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A. THE DIFFERENTIAL GEOMETRICAL FORMALISM

OF THERMOSTATICS

It is well known that the problems of phase stability can be geometrically interpreted

in terms of the curvature of the fundamental surface in the thermodynamic phase space

spanned by the extensive variables (Gibbs space). It has been pointed out (1) that the

thermostatic formalism can be given a mathematical interpretation in terms of affine

differential geometry.

Further investigation has shown that some of the basic concepts of this geometry

correspond to significant thermostatic concepts. A review of this correspondence

between geometrical and thermostatic concepts is not practicable in the present

report, chiefly because the concepts of affine geometry cannot be assumed to be

generally known.

The purpose of this report is, primarily, to indicate the relation of the affine theory

of curvature to the better-known approaches to the same problem.

The elementary theory of curvature considers a two-dimensional surface in three-

dimensional Euclidean space. Interest is directed toward properties that are invariant

under congruence transformations.

According to a second point of view, the surface is characterized by a Riemannian

metric and is discussed without reference to an embedding space.

The affine theory differs in a subtle way from both classical theories. All these

theories are easily generalized to the case of n-dimensional surfaces.

We consider an n-dimensional surface represented in terms of n parameters
12 n

u , u , ... u as follows:

12 n
x =x(u , u  ,...un) (1)

where

x =[x , x .... x n (2)

is a vector in an (n+1)-dimensional Euclidean space. We introduce a vector pointing

along the normal of the surface:
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where the ei are mutually orthogonal unit vectors and

a _ ax a

xkk uk

The elementary theory of curvature is based on the two fundamental forms:

ds 2 = gik du i duk
i, k

-dx • d = h dulduk
ik

i, k

Here ds 2 is the square of the line element,

gk= x a

a

and

h ik = ik' X' x2 . xn)

where

x= -
k ak 'au

x
Xik - k

au au

The right-hand side of Eq. 6 is the (n+l) by (n+l) determinant, consisting of the

elements of the vectors in parentheses.

Fundamental form I represents the intrinsic metric of the surface, and fundamental

form II expresses the curvature with respect to the embedding space. Both forms are

needed to determine the principal radii of curvature R 1 and R 2 . However, according to

a fundamental theorem of Gauss, the product R 1 R 2 depends solely on form I, and it is

invariant with respect to bending - an operation that preserves the metric but changes

form II. This theorem is the basis for the presentation of Riemannian geometry in terms

of the metric tensor gik only.

In affine geometry we investigate the properties of the surface that are invariant

under the linear transformations
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S= n+ 1 k (8)
= akx

We further require that the determinant of Eq. 8 be unity, in order to preserve the

volume spanned by the n + 1 vectors. Transformations of this sort do not preserve

length, and metric form I becomes meaningless.

However, it is easily shown from Eq. 6 that form II is invariant under volume-

preserving linear transformations. Moreover, it was shown by G. Pick and

W. Blaschke (2) that a satisfactory differential geometry can be built on the basis of

the tensor hik'
Although there are far-reaching similarities between the role of the tensors gik and

hik, there are also essential differences. The transformations (Eq. 8) do not preserve

the length of a vector and the angle between two vectors. Therefore such important

concepts as "orthogonality" and "normal to a surface" lose their meaning. The inter-

esting point is that these concepts can be replaced by others, such as "conjugate direc-

tion, " and "affine normal, " which allow development of the theory to a degree that is

quite comparable with the classical theories.

The significant aspect of these results, from the present point of view, is that the

peculiarities of affine geometry have their counterpart in thermostatics, and, in fact,

also in irreversible thermodynamics (3).

In Gibbs space the coordinates x i are interpreted as the extensive variables: energy,

entropy, volume, and the mole numbers of the chemical components. A vector Ax in

this space corresponds to a process in which these quantities change in definite propor-

tions. This is indeed the characteristic feature of such processes as phase transitions

and chemical reactions. Processes underlying the change of a single extensive variable

Ax # 0 i= k

Ax = 0 i k (9)

i= 1, 2, ... n+1

are most artificial, and it is more practical to work in terms of the basic processes

that are characteristic of each system. This is what is achieved by the affine trans-

formations given in Eq. 8.

The problem is being further studied.
L. Tisza
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