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Abstract

We study boosting algorithms for learning to rank. We giveeaayal margin-based bound for
ranking based on covering numbers for the hypothesis sgagebound suggests that algorithms
that maximize the ranking margin will generalize well. Werttdescribe a new algorithm, smooth
margin ranking, that precisely converges to a maximum ragtknargin solution. The algorithm
is a modification of RankBoost, analogous to “approximaterdimate ascent boosting.” Finally,
we prove that AdaBoost and RankBoost are equally good foprthielems of bipartite ranking and
classification in terms of their asymptotic behavior on ttaéning set. Under natural conditions,
AdaBoost achieves an area under the ROC curve that is eqsafijpod as RankBoost’s; further-
more, RankBoost, when given a specific intercept, achieveis@assification error that is as good
as AdaBoost’s. This may help to explain the empirical obastons made by Cortes and Mohri, and
Caruana and Niculescu-Mizil, about the excellent perforoesof AdaBoost as a bipartite ranking
algorithm, as measured by the area under the ROC curve.

Keywords: ranking, RankBoost, generalization bounds, AdaBooss aneler the ROC curve

1. Introduction

Consider the following supervised learning problem: Sylvia would like to getesrecommenda-
tions for good movies before she goes to the theater. She would like adrbsikiat agrees with
her tastes as closely as possible, since she will probably go to see the toseist to the top of the
list that is playing at the local theater. She does not want to waste her tinra@mael on a movie
she probably will not like.
The information she provides is as follows: for many different pairs ofiggshe has seen, she

will tell the learning algorithm whether or not she likes the first movie better tharsecond oné.
This allows her to rank whichever pairs of movies she wishes, allowing #Boptssibility of ties

x. Also at Center for Computational Learning Systems, Columbia Uritye4§'5 Riverside Drive MC 7717, New York,
NY 10115.

1. In practice, she could simply rate the movies, but this gives pairwisenirtion also. The pairwise setting is strictly
more general in this sense.
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between movies, and the possibility that certain movies cannot necessasdynipared by her (for
instance, she may not wish to directly compare cartoons with action movidsgja 8ges not need
to be consistent, in the sense that she may eanlb > ¢ > a. (The loss function and algorithm will
accommodate this. See Martin Gardner’'s amusing article (Gardner, 2001gvo nontransitivity
can arise naturally in many situations.) Each pair of movies such that Sylvia theKirst above
the second is called a “crucial pair.”

The learning algorithm has access to a sat ofdividuals, called “weak rankers” or “ranking
features,” who have also ranked pairs of movies. The learning algorithst try to combine the
views of the weak rankers in order to match Sylvia's preferences, anergte a recommendation
list that will generalize her views. In this paper, our goal is to design amdy/dearning algorithms
for ranking problems such as this collaborative filtering task.

The ranking problem was studied in depth by Freund et al. (2003),entherRankBoost algo-
rithm was introduced. In this setting, the ranked list is constructed using @ lgoenbination of
the weak rankers. ldeally, this combination should minimize the probability thatcat pair is
misranked, that is, the probability that the second movie in the crucial paimkedaabove the first.
RankBoost aims to minimize an exponentiated version of this misranking probability

A special case of the general ranking problem is the “bipartite” rankmbglpm, where there
are only two classes: a positive class (good movies) and a negativéldassovies). In this case,
the misranking probability is the probability that a good movie will be ranked baldad movie.
This quantity is an affine transformation of the (negative of the) arearuhddreceiver-Operator-
Characteristic curve (AUC).

Bipartite ranking is different from the problem of classification; if, for igeg data set, the
misclassification error is zero, then the misranking error must also belagrthe converse is not
necessarily true. For the ranking problem, the examples are viewed edlatdach other and the
decision boundary is irrelevant.

Having described the learning setting, we can now briefly summarize oer itteign results.

e Generalization boundin Section 3, we provide a margin-based bound for ranking in the gen-
eral setting described above. Our ranking margin is defined in analogyheittiassification
margin, and the complexity measure for the hypothesis space is a “slopgsyrgpunumber,”
which yields, as a corollary, a bound in terms of tecovering number. Our bound indicates
that algorithms that maximize the margin will generalize well.

e Smooth margin ranking algorithmie present a ranking algorithm in Section 4 designed
to maximize the margin. Our algorithm is based on a “smooth margin,” and wenprase
analysis of its convergence.

e An equivalence between AdaBoost and RankBodsemarkable property of AdaBoost is
that it not only solves the classification problem, but simultaneously solvesathe problem
of bipartite ranking as its counterpart, RankBoost. This is proved in Sebtiodne does
not need to alter AdaBoost in any way for this property to hold. Conlyerde solution of
RankBoost can be slightly altered to achieve a misclassification loss thatafyegsi good
as AdaBoost’s.

We now provide some background and related results.
Generalization bounds are useful for showing that an algorithm caerajere beyond its train-
ing set, in other words, that prediction is possible. More specifically, t@umdicate that a small
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probability of error will most likely be achieved through a proper balarfceeempirical error and
the complexity of the hypothesis space. This complexity can by measured byinfarmative
quantities; for instance, the VC dimension, which is linked in a fundamentakovelassification,
and the Rademacher and Gaussian complexities (Bartlett and Mendel8@y, Ze use of these
quantities is tied to a kind of natural symmetry that typically exists in such probkemsstance,
in the way that positive and negative examples are treated symmetrically irsdicé®n setting.
The limited bipartite case has this symmetry, but not the more general rankibtepr that we
have described. Prior bounds on ranking have either made approximationder to use the VC
Dimension for the general problem (as discussed by Clemencon et @h, 2007, who work on
statistical aspects of ranking) or focused on the bipartite case (Frewahg 2003; Agarwal et al.,
2005; Usunier et al., 2005). For our bound, we choose a coverimdpeuin the spirit of Bartlett
(1998). The covering number is a general measure of the capacity bta¢hesis space; it does
not lend itself naturally to classification like the VC dimension, is not limited to bipadit&ing,
nor does it require symmetry in the problem. Thus, we are able to work @tberiack of symme-
try in this setting. In fact, a preliminary version of our work (Rudin et al.,20tas been extended
to a highly nonsymmetric setting, namely the case where the top part of the listsgleced more
important (Rudin, 2009). Several other recent works also consigeyie of highly nonsymmetric
setting for ranking (Dekel et al., 2004; Cossock and Zhang, 2008néeon and Vayatis, 2007;
Shalev-Shwartz and Singer, 2006; Le and Smola, 2007).

When deriving generalization bounds, it is important to consider the fabfe case, where
all training instances are correctly handled by the learning algorithm sahéampirical error is
zero. In the case of bipartite ranking, the separable case means thagitlepinstances are ranked
above all negative instances, and the area under the ROC curve ily dxaln the separable case
for classification, one important indicator of a classifier's generalizatidityais the “margin.” The
margin has proven to be an important quantity in practice for determining arthig® generaliza-
tion ability, for example, in the case of AdaBoost (Freund and Scha@@¥)land support vector
machines (SVMs) (Cortes and Vapnik, 1995). Although there has mrea work devoted to gen-
eralization bounds for ranking as we have mentioned (Clemencon et@h, 2007; Freund et al.,
2003; Agarwal et al., 2005; Usunier et al., 2005), the bounds thatrevaware of are not margin-
based, and thus do not provide this useful type of discrimination betveed&ing algorithms in the
separable case.

Since we are providing a general margin-based bound for rankingctio8e3, we derive al-
gorithms which create large margins. For the classification problem, it wasgtbat AdaBoost
does not always fully maximize the (classification) margin (Rudin et al., 2084pact, AdaBoost
does not even necessarily make progress towards increasing the @iaeyiry iteration. Since
AdaBoost (for the classification setting) and RankBoost (for the rardtting) were derived anal-
ogously for the two settings, RankBoost does not directly maximize the rgnkémgin, and it does
not necessarily increase the margin at every iteration. In Section 4.1 wduct a “smooth mar-
gin” ranking algorithm, and prove that it makes progress towards inagése smooth margin for
ranking at every iteration; this is the main step needed in proving convaFgeamd convergence
rates. This algorithm is analogous to the smooth margin classification algorifipnodmate co-
ordinate ascent boosting” (Rudin et al., 2007) in its derivation, but takgous proof that progress
occurs at each iteration is much trickier; hence we present this proef &keng with a theorem
stating that this algorithm converges to a maximum margin solution.
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Although AdaBoost and RankBoost were derived analogously fambesettings, the parallels
between AdaBoost and RankBoost are deeper than their derivafiansnber of papers, including
those of Cortes and Mohri (2004) and Caruana and Niculescu-MilgRhave noted that in fact,
AdaBoost experimentally seems to be very good at the bipartite rankingeprpbven though it
was RankBoost that was explicitly designed to solve this problem, not AatBOT, stated another
way, AdaBoost often achieves a large area under the ROC curveectio 5, we present a pos-
sible explanation for these experimental observations. Namely, we shoif tiia weak learning
algorithm is capable of producing the constant classifier (the classifiesewalue is always one),
then remarkably, AdaBoost and RankBoost produce equally gootiswuo the ranking problem
in terms of loss minimization and area under the ROC curve on the training set.ddoerally, we
define a quantity called “F-skew,” an exponentiated version of the “skeed in the expressions
of Cortes and Mohri (2004, 2005) and Agarwal et al. (2005). If Fgkew vanishes, AdaBoost
minimizes the exponentiated ranking loss, which is the same loss that RankBpbsitly mini-
mizes; thus, the two algorithms will produce equally good solutions to the erfiated problem.
Moreover, if AdaBoost’s set of weak classifiers includes the constassifier, the F-skew always
vanishes. From there, it is only a small calculation to show that AdaBodsRankBoost achieve
the same asymptotic AUC value whenever it can be defined. An analogausdees not seem to
hold true for support vector machines; SVMs designed to maximize the AlyGeam to yield the
same AUC as the “vanilla” classification SVM in the separable case, whenUkig\exactly one
(Rakotomamonijy, 2004; Brefeld and Scheffer, 2005). The main resyltimaseful for practition-
ers: if the cost of using RankBoost is prohibitive, it may be useful tesitar AdaBoost to solve
the ranking problem.

The converse result also holds, namely that a solution of RankBoosecslightly modified so
that the F-skew vanishes, and the asymptotic misclassification loss is equiBodst's whenever
it can be defined.

We proceed from the most general to the most specific. First, in Section Bowielgpa margin-
based bound for general ranking. In Sections 4.1 and 4.2 we fix thedbthe hypothesis space
to match that of RankBoost, that is, the space of binary functions. Heraliseuss RankBoost,
AdaBoost and other coordinate-based ranking algorithms, and ineddasmooth margin ranking
algorithm. In Section 5, we focus on the bipartite ranking problem, and disomsditions for
AdaBoost to act as a bipartite ranking algorithm by minimizing the exponentiassdaksociated
with the AUC. Sections 3 and 4.2 focus on the separable case where tlegeiror vanishes, and
Sections 4.1 and 5 focus on the nonseparable case. Sections 6, G@ndi the major proofs.

A preliminary version of this work appeared in a conference paper witte€and Mohri (Rudin
et al., 2005). Many of the results from that work have been made moezajdrere.

2. Notation

We use notation similar to Freund et al. (2003). The training data for thexasge ranking problem
consists ofnstancesand theirtruth functionvalues. Thenstancesdenoted bys, are{X;}i=1,...m,
wherex; € X for alli. The setx is arbitrary and may be finite or infinite, usualtyc RN. In the case

of the movie ranking problem, the’s are the movies and is the set of all possible movies. We
assume; € X are chosen independently and at random (iid) from a fixed but unkmpoabability
distribution? on X (assuming implicitly that anything that needs to be measurable is measurable).
The notatiorx ~ D meansx is chosen randomly according to distributién The notatiorS~ D™
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means each of thaelements of the training s&tare chosen independently at random according to
D.

The values of théruth functiontt: X x X — {0,1}, which is defined over pairs of instances, are
analogous to the “labels” in classification.rifx(!) x(?)) = 1, this means that the paif?,x(? is a
crucial pair: x should be ranked more highly thaf?). We will consider a non-noisy case where
T is deterministic, which mearm(x(Y,x(Y)) = 0, meaning thak™ should not be ranked higher
than itself, and also that(xV,x?) = 1 impliesTi(x?,x()) = 0, meaning that ik™® is ranked
more highly tharx®, thenx(@ should not be ranked more highly thaf?). It is possible to have
m(a,b) = 1, 1(b,c) = 1, andm(c,a) = 1, in which case the algorithm will always suffer some loss;
we will be in the nonseparable case when this occurs. The total numberoididraining pairs can
be no larger tham(m— 1)/2 based on the rules of and should intuitively be of the order in
order for us to perform ranking with sufficient accuracy. We assuraeftin each pair of training
instances;, Xk we receive, we also receive the valug®gx;, xy). In a more general model, we allow
the valuert(x;, xx) to be generated probabilisitically conditional on each trainingxaii. For the
generalization bounds in this paper, for simplicity of presentation, we deamider this more
general model, although all of our results can be shown to hold in the mosrajease as well.
The quantityE := E,q 4., [T(xV,x?)] is the expected proportion of pairs in the database that
are crucial pairs, & E <1/2.

Back to the collaborative filtering example, to obtain the training set, Sylvia engivrandom
sample of movies, chosen randomly from the distribution of movies being shothe theater.
Sylvia must see these training movies and tell us all pairs of these movies stish¢hwould rank
the first above the second to determine values of the truth funmtion

Our goal is to construct a ranking functidn X — R, which gives a real valued score to each
instance inX. We do not care about the actual values of each instance, only theeelatues;
for instance, we do not care fixY)) = .4 andf (x?) = .1, only thatf (x)) > f(x(®)), which we
interpret to mean that'V) is predicted byf to be ranked higher (better) thaf?). Also, the function
f should be bounded, € L. (X) (or in the case whergX]| is finite, f € 4o (X)).

In the usual setting of boosting for classificatiph(x)| < 1 for all x and themargin of training
instance i(with respect to classifief) is defined by Schapire et al. (1998) toyé&(x;), wherey; is
the classification labey; € {—1,1}. Themargin of classifier fis defined to be the minimum margin
over all training instances, min f(x;). Intuitively, the margin tells us how much the classiffer
can change before one of the training instances is misclassified; it givesotion of how stable
the classifier is.

For the ranking setting, we define an analogous notion of margin. Hereowealize our
bounded functionf so that 0< f < 1. Themargin of crucial pairx;,xx (with respect to ranking
function f) will be defined asf (x;) — f(xx). Themargin of ranking function fis defined to be the
minimum margin over all crucial pairs,

in f(Xi)—-f(Xk)

margin = s ;= m
I == o) -1)

Intuitively, the margin tells us how much the ranking function can change®eiwe of the crucial
pairs is misranked. As with classification, we are in the separable casevdreghe margin of is
positive.

In Section 5 we will discuss the problem of bipartite ranking. Bipartite ranisrg subset of
the general ranking framework we have introduced. In the bipartiterrgmikoblem, every training
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instance falls into one of two categories, the positive ctasand the negative cla¥s. To transform
this into the general framework, takex;, x) = 1 for each pair € Y, andk € Y_. That is, a crucial
pair exists between an element of the positive class and an element of Hiv@etpss. The class
of each instance is assumed deterministic, consistent with the setup desaibed Again, the
results can be shown to hold in the case of hondeterministic class labels.

It may be tempting to think of the ranking framework as if it were just classifinatier the
spaceX x X. However, this is not the case; the examples are assumed to be dravemband
from X, rather than pairs of examples drawn frafrk X. Furthermore, the scoring functidnhas
domainX, that is, in order to produce a single ranked list, we should Hav& — R rather than
f: X x X — R. Inthe latter case, one would need an additional mechanism to reconcitmties
produce a single ranked list. Furthermore, the bipartite ranking problesdu have the same goal
as classification even though the labelsf@rd, +1}. In classification, the important quantity is the
misclassification error involving the sign 6f whereas for bipartite ranking, the important quantity
is perhaps the area under the ROC curve, relying on differencesdrefwalues. A change in the
position of one example can change the bipartite ranking loss without clggthgimisclassification
error and vice versa.

3. A Margin-Based Bound for Ranking

Bounds in learning theory are useful for telling us which quantities (sstheamargin) are involved
in the learning process (see Bousquet, 2003, for discussion on this )ndtiethis section, we
provide a margin-based bound for ranking, which gives us an intuitioedparable-case ranking
and yields theoretical encouragement for margin-based ranking algsrithhe quantity we hope
to minimize here is the misranking probability; for two randomly chosen instaifct®y are a
crucial pair, we want to minimize the probability that these instances will be nkisdarFormally,
this misranking probability is:

Pp{misrank} = Pp{f(X) < f(X)|m(X,X) =1} = Exzwn[Litm<t) | TUX,X) =1]
_ Eexen @< X)) Exzen[Lm<i) X, )] )
Exz~o[T(X,X)] E
The numerator of (1) is the fraction of pairs that are both crucial andiiectly ranked byf, and the
denominatorE := Ex .5 [T(X,X)] is the fraction of pairs that are crucial pairs. ThBig{misrank }
is the fraction of crucial pairs that are incorrectly rankedfby
Since we do not knowD, we may calculate only empirical quantities that rely only on our
training sample. An empirical quantity that is analogouBtd misrank } is the following:

Ps{misrank} = Ps{marginy <0} :=Pg{f(xi) < f(xk) | T(Xi,xx) = 1}
Tin1 ken Ly ()< 1 0] TG Xk)
Ziril Zszl T[(Xiaxk)
We make this terminology more general, by allowing it to include a margé &br the bound
we takef > O:

Ps{margin; <0} = Ps{f(xi)— f(x) <6[m(xixq) =1}
S SR Lt () F(x0) <6 TUXi Xk)
Yita Yk TUXi, Xk)

)
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that is,Ps{margin; < 8} is the fraction of crucial pairs i&x Swith margin not larger tha#.

We want to bound,{misrank } in terms of an empirical, margin-based term and a complexity
term. The type of complexity we choose is a “sloppy covering number” ofahteused by Schapire
et al. (1998). Since such a covering number can be bounded by anvering number, we will
immediately obtairL., covering number bounds as well, including a strict improvement on the one
derived in the preliminary version of our work (Rudin et al., 2005). Hexreimplicitly assume that
F C Lo(X), f € F are everywhere defined.

We next define sloppy covers and sloppy covering numbers.

Definition 1 For€,8 > 0, a setq is aB-sloppye-coverfor ¥ ifforall f € # and for all probability
distributions® on X, there exists g G such that

Prenllf() —g(x)] > 6] <.

The correspondingloppy covering numbes the size of the smalleBtsloppye-cover G, and is
written AL(F,6,€).

TheL. covering numbef\, (¥ ,¢€) is defined as the minimum number of (open) balls of radius
€ needed to covef, using thel., metric. Since|f —g|l. < 6 implies thatPyxpl[|f(x) —g(X)| >
6] = 0, we have that the sloppy covering numbé( ¥ ,6, ) is never more that\e (7 ,0), and in
some cases it can be exponentially smaller, such as for convex combiratlainary functions as
discussed below.

Here is our main theorem, which is proved in Section 6:

Theorem 2 (Margin-based generalization bound for ranking) For- 0, 6 > 0 with probability at
least (cE)?
0 ¢ m(eE
1—29\1:(7,4,8)9)([3[— 8 ]
over the random choice of the training set S, every ¥ satisfies:

Pp{misrank } <Ps{margirny <06} +¢.

In other words, the misranking probability is upper bounded by the fraofigrstances with margin
below®, plusg; this statement is true with probability dependingmyrE, 6, €, and F.

We have chosen to write our bound in termskfbut we could equally well have used an
analogous empirical quantity, namely

1 m m

Ex; xe~s[TU(Xi, Xk)] = mm—1) Zi kzl TI(Xj , Xk )-

This is an arbitrary decision; we can in no way influetizey, s[Tt(X;, Xk)] in our setting, since we
are choosing training instances randoniycan be viewed as a constant, where recall® < 1/2.
If E =0, it means that there is no information about the relative ranks of exanaplésiccordingly
the bound becomes trivial. Note that in the special bipartite dase,the proportion of positive
examples multiplied by the proportion of negative examples.

In order to see that this bound encourages the margin to be made largiglezdghe simplified
case where the empirical error term is 0, thaPigimargin, < 68} = 0. Now, the only place where
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0 appears is in the covering number. In order to make the probability of ssitager, the covering
number should be made as small as possible, which implieStsabuld be made as large as
possible.

As a special case of the theorem, we consider the standard setting fviseae(normalized)
linear combination of a dictionary of step functions (or “weak rankersi'this case, we can show
the following, proved in Section 6:

Lemma 3 (Upper bound on covering numbers for convex combinations of biwaak classifiers)
For the following hypothesis space:

f—{fif—Z)\jhj, 2)\1‘:1,Vj)\j20, hjix—>{0,1},hj€.7'[},
J J

we have
In|#H| In(2/¢)

INAL(F,8,¢) < 02

Thus, Theorem 2 implies the following corollary.

Corollary 4 (Margin-based generalization bound for ranking, convex combinatidnrary weak
rankers) Fore > 0, 8 > 0 with probability at least

In|#| In(16/g) m(eE)?
1—2exp< 628 S )

over the random choice of the training set S, every # satisfies:
Pp{misrank } < Ps{margin, < 8} +e¢.

In this case, we can lower bound the right hand side bydlfor an appropriate choice af In
particular, Corollary 4 implies that

Pp{misrank } <Ps{marginc <0} +¢

with probability at least & if

| 4 [8In|#H| 4mE262 2
= s [P (B 2 (2)) @

This bound holds provided thétis not too small relative ton, specifically, if

641n| |
2

mo- > £z
Note that the bound in (2) is only polylogarithmic|i#/|.

As we have discussed above, Theorem 2 can be trivially upper bowrsitegithel., covering
number.
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Corollary 5 (Margin-based generalization bound for ranking, covering numbers) Foe > O,
0 > 0 with probability at least

o ()] 2

over the random choice of the training set S, every ¥ satisfies:

Pp{misrank } <Ps{margirk <06} +¢.

Consider the case of a finite hypothesis spaoghere every function is far apart (in,) from every
other function. In this case, the covering number is equal to the numbandfiéns. This is the
worst possible case, whem® (F,9) = | #| for any value off. In this case, we can solve far
directly:

2
5:= 2mexp[— m(‘;E) ] — = \/1m\/|582 (In2|F| +In(1/3)).

This indicates that the error may scale ds/in. For the ranking problem, since we are dealing

with pairwise relationships, we might expect worse dependence, butdbssribt appear to be the

case. In fact, the dependenceraiis quite reasonable in comparison to bounds for the problem of

classification, which does not deal with examples pairwise. This is truenhofar finite hypothesis

spaces (scaling ag/ §/m) but also when the hypotheses are convex combinations of weak sanker

(scaling as\/In(m)/m).

4. Coordinate-Based Ranking Algorithms

In the previous section we presented a uniform bound that holds féralf . In this section, we
discuss how a learning algorithm might pick one of those functions in ordeak@P,{misrank }
as small as possible, based on intuition gained from the bound of Theor@®urdound suggests
that given a fixed hypothesis spageand a fixed number of instanceswe try to maximize the
margin. We will do this using coordinate ascent. Coordinate ascent/descemntilar to gradient
ascent/descent except that the optimization moves along single coordieateattxer than along
the gradient. (See Burges et al., 2005, for a gradient-based rarigiogttam based on a proba-
bilistic model.) We first derive the plain coordinate descent version of Baogt, and show that
it is different from RankBoost itself. In Section 4.2 we define the smoatkirg marginG. Then
we present the “smooth margin ranking” algorithm, and prove that it make#isant progress to-
wards increasing this smooth ranking margin at each iteration, and ceswerg maximum margin
solution.

4.1 Coordinate Descent and Its Variation on RankBoost’'s Objectig

We take the hypothesis spageto be the class of convex combinations of weak rankBy$;—1 . n,
whereh; : X — {0,1}. The functionf is constructed as a normalized linear combination ofiifse

¢ 2iMihi
Xl

where||A|[1 = YA}, Aj > 0.
We will derive and mention many different algorithms based on differejgative functions;
here is a summary of them:
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F(A) : For theclassificationproblem, AdaBoost minimizes its objective, denoked\), by coor-
dinate descent.

G(A) : Forclassification limited to the separable casige algorithms “coordinate ascent boosting”
and “approximate coordinate ascent boosting” are known to maximize than(&uadin
etal., 2007). These algorithms are based on the smooth classification 1Baxgin

F(\) : Forranking “coordinate descent RankBoost” minimizes its objective, denbtex)), by
coordinate descent. RankBoost itself minimizgs\) by a variation of coordinate descent
that chooses the coordinate with knowledge of the step size.

G(A) : Forranking limited to the separable castsmooth margin ranking” is an approximate
coordinate ascent algorithm that maximizes the ranking margin. It is bastéte@mooth
ranking marginG(\).

The objective function for RankBoost is a sum of exponentiated margins:

F(A) = e (SiAihi () =3 Ay () — 3 (M
{i,k:[T(xi,xk)=1]} iKECy

where we have rewritten in terms of a structivle which describes how each individual weak
rankerj ranks each crucial pak;, xk; this will make notation significantly easier. Define an index
set that enumerates all crucial paifs= {i,k: T(x;,xx) = 1}. Formally, the elements of the two-
dimensional matrixM are defined as follows, for indek corresponding to crucial pax;, Xk:

Mikj := hj(xi) —hj(Xk).

The first index ofM is ik, which runs over crucial pairs, that is, elementsGgf and the second
index j runs over weak rankers. The sizeMfis |G| x n. Since the weak rankers are binary, the
entries ofM are within{—1,0,1}. The notation-); means thg'" index of the vector, so that the
following notation is defined:

n n
£ [= KET,

for A\ € R" andd € RIGl,

4.1.1 GORDINATE DESCENTRANKBOOST

Let us perform standard coordinate descent on this objective funatiohwe will call the algorithm
“coordinate descent RankBoost.” We will not get the RankBoost dlgarthis way; we will show

how to do this in Section 4.1.2. For coordinate desceri aat iteratiort, we first choose a direction

jt in which F is decreasing very rapidly. The direction chosen at iterati@orresponding to the
choice of weak rankey;) in the “optimal” case (where the best weak ranker is chosen at each
iteration) is given as follows. The notati@pindicates a vector of zeros with a 1 in tie entry:

E :
jt € argmax[aO‘tJrae') ] = argmaxz e—(Mkt)ik,\AiKj
j Ja a=0 i e,
= argmax y dkMicj= argmaxd{M);,  (3)
I iKEG i
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where the “weightsth i« are defined by:
e~ (M B e~ (M
FOA)  Siee, & MM

ik =

From this calculation, one can see that the chosen weak ranker is a chticg, namelyj; is the
most accurate weak ranker with respect to the weighted crucial trainirgg peximizing(d{ M );
encourages the algorithm to choose the most accurate weak rankerspéctéo the weights.
The step size our coordinate descent algorithm chooses at itetdian, whereq; satisfies
the following equation for the line search along directijpn Define i, := {ik : My j, = 1}, and

similarly, I~ := {ik : Mic j, = —1}. Also defined;| := ke, Ok anddy := Fie; k- The line
search is:
aF (X i .
O - ( B‘(’x_aejt) — e—(M(At-‘rCXte]t))ik Mik.,j[

O=atiKeg,

— e (MM)ikg—ar _ Z e~ (MA0)ik it

ikE I+ kel
0 = di e —d_e™
1, (dy
= —In{=—=). 4
Ol 2”(@) (4)

Thus, we have derived the first algorithm, coordinate descent Rars#kB&seudocode can be
found in Figure 1. In order to make the calculation fipmumerically stable, we writd; in terms
of its update from the previous iteration.

4.1.2 RRNKBOOST

Let us contrast coordinate descent RankBoost with RankBoost. Gdteyminimize the same ob-
jectiveF, but they differ by the ordering of steps: for coordinate descenkBaost, j; is calculated
first, thenay. In contrast, RankBoost uses the formula (4)digiin order to calculatg;. In other
words, at each step RankBoost selects the weak ranker that yieldsghstldecrease in the loss
function, whereas coordinate descent RankBoost selects the wdadt Gf steepest slope. Let us
derive RankBoost. Define the following for iteratibfeliminating thet subscript):

|+j = {ik . Mik,j = 1}, Lj = {ik . Mik,j = —1}, |0j = {ik . Mik,j = O},
d,j = Gk, d_j:= Z Gk, doj:= Ck k-
ikel_;

kel ikeloj

For eachj, we take a step according to (4) of si%dn gf“] and choose thg; which makes the
objective functiorF decrease the most. That is:

. 0
ji: = argminF <)\t+ <;Injﬂ> ejt> — argmin § e~ (MMkg MiszIn ]
j - K
1
| dyp\ 2V
= argminy d ik ()
j % “\d
= argmin| 2(d;d- )2+ doy] . (5)
j
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1. Input: Matrix M, No. of iterationgmax
2. Initialize: Ay j=0forj=1,...,n,dyjx = 1/mfor all ik
3. LOOp fOI‘ t - 1, ...7tmax

@) jt € argma>§(dtT M); “optimal” case choice of weak classifier

(b) dt"r = Z{ik:Mikﬁjtzl} dLik! dt— = Z{ikZMik‘h:—l} dt,lk
() ag=3In (%)
(d) diy1ik = ok jxeMiic% /normaliz. for each crucial paik in ¢,

(&) Aty1= At +0rej, Whereej, is 1 in positionj; and O elsewhere.

4. Output: Ao/ | Atad 2
Figure 1: Pseudocode for coordinate descent RankBoost.

After we make the choice gf, then we can plug back into the formula foy, yieldinga; = % In gj—ﬁ

We have finished re-deriving RankBoost. As we mentioned before, |#lie goordinate descent
algorithm has more natural weak learning associated with it, since the wealed rghosen tries to
find the most accurate weak ranker with respect to the weighted crudis] paother words, we
argue (3) is a more natural weak learner than (5).

Note that for AdaBoost’s objective function, choosing the weak classiftd the steepest slope

(plain coordinate descent) yields the same as choosing the weak clasgffidrerargest decrease
in the loss function: both yield AdaBoo5t.

2. For AdaBoost, entries of the matiit areMi’]ma :=vyihj(xi) € {—1,1} since hypotheses are assumed tq b4, 1}
valued for AdaBoost. Thudpj = 0, and from plain coordinate desceft= argmaxd,j—d_j= argmax2d;;—1,

] i
thatis,jt = argmaxd,j. On the other hand, for the choice of weak classifier with the greatestatess in the loss

|
(same calculation as above):

jt argmin2(d, jd_j)"/2, thatis,
i

jt argmindj(1—d;j) = argmaxd?; —d.j,
i i

and sinced; j > 1/2, the functiomlij —d.j is monotonically increasing id, j, sojt = argmaxd. j. Thus, whether
j
or not AdaBoost chooses its weak classifier with knowledge of the stepitsizould choose the same weak classifier

anyway.
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4.2 Smooth Margin Ranking

The value ofF does not directly tell us anything about the margin, only whether the margin is
positive. In fact, it is possible to minimiZe with a positive margin that is arbitrarily small, relative

to the optimaf Exactly the same problem occurs for AdaBoost. It has been provedir{Rual.,
2004) that it is possible for AdaBoost not to converge to a maximum marditico, nor even to
make progress towards increasing the margin at every iteration. Thus, thie calculations are
identical for RankBoost, there are certain cases in which we can eRpe&Boost not to converge

to a maximum margin solution.

Theorem 6 (RankBoost does not always converge to a maximum margin solutierg &kist ma-
tricesM for which RankBoost converges to a margin that is strictly less than the raaximargin.

Proof Since RankBoost and AdaBoost differ only in their definitions of the maMrjxhey possess
exactly the same convergence properties for the same choble @here is an & 8 matrixM in

Rudin et al. (2004) for which AdaBoost converges to a margin value/8f Wwhen the maximum
margin is 38. Thus, the same convergence property applies for RankBoostateigrthe separa-
ble case to be able to solve for the asymptotic margin that AdaBoost or Rask8mnverges to; for
this 8x 8 example, AdaBoost’s weight vectors exhibit cyclic behavior, which abbaonvergence
of the margin to be completely determined. |

A more complete characterization of AdaBoost's convergence with respdee margin (and thus
RankBoost’s convergence) can be found in Rudin et al. (2007).

In earlier work, we have introduced a smooth margin function, which onentaximize in
order to achieve a maximum margin solution for the classification problem (Rudiln, 2007). A
coordinate ascent algorithm on this function makes progress towar@sagiicg the smooth margin
at every iteration. Here, we present the analogous smooth rankingdfuand the smooth margin
ranking algorithm. The extension of the convergence proofs for thigitigois nontrivial; our
main contribution in this section is a condition under which the algorithm makesqa®g

The smooth ranking functioB is defined as follows:

~ ._—Inlf(A)
G =T,

It is not hard to show (see Rudin et al., 2007) that:

G(A) <H(A) <p, (6)
where the margin can be written in this notation as:

(M)
IRV

H(A) = miin

3. One can see this by considering any veet@uch thafM ) is positive for all crucial pairgk. That is, we choose
any X that yields a positive margin. We can make the valug aefbitrarily small by multiplyingx by a large positive
constant; this will not affect the value of the margin because the margirinige, (M )ik /||A[|1, and the large
constant will cancel. In this way, the objective can be arbitrarily small, vthgemargin is certainly not maximized.
Thus, coordinate descent éndoes not necessarily have anything to do with maximizing the margin.
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and the best possible margin is:

= min maxd'M); = max_  min(M\);.
g {d:3 ik di=1,di >0} j)<( )i {X3jA=1A20) (M)

In other words, the smooth ranking margin is always less than the true maltjioyugh the two
quantities become closer §3\||1 increases. The true margin is no greater tpathe min-max
value of the game defined W (see Freund and Schapire, 1999).

We now define the smooth margin ranking algorithm, which is approximately t@iedascent
onG. As usual, the input to the algorithm is matik, determined from the training data. Also,
we will only define this algorithm whef(\) is positive, so that we only use it once the data has
become separable; we can use RankBoost or coordinate desc&BdRanto get us to this point.

We will define iteratiort + 1 in terms of the quantities known at iteratitnAt iterationt, we
have calculatedy, at which point the following quantities can be calculated:

g = G(A)
weights on crucial pairgh j = e MMik/E(x)
direction i = argmaxd{M);
j
edgerc. = (d/M)j.

The choice ofj; is the same as for coordinate descent RankBoost (also see Rudin &04l), 2
The step size; is chosen to obey Equation (12) below, but we need a few more definitedoseh
we state its value, so we do not define it yet; we will first define recuesiwstions foir andG.
We also haves = || A¢||1 ands 11 = & + 0O, andgy1 = G(At + otej,), wherea; has not yet been
defined.

As before, ;. 1= {i,k|Mi;j, = 1, T(x;, xx) = 1}, k— = {i,k|Mixj, = —1, (X, Xx) = 1}, and now,
ko = {i,k|Mixj, = 0,T(Xj, Xx) = 1}. Also G :=3 ;, Ok, d- =3, Gk, anddo = ;, & k. Thus,
by definition, we havel, + d;_ + dig = 1. Now,r; can be writterr; = d;, — d;_. Define the factor

Tg = e % 4 €™ +dho, (7)

and define its “derivative”:

e ¢ el
A I ®)
da a=0y
We now derive a recursive equation fortrue for anya.
ﬁ(}q + aejt) = e(=MA)ik g=Mikj o

{ivk‘n(xhxk):l}
= F(A)(dhi€ "+ k€ +dho).

Thus, we have defined so that

ﬁ(At+1) = ﬁ()\t +Gtejt) = ﬁ(At)Tt.
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We use this to write a recursive equation Gr

G\ +ag,) = _In(FS([A—:——Ci;aejt)) :_I”(F()‘t))—ln;dt::“%-dte“+dto)
&  In(die*+d_e”+dho)

S+a S+

For our algorithm, we set = a; in the above expression and use the notation defined earlier:

B s InT;
O+1 = 9&+Gt St
OS —OS— G0t InTy 1
— = - =———[gar+InTy]. 9
Ot+1— O —ry P Y S[H[gt t t] )

Now we have gathered enough notation to write the equation;ftar smooth margin ranking.
For plain coordinate ascent, the updatesolves:

0 0G(X; +0ej,) _ 90 —InF (X +aej)
da a=o* 00 S+a o=a*
1| [—Inlf()\t—l—a*ejt)} —OF(Ac+aey)/oa|
C star s-+ar F(A+0arey)
1| St aton) s —alf(At+cxeh)/acx‘aia* (10
= - arej - = :
s +a O i F(Ac+orey)

We could solve this equation numerically fiot to get a smooth margin coordinate ascent algorithm;
however, we avoid this line search fot in smooth margin ranking. We will do an approximation
that allows us to solve fax* directly so that the algorithm is just as easy to implement as RankBoost.
To get the update rule for smooth margin ranking, weoséb solve:

—0F (A +0gj,) /00
a

1 ~ —a
0 = —G(\t) + = !
§ + Ot ) F (At +atej)
1 —TE(X
A (e O
& + Ot TtF()\t)
ot = -—T. (11)

This expression can be solved analyticallydoybut we avoid using the exact expression in our
calculations whenever possible, since the solution is not that easy to vitbrkoweur analysis:

—gicho+ /0P + (1490 (1— G)4ck ok

(149120 (12)

(Xt:m

We are done defining the algorithm and in the process we have derinesl sseful recursive
relationships. In summary:
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Smooth margin ranking is the same as described in Figure 1, except3tgis(replaced by
(12), wheregh=1—di. —di— and g = G(\;).

Binary weak rankers were required to obtain an analytical solutionfdout if one is willing
to perform a 1-dimensional linesearch (10) at each iteration, reald/édatures can just as easily
be used.

Now we move onto the convergence proofs, which were loosely inspiyatidoanalysis of
Zhang and Yu (2005). The following theorem gives conditions whenlgithm makes significant
progress towards increasing the valueso#t iterationt. An analogous statement was an essential
tool for proving convergence properties of approximate coordinatena$oosting (Rudin et al.,
2007), although the proof of the following theorem is significantly more diffisince we could
not use the hyperbolic trigonometric tricks from prior work. As usual, teakdearning algorithm
must always achieve an edgeof at leasip for the calculation to hold, where recall= (df M);, =
di. —di_. At every iteration, there is always a weak ranker which achieves &dgastp, so this
requirement is always met in the “optimal case,” where we choose thebssible weak ranker
at every iteration (i.e., the argmax ovgr There is one more condition in order for the algorithm
to make progress, namely that most of the weight should indicate the strdrpthweak ranker,
which implies thatd; cannot take too much of the weight. Specificathy < %(1— re)(1—r2),
which is derived from a bound on the second derivative of the step size

Theorem 7 (Progress according to the smooth margin) K g < rr < 1and0 < dyp < %(1—
re)(1—r?) the algorithm makes progress at iteration t:

log(re—o)
— > =7
Ot+1— G = 2 sn

The proof of this theorem is in Section 7. This theorem tells us that the vathe sfooth ranking
margin increases significantly when the conditiondgrholds. This theorem is the main step in
proving convergence theorems, for example:

Theorem 8 (Convergence for smooth margin ranking) if et %(1— re)(1—r?) for allt, the smooth
margin ranking algorithm converges to a maximum margin solution, thdins,...g: = p. Thus
the limiting margin isp, that is,lim¢_.. i(At) = p.

Besides Theorem 7, the only other key step in the proof of Theorem 8 i®Hibeing lemma,
proved in Section 7:

Lemma 9 (Step-size does not increase too quickly for smooth margin ranking)

lim 2 —o.

t=o S
From here, the proof of the convergence theorem is not difficult. Thectwditions found in The-
orem 7 and Lemma 9 are identical to those of Lemma 5.1 and Lemma 5.2 of Rudirf{20GA).
These are the only two ingredients necessary to prove asymptotic ceneergsing the proof out-
line of Theorem 5.1 of Rudin et al. (2007); an adaptation of this prodicesfto show Theorem 8,
which we now outline.

Proof (of Theorem 8)The values ofg: constitute a nondecreasing sequence which is uniformly
bounded by 1. Thus, a lim@., must existg. := limi_. g. By (6), we know thag; < p for all
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t. Thus,g. < p. Let us suppose that, < p, so thatp — g. # 0. This assumption, together with
Theorem 7 and Lemma 9 can be used in the same way as in Rudin et al. (280@ytthaty oy
is finite, implying that:
tIim a; = 0.
Using this fact along with (11), we find:
e e e =T —(—Oe % dhe®)
Oo = tIm}gt = I'Q'Qfgt = |Im|°£lf T Ilm[gf de o 1 d e 1 do

= liminfr; > p.
t—oo

This is a contradiction with the original assumption tixat< p. It follows thatge = p, or lim; .. (p—
o) = 0. Thus, the smooth ranking algorithm converges to a maximum margin solution. W

5. AdaBoost and RankBoost in the Bipartite Ranking Problem

In this section, we present an equivalence between AdaBoost arkiBB@st in terms of their be-
havior on the training set. Namely, we show that under very natural consljitidaBoost asymp-
totically produces an area under the ROC curve value that is equally dsagd®ankBoost’s. Con-
versely, RankBoost (but with a change in the intercept), producessifatation that is equally as
good as AdaBoost’'s. Note that this result is designed for the nonad@parase; it holds in the
separable case, but the result is trivial since the area under theiswxactly one. Also, let us be
clear that the result is a theoretical proof based on the optimization of thmgaiet only. It is not
an experimental result, nor is it a probabilistic guarantee about perfee@na test set (such as
Theorem 2).

In the bipartite ranking problem, the focus of this section, recall that evairyng instance falls
into one of two categories, the positive cl¥ssand the negative clads. We will takeTt(x;, xx) =1
for each paii € Y, andk € Y_ so that crucial pairs exist between elements of the positive class and
elements of the negative class. Defie- +1 wheni € Y., andy; = —1 otherwise. The AUC (area
under the Receiver Operator Characteristic curve) is equivalent tMamm-Whitney U statistic,
and it is closely related to the fraction of misranks. Specifically,

1—AUC(A) = Yiev. Jkev LMAW=0 _ g0 ction of misranks
Y l[Y-]

In the bipartite ranking problem, the functiénbecomes an exponentiated version of the AUC, that
is, sincely<q < e X, we have:

Y |[Y-[(1-AUC(X)) = Z S L < Y Y e MVR=F(X). (13)
€Y, keY_ €Y, keY_

We define the matri%1292 which is helpful for describing AdaBoodt1%%2is defined element-
wise byMﬁda: yihj(xj) fori=1,...mandj =1,...,n. Thus,My; = h;(xi) —hj(xk) = yihj(xi) +
yichj (k) = Mﬁda+ MkAjda. (To change from AdaBoost’s usué-1,1} hypotheses to RankBoost's
usual{0,1} hypotheses, divide entries bf by 2.) Define the following functions:

Fr () = Z e M N and F(A) = § &Mk,
€Y, keY_
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The objective function for AdaBoost B(A) := F,(A) +F_(A). The objective function for Rank-
Boost is:

F(A) = Z sz exp[—Z)\jhj(xi)] exp
i€Y, keY- ]

Z z eXp[—Z)\jyihj(Xi)] exp
ieYy key_ ]

Thus, both objective functions involve exponents of the margins of tharigainstances, but with
a different balance between the positive and negative instancesthitéges, the objective func-
tion favors instances to be farther away from the decision boundarga~eten the instances are
correctly classified and not close to the decision boundary. (This is itvagirno support vector
machines which do not suffer any loss for non-support vectors. i§hise main reason why an
analogous result does not hold for SVMs.)

We now define a quantity calldetskew

J

+Z)\jhj(xk)]

- pjykh,-<xk>] —F.OF-(A). (14)
J

F-skew(A) := F (A) — F_(A). (15)

F-skew is the exponentiated version of the “skew,” which measures théantgabetween positive
and negative instances. The “skew” plays an important role in the esiprssof Cortes and Mohri
(2004, 2005) and Agarwal et al. (2005). The F-skew measuresnmaeh greater the positive in-
stances contribute to AdaBoost’s objective than the negative instamftles.H-skew is 0, it means
that the positive and negative classes are contributing equally.

The following theorem shows that whenever the F-skew vanishes,emuence)\; that opti-
mizes AdaBoost’s objectivE also optimizes RankBoost’s objecti#e and vice versa.

Theorem 10 (Equivalence between AdaBoost and RankBoost's objective$\LEt ; be any se-
guence for which AdaBoost's objective is minimized,

lim F (A) =infF(X), (16)

t—o0

and lim F-skew(\;) = 0. Then RankBoost's objective is minimized,

t—oo

lim F(X;) = ir;\flf()\). (17)
t—oo

Conversely, for any sequence for which RankBoost’s objective is midinaizd for which the F-
skew vanishes, AdaBoost'’s objective is minimized as well.

The proof of the converse follows directly from
(Fr(N) +F-(N)? = (F(X) = F-(X))? = 4R (A)F-(N),

Equations (14) and (15), and continuity of the functions involved. Theff the forward direction
in Section 8 uses a theory of convex duality for Bregman divergensesaied by Della Pietra et al.
(2002) and used by Collins et al. (2002). This theory allows charaatenzfor functions that may
have minima at infinity like® andF.

Theorem 10 has very practical implications due to the following, proved cticBe8:
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Corollary 11 (AdaBoost minimizes RankBoost’s objective) If the constant weakhtegi®hy(x) =
1is included in the set of AdaBoost’s weak classifiers, or equivalenill/,\{f has a columnd such
that MAda_ yi for all i, and if the {\¢ };> ; sequence obeys (16), thdrm F-skew( ;) =

This result and the previous together imply that if the constant weak hygistiseincluded in
the set of AdaBoost’'s weak classifiers, then the F-skew vanishefRamkBoost's objectiv@~ is
minimized.

Not only does AdaBoost minimize RankBoost's exponential objectivetifoimén this case, it
also achieves an equally good misranking loss. Before we state this formsadytteeorem, we
need to avoid a very particular nonuniqueness problem. Namely, therenes ambiguity in the
definition of the ranking loss for RankBoost and AdaBoost due to thiganipess in the algorithms,
and the discontinuity of the functioh,q, which is used for the misranking 10$§ 1w x)<g-
The arbitrariness in the algorithms arises from the argmax step; since aigraaset that may
contain more than one element, and since the algorithm does not specifyaldmcant in that set
to choose, solutions might be different for different implementations. &hes many examples
where the argmax set does contain more than one element (for instanexathples in Rudin
et al., 2004). The vectorim 1M>\I<0] may not be uniquely defined; for sonng pair we may

have I|m (MAp)ik =0, and i |n that case, values dfm 1[(M>\1)k<0] may take on the values 0, 1, or

the I|m|t may not exist, depending on the algorlthm Thus, in order to write a derthiborem,
we must eliminate this pathological case. No matter which implementation we choissenlgh
becomes a problem ifim (M ;)i = 0, that is, there is a tie in the rankings. If there is no tie, the

t—oo
result is deterministic. In other words, when the pathological case is elimirthetmiting AUC
can be defined and AdaBoost asymptotically achieves the same AUC aBdrestik

Theorem 12 (AdaBoost and RankBoost achieve the same area under the RO} Qamsider any
two sequence§\; }+ and{A{} that minimize RankBoost's objectie that is,

imF(\) = limF(\) = ir;\flf(A).
t—oo t—oo

Then, if each positive example has a final score distinct from each negstample, that is,

Vik, I|m (MAp)ik # 0, I|m (M)\t).k # 0, then both sequences will asymptotically achieve the same

AUC value That is:

lim Lmagu<a | = lim Limane<ol | -
halld L;k; (<o | = fim i;ﬂ;ﬁ [(MA)K<0

The proof is in Section 8. This theorem shows that, in the case where ke\Franishes and there
are no ties, AdaBoost will generate the same area under the curve valaiikBoost does. That
is, a sequence of’s generated by AdaBoost and a sequenca;&f generated by RankBoost will
asymptotically produce the same value of the AUC.

Combining Theorem 10, Corollary 11 and Theorem 12, we can concludétowing, as-
suming distinct final scoresf the constant hypothesis is included in the set of AdaBoost’s weak
classifiers, then AdaBoost will converge to exactly the same area uhedrOC curve value as
RankBoost.Given these results, it is now understandable (but perhaps still sng)ribat Ada-
Boost performs so well as a ranking algorithm.
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This logic can be made to work in reverse, so that adding a constant legth RankBoost's
output will also produce a minimizer of AdaBoost’s objective. In ordertfis to work, we need
to assign the coefficient for the constant classifier (the intercept) te fitve F-skew to vanish.
Changing the coefficient of the constant hypothesis does not affatdtBbost’s objective, but it
does affect AdaBoost’'s. We choose the coefficient to obey the folpwin

Corollary 13 (RankBoost minimizes AdaBoost’s objective) Defyres jthe entry corresponding to
the constant weak classifier. Takgto be a minimizing sequence for RankBoost’s objective, that is,
Xt obeys (17). Considexforectedyhere:

)\tcorrected:: )\t +btej0,

whereej, is 1 in the JI' entry corresponding to the constant weak classifier, and 0 otherwigk, a

where:
1 N Fr(X)

T2 F (W)

Then,\¢°mecdconverges to a minimum of AdaBoost's objective, thaxi&Tedobeys (16).

by

The proof is in Section 8. Now, we can extend to the misclassification erroe. pfoof of the
following is also in Section 8:

Theorem 14 (AdaBoost and RankBoost achieve the same misclassification eonsjder any two
sequencegforected, and {corectedy, corrected as in Corollary 13, that minimize RankBoost's
objectiveF, that is,

lim F(AEMeCte) = lim F(A20C%) = inf F(X).

t—oo t—oo

Then, if no example is on the decision boundary, thatiis Jim (MAdaygorrected, £ g,
t—oo

vk lim (MAdaAtcorrected)k 7& 0, andVi, lim (MAdaA{correctecﬁi 75 0, vk lim (MAdaA{corrected)k 75 0, then
t—oo t—oo t—oo
both sequences will asymptotically achieve the same misclassification hagss:T

lim [Z 1[(MAda)\tcorrected)i§0] + z 1[(MAda)\$0fl’eCted)k§0]]
tow &y, keY_

= |im [ 1[(MAda>‘{correcte%§0] + Z l[(MAdaAtfcorrected)k<o]] .
t—oo &y, kEY_

Thus, we have shown quite a strong equivalence relationship betwe&B&ast and AdaBoost.
Under natural conditions, AdaBoost achieves the same area undeOtielRve as RankBoost,
and RankBoost can be easily made to achieve the same misclassificatiomsefaBoost on the
training set.

The success of an algorithm is often judged using both misclassificatioreexddhe area under
the ROC curve. A practical implication of this result is that AdaBoost andkBRaaost both solve
the classification and ranking problems at the same time. This is true undemttliéats speci-
fied, namely using a set of binary weak classifiers that includes the cbitasifier, and using the
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correction for RankBoost's intercept. In terms of which should be usediave found that Ada-
Boost tends to converge faster for classification (and uses less membpgreas RankBoost tends
to converge faster for ranking. If the algorithm is stopped early, wgesighat if misclassification
error is more important, to choose AdaBoost, and conversely, if arear timel ROC curve is more
important, to choose RankBoost. Asymptotically, as we have shown, theygeaequally good
solutions for both classification and ranking on the training set.

5.1 Connection to Multiclass/Multilabel Algorithms

The results above imply convergence properties of two algorithms for gatviriticlass/ multilabel
problems. Specifically, the algorithms AdaBoost.MH and AdaBoost.MR of @ahand Singer
(1999) have the same relationship to each other as AdaBoost and RetkBo

In the multilabel setting, each training instancec X may belong to multiple labels iy,
where? is a finite set of labels or classes. The total number of classes is denotedEkgmples
are ordered pair&,Y), Y C 9. We use the reduction of Schapire and Singer (1999) where training
example is replaced by a set of single-labeled training exampl&s yi¢) }¢1,... c, wherey;, = 1 if
yie € Y; and—1 otherwise. Thus, the set of training examples are indexed by ip&irg/ithin this
reduction, the weak classifiers become X x 9" — R.

Let us now re-index the training pairs. The training paifsvill now be assigned a single index.
Define the entries of matrixl by I\7I7j = yhj(xy, yr) for all pairsi, ¢ indexed by.” With this notation,
the objective function of AdaBoost.MH becomes:

FvnH ()\) = Z exp(—l\7| )\)T-
|
Using similar notation, the objective function of AdaBoost.MR becomes:

A= S e S e
Te{{i,¢}yie=1} ke{{i 0}y e=—1}

The forms of functiongy andFyr are the same as those of AdaBoost and RankBoost, respec-
tively, allowing us to directly apply all of the above results. In other wotlds,same equivalence
relationship that we have shown for AdaBoost and RankBoost applidgdaBoost. MH and Ada-
Boost.MR.

Now, we move onto the proofs.

6. Proofs from Section 3

This proof in large part follows the approach of Bartlett (1998) ancafizk et al. (1998).
For f € F, we will be interested in the expectation

Po.t i= Pz [f(X) — F(X) <O T(X,X) = 1] = Egzen |10 f(x)<0) | TUX,X) = 1]
as well as its empirical analog

Po.r :=Ps{marginy <8} = Przs[f(X)—f(X) <0|mMXK) =1]
= Exz~s|[Liw-fr<g | XX =1].
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Note that in this notation,

Pp{misrank } =Pg s.
Our goal is to show thatd} < I59,,f +eforall f € F with high probability. To do so, we will first
show that for everyf € 7,

. . 3
Pot —Po.t <Pgj2g—Paj2g+ >

for someg in the coverg, and then show that the differencg, £, — I59/2,g on the right must be
small for allg € G, with high probability.

Lemma 15 Let f and g be any functions i, and let D be any joint distribution on pairs X. Let
0<0; <6, Then

Exs~0 [1i(®0-f(x)<61) — Lg®)- g(~ %)<65]
-0 - - 6,—0
< Paro {110 -1 = 25} + Fao {11000 = 252 .

Proof First, note that
1 ify<B1<B<z
Ly<ey = Lle<e =\ o otherwise

which means that this difference can be equal to 1 oray-ify is at leasB, — 6;. Thus,

Exx~D [ (10— (%)<82) — Ligx) —g(x )<92]]
PX,XND{f i) - f( ) S el < e2 < 9(@ _g()?)}

< Prao (1(1() ~ 1(30) — (06~ g%)] > 0 — )
< Focol 199001+ 1) -6 0061
< Paro {1160 -0®| = 5 VIR -] > 25 ]
< Paxe {1100 -0 = 252 4 Beo {1100 -a(0)] = 252}
by the union bound. |

The following lemma is true for every training s&t

Lemma 16 Let G be aB/4-sloppye/8-cover for . Then for all fe ¥, there exists & G such
that

. . €
Po,t —Pet < Pgj2g—Pgj2g+ >

Proof Letge G. Lemma 15, applied to the distributiah, conditioned om(x,X) = 1, implies

0 0
Pot —Poj2g < Pxpy {rf<x> —g(x)| 4} +Fen, {f(x) —g(x)| > 4}
whereD; and D, denote the marginal distributions enand X, respectively, under distribution
X, X ~ D, conditioned orm(X,X) = 1. In other words, for any eveni(x), Px.p, {w(X) } is the same as

Pgsp {w(X) | TI(X,X) = 1}, and similarlyPy.p,{w(x)} is the same aBx . {0(X) | T(X,X) = 1}.
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Likewise,

Poj2g—Po.t SPx~sl{|f(X)—g(X)l > 2}+Px~sz{\f(x)—g(x)| > 2}

whereS; andS; are distributions defined analogously for the empirical distributios.oFhus,

R - 0 S
Por —Pojag Pz —Pos < Fueoy {1100~ 9001 2 3 b+ B, {1700 - 9001 2 3}

s {1100 00012 0 b+ mes {100 9001 3}

- amo {110 -a001 2 5 (18

whereD* is the (uniform) mixture of the four distributiori3;, D,, § andS,. ConstructingD* in
this way allows us to find g that is close tof for all four terms simultaneously, which is needed
for the next step. Sincg is a8/4-sloppye/8-cover, we can now chooggto be a function in the
cover G such that

o {1100 9001 2 3} < §

which, plugging in to equation (18), proves the lemma. |

In the proof of the theorem, we will use tlggs to act as representatives (for slightly different
events), so we must show that we do not lose too much by doing this.

Lemma 17 Let G be ab/4-sloppye/8-cover for F. Then
N R €

Ps.pn {3f € F 1Pyt —Pos > €} <Pg_pnm {ag € G :Pgjag—Pojog> 5} :
Proof By Lemma 16, for every training s& for any f € ¥, there exists somge G such that
£
5
Thus, if there exists afh € # such that B¢ — I59’f > g, then there exists @< G such that 8/279 —
Po/2 > £. The statement of the lemma follows directly. |

Po.t — Paf < |59/2,g —Pgj2g+

Now we incorporate the fact that the training set is chosen randomly. Weiselh generalization
of Hoeffding’s inequality due to McDiarmid, as follows:

Theorem 18 (McDiarmid’s I nequality McDiarmid 1989) Let X, Xo, ... Xm be independent random
variables under distribution D. Let(k1,...,Xn) be any real-valued function such that for all
X1,X2, -+« s Xm; X{,

| (X1, s Xy s Xm) — F(Xg,.. 0, X1, ... Xm)| < .

Then for any > 0,

2¢?
le,XZ,..A,)((nND{f(X].uXZu 7Xm) - E[f (X17X27 7><m)] 2 S} S exp(__> )
i=

2 2
]P’xl?xz,._.’meD {E[f(Xl,Xz, ,Xnﬁ] — f(Xl,Xz, >Xm> > 8} < exp<—802> .
i=1
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Lemma 19 Forany fe 7,

B m(eE)?
PSw@m{PQf —Pot > 5/2} < 2€Xp{— (8 ) ] .

Proof To make notation easier for this lemma, we introduce some shorthand notation:

top, = Exx~@[1[f(>a f(%)<6 TUX, X)]

m
topg = Zl

botp) .=E = xx~{D[ (X
bots = ZZ (Xi, Xk)-

Since diagonal terms hav€Xx;, x;) which is always 0, top = Es.pm[tops] and similarly, boj, =
Es.pmlbotg]. Thus, we can bound the difference betweenstapd top, using large deviation
bounds, and similarly for the difference betweendaotd bot,. We choose McDiarmid’s Inequality
to perform this task. It is not difficult to show using the rulestahat the largest possible change
in topg due to the replacement of one example im1Similarly the largest possible change in ot
is 1/m. Thus, McDiarmid’s inequality applied to tg@nd bog implies that for everg; > 0:

kg L (x)— f(xi) <0 TI(Xi, Xk)
)]

3 <

exp—2e3m)|
exp—2e3m).

Ps.pm{tOp;, —tops > €1}

<
Ps.pm{bOts—boty > &1} <

Here, we use; to avoid confusion with the in the statement of the lemma; we will specgyin
terms ofe later, but since the equations are true for apy- 0, we work with generat, for now.
Consider the following event:

top, —topg< €1 and bog— boty < €.

By the union bound, this event is true with probability at Ieastﬂexﬁ—Zs%m}. When the event is
true, we can rearrange the equations to be a bound on

top, tops

bot, bots’

We do this as follows:
top, tops top, topp,—¢&

bot, bots ~bot; boty+gq (19)

If we now choose:
ebotp S eboty €E

top, = :
T2-e42d2 T 4 4

then the right hand side of (19) is equakt®. Here, we have usdfl:= boty, and by the definition
of top,, and boi,, we always have tap < bot,. We directly have:

2
1—2exg—2e2m| > 1—2exp<—2m {84] > .
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Therefore, from our earlier application of McDiarmid, we find that withlyability at least

1- 2exp[— m(ZE)Z}

the following holds:

A to to
Pot — Pt = 7b0?[2 - %tz <g/2.

As mentioned earlier, we could have equally well have written the lemma in terme eith
pirical quantity boj rather than in terms dE. We have made this decision because the bound is
useful for allowing us to determine which quantities are important to maximize ialgorithms;
we cannot maximize bgtin practice because we are choosmgandom instances fror®, thus
we have no influence at all over the value of pat practice. Either way, the bound tells us that the
margin should be an important quantity to consider in the design of algorithms.

Also, note that this proof implicitly used our simplifying assumption that the trutictfan 1t
is deterministic. In the more general case, where the valxexy) of each training paix;, Xk is
determined probabilistically, an alternative proof giving the same resuliegiven using Azuma’s
lemma.

Proof (of Theorem 2) et G be aB/4-sloppye/8-cover of F of minimum size. Applying Lemma 17,
the union bound, and then Lemma 19 &2, we find:

. R €
Ps.pm{3f € F:Pos—Por>e} < Pwm{ﬂgegrpe/z,g—Pe/z,gZ }

2
5 £
< Ps.om{Pej2g—Poj2g = 5
gezg { /2,9 g 2}

gezgz exp(— m(88E)2>

_ N(T 0 s>26xp[_m(sE)2}

IN

48 8
Now we put everything together. With probability at least

!

Pp{misrank } =Py s < Ise,f +¢&=Pg{marginy <0} +¢.

we have
Thus, the theorem has been proved. |

We now provide a proof for Lemma 3, which gives an estimate of the coverimgber for
convex combinations of dictionary elements.
Proof (of Lemma 3)Ve are trying to estimate the covering number fgrwhere

_‘]'-Z{f Zf:Z)\jhj,Z)\j:l,Vj Aj>0,hj: X — {0,1},h; 6.7‘[}
J J
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Consider the following segy of all g that can be written as a simple averag&aflements ofH:

1
GN—{N(91+---+9N)1917---,9N€}[}-

We claim thatGy is a6-sloppye-cover when

In(2/¢)
N> 202
To show this, letf be any functionf, and letD be any distribution. We know thdt =y ; Ajh;
for someA;’s as above, where the number of terms in the sum can be much mordlthaet us
pick N dictionary elementsgy, . ..,gn from # by choosing them randomly and independently with
replacement according to the distribution imposed by the coeffickenthat is, eacly; is selected
to beh; with probability equal ta\j. Thus, ifA; is large, it is more likely thah; will be chosen as
one of theN chosen elementy, ..., gn. Construcy as the average of thodkéelements.
Let x € X be any fixed element. Theg(x) is an average oN Bernoulli random variables,
namely,gi(X),...,9gn(X); by the manner in which eaoy; was chosen, each of these Bernoulli
random variables is 1 with probability exactlyx). Therefore, by Hoeffding’s inequality,

(20)

Pg{|g(x) — f(x)| > 6} < 26 2N

wherePgy{-} denotes probability with respect to the random choicg. of
This holds for everi. Now letx be random according ©. Then

Eg[Px~p {|f(X) —9(X)| > 8}] = Ex.p[Pg{|f(x)—g(X)| > 6}]
< Eywp [Ze*ZSZN} — e 2N,

Thus, there existg € Gy such that
Pyen {|f(X) —g(x)| > 6} < 267N,

Hence, selectinyl as in equation (20) ensures thgy is a6-sloppye-cover. The covering number
A(F,8,¢) is thus at most
|Gn| < |7,

which is the bound given in the statement of the lemma. |

7. Proofs from Section 4.2

Proof (of Lemma 9)There are two possibilities; either lim, § = o or lim;_» & < . We handle
these cases separately, starting with the case.lim = «. From (9),

S+1(G+1— ) = —go —InT
$(0t+1—0) = —G0t—0t(G+1—G) —InTy
$(O+1—0) = —Gr1—InT
S(%+1—0) +INTe+0r = 0(1—gir1) > o (1—-p)
Gy1—G  INT+or oo o

1-p  s(1-p) S Sl
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Since theg;’s constitute a nondecreasing sequence bounded (@y.4,— g) — 0 ast — o, so the
first term on the left vanishes. The second term will vanish as long aawbaund It + a; by a
constant, since by assumptien;— co.

We defineg; as the first positive value (@(At); the value ofG only increases from this value.
In order to bound Im; + o, we use Equation (11):

Inti+0a; = In(—1{) —Ing +0; =In[d, e " —d_€e"] —Ing + ¢
= In[dy; — k€] +Ine ® —Ing +ay
< Indy —Ing <Inl—Ingj=—Ing; < co.

Thus, the second term will vanish, and we now have the sequarnsg 1 upper bounded by a
vanishing sequence; thus, it too will vanish.
Now for the case where lim. & < . Consider

iat _ iaﬂ—&:i/aﬂldu
&S+ & S+ Sils S
T S+1 ] Sr+1 1 S
< / Zdu= Sdu=InTL,
Ss u s u 1

By our assumption that lim.., s < «, the above sequence is a bounded increasing sequence. Thus,
Pyt s?ll converges. In particular,

. a
lim —— = 0.
t—o i1

Proof (of Theorem 7)The proof relies completely on an important calculus lemma, Lemma 20
below. Before we state the lemma, we make some definitions and derive somi@itdatisr use.

We will be speaking only of iterationsandt + 1, so when the iteration subscript has been

eliminated, it refers to iterationrather than iteration+ 1. From now on, the basic independent
variables will ber,g anddy. Here, the ranges areOr < 1,0<g<r,0<dy < %(1— r)(1—r?).
We change our notation to reinforce thid; andd_ can be considered functions of the basic
variablesr anddp sinced; = (1+r —dp)/2 andd_ = (1—r —dp)/2. Also definet(r,g,dp) := Tt,
7'(r,g,do) = 1/, anda(r,g,do) := at, which are specified by (7), (8) and (11).

Define the following:

—Int(r,g,d
r(r’ g, dO) = a(r(g 30)0)

I(r,g,dg) —
B(r,9,do) = (?_(gg.

Now we state the important lemma we need for proving the theorem.
Lemma 20 For0<r<1,0<g<r, 0<dy< Z(1-r)(1-r?),

B(r,g,do) > 1/2.
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The proof is technical and has been placed in the Appendix. Using onlyetmisa, we can
prove the theorem directly. Let us unravel the notation a bit. From theitifirof " (r,g,do)
and Lemma 20:

InT(r g dO)

r+g
r,g,d +(r—g)B(r,g,do) > ——
a(r.9,0) r(r,9,do) = g+ (r —9)3(r,9,do) >

(r-+9)a(r.g.do)

—Int(r,g,d0) > :

Using this relation at timéand incorporating the recursive equation, Equation (9),

(rt+gt):| _ }at(rt_gt).

O1—0 = i[—gtcx —Inr}>at[—gt+
" S N T g 2 2 sn

+1 +1

We have proved the theorem, minus the proof of Lemma 20 which was the keyLstemma 20 is
a challenging calculus problem in three variables. For the sake of intuiteplat3 as a function
of r andg for fixed dp = 0.01 in Figure 2. The result of Lemma 20 is apparent, namely #hast
lower bounded by 2.

T

e A \\\\\\\\ i
§\‘\\\}}\\\\\\ \\\\Q\\‘\\\ T \ ‘“\\\\Q\\
‘\\\\\\\\@ \“‘“““ ¢¢\‘\\\‘ -

1
i
\\\\\\\‘ \ \\\\\\\\\\\\\\\
«\\\\\\\\“\\:\‘&ﬂ\\e}\%\‘ﬁ
0
A \

|
0.55+

Figure 2: Surface plot oB as a function of andg with dg = 0.01.

8. Proofs from Section 5

Proof (of Theorem 10A proof is only necessary to handle the nonseparable case, sincetthe sta
ment of the theorem is trivial in the separable case. To see this, assutibdirae are in the
separable case, that is,

lim F. (A) = limF_(A\) =0,

t—o t—o
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thus
lim F(\) = lim F(A) =0
and we are done. For the rest of the proof, we handle the nonsépasasie.

It is possible that the infimum df or F occurs at infinity, that isf or F may have no mini-
mizers. Thus, it is not possible to characterize the minimizers by setting thedirgatives to zero.
So, in order to more precisely describe the conditions (16) and (17)pweauge a technique used
by Della Pietra et al. (2002) and later used by Collins et al. (2002), in whickhonsider andF
as functions of another variable, where the infimum can be achievedeD&dr a particular matrix
M, the function

Define B -
P:={p|pi > OVi, (p)"M); =0V j}

Q :={q|g = exp(—(MX);) for someA}.

We may thus considéfy as a function ofy, that is,Fy () = 3™, &, whereq € Q. We know that
since allg’s are positive, the infimum df occurs in a bounded region gfspace, which is just
what we need.

Theorem 1 of Collins et al. (2002), which is taken directly from Della Pietrale(2002),
implies that the following are equivalent:

1. q* € Pn closure(Q).

2. 5* € argmirﬁe cIosuréQ)F_l\ﬁ((ﬂ'

Moreover, either condition is satisfied by exactly one vegtor _

The objective function for AdaBoost |5 = Fy,a«= and the objective for RankBoostH%:fM :
so the theorem holds for both objectives separately. For the furietioenoteq” asq*, also? as
PAdaandQ asQA@, For the functior, denoteq* asg*, also? as? andQ asQ. The condition
q* € PA%can be rewritten as:

M+ Y gMEfr =0V j. (21)

ey, keY_

Defineq; element-wise by := e—(MAdaMi, where the);’s are a sequence that obey (16),
for example, a sequence produced by AdaBoost. Thwus, QA9 automatically. By assumption,
F(qt) converges to the minimum &f. Thus, sincd- is continuous, any limit point of the;’s must
minimizeF as well. But becausg" is the unique minimizer df, this implies that]* is the one and
only Zp-limit point of theq;’s, and therefore, that the entire sequence;sfconverges t@* in /.

Now define vector§j; element-wise by

G ik = Ok = €XP{— (MAT )i — (MAT2 )] = expl—(M Ao -
Automatically,G; Q For any paii, k the limit of the sequence i is G, := g/ q.

What we need to show is thgt” = g*. If we can prove this, we will have shown thg };
converges to the minimum of RankBoost’s objective functibn, We will do this by showing
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thatg> € P; once we accomplish this, due to the uniquenes§*ods the intersection aP and
closuréQ) , we will have proved thafi” = §*. So, now we proceed to sho@’ € P, using our
assumption that the F-skew vanishes. Our assumption that the F-skelvagmcis be rewritten as:

lim [ Gi— » q[,k] =0,
toe |i&v, KEY-

that is, since all terms are bounded,
4= > G (22)

i€ + keY_

Consider the quantitie(sj”TM)j. Remember, if these quantities are zero for evietheng® € P
and we have proved the theorem.

@TM)) = 3 d MM
€Y keY_

Incorporating (22), which is the condition that F-sKeyy) = 0, (23) becomes:

GT™); = (Zq” GML% S gpMpe
ey, ey, keY_

In fact, according to (21), the bracket in this expression is zero foy. allhus,f« € P. We have
proved the forward direction of the theorem. The backwards direct®moted earlier, follows
from (F, +F_)2— (F. —F_)2=4F F_. u

Proof (of Corollary 11) Recall thatq* € P92 Specifically writing this condition just for the
constant weak classifier yields:

0 = S gMy™+ S aMiE® =Y gyi+ § gk
€Yy keY_ €Yy keY_
= g — Y gc= limF-skew\).
icY, keY_ o

Proof (of Theorem 12)Ve know from the proof of Theorem 10 that since }; and{ A }; minimize
F, we automatically have; = §* andg; — §* in £, where

q{ ik = e_(MA{)ik'

Thus, we have that for all crucial pairk such thai € Y, andk € Y_:

lim e MMk —  lim e MMk = gt |

t—oo t—o
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For each crucial pairk, if j > 1 then lim (MA¢)i <O, that is,

t—oo

t“m Limaow=<o =1,
and conversely, ifj} < 1 then

lim L aou<o = 0-

This is provided by the continuity of the functidi<o away fromz = 0, and since there are no
asymptotic ties in score as we have assumd# 1. The same statement holds fgr Summing
overi,k pairs yields:

lim Lmag<o | = lim Lm<ol | -
t—o00 [i;+k;_ [( t)k_ } t—oo ig+ke 3 [( t)k_ }

The theorem has been proved. Note that the AUC value is obtained frosuthidy the formula
(13). [ |

Proof (of C0[ollary 13 By Theorem 10, itis sufficient to show that the correction does notanfie
the value of~ () and that it makes the F-skew vanish. Consider the vexterce;,.

F(A+ce,) = Z sz exp[—Z)\jhj(xi)—c]exp
€Y, keY_ ]

+Z)\jhj(xk)+c
J

= Z z exp[—Z)\jhj(xi)] exp —f—Z)\jhj(Xk)] = If()\)
€Y, keY_ J J

So, changing the coefficient of the constant weak classifier will netathe values of (\). Now,

let's compute the F-skew of the corrected sequence:

F-skew( AP = F, (A+biej,) — F- (At bieyy)

_ Z e_(MAda}\t)i_bt . Z e_(MAdaAt)k""bt
€Yy keY_

= e PF (N —€F.(\) =0

where this latter expression is equal to zero by our choidg.ofince the F-skew of the corrected
sequence is always 0, the corrected sequence will minimize not only Rask8 objective, but
also AdaBoost’s. [ ]

Proof (of Theorem 14We will use a similar argument as in Theorem 12 for misclassification error
rather than for ranking error. By assumptioq,s a sequence that minimizes RankBoost’s objective
F and the correction forces the F-skew to be zero. TXfd&“®dminimizes RankBoost’s objective,
and Theorem 10 implies thato"ectedis also a minimizing sequence for AdaBoost’s objecfive
Using the same argument as in Theorem 12 substituting AdaBoost for RaskBve have that

MAdaAlcorrecte(ji A

lim e~ et

t—oo
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exists for alli and
MAdaAtcorrecterak "

lim e~ ai

t—o0

exists for allk. Now, we have that for each exampléf g¢ > 1 then lim (MA9)\,); < 0, that is,

t—oo

tIITo 1[(MAda>\tcorrectel§i§0} = 1,
and conversely, iff” < 1 then
lim 1[(MAda>\{:orrectecji§0} =0.

t—o0

The same holds for aland forA\/c°"ected Again, there is no asymptotic convergence to the decision
boundary as we have assumgti#1, §; # 1. The same statement holds fgForected summing
overi andk yields:

t—oo

lim [ 1[(MAda)\{:orrectetai§0]+ Z 1[(MAda>\f0"emeC5k<0]]
leyYy keY_

= Ilm [Ig 1[(MAdaA{correctec§i§0] + 1[(MAdaA{COrreCle(§k<0]] .
+

t—oo KEY.

9. Conclusions

We have presented three main results. First, in Section 3, we presentedralgation bound for
ranking. This bound incorporates a margin, allowing it to be useful in tharable case. The
second main result is an algorithm, smooth margin ranking, that maximizes thiegankrgin.
Our third result is that under very general conditions, AdaBoost satigssification and ranking
problems simultaneously, performing just as well for the ranking problefRasBoost. Con-
versely, RankBoost with a change in intercept performs just as wethéclassification problem
as AdaBoost.

10. Open Problems and Future Work

The three main results presented in this paper yield many new directiongdoe fesearch. We
gave a margin-based bound for general ranking. It is worth investggtitendesign of more special-
ized margin-based bounds for ranking. We have developed one suol in Rudin (2009); In that
work, we develop a specialized bound based on Theorem 2, desigeatptmsize the top portion
of the list.

We described a new ranking algorithm, smooth margin ranking, that maximizesattgin. It
would be natural to compare the empirical performance of the smooth margimgaalgorithm
and RankBoost. In fact, it is also worth considering the empirical perfocenaf AdaBoost to
RankBoost, now that we know AdaBoost can be used for ranking.

2224



MARGIN-BASED RANKING AND ADABOOST

Acknowledgments

We would like to thank the anonymous reviewers and the editor for their helpfoments; some
of these comments were especially helpful in formulating Corollary 13. Thamkdrian Banner
and Richard Sharp for their patience and assistance with earlier ved$itihresproof of Lemma 20.
Thanks also to Corinna Cortes and Mehryar Mohri, who co-authorectlaninary conference
version of this work.

This material is based upon work partially supported by the National Sclemeedation un-
der grants 11S-0325500 and CCR-0325463. CDR was supported biS& postdoctoral research
fellowship under grant DBI-0434636 at New York University.

Appendix A. Proof of Lemma 20

We will first prove some properties af,t,I", and B in the following lemmas. First, we show
a(r,g,do) is a nonnegative, deceasing functiongofaind thatr(r, g, dp) is an increasing function of
g. We also provide a bound on the second derivative ,afvhich is the key step in the proof of
Lemma 20.

Lemma 21 (Properties ofu(r,g,do) andt(r,g,do)) For fixed values of r andgl considering g as a
variable, within the rang® < g <r:

(i) lima(r,g,do) =0,
(ii) 9a(r,g,do) _ —1(r,g,do) _ —1(r,9,do)

dg  gv(r,g,do) +17(r,g,do) (1—g?)t(r,g,do) —do <0,
i) T390
(v)  1(r,0,1—r)=1-r<do+4/(1—dp)2—r2=1(r,0,do),
(Vi) W < 0 whenever g < g(l—r)(l—rz) and g> 0.

Proof By definition

1(r,0,do) = WZ—dO)eamg,do) N (142—"0)ea(r,g,do> o
T(r,9,do) = —(1+r2_do)e‘“(r~9’d0) T (1_rz_do)ea(r,g.,do)7

and similarly defineg” (r,g,do) =1(r,g,dg) — do. Part (i) can be seen from (11), thatist'(r,g,dp) =
gt(r,g,do), which simplifies to

(A+1-00) —arga)  (1="—=d0) aprga)
5 2
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=g (1 + r2_ dO) efu(r,g7do) +9 (1 — I‘2— dO) ea(ng,do) + gdo,
so one setg = r and verifies thatt = 0 satisfies the equation. Part (ii) is shown by taking implicit
derivatives of (11) as follows:

a(](rf;g’cj())(gtl(rv g, dO) + T//(r7 g, dO)) +T(r7 g, dO) = 07
that is,
aa(r7 g, dO) _ _T(rv g, dO) (24)
ag gT,(ra g, dO) + T”(I’, g, dO) ,

and then simplifying using (11) and the definitiontfr, g,do). For the inequality, the numerator
is negative, and the denominator is (usthgd_ notation)g(—d,e *+d_e")+d e *+d e =
(1—g)d,e “+(1+g)d_€e* > 0 sinceg < 1. Part (iii) is shown from (i) and (ii); fog — r, we
havea(r,g,do) — 0, and thug (r,g,do) — 1. The inequality comes from-1r?2 —dy > 1—r —do =
2d_ > 0. To show (iv), by the chain rule,

aT(r7 g, dO)
a9

da (ra g, dO)

.,
=T (r7 g, dO) ag

Sincet(r,g,dp) > 0 andt’'(r,g,do) = —gt(r,g,do), we knowt'(r,g,dp) < 0. Additionally, from

(i), g—‘g‘ < 0. Thus (iv) is proved. For (v), we know that when= 0, T'(r,g,do) = —gt(r,g,do)

1/2
1-r—dp

Substituting this into the definition afyields the equality conditions in (v). The inequality comes

from the fact that the right hand sidd; + /(1 — dp)2 — r2, is monotonically decreasing . For

(vi), a derivative of (24) yields:

meanst’(r,0,do) = 0. Using the definition for’(r,g,do), we find thate®(0.d) — (1”7‘0'0

aZa (ra g, dO)

(gT/<r7 g,do) +T”(r7 g,do)) 692

= — (aa(réga dO)) [(aa(régad0)> (gT”(I’, g,d0)+T///(r, g’ do))+2T/(r,g7do) ’

wheret”'(r,g,do) =T'(r,g,do). The left expression (usirdy.,d_ notation) isgt’(r,g,do) +1”(r,g,do) =
d.(1-g)e “+d_(1+9g)e* > 0 sinceg < 1. Since (ii) shows thada /dg < 0, we are left to show
that the bracketed expression on the right is negative in order for tomdealerivative ofx to be
negative. Consider that quantity:

(aa(r, g,do)

ag ) (gTH(r7 g, dO) + T”/(ra g, dO)) + 2T/(r7 g, dO)

" /
:.[/(l,7 g,dO) |:aa(r7 g, dO) <gT (r7g7d0)+T (r7g7d0)> _'_2:|

og T'(r,9,do)
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and substituting’(r,g,do) = —gt(r,g,do) andt”(r,g,do) = 1(r,9,do) — do,

_aa(r’ g, dO) <gT(r7 g, dO) - g(b - gT(ra g, d0)> :|
= 1(r,g,d +2
(1.6.do) | =5 —gt(r,g, do)

-aa(ragadO) ( do ) :| "
= T1(r,g,d +2| and from (ii),
(r.0,do) | 99 1(r,9,do) )

! B
= T1(r,g,d
(:9.%0) | T ye(r, g, do) — o

Since—1/(r,9,dg) = gt(r,g,dp), we knowt'(r,g,do) < 0 wheng > 0. Let us show that the bracketed
expression of (25) is positive. Using our assumptiordgralso 1-r?2 < 1—g?, (v), and (iv),

+ 2] . (25)

do < (1—r2)(1—r)§ < (1—92)(1—r):—§ = (1—gZ)T(r,O,1—r)§

< (- Pr0.do)s < (1- (g co) 2.
Rearranging this yields
do
[(1 - gz)T(ra g, dO) - dO]
The proof is finished. |

< 2.

In order to build up to Lemma 20, we need some propertid§ 0, dy) andB.

Lemma 22 (Properties of (r,g,do)) For every fixed value of r andhydconsidering g as a variable,
within the rangeD < g <r:

() limr(rg.d)=r
(i)  T(rgd)>g
(i) ar(;gdo) >0
(iv)  [(r,g,do) <r.

Proof The proof of (i) uses L'ipital’s rule, which we have permission to use from Lemma 21 (i)
since limy_ a(r,g,do) = 0.

v'(r,g,do) da(r,g,do)

) . —Int(r,g,do) . T Trgd) 09 B
g rod) = I g on  srem gn9"
]

Here we have used that lyn, %gd") is finite from Lemma 21 (ii), and applied (11), that is,
—1'(r,9,do) = gt(r,g,do).

For the proofs of (ii) and (iii) we consider the derivativeldfr,g,dy) with respect tay. Recall
thatt/(r,g,do) is given by the formula (8).

ar(rvgde) o |:_T/(ragad0) InT(r’g’dO):| 1 aa(ragadO)
ag B T(ra g, dO) a (r7 g, dO) a(ra g, dO) ag
aa(ragad0)> 1
= ([(r,g,dg) — — ) 26
rrgdo)-g (- 202) oo (26)
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For the last line above we used (11) and the definitiof @fg,dy). Sincea(r,g,do) is a posi-
tive, decreasing function af from Lemma 21 (ii), we know-da(r,g,do)/0g and Y a(r,g,dp) are
positive. Thus,

sign<ar(rég’do)) = sign(l'(r,g,do) — Q). 27)

We show next thaf (r,0,dp) > 0. From (11), we know & —1/(r,0,dp), which by definition of
T(r,g,do) in (8) givesa(r,0,do) = 3In(d, /d_) > 0. Now,

—Int(r,0,do) 1 1/2
M(r.0.do) =~ 0 ™ = o) (~1n (2(d )2+ do) ).
We also have @_d, )%?+dy < d_+d,; +do= 1, so we are done showing tHafr,0,do) > 0.

Now we proceed by contradiction. Assume that there is some valgevdiere 0< g < r, for
which " (r,g,do) < g. That is, assume the functiongr, g, dp) and f(g) = g cross. In that case, the
derivativedr (r,g,dp)/0g would have a nonpositive sign@t g by (27), and the functiof(r,g,do)
would be a nonincreasing function fg< g < r. That is, sincé (r,g,do) would have a nonpositive
slope atg, it cannot increase to cross the lifigg) = g in order to reverse the sign of the slope.
However, this is a contradiction, since the function must indeed increamesitreach the limiting
valuer asg — r, as we showed in (i). Hencg&(r,g,do) > g for all g such that 0< g < r, proving
(i), and thus by (27)9r (r,9,do) /dg > 0O for all g such that 6< g < r, proving (iii).

The proof of (iv) is again by contradiction. Fix arbitrary values ahddy. Assumd (r,g,do) >
r for someg < r. Since the functiorf (r,g,dp) is an increasing function af, I'(r,g,do) must be
larger tharr and strictly increasing fog > g. Yet by (i), (r,g,do) — r asg — r for each fixed pair
of r anddp. This is a contradiction, sinde(r, g, dp) cannot decrease to meet this limit. |

Lemma 23

(I) 0< 3(I‘597Cjo> <1

(i) gmr B(r,9,do) = % for fixed r and d.
Proof From Lemma 22 (ii)[" (r,g,do) — gis positive, and by assumptigr r. Thus,B(r,g,do) > 0.
Also, from Lemma 22 (iv)J (r,9,do) < r. Thus,B(r,g,dg) < 1. Thus (i) is proved. The proof of

(i) uses L'Hdpital's rule twice (which we may use by Lemma 21 (i)) also (11), and the fatt tha
derivatives ofa(r, g, dp) with respect tay are finite.

— Inr(rsg7d0)

_g . B
im B(r.g.dp) = lim 089 9y, ~INT(n0:do) —galr.g. o)
g—r g—r r—g g—r a(r,g,do)(r —g)
’(r,9,do) dai(r,g,d da(r.g.d
= lim _i((élg»dg)) a(;g " —g G(Bg 9 a(r,g, do)
T —a(r,g,do) + (1 —g) XY
i —a(r,g,d
= lim (r,9,do) N
9= —a(r,g,do) + (r — 9)6797
o —%gdo) B
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There is one thing left in order to prove Lemma 20. This is where the key pfegnes, that is,
our bound on the second derivativeoof

Lemma 24

(r—g) ( aa(ng,do)>

— <1
a(r,g,do) ag

Proof Define

@(r,g,do) :==(r—g) <_ao((r(,33,do)> —a(r,g,do).

In order to prove the lemma, we need only to show t{atg, do) is always negative. We will show
that 0¢(r,g,do)/0g is positive. Thus, the largest possible valuepdf,g,dy) occurs wheryg is at
its maximum, namely, wheg =r. If g=r, then@(r,g,dg) = 0. Thus,@(r,g,do) is everywhere
negative and the lemma is proved. Now we have only to pd@¢eg,dp)/0g is positive. Again, we

take derivatives:
a(p(ra g, dO) _ (r. N g) <_ aza(rv g, dO))

09 0g?
and since — g is always positive, and since we have taken efforts to ersargecond derivative is
negative (except at the irrelevant endpajnt 0) in Lemma 21 (vi), we are done. |

We finally prove Lemma 20.
Proof (of Lemma 20WWe considePB(r,g,dp)/dg for each fixed pair of anddp values and derive
a differential equation fo8. We will prove that the derivative is always nonnegative. Then we will
use Lemma 23 to show tha&(r, g, dp) is nonnegative. Here is the differential equation:

0B(r,9,do) _ 1 '6F(r,g,do)_1+F(r,g,d0)—g]
og r-gl 99 r—g
_ rlg _ar(rég’d(’) 14 ’B(r,g,do)}
- e g (-2GI0 2 1o
— g [Bredr-g (<20t ) 1 sred)

Here we have incorporated the differential equationrg,dy) from (26). Again, we will prove

by contradiction. Assume that for some valuesr aind g, whereg < r, we haveB(r,g,dy) <
1/2. That is, assum(ém —1) > 1. In that case, the bracket in Equation (28) is negative,
by Lemma 24. Since & B(r,9,dp) < 1 from Lemma 23, andj < r by assumption, the factor
B(r,9,do)/(r — g) of Equation (28) is positive and the bracket is negative, %%gﬂ <0, so

B(r,g,do) is a decreasing function. Hence, for each fir@thddy, B(r,9,dp) decreases from a value
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which is less than or equal tg/2. Recall from Lemma 23 that lign., B(r,9,do) = 1/2, and thus
this limit can never be attained. Contradiction. Thus, for all valuas df andg within 0 < r < 1,
0<g<r,0<dy< %(1— r)(1—r?), we must haves(r,g,do) > 1/2. We have proved the lemmill.
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