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1. Introduction

The precise way the electroweak symmetry is broken is the last aspect left to be discovered

to have a complete description of particle physics based on the group SU(3)c × SU(2)L ×
U(1)Y . It is therefore one of the key aspects to be studied at the Large Hadron Col-

lider (LHC). In the standard model (SM) one single fundamental scalar field, the higgs, is

responsible for the breaking but its nature and the reason for that scalar to break the elec-

troweak symmetry is not explained. This is the main reason to go beyond the SM. The two

standard approaches are either to explain why a fundamental scalar is not unstable under

radiative corrections (SUSY) or to construct models for dynamical electroweak breaking

(technicolor or a pseudo-goldstone higgs).

Just before LEP-II the former approach was favoured due to the problems of models

with dynamical breaking with the electroweak observables [1]. But after LEP-II and the

no-discovery of the higgs or any supersymmetric particle there has been a revival of interest

in models with a composite higgs or even without a higgs. The progress in model-building

has been possible thanks to the formulation of strongly coupled theories as models with a

warped extra dimension [2].

Theories formulated in 5D with the geometry of a slice of AdS5 are in close relation [3]

with 4D strongly coupled, approximately conformal theories which eventually confine and

have also a fundamental sector that couples weakly to these bound states. The bound

states map to the KK modes in the 5D theory whereas the fundamental fields correspond
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to the zero modes of the 5D theory. One of the main advantages of this formulation is that

in 5D one can carry out calculations and have observable quantities under control.

In this spirit, the electroweak sector of the SM can be formulated as a 5D warped model

with two boundaries, one being the UV and the second one the IR brane. Gauge bosons

and chiral fermions are free to move in the bulk of the extra dimension. The breaking of

the electroweak symmetry occurs via a localized vev on the IR brane, which means that

the higgs does not propagate into the bulk [4]. The hierarchy problem is solved because

the higgs is interpreted as a composite object beyond the IR scale and this scale is set

to be around a TeV. One can even send its vev to infinity and have a theory without a

higgs (light scalar resonance) in the spectrum [5]. A third possibility is to suppose that

the higgs is a 5D field but embedded in a gauge multiplet, so that its mass is protected [6].

This gauge symmetry is broken via boundary conditions and the higgs field arises as the

lowest mode of the fifth component of the gauge field. This is mapped in the 4D picture

to a theory where the higgs is a pseudo goldstone boson corresponding to a spontaneously

broken global symmetry of the strongly coupled sector.

All these theories have been analyzed and different electroweak parameters have been

calculated [4, 7 – 10]. In this paper we are going to revisit the first two scenarios, those

where the breaking is localized on the IR brane, but for a general warped metric and not

only the one of AdS5. On the 4D side, this corresponds to departure from an approximate

conformal symmetry of the strongly coupled sector. We calculate tree-level contributions to

the electroweak parameters both in the case with a higgs localized on the IR brane and in

the higgsless theory (we leave the study of a pseudo-goldstone higgs for future publications).

We present general formulas for the spectrum of gauge bosons and their contributions to S,

T and Zbb̄ couplings. The main conclusions is that, also in general backgrounds, SU(2)R
is needed to cancel large contributions to T . The S parameter is under control for the case

with a higgs, while in the higgsless case cancellations are necessary to happen independent

of the background metric.

The paper is organized as follows, in section 2 different general formulas for the spec-

trum and the matching conditions between the 5D and the 4D theories are given, in section

3 the SM is studied leading to a large contribution to the T parameter, SU(2)R is intro-

duced in section 4, higgsless models are studied in section 5 and finally our conclusions are

presented in section 6. Some technical details are given in the appendix.

2. Tools

In this section we present the formalism we employ in order to derive electroweak precision

constraints on 5D gauge theories in warped backgrounds. We choose to work in the KK

picture.1 We diagonalize the 5D action in the KK basis in the presence of electroweak

breaking on the IR brane. This approach is conceptually clear. Moreover, derivation of

the tree-level effective action for the SM fields is simplified, as the zero mode fields do not

1Another approach, so-called holographic [13], consists in integrating out the bulk degrees of freedom

and writing down an effective action for the UV brane degrees of freedom. Physical results, of course, do

not depend on the approach.
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mix the with the heavy modes. Thus, the gauge boson masses and the vertex corrections

can be read off directly from the KK diagonalized 5D action. This information allows, in

particular, to determine the oblique S and T parameters, which typically encode the most

stringent bounds on the model. Determination of four-fermion operators in the effective

theory still requires computing diagrams with the heavy KK mode exchange, but in most

situations those do not impose additional constraints.

Below we introduce the techniques that allow to perform the KK diagonalization and

the integrating-out procedure for an arbitrary warped background. We also review the

basic facts concerning the parametrization of physics beyond the SM by dimension six

operators.

2.1 Kaluza-Klein expansion in general warped backgrounds

We study 5D gauge theories with the fifth dimension being an interval, x5 ∈ [0, L]. The

gravitational background is described by the line element

ds2 = a2(x5)ηµνdxµdxν − dx2
5 . (2.1)

with the warp factor a(x5). We fix a(0) = 1. The choice a(x5) = 1 corresponds to 5D

flat spacetime, while a(x5) = e−kx5 corresponds to AdS5. For most of the subsequent

discussion we do not specify the warp factor. We only assume that it is a monotonic and

non-increasing function, so that it makes sense to define a UV brane at x5 = 0 and an IR

brane at x5 = L, where the value of the warp factor is a(L) ≡ aL ≤ 1.

Consider the quadratic action for a 5D gauge field propagating in a warped background

S5 =

∫

d4x

∫ L

0
dx5

{

−1

4
(∂µAν − ∂νAµ)2 +

1

2
a2(x5)(∂5Aµ)2 +

1

2
Lm̃2

LA2
µδ(L)

}

(2.2)

The boundary mass term represents the effect of the boundary higgs field vev. We expand

the 5D gauge field in the KK basis

Aµ(x, x5) =
∑

n

fn(x5)Aµ,n(x) (2.3)

and choose the profiles such that the quadratic action, in the presence of the boundary

mass term, can be rewritten as a 4D action diagonal in n:

S5 =

∫

d4x
∑

n

{

−1

4
(∂µAν,n − ∂νAµ,n)2 +

1

2
m2

n(Aµ,n)2
}

. (2.4)

In this way, any mixing between a possible massless mode and the heavy KK modes

induced by the higgs vev has already been taken into account (to all orders in m̃2
L). The

diagonalization is achieved if the profiles solve the bulk equation of motion:
(

∂2
5 + 2

a′

a
∂5 +

m2
n

a2

)

fn(x5) = 0 (2.5)

and satisfy appropriate boundary conditions. On the UV brane, in absence of any localized

mass or kinetic terms, these are the Neumann or Dirichlet boundary conditions,

∂5fn(0) = 0 or fn(0) = 0 (2.6)
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On the IR brane we should impose

∂5fn(L) = −La−2
L m̃2

Lfn(L) (2.7)

The Dirichlet boundary conditions can be simulated in the limit m̃2
L → ∞ (we call it the

higgsless limit). The profiles should also satisfy the normalization condition
∫ L
0 |f(y)|2 = 1.

The usual procedure is to solve the equations of motion eq. (2.5) for some particular

background. In this paper we show how to obtain results valid for an arbitrary warp

factor. To proceed, we denote the two independent solutions of eq. (2.5) by C(x5,mn) and

S(x5,mn). We choose them such that they satisfy the initial conditions C(0,mn) = 1,

C ′(0,mn) = 0, S(0,mn) = 0, S′(0,mn) = mn. These functions can be viewed as a

warped generalization of the cosines and sines (in the flat background C = cos(x5mn),

S = sin(x5mn)). Using them, we can write down the profiles in a compact form. For

example, a profile with the Neumann boundary conditions in the UV is written as fn(x5) =

αnC(x5,mn), where αn is fixed by the normalization condition. The spectrum of the KK

modes is determined by the IR boundary condition that, in this language, is written as

C ′(L,mn) = −La−2
L m̃2

LC(L,mn).

Our basic tool will be the expansion of the profiles corresponding to light fields in

powers of mn. Solving eq. (2.5) perturbatively in mn we can expand the two solutions as

C(x5,mn) = 1 − m2
n

∫ x5

0
dy y a−2(y) + O(m4

n)

S(x5,mn) = mn

∫ x5

0
dy a−2(y) + O(m3

n) (2.8)

We will employ this expansion for the profiles of the W and Z boson, whose masses are

of the order of the electroweak scale. This makes sense when the electroweak scale is

hierarchically smaller than the KK scale defined2 as

MKK =
π

∫ L
0 dya−1(y)

(2.9)

In any realistic set-up, a mass gap between the SM gauge fields and heavy resonances must

be large enough to justify this expansion. Technically speaking, there are two ways to

introduce the mass gap. One is to introduce it by hand by choosing m̃L/MKK ≪ 1. In

such a case the electroweak scale is of order m̃L. In our setup the ratio m̃L/MKK can be

made arbitrarily small, however as soon as MKK ≫ 1TeV we face the hierarchy problem.

The mass gap may also exist in the higgsless limit when m̃L → ∞. In that case the

electroweak (lightest resonance) scale and the KK (heavy resonance) scale are related by

m2
W ∼ 1

∫ L
0 ya−2(y)

∼ 2

π2

M2
KK

V . (2.10)

If the warp factor decreases sharply toward the IR brane the denominator scales linearly

with the size of the extra dimension L. To stress this, we introduced the volume factor V
2This scale is parametrically of the order of the mass of light spin 1 resonances. In 5D Minkowski the

first KK photon mass is exactly equal to MKK, while in AdS5 it is approximately 3/4MKK.
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defined as

V = La−1
L MKK/π (2.11)

To obtain the scale separation between the electroweak and the KK scale we need V large

enough. For backgrounds that solve the hierarchy problem we indeed expect the volume

factor to be large. The argument is purely heuristic. Typically, solving the hierarchy

problem involves generating the huge ratio MPl/TeV from a moderate number, say, of

order 4π. Moreover, the hierarchy should be generated dynamically by stabilization, thus

our moderate number should be somehow correlated with L. Next, we have MKK ∼ aLk

where k ∼ a′(L)/aL is the scale that describes how quickly the warp factor changes close

to the IR brane. Then kL is a dimensionless parameter which we may identify with

the one that generates hierarchy. This is of course not a proof and one can certainly

find counterexamples, if the warp factor is complicated enough. For simple warp factors,

however, the argument works. For example, for the AdS5 background the volume factor is

V = log a−1
L ∼ log(MPl/MKK) ∼ 30. Thus, the volume factor is large when the hierarchy is

generated by a dynamics that is approximately conformal over a large range of scales. On

the other hand, in the flat space (which does not address the hierarchy problem) V = 1.

A similar background independent formalism can be worked out for fermions. We do

not review it here since we limit our study to gauge boson contribution, but see [14]. See

also refs. [11, 12] for another background independent approach via sum rules.

2.2 Effective standard model and dimension-six operators

We write the effective low energy theory as Leff = LSM+LD6 where LSM is the electroweak

part of the SM lagrangian:

LSM = −1

2
Tr{LµνLµν} −

1

4
BµνBµν + i

∑

j

ψjγµDµψj + |DµH|2 − V(H) + Yukawa

Dµψj = (∂µ − igLLa
µT a − igY YjBµ)ψj

DµH =

(

∂µ − igLLa
µT a − igY

1

2
Bµ

)

H (2.12)

and LD6 are the dimension-six operators

LD6 = αT |H†DµH|2 + αS(H†T aH)W a
µνBµν

−
{

iβjg
2
L(ψjγµtaψj)(DµH†taH) + i

γj

2
Yjg

2
Y ψjγµψj(DµH†H) + h.c.

}

+fermion4 (2.13)

The four-fermion terms will be ignored in the following (in this paper we restrict our

discussion to the situations where they do not introduce significant constraints). There

are also other dimension-six operators that can be generated by 5D physics (for example,

(ψjγµtaψk)(H
T taDµH)) but are ignored here because they do not get large contributions

from KK gauge bosons.

– 5 –



J
H
E
P
0
5
(
2
0
0
7
)
0
9
7

When the Higgs field acquires the vev we define the photon, W and Z as usual,

W±
µ =

1√
2
(L1

µ ∓ iL2
µ)

Aµ =
1

√

g2
L + g2

Y

(

gY L3
µ + gLBµ

)

Zµ =
1

√

g2
L + g2

Y

(

gLL3
µ − gY Bµ

)

(2.14)

but their masses and interactions are modified by the dimension six operators. The vertex

correction βj and γj modify the interactions of the SM fermions with the W and Z bosons:

Leff → gLgY
√

g2
L + g2

Y

(t3i + Yi)ψiγµψiAµ +
gL√

2
(1 + m2

W βj)ψjγµt±ψjW
±
µ

+
1

√

g2
L + g2

Y

(g2
L(1 + βjm

2
Z)t3j − g2

Y (1 + γjm
2
Z)Yj)ψjγµψjZµ (2.15)

The Z boson mass is modified by αT

m2
W =

g2
Lv2

4
m2

Z =
(g2

L + g2
Y )v2

4

(

1 +
v2

2
αT

)

(2.16)

Finally, αS mixes the photon and the Z boson,

LD6 → −1

4
αSv2L3

µνBµν (2.17)

We can adjust the coefficients of the dimension-six operators to match the effective

lagrangian obtained by integrating out the KK modes. Note that this set of coefficient is

redundant: the universal shift of the vertex corrections can be absorbed by redefinitions of

the gauge couplings [4]. We can thus shift βj and γj by ∆β and ∆γ without changing the

physical content of the theory, provided that αT and αS are also shifted accordingly:

βj → βj + ∆β

γj → γj + ∆γ

αS → αS − gLgY

2
(∆β + ∆γ)

αT → αT + g2
Y ∆γ (2.18)

One particular application of this result is when the vertex corrections are universal: βj = β

and γj = γ. Then, choosing ∆β = −β, ∆γ = −γ we can get rid of the vertex corrections,

which reemerge as a shift of αT and αS . This is the oblique case, in which all the corrections

from new physics can be parametrized by αT and αS . Those two are simply related to the

familiar S and T parameters:

S =
8πv2

gLgY
αS T = −2πv2

e2
αT (2.19)
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3. No custodial

We first consider a 5D model without a custodial symmetry. The bulk gauge symmetry

is that of the SM, SU(3)c × SU(2)L × U(1)Y . The electroweak group is broken to U(1)em
by a higgs doublet H localized on the IR brane. The 5D action for the electroweak gauge

bosons and the higgs reads

S =

∫

d4x

∫ L

0
dx5

√
g

{

−1

2
Tr{LMNLMN} −

1

4
BMNBMN

}

+

∫

d4xdx5
√

g4δ(L)
{

|DµH|2 − V (H)
}

, (3.1)

where ∂µH = (∂µ − i
√

LgLBµ − i
√

LgY YHBµ)H and
√

LgL,
√

LgY are the dimensionful

gauge couplings of SU(2)L × U(1)Y . The Higgs field acquires a vev 〈H〉 = (0, ṽa−1
L /

√
2)T .

This results in the IR brane mass terms

L = δ(L)

(

1

2
L

g2
Lṽ2

4
|W+

µ |2 +
1

2
L

(g2
L + g2

Y )ṽ2

4
|Zµ|2

)

. (3.2)

On the UV brane we impose the Neumann boundary conditions on the profiles

∂5f
γ
n (0) = ∂5f

W
n (0) = ∂5f

Z
n (0) = 0 (3.3)

so that no gauge symmetry gets broken there. Using the formalism introduced in section 2,

the gauge boson profiles satisfying the UV boundary condition can be written as

fW
n (x5) = cW,nC(x5,mW,n) fZ

n (x5) = cZ,nC(x5,mZ,n) fγ
n (x5) = cγ,nC(x5,mγ,n) (3.4)

On the IR brane, in the presence of the boundary mass terms, the boundary conditions

read

∂5f
γ
n (L) = 0 ∂5f

W
n (L) = −Lg2

Lṽ2

4a2
L

fW
n (L) ∂5f

Z
n (L) = −L(g2

L + g2
Y )ṽ2

4a2
L

fZ
n (L) (3.5)

Those imply the quantization condition for the photon, W and Z mass towers

C ′(L,mγ,n) = 0

C ′(L,mW,n) +
Lg2

Lṽ2

4a2
L

C(L,mW,n) = 0

C ′(L,mZ,n) +
L(g2

L + g2
Y )ṽ2

4a2
L

C(L,mZ,n) = 0 (3.6)

Let us concentrate on the zero modes (we will omit the n = 0 index). The photon

profile is a constant

fγ(x5) =
1√
L

mγ = 0 (3.7)

The W and Z profiles are non-trivial due to the boundary mass terms and their shapes

depend on the background geometry. However, we dispose of a small parameter — the
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ratio of the gauge boson masses to the KK scale — in which we can expand the deviation

of the profile from a constant. We find

fW (x5) =
1√
L

(

1 + m2
W [I1(L) − I2(x5)] + O(m4

W /M4
KK)

)

fZ(x5) =
1√
L

(

1 + m2
Z [I1(L) − I2(x5)] + O(m4

Z/M4
KK)

)

(3.8)

where the integrals In depend on the warp factor and are defined in A. We can insert

this expansion into the boundary conditions (3.4). As long as ṽ much smaller then the

compactification scale, the gauge boson masses can be perturbatively expanded in ṽ2.

Defining the electroweak scale v by

v2 = ṽ2

(

1 +
g2
Lṽ2

4
[I1(L) − I2(L)]

)

(3.9)

we can write the gauge boson masses as

m2
W =

g2
Lv2

4
m2

Z =
(g2

L + g2
Y )v2

4

(

1 +
g2
Y v2

4
[I1(L) − I2(L)]

)

. (3.10)

We move to discussing the fermionic sector of the model. The fermions can be simply

realized by assigning a 5D bulk field to each SM fermion. For example, one quark generation

is contained in the 5D fields

q =

(

u

d

)

uc dc

21/6 12/3 1−1/3

(3.11)

with the action

S =

∫

d4x

∫ L

0
dx5

√
g{q(iΓNDN + Mq)q + uc(iΓNDN − Mu)uc

+dc(iΓNDN − Md)d
c} −

∫

d4xdx5
√

g4δ(L)
(

ỹuqLH†uc
R + ỹdqLHdc

R + h.c.
)

(3.12)

For the light generations we can ignore the mixing between the zero modes and the heavy

KK modes. The zero mode profiles are then

f q
L ≈ a−2(x5)e

−Mqx5

∫ L
0 a−1(y)e−2Mqy

fuc

R ≈ a−2(x5)e
−Mux5

∫ L
0 a−1(y)e−2Muy

fdc

R ≈ a−2(x5)e
−Mdx5

∫ L
0 a−1(y)e−2Mdy

(3.13)

and the quark masses are related to the boundary Yukawa couplings by

m2
u ≈ a−2

L e−(Mq+Mu)L(yuṽ)2
∫ L
0 a−1(y)e−2Mqy

∫ L
0 a−1(y)e−2Muy

m2
d ≈ a−2

L e−(Mq+Md)L(ydṽ)2
∫ L
0 a−1(y)e−2Mqy

∫ L
0 a−1(y)e−2Mdy

(3.14)

We can now write down the interactions of the light fermions with the light gauge

bosons

– 8 –



J
H
E
P
0
5
(
2
0
0
7
)
0
9
7

1. Electromagnetic currents:

Lem = e(t3j + Yj)ψjγµψjAµ e =
gLgY

√

g2
L + g2

Y

(3.15)

2. Charged currents:

Lcc =
gL√

2
[1 + m2

W (I2(L) − J2(L,Mj))]ψjγµt±j ψjW
+
µ + h.c. (3.16)

3. Neutral currents:

LncL =
g2
Lt3j − g2

Y Yj
√

g2
L + g2

Y

[1 + m2
Z(I2(L) − J2(L,Mj))]ψjγµψjZµ (3.17)

These gauge interactions and the corrections to the Z boson mass can be reproduced

by the SM lagrangian supplemented by the dimensions six operators defined in eq. (2.13).

We find the coefficients

αT = −1

2
g2
Y (I1(L) + I2(L))

αS = gLgY I1(L)

βj = −J2(L,Mj)

γj = −J2(L,Mj) (3.18)

The vertex corrections are in general non-universal, so that the corrections are not

oblique. However, when the fermions are localized near the UV brane, the vertex correc-

tions are negligibly small. This is the typical assumption for the first two generations of

the SM fermions. In such case the corrections can be treated as oblique and adequately

parametrized by the familiar S and T:

S = 8πv2I1(L) T =
4πm2

Z

g2
L

(I1(L) + I2(L)) (3.19)

Because of the volume enhancement, the integral I2 dominates for backgrounds with the

large volume factor. Thus we get an approximate expression for the T parameter:

T ≈ 4πm2
Zg−2

L

∫ x5

0
ya−2(y) ∼ 2π3m2

Z

g2
LM2

KK

V (3.20)

Here V is the volume factor introduced in eq. (2.11). For backgrounds that solve the

hierarchy problem we expect the volume factor to be large, which would strongly enhance

the contribution to T. For example, in the Randall-Sundrum model V ∼ log(MPl/MKK) ∼
30 leading to a very strong constraint on the KK scale [7]. Our results show that the

problem persists in any 5D warped model without a custodial symmetry, in which the

solution to the hierarchy problem is associated with a moderately large volume factor.
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4. Custodial

The well-known cure for an excessive T parameter is the custodial SU(2)R symmetry. In

the context of 5D theories the custodial symmetry is promoted to a gauge symmetry. The

hypercharge group is extended to SU(2)R × U(1)X that is broken to U(1)Y on the UV

brane [4]. Thus, the bulk gauge symmetry is SU(3)c × SU(2)L × SU(2)R ×U(1)X . The IR

brane higgs field Φ is in the (2, 2)0 representation with respect to SU(2)L×SU(2)R×U(1)X .

Below we apply our background independent techniques to this class of models.

The 5D action for the (extended) electroweak sector reads

S =

∫

d4x

∫ L

0
dx5

√
g

{

−1

2
Tr{LMNLMN} −

1

2
Tr{RMNRMN} −

1

4
XMNXMN

}

∫

d4xdx5
√

g4δ(L)

(

1

4
Tr|DµΦ|2 − V (Φ)

)

(4.1)

The higgs field acquires the vev 〈Φ〉 = ṽ
aL

I2×2. This results in the mass terms

Lmass =
1

8
Lṽ2δ(L)(gLLa

µ − gRRa
µ)2 (4.2)

that spontaneously break SU(2)L × SU(2)R to SU(2)V on the IR brane.

The UV boundary conditions that break SU(2)R × U(1)X down to U(1)Y impose the

following conditions on the KK profiles:

∂5f
a
L,n(0) = 0 a = 1, 2, 3

f i
R,n(0) = 0 i = 1, 2

sx∂5f
3
R,n(0) + cx∂5fX,n(0) = 0 sx =

gX
√

g2
X + g2

R

−cxf3
R,n(0) + sxfX,n(0) = 0 cx =

gR
√

g2
X + g2

R

(4.3)

The profiles that solve the bulk equations of motion and satisfy the UV boundary conditions

in our notation are written as

fa
L,n(x5) = αa

L,nC(x5,mn)

f i
R,n(x5) = αi

R,nS(x5,mn)

f3
R,n(x5) = αN,nsxC(x5,mn) − αD,n cxS(x5,mn)

fX,n(x5) = αN,ncxC(x5,mn) + αD,n sxS(x5,mn) (4.4)

The linear combination Bµ = sxR
3
µ + cxXµ survives on the UV brane and its zero mode

is identified with the hypercharge gauge boson. Bµ couples to matter with the coupling

gY = gXgR/
√

g2
X + g2

R and the hypercharge depends on the SU(2)R × U(1)X quantum

numbers via Y = t3R + X.
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In the presence of the higgs vev, the IR boundary conditions for the profiles read

∂5fX,n(L) = 0

gR∂5f
a
L,n(L) + gL∂5f

a
R,n(L) = 0

gL∂5f
a
L,n(L) − gR∂5f

a
R,n(L) = −1

4
(g2

L + g2
R)a−2

L Lṽ2(gLfa
L,n(L) − gRfa

R,n(L)) (4.5)

We can now solve these equations to find the mass eigenstates. The spectrum contains a

tower of charge ±1 massive vector bosons whose masses are given by the solutions of the

quantization condition:

S′(L,mW
n )C ′(L,mW

n ) +
a−2

L Lṽ2

4

(

g2
LS′(L,mW

n )C(L,mW
n ) + g2

RS(L,mW
n )C ′(L,mW

n )
)

= 0

(4.6)

and a tower of electrically neutral massive vector boson with masses

S′(L,mZ
n )C ′(L,mZ

n ) +
a−2

L Lṽ2

4
(

g2
LS′(L,mZ

n )C(L,mZ
n ) + g2

RS(L,mZ
n )C ′(L,mZ

n ) + mZ
n a−2

L g2
Y

)

= 0 (4.7)

There is also another tower of neutral vector bosons with masses given by

C ′(L,mγ
n) = 0 (4.8)

which always includes the photon solution with mγ = 0. The lightest solutions of eqs. (4.6)

and (4.7) are identified with the W and Z boson masses.

We turn to discussing the profiles of the zero mode fields that correspond to the SM

gauge bosons. In phenomenologically viable models these profiles can always be expanded

in powers of the gauge boson masses over the KK scale. To first order3 m2/M2
KK we find

the SM gauge bosons are embedded into the 5D fields as follows

Li
µ(x, x5) → 1√

L

(

1 + m2
W [I1(L) − I2(x5)]

)

W i
µ(x)

Ri
µ(x, x5) → 1√

L
m2

W

gR

gL
I3(x5)W

i
µ(x) (4.9)

L3
µ(x, x5) → 1√

L
(sin θW Aµ(x)

+ cos θW (1 + m2
Z [I1(L) − I2(x5)])Zµ(x))

R3
µ(x, x5) → sx√

L
(cos θW Aµ(x)

− sin θW

(

1 + m2
Z

[

I1(L) − I2(x5) + I3(x5) −
1

s2
x

I3(x5)

])

Zµ(x))

Xµ(x, x5) → cx√
L

(cos θW Aµ(x)

− sin θW (1 + m2
Z [I1(L) − I2(x5) + I3(x5)])Zµ(x)) (4.10)

3At the second order there exist m4

W /M4

KK terms enhanced by the volume factor V. Those terms can

be neglected if m2

W /M2

KK < 1/V, which we assume in this section. On the other hand, in the higgsless case

m2

W ∼ M2

KK/V and these terms have to be retained.

– 11 –



J
H
E
P
0
5
(
2
0
0
7
)
0
9
7

The integrals In are defined in A. Inserting this expansion into the 5D action we can read

off the interactions between the SM gauge bosons and fermions. In general we should also

perform the analogous KK expansion for the fermions. For the first two generations it is

enough to convolute the gauge profiles with the massless fermionic profile

fj(x5) =
e−Mjx5a−2(x5)

(

∫ L
0 e−2Mjya−1(y)

)1/2
(4.11)

and the corrections are of order m2
j/M

2
KK. We find

1. Electromagnetic current:

Lem =
gLgY

√

g2
L + g2

Y

(t3L,j + t3R,j + Xj)ψjγµψjAµ (4.12)

2. Charged current:

Lcc =
gL√

2

(

1 + m2
W [I1(L) − J2(L,Mj)]

)

ψjγµt±j ψjW
±
µ (4.13)

3. Neutral current:

LncL =
1

√

g2
L + g2

Y

{

g2
Lt3L,j

(

1 + m2
Z [I1(L) − J2(L,Mj)]

)

−g2
Y Yj

(

1 + m2
Z [I1(L) − J2(L,Mj) + J3(L,Mj)]

)

+g2
Rt3R,jm

2
ZJ3(L,Mj)

}

ψjγµψjZµ (4.14)

At the zeroth order these are just the SM gauge interactions. The corrections of order

m2/M2
KK depend not only on the bulk mass Mj but also on the embedding of the SM

fermions into SU(2)R representations. There are several choices one can make. The simplest

is to embed the SM left doublets into SU(2)R singlets and the SM left singlets into SU(2)R
doublets [4]. For example, the lightest quark generation can be embedded as follows

q =

(

u

d

)

u =

(

uc

d̃c

)

d =

(

ũc

dc

)

(2,1)1/6 (1,2)1/6 (1,2)1/6

(4.15)

The singlet quarks should be put into two different bulk multiplet to give mass for both

the u and d quarks. The tilded fermions can be removed from the low energy spectrum by

SU(2)R breaking boundary conditions on the UV brane. Another possibility is to embed

the SM left doublets into the bifundamental representation of SU(2)L ×SU(2)R [15]. Then

the SM left singlets should be placed into SU(2)R singlets or triplets. For example [17]

Q =

[

u χ

d ũ

]

uc D =

[

1√
2
ũc χc

dc − 1√
2
ũc

]

(2,2)2/3 (1,1)2/3 (1,3)2/3

(4.16)
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Here χc is an exotic charge 5/3 quark. Again, by an appropriate choice of boundary

conditions we can ensure that only the SM quarks show up in the low-energy spectrum.

If the boundary Higgs vev is much smaller than the KK scale we can also solve eqs. (4.6)

and (4.7) perturbatively in ṽ2/M2
KK. Defining

v2 = ṽ2

(

1 +
ṽ2

4

[

g2
L[I1(L) − I2(L)] − g2

RI3(L)
]

)

+ O(ṽ6) (4.17)

the gauge boson masses are given by

m2
W =

g2
Lv2

4
m2

Z =
(g2

L + g2
Y )v2

4

(

1 +
g2
Y v2

4
[I1(L) + I4(L)]

)

+ O(v6) (4.18)

We have now all the necessary information to read off the coefficient of the dimension six

operators defined in eq. (2.13)

αT =
1

2
g2
Y (−I1(L) + I4(L))

αS = gLgY I1(L)

βj = −J2(L,Mj)

γj = −J2(L,Mj) + J3(L,Mj) −
g2
Rt3R,j

g2
Y Yj

J3(L,Mj) (4.19)

The vertex corrections are non-universal. They depend on both the bulk fermion masses

and the embedding into SU(2)L × SU(2)R × U(1)X . Note that in this case the non-

universality persists even when all Mj are equal. The vertex corrections can be however

safely neglected for fermions localized close to the UV brane. In such case the corrections

can be adequately parametrized by the S and T parameters:

S = 8πv2I1(L) T = 4πm2
Zg−2

L (I1(L) − I4(L)) (4.20)

The oblique parameters do not depend on the fermionic representation. The S parameter is

given by exactly the same integral as in the case without the custodial symmetry. For the T

parameter the custodial symmetry is at work: the combination of the integrals that enters

there is suppressed, rather than enhanced, by the volume factor V. Thus the tree-level T

parameter ends up being tiny for the backgrounds with a large volume factor.

For the third generation fermions we cannot assume that their profiles are localized

in the UV since some relevant coupling to the IR brane is needed to give mass to the

top quark. Thus their interaction vertices with the SM gauge bosons can receive sizable

corrections. Parameterizing the Z-boson vertex as

LZjj =
g2
Lt3L,j − g2

Y Yj
√

g2
L + g2

Y

(1 + δgZjj) ψjγµψjZµ (4.21)
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we find the corrections from the gauge bosons exchange4

δgZjj = m2
Z(J3(L,Mj) − J2(L,Mj)) − m2

ZJ3(L,Mj)
g2
Lt3L,j − g2

Rt3R,j

g2
Lt3L,j − g2

Y Yj
(4.22)

The second term, if not suppressed by the bulk mass exponential, is volume enhanced and

typically dominates the vertex correction:

δgZjj ≈ −
g2
Lt3L,j − g2

Rt3R,j

g2
Lt3L,j − g2

Y Yj
m2

ZL

∫ L
0 a−1(y)e−2Mjy

∫ y
0 a−2(y′)

∫ L
0 a−1(y)e−2Mjy

(4.23)

If e−2Mjy < a−1(y) close to the IR brane this expression scales linearly with L, so that

δgZjj ∼ Vm2
Z/M2

KK, similarly as T in the absence of the custodial symmetry. This can be

dangerous for the ZbLb̄L vertex that is well constrained by experiment, δZbLb̄L
< 0.0025.

Indeed, in some cases, e.g. for the pseudo-goldstone higgs, this provides the tightest con-

straint on the parameter space [8]. One can however introduce a symmetry that allows

to keep this vertex under control [15] (for another approach, see [16]). As can be seen

from eq. (4.22), we need a LR parity symmetry that sets gL = gR. Then the second

term vanishes if bL has t3L = t3R. This is possible if the third generation left doublet orig-

inates from the (2, 2) representation of SU(2)L × SU(2)R. For example, the embedding in

eq. (4.16) satisfies this requirement, although there we need additional multiplets in the

(3, 1)2/3 representation to keep the LR parity stable. The symmetry advocated in [15] also

protects the vertex against order m2
T /M2

KK corrections from a mixing of the bottom quark

with the fermionic KK modes. When the volume enhanced contribution is canceled there

still remains an order m2
Z/M2

KK contribution from the first term in eq. (4.22). However, it

always represents a weaker constraint on the KK scale than that from the S parameter.

5. Higgsless

The study we performed is slightly modified in the higgsless limit ṽ → ∞. Below we

consider the custodially symmetric model of section 4 (that of section 3 is totally unrealistic

in this limit, as it predicts mW = mZ). We cannot, of course, expand in powers of ṽ/MKK

anymore. Thus, eq. (4.17) and the following expression for the gauge boson masses are

no longer valid. On the other hand, the ratio of the gauge boson masses to the KK

scale remains a perfect expansion parameter in any realistic setup (including the AdS5

background). Nevertheless, there is one qualitative change. Before, mW /MKK was a

tunable parameter controlled by ṽ. In the higgsless limit mW is intimately tied to MKK.

The precise relation depends on the background geometry and it turns out to be of the

form m2
W ∼ M2

KK/V.

4For the third generation there can also be corrections of order m2

T /M2

KK from a mixing with the

fermionic KK modes. Those depend on a precise realization of the fermionic sector and are not discussed

here.
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Let us first discuss the SM gauge boson masses in a quantitative way. Taking the

ṽ → ∞ limit of eq. (4.6) and eq. (4.7) we get the quantization conditions

(g2
L + g2

R)S(L,mW )C ′(L,mW ) + mW a−2
L g2

L = 0

(g2
L + g2

R)S(L,mZ)C ′(L,mZ) + mZa−2
L (g2

L + g2
Y ) = 0 (5.1)

The lightest solution is identified with the SM gauge bosons. Expanding in mW,Z/MKK we

find

m2
W =

g2
Lv2

4

m2
Z =

(g2
L + g2

Y )v2

4

[

1 + g2
Y

v2

4
(I1(L) + I5(L))

]

+ O(v6) (5.2)

where we defined

v2 =
4

(g2
L + g2

R)L
∫ L
0 a−2(y)

[

1 + g2
L

v2

4
(I1(L) + I5(L))

]

(5.3)

As advocated, the gap between the electroweak and the resonance scales is controlled by

the volume factor, m2
W ≈ M2

KK/(π2V). In the following we assume that the 5D background

is such that the gap is large enough to allow for expansion in m2
W /M2

KK.

The SM gauge boson profiles are those of eq. (4.9) and eq. (4.10) with I1(L) → (I4(L)+

I5(L))/2.5 From this, we find the coefficients of the dimension-six operators

αT = 0

αS =
gLgY

2
(I4(L) + I5(L))

βj = −J2(L,Mj)

γj = −J2(L,Mj) + J3(L,Mj) −
g2
Rt3R,j

g2
Y Yj

J3(L,Mj) (5.4)

where in the oblique parameters we dropped all terms suppressed by the volume factor.

The T parameter vanishes at this order thanks to the custodial symmetry. We can write

the S parameter as6

S = 4πv2 (I4(L) + I5(L)) ∼ 12π

V(g2
L + g2

R)
(5.5)

We would need a large volume factor to suppress the gauge contribution to S. Recall that in

AdS5 V ∼ 30, which is not enough. Note that a volume factor large enough to make S < 0.3

would also make the KK scale heavier than 1 TeV. It seems unlikely that the longitudinal

WW scattering amplitude could be unitarized by such heavy resonances. Therefore the

only way to bring S down to acceptable level is by a suitable choice of fermionic profiles.

More precisely, one assumes that the fermion bulk masses corresponding to the light SM

5The normalization factor changes because there exist Vm4

W /M4

KK terms which are of the same order

as m2

W /M2

KK terms in the higgsless case. For this reason the expression for S is different than in the case

with a higgs, where these higher-order terms were neglected.
6This expression is consistent with the one derived for general metrics in [11].
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generations are such that the integrals J2 and J3 are not suppressed. Moreover, the bulk

masses for the different light SM fields should be almost equal, Mj ≈ Mref . By eq. (2.18),

choosing ∆β = J2, ∆γ = J2−J3, the universal part of the vertex corrections can be traded

for a shift in S:

∆S = −8πv2

(

J2(L,Mref) −
1

2
J3(L,Mref)

)

(5.6)

Since the shift is negative, we can cancel the positive gauge contribution in eq. (5.5) (in

AdS5, the cancellation occurs for M ∼ 0.47k). Note however that there will still remain

sizable non-universal vertex corrections, γj = −(g2
Rt3R,j/g

2
Y Yj)J3(L,Mj), which depend on

the embedding of the SM fields into SU(2)R. Thus constraints based just on the oblique

parameters can be misleading and one would need a more refined fit as in [10].

6. Conclusions

In this paper we have studied different models for electroweak breaking based on an extra

dimension with a completely general warp factor. Under very broad conditions one can

obtain useful expressions for the spectrum of the model and one can then match to a 4D

theory with only light particles plus higher dimensional operators. This operators give

contributions to the electroweak observables S, T , three main conclusions can be drawn:

• If the model is only based on the SM gauge groups there are very large contributions

to the T parameter unless the KK scale is very large.

• If the model has SU(2)R as a symmetry in the bulk and then T is under control.

As long as there is a higgs in the theory then the model has no problems with EW

observables for KK masses of a few TeV.

• If we go to the higgsless limit then the S parameter in general grows and some careful

choice of fermionic parameters are needed to ensure that the model passes the EW

observables test. It is important to note that in this kind of models there is no free

parameter to tune in order to reduce S since the KK masses are closely related to

the EW scale

All of the above conclusions are independent of the geometry of the extra dimension

so our conclusions are general.

Once this models are in agreement with present day bounds one could study the

different experimental signatures and resonances that can be produced at LHC. In general

the KK modes for gauge bosons tend to be too heavy ∼ 3 TeV. More promising signal

comes from some light fermionic resonance that can appear when the extra symmetry to

cancel Zbb̄ couplings is implemented [17]. Another possibility is to study the signal of KK

gluons that can be detected even when they are as heavy as 4-5 TeV [18]. We postpone a

detailed study of these signatures until future publications.
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A. Integrals

The profiles and the masses of the SM gauge bosons depend on certain integrals of the

warp factor. Here is the complete list relevant to us:

I1(x5) = L−1

∫ x5

0

∫ y

0
y′a−2(y′)

I2(x5) =

∫ x5

0
ya−2(y)

I3(x5) = L

∫ x5

0
a−2(y)

I4(x5) =

∫ x5

0

∫ y

0
a−2(y′)

I5(x5) =

∫ x5

0 a−2(y)
∫ y
0

∫ y′

0 a−2(y′′)
∫ L
0 a−2(y)

(A.1)

Notice that I4(L) = I3(L) − I2(L). All these integrals have dimension [mass]−2, therefore

In(L) is expected to be of order 1/M2
KK. However I2(L) and I3(L) can be parametrically

enhanced when the volume factor defined in eq. (2.11) is large. The argument goes as

follows. If the warp factor decreases sharply toward the IR brane, we get
∫ L
0 a−2 ∼ a−2

L /k

and also MKK ∼ aLk. Here, k ∼ a′(L)/aL is the scale that describes how quickly the

warp factor changes close to the IR brane. Thus I3(L) ∼ kL/M2
KK = V/M2

KK. Similarly

I2(L) ∼ V/M2
KK as the integral is dominated by y ∼ L. Therefore, those electroweak

parameters that depend on I2(L) and I3(L) end up being larger than the naive estimate

v2/M2
KK, and the constraints on the resonance scale become more stringent. Using anal-

ogous estimates, the remaining integrals: I1(L), I4(L) and I5(L) are ∼ 1/M2
KK, with no

volume enhancement. Note also that I4(L) − I1(L) =
∫ ∫

(1 − y/L)a−2 is suppressed,

because the integrand vanishes at y = L.

As an example consider the familiar AdS5background corresponding to a(x5) =

exp(−kx5). For aL ≪ 1 the resonance scale is, MKK ≈ πkaL and the volume factor

V = kL We find the integrals

I1(L) ≈ π2

4M2
KK

[

1 − 1

kL

]

I4(L) ≈ π2

4M2
KK

I5(L) ≈ π2

8M2
KK

(A.2)

I2(L) ≈ π2

4M2
KK

[2kL − 1] I3(L) ≈ π2

4M2
KK

2kL (A.3)

We can see that, indeed, the integrals in the second line are enhanced by the volume factor,

which is of order log(MPl/TeV) ∼ 30 in the Randall-Sundrum setup.
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Another, less known example is when the scale factor in 5D varies according to a

power law: a(x5) =
(

1 − kx5

γ−1

)γ
. The parameter 1/γ allows to describe a departure from

conformal symmetry; in the conformal limit γ → ∞ we are back to AdS5. For aL ≪ 1 and

γ ≫ 1 the resonance scale is MKK ≈ πka
1−1/γ
L and the volume factor kLa

−1/γ
L . We obtain:

I1(L) ≈ π2

2M2
KK

γ − 1

2γ − 3

[

1 − 2(γ − 1)

kL(2γ − 1)

]

I4(L) ≈ π2

2M2
KK

γ − 1

2γ − 1

I5(L) ≈ π2

2M2
KK

γ − 1

4γ − 3
(A.4)

I2(L) ≈ π2

2M2
KK

kLa
−1/γ
L

[

1 − γ − 1

kL(2γ − 1)

]

I3(L) ≈ π2

2M2
KK

kLa
−1/γ
L

2(γ − 1)

2γ − 1
(A.5)

We again observe the volume factor popping out in I2(L) and I3(L). As we move γ away

from the conformal limit the effect of volume enhancement becomes more dramatic: I2(L)

and I3(L) grow as a power of the large number 1/aL (rather than a logarithm as in AdS5).

The remaining integrals, those that are not volume enhanced, are of order 1/M2
KK and

weakly depend on the shape of the warp factor. In consequence, we cannot significantly

reduce the S parameter by varying γ (γ too close to 1 is not attractive as we need to

fine-tune L to generate large hierarchy).

In the flat space, where there is no hierarchy of scales, all the integrals are of the same

order,

6I1(L) = 2I2(L) = I3(L) = 2I4(L) = 6I5(L) =
π2

M2
KK

(A.6)

In order to describe the SM gauge interactions with fermion we define another class of

integrals:

Jn(L,M) =

∫ L
0 a−1(y)e−2MyIn(y)
∫ L
0 a−1(y)e−2My

(A.7)

that depends on the bulk fermion masses.

If the bulk mass is large, such that a−1(y)e−2My ≪ 1 close to the IR brane, then those

integrals are suppressed wrt to 1/M2
KK. For a small bulk mass, however, Jn is of the same

order as In.

Consider AdS5 once again and parametrize M = ck. For c ≫ 3/2 we find Jn ∼
M−2

KKa2
L, a Planck scale suppressed result. For 1/2 ≪ c ≪ 3/2 Jn ∼ M−2

KKa2c−1
L , still

suppressed by an intermediate scale. But for c ≪ 1/2 the suppression is gone and Jn ∼
M−2

KK. In particular

J2(L, ck) ≈ π2

4M2
KK

(1 − 2c)(2kL(3 − 2c) − 2c + 5)

(3 − 2c)2
J3(L, ck) ≈ π2

4M2
KK

2kL
1 − 2c

3 − 2c
(A.8)
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are volume enhanced, just like I2(L) and I3(L). But note that J3 − J2 is safe. For the

crossover value of the bulk mass, c = 1/2, we obtain

J2(L, k/2) ≈ π2

4M2
KK

(

1 − 1

kL

)

J3(L, k/2) ≈ π2

4M2
KK

(A.9)

so that there is no volume enhancement yet.

References

[1] M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46

(1992) 381.

[2] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].

[3] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200];

N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08

(2001) 017 [hep-th/0012148];

R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum

model, JHEP 04 (2001) 021 [hep-th/0012248];
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