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REAL-TIME FEEDBACK ON BEAM PARAMETERS

Ralph J. Steinhagen (CERN, Geneva, Switzerland)

Abstract

Traditionally, tight beam parameter stability require-
ments were most pronounced for light sources and lepton
colliders but have now become increasingly important for
present and future hadron accelerator operation, not only
for performance but also for reasons of machine protection,
as recent improvements have led to significantly increased
stored beam energies.

In the latest generation machines, performance depends
critically on the stability of the beam. In order to counter-
act disturbances due to magnetic imperfections, misalign-
ments, ground motion, temperature changes and other dy-
namic effects, fully automated control of the key beam pa-
rameters – orbit, tune, coupling, chromaticity and energy
– becomes an increasingly important aspect of accelerator
operation.

This contribution presents an overview of beam-based
feedback systems, their architecture, performance limita-
tions and design choices involved.

INTRODUCTION

With respect to beam-based feedback systems, the wide
range of accelerators can be grouped roughly into syn-
chrotron light sources, lepton and hadron colliders that are
distinct in their requirements of number and type of feed-
backs deployed.

The requirements on beam stability in synchrotron light
sources are determined by the quality and properties of
the photon beam seen by experiments. Depending on the
time scale of the experiment’s data integration and pertur-
bation frequency, movements of the beam centroid may ei-
ther “smear out” the effective emittance, which has a de-
teriorating effect on the photon beam quality, or lead to
an increase of measurement noise. Due to synchrotron
radiation, the beam emittance is usually much smaller in
the vertical plane. To preserve and minimise the effective
emittance, nearly all light sources deploy fast orbit and en-
ergy feedbacks. These minimise transverse beam move-
ments, spurious dispersion by centering the beam in the
quadrupoles and maintain a stable vertical orbit inside the
sextupoles that would otherwise give rise to emittance cou-
pling. A summary and overview of beam stability require-
ments and stabilisation in synchrotron light source can be
found in [1–4].

The beam stability requirements in lepton and present
hadron colliders are driven by luminosity optimisation in-
side the experimental insertions. They favour, similar to
light sources, small emittance and stable beam overlap at
the interaction point ( [5–7]). In addition to orbit feedbacks,

tune feedbacks are often also deployed ( [8, 9]) to stabilise
the beam during acceleration and to avoid resonances that
may cause increased particle loss.

Recent improvements in hadron colliders lead to signifi-
cantly larger stored beam energies which require an excel-
lent control of particle losses inside a superconducting ma-
chine. In case of the LHC, the energy stored in the beam
is sufficient to quench all magnets and cause serious dam-
age [10]. Thus, most requirements on key beam param-
eters in superconducting hadron colliders strongly depend
on the capability to control particle losses inside the accel-
erator. In the case of the LHC, the Cleaning System has
the tightest constraints on the orbit and requires a stability
better than25 µm during nominal operation at the location
of the collimators [11, 12]. Other requirements range from
0.5-0.2mm r.m.s. for global stabilisation down to10 µm
for physics analysis improvements in the TOTEM experi-
ment [13].

In contrast to lepton machines that require tune stability
in the order ofδQ ≈ 10−2 . . . 10−3 to avoid up to 4th order
resonances, synchrotron radiation damping is negligible in
hadron colliders. In order to provide sufficient beam life-
time, resonances of up to the 12th order have to be avoided
[14]. The corresponding tune stabilityδQ is thus required
to be better than 0.001 at the LHC. The chromaticity has
to be controlled withinQ′ ≈ 2 ± 1, while the uncorrected
chromaticity changes are expected to exceed more than 100
units within a few hundred seconds after the start of the
ramp [14].

PARAMETER STABILITY

The wide range of perturbation sources that may af-
fect orbit, tune, coupling, chromaticity and energy can be
grouped into:

1. Environmental sources, driven by temperature and
pressure changes, ground motion, tides and noise in-
duced by human activity which are mostly propagated
through quadrupoles and their girders onto the beam,

2. Machine-inherent sources, such as the decay and
snap-back of magnet multipoles, cooling liquid flow,
vibration of pumps and ventilation, eddy currents and
changes of machine optics (final focus),

3. Machine element failures, which are mainly important
for large machines such as the LHC where the single
circuit failure out of more than 1300 corrector circuits
is non-negligible during regular operation.

Their time scale ranges usually from long-term (month to
days) over medium term (days to hours) down to short term



(hours to milliseconds). Beam-based feedbacks can con-
tribute and improve beam parameter stability for pertur-
bations on slow to medium time scales but are ultimately
limited by thermal drifts, noise and systematics of correc-
tor circuits and beam instrumentation [15]. The sensitiv-
ity to thermal drifts in3rd generation light sources lead to
a rigorous stabilisation of not only the orbit but also the
temperature of the experimental hall, tunnel, cooling wa-
ter, and vacuum chamber to a level of about±0.1 OC [16].
The quest for temperature stabilisation leads also to ’top-
up’ operation that maintains a constant beam current and
thus constant heat load inside the tunnel [1,2].

FEEDBACK CONTROL DESIGN

In case of low-order beam parameters – orbit, tune, cou-
pling, chromaticity and energy – the effect of individual
corrector circuits is, for most accelerators, sufficientlylin-
ear and can be cast into matrices. In the case of the orbit,
for example, one can write

∆z(t) = R · δ(t) (1)

with ∆z = (z1, . . . , zm)T holding the readings ofm beam
position monitors (BPMs) andδ = (δ1, . . . , δn)T hold-
ing the strengths ofn dipole corrector circuits (CODs) and
the matrix elementsRij describing the response of thei-th
BPM to thej-th COD circuit.

The external perturbations, corrector circuit strengths
δ(t) and thus the beam parameters themselves are usually a
function of time. Many feedback designs on beam param-
eters decouple the control into what is further referred to
asspace and time domain which makes the choice of pa-
rameter correction strategy and the controller adjusting the
temporal behaviour of the corrector circuits more flexible,
particularly in the presence of element failures that require
quick adjustments of the feedback controller and response
matrices.

Space Domain

The parameter control in space domain establishes cor-
rector circuit strengthsδss = lim

t→∞

(δ1(t), . . . , δn(t))T that

for steady-state perturbations minimises the residualr of

r =
∥

∥zref − zactual

∥

∥

2
= ‖R · δss‖2

< ǫ (2)

with R the beam response matrix,zref the reference and
zactual the measured parameter. The two-norm (or r.m.s.)

of the parameter vector is defined as‖x‖2 = 1

N

√

∑N

i=0
x2

i

with xi being the individual vector entry andN the total
number of entries.

The control in space domain consists essentially of the
inversion of the beam response matrices. Singular-Value-
Decomposition (SVD) is one of the most popular and
widely used inversion algorithms ( [1–3]) and a general-
isation of the Jacobi matrix eigenvalue decomposition to
the general case of non-square matrices [17,18]. As shown

in [17], any matrixR ∈ R
m×n with m ≥ n can be decom-

posed into
R = U · λ · VT (3)

with U ∈ R
m×n being a dense unitary matrix,λ =

diag(λ1, . . . , λn) a diagonal matrix holding the eigenval-
ues ofR, andV ∈ R

n×n an orthogonal matrix containing
the eigenvectors ofR in its columns.

Depending on the device layout and lattice parameters,
equation 1 may contain singularities that can, using SVD,
be identified by eigenvalues close or equal to zero. The
SVD can be used to compute a so-calledpseudo-inverse
response matrix̃R−1 that relates the required steady-state
circuit strengthsδss to the measured orbit error∆z:

δss = V · λ̃−1 ·UT · ∆z = R̃
−1 · ∆z (4)

Possible singularities are removed by setting the inverse of
singular eigenvalues to zero. The number of eigenvalues
used for the inversion defines the trade-off between preci-
sion and robustness of the correction: A higher number of
eigenvalues provides a better convergence but at the same
time tends to be more prone to spurious parameter readings
and noise.

In case the true accelerator response differs from the one
used during the design of the parameter control, the correc-
tion error gradientδss may point off the true minimum, as
illustrated in Figure 1. It is visible that independent of the
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Figure 1: SVD residual contour: The perfect correction
(solid green), the correction with optics error (dotted red)
and COD calibration errors (dashed violet) are indicated.
The contour lines correspond to constant values of the
residual orbit errorr. The correction is based on a regu-
lar FODO lattice (LHC arc) and shows the projection of
two selected COD settings.

type of error, the corrections converge to the same steady-
state setting. However, depending on the errors the con-
vergence speed can vary between one (perfect) and about
seven iterations (20% COD calibration errors).

In most digital approximations, analogue systems are
sampled at least 10 times higher than the analogue band-
width. Since the deteriorating effect due to beam response



matrix uncertainties can be mitigated through a higher sam-
pling frequency, it is usually favourable to sample much
higher than a factor of 10. In case of synchrotron light
sources, typical sampling to bandwidth ratios are about 40
or more [1–3].

Time Domain

A simple loop block diagram consisting of a single-
input-single-output (SISO) processG(s) and controller
D(s) is shown in Figure 2. The stability and sensitivity
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Figure 2: First order closed loop block diagram

to perturbations and noise is defined by the following func-
tions

T (s) :=
y

r
=

D(s)G(s)

1 + D(s)G(s)
(5)

Sd(s) :=
y

δd

=
1

1 + D(s)G(s)
(6)

Si(s) :=
y

δi

=
G(s)

1 + D(s)G(s)
(7)

Su(s) :=
u

δd

=
D(s)

1 + D(s)G(s)
(8)

whereT (s) is the complementary (nominal) transfer func-
tion, Sd(s) thenominal sensitivity defining the loop distur-
bance rejection,Si(s) theinput-disturbance sensitivity and
Su(s) thecontrol sensitivity. The state variable is indicated
in Figure 2. The sensitivity to measurement noise is equal
to the nominal transfer functionT0.

Classic feedback designs rely on the discussion of de-
nominator zeros in equation 5 and 6 while keeping con-
straints such as required bandwidth, minimisation of over-
shoot, limits on the maximum possible excitation signal
and robustness with respect to model and measurement er-
rors. For ideal processes, this yields adequate controller
designs but often falls short in providing a simple compre-
hensive method for estimating and modifying the loop sen-
sitivity (robustness) in the presence of process uncertain-
ties, non-linearities and noise.

This paper focuses on Youla’s affine parameterisation
method for optimal controllers, which is based on the an-
alytic process inversion, first introduced in [19]. For an
open-loop stable processG(s), the nominal closed-loop
transfer function is stable if and only ifQ(s) is an arbitrary
stable proper transfer function andD(s) parameterised as:

D(s) =
Q(s)

1 − Q(s)G(s)
(9)

The stability of the closed loop system follows immediately
out of the above definition if inserted into equations 5 to 8.
The sensitivity functions in theQ(s) form are given as:

T (s) = Q(s)G(s) (10)

Sd(s) = 1 − Q(s)G(s) (11)

Si(s) = (1 − Q(s)G(s))G(s) (12)

Su(s) = Q(s) (13)

AssumingG(s) is stable, the only requirement for closed
loop stability is forQ(s) to be stable. The strength of this
method is the explicit controller design with respect to re-
quired closed loop performance, as visible in equation 10,
and required stability (equations 11 to 13). Equations 10
and 11 are complementary and illustrate the intrinsic lim-
iting trade-off of feedbacks that either have a good distur-
bance rejection or are robust with respect to noise. The
ultimate limit is thus rather defined by the bandwidth and
noise performance of the corrector circuits and beam mea-
surements than by the feedback loop design itself. System-
atic and thorough analysis of involved beam instrumenta-
tion and corrector circuits are thus essential for achieving
best beam parameter stabilisation.

The design formalism can be demonstrated using a sim-
ple first order systemG0(s) = K0

τ ·s+1
with open-loop gain

K0 and time constantτ . A common controller design
ansatz is to writeQ(s) as

Q(s) = FQ(s) · Gi
0(s) (14)

with FQ(s) a trade-off function andGi
0(s) the pseudo-

inverse of the process. SinceG0 does not contain any un-
stable zeros, the pseudo-inverse equals the inverse and is
given byGi

0(s) := [G0(s)]
−1 = τ ·s+1

K0

. Q(s). In order for
D(s) to be biproper,FQ(s) must have a degree of one and
can be written as:

FQ(s) =
1

αs + 1
(15)

Inserting equation 14 into Youla’s controller parameterisa-
tion equation 9 yields the following controller

D(s) =
τ

K0α
+

1

K0αs
= Kp + Ki ·

1

s
(16)

which shows a a simple PI controller structure with propor-
tional gainsKp and integral gainKi. Inserting equation 14
into equation 10 yields

T0(s) = FQ(s) (17)

that the closed loop response is essentially determined by
the choice of trade-off functionFQ(s) and that the closed
loop bandwidth is proportional to the parameter1/α. This
can be used to tune the closed loop between: high distur-
bance rejection but high sensitivity to measurement noise
(smallα) and low noise sensitivity but low disturbance re-
jection (largeα) depending on the operational scenario.



The maximum possible closed loop bandwidth is limited
by the excitation, as described by equation 13. In case of
power converters, for example, the excitation is limited by
the maximum available voltage.

The same method can be extended to open-loop unstable
and multi-input-multi-output (MIMO) systems [19]. Real
life feedbacks may contain significant delaysλ (due to e.g.
data transmission, data processing etc.) and non-linearities
GNL(s), due to e.g. saturation and rate limits of the cor-
rector circuits’ power supplies. The modified process can
be written, for example as:

G(s) = G0(s) · e
−λsGNL(s) (18)

Using the same pseudo-inverseGi
0(s) as for the above

example and inserting equation 14 into equation 9 yields
a controller parameterisationDNL(s) including a classic
Smith-Predictor and anti-windup paths, discussed in more
detail in [20,21]. Inserting equation 14 including the delay
and non-linearities into equation 10 yields the following
closed loop transfer function:

T (s) = FQ(s) · e−λsGNL(s) (19)

Similar to the linear case discussed above, the closed loop
is essentially defined by the functionFQ(s) that within
limits can be chosen arbitrarily based on the required dis-
turbance rejection and robustness during possibly different
operational scenarios (gain-scheduling). Further informa-
tion and a review on Youla’s parameterisation can be found
in [21,22].

DEPENDABILITIES AND CROSS-TALK

In many accelerators, beam-based feedbacks are usually
established and designed one by one, and often, little effort
is put into the study of cross-dependency and decoupling of
these loops. However, for robust and reliable control it is
necessary to address possible cross-constraints, cross-talk
and coupling between several simultaneous and possible
nested loops already in the design stage.

A typical cross-dependency is intrinsic to the stability
requirements on orbit and tune: though tight constraints on
orbit excursion to micrometre level are beneficial to min-
imise feed-down effects and beam life-time, it also imposes
constraints on other feedbacks such as tune and chromatic-
ity, the measurements of which rely on transverse excita-
tions and momentum modulation. In the case of the LHC,
the tight constraints lead to the development of a robust
diode-based tune measurement technique that is capable of
detecting nanometre scale beam oscillations ( [23]) and that
enables a tune and coupling phase-locked-loop (PLL) that
can operate with transverse excitation levels below1 µm
[24,25].

Another possible cross-dependency is given by coupling
due to the beam response itself. As described in [26], a ro-
bust and reliable tune PLL requires also the measurement
and control of global coupling. Classic tune PLL designs

( [8,9]) often model the PLL as a first order process defined
by the phase detector’s filter time constant and open loop
gainK0 that depends on the angle of the phase slope at the
location of the tune resonance. In the presence of varying
chromaticity, the open loop gainsK0 and thus the optimal
controller parameter are functions of chromaticity itself.
Using linear control design only, this cross-dependence im-
plies either a controller design that is optimal for large
chromaticities, which becomes sensitive to noise and un-
stable for low values of chromaticity, or a controller design
that is optimal for small chromaticities but lags behind the
real tune for large values of chromaticity [24,27].

A more complex example for inter-loop coupling can be
illustrated by the LHC, which requires a simultaneous con-
trol of orbit, tune, coupling, chromaticity and energy. The
forseen nested control scheme for chromaticity, tune and
coupling is shown in Figure 3. The tune PLL is the inner-
most loop measuring the global tunes and coupling param-
eters. The loop is first nested within the loop that mea-
sures and controls the chromaticity and is then surrounded
by the feedback loop controlling the global tunes and cou-
pling. The decoupling is obtained by choosing gradually
reduced bandwidths for the tune PLL (fbw ≈ 8 Hz), chro-
maticity (fbw ≈ 1 Hz) and tune feedback (fbw < 1 Hz).
This nesting hierarchy is required in particular to elim-
inate the cross-talk between tune and chromaticity feed-
back, as the tune feedback would otherwise minimise the
momentum-driven modulation as well as tune modulation
and thus compromise the chromaticity measurement.

In addition, cross-talk is introduced between the chro-
maticity and orbit/energy feedback through the dispersion
orbit that is driven by the momentum modulation required
by the chromaticity feedback. In order to minimise this
cross-dependence, the foreseen LHC orbit feedback filters
and separates the dispersion orbit from the measured closed
orbit prior to performing any orbit correction.

CONCLUSIONS

Beam-based feedbacks can contribute and improve beam
parameter stability for perturbations on slow to medium
time scales but are ultimately limited by thermal drifts,
noise and systematics of involved devices on long time
scales from days to months. Systematic and thorough anal-
ysis of involved beam instrumentation and corrector cir-
cuits are thus essential for achieving best beam parameter
stabilisation.

The use of imperfect design beam response does not nec-
essarily affect the precision of the correction but may lead
to a reduction of effective feedback bandwidth. This ef-
fect can be mitigated by higher sampling frequencies which
are usually in the order of 40 times higher than the desired
feedback bandwidth.

Youla’s affine parameterisation provides a simple yet
powerful design tool for optimal adaptive non-linear con-
trol. Its strength is the explicit controller representation
that enables an unobscured feedback design with respect



Figure 3: Nested loop scheme required for a coherent controlof tune, coupling and chromaticity.

to closed loop robustness (noise insensitivity) and steering
precision. It can further be used to design controllers with
adaptive gains that are scheduled depending on the require-
ments of the applicable operational scenario.

It is advisable to address the incorporation of cross-
constraints and coupling of multiple simultaneous nested
loops early at the design stage as well as design feedbacks
as an ensemble.
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