent
algorithm has more natural weak learning associated with it, since the weak ranker chosen tries to
find the most accurate weak ranker with respect to the weighted crucial pairs; in other words, we
argue (3) is a more natural weak learner than (5).

Note that for AdaBoost’s objective function, choosing the weak classifier with the steepest slope
(plain coordinate descent) yields the same as choosing the weak classifier with the largest decrease
in the loss function: both yield AdaBoost.2

2. For AdaBoost, entries of the matrixM areMAda
i j := yih j (xi) ∈ {−1,1} since hypotheses are assumed to be{−1,1}

valued for AdaBoost. Thusd0 j = 0, and from plain coordinate descent:jt = argmax
j

d+ j −d− j = argmax
j

2d+ j −1,

that is, jt = argmax
j

d+ j . On the other hand, for the choice of weak classifier with the greatest decreases in the loss

(same calculation as above):

jt = argmin
j

2(d+ jd− j )
1/2, that is,

jt = argmin
j

d+ j (1−d+ j ) = argmax
j

d2
+ j −d+ j ,

and sinced+ j > 1/2, the functiond2
+ j −d+ j is monotonically increasing ind+ j , so jt = argmax

j
d+ j . Thus, whether

or not AdaBoost chooses its weak classifier with knowledge of the step size, it would choose the same weak classifier
anyway.
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4.2 Smooth Margin Ranking

The value ofF̃ does not directly tell us anything about the margin, only whether the margin is
positive. In fact, it is possible to minimizẽF with a positive margin that is arbitrarily small, relative
to the optimal.3 Exactly the same problem occurs for AdaBoost. It has been proven (Rudin et al.,
2004) that it is possible for AdaBoost not to converge to a maximum margin solution, nor even to
make progress towards increasing the margin at every iteration. Thus, since the calculations are
identical for RankBoost, there are certain cases in which we can expectRankBoost not to converge
to a maximum margin solution.

Theorem 6 (RankBoost does not always converge to a maximum margin solution) There exist ma-
tricesM for which RankBoost converges to a margin that is strictly less than the maximum margin.

Proof Since RankBoost and AdaBoost differ only in their definitions of the matrixM , they possess
exactly the same convergence properties for the same choice ofM . There is an 8×8 matrixM in
Rudin et al. (2004) for which AdaBoost converges to a margin value of 1/3, when the maximum
margin is 3/8. Thus, the same convergence property applies for RankBoost. It is rare in the separa-
ble case to be able to solve for the asymptotic margin that AdaBoost or RankBoost converges to; for
this 8×8 example, AdaBoost’s weight vectors exhibit cyclic behavior, which allowed convergence
of the margin to be completely determined.

A more complete characterization of AdaBoost’s convergence with respect to the margin (and thus
RankBoost’s convergence) can be found in Rudin et al. (2007).

In earlier work, we have introduced a smooth margin function, which one can maximize in
order to achieve a maximum margin solution for the classification problem (Rudinet al., 2007). A
coordinate ascent algorithm on this function makes progress towards increasing the smooth margin
at every iteration. Here, we present the analogous smooth ranking function and the smooth margin
ranking algorithm. The extension of the convergence proofs for this algorithm is nontrivial; our
main contribution in this section is a condition under which the algorithm makes progress.

The smooth ranking functioñG is defined as follows:

G̃(λ) :=
− ln F̃(λ)

||λ||1
.

It is not hard to show (see Rudin et al., 2007) that:

G̃(λ) < µ(λ) ≤ ρ, (6)

where the margin can be written in this notation as:

µ(λ) = min
i

(Mλ)i

‖λ‖1

3. One can see this by considering any vectorλ such that(Mλ)ik is positive for all crucial pairsik. That is, we choose
anyλ that yields a positive margin. We can make the value ofF̃ arbitrarily small by multiplyingλ by a large positive
constant; this will not affect the value of the margin because the margin is minik∈Cp(Mλ)ik/||λ||1, and the large
constant will cancel. In this way, the objective can be arbitrarily small, whilethe margin is certainly not maximized.
Thus, coordinate descent onF̃ does not necessarily have anything to do with maximizing the margin.
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and the best possible margin is:

ρ = min
{d:∑ik dik=1,dik≥0}

max
j

(dTM) j = max
{λ̄:∑ j λ̄ j=1,λ̄ j≥0}

min
i

(M λ̄)i .

In other words, the smooth ranking margin is always less than the true margin,although the two
quantities become closer as||λ||1 increases. The true margin is no greater thanρ, the min-max
value of the game defined byM (see Freund and Schapire, 1999).

We now define the smooth margin ranking algorithm, which is approximately coordinate ascent
on G̃. As usual, the input to the algorithm is matrixM , determined from the training data. Also,
we will only define this algorithm wheñG(λ) is positive, so that we only use it once the data has
become separable; we can use RankBoost or coordinate descent RankBoost to get us to this point.

We will define iterationt + 1 in terms of the quantities known at iterationt. At iterationt, we
have calculatedλt , at which point the following quantities can be calculated:

gt := G̃(λt)

weights on crucial pairsdt,ik := e−(Mλt)ik/F̃(λt)

direction jt = argmax
j

(dT
t M) j

edge rt := (dT
t M) jt .

The choice ofjt is the same as for coordinate descent RankBoost (also see Rudin et al., 2007).
The step sizeαt is chosen to obey Equation (12) below, but we need a few more definitions before
we state its value, so we do not define it yet; we will first define recursiveequations forF̃ andG̃.
We also havest = ||λt ||1 andst+1 = st + αt , andgt+1 = G̃(λt + αtejt ), whereαt has not yet been
defined.

As before,It+ := {i,k|Mik jt = 1,π(xi ,xk) = 1}, It− := {i,k|Mik jt =−1,π(xi ,xk) = 1}, and now,
It0 := {i,k|Mik jt = 0,π(xi ,xk) = 1}. Alsodt+ := ∑It+

dt,ik, d− := ∑It− dt,ik, anddt0 := ∑It0
dt,ik. Thus,

by definition, we havedt+ +dt− +dt0 = 1. Now,rt can be writtenrt = dt+−dt−. Define the factor

τt := dt+e−αt +dt−eαt +dt0, (7)

and define its “derivative”:

τ′t :=
∂τt(dt+e−α +dt−eα +dt0)

∂α

∣

∣

∣

α=αt

= −dt+e−αt +dt−eαt . (8)

We now derive a recursive equation forF̃ , true for anyα.

F̃(λt +αejt ) = ∑
{i,k|π(xi ,xk)=1}

e(−Mλt)ike−Mik jt α

= F̃(λt)(dt+e−α +dt−eα +dt0).

Thus, we have definedτt so that

F̃(λt+1) = F̃(λt +αtejt ) = F̃(λt)τt .
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We use this to write a recursive equation forG̃.

G̃(λt +αejt ) =
− ln(F̃(λt +αejt ))

st +α
=

− ln(F̃(λt))− ln(dt+e−α +dt−eα +dt0)

st +α

= gt
st

st +α
− ln(dt+e−α +dt−eα +dt0)

st +α
.

For our algorithm, we setα = αt in the above expression and use the notation defined earlier:

gt+1 = gt
st

st +αt
− lnτt

st +αt

gt+1−gt =
gtst −gtst −gtαt

st +αt
− lnτt

st +αt
= − 1

st+1
[gtαt + lnτt ] . (9)

Now we have gathered enough notation to write the equation forαt for smooth margin ranking.
For plain coordinate ascent, the updateα∗ solves:

0 =
∂G̃(λt +αejt )

∂α

∣

∣

∣

α=α∗
=

∂
∂α

[− ln F̃(λt +αejt )

st +α

]

∣

∣

∣

α=α∗

=
1

st +α∗



−
[− ln F̃(λt +α∗ejt )

st +α∗

]

+





−∂F̃(λt +αejt )/∂α
∣

∣

∣

α=α∗

F̃(λt +α∗ejt )









=
1

st +α∗



−G̃(λt +α∗ejt )+





−∂F̃(λt +αejt )/∂α
∣

∣

∣

α=α∗

F̃(λt +α∗ejt )







 . (10)

We could solve this equation numerically forα∗ to get a smooth margin coordinate ascent algorithm;
however, we avoid this line search forα∗ in smooth margin ranking. We will do an approximation
that allows us to solve forα∗ directly so that the algorithm is just as easy to implement as RankBoost.
To get the update rule for smooth margin ranking, we setαt to solve:

0 =
1

st +αt






−G̃(λt)+







−∂F̃(λt +αejt )/∂α
∣

∣

∣

α=αt

F̃(λt +αtejt )













=
1

st +αt

(

−gt +
−τ′t F̃(λt)

τt F̃(λt)

)

gtτt = −τ′t . (11)

This expression can be solved analytically forαt , but we avoid using the exact expression in our
calculations whenever possible, since the solution is not that easy to work with in our analysis:

αt = ln





−gtdt0 +
√

g2
t d2

t0 +(1+gt)(1−gt)4dt+dt−

(1+gt)2dt−



 . (12)

We are done defining the algorithm and in the process we have derived some useful recursive
relationships. In summary:
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Smooth margin ranking is the same as described in Figure 1, except that (3c) is replaced by
(12), where dt0 = 1−dt+−dt− and gt = G(λt).

Binary weak rankers were required to obtain an analytical solution forαt , but if one is willing
to perform a 1-dimensional linesearch (10) at each iteration, real-valued features can just as easily
be used.

Now we move onto the convergence proofs, which were loosely inspired by the analysis of
Zhang and Yu (2005). The following theorem gives conditions when the algorithm makes significant
progress towards increasing the value ofG̃ at iterationt. An analogous statement was an essential
tool for proving convergence properties of approximate coordinate ascent boosting (Rudin et al.,
2007), although the proof of the following theorem is significantly more difficult since we could
not use the hyperbolic trigonometric tricks from prior work. As usual, the weak learning algorithm
must always achieve an edgert of at leastρ for the calculation to hold, where recallrt = (dT

t M) jt =
dt+ −dt−. At every iteration, there is always a weak ranker which achieves edgeat leastρ, so this
requirement is always met in the “optimal case,” where we choose the bestpossible weak ranker
at every iteration (i.e., the argmax overj). There is one more condition in order for the algorithm
to make progress, namely that most of the weight should indicate the strength of the weak ranker,
which implies thatdt0 cannot take too much of the weight. Specifically,dt0 < 2

3(1− rt)(1− r2
t ),

which is derived from a bound on the second derivative of the step size.

Theorem 7 (Progress according to the smooth margin) For0 ≤ gt < rt < 1 and0 ≤ dt0 < 2
3(1−

rt)(1− r2
t ) the algorithm makes progress at iteration t:

gt+1−gt ≥
1
2

αt(rt −gt)

st+1
.

The proof of this theorem is in Section 7. This theorem tells us that the value ofthe smooth ranking
margin increases significantly when the condition ond0 holds. This theorem is the main step in
proving convergence theorems, for example:

Theorem 8 (Convergence for smooth margin ranking) If dt0 < 2
3(1−rt)(1−r2

t ) for all t, the smooth
margin ranking algorithm converges to a maximum margin solution, that is,limt→∞ gt = ρ. Thus
the limiting margin isρ, that is,limt→∞ µ(λt) = ρ.

Besides Theorem 7, the only other key step in the proof of Theorem 8 is thefollowing lemma,
proved in Section 7:

Lemma 9 (Step-size does not increase too quickly for smooth margin ranking)

lim
t→∞

αt

st+1
= 0.

From here, the proof of the convergence theorem is not difficult. The two conditions found in The-
orem 7 and Lemma 9 are identical to those of Lemma 5.1 and Lemma 5.2 of Rudin et al.(2007).
These are the only two ingredients necessary to prove asymptotic convergence using the proof out-
line of Theorem 5.1 of Rudin et al. (2007); an adaptation of this proof suffices to show Theorem 8,
which we now outline.

Proof (of Theorem 8)The values ofgt constitute a nondecreasing sequence which is uniformly
bounded by 1. Thus, a limitg∞ must exist,g∞ := limt→∞ gt . By (6), we know thatgt ≤ ρ for all
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t. Thus,g∞ ≤ ρ. Let us suppose thatg∞ < ρ, so thatρ−g∞ 6= 0. This assumption, together with
Theorem 7 and Lemma 9 can be used in the same way as in Rudin et al. (2007) toshow that∑t αt

is finite, implying that:
lim
t→∞

αt = 0.

Using this fact along with (11), we find:

g∞ = lim
t→∞

gt = liminf
t→∞

gt = liminf
t→∞

−τ′t
τt

= liminf
t→∞

−(−dt+e−αt +dt−eαt )

dt+e−αt +dt−eαt +dt0

= liminf
t→∞

rt ≥ ρ.

This is a contradiction with the original assumption thatg∞ < ρ. It follows thatg∞ = ρ, or limt→∞(ρ−
gt) = 0. Thus, the smooth ranking algorithm converges to a maximum margin solution.

5. AdaBoost and RankBoost in the Bipartite Ranking Problem

In this section, we present an equivalence between AdaBoost and RankBoost in terms of their be-
havior on the training set. Namely, we show that under very natural conditions, AdaBoost asymp-
totically produces an area under the ROC curve value that is equally as good as RankBoost’s. Con-
versely, RankBoost (but with a change in the intercept), produces a classification that is equally as
good as AdaBoost’s. Note that this result is designed for the non-separable case; it holds in the
separable case, but the result is trivial since the area under the curveis exactly one. Also, let us be
clear that the result is a theoretical proof based on the optimization of the training set only. It is not
an experimental result, nor is it a probabilistic guarantee about performance on a test set (such as
Theorem 2).

In the bipartite ranking problem, the focus of this section, recall that everytraining instance falls
into one of two categories, the positive classY+ and the negative classY−. We will takeπ(xi ,xk) = 1
for each pairi ∈Y+ andk∈Y− so that crucial pairs exist between elements of the positive class and
elements of the negative class. Defineyi = +1 wheni ∈Y+, andyi =−1 otherwise. The AUC (area
under the Receiver Operator Characteristic curve) is equivalent to theMann-Whitney U statistic,
and it is closely related to the fraction of misranks. Specifically,

1−AUC(λ) =
∑i∈Y+ ∑k∈Y− 1[(Mλ)ik≤0]

|Y+||Y−|
= fraction of misranks.

In the bipartite ranking problem, the functioñF becomes an exponentiated version of the AUC, that
is, since1[x≤0] ≤ e−x, we have:

|Y+||Y−|(1−AUC(λ)) = ∑
i∈Y+

∑
k∈Y−

1[(Mλ)ik≤0] ≤ ∑
i∈Y+

∑
k∈Y−

e−(Mλ)ik = F̃(λ). (13)

We define the matrixMAda, which is helpful for describing AdaBoost.MAda is defined element-
wise byMAda

i j = yih j(xi) for i = 1, ...,m and j = 1, ...,n. Thus,Mik j = h j(xi)−h j(xk) = yih j(xi)+

ykh j(xk) = MAda
i j + MAda

k j . (To change from AdaBoost’s usual{−1,1} hypotheses to RankBoost’s
usual{0,1} hypotheses, divide entries ofM by 2.) Define the following functions:

F+(λ) := ∑
i∈Y+

e−(MAda
λ)i and F−(λ) := ∑

k∈Y−

e−(MAda
λ)k.
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The objective function for AdaBoost isF(λ) := F+(λ)+F−(λ). The objective function for Rank-
Boost is:

F̃(λ) = ∑
i∈Y+

∑
k∈Y−

exp

[

−∑
j

λ jh j(xi)

]

exp

[

+∑
j

λ jh j(xk)

]

= ∑
i∈Y+

∑
k∈Y−

exp

[

−∑
j

λ jyih j(xi)

]

exp

[

−∑
j

λ jykh j(xk)

]

= F+(λ)F−(λ). (14)

Thus, both objective functions involve exponents of the margins of the training instances, but with
a different balance between the positive and negative instances. In both cases, the objective func-
tion favors instances to be farther away from the decision boundary—even when the instances are
correctly classified and not close to the decision boundary. (This is in contrast to support vector
machines which do not suffer any loss for non-support vectors. Thisis the main reason why an
analogous result does not hold for SVMs.)

We now define a quantity calledF-skew:

F-skew(λ) := F+(λ)−F−(λ). (15)

F-skew is the exponentiated version of the “skew,” which measures the imbalance between positive
and negative instances. The “skew” plays an important role in the expressions of Cortes and Mohri
(2004, 2005) and Agarwal et al. (2005). The F-skew measures howmuch greater the positive in-
stances contribute to AdaBoost’s objective than the negative instances. If the F-skew is 0, it means
that the positive and negative classes are contributing equally.

The following theorem shows that whenever the F-skew vanishes, any sequenceλt that opti-
mizes AdaBoost’s objectiveF also optimizes RankBoost’s objectivẽF , and vice versa.

Theorem 10 (Equivalence between AdaBoost and RankBoost’s objectives) Let{λt}∞
t=1 be any se-

quence for which AdaBoost’s objective is minimized,

lim
t→∞

F(λt) = inf
λ

F(λ), (16)

and lim
t→∞

F-skew(λt) = 0. Then RankBoost’s objective is minimized,

lim
t→∞

F̃(λt) = inf
λ

F̃(λ). (17)

Conversely, for any sequence for which RankBoost’s objective is minimized, and for which the F-
skew vanishes, AdaBoost’s objective is minimized as well.

The proof of the converse follows directly from

(F+(λ)+F−(λ))2− (F+(λ)−F−(λ))2 = 4F+(λ)F−(λ),

Equations (14) and (15), and continuity of the functions involved. The proof of the forward direction
in Section 8 uses a theory of convex duality for Bregman divergences developed by Della Pietra et al.
(2002) and used by Collins et al. (2002). This theory allows characterization for functions that may
have minima at infinity likeF andF̃ .

Theorem 10 has very practical implications due to the following, proved in Section 8:
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Corollary 11 (AdaBoost minimizes RankBoost’s objective) If the constant weak hypothesis h0(x) =
1 is included in the set of AdaBoost’s weak classifiers, or equivalently, ifMAda has a column j0 such
that MAda

i, j0 = yi for all i, and if the{λt}∞
t=1 sequence obeys (16), thenlim

t→∞
F-skew(λt) = 0.

This result and the previous together imply that if the constant weak hypothesis is included in
the set of AdaBoost’s weak classifiers, then the F-skew vanishes, andRankBoost’s objectivẽF is
minimized.

Not only does AdaBoost minimize RankBoost’s exponential objective function in this case, it
also achieves an equally good misranking loss. Before we state this formally as a theorem, we
need to avoid a very particular nonuniqueness problem. Namely, there is some ambiguity in the
definition of the ranking loss for RankBoost and AdaBoost due to the arbitrariness in the algorithms,
and the discontinuity of the function1[z≤0], which is used for the misranking loss∑i 1[(Mλ)i≤0].
The arbitrariness in the algorithms arises from the argmax step; since argmaxis a set that may
contain more than one element, and since the algorithm does not specify whichelement in that set
to choose, solutions might be different for different implementations. There are many examples
where the argmax set does contain more than one element (for instance, theexamples in Rudin
et al., 2004). The vectorlim

t→∞
1[Mλt≤0] may not be uniquely defined; for somei,k pair we may

have lim
t→∞

(Mλt)ik = 0, and in that case, values oflim
t→∞

1[(Mλt)ik≤0] may take on the values 0, 1, or

the limit may not exist, depending on the algorithm. Thus, in order to write a sensible theorem,
we must eliminate this pathological case. No matter which implementation we choose, this only
becomes a problem iflim

t→∞
(Mλt)ik = 0, that is, there is a tie in the rankings. If there is no tie, the

result is deterministic. In other words, when the pathological case is eliminated, the limiting AUC
can be defined and AdaBoost asymptotically achieves the same AUC as RankBoost:

Theorem 12 (AdaBoost and RankBoost achieve the same area under the ROC curve) Consider any
two sequences{λt}t and{λ′

t}t that minimize RankBoost’s objectiveF̃, that is,

lim
t→∞

F̃(λt) = lim
t→∞

F̃(λ′
t) = inf

λ

F̃(λ).

Then, if each positive example has a final score distinct from each negative example, that is,
∀ ik, lim

t→∞
(Mλt)ik 6= 0, lim

t→∞
(Mλ

′
t)ik 6= 0, then both sequences will asymptotically achieve the same

AUC value. That is:

lim
t→∞

[

∑
i∈Y+

∑
k∈Y−

1[(Mλt)ik≤0]

]

= lim
t→∞

[

∑
i∈Y+

∑
k∈Y−

1[(Mλ′
t)ik≤0]

]

.

The proof is in Section 8. This theorem shows that, in the case where the F-skew vanishes and there
are no ties, AdaBoost will generate the same area under the curve value that RankBoost does. That
is, a sequence ofλ′

t ’s generated by AdaBoost and a sequence ofλt ’s generated by RankBoost will
asymptotically produce the same value of the AUC.

Combining Theorem 10, Corollary 11 and Theorem 12, we can conclude the following, as-
suming distinct final scores:if the constant hypothesis is included in the set of AdaBoost’s weak
classifiers, then AdaBoost will converge to exactly the same area underthe ROC curve value as
RankBoost.Given these results, it is now understandable (but perhaps still surprising) that Ada-
Boost performs so well as a ranking algorithm.
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This logic can be made to work in reverse, so that adding a constant hypothesis to RankBoost’s
output will also produce a minimizer of AdaBoost’s objective. In order forthis to work, we need
to assign the coefficient for the constant classifier (the intercept) to force the F-skew to vanish.
Changing the coefficient of the constant hypothesis does not affect RankBoost’s objective, but it
does affect AdaBoost’s. We choose the coefficient to obey the following:

Corollary 13 (RankBoost minimizes AdaBoost’s objective) Define j0 as the entry corresponding to
the constant weak classifier. Takeλt to be a minimizing sequence for RankBoost’s objective, that is,
λt obeys (17). Considerλcorrected

t where:

λ
corrected
t := λt +btej0,

whereej0 is 1 in the jth0 entry corresponding to the constant weak classifier, and 0 otherwise, and
where:

bt =
1
2

ln
F+(λt)

F−(λt)
.

Then,λcorrected
t converges to a minimum of AdaBoost’s objective, that is,λ

corrected
t obeys (16).

The proof is in Section 8. Now, we can extend to the misclassification error. The proof of the
following is also in Section 8:

Theorem 14 (AdaBoost and RankBoost achieve the same misclassification error) Consider any two
sequences{λcorrected

t }t and{λ′corrected
t }t , corrected as in Corollary 13, that minimize RankBoost’s

objectiveF̃, that is,

lim
t→∞

F̃(λcorrected
t ) = lim

t→∞
F̃(λ′corrected

t ) = inf
λ

F̃(λ).

Then, if no example is on the decision boundary, that is,∀i, lim
t→∞

(MAda
λ

corrected
t )i 6= 0,

∀k lim
t→∞

(MAda
λ

corrected
t )k 6= 0, and∀i, lim

t→∞
(MAda

λ
′corrected
t )i 6= 0, ∀k lim

t→∞
(MAda

λ
′corrected
t )k 6= 0, then

both sequences will asymptotically achieve the same misclassification loss. That is:

lim
t→∞

[

∑
i∈Y+

1[(MAdaλcorrected
t )i≤0] + ∑

k∈Y−

1[(MAdaλcorrected
t )k≤0]

]

= lim
t→∞

[

∑
i∈Y+

1[(MAdaλ′corrected
t )i≤0] + ∑

k∈Y−

1[(MAdaλ′corrected
t )k≤0]

]

.

Thus, we have shown quite a strong equivalence relationship between RankBoost and AdaBoost.
Under natural conditions, AdaBoost achieves the same area under the ROC curve as RankBoost,
and RankBoost can be easily made to achieve the same misclassification erroras AdaBoost on the
training set.

The success of an algorithm is often judged using both misclassification error and the area under
the ROC curve. A practical implication of this result is that AdaBoost and RankBoost both solve
the classification and ranking problems at the same time. This is true under the conditions speci-
fied, namely using a set of binary weak classifiers that includes the constant classifier, and using the
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correction for RankBoost’s intercept. In terms of which should be used,we have found that Ada-
Boost tends to converge faster for classification (and uses less memory), whereas RankBoost tends
to converge faster for ranking. If the algorithm is stopped early, we suggest that if misclassification
error is more important, to choose AdaBoost, and conversely, if area under the ROC curve is more
important, to choose RankBoost. Asymptotically, as we have shown, they produce equally good
solutions for both classification and ranking on the training set.

5.1 Connection to Multiclass/Multilabel Algorithms

The results above imply convergence properties of two algorithms for solving multiclass/ multilabel
problems. Specifically, the algorithms AdaBoost.MH and AdaBoost.MR of Schapire and Singer
(1999) have the same relationship to each other as AdaBoost and RankBoost.

In the multilabel setting, each training instancex ∈ X may belong to multiple labels inY ,
whereY is a finite set of labels or classes. The total number of classes is denoted byc. Examples
are ordered pairs(x,Y), Y ⊂ Y . We use the reduction of Schapire and Singer (1999) where training
examplei is replaced by a set of single-labeled training examples{(xi ,yiℓ)}ℓ=1,...,c, whereyiℓ = 1 if
yiℓ ∈Yi and−1 otherwise. Thus, the set of training examples are indexed by pairsi, ℓ. Within this
reduction, the weak classifiers becomeh j : X ×Y → R.

Let us now re-index the training pairs. The training pairsi, ℓ will now be assigned a single index.
Define the entries of matrix̆M by M̆ı̆ j = yı̆h j(xı̆,yı̆) for all pairsi, ℓ indexed by ˘ı. With this notation,
the objective function of AdaBoost.MH becomes:

FMH(λ) := ∑̆
ı

exp(−M̆λ)ı̆.

Using similar notation, the objective function of AdaBoost.MR becomes:

FMR(λ) := ∑
ı̆∈{{i,ℓ}:yiℓ=1}

exp(−M̆λ)ı̆ ∑
k̆∈{{i,ℓ}:yiℓ=−1}

exp(−M̆λ)k̆.

The forms of functionsFMH andFMR are the same as those of AdaBoost and RankBoost, respec-
tively, allowing us to directly apply all of the above results. In other words,the same equivalence
relationship that we have shown for AdaBoost and RankBoost applies toAdaBoost.MH and Ada-
Boost.MR.

Now, we move onto the proofs.

6. Proofs from Section 3

This proof in large part follows the approach of Bartlett (1998) and Schapire et al. (1998).
For f ∈ F , we will be interested in the expectation

Pθ, f := Px̄,x̃∼D [ f (x̄)− f (x̃) ≤ θ | π(x̄, x̃) = 1] = Ex̄,x̃∼D
[

1[ f (x̄)− f (x̃)≤θ] | π(x̄, x̃) = 1
]

as well as its empirical analog

P̂θ, f := PS{marginf ≤ θ} = Px̄,x̃∼S[ f (x̄)− f (x̃) ≤ θ | π(x̄, x̃) = 1]

= Ex̄,x̃∼S
[

1[ f (x̄)− f (x̃)≤θ] | π(x̄, x̃) = 1
]

.
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Note that in this notation,
PD{misrankf } = P0, f .

Our goal is to show that P0, f ≤ P̂θ, f + ε for all f ∈ F with high probability. To do so, we will first
show that for everyf ∈ F ,

P0, f − P̂θ, f ≤ Pθ/2,g− P̂θ/2,g +
ε
2

for someg in the coverG , and then show that the difference Pθ/2,g− P̂θ/2,g on the right must be
small for allg∈ G , with high probability.

Lemma 15 Let f and g be any functions inF , and let D be any joint distribution on pairs̄x, x̃. Let
0≤ θ1 < θ2. Then

Ex̄,x̃∼D
[

1[ f (x̄)− f (x̃)≤θ1]−1[g(x̄)−g(x̃)≤θ2]

]

≤ Px̄,x̃∼D

{

| f (x̄)−g(x̄)| ≥ θ2−θ1

2

}

+Px̄,x̃∼D

{

| f (x̃)−g(x̃)| ≥ θ2−θ1

2

}

.

Proof First, note that

1[y≤θ1]−1[z≤θ2] =

{

1 if y≤ θ1 < θ2 < z
0 otherwise

which means that this difference can be equal to 1 only ifz−y is at leastθ2−θ1. Thus,

Ex̄,x̃∼D
[

1[ f (x̄)− f (x̃)≤θ1]−1[g(x̄)−g(x̃)≤θ2]

]

= Px̄,x̃∼D { f (x̄)− f (x̃) ≤ θ1 < θ2 < g(x̄)−g(x̃)}
≤ Px̄,x̃∼D {|( f (x̄)− f (x̃))− (g(x̄)−g(x̃))| ≥ θ2−θ1}
≤ Px̄,x̃∼D {| f (x̄)−g(x̄)|+ | f (x̃)−g(x̃)| ≥ θ2−θ1}

≤ Px̄,x̃∼D

{

| f (x̄)−g(x̄)| ≥ θ2−θ1

2
∨| f (x̃)−g(x̃)| ≥ θ2−θ1

2

}

≤ Px̄,x̃∼D

{

| f (x̄)−g(x̄)| ≥ θ2−θ1

2

}

+Px̄,x̃∼D

{

| f (x̃)−g(x̃)| ≥ θ2−θ1

2

}

by the union bound.

The following lemma is true for every training setS:

Lemma 16 LetG be aθ/4-sloppyε/8-cover forF . Then for all f∈ F , there exists g∈ G such
that

P0, f − P̂θ, f ≤ Pθ/2,g− P̂θ/2,g +
ε
2
.

Proof Let g∈ G . Lemma 15, applied to the distributionD, conditioned onπ(x̄, x̃) = 1, implies

P0, f −Pθ/2,g ≤ Px∼D1

{

| f (x)−g(x)| ≥ θ
4

}

+Px∼D2

{

| f (x)−g(x)| ≥ θ
4

}

whereD1 and D2 denote the marginal distributions on̄x and x̃, respectively, under distribution
x̄, x̃∼D, conditioned onπ(x̄, x̃) = 1. In other words, for any eventω(x), Px∼D1{ω(x)} is the same as
Px̄,x̃∼D {ω(x̄) | π(x̄, x̃) = 1}, and similarlyPx∼D2{ω(x)} is the same asPx̄,x̃∼D {ω(x̃) | π(x̄, x̃) = 1}.
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Likewise,

P̂θ/2,g− P̂θ, f ≤ Px∼S1

{

| f (x)−g(x)| ≥ θ
4

}

+Px∼S2

{

| f (x)−g(x)| ≥ θ
4

}

whereS1 andS2 are distributions defined analogously for the empirical distribution onS. Thus,

P0, f −Pθ/2,g + P̂θ/2,g− P̂θ, f ≤ Px∼D1

{

| f (x)−g(x)| ≥ θ
4

}

+Px∼D2

{

| f (x)−g(x)| ≥ θ
4

}

+Px∼S1

{

| f (x)−g(x)| ≥ θ
4

}

+Px∼S2

{

| f (x)−g(x)| ≥ θ
4

}

= 4 Px∼D∗

{

| f (x)−g(x)| ≥ θ
4

}

(18)

whereD∗ is the (uniform) mixture of the four distributionsD1, D2, S1 andS2. ConstructingD∗ in
this way allows us to find ag that is close tof for all four terms simultaneously, which is needed
for the next step. SinceG is aθ/4-sloppyε/8-cover, we can now chooseg to be a function in the
coverG such that

Px∼D∗

{

| f (x)−g(x)| ≥ θ
4

}

≤ ε
8

which, plugging in to equation (18), proves the lemma.

In the proof of the theorem, we will use theg’s to act as representatives (for slightly different
events), so we must show that we do not lose too much by doing this.

Lemma 17 LetG be aθ/4-sloppyε/8-cover forF . Then

PS∼Dm

{

∃ f ∈ F : P0, f − P̂θ, f ≥ ε
}

≤ PS∼Dm

{

∃g∈ G : Pθ/2,g− P̂θ/2,g ≥
ε
2

}

.

Proof By Lemma 16, for every training setS, for any f ∈ F , there exists someg∈ G such that

P0, f − P̂θ, f ≤ P̂θ/2,g−Pθ/2,g +
ε
2
.

Thus, if there exists anf ∈ F such that P0, f − P̂θ, f ≥ ε, then there exists ag∈ G such that Pθ/2,g−
P̂θ/2,g ≥ ε

2. The statement of the lemma follows directly.

Now we incorporate the fact that the training set is chosen randomly. We willuse a generalization
of Hoeffding’s inequality due to McDiarmid, as follows:

Theorem 18 (McDiarmid’s Inequality McDiarmid 1989) Let X1,X2, ...Xm be independent random
variables under distribution D. Let f(x1, . . . ,xm) be any real-valued function such that for all
x1,x2, . . . ,xm;x′i ,

| f (x1, . . . ,xi , . . . ,xm)− f (x1, . . . ,x′i , . . .xm)| ≤ ci .

Then for anyε > 0,

PX1,X2,...,Xm∼D { f (X1,X2, ...,Xm)−E[ f (X1,X2, ...,Xm)] ≥ ε} ≤ exp

(

− 2ε2

∑m
i=1c2

i

)

,

PX1,X2,...,Xm∼D {E[ f (X1,X2, ...,Xm)]− f (X1,X2, ...,Xm) ≥ ε} ≤ exp

(

− 2ε2

∑m
i=1c2

i

)

.
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Lemma 19 For any f ∈ F ,

PS∼Dm{Pθ, f − P̂θ, f ≥ ε/2} ≤ 2exp

[

−m(εE)2

8

]

.

Proof To make notation easier for this lemma, we introduce some shorthand notation:

topD := Ex̄,x̃∼D [1[ f (x̄)− f (x̃)≤θ]π(x̄, x̃)]

topS :=
1

m(m−1)

m

∑
i=1

m

∑
k=1

1[ f (xi)− f (xk)≤θ]π(xi ,xk)

botD := E := Ex̄,x̃∼D [π(x̄, x̃)]

botS :=
1

m(m−1)

m

∑
i=1

m

∑
k=1

π(xi ,xk).

Since diagonal terms haveπ(xi ,xi) which is always 0, topD = ES∼Dm[topS] and similarly, botD =
ES∼Dm[botS]. Thus, we can bound the difference between topS and topD using large deviation
bounds, and similarly for the difference between botS and botD . We choose McDiarmid’s Inequality
to perform this task. It is not difficult to show using the rules ofπ that the largest possible change
in topS due to the replacement of one example is 1/m. Similarly the largest possible change in botS

is 1/m. Thus, McDiarmid’s inequality applied to topS and botS implies that for everyε1 > 0:

PS∼Dm{topD − topS≥ ε1} ≤ exp[−2ε2
1m]

PS∼Dm{botS−botD ≥ ε1} ≤ exp[−2ε2
1m].

Here, we useε1 to avoid confusion with theε in the statement of the lemma; we will specifyε1 in
terms ofε later, but since the equations are true for anyε1 > 0, we work with generalε1 for now.
Consider the following event:

topD − topS < ε1 and botS−botD < ε1.

By the union bound, this event is true with probability at least 1−2exp[−2ε2
1m]. When the event is

true, we can rearrange the equations to be a bound on

topD
botD

− topS

botS
.

We do this as follows:
topD
botD

− topS

botS
<

topD
botD

− topD − ε1

botD + ε1
. (19)

If we now choose:

ε1 =
εbotD

2− ε+2topD
botD

≥ εbotD
4

=:
εE
4

then the right hand side of (19) is equal toε/2. Here, we have usedE := botD , and by the definition
of topD and botD , we always have topD ≤ botD . We directly have:

1−2exp[−2ε2
1m] ≥ 1−2exp

(

−2m

[

εE
4

]2
)

.
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Therefore, from our earlier application of McDiarmid, we find that with probability at least

1−2exp

[

−m(εE)2

8

]

the following holds:

Pθ, f − P̂θ, f =
topD
botD

− topS

botS
< ε/2.

As mentioned earlier, we could have equally well have written the lemma in terms of the em-
pirical quantity botD rather than in terms ofE. We have made this decision because the bound is
useful for allowing us to determine which quantities are important to maximize in ouralgorithms;
we cannot maximize botD in practice because we are choosingm random instances fromD, thus
we have no influence at all over the value of botD in practice. Either way, the bound tells us that the
margin should be an important quantity to consider in the design of algorithms.

Also, note that this proof implicitly used our simplifying assumption that the truth function π
is deterministic. In the more general case, where the valueπ(xi ,xk) of each training pairxi ,xk is
determined probabilistically, an alternative proof giving the same result canbe given using Azuma’s
lemma.
Proof (of Theorem 2)LetG be aθ/4-sloppyε/8-cover ofF of minimum size. Applying Lemma 17,
the union bound, and then Lemma 19 forθ/2, we find:

PS∼Dm

{

∃ f ∈ F : P0, f − P̂θ, f ≥ ε
}

≤ PS∼Dm

{

∃g∈ G : Pθ/2,g− P̂θ/2,g ≥
ε
2

}

.

≤ ∑
g∈G

PS∼Dm

{

Pθ/2,g− P̂θ/2,g ≥
ε
2

}

≤ ∑
g∈G

2exp

(

−m(εE)2

8

)

= N

(

F ,
θ
4
,

ε
8

)

2exp

[

−m(εE)2

8

]

.

Now we put everything together. With probability at least

1−N

(

F ,
θ
4
,

ε
8

)

2exp

[

−m(εE)2

8

]

,

we have
PD{misrankf } = P0, f ≤ P̂θ, f + ε = PS{marginf ≤ θ}+ ε.

Thus, the theorem has been proved.

We now provide a proof for Lemma 3, which gives an estimate of the coveringnumber for
convex combinations of dictionary elements.
Proof (of Lemma 3)We are trying to estimate the covering number forF , where

F =

{

f : f = ∑
j

λ jh j ,∑
j

λ j = 1,∀ j λ j ≥ 0,h j : X →{0,1},h j ∈H

}

.
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Consider the following setGN of all g that can be written as a simple average ofN elements ofH :

GN =

{

1
N

(g1 + · · ·+gN) : g1, . . . ,gN ∈H

}

.

We claim thatGN is aθ-sloppyε-cover when

N ≥ ln(2/ε)
2θ2 . (20)

To show this, letf be any functionF , and letD be any distribution. We know thatf = ∑ j λ jh j

for someλ j ’s as above, where the number of terms in the sum can be much more thanN. Let us
pick N dictionary elementsg1, . . . ,gN fromH by choosing them randomly and independently with
replacement according to the distribution imposed by the coefficientsλ. That is, eachgi is selected
to beh j with probability equal toλ j . Thus, ifλ j is large, it is more likely thath j will be chosen as
one of theN chosen elementsg1, . . . ,gN. Constructg as the average of thoseN elements.

Let x ∈ X be any fixed element. Theng(x) is an average ofN Bernoulli random variables,
namely,g1(x), . . . ,gN(x); by the manner in which eachg j was chosen, each of these Bernoulli
random variables is 1 with probability exactlyf (x). Therefore, by Hoeffding’s inequality,

Pg{|g(x)− f (x)| ≥ θ} ≤ 2e−2θ2N

wherePg{·} denotes probability with respect to the random choice ofg.
This holds for everyx. Now letx be random according toD. Then

Eg [Px∼D {| f (x)−g(x)| ≥ θ}] = Ex∼D [Pg{| f (x)−g(x)| ≥ θ}]
≤ Ex∼D

[

2e−2θ2N
]

= 2e−2θ2N.

Thus, there existsg∈ GN such that

Px∼D {| f (x)−g(x)| ≥ θ} ≤ 2e−2θ2N.

Hence, selectingN as in equation (20) ensures thatGN is aθ-sloppyε-cover. The covering number
N (F ,θ,ε) is thus at most

|GN| ≤ |H |N,

which is the bound given in the statement of the lemma.

7. Proofs from Section 4.2

Proof (of Lemma 9)There are two possibilities; either limt→∞ st = ∞ or limt→∞ st < ∞. We handle
these cases separately, starting with the case limt→∞ st = ∞. From (9),

st+1(gt+1−gt) = −gtαt − lnτt

st(gt+1−gt) = −gtαt −αt(gt+1−gt)− lnτt

st(gt+1−gt) = −αtgt+1− lnτt

st(gt+1−gt)+ lnτt +αt = αt(1−gt+1) ≥ αt(1−ρ)

gt+1−gt

1−ρ
+

lnτt +αt

st(1−ρ)
≥ αt

st
≥ αt

st+1
.
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Since thegt ’s constitute a nondecreasing sequence bounded by 1,(gt+1−gt) → 0 ast → ∞, so the
first term on the left vanishes. The second term will vanish as long as we can bound lnτt +αt by a
constant, since by assumption,st → ∞.

We defineg1̃ as the first positive value of̃G(λt); the value ofG̃ only increases from this value.
In order to bound lnτt +αt , we use Equation (11):

lnτt +αt = ln(−τ′t)− lngt +αt = ln[dt+e−αt −dt−eαt ]− lngt +αt

= ln[dt+−dt−e2αt ]+ lne−αt − lngt +αt

≤ lndt+− lngt ≤ ln1− lng1̃ = − lng1̃ < ∞.

Thus, the second term will vanish, and we now have the sequenceαt/st+1 upper bounded by a
vanishing sequence; thus, it too will vanish.

Now for the case where limt→∞ st < ∞. Consider

T

∑
t=1̃

αt

st+1
=

T

∑
t=1̃

st+1−st

st+1
=

T

∑
t=1̃

Z st+1

st

1
st+1

du

≤
T

∑
t=1̃

Z st+1

st

1
u

du=
Z sT+1

s1̃

1
u

du= ln
sT+1

s1̃
.

By our assumption that limt→∞ st < ∞, the above sequence is a bounded increasing sequence. Thus,
∑∞

t=1̃
αt

st+1
converges. In particular,

lim
t→∞

αt

st+1
= 0.

Proof (of Theorem 7)The proof relies completely on an important calculus lemma, Lemma 20
below. Before we state the lemma, we make some definitions and derive some toolsfor later use.

We will be speaking only of iterationst and t + 1, so when the iteration subscript has been
eliminated, it refers to iterationt rather than iterationt + 1. From now on, the basic independent
variables will ber,g andd0. Here, the ranges are 0< r < 1, 0≤ g < r, 0≤ d0 < 2

3(1− r)(1− r2).
We change our notation to reinforce this:d+ and d− can be considered functions of the basic
variablesr andd0 sinced+ = (1+ r −d0)/2 andd− = (1− r −d0)/2. Also defineτ(r,g,d0) := τt ,
τ′(r,g,d0) = τ′t , andα(r,g,d0) := αt , which are specified by (7), (8) and (11).

Define the following:

Γ(r,g,d0) :=
− lnτ(r,g,d0)

α(r,g,d0)
.

B(r,g,d0) :=
Γ(r,g,d0)−g

r −g
.

Now we state the important lemma we need for proving the theorem.

Lemma 20 For 0 < r < 1, 0≤ g < r, 0≤ d0 < 2
3(1− r)(1− r2),

B(r,g,d0) > 1/2.
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The proof is technical and has been placed in the Appendix. Using only thislemma, we can
prove the theorem directly. Let us unravel the notation a bit. From the definition of Γ(r,g,d0)
and Lemma 20:

− lnτ(r,g,d0)

α(r,g,d0)
= Γ(r,g,d0) = g+(r −g)B(r,g,d0) >

r +g
2

− lnτ(r,g,d0) >
(r +g)α(r,g,d0)

2
.

Using this relation at timet and incorporating the recursive equation, Equation (9),

gt+1−gt =
1

st+1
[−gtαt − lnτt ] >

αt

st+1

[

−gt +
(rt +gt)

2

]

=
1
2

αt(rt −gt)

st+1
.

We have proved the theorem, minus the proof of Lemma 20 which was the key step. Lemma 20 is
a challenging calculus problem in three variables. For the sake of intuition, we plotB as a function
of r andg for fixed d0 = 0.01 in Figure 2. The result of Lemma 20 is apparent, namely thatB is
lower bounded by 1/2.

Figure 2: Surface plot ofB as a function ofr andg with d0 = 0.01.

8. Proofs from Section 5

Proof (of Theorem 10)A proof is only necessary to handle the nonseparable case, since the state-
ment of the theorem is trivial in the separable case. To see this, assume first that we are in the
separable case, that is,

lim
t→∞

F+(λt) = lim
t→∞

F−(λt) = 0,
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thus
lim
t→∞

F̃(λt) = lim
t→∞

F(λt) = 0

and we are done. For the rest of the proof, we handle the nonseparable case.
It is possible that the infimum ofF or F̃ occurs at infinity, that is,F or F̃ may have no mini-

mizers. Thus, it is not possible to characterize the minimizers by setting the firstderivatives to zero.
So, in order to more precisely describe the conditions (16) and (17), we now use a technique used
by Della Pietra et al. (2002) and later used by Collins et al. (2002), in whichwe considerF andF̃
as functions of another variable, where the infimum can be achieved. Define, for a particular matrix
M̄ , the function

FM̄ (λ) :=
m̄

∑
i=1

e−(M̄λ)i .

Define
P̄ := {p|pi ≥ 0∀i, (pTM̄) j = 0 ∀ j}

Q̄ := {q|qi = exp(−(M̄λ)i) for someλ}.
We may thus consider̄FM̄ as a function of̄q, that is,F̄M̄ (q̄) = ∑m̄

i=1 q̄i , whereq̄ ∈ Q̄ . We know that
since allq̄i ’s are positive, the infimum of̄F occurs in a bounded region of̄q space, which is just
what we need.

Theorem 1 of Collins et al. (2002), which is taken directly from Della Pietra et al. (2002),
implies that the following are equivalent:

1. q̄∗ ∈ P̄∩ closure(Q̄ ).

2. q̄∗ ∈ argmin̄q∈ closure(Q̄ )F̄M̄ (q̄).

Moreover, either condition is satisfied by exactly one vectorq̄∗.
The objective function for AdaBoost isF = F̄MAda and the objective for RankBoost is̃F = F̄M ,

so the theorem holds for both objectives separately. For the functionF , denoteq̄∗ asq∗, alsoP̄ as
PAda andQ̄ asQ Ada. For the functionF̃ , denoteq̄∗ asq̃∗, alsoP̄ asP̃ andQ̄ asQ̃ . The condition
q∗ ∈ PAda can be rewritten as:

∑
i∈Y+

q∗i MAda
i j + ∑

k∈Y−

q∗kMAda
k j = 0 ∀ j. (21)

Defineqt element-wise by:qt,i := e−(MAda
λt)i , where theλt ’s are a sequence that obey (16),

for example, a sequence produced by AdaBoost. Thus,qt ∈ Q Ada automatically. By assumption,
F(qt) converges to the minimum ofF . Thus, sinceF is continuous, any limit point of theqt ’s must
minimizeF as well. But becauseq∗ is the unique minimizer ofF , this implies thatq∗ is the one and
only ℓp-limit point of theqt ’s, and therefore, that the entire sequence ofqt ’s converges toq∗ in ℓp.

Now define vectors̃qt element-wise by

q̃t,ik := qt,iqt,k = exp[−(MAda
λt)i − (MAda

λt)k] = exp[−(Mλt)ik].

Automatically,q̃t ∈ Q̃ . For any pairi,k the limit of the sequence ˜qt,ik is q̃∞
ik := q∗i q∗k.

What we need to show is thatq̃∞ = q̃∗. If we can prove this, we will have shown that{λt}t

converges to the minimum of RankBoost’s objective function,F̃ . We will do this by showing
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that q̃∞ ∈ P̃ ; once we accomplish this, due to the uniqueness ofq̃∗ as the intersection of̃P and
closure(Q̃ ) , we will have proved that̃q∞ = q̃∗. So, now we proceed to show̃q∞ ∈ P̃ , using our
assumption that the F-skew vanishes. Our assumption that the F-skew vanishes can be rewritten as:

lim
t→∞

[

∑
i∈Y+

qt,i − ∑
k∈Y−

qt,k

]

= 0,

that is, since all terms are bounded,

∑
i∈Y+

q∗i = ∑
k∈Y−

q∗k. (22)

Consider the quantities(q̃∞TM) j . Remember, if these quantities are zero for everyj, thenq̃∞ ∈ P̃
and we have proved the theorem.

(q̃∞TM) j = ∑
i∈Y+

∑
k∈Y−

q∗i q∗k(M
Ada
i j +MAda

k j )

=

(

∑
k∈Y−

q∗k

)(

∑
i∈Y+

q∗i MAda
i j

)

+

(

∑
i∈Y+

q∗i

)(

∑
k∈Y−

q∗kMAda
k j

)

. (23)

Incorporating (22), which is the condition that F-skew(q∗) = 0, (23) becomes:

(q̃∞TM) j =

(

∑
i∈Y+

q∗i

)[

∑
i∈Y+

q∗i MAda
i j + ∑

k∈Y−

q∗kMAda
k j

]

.

In fact, according to (21), the bracket in this expression is zero for allj. Thus,q̃∞ ∈ P̃ . We have
proved the forward direction of the theorem. The backwards direction, as noted earlier, follows
from (F+ +F−)2− (F+−F−)2 = 4F+F−.

Proof (of Corollary 11) Recall thatq∗ ∈ PAda. Specifically writing this condition just for the
constant weak classifier yields:

0 = ∑
i∈Y+

q∗i MAda
i0 + ∑

k∈Y−

q∗kMAda
k0 = ∑

i∈Y+

q∗i yi + ∑
k∈Y−

q∗kyk

= ∑
i∈Y+

q∗i − ∑
k∈Y−

q∗k = lim
t→∞

F-skew(λt).

Proof (of Theorem 12)We know from the proof of Theorem 10 that since{λt}t and{λ′
t}t minimize

F̃ , we automatically have ˜qt → q̃∗ andq′t → q̃∗ in ℓp where

q′t,ik := e−(Mλ
′
t)ik .

Thus, we have that for all crucial pairsi,k such thati ∈Y+ andk∈Y−:

lim
t→∞

e−(Mλt)ik = lim
t→∞

e−(Mλ
′
t)ik = q̃∗ik.
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For each crucial pairi,k, if q̃∗ik > 1 then lim
t→∞

(Mλt)ik < 0, that is,

lim
t→∞

1[(Mλt)ik≤0] = 1,

and conversely, if ˜q∗ik < 1 then
lim
t→∞

1[(Mλt)ik≤0] = 0.

This is provided by the continuity of the function1[z≤0] away fromz = 0, and since there are no
asymptotic ties in score as we have assumed, ˜q∗ik 6= 1. The same statement holds forλ

′
t . Summing

over i,k pairs yields:

lim
t→∞

[

∑
i∈Y+

∑
k∈Y−

1[(Mλt)ik≤0]

]

= lim
t→∞

[

∑
i∈Y+

∑
k∈Y−

1[(Mλ′
t)ik≤0]

]

.

The theorem has been proved. Note that the AUC value is obtained from thissum by the formula
(13).

Proof (of Corollary 13) By Theorem 10, it is sufficient to show that the correction does not influence
the value ofF̃(λt) and that it makes the F-skew vanish. Consider the vectorλt +cej0.

F̃(λ+cej0) = ∑
i∈Y+

∑
k∈Y−

exp

[

−∑
j

λ jh j(xi)−c

]

exp

[

+∑
j

λ jh j(xk)+c

]

= ∑
i∈Y+

∑
k∈Y−

exp

[

−∑
j

λ jh j(xi)

]

exp

[

+∑
j

λ jh j(xk)

]

= F̃(λ).

So, changing the coefficient of the constant weak classifier will not affect the values of̃F(λ). Now,
let’s compute the F-skew of the corrected sequence:

F-skew(λcorrected
t ) = F+(λt +btej0)−F− (λt +btej0)

= ∑
i∈Y+

e−(MAda
λt)i−bt − ∑

k∈Y−

e−(MAda
λt)k+bt

= e−bt F+(λt)−ebt F−(λt) = 0

where this latter expression is equal to zero by our choice ofbt . Since the F-skew of the corrected
sequence is always 0, the corrected sequence will minimize not only RankBoost’s objective, but
also AdaBoost’s.

Proof (of Theorem 14)We will use a similar argument as in Theorem 12 for misclassification error
rather than for ranking error. By assumption,λt is a sequence that minimizes RankBoost’s objective
F̃ and the correction forces the F-skew to be zero. Thusλ

corrected
t minimizes RankBoost’s objective,

and Theorem 10 implies thatλcorrected
t is also a minimizing sequence for AdaBoost’s objectiveF .

Using the same argument as in Theorem 12 substituting AdaBoost for RankBoost, we have that

lim
t→∞

e−(MAda
λ

corrected
t )i =: q∗i
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exists for alli and
lim
t→∞

e−(MAda
λ

corrected
t )k =: q∗k

exists for allk. Now, we have that for each examplei, if q∗i > 1 then lim
t→∞

(MAda
λt)i < 0, that is,

lim
t→∞

1[(MAda
λ

corrected
t )i≤0] = 1,

and conversely, if ˜q∗i < 1 then
lim
t→∞

1[(MAda
λ

corrected
t )i≤0] = 0.

The same holds for allk and forλ′corrected
t . Again, there is no asymptotic convergence to the decision

boundary as we have assumed, ˜q∗i 6= 1, q̃∗k 6= 1. The same statement holds forλ
′corrected
t . Summing

over i andk yields:

lim
t→∞

[

∑
i∈Y+

1[(MAda
λ

corrected
t )i≤0] + ∑

k∈Y−

1[(MAda
λ

corrected
t )k≤0]

]

= lim
t→∞

[

∑
i∈Y+

1[(MAda
λ
′corrected
t )i≤0] + ∑

k∈Y−

1[(MAda
λ
′corrected
t )k≤0]

]

.

9. Conclusions

We have presented three main results. First, in Section 3, we presented a generalization bound for
ranking. This bound incorporates a margin, allowing it to be useful in the separable case. The
second main result is an algorithm, smooth margin ranking, that maximizes the ranking margin.
Our third result is that under very general conditions, AdaBoost solves classification and ranking
problems simultaneously, performing just as well for the ranking problem asRankBoost. Con-
versely, RankBoost with a change in intercept performs just as well forthe classification problem
as AdaBoost.

10. Open Problems and Future Work

The three main results presented in this paper yield many new directions for future research. We
gave a margin-based bound for general ranking. It is worth investigating the design of more special-
ized margin-based bounds for ranking. We have developed one such bound in Rudin (2009); In that
work, we develop a specialized bound based on Theorem 2, designed toemphasize the top portion
of the list.

We described a new ranking algorithm, smooth margin ranking, that maximizes themargin. It
would be natural to compare the empirical performance of the smooth margin ranking algorithm
and RankBoost. In fact, it is also worth considering the empirical performance of AdaBoost to
RankBoost, now that we know AdaBoost can be used for ranking.
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Appendix A. Proof of Lemma 20

We will first prove some properties ofα,τ,Γ, andB in the following lemmas. First, we show
α(r,g,d0) is a nonnegative, deceasing function ofg, and thatτ(r,g,d0) is an increasing function of
g. We also provide a bound on the second derivative ofα, which is the key step in the proof of
Lemma 20.

Lemma 21 (Properties ofα(r,g,d0) andτ(r,g,d0)) For fixed values of r and d0, considering g as a
variable, within the range0≤ g < r:

(i) lim
g→r

α(r,g,d0) = 0,

(ii)
∂α(r,g,d0)

∂g
=

−τ(r,g,d0)

gτ′(r,g,d0)+ τ′′(r,g,d0)
=

−τ(r,g,d0)

(1−g2)τ(r,g,d0)−d0
< 0,

(iii ) lim
g→r

∂α(r,g,d0)

∂g
=

−1
1− r2−d0

< 0,

(iv)
∂τ(r,g,d0)

∂g
≥ 0,

(v) τ(r,0,1− r) = 1− r ≤ d0 +
√

(1−d0)2− r2 = τ(r,0,d0),

(vi)
∂2α(r,g,d0)

∂g2 < 0 whenever d0 ≤
2
3
(1− r)(1− r2) and g> 0.

Proof By definition

τ(r,g,d0) =
(1+ r −d0)

2
e−α(r,g,d0) +

(1− r −d0)

2
eα(r,g,d0) +d0,

τ′(r,g,d0) = −(1+ r −d0)

2
e−α(r,g,d0) +

(1− r −d0)

2
eα(r,g,d0),

and similarly defineτ′′(r,g,d0)= τ(r,g,d0)−d0. Part (i) can be seen from (11), that is,−τ′(r,g,d0)=
gτ(r,g,d0), which simplifies to

(1+ r −d0)

2
e−α(r,g,d0)− (1− r −d0)

2
eα(r,g,d0)
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= g
(1+ r −d0)

2
e−α(r,g,d0) +g

(1− r −d0)

2
eα(r,g,d0) +gd0,

so one setsg = r and verifies thatα = 0 satisfies the equation. Part (ii) is shown by taking implicit
derivatives of (11) as follows:

∂α(r,g,d0)

∂g
(gτ′(r,g,d0)+ τ′′(r,g,d0))+ τ(r,g,d0) = 0,

that is,

∂α(r,g,d0)

∂g
=

−τ(r,g,d0)

gτ′(r,g,d0)+ τ′′(r,g,d0)
, (24)

and then simplifying using (11) and the definition ofτ′′(r,g,d0). For the inequality, the numerator
is negative, and the denominator is (usingd+,d− notation)g(−d+e−α +d−eα)+d+e−α +d−eα =
(1−g)d+e−α +(1+ g)d−eα > 0 sinceg < 1. Part (iii) is shown from (i) and (ii); forg → r, we
haveα(r,g,d0) → 0, and thusτ(r,g,d0) → 1. The inequality comes from 1− r2−d0 > 1− r −d0 =
2d− ≥ 0. To show (iv), by the chain rule,

∂τ(r,g,d0)

∂g
= τ′(r,g,d0)

∂α(r,g,d0)

∂g
.

Sinceτ(r,g,d0) > 0 andτ′(r,g,d0) = −gτ(r,g,d0), we knowτ′(r,g,d0) ≤ 0. Additionally, from
(ii), ∂α

∂g < 0. Thus (iv) is proved. For (v), we know that wheng = 0, τ′(r,g,d0) = −gτ(r,g,d0)

meansτ′(r,0,d0) = 0. Using the definition forτ′(r,g,d0), we find thateα(r,0,d0) =
(

1+r−d0
1−r−d0

)1/2
.

Substituting this into the definition ofτ yields the equality conditions in (v). The inequality comes
from the fact that the right hand side,d0 +

√

(1−d0)2− r2, is monotonically decreasing ind0. For
(vi), a derivative of (24) yields:

(gτ′(r,g,d0)+ τ′′(r,g,d0))
∂2α(r,g,d0)

∂g2

= −
(

∂α(r,g,d0)

∂g

)[(

∂α(r,g,d0)

∂g

)

(gτ′′(r,g,d0)+ τ′′′(r,g,d0))+2τ′(r,g,d0)

]

,

whereτ′′′(r,g,d0)= τ′(r,g,d0). The left expression (usingd+,d− notation) isgτ′(r,g,d0)+τ′′(r,g,d0)=
d+(1−g)e−α +d−(1+g)eα > 0 sinceg < 1. Since (ii) shows that∂α/∂g < 0, we are left to show
that the bracketed expression on the right is negative in order for the second derivative ofα to be
negative. Consider that quantity:

(

∂α(r,g,d0)

∂g

)

(gτ′′(r,g,d0)+ τ′′′(r,g,d0))+2τ′(r,g,d0)

= τ′(r,g,d0)

[

∂α(r,g,d0)

∂g

(

gτ′′(r,g,d0)+ τ′(r,g,d0)

τ′(r,g,d0)

)

+2

]
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and substitutingτ′(r,g,d0) = −gτ(r,g,d0) andτ′′(r,g,d0) = τ(r,g,d0)−d0,

= τ′(r,g,d0)

[

∂α(r,g,d0)

∂g

(

gτ(r,g,d0)−gd0−gτ(r,g,d0)

−gτ(r,g,d0)

)

+2

]

= τ′(r,g,d0)

[

∂α(r,g,d0)

∂g

(

d0

τ(r,g,d0)

)

+2

]

and from (ii),

= τ′(r,g,d0)

[ −d0

(1−g2)τ(r,g,d0)−d0
+2

]

. (25)

Since−τ′(r,g,d0) = gτ(r,g,d0), we knowτ′(r,g,d0) < 0 wheng> 0. Let us show that the bracketed
expression of (25) is positive. Using our assumption ond0, also 1− r2 < 1−g2, (v), and (iv),

d0 < (1− r2)(1− r)
2
3

< (1−g2)(1− r)
2
3

= (1−g2)τ(r,0,1− r)
2
3

≤ (1−g2)τ(r,0,d0)
2
3
≤ (1−g2)τ(r,g,d0)

2
3
.

Rearranging this yields
d0

[(1−g2)τ(r,g,d0)−d0]
< 2.

The proof is finished.

In order to build up to Lemma 20, we need some properties ofΓ(r,g,d0) andB.

Lemma 22 (Properties ofΓ(r,g,d0)) For every fixed value of r and d0, considering g as a variable,
within the range0≤ g < r:

(i) lim
g→r

Γ(r,g,d0) = r

(ii) Γ(r,g,d0) > g

(iii )
∂Γ(r,g,d0)

∂g
> 0

(iv) Γ(r,g,d0) < r.

Proof The proof of (i) uses L’H ˆopital’s rule, which we have permission to use from Lemma 21 (i)
since limg→r α(r,g,d0) = 0.

lim
g→r

Γ(r,g,d0) = lim
g→r

− lnτ(r,g,d0)

α(r,g,d0)
= lim

g→r

− τ′(r,g,d0)
τ(r,g,d0)

∂α(r,g,d0)
∂g

∂α(r,g,d0)
∂g

= lim
g→r

g = r.

Here we have used that limg→r
∂α(r,g,d0)

∂g is finite from Lemma 21 (ii), and applied (11), that is,
−τ′(r,g,d0) = gτ(r,g,d0).

For the proofs of (ii) and (iii) we consider the derivative ofΓ(r,g,d0) with respect tog. Recall
thatτ′(r,g,d0) is given by the formula (8).

∂Γ(r,g,d0)

∂g
=

[−τ′(r,g,d0)

τ(r,g,d0)
+

lnτ(r,g,d0)

α(r,g,d0)

]

1
α(r,g,d0)

∂α(r,g,d0)

∂g

= (Γ(r,g,d0)−g)

(

−∂α(r,g,d0)

∂g

)

1
α(r,g,d0)

. (26)
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For the last line above we used (11) and the definition ofΓ(r,g,d0). Sinceα(r,g,d0) is a posi-
tive, decreasing function ofg from Lemma 21 (ii), we know−∂α(r,g,d0)/∂g and 1/α(r,g,d0) are
positive. Thus,

sign

(

∂Γ(r,g,d0)

∂g

)

= sign(Γ(r,g,d0)−g). (27)

We show next thatΓ(r,0,d0) > 0. From (11), we know 0= −τ′(r,0,d0), which by definition of
τ′(r,g,d0) in (8) givesα(r,0,d0) = 1

2 ln(d+/d−) > 0. Now,

Γ(r,0,d0) =
− lnτ(r,0,d0)

α(r,0,d0)
=

1
α(r,0,d0)

(

− ln
(

2(d−d+)1/2 +d0

))

.

We also have 2(d−d+)1/2 +d0 < d− +d+ +d0 = 1, so we are done showing thatΓ(r,0,d0) > 0.
Now we proceed by contradiction. Assume that there is some value of ¯g, where 0≤ ḡ < r, for

which Γ(r, ḡ,d0) ≤ ḡ. That is, assume the functionsΓ(r,g,d0) and f (g) = g cross. In that case, the
derivative∂Γ(r,g,d0)/∂g would have a nonpositive sign atg= ḡ by (27), and the functionΓ(r,g,d0)
would be a nonincreasing function for ¯g < g < r. That is, sinceΓ(r,g,d0) would have a nonpositive
slope at ¯g, it cannot increase to cross the linef (g) = g in order to reverse the sign of the slope.
However, this is a contradiction, since the function must indeed increase; itmust reach the limiting
valuer asg→ r, as we showed in (i). Hence,Γ(r,g,d0) > g for all g such that 0≤ g < r, proving
(ii), and thus by (27),∂Γ(r,g,d0)/∂g > 0 for all g such that 0≤ g < r, proving (iii).

The proof of (iv) is again by contradiction. Fix arbitrary values ofr andd0. AssumeΓ(r, ḡ,d0)≥
r for some ¯g < r. Since the functionΓ(r,g,d0) is an increasing function ofg, Γ(r,g,d0) must be
larger thanr and strictly increasing forg > ḡ. Yet by (i), Γ(r,g,d0) → r asg→ r for each fixed pair
of r andd0. This is a contradiction, sinceΓ(r,g,d0) cannot decrease to meet this limit.

Lemma 23

(i) 0 < B(r,g,d0) < 1

(ii) lim
g→r

B(r,g,d0) =
1
2

for fixed r and d0.

Proof From Lemma 22 (ii),Γ(r,g,d0)−g is positive, and by assumptiong< r. Thus,B(r,g,d0)> 0.
Also, from Lemma 22 (iv),Γ(r,g,d0) < r. Thus,B(r,g,d0) < 1. Thus (i) is proved. The proof of
(ii) uses L’Hôpital’s rule twice (which we may use by Lemma 21 (i)) also (11), and the fact that
derivatives ofα(r,g,d0) with respect tog are finite.

lim
g→r

B(r,g,d0) = lim
g→r

− lnτ(r,g,d0)
α(r,g,d0)

−g

r −g
= lim

g→r

− lnτ(r,g,d0)−gα(r,g,d0)

α(r,g,d0)(r −g)

= lim
g→r

− τ′(r,g,d0)
τ(r,g,d0)

∂α(r,g,d0)
∂g −g∂α(r,g,d0)

∂g −α(r,g,d0)

−α(r,g,d0)+(r −g) ∂α(r,g,d0)
∂g

= lim
g→r

−α(r,g,d0)

−α(r,g,d0)+(r −g) ∂α(r,g,d0)
∂g

= lim
g→r

− ∂α(r,g,d0)
∂g

−2∂α(r,g,d0)
∂g +(r −g) ∂2α(r,g,d0)

∂g2

=
1
2
.
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There is one thing left in order to prove Lemma 20. This is where the key step appears, that is,
our bound on the second derivative ofα.

Lemma 24
(r −g)

α(r,g,d0)

(

−∂α(r,g,d0)

∂g

)

< 1.

Proof Define

φ(r,g,d0) := (r −g)

(

−∂α(r,g,d0)

∂g

)

−α(r,g,d0).

In order to prove the lemma, we need only to show thatφ(r,g,d0) is always negative. We will show
that ∂φ(r,g,d0)/∂g is positive. Thus, the largest possible value ofφ(r,g,d0) occurs wheng is at
its maximum, namely, wheng = r. If g = r, thenφ(r,g,d0) = 0. Thus,φ(r,g,d0) is everywhere
negative and the lemma is proved. Now we have only to prove∂φ(r,g,d0)/∂g is positive. Again, we
take derivatives:

∂φ(r,g,d0)

∂g
= (r −g)

(

−∂2α(r,g,d0)

∂g2

)

,

and sincer −g is always positive, and since we have taken efforts to ensureα’s second derivative is
negative (except at the irrelevant endpointg = 0) in Lemma 21 (vi), we are done.

We finally prove Lemma 20.
Proof (of Lemma 20)We consider∂B(r,g,d0)/∂g for each fixed pair ofr andd0 values and derive
a differential equation forB. We will prove that the derivative is always nonnegative. Then we will
use Lemma 23 to show thatB(r,g,d0) is nonnegative. Here is the differential equation:

∂B(r,g,d0)

∂g
=

1
r −g

[

∂Γ(r,g,d0)

∂g
−1+

Γ(r,g,d0)−g
r −g

]

=
1

r −g

[

∂Γ(r,g,d0)

∂g
−1+B(r,g,d0)

]

=
1

r −g

[

(Γ(r,g,d0)−g)

(

−∂α(r,g,d0)

∂g
1

α(r,g,d0)

)

−1+B(r,g,d0)

]

=
1

r −g

[

B(r,g,d0)(r −g)

(

−∂α(r,g,d0)

∂g
1

α(r,g,d0)

)

−1+B(r,g,d0)

]

=
B(r,g,d0)

r −g

[

(r −g)

(

−∂α(r,g,d0)

∂g
1

α(r,g,d0)

)

−
(

1
B(r,g,d0)

−1

)]

. (28)

Here we have incorporated the differential equation forΓ(r,g,d0) from (26). Again, we will prove
by contradiction. Assume that for some values ofr and g, whereg < r, we haveB(r,g,d0) ≤
1/2. That is, assume

(

1
B(r,g,d0)

−1
)

≥ 1. In that case, the bracket in Equation (28) is negative,

by Lemma 24. Since 0< B(r,g,d0) < 1 from Lemma 23, andg < r by assumption, the factor
B(r,g,d0)/(r − g) of Equation (28) is positive and the bracket is negative, thus∂B(r,g,d0)

∂g < 0, so
B(r,g,d0) is a decreasing function. Hence, for each fixedr andd0,B(r,g,d0) decreases from a value
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which is less than or equal to 1/2. Recall from Lemma 23 that limg→r B(r,g,d0) = 1/2, and thus
this limit can never be attained. Contradiction. Thus, for all values ofr, d0 andg within 0 < r < 1,
0≤ g< r, 0≤ d0 < 2

3(1− r)(1− r2), we must haveB(r,g,d0) > 1/2. We have proved the lemma.
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