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Abstract
I review in this series of lectures the basics of perturbative quantum chromo-
dynamics and some simple applications to the physics of high-energy hadronic
collisions.

1 Introduction
Quantum chromodynamics (QCD) is the theory of strong interactions. It is formulated in terms of ele-
mentary fields (quarks and gluons), whose interactions obey the principles of a relativistic quantum field
theory, with a non-Abelian gauge invariance SU(3). The emergence of QCD as a theory of strong inter-
actions could be reviewed historically, analysing the various experimental data and the theoretical ideas
available in the years 1960–1973 (see, for example, Refs. [17, 18]). To do this accurately and usefully
would require more time than I have available. I therefore prefer to introduce QCD right away, and to
use my time in exploring some of its consequences and applications. I will therefore assume that you all
know more or less what QCD is! I assume you know that hadrons are made of quarks, that quarks are
spin-1/2, colour-triplet fermions, interacting via the exchange of an octet of spin-1 gluons. I assume you
know the concept of running couplings, asymptotic freedom and of confinement. I shall finally assume
that you have some familiarity with the fundamental ideas and formalism of quantum electrodynamics
(QED): Feynman rules, renormalization, gauge invariance.

If you go through lecture series on QCD (e.g., the lectures given in previous years at the European
Schools of High-Energy Physics, Refs. [9–11]), you will hardly ever find the same item twice. This is
because QCD today covers a huge set of subjects and each of us has his own concept of what to do
with QCD and of what are the ‘fundamental’ notions of QCD and its ‘fundamental’ applications. As a
result, you will find lecture series centred around non-perturbative applications, (lattice QCD, sum rules,
chiral perturbation theory, heavy-quark effective theory), around formal properties of the perturbative
expansion (asymptotic behaviour, renormalons), techniques to evaluate complex classes of Feynman
diagrams, or phenomenological applications of QCD to possibly very different sets of experimental data:
structure functions, deep-inelastic scattering (DIS) sum rules, polarized DIS, small-x physics (including
hard pomerons, diffraction), LEP physics, pp̄ collisions, etc.

I will not be able to cover or even to mention all of this. After introducing some basic material, I
will focus on some elementary applications of QCD in high-energy phenomena, and in particular on the
case of hadron–hadron collisions. The material covered in these lectures includes the following.

1. Gauge invariance and Feynman rules for QCD.
2. The structure of the proton.
3. The evolution of final states: from quarks and gluons to hadrons.
4. Some key hard processes in hadron–hadron collisions: formalism, W/Z production, jet produc-

tion.

The treatment will be very elementary, and the emphasis will be on basic and intuitive physics concepts.
Explicit details and the derivation of equations and formulas is left for a few appendices, covering

a. renormalization, running coupling, renormalization group invariance;
b. deep-inelastic scattering and evolution equations;
c. jet observables in e+e− collisions.
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Given the large number of papers which have contributed to the development of the field, it is impossible
to provide a fair bibliography. I therefore limit my list of references to some excellent books and review
articles covering the material presented here, and more. Papers on specific items can be easily found by
consulting the standard hep-th and hep-ph preprint archives.

2 QCD Feynman rules
Before starting with the applications, we need to spend some time developing the formalism and the nec-
essary theoretical ideas. I will start from the Feynman rules. I will use an approach which is not canoni-
cal, namely it does not follow the standard path of the construction of a gauge-invariant Lagrangian and
the derivation of Feynman rules from it. I will rather start from QED, and empirically construct the ex-
tension to a non-Abelian theory by enforcing the desired symmetries directly on some specific scattering
amplitudes. Hopefully, this will lead to a better insight into the relation between gauge invariance and
Feynman rules. It will also provide you with a way of easily recalling or checking your rules when books
are not around!

2.1 Summary of QED Feynman rules
We start by summarizing the familiar Feynman rules for QED. They are obtained from the Lagrangian

L = ψ̄(i/∂ −m)ψ − eψ̄ /Aψ − 1

4
FµνF

µν (1)

where ψ is the electron field, of mass m and coupling constant e, and F µν is the electromagnetic field
strength.

Fµν = ∂µAν − ∂νAµ . (2)

The resulting Feynman rules are summarized in the following table:

=
i

/p−m+ iε
= i

/p+m

p2 −m2 + iε
(3)

= −i gµν
p2 + iε

(Feynman gauge) (4)

= −ieγµQ (Q = −1 for the electron, Q = 2/3 for the u-quark, etc.)

(5)

Let us start by considering a simple QED process, e+e− → γγ (for simplicity we shall always assume
m = 0):

= D1 +D2 . (6)

The total amplitude Mγ is given by

i

e2
Mγ ≡ D1 +D2 = v̄(q̄) /ε2

1

/q − /k1
/ε1 u(q) + v̄(q̄)/ε1

1

/q − /k2
/ε2 n(q) ≡Mµνε

µ
1 ε
ν
2 . (7)

Gauge invariance demands that
εν2∂

µMµν = εµ1∂
νMµν = 0 . (8)
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Mµ ≡ Mµνε
ν
2 is in fact the current that couples to the photon k1. Charge conservation requires

∂µM
µ = 0:

∂µM
µ = 0 ⇒ d

dt

∫
M0d3x =

∫
∂0M

0 d3x

=

∫
~∇ · ~M d3x =

∫

S→∞
~M · d~Σ = 0 . (9)

In momentum space, this means
kµ1Mµ = 0 . (10)

Another way of saying this is that the theory is invariant if εµ(k)→ εµ(k)+f(k) kµ . This is the standard
Abelian gauge invariance associated with the vector potential transformations:

Aµ(x)→ Aµ(x) + ∂µf(x) . (11)

Let us verify that Mγ is indeed gauge invariant. Using /qu(q) = v̄(q̄)/q = 0 from the Dirac
equation, we can rewrite kµ1Mµ as

kµ1 ε
ν
2Mµν = v̄(q̄)/ε2

1

/q − /k1

(/k1 − /q)u(q) + v̄(q̄)(/k1 − q̄)
1

k1 − q̄
/ε2u(q)

= −v̄(q̄)/ε2u(q) + v̄(q̄)/ε2u(q) = 0 . (12)

Notice that the two diagrams are not individually gauge invariant, only the sum is. Notice also that the
cancellation takes place independently of the choice of ε2. The amplitude is therefore gauge invariant
even in the case of emission of non-transverse photons.

Let us try now to generalize our QED example to a theory where the ‘electrons’ carry a non-
Abelian charge, i.e., they transform under a non-trivial representation R of a non-Abelian group G
(which, for the sake of simplicity, we shall always assume to be of the SU(N ) type. Likewise, we
shall refer to the non-Abelian charge as ‘colour’). The standard current operator belongs to the product
R⊗ R̄. The only representation that belongs to R⊗ R̄ for any R is the adjoint representation. Therefore
the field that couples to the colour current must transform as the adjoint representation of the group G.
So the only generalization of the photon field to the case of a non-Abelian symmetry is a set of vector
fields transforming under the adjoint of G, and the simplest generalization of the coupling to fermions
takes the form

= igλaki γ
µ
mn (13)

where the matrices λa represent the algebra of the group on the representation R. By definition, they
satisfy the algebra

[λa, λb] = ifabcλc (14)

for a fixed set of structure constants f abc, which uniquely characterize the algebra. We shall call quarks
(q) the fermion fields in R and gluons (g) the vector fields which couple to the quark colour current.

The non-Abelian generalization of the e+e− → γγ process is the qq̄ → gg annihilation. Its
amplitude can be evaluated by including the λ matrices in Eq. (6):

i

e2
Mγ →

i

g2
Mg ≡ (λbλa)ij D1 + (λaλb)ij D2 (15)
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where (a, b) are colour labels (i.e., group indices) of gluons 1 and 2, and (i, j) are colour labels of q̄, q,
respectively. Using Eq. (14), we can rewrite Eq. (15) as

Mg = (λaλb)ijMγ − g2 fabcλcij D1 . (16)

If we want the charge associated with the group G to be conserved, we still need to demand

kµ1 ε
ν
2 M

µν
g = εµ1k

ν
2 M

µν
g = 0 . (17)

Substituting εµ1 → kµ1 in Eq. (16) we get instead, using Eq. (12),

k1 µM
µ
g = −g2fabc λcij v̄i(q̄) /ε2ui(q) . (18)

The gauge cancellation taking place in QED between the two diagrams is spoiled by the non-Abelian
nature of the coupling of quarks to gluons (i.e., λa and λb do not commute, and f abc 6= 0).

The only possible way to solve this problem is to include additional diagrams. That new interac-
tions should exist is by itself a reasonable fact, since gluons are charged (i.e., they transform under the
symmetry group) and might want to interact among themselves. If we rewrite Eq. (18) as

k1 µM
µ
g = i

(
fabc g εµ2

)
×
(
i g λcij v̄(q̄) γµ u(q)

)
, (19)

we can recognize in the second factor the structure of the qq̄g vertex. The first factor has the appropriate
colour structure to describe a triple-gluon vertex, with a, b, c the colour labels of the three gluons:

= g fabc Vµ1µ2µ3(k1, k2, k3) . (20)

Equation (19) therefore suggests the existence of a coupling like Eq. (20), with a Lorentz structure
Vµ1µ2µ3 to be specified, giving rise to the following contribution to qq̄ → gg:

= −i g2 D3 = (ig λaij)v̄(q̄)i γ
µ u(q)j

(−i
p2

)

g fabc Vµνρ(−p, k1, k2) εν1(k1) ερ2(k2) . (21)

We now need to find Vµ1µ2µ3(p1, p2, p3) and to verify that the contribution of the new diagram to k1 ·Mg

cancels that of the first two diagrams. We will now show that the constraints of Lorentz invariance, Bose
symmetry and dimensional analysis uniquely fix V , up to an overall constant factor.

Dimensional analysis fixes the coupling to be linear in the gluon momenta. This is because each
vector field carries dimension 1, there are three of them, and the interaction must have total dimension
equal to 4. So at most one derivative (i.e., one power of momentum) can appear at the vertex. In principle,
if some mass parameter were available, higher derivatives could be included, with the appropriate powers
of the mass parameter appearing in the denominator. This is however not the case. It is important
to remark that the absence of interactions with a higher number of derivatives is also crucial for the
renormalizability of the interaction.

Lorentz invariance requires then that V be built out of terms of the form gµ1µ2pµ3 . Bose symmetry
requires V to be fully antisymmetric under the exchange of any pair (µi, pi)↔ (µj , pj) since the colour
structure fabc is totally antisymmetric. As a result, for example, a term like gµ1µ2p

µ3
3 vanishes under
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antisymmetrization, while gµ1µ2p
µ3
1 does not. Starting from this last term, we can easily add the pieces

required to obtain the full antisymmetry in all three indices. The result is unique, up to an overall factor:

Vµ1µ2µ3 = V0 [(k1 − k2)µ3gµ1µ2 + (k2 − k3)µ1gµ2µ3 + (k3 − k1)µ2gµ1µ3 ] . (22)

To test the gauge variation of the contribution D3, we set µ3 = µ, ε1 = k1 and k3 = −(k1 + k2) in
Eq. (21), and we get

kµ1
1 εµ2

2 Vµ1µ2µ(k1, k2, k3) = V0 {−(k1 + k2)µ(k1 · ε2) + 2(k1 · k2)εµ2 − (k2 · ε2)kµ1 } . (23)

The gauge variation is therefore

k1 ·D3 = g2fabcλcV0

[
v̄(q̄)/ε2u(q)− k2 · ε2

2k1k2
v̄(q̄)/k1u(q)

]
. (24)

The first term cancels the gauge variation of D1 + D2 provided V0 = 1; the second term vanishes for a
physical gluon k2, since in this case k2 · ε2 = 0. D1 +D2 +D3 is therefore gauge invariant but, contrary
to the case of QED, only for physical external on-shell gluons.

Having introduced a three-gluon coupling, we can induce processes involving only gluons, such
as gg → gg:

. (25)

Once more it is necessary to verify the gauge invariance of this amplitude. It turns out that one more
diagram is required, induced by a four-gluon vertex. Lorentz invariance, Bose symmetry and dimensional
analysis uniquely determine once again the structure of this vertex. The overall factor is fixed by gauge
invariance. The resulting Feynman rule for the four-gluon vertex is given in Fig. 1.

You can verify that the three- and four-gluon vertices we introduced above are exactly those which
arise from the Yang–Mills Lagrangian:

LYM = −1

4

∑

a

F aµνF
aµν with F aµν = ∂[µA

a
ν] − g fabcAb[µAcν] . (26)

It can be shown that the three- and four-gluon vertices we generated are all is needed to guarantee gauge
invariance even for processes more complicated than those studied in the previous simple examples. In
other words, no extra five-or-more-gluon vertices have to be introduced to achieve the gauge invariance
of higher-order amplitudes. At the tree level this is the consequence of dimensional analysis and of the
locality of the couplings (no inverse powers of the momenta can appear in the Lagrangian). At the loop
level, these conditions are supplemented by the renormalizability of the theory [3, 7].

Before one can start calculating cross-sections, a technical subtlety that arises in QCD when squar-
ing the amplitudes and summing over the polarization of external states needs to be discussed. Let us
again start from the QED example. Let us focus, for example, on the sum over polarizations of photon
k1:

∑

ε1

|M |2 =

(∑

ε1

εµ1ε
ν∗
1

)
MµM

∗
ν . (27)

The two independent physical polarizations of a photon with momentum k = (k0; 0, 0, k0) are given by
εµL,R = (0; 1,±i, 0)/

√
2. They satisfy the standard normalization properties:

εL · ε∗L = −1 = εR · ε∗R εL · ε∗R = 0

5
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= δab
−i gαβ
p2 + iε

(Feynman gauge)

= δab
i

p2 + iε

= δik
i

/p−m+ iε

∣∣∣∣
mn

= gfabc
[
gαβ(p− q)γ + gβγ(q − r)α + gγα(r − p)β

]

= −ig2fxacfxbd
(
gαβgγδ − gαδgβγ

)

−ig2fxadfxbc
(
gαβgγδ − gαγgβδ

)

−ig2fxabfxcd
(
gαγgβδ − gαδgβγ

)

= −gfabc qα

= ig λaki γ
α
mn

Fig. 1: Feynman rules for QCD. The solid lines represent the fermions, the curly lines the gluons, and the dotted
lines the ghosts.
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We can write the sum over physical polarizations in a convenient form by introducing the vector k̄ =
(k0; 0, 0,−k0):

∑

i=L,R

εµi ε
ν∗
i ≡




0 ~0
1 0 0

~0 0 1 0
0 0 0


 = −gµν +

kµk̄ν + kν k̄µ

k · k̄ . (28)

We could have written the sum over physical polarizations using any other momentum `µ, provided
k · ` 6= 0. This would be equivalent to a gauge transformation (prove it as an exercise). In QED the
second term in Eq. (28) can be safely dropped, since kµMµ = 0. As a cross-check, notice that kµMµ = 0
implies M0 = M3, and therefore

∑

i=L,R

|εi ·M |2 = |M1|2 + |M2|2 = |M1|2 + |M2|2 + |M3|2 − |M0|2 ≡ −gµνMµM
∗
ν . (29)

Therefore, the production of the longitudinal and time-like components of the photon cancel each other.
This is true regardless of whether additional external photons are physical or not, since the gauge in-
variance k1 ·M = 0 shown in Eq. (12) holds regardless of the choice for ε2, as already remarked. In
particular,

kµ1
1 kµ2

2 Mµ1µ2 = 0 (30)

(for n photons, kµ1
1 kµ2

2 . . . kµnn Mµ1...µn = 0) and the production of any number of unphysical photons
vanishes. The situation in the case of gluon emission is different, since k1 ·M ∝ ε2 · k2, which vanishes
only for a physical ε2. This implies that the production of one physical gluon and one non-physical gluon
is equal to 0, but the production of a pair of non-physical gluons is allowed! If ε2 · k2 6= 0, then M0 is
not equal to M3, and Eq. (28) is not equivalent to

∑
εµε
∗
ν = −gµν .

Exercise: show that

∑

non-physical

|εµ1 εν2Mµν |2 =

∣∣∣∣i g2 fabcλc
1

2k1k2
v̄(q̄) /k1 u(q)

∣∣∣∣
2

. (31)

In the case of non-Abelian theories, it is therefore important to restrict the sum over polarizations and
(because of unitarity) the off-shell propagators to physical degrees of freedom with the choice of physical
gauges. Alternatively, one has to undertake a study of the implications of gauge-fixing in non-physical
gauges for the quantization of the theory (see Refs. [3,7]). The outcome of this analysis is the appearance
of two colour-octet scalar degrees of freedom (called ghosts) whose rôle is to enforce unitarity in non-
physical gauges. They will appear in internal closed loops, or will be pair-produced in final states.
They only couple to gluons. Their Feynman rules are supplemented by the prescription that each closed
loop should come with a −1 sign, as if they obeyed Fermi statistics. Being scalars, this prescription
breaks the spin-statistics relation, and leads as a result to the possibility that production probabilities
are negative. This is precisely what is required to cancel the contributions of non-transverse degrees of
freedom appearing in non-physical gauges. Adding the ghosts contribution to qq̄ → gg decays (using
the Feynman rules from Fig. 1) gives in fact

= −
∣∣∣∣i g2 fabcλc

1

2k1k2
v̄(q̄) /k1 u(q)

∣∣∣∣
2

, (32)

which exactly cancels the contribution of non-transverse gluons in the non-physical gauge
∑

εµε
∗
ν =

−gµν , given in in Eq. (31).
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The detailed derivation of the need for and properties of ghosts (including their Feynman rules and
the ‘−1’ prescription for loops) can be found in the suggested textbooks. I will not derive these results
here since we will not need them for our applications (we will use physical gauges or will consider
processes not involving the three-gluon vertex). The full set of Feynman rules for the QCD Lagrangian
is summarized in Fig. 1. Their application to the renormalization of vertices and couplings at one-loop
is discussed in Appendix A.

2.2 Some useful results in colour algebra
The presence of colour factors in the Feynman rules makes it necessary to develop some technology to
evaluate the colour coefficients which multiply our Feynman diagrams. To be specific, we shall assume
the gauge group is SU(N ). The fundamental relation of the algebra is

[λa, λb] = ifabdλc (33)

with fabc totally antisymmetric. This relation implies that all λ matrices are traceless. For practical
calculations, since we will always sum over initial, final, and intermediate state colours, we will never
need the explicit values of f abc. All of the results can be expressed in terms of group invariants (a.k.a.
Casimirs), some of which we will now introduce. The first such invariant (TF) is chosen to fix the
normalization of the matrices λ:

tr(λaλb) = TFδab (34)

where by convention TF = 1/2 for the fundamental representation. Should you change this convention,
you would need to change the definition (i.e., the numerical value) of the coupling constant g, since g λa

appears in the Lagrangian and in the Feynman rules.

Exercise: Show that tr(λaλb) is indeed a group invariant. Hint: write the action on λa of a general group
transformation with infinitesimal parameters εb as follows:

δλa =
∑

b,c

εbf
abcλc . (35)

The definition of TF allows us to evaluate the colour factor for an interesting diagram, i.e., the quark
self-energy:

∼
∑

a

(λaλa)ij ≡ CFδij . (36)

The value of CF can be obtained by tracing the relation above:

CFN = tr
∑

a

λaλa = δab TFδab =
N2 − 1

2
(37)

where we used the fact that δabδab = N2 − 1, the number of matrices λa (and of gluons) for SU(N ).

There are some useful graphical tricks (which I learned from P. Nason [9]) that can be used to
evaluate complicated expressions. The starting point is the following representation for the quark and
gluon propagators, and for the qq̄g and ggg interaction vertices:

fermion (38)

gluon (39)

8
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1√
2


 − 1

N


 fermion–gluon vertex (ta) (40)

1√
2


 −


 3-gluon vertex (f abc) . (41)

Contraction over colour indices is obtained by connecting the respective colour (or anticolour) lines. A
closed loop of a colour line gives rise to a factor N , since the closed loop is equivalent to the trace of the
unit matrix. So the above representation of the qq̄g vertex embodies the idea of ‘colour conservation’,
whereby the colour–anticolour quantum numbers carried by the qq̄ pair are transferred to the gluon.
The piece proportional to 1/N in the qq̄g vertex appears only when the colour of the quark and of the
antiquark are the same. It ensures that λa is traceless, as it should be. This can be easily checked as an
exercise. The factor 1/

√
2 is related to the chosen normalization of TF.

As a first example of applications, let us re-evaluate CF:

=
1√
2


 − 1

N


×

1√
2


 − 1

N




=
1

2


 − 1

N
− 1

N
+

+
1

N2




= δij
N2 − 1

2N
. (42)

As an exercise, you can calculate the colour factor for qq̄ → qq̄ scattering, and show that

∑

a

(λa)ij(λ
a)`k = =

1

2


 − 1

N


 =

1

2

(
δikδ`j −

1

N
δijδ`k

)
. (43)

This result can be used to evaluate the one-loop colour factors for the interaction vertex with a photon:

=
1

2


 − 1

N


 =

1

2

N2 − 1

N
δij = CFδij . (44)

For the interaction with a gluon, we have instead

=
1√
2


 − 1

N


×

1

2


 − 1

N



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=
1

2
√

2


 − 1

N
− 1

N
+

1

N2




= − 1

2N

1√
2


 − 1

N


 = − 1

2N
. (45)

Note that in the case of the coupling to the photon, the qq̄ pair is in a colour-singlet state and the gluon
exchange effect has a positive sign (⇒ attraction). In the case of the coupling to the gluon, the qq̄
pair is in a colour-octet state and the gluon-exchange correction has a negative sign relative to the Born
interaction. The force between a qq̄ pair is therefore attractive if the pair is in a colour-singlet state, and
repulsive if it is in a colour-octet state! This gives a qualitative argument for why no colour-octet qq̄
bound state exists.

The remaining important relation that one needs is the following:
∑

a,b

fabcfabd = CAδ
cd with CA = N . (46)

You can easily prove it by using the graphical representation given in Eq. (41), or by using Eq. (43) and
fabc = −2i tr([λa, λb]λc).

3 QCD and the proton structure at largeQ2

The understanding of the structure of the proton at short distances is one of the key ingredients to be able
to predict cross-section for processes involving hadrons in the initial state. All processes in hadronic col-
lisions, even those intrinsically of electroweak nature such as the production of W/Z bosons or photons,
are in fact induced by the quarks and gluons contained inside the hadron. In this lecture I will introduce
some important concepts, such as the notion of partonic densities of the proton, and of parton evolution.
These are the essential tools used by theorists to predict production rates for hadronic reactions.

We shall limit ourselves to processes where a proton–(anti)proton pair collides at high centre-
of-mass energy (

√
S, typically larger than several hundred GeV) and undergoes a strongly inelastic

interaction, with momentum transfers between the participants in excess of several GeV. The outcome
of this hard interaction could be the simple scattering at large angle of some of the hadron’s elementary
constituents, their annihilation into new massive resonances, or a combination of the two. In all cases the
final state consists of a large multiplicity of particles, associated with the evolution of the fragments of
the initial hadrons, as well as of the new states produced. As discussed below, the fundamental physical
concept that makes this programme possible is ‘factorization’, the ability to isolate separate independent
phases of the overall collision. These phases are dominated by different dynamics, and the most appro-
priate techniques can be applied to describe each of them separately. In particular, factorization allows
one to decouple the complexity of the proton structure and of the final-state hadron formation from the
elementary nature of the perturbative hard interaction among parton constituents.

Figure 2 illustrates how this works. As the left proton travels freely before coming into contact
with the hadron coming in from the right, its constituent quarks are held together by the constant ex-
change of virtual gluons (e.g., gluons a and b in the picture). These gluons are mostly soft, because any
hard exchange would cause the constituent quarks to fly apart, and a second hard exchange would be
necessary to re-establish the balance of momentum and keep the proton together. Gluons of high virtu-
ality (gluon c in the picture) prefer therefore to be reabsorbed by the same quark, within a time inversely
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Fig. 2: General structure of a hard proton–proton collision

proportional to their virtuality, as prescribed by the uncertainty principle. The state of the quark is, how-
ever, left unchanged by this process. Altogether this suggests that the global state of the proton, although
defined by a complex set of gluon exchanges between quarks, is nevertheless determined by interactions
which have a time scale of the order of 1/mp. When seen in the laboratory frame where the proton is
moving with energy

√
S/2, this time is furthermore Lorentz dilated by a factor γ =

√
S/2mp. If we

disturb a quark with a probe of virtuality Q � mp, the time frame for this interaction is so short (1/Q)
that the interactions of the quark with the rest of the proton can be neglected. The struck quark cannot ne-
gotiate with its partners a coherent response to the external perturbation: it simply does not have the time
to communicate to them that it is being kicked away. On this time scale, only gluons with energy of the
order of Q can be emitted, something which, to happen coherently over the whole proton, is suppressed
by powers of mp/Q (this suppression characterizes the ‘elastic form factor’ of the proton). In this figure,
the hard process is represented by the rectangle labelled HP. In this example a head-on collision with a
gluon from the opposite hadron, leads to a qg → qg scattering with a momentum exchange of the order
of Q. This and other possible processes can be calculated from first principles in perturbative QCD.

When the constituent is suddenly deflected, the partons that it had recently radiated cannot be
reabsorbed (as happened to gluon c earlier) because the constituent is no longer there waiting for the
partons to come back. This is the case, for example, of the gluon d emitted by the quark, and of the
quark e from the opposite hadron; the emitted gluon got engaged in the hard interaction. The number of
‘liberated’ partons will depend on the hard scale Q: the larger Q, the more sudden the deflection of the
struck parton, and the fewer the partons that can reconnect before its departure (typically only partons
with virtuality larger than Q).

After the hard process, the partons liberated during the evolution prior to the collision and the
partons created by the hard collision will themselves emit radiation. The radiation process, governed
by perturbative QCD, continues until a low virtuality scale is reached (the boundary region labelled
with a dotted line, H, in our figure). To describe this perturbative evolution phase, proper care has
to be taken to incorporate quantum coherence effects, which in principle connect the probabilities of
radiation off different partons in the event. ăOnce the low virtuality scale is reached the memory of the
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hard-process phase has been lost, once again as a result of different time scales in the problem, and the
final phase of hadronization takes over. Because of the decoupling from the hard-process phase, the
hadronization is assumed to be independent of the initial hard process, and its parametrization, tuned to
the observables of some reference process, can then be used in other hard interactions (universality of
hadronization). Nearby partons merge into colour-singlet clusters (the grey blobs in Fig. 2), which are
then decayed phenomenologically into physical hadrons. To complete the picture, we need to understand
the evolution of the fragments of the initial hadrons. As shown in the figure, this evolution cannot be
entirely independent of what happens in the hard event, because at least colour quantum numbers must
be exchanged to guarantee the overall neutrality and conservation of baryon number. In our example, the
gluons f and g, emitted early on in the perturbative evolution of the initial state, split into qq̄ pairs which
are shared between the hadron fragments (whose overall interaction is represented by the oval labelled
UE, for Underlying Event) and the clusters resulting from the evolution of the initial state.

The above ideas are embodied in the following factorization formula, which represents the starting
point of any theoretical analysis of cross-sections and observables in hadronic collisions:

d σ

dX
=
∑

j,k

∫

X̂
fj(x1, Qi)fk(x2, Qi)

d σ̂jk(Qi, Qf )

d X̂
F (X̂ → X; Qi, Qf ) , (47)

where

– X is some hadronic observable (e.g., the transverse momentum of a pion);
– the sum over j and k extends over the parton types inside the colliding hadrons;
– the function fj(x,Q) (known as parton distribution function, PDF) represents the number density

of parton type j with momentum fraction x in a proton probed at a scale Qi;
– X̂ is a parton-level observable (e.g., the transverse momentum of a parton from the hard scatter-

ing);
– σ̂jk is the parton-level cross-section, differential in the observable X̂ ;

– F (X̂ → X; Qi, Qf ) is a transition function, weighting the probability that the partonic state
defining X̂ gives rise to the hadronic observable X;

– the scales Qi and Qf correspond to the scales at which we separate the perturbative, hard process
from the initial- and final-state evolutions, respectively.

In the rest of this section I shall cover the above ideas in some more detail. While I will not provide
you with a rigorous proof of the legitimacy of this approach, I will try to justify it qualitatively to make
it sound at least plausible. In Appendix B I will collect some more explicit derivations and results.

3.1 The parton densities and their evolution
As mentioned above, the binding forces responsible for the quark confinement are due to the exchange
of rather soft gluons. If a quark were to exchange a hard virtual gluon with another quark, in fact, the
recoil would tend to break the proton apart. It is easy to verify that the exchange of gluons with virtuality
larger than Q is then proportional to some large power of mp/Q, mp being the proton mass. Since the
gluon coupling constant gets smaller at large Q, exchange of hard gluons is significantly suppressed 1.
Consider in fact the picture Fig. 3. The exchange of two gluons is required to ensure that the momentum
exchanged after the first gluon emission is returned to the quark, and the proton maintains its structure.
The contributions of hard gluons to this process can be approximated by integrating the loop over large
momenta: ∫

Q

d4q

q6
∼ 1

Q2
. (48)

1The fact that the coupling decreases at large Q plays a fundamental role in this argument. Were this not true, the parton
picture could not be used!
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Fig. 3: Gluon exchange inside the proton

Fig. 4: Gluon emission at different scales during the approach to a hard collision

At large Q this contribution is suppressed by powers of (mp/Q)2, where the proton mass mp is included
as being the only dimensionful quantity available. The interactions keeping the proton together are
therefore dominated by soft exchanges, with virtuality Q of the order of mp. The typical time scale of
these exchanges is of the order of 1/mp (in the laboratory system, where the proton travels with energy
E, this time is Lorentz dilated to τ ∼ γ/mp = E/m2

p). If we probe the proton with an off-shell photon,
the interaction takes place during the limited lifetime of the virtual photon, given by the inverse of its
virtuality as a result of the Heisenberg principle. Assuming the virtuality Q� mp, once the photon gets
‘inside’ the proton and meets a quark, the struck quark has no time to negotiate a coherent response with
the other quarks, because the time scale for it to ‘talk’ to its pals is too long compared with the duration
of the interaction with the photon itself. As a result, the struck quark has no option but to interact with
the photon as if it were a free particle.

Let us look in more detail at what happens during such process. In Fig. 4 we see a proton as it
approaches a hard collision with a photon of virtuality Q. Gluons emitted at a scale q > Q have the time
to be reabsorbed, since their lifetime is very short. Their contribution to the process can be calculated in
perturbative QCD, since the scale is large. Since after being reabsorbed the state of the quark remains
the same, their only effect is an overall renormalization of the wave function, and they do not affect the
quark density. A gluon emitted at a scale q < Q, however, has a lifetime longer than the time it takes for
the quark to interact with the photon, and by the time it tries to reconnect to its parent quark, the quark
has been kicked away by the photon, and is no longer there. Since the gluon has taken away some of the
quark momentum, the momentum fraction x of the quark as it enters the interaction with the photon is
different from the momentum it had before, and therefore its density f(x) is affected. Furthermore, when
the scale q is of the order of 1 GeV the state of the quark is not calculable in perturbative QCD. This
state depends on the internal wave function of the proton, which perturbative QCD cannot easily predict.
We can however say that the wave function of the proton, and therefore the state of the ‘free’ quark, are
determined by the dynamics of the soft-gluon exchanges inside the proton itself. Since the time scale of
this dynamics is long relative to the time scale of the photon–quark interaction, we can safely argue that
the photon sees to good approximation a static snapshot of the proton’s inner guts. In other words, the
state of the quark had been prepared long before the photon arrived. This also suggests that the state of
the quark will not depend on the precise nature of the external probe, provided the time scale of the hard
interaction is very short compared to the time it would take for the quark to readjust itself. As a result,
if we could perform some measurement of the quark state using, say, a virtual-photon probe, we could
then use this knowledge on the state of the quark to perform predictions for the interaction of the proton
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Fig. 5: Scale dependence of the gluon emission during a hard collision

with any other probe (e.g., a virtual W or even a gluon from an opposite beam of hadrons). This is the
essence of the universality of the parton distributions.

The above picture leads to an important observation. It appears in fact that which gluons are
reabsorbed and which ones are not depends on the scale Q of the hard probe. As a result, the parton
density f(x) appears to depend on Q. This is illustrated in Fig. 5. The gluon emitted at a scale µ has a
lifetime short enough to be reabsorbed before a collision with a photon of virtuality Q < µ, but too long
for a photon of virtuality Q > µ. When going from µ to Q, therefore, the partonic density f(x) changes.
We can easily describe this variation as follows:

f(x,Q) = f(x, µ) +

∫ 1

x
dxin f(xin, µ)

∫ Q

µ
dq2

∫ 1

0
dyP(y, q2) δ(x − yxin) . (49)

Here we obtain the density at the scale Q by adding to f(x) at the scale µ (which we label f(x, µ)) all
the quarks with momentum xin > x, which retain a momentum fraction x = y/xin by emitting a gluon.
The function P (y,Q2) describes the ‘probability’ that the quark emits a gluon at a scale Q, keeping a
fraction y of its momentum. This function does not depend on the details of the hard process, it simply
describes the radiation of a quark subject to an interaction with virtuality Q. Since f(x,Q) does not
depend upon µ (µ is just used as a reference scale to construct our argument), the total derivative of the
right-hand side with respect to µ should vanish, leading to the following equation:

df(x,Q)

dµ2
= 0 ⇒ df(x, µ)

dµ2
=

∫ 1

x

dy

y
f(y, µ)P(x/y, µ2) . (50)

One can prove (see Appendix B) that

P(x,Q2) =
αs
2π

1

Q2
P (x) , (51)

from which the Altarelli–Parisi equation follows:

df(x, µ)

d log µ2
=

αs
2π

∫ 1

x

dy

y
f(y, µ)Pqq(x/y) . (52)

The so-called splitting function Pqq(x) can be calculated in perturbative QCD, and is given in Appendix
B. The subscript qq is a convention indicating that x refers to the momentum fraction retained by a quark
after emission of a gluon.

More in general, one should consider additional processes. For example, one should include cases
in which the quark interacting with the photon comes from the splitting of a gluon. This is shown in
Fig. 6: the left diagram is the one we considered above; the right diagram corresponds to processes
where an emitted gluon has the time to split into a qq̄ pair, and it is one of these quarks which interacts
with the photon. The overall evolution equation, including the effect of gluon splitting, is given by
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Fig. 6: The processes leading to the evolution of the quark density

Fig. 7: The processes leading to the evolution of the gluon density

Fig. 8: Gluon evolution leading to a charm-quark content of the proton

dq(x,Q)

dt
=

αs
2π

∫ 1

x

dy

y

[
q(y,Q)Pqq(

x

y
) + g(y,Q)Pqg(

x

y
)

]
. (53)

For external probes which couple to gluons (namely an external gluon, coming, for example, from an
incoming proton), we have a similar evolution of the gluon density (see Fig. 7):

dg(x,Q)

dt
=

αs
2π

∫ 1

x

dy

y

[
g(y,Q)Pgg(

x

y
) +

∑

q,q̄

q(y,Q)Pgq(
x

y
)

]
. (54)

3.2 Example: the charm content of the proton
If the virtuality of the external probe is large enough, the time scale of the hard interaction is so short
that gluon fluctuations into virtual heavy-quark states can be intercepted, and the virtual heavy quarks
(charm quarks in our example) can be brought on-shell via the interaction with the photon (see Fig. 8).
To the external photon, it will therefore appear as if the proton contained some charm. Its density can
be calculated using the Altarelli–Parisi equation, assuming that the heavy-quark density itself is 0 at
Q ∼ mc, and builds up according to the evolution equation

dc(x,Q)

dt
=

αs
2π

∫ 1

x

dy

y
g(y,Q)Pqg(

x

y
) . (55)

Assuming a gluon density behaving like g(x,Q) ∼ A/x, which is a first approximation to a bremsstrahlung
spectrum, we can easily calculate

dc(x,Q)

dt
=

αs
2π

∫ 1

x

dy

y
g(x/y,Q)Pqg(y) =

αs
2π

∫ 1

x
dy

A

x

1

2
[y2 + (1− y)2]
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Fig. 9: Left: Valence up-quark momentum-density distribution, for different scales Q. Right: gluon momentum-
density distribution.

=
αs
6π

A

x
c(x,Q) ∼ αs

6π
log(

Q2

m2
c

) g(x,Q) . (56)

The charm density is therefore proportional to the gluon density, up to an overall factor proportional to
αs. When Q becomes very large, the effect of the quark mass becomes subleading, and we expect all sea
quarks to reach asymptotically the same density!

3.3 Examples of parton density evolution
Figure 9 (left) describes the up-quark valence momentum density at different scalesQ. Note the softening
at large scales, and the clear logQ2 evolution. As Q2 grows, the valence quarks emit more and more
radiation, since their deceleration is larger. They therefore lose more momentum to the emitted gluons,
and their spectrum becomes softer. The most likely momentum fraction carried by a valence up-quark
in the proton goes from x ∼ 20% at Q = 3 GeV, to x . 10% at Q = 1000 GeV. Notice finally that the
density vanishes at small x.

Figure 9 (right) shows the gluon momentum density at different scales Q. Their density grows at
small x, with an approximate g(x) ∼ 1/x1+δ behaviour, and δ > 0 slowly increasing at large Q2. This
low-x growth is due to the 1/x emission probability for the radiation of gluons, which was discussed
in the previous lecture and which is represented by the 1/x factors in the Pgq(x) and Pgg(x) splitting
functions. As Q2 grows we find an increasing number of gluons at small x, as a result of the increased
radiation off quarks, as well as off the harder gluons.

Figure 10 (left) shows the evolution of the up-quark sea momentum density. Shape and evolution
match those of the gluon density, a consequence of the fact that sea quarks come from the splitting of
gluons. Since the gluon-splitting probability is proportional to αs, the approximate ratio sea/gluon ∼ 0.1
which can be obtained by comparing Figs. 9 (right) and 10 (left) is perfectly justified.

Finally, the momentum densities for gluons, up-sea, charm and up-valence distributions are shown
in Fig. 10 (right) for Q = 1000 GeV. Note here that usea and charm are approximately the same at very
large Q and small x, as anticipated in the previous subsection. The proton momentum is mostly carried
by valence quarks and by gluons. The contribution of sea quarks is negligible.

Parton densities are extracted from experimental data. Their determination is therefore subject
to the statistical and systematic uncertainties of the experiments and of the theoretical analysis (e.g.,
the treatment of non-perturbative effects, the impact of missing higher-order perturbative corrections).
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Fig. 10: Left: Sea up-quark momentum-density distribution, for different scales Q. Right: Momentum-density
distribution for several parton species, at Q = 1000 GeV.

Techniques have been introduced recently to take into account these uncertainties, and to evaluate their
impact on concrete observables. A summary of such an analysis is given in Figs. 11 (for the Tevatron)
and 12 (for the LHC). What is plotted is the uncertainty bands for partonic luminosities corresponding
to various initial-state channels, such as gg, qg or qq̄. The partonic flux is given as a function of ŝ, the
partonic centre-of-mass invariant mass. Obvious features include the growth of uncertainty of the gg
density at large mass, corresponding to the lack of data covering the large-x region of the gluon density.
As a result of this, notice for example that the uncertainty in the gg → tt̄ production rate at the LHC is
smaller than at the Tevatron, since the relative range of mass (just above 2mt ∼ 350 GeV) corresponds
at the LHC to gluon densities in better explored regions of x.

4 The evolution of quarks and gluons
We discussed in the previous section the initial-state evolution of quarks and gluons as the proton ap-
proaches the hard collision. We study here how quarks and gluons evolve, and finally transform into
hadrons, neutralizing their colours. We start by considering the simplest case, e+e− collisions, which
provide the cleanest environment in which to study applications of QCD at high energy. This is the place
where theoretical calculations have today reached their best accuracy, and where experimental data are
the most precise, especially thanks to the huge statistics accumulated by LEP, LEP2 and SLC. The key
process is the annihilation of the e+e− pair into a virtual photon or Z0 boson, which will subsequently
decay to a qq̄ pair. e+e− collisions have therefore the big advantage of providing an almost point-like
source of quark pairs, so that, contrary to the case of interactions involving hadrons in the initial state,
we at least know very precisely the state of the quarks at the beginning of the interaction process.

Nevertheless, it is by no means obvious that this information is sufficient to predict the properties
of the hadronic final state. We know that this final state is clearly not simply a qq̄ pair, but some high-
multiplicity set of hadrons. For example, the average multiplicity of charged hadrons in the decay of
a Z0 is approximately 20! It is therefore not obvious that a calculation done using the simple picture
e+e− → qq̄ will have anything to do with reality. For example, one may wonder why we do not need
to calculate σ(e+e− → qq̄g . . . g . . .) for all possible gluon multiplicities to get an accurate estimate of
σ(e+e− → hadrons). And since in any case the final state is not made of q’s and g’s, but of π’s, K’s,
ρ’s, etc., why would σ(e+e− → qq̄g . . . g) be enough?

The solution to this puzzle lies both in time and energy scales, and in the dynamics of QCD. When
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Fig. 11: Uncertainty in the parton luminosity functions at the Tevatron

Fig. 12: Uncertainty in the parton luminosity functions at the LHC

the qq̄ pair is produced, the force binding q and q̄ is proportional to αs(s) (
√
s being the e+e− centre-

of-mass energy). Therefore it is weak, and q and q̄ behave to good approximation like free particles.
The radiation emitted in the first instants after the pair creation is also perturbative, and it will stay so
until a time after creation of the order of (1 GeV)−1, when radiation with wavelengths & (1 GeV)−1

starts being emitted. At this scale the coupling constant is large, and non-perturbative phenomena and
hadronization start playing a role. However, as we will show, colour emission during the perturbative
evolution organizes itself in such a way as to form colour-neutral, low-mass parton clusters highly lo-
calized in phase-space. As a result, the complete colour-neutralization (i.e., the hadronization) does
not involve long-range interactions between partons far away in phase-space. This is very important,
because the forces acting among coloured objects at this time scale would be huge. If the perturbative
evolution were to separate far apart colour-singlet qq̄ pairs, the final-state interactions taking place during
the hadronization phase would totally upset the structure of the final state. As an additional result of this
‘pre-confining’ evolution, memory of where the local colour-neutral clusters came from is totally lost.
So we expect the properties of hadronization to be universal: a model that describes hadronization at a
given energy will work equally well at some other energy. Furthermore, so much time has passed since
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the original qq̄ creation, that the hadronization phase cannot significantly affect the total hadron produc-
tion rate. Perturbative corrections due to the emission of the first hard partons should be calculable in
perturbation theory (PT), providing a finite, meaningful cross-section.

The nature of non-perturbative corrections to this picture can be explored. One can prove for ex-
ample that the leading correction to the total rateRe+e− is of order F/s2, where F ∝ 〈0|αsF aµνF µνa|0〉 is
the so-called gluon condensate. Since F ∼ O(1 GeV4), these NP corrections are usually very small. For
example, they are of O(10−8) at the Z0 peak! Corrections scaling like Λ2/s or Λ/

√
s can nevertheless

appear in other less inclusive quantities, such as event shapes or fragmentation functions.

We now come back to the perturbative evolution, and will devote the first part of this lecture to
justifying the picture given above. In Appendix C we shall discuss some applications, including jet
cross-sections and shape variables.

4.1 Soft gluon emission
Emission of soft gluons plays a fundamental rôle in the evolution of the final state [6, 15]. Soft glu-
ons are emitted with large probability, since the emission spectrum behaves like dE/E, typical of
bremsstrahlung as familiar in QED. They provide the seed for the bulk of the final-state multiplicity
of hadrons. The study of soft-gluon emission is simplified by the simplicity of their couplings. Being
soft (i.e., long wavelength) they are insensitive to the details of the very-short-distance dynamics: they
cannot distinguish features of the interactions which take place on time scales shorter than their wave-
length. They are also insensitive to the spin of the partons: the only feature they are sensitive to is the
colour charge. To prove this let us consider soft-gluon emission in the qq̄ decay of an off-shell photon:

(57)

Asoft = ū(p)ε(k)(ig)
−i
/p+ /k

Γµ v(p̄) λaij + ū(p) Γµ
i

/̄p+ /k
(ig)ε(k) v(p̄) λaij

=

[
g

2p · k ū(p)ε(k) (/p + /k)Γµ v(p̄) − g

2p̄ · k ū(p) Γµ (/̄p+ /k)ε(k) v(p̄)

]
λaij .

I used the generic symbol Γµ to describe the interaction vertex with the photon to stress the fact that the
following manipulations are independent of the specific form of Γµ. In particular, Γµ can represent an
arbitrarily complicated vertex form factor. Neglecting the factors of /k in the numerators (since k � p, p̄,
by definition of soft) and using the Dirac equations, we get

Asoft = gλaij

(
p · ε
p · k −

p̄ε

p̄ · k

)
ABorn . (58)

We then conclude that soft-gluon emission factorizes into the product of an emission factor, times the
Born-level amplitude. From this exercise, one can extract general Feynman rules for soft-gluon emission:

= g λaij 2pµ . (59)
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Exercise: Derive the g → gg soft-emission rules:

= igfabc 2pµ gνρ . (60)

Example: Consider the ‘decay’ of a virtual gluon into a quark pair. One more diagram should be added
to those considered in the case of the electroweak decay. The fact that the quark pair is no longer in a
colour-singlet state makes things a bit more interesting:

(61)

k→0
=

[
i g fabc λcij

(
Qε

Qk

)
+ g (λb λa)ij

(
pε

pk

)
− g (λaλb)ij

(
p̄ε

pk

)]
ABorn

= g (λa λb)ij

[
Qε

Qk
− p̄ε

pk

]
+ g (λb λa)ij

[
pε

pk
− Qε

Qk

]
. (62)

The two factors correspond to the two possible ways colour can flow in this process:

(63)

In the first case, the antiquark (colour label j) is colour connected to the soft gluon (colour label b)
and the quark (colour label i) is connected to the decaying gluon (colour label a). In the second case,
the order is reversed. The two emission factors correspond to the emission of the soft gluon from the
antiquark, and from the quark line, respectively. When squaring the total amplitude, and summing over
initial- and final-state colours, the interference between the two pieces is suppressed by 1/N 2 relative to
the individual squares:

∑

a,b,i,j

|(λaλb)ij |2 =
∑

a,b

tr
(
λaλbλbλa

)
=
N2 − 1

2
CF = O(N3) (64)

∑

a,b,i,j

(λaλb)ij[(λ
bλa)ij ]

∗ =
∑

a,b

tr(λaλbλaλb) =
N2 − 1

2
(CF −

CA

2
)

︸ ︷︷ ︸
− 1

2N

= O(N) . (65)

As a result, the emission of a soft gluon can be described, to the leading order in 1/N 2, as the incoherent
sum of the emission from the two colour currents.
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4.2 Angular ordering for soft-gluon emission
The results presented above have important consequences for the perturbative evolution of the quarks.
A key property of the soft-gluon emission is the so-called angular ordering. This phenomenon consists
in the continuous reduction of the opening angle at which successive soft gluons are emitted by the
evolving quark. As a result, this radiation is confined within smaller and smaller cones around the quark
direction, and the final state will look like a collimated jet of partons. In addition, the structure of the
colour flow during the jet evolution forces the qq̄ pairs which are in a colour-singlet state to be close in
phase-space, thereby achieving the pre-confinement of colour-singlet clusters alluded to at the beginning
of this section.

Let us start by proving the property of colour ordering. Consider the qq̄ pair produced by the decay
of a rapidly moving virtual photon. The amplitude for the emission of a soft gluon was given in Eq. (58).
Squaring, summing over colours and including the gluon phase-space we get the following result:

dσg =
∑
|Asoft|2

d3k

(2π)32k0

∑
|A0|2

−2pµp̄ν

(pk)(p̄k)
g2
∑

εµε
∗
ν

d3k

(2π)32k0

= dσ0
2(pp̄)

(pk)(p̄k)
g2 CF

(
dφ

2π

)
k0dk0

8π2
d cos θ

= dσ0
αsCF

π

dk0

k0

dφ

2π

1− cos θij
(1− cos θik)(1 − cos θjk)

d cos θ (66)

where θαβ = θα − θβ , and i, j, k refer to the q, q̄ and gluon directions, respectively. We can write the
following identity:

1− cos θij
(1− cos θik)(1− cos θjk)

=
1

2

[
cos θjk − cos θij

(1− cos θik)(1− cos θjk)
+

1

1− cos θik

]
+

1

2
[i↔ j] ≡W(i)+W(j) .

(67)
We would like to interpret the two functions W(i) and W(j) as radiation probabilities from the quark
and antiquark lines. Each of them is in fact only singular in the limit of gluon emission parallel to the
respective quark:

W(i) → finite if k ‖ j (cos θjk → 1) (68)

W(j) → finite if k ‖ i (cos θik → 1) . (69)

The interpretation as probabilities is however limited by the fact that neither W(i) nor W(j) are positive
definite. However, you can easily prove that

∫
dφ

2π
W(i) =

{
1

1−cos θik
if θik < θij

0 otherwise
(70)

where the integral is the azimuthal average around the q direction. A similar result holds for W(j):

∫
dφ

2π
W(j) =

{
1

1−cos θjk
if θjk < θij

0 otherwise
. (71)

As a result, the emission of soft gluons outside the two cones obtained by rotating the antiquark direction
around the quark’s, and vice-versa, averages to 0. Inside the two cones, one can consider the radiation
from the emitters as being uncorrelated. In other words, the two colour lines defined by the quark and
antiquark currents act as independent emitters, and the quantum coherence (i.e., the effects of interference
between the two graphs contributing to the gluon-emission amplitude) is accounted for by constraining
the emission to take place within those fixed cones.
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Fig. 13: Radiation off qq̄ pair produced by an off-shell photon

Fig. 14: Collimation of soft gluon emission during the jet evolution

A simple derivation of angular ordering, which more directly exhibits its physical origin, can be
obtained as follows. Consider Fig. 13a, which shows a Feynman diagram for the emission of a gluon
from a quark line. The quark momentum is denoted by l and the gluon momentum by k; θ is the opening
angle between the quark and antiquark, and α is the angle between the nearest quark and the emitted
gluon. We will work in the double-log enhanced soft k0 << l0 and collinear α << 1 region. The
internal quark propagator p = (l + k) is off-shell, setting the time scale for the gluon emission:

∆t ' 1

∆E
=

l0

(k + l)2
→ ∆t ' 1

k0α2
. (72)

In order to resolve the quarks, the transverse wavelength of the gluon λ⊥ = 1/E⊥ must be smaller than
the separation between the quarks b(t) ' θ∆t, giving the constraint 1/(αk0) < θ∆t. Using the results
of Eq. (72) for ∆t, we arrive at the angular ordering constraint α < θ. Gluon emissions at an angle
smaller than θ can resolve the two individual colour quarks and are allowed; emissions at greater angles
do not see the colour charge and are therefore suppressed. In processes involving more partons, the angle
θ is defined not by the nearest parton, but by the colour connected parton (e.g., the parton that forms a
colour singlet with the emitting parton). Figure 13b shows the colour connections for the qq̄ event after
the gluon is emitted. Colour lines begin on quarks and end on antiquarks. Because gluons are colour
octets, they contain the beginning of one line and the end of another.

If one now repeats the exercise for emission of one additional gluon, one will find the same angular
constraint, but this time applied to the colour lines defined by the previously established antenna. As
shown in the previous subsection, the qq̄g state can be decomposed at the leading order in 1/N into two
independent emitters: one given by the colour line flowing from the gluon to the quark, the other given
by the colour line flowing from the antiquark to the gluon. So the emission of the additional gluon will
be constrained to take place either within the cone formed by the quark and the gluon, or within the cone
formed by the gluon and the antiquark. Either way, the emission angle will be smaller than the angle of
the first gluon emission. This leads to the concept of angular ordering, with successive emission of soft
gluons taking place within cones which get smaller and smaller, as in Fig. 14.

The fact that colour always flows directly from the emitting parton to the emitted one, the colli-
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Fig. 15: The colour flow diagram for a deep-inelastic scattering event

Fig. 16: Charge transfer in a dielectric medium, via a sequence of local polarizations

mation of the jet, and the softening of the radiation emitted at later stages ensure that partons forming a
colour-singlet cluster are close in phase-space. As a result, hadronization (the non-perturbative process
that will bind together colour-singlet parton pairs) takes place locally inside the jet and is not a long-
distance phenomenon connecting partons far away in the evolution tree: only pairs of nearby partons
are involved. In particular, there is no direct link between the precise nature of the hard process and the
hadronization. These two phases are totally decoupled and, as in the case of the partonic densities, one
can infer that hadronization factorizes from the hard process and can be described in a universal (i.e.,
hard-process independent) fashion. The inclusive properties of jets (particle multiplicity, jet mass, jet
broadening, etc.) are independent of the hadronization model, up to corrections of order (Λ/

√
s)n (for

some integer power n, which depends on the observable), with Λ . 1 GeV.

The final picture, in the case of a DIS event, appears therefore as in Fig. 15. After being deflected
by the photon, the struck quark emits the first gluon, which takes away the quark colour and passes
on its own anticolour to the escaping quark. This gluon is therefore colour-connected with the last
gluon emitted before the hard interaction. As the final-state quark continues its evolution, more and
more gluons are emitted, each time leaving their colour behind and transmitting their anticolour to the
emerging quark. Angular ordering forces all these gluons to be close in phase-space, until the evolution is
stopped once the virtuality of the quark becomes of the order of the strong-interaction scale. The colour
of the quark is left behind, and when hadronization takes over it is only the nearby colour-connected
gluons which are transformed, with a phenomenological model, in hadrons. This mechanism for the
transfer of colour across subsequent gluon emissions is similar to what happens when we place a charge
near the surface of a dielectric medium. This will become polarized, and a charge will appear on the
opposite end of the medium. The appearance of the charge is the result of a sequence of local charge
shifts, whereby neighbouring atoms get polarized, as in Fig. 16.
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5 Applications to hadronic collisions
In hadronic collisions, all phenomena are QCD-related. The dynamics is more complex than in e+e−

or DIS, since both beam and target have a non-trivial partonic structure. As a result, calculations (and
experimental analyses) are more complicated. QCD phenomenology is however much richer, and the
higher energies available in hadronic collisions allow us to probe the structure of the proton and of its
constituents at the smallest scales attainable in a laboratory.

Contrary to the case of e+e− and lepton–hadron collisions, where calculations are routinely avail-
able up to next-to-next-to-leading order (NNLO) accuracy, theoretical calculations for hadronic colli-
sions are available at best with next-to-leading-order (NLO) accuracy. The only exception is the case
of Drell–Yan production, where NNLO results are known for the total cross-sections. So we generally
have relatively small precision in the theoretical predictions, and theoretical uncertainties which are large
when compared to LEP or HERA.

However, pp̄ collider physics is primarily discovery physics, rather than precision physics. (There
are exceptions, such as the measurements of the W mass and of the properties of b-hadrons; but these are
not QCD-related measurements.) As such, knowledge of QCD is essential both for the estimate of the
expected signals, and for the evaluation of the backgrounds. Tests of QCD in pp̄ collisions confirm our
understanding of perturbation theory, or, when they fail, point to areas where our approximations need
to be improved. (see, e.g., the theory advances prompted by the measurements of ψ production by CDF
at the Tevatron!).

Finally, a reliable theoretical control over the details of production dynamics allows one to extract
important information on the structure of the proton (parton densities) in regions of Q2 and x otherwise
inaccessible. Control of QCD at the current machines (the Tevatron at Fermilab) is therefore essential
for the extrapolation of predictions to higher energies (say for applications at the future LHC, at CERN).

The key ingredients for the calculation of production rates and distributions in hadronic collisions
are

– the matrix elements for the hard, partonic process (e.g., gg → gg, gg → bb̄, qq̄′ →W, . . .);
– the hadronic parton densities, discussed in the previous lecture.

Then the production rate for a given final state H is given by a factorization formula similar to the one
used to describe DIS:

dσ(pp̄→ H +X) =

∫
dx1 dx2

∑

i,j

fi(x1, Q) fj(x2.Q) dσ̂(ij → H) (73)

where the parton densities fi are evaluated at a scale Q typical of the hard process under consideration.
For example Q ' MDY for production of a Drell–Yan pair, Q ' ET for high transverse-energy (ET)
jets, Q2 ' p2

T +m2
Q for high-pT heavy quarks, etc.

In this lecture we will briefly explore two of the QCD phenomena currently studied in hadronic
collisions: Drell–Yan, and inclusive jet production. More details can be found in Refs. [4, 8].

5.1 Drell–Yan processes
While the Z boson has been recently studied with great precision by the LEP experiments, it was actually
discovered, together with the W boson, by the CERN experiments UA1 and UA2 in pp̄ collisions. W
physics is now being studied in great detail at LEP2, but the best direct measurements of its mass by
a single group still belong to pp̄ experiments (CDF and D0 at the Tevatron). Even after the ultimate
luminosity will have been accumulated at LEP2, with a great improvement in the determination of the
parameters of the W boson, the monopoly ofW studies will immediately return to hadron colliders, with
the Tevatron data-taking resuming in the year 2000, and later on with the start of the LHC experiments.
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Precision measurements of W production in hadronic collisions are important for several reasons:

– this is the only process in hadronic collisions which is known to NNLO accuracy;
– the rapidity distribution of the charged leptons from W decays is sensitive to the ratio of the up-

and down-quark densities, and can contribute to our understanding of the proton structure;
– deviations from the expected production rates of highly virtual W ’s (pp̄ → W ∗ → eν) are a

possible signal of the existence of new W bosons, and therefore of new gauge interactions.

The partonic cross-section for the production of a W boson from the annihilation of a qq̄ pair can
be easily calculated, giving the following result [4, 8]:

σ̂(qiq̄j →W ) = π

√
2

3
|Vij |2 GF M

2
W δ(ŝ−M 2

W ) = Aij M
2
W δ(ŝ−M 2

W ) (74)

where ŝ is partonic centre-of-mass (c.m.) energy squared, and Vij is the element of the Cabibbo–
Kobayashi–Maskawa matrix. The delta function comes from the 2 → 1 phase-space, which forces
the c.m. energy of the initial state to coincide with the W mass. It is useful to introduce the two variables

τ =
ŝ

Shad
≡ x1x2 (75)

y =
1

2
log

(
EW + pzW
EW − pzW

)
≡ 1

2
log

(
x1

x2

)
, (76)

where Shad is the hadronic c.m. energy squared. The variable y is called rapidity. For slowly moving
objects it reduces to the standard velocity, but, unlike the velocity, it transforms additively even at high
energies under Lorentz boosts along the direction of motion. Written in terms of τ and y, the integration
measure over the initial-state parton momenta becomes dx1dx2 = dτdy. Using this expression and
Eq. (74) in Eq. (73), we obtain the following result for the leading-order total W production cross-
section:

σDY =
∑

i,j

π Aij
M2
W

τ

∫ 1

τ

dx

x
fi(x) fj

(τ
x

)
≡
∑

i,j

π Aij
M2
W

τLij(τ) (77)

where the function Lij(τ) is usually called partonic luminosity. In the case of ud̄ collisions, the overall
factor in front of this expression has a value of approximately 6.5 nb. It is interesting to study the partonic
luminosity as a function of the hadronic c.m. energy. This can be done by taking a simple approximation
for the parton densities. Following the indications of the figures presented in the previous lecture, we
shall assume that fi(x) ∼ 1/x1+δ , with δ < 1. Then

L(τ) =

∫ 1

τ

dx

x

1

x1+δ

(x
τ

)1+δ
=

1

τ1+δ

∫ 1

τ

dx

x
=

1

τ1+δ
log

(
1

τ

)
(78)

and

σW ∼ τ−δ log

(
1

τ

)
=

(
Shad

M2
W

)δ
log

(
Shad

M2
W

)
. (79)

The Drell-Yan cross-section grows therefore at least logarithmically with the hadronic c.m. energy. This
is to be compared with the behaviour of the Z production cross-section in e+e− collisions, which is
steeply diminishing for values of s well above the production threshold. The reason for the different
behaviour in hadronic collisions is that while the energy of the hadronic initial state grows, it will always
be possible to find partons inside the hadrons with the appropriate energy to produce the W directly
on-shell. The number of partons available for the production of a W is furthermore increasing with the
increase in hadronic energy, since the larger the hadron energy, the smaller will be the value of hadron
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Fig. 17: Comparison of measured (a) σ·B(W → eν) and (b) σ·B(Z0 → e+e−) to two-loop theoretical predictions
using MRSA parton distribution functions. The UA1 and UA2 measurements and D0 measurements are offset
horizontally by± 0.02 TeV for clarity. In the inset, the shaded area shows the 1σ region of the CDF measurement;
the stars show the predictions using various parton distribution function sets (1) MRSA, (2) MRSD0′, (3) MRSD-′,
(4) MRSH and (5) CTEQ2M. The theoretical points include a common uncertainty in the predictions from choice
of renormalization scale (MW /2 to 2MW ).

momentum fraction x necessary to produce theW . The increasing number of partons available at smaller
and smaller values of x causes then the growth of the total W production cross-section.

A comparison between the best available prediction for the production rates of W and Z bosons in
hadronic collisions, and the experimental data, is shown in Fig. 17. The experimental uncertainties will
soon be dominated by the limited knowledge of the machine luminosity, and will exceed the accuracy
of the NNLO predictions. This suggests that in the future the total rate of produced W bosons could be
used as an accurate luminometer.

It is also interesting to note that an accurate measurement of the relative W and Z production rates
(which is not affected by the knowledge of the total integrated luminosity, which will cancel in their
ratio) provides a tool to measure the total W width. This can be seen from the following equation:

ΓW =
N obs(Z → e+e−)

N obs(W → e±ν)

(
σW±

σZ

) (
ΓWeν

ΓZ
e+e−

)
ΓZ

↑ ↖ ↗ ↑
measure calculable LEP/SLC .

As of today, this technique provides the best measurement of ΓW : ΓW = 2.06 ± 0.06 GeV, which is a
factor of 5 more accurate than the current best direct measurements from LEP2.
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Fig. 18: Representative diagrams for the production of jet pairs in hadronic collisions

5.2 W rapidity asymmetry
The measurement of the charge asymmetry in the rapidity distribution of W bosons produced in pp̄
collisions can provide an important measurement of the ratio of the u-quark and d-quark momentum
distributions. Using the formulas provided above, you can in fact easily check as an exercise that

dσW+

dy
∝ fpu(x1) f p̄

d̄
(x2) + fp

d̄
(x1)f p̄u(x2) (80)

dσW−

dy
∝ fpū(x1) f p̄d (x2) + fpd (x1)f p̄ū(x2) . (81)

We can then construct the following charge asymmetry (assuming the dominance of the quark densities
over the antiquark ones, which is valid in the kinematical region of interest for W production at the
Tevatron):

A(y) =

dσW+

dy − dσW−
dy

dσW+

dy +
dσW−
dy

=
fpu(x1) fpd (x2)− fpd (x1) fpu(x2)

fpu(x1) fpd (x2) + fpd (x1) fpu(x2)
. (82)

Setting fd(x) = fu(x) R(x), we then get

A(y) =
R(x2)−R(x1)

R(x2) +R(x1)
, (83)

which measures theR(x) ratio since x1,2 are known in principle from the kinematics: x1,2 =
√
τ exp(±y).2

The current CDF data provide the most accurate measurement to date of this quantity (see Ref. [8]).

5.3 Jet production
Jet production is the hard process with the largest rate in hadronic collisions. For example, the cross-
section for producing at the Tevatron (

√
Shad = 1.8 TeV) jets of transverse energy E jet

T . 50 GeV is of
the order of a µb. This means 50 events per second at the luminosities available at the Tevatron. The data
collected at the Tevatron so far extend all the way up to the ET values of the order of 450 GeV. These
events are generated by collisions among partons which carry over 50% of the available pp̄ energy, and
allow us to probe the shortest distances ever reached. The leading mechanisms for jet production are
shown in Fig. 18.

The two-jet inclusive cross-section can be obtained from the formula

dσ =
∑

ijkl

dx1 dx2 f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2
dΦ2 , (84)

2In practice one cannot determine x1,2 with arbitrary precision on an event-by-event basis, since the longitudinal momentum
of the neutrino cannot be easily measured. The actual measurement is therefore done by studying the charge asymmetry in the
rapidity distribution of the charged lepton.
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which has to be expressed in terms of the rapidity and transverse momentum of the quarks (or jets) in
order to make contact with physical reality. The two-particle phase-space is given by

dΦ2 =
d3k

2k0(2π)3
2π δ

[
(p1 + p2 − k)2

]
, (85)

and, in the c.m. of the colliding partons, we get

dΦ2 =
1

2(2π)2
d2kT dy 2 δ

[
ŝ− 4(k0)2

]
, (86)

where kT is the transverse momentum of the final-state partons. Here y is the rapidity of the produced
parton in the parton c.m. frame. It is given by

y =
y1 − y2

2
(87)

where y1 and y2 are the rapidities of the produced partons in the laboratory frame (in fact, in any frame).
One also introduces

y0 =
y1 + y2

2
=

1

2
log

x1

x2
, τ =

ŝ

Shad
= x1 x2 . (88)

We have
dx1 dx2 = dy0 dτ . (89)

We obtain

dσ =
∑

ijkl

dy0
1

Shad
f

(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2

1

2(2π)2
2 dy d2kT (90)

which can also be written as

dσ

dy1 dy2 d2kT
=

1

Shad 2(2π)2

∑

ijkl

f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2
. (91)

The variables x1, x2 can be obtained from y1, y2 and kT from the equations

y0 =
y1 + y2

2
(92)

y =
y1 − y2

2
(93)

xT =
2kT√
Shad

(94)

x1 = xT e
y0 cosh y (95)

x2 = xT e
−y0 cosh y . (96)

For the partonic variables, we need ŝ and the scattering angle in the parton c.m. frame θ, since

t = − ŝ
2

(1− cos θ) , u = − ŝ
2

(1 + cos θ) . (97)

Neglecting the parton masses, you can show that the rapidity can also be written as

y = − log tan
θ

2
≡ η , (98)

with η usually being referred to as pseudorapidity.

The leading-order Born cross-sections for parton–parton scattering are reported in Table 1.
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Table 1: Cross-sections for light parton scattering. The notation is p1 p2 → k l, ŝ = (p1 + p2)2, t̂ = (p1 − k)2,
û = (p1 − l)2.

Process dσ̂
dΦ2

qq′ → qq′ 1
2ŝ

4
9
ŝ2+û2

t̂2

qq → qq 1
2

1
2ŝ

[
4
9

(
ŝ2+û2

t̂2
+ ŝ2+t̂2

û2

)
− 8

27
ŝ2

ût̂

]

qq̄ → q′q̄′ 1
2ŝ

4
9
t̂2+û2

ŝ2

qq̄ → qq̄ 1
2ŝ

[
4
9

(
ŝ2+û2

t̂2
+ t̂2+û2

ŝ2

)
− 8

27
û2

ŝt̂

]

qq̄ → gg 1
2

1
2ŝ

[
32
27
t̂2+û2

t̂û
− 8

3
t̂2+û2

ŝ2

]

gg → qq̄ 1
2ŝ

[
1
6
t̂2+û2

t̂û
− 3

8
t̂2+û2

ŝ2

]

gq → gq 1
2ŝ

[
−4

9
ŝ2+û2

ŝû + û2+ŝ2

t̂2

]

gg → gg 1
2

1
2ŝ

9
2

(
3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

)

It is interesting to note that a good approximation to the exact results can be easily obtained
by using the soft-gluon techniques introduced in the third lecture. Based on the fact that even at 90◦

min(|t|, |u|) does not exceed s/2, and that therefore everything else being equal a propagator in the t or
u channel contributes to the square of an amplitude four times more than a propagator in the s channel, it
is reasonable to assume that the amplitudes are dominated by the diagrams with a gluon exchanged in the
t (or u) channel. It is easy to calculate the amplitudes in this limit using the soft-gluon approximation.
For example, the amplitude for the exchange of a soft gluon among a qq ′ pair is given by

(λaij) (λakl) 2pµ
1

t
2p′µ = λaij λ

a
kl

4p · p′
t

=
2s

t
λaij λ

a
kl . (99)

The pµ and p′µ factors represent the coupling of the exchanged gluon to the q and q ′ quark lines, respec-
tively [see Eq. (59)]. Squaring, and summing and averaging over spins and colours, gives

∑

colours, spin
|Mqq′ |2 =

1

N2

(
N2 − 1

4

)
4s2

t2
=

8

9

s2

t2
. (100)

Since for this process the diagram with a t-channel gluon exchange is symmetric for s ↔ u exchange,
and since u→ −s in the t→ 0 limit, the above result can be rewritten in an explicitly (s, u) symmetric
way as

4

9

s2 + u2

t2
(101)

which indeed exactly agrees with the result of the exact calculation, as given in Table 1. The corrections
which appear from s or u gluon exchange when the quark flavours are the same or when we study a qq̄
process are small, as can be seen by comparing the above result with the expressions in the table.

As another example we consider the case of qg → qg scattering. The amplitude will be exactly
the same as in the qq′ → qq′ case, up to the different colour factors. A simple calculation then gives

∑

colours, spin
|Mqg|2 =

9

4

∑
|Mqq′ |2 =

s2 + u2

t2
. (102)

The exact result is
u2 + s2

t2
− 4

9

u2 + s2

us
(103)
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which even at 90◦, the point where the t-channel exchange approximation is worst, only differs from this
latter by no more than 25%.

As a final example we consider the case of gg → gg scattering, which in our approximation gives

∑
|Mgg|2 =

9

2

s2

t2
. (104)

By u↔ t symmetry, we should expect the simple improvement

∑
|Mgg|2 ∼

9

2

(
s2

t2
+
s2

u2

)
. (105)

This only differs by 20% from the exact result at 90◦.

Note that at small t the following relation holds:

σ̂gg : σ̂qg : σ̂qq̄ =

(
9

4

)
: 1 :

(
4

9

)
. (106)

The 9/4 factors are simply the ratios of the colour factors for the coupling to gluons of a gluon (CA) and
of a quark (TF), after including the respective colour-average factors: (1/(N 2 − 1) for the gluon, and
1/N for the quark). Using Eq. (106), we can then write

dσhadr =

∫
dx1 dx2

∑

i,j

fi(x1) fj(x2) dσ̂ij =

∫
dx1 dx2 F (x1) F (x2) dσ̂gg(gg → jets) (107)

where the object

F (x) = fg(x) +
4

9

∑

f

[qf (x) + q̄f (x)] (108)

is usually called the effective structure function. This result indicates that the measurement of the in-
clusive jet cross-section does not allow us in principle to disentangle the independent contribution of
the various partonic components of the proton, unless of course one is considering a kinematical region
where the production is dominated by a single process. The relative contributions of the different chan-
nels, as predicted using the global fits of parton densities available in the literature, are shown in Fig. 19.

Predictions for jet production at colliders are available today at next-to-leading order in QCD. A
comparison between these calculations and the available data is given in Figs. 20 and 21. At the Tevatron,
jets up to 600 GeV transverse momentum have been observed. That is x & 0.6 and Q2 ' 400 000 GeV2.
This is a domain of x and Q2 not accessible to HERA. The current agreement between theory and data
is excellent over eight orders of magnitude of cross-section, from ET ∼ 50 to ET ∼ 600 GeV. The
experimental and theoretical systematic uncertainties, however, become larger than 30% when ET &
400 GeV, preventing a very accurate test of the smallest scales. More data on jet production at large
rapidity will allow us to reduce the PDF uncertainties at large x. The uncertainty in the absolute energy
scale remains however a critical and difficult to overcome experimental limitation at the highest energies.

Appendices
A Renormalization, or “Theorists are not afraid of infinities!”
QCD calculations are extremely demanding. Although perturbative, the size of the coupling constant
even at rather large values of the exchanged momentum, Q2, is such that the convergence of the per-
turbative expansion is slow. Several orders of perturbation theory are required in order to obtain a good
accuracy. The complexity of the calculations grows dramatically with the order of the approximation. As
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Fig. 19: Relative contribution to the inclusive jet-ET rates from the different production channels
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an additional complication, the evaluation of a large class of higher-order diagrams gives rise to results
which are a priori ill-defined, namely to infinities. A typical example of what is known as an ultraviolet
divergence appears when considering the corrections to the quark self-energy. Using the Feynman rules
presented Section 2, one can obtain

= (−ig)2 CF

∫
d4`

(2π)4
γµ

i

/p+ `
γν

(
− ig

µν

`2

)
≡i/pΣ(p) , (A.1)

where simple manipulations lead to the following expression for Σ(p):

Σ(p) = iCF

∫
d4`

(2π)4

1

`2(p+ `)2
, (A.2)

which is logarithmically divergent in the ultraviolet (|`| → ∞) region. In this appendix we discuss how
to deal with these infinities. To start with, we study a simple example taken from standard electrostatics.

A.1 The potential of an infinite line of charge
Let us consider a wire of infinite length, carrying a constant charge density λ. By definition, the dimen-
sions of λ are [length]−1 . Our goal is to evaluate the electric potential, and eventually the electric field,
in a point P at distance R from the wire. There is no need to do any calculation to anticipate that the
evaluation of the electric potential will cause some problem. Using the fact that the potential should be
linear in the charge density λ, we write V (R) = λf(R). Since the potential itself has the dimensions
of [length]−1 , we clearly see that there is no room for f(R) to have any non-trivial functional depen-
dence on R. The problem is made explicit if we try to evaluate V (R) using the standard electromagnetic
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formulas:

V (R) =

∫
λ(r)

r
dx = λ

∫ +∞

−∞

dx√
R2 + x2

(A.3)

where the integral runs over the position x on the wire. This integral is logarithmically divergent, and the
potential is ill-defined. We know however that this is not a serious issue, since the potential itself is not
a physical observable, only the electric field is measurable. Since the electric field is obtained by taking
the gradient of the scalar potential, it will be proportional to

V ′(R) ∼ λ
∫ +∞

−∞

dx

(R2 + x2)3/2
, (A.4)

which is perfectly convergent. It is however interesting to explore the possibility of providing a useful
operative meaning to the definition of the scalar potential. To do that, we start by regularizing the integral
in Eq. (A.3). This can be done by introducing the regularized V (R) defined as

VΛ(R) =

∫ Λ

−Λ
λ

dx√
R2 + x2

= λ log

[√
Λ2 +R2 + Λ√
Λ2 +R2 − Λ

]
. (A.5)

We can then define the electric field as

~E(R) = lim
Λ→∞

[−~∇VΛ(R)] .

It is easy to check that this prescription leads to the right result:

~E(R) = lim
Λ→∞

R̂
2λ

R

Λ√
Λ2 +R2

→ 2λ

R
R̂ . (A.6)

Note that in this process we had to introduce a new variable Λ with the dimension of a length. This
allows us to solve the puzzle first pointed out at the beginning. At the end, however, the dependence
of the physical observable (i.e., the electric field) on this extra parameter disappears. Note also that the
object,

δV = lim
Λ→∞

[VΛ(r2)− VΛ(r1)] = λ log

(
r2

1

r2
2

)
, (A.7)

is well defined. This suggests a way of defining the potential which is meaningful even in the Λ → ∞
limit. We can renormalize the potential by subtracting V (R) at some fixed value of R = R0 and taking
the Λ→∞ limit:

V (R)→ V (R)− V (R0) = λ log

(
R2

0

R2

)
. (A.8)

The non-physical infinities present in V (R) and V (R0) cancel each other, leaving a finite result, with a
non-trivial R-dependence. Once again, this is possible because a dimensionful parameter (in this case
R0) has been introduced.

This example suggests a strategy for dealing with divergences.

i) Identify an appropriate way to regularize infinite integrals.
ii) Absorb the divergent terms into a redefinition of fields or parameters, e.g., via subtractions. This

step is usually called renormalization.
iii) Make sure the procedure is consistent by checking that the physical results do not depend on the

regularization prescription.

In the rest of this appendix I will explain how this strategy is applied to the case of ultraviolet divergences
encountered in perturbation theory.
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A.2 Dimensional regularization
The typical expressions we have to deal with have the form

I(M2) =

∫
d4`

(2π)4

1

[`2 +M2]2
. (A.9)

It is easy to show that the integral encountered in the quark self-energy diagram can be rewritten as

1

`2
1

(`− p)2
=

∫ 1

0
dx

1

(L2 +M2)2
, with L = `− xp,M 2 = x(1− x)p2 . (A.10)

The most straightforward extension of the ideas presented above in the case of the infinite charged wire is
to regularize the integral using a momentum cutoff, and to renormalize it with a subtraction [for example
I(M2)− I(M2

0 )]. Experience has shown, however, that the best way to regularize I(M 2) is to take the
analytic continuation of the integral in the number of space-time dimensions. In fact

ID(M2) =

∫
dD`

(2π)D
1

(`2 +M2)2
(A.11)

is finite ∀D < 4. If we could assign a formal meaning to ID(M2) for continuous values of D away from
D = 4, we could then perform all our manipulations in D 6= 4, regulate the divergences, renormalize
fields and couplings, and then go back to D = 4.

To proceed, one defines (for Euclidean metrics)

dD` = dΩD−1 `D−1d` (A.12)

with dΩD−1 the differential solid angle inD dimensions. ΩD−1 is the surface of aD-dimensional sphere.
It can be obtained by using the following formal identity:

∫
dD` e−

~̀2 ≡
[∫

d` e−`
2

]D
= πD/2 . (A.13)

The integral can also be evaluated, using Eq. (A.12), as
∫
dD` e−

~̀2
= ΩD

∫ ∞

0
`D−1 e−`

2
d` = ΩD

1

2

∫ ∞

0
d`2(`2)

D−2
2 e−`

2

= ΩD
1

2

∫ ∞

0
dx e−xx

D−2
2 ≡ ΩD

2
Γ

(
D

2

)
. (A.14)

Comparing Eqs. (A.13) and (A.14), we get

ID(M2) =
1

(4π)D/2
1

Γ(D/2)

∫ ∞

0
dx x

D−2
2 (x+M2)2 =

1

(4π)D/2
Γ(2−D/2)

Γ(2)
(M2)

D
2
−2 . (A.15)

Defining D = 4 − 2ε (with the understanding that ε will be taken to 0 at the end of the day), and using
the small-ε expansion,

Γ(ε) =
1

ε
− γε +O(ε) , (A.16)

we finally obtain

(4π)2ID(M2)→ 1

ε
− log 4πM 2 − γε . (A.17)

The divergent part of the integral is then regularized as a pole in (D − 4). The M -dependent part of
the integral behaves logarithmically, as expected because the integral itself was dimensionless in D = 4.
The 1/ε pole can be removed by a subtraction:

I(M2) = I(µ2) + (4π)2 log

(
µ2

M2

)
, (A.18)
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where the subtraction scale µ2 is usually referred to as the ‘renormalization scale’.

One can prove (and you will find this in the quoted textbooks) that other divergent integrals which
appear in other loop diagrams can be regularized in a similar fashion, with the appearance of 1/ε poles.
Explicit calculations and more details on this technique can be found in the bibliography.

A.3 Renormalization
Let us come back now to our quark self-energy diagram, Eq. (A.1). After regulating the divergence using
dimensional regularization, we can eliminate it by adding a counterterm to the Lagrangian:

L → L+ Σ(p)ψ̄i/∂ψ = [1 + Σ(p)]ψ̄i/∂ψ + . . . . (A.19)

In this way, the corrections at O(g2) to the inverse propagator are finite:

= −i/pΣ(p) + i/pΣ(p) = 0 . (A.20)

The inclusion of this counterterm can be interpreted as a renormalization of the quark wave function. To
see this, it is sufficient to define

ψR =
[
1 + Σ(p2)

]1/2
ψ (A.21)

and verify that the kinetic part of the Lagrangian written in terms of ψR takes again the canonical form.

It may seem that this regularization/renormalization procedure can always be carried out, with all
possible infinities being removed by ad hoc counter-terms. This is not true. That these subtractions can
be performed consistently for any possible type of divergence which develops in perturbation theory is a
highly non-trivial fact. To convince you of this, consider the following example.

Let us study the QCD corrections to the interaction of quarks with a photon:

= (−ig)2CF

∫
d4`

(2π)4


γp i

/p+ /̀

Γµ︷ ︸︸ ︷
(−i eγµ)

i

/̄p+ /̀
γp



(−i
`2

)

= −ig2CF

∫
d4`

(2π)4
(−2)(/̄p+ /̀)Γµ(/p+ /̀)

1

`2(p+ `)2(p̄+ `)2

leading div.−→ −ig2(−2)CF

∫
d4`

(2π)4

/̀Γµ/̀

`2(p+ `)2(p̄+ `)2

def
= ieγµV (q2) .

It is easily recognized that V (q2) is divergent. The divergence can be removed by adding a counter-term
to the bare Lagrangian:

Lint = −e Aµψ̄γµψ → −eAµψ̄γµψ − eV (q2)Aµψ̄γ
µψ

= −[1 + V (q2)] e Aµψ̄γ
µψ . (A.22)

If we take into account the counter-term that was introduced to renormalize the quark self-energy, the
part of the quark Lagrangian describing the interaction with photons is now

Lq,γ =
[
1 + Σ(p2)

]
ψ̄ i /∂ ψ −

[
1 + V (q2)

]
eAµ ψ̄γ

µψ . (A.23)

Defining a renormalized charge by

eR = e
1 + V (p2)

1 + Σ(q2)
, (A.24)
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we are left with the renormalized Lagrangian

LR = ψ̄R i /∂ ψR + eR Aµ ψ̄R γ
µ ψR . (A.25)

Can we blindly accept this result, regardless of the values of the counter-terms V (p2) and Σ(q2)? The
answer to this question is NO! Charge conservation, in fact, requires eR = e. The electric charge carried
by a quark cannot be affected by the QCD corrections, and cannot be affected by the renormalization of
QCD-induced divergences. There are many ways to see that if eR 6= e the electric charge would not be
conserved in strong interactions. The simplest way is to consider the process e+νe → W+ → ud̄. The
electric charge of the initial state is +1 in units of e. After including QCD corrections (which in the case
of the interaction with a W are the same as those for the interaction of quarks with a photon), the charge
of the final state is +1 in units of eR. Unless eR = e, the total electric charge would not be conserved
in this process! It is the non-renormalization of the electric charge in the presence of strong interactions
that makes the charge of the proton equal to the sum of the charges of its constituent quarks, in spite of
the complex QCD dynamics that holds the quarks together.

As a result, the renormalization procedure is consistent with charge conservation if and only if

V (q2)

Σ(p2)

q2→0
= 1 . (A.26)

This identity should hold at all orders of perturbation theory. It represents a fundamental constraint on
the consistency of the theory, and shows that the removal of infinities, by itself, is not a trivial trick which
can be applied to arbitrary theories. Fortunately, the previous identity can be shown to hold. You can
prove it explicitly at the one-loop order by explicitly evaluating the integrals defining V (q) and Σ(p).

To carry out the renormalization programme for QCD at one-loop order, several other diagrams in
addition to the quark self-energy need to be evaluated. One needs the corrections to the gluon self-
energy, to the coupling of a quark pair to a gluon, and to the three-gluon coupling. Each of these
corrections gives rise to infinities, which can be regulated in dimensional regularization. For the purposes
of renormalization, it is useful to apply the concept of D dimensions not only to the evaluation of the
infinite integrals, but to the full theory as well. In other words, we should consider the Lagrangian as
describing the interactions of fields in D dimensions. Nothing changes in its form, but the canonical
dimensions of fields and couplings will be shifted. This is because the action (defined as the integral over
space-time of the Lagrangian) is a dimensionless quantity. As a result, the canonical dimensions of the
fields, and of the coupling constants, have to depend on D:

[∫
dDxL(x)

]
= 0⇒ [L] = D = 4− 2ε ,

[
∂µφ∂

µφ
]

= D ⇒ [φ] = 1− ε ,[
ψ̄ /∂ψ

]
= D ⇒ [ψ] = 3/2− ε ,[

ψ̄ /Aψg
]

= D ⇒ [g] = ε .

The gauge coupling constant acquires dimensions! This is a prelude to the non-trivial behaviour of
the renormalized coupling constant as a function of the energy scale (“running"). But before we come
to this, let us go back to the calculation of the counter-terms and the construction of the renormalized
Lagrangian.

Replace the bare fields and couplings with renormalized ones:3

ψbare = Z
1/2
2 ψR ,

Aµbare = Z
1/2
3 AµR ,

gbare = Zg µ
εgR .

3For the sake of simplicity, here and in the following we shall assume the quarks to be massless. The inclusion of the mass
terms does not add any interesting new feature in what follows.
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We explicitly extracted the dimensions out of gbare, introducing the dimensional parameter µ (renormal-
ization scale). In this way the renormalized coupling gR is dimensionless (as it should be once we go
back to four dimensions).

The Lagrangian, written in terms of renormalized quantities, becomes

L = Z2ψ̄i/∂ψ −
1

4
Z3F

a
µνF

µν
a + ZgZ2Z

1/2
3 µε gψ̄ /Aψ + (gauge fixing, ghosts, . . . ) . (A.27)

It is customary to define
Z1 = Zg Z2 Z

1/2
3 . (A.28)

If we set Zn = 1 + δn, we then obtain

L = ψ̄ i /∂ψ − 1

4
F aµνF

µνa + µε gψ̄ /Aψ +
[
ghosts, gauge mixing

]

+ δ2 ψ̄ i/∂ψ −
1

4
δ3F

a
µνF

µνa + δ1µ
εgψ̄ /Aψ . (A.29)

The counter-terms δi are fixed by requiring the one-loop Green functions to be finite. The explicit
evaluation, which you can find carried out in detail, for example, in Refs. [3, 7], gives

quark self-energy ⇒ δ2 = −CF

(
αs
4π

1

ε

)
, (A.30)

gluon self-energy ⇒ δ3 =

(
5

3
CA −

4

3
nF TF

)
αs
4π

1

ε
, (A.31)

qq̄g vertex corrections ⇒ δ1 = −(CA +CF)
αs
4π

1

ε
. (A.32)

As usual we introduced the notation αs = g2/4π. The strong-coupling renormalization constant Zg can
be obtained using these results and Eq. (A.28):

Zg =
Z1

Z2Z
1/2
3

= 1+δ1−δ2−
1

2
δ3 = 1+

αs
4π

1

ε

[
−11

6
CA +

2

3
nF TF

]
def≡ 1− 1

ε

(
b0
2

)
αs . (A.33)

Note the cancellation of the terms proportional toCF, between the quark self-energy (Z2) and the Abelian
part of the vertex correction (Z1). This is the same as in the case of the QCD non-renormalization of
the electric coupling, discussed at the beginning of this appendix. The non-Abelian part of the vertex
correction contributes viceversa to the QCD coupling renormalization. This is a consequence of gauge
invariance. The separation of the non-Abelian contributions to the self-energy and to the vertex is not
gauge-invariant, only their sum is. Note also that the consistency of the renormalization procedure re-
quires that the renormalized strong coupling g defining the strength of the interaction of quarks and
gluons should be the same as that defining the interaction of gluons among themselves. If this did not
happen, the gauge invariance of the qq̄ → gg process so painfully achieved in Section 2 by fixing the
coefficient of the three-gluon coupling would no longer hold at one-loop! Once again, this additional
constraint can be shown to hold through an explicit calculation.

A.4 Running of αs
The running of αs is a consequence of the renormalization-scale independence of the renormalization
process. The bare coupling gbare knows nothing about our choice of µ. The parameter µ is an artifact
of the regularization prescription, introduced to define the dimensionful coupling in D dimensions, and
should not enter in measurable quantities. As a result

dgbare

dµ
= 0 . (A.34)
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Using the definition of g, gbare = µεZg g, we then get

εµ2ε Z2
g αs + µ2ε αs2Zg

dZg
dt

+ µ2ε Z2
g

dαs
dt

= 0 (A.35)

where
d

dt
= µ2 d

dµ2
=

d

d log µ2
. (A.36)

Zg depends upon µ only via the presence of αs. If we define

β(αs) =
dαs
dt

, (A.37)

we then get

β(αs) + 2
αs
Zg

dZg
dαs

β(αs) = −εαs . (A.38)

Using Eq. (A.33) and expanding in powers of αs, we get

β(αs) =
−εαs

1 + 2αsZg
dZg
dαs

=
−εαs

1− b0αs
ε

= −b0α2
s +O(α2

s, ε) (A.39)

and finally

β(αs) = −b0α
2
s with b0 =

1

2π

(
11

6
CA −

2

3
nF TF

)
N=3
=

1

12π
(33− 2nf ) . (A.40)

We can now solve Eq. (A.37), assuming b0 > 0 (which is true provided the number of quark flavours is
less than 16) and get the famous running of αs:

αs(µ
2) =

1

b0 log(µ2/Λ2)
. (A.41)

The parameter Λ describes the boundary condition of the first-order differential equation defining the
running of αs, and corresponds to the scale at which the coupling becomes infinity.

A.5 Renormalization group invariance
The fact that the coupling constant αs depends on the unphysical renormalization scale µ should not be
a source of worry. This is because the coupling constant itself is not an observable. What we observe are
decay rates, spectra, or cross-sections. These are given by the product of the coupling constant and some
matrix element, which in general will acquire a non-trivial renormalization-scale dependence through
the renormalization procedure. We therefore just need to check that the scale dependence of the coupling
constant and of the matrix elements cancel each other, leaving results which do not depend on µ.

Consider now a physical observable, for example the ratio R = σ(e+e− → hadrons)/σ(e+e− →
µ+µ−). R can be calculated in perturbation theory within QCD, giving rise to an expansion in the
renormalized coupling αs(µ):

R[αs, s/µ
2] = 1 + αs f1(t) + α2

s f2(t) + . . . =

∞∑

n=0

αns f(n)(t) , (A.42)

where t = s/µ2 (and we omitted a trivial overall factor 3
∑

f Q
2
f ). R depends on µ explicitly via the

functions f(n)(t) and implicitly through αs. Since R is an observable, it should be independent of µ, and
the functions f(n)(t) cannot be totally arbitrary. In particular, one should have

µ2 dR

dµ2
= 0 =

[
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs

]
R[αs, s/µ

2] = 0 . (A.43)

38

M.L. MANGANO

118



Before we give the general, formal solution to this differential equation, it is instructive to work out
directly its form within perturbation theory.

µ2 dR

dµ2
= 0 = β(αs) f1(t) + αs µ

2 df1

dµ2
+ 2αs β(αs) f2(t) + α2

s µ
2 df2

dµ2
+ . . . (A.44)

At order αs (remember that β is of order α2
s) we get

df1

dµ2
= 0 ⇒ f1 = constant ≡ a1 . (A.45)

This is by itself a non-trivial result! It says that the evaluation of R at one-loop is finite, all UV infinities
must cancel without charge renormalization. If they did not cancel, f1 would depend explicitly on µ. As
we saw at the beginning, this is a consequence of the non-renormalization of the electric charge.

At order α2
s we have

β(αs)f1(t) + α2
s

df2

d log µ2
= 0 ⇒ f2 = b0 a1 log

µ2

s
+ a2 (integration constant) . (A.46)

So up to order α2
s we have

R = 1 + a1 αs︸ ︷︷ ︸
one-loop

+ a1 b0 α
2
s log µ2/s+ a2α

2
s︸ ︷︷ ︸

two-loops

+ . . . . (A.47)

Note that the requirement of renormalization group invariance allows us to know the coefficient of the
logarithmic term at two loops without having to carry out the explicit two-loop calculation! It is also
important to notice that in the limit of high energy, s → ∞, the logarithmic term of the two-loop
contribution becomes very large, and this piece becomes numerically of order αs as soon as log s/µ2 &
1/b0 αs. It is easy to check that renormalization scale invariance requires the presence of such logs at all
orders of perturbation theory. In particular,

f(n)(t) = a1

[
b0 log

µ2

s

]n
+ . . . . (A.48)

We can collect all these logs as follows:

R = 1 + a1αs

[
1 + αsb0 log

µ2

s
+ (αsb0 log

µ2

s
)2 + . . .

]
+ a2α

2
s + . . . (A.49)

= 1 + a1
αs(µ)

1 + αs(µ)b0 log s
µ2

+ a2α
2
s + . . . ≡ 1 + a1αs(s) + a2α

2
s + . . . . (A.50)

In fact,
αs(µ)

1 + αs(µ)b0 log s
µ2

=
1

b0 log µ2

Λ2 + b0 log s
µ2

=
1

b0 log s
Λ2

≡ αs(s) . (A.51)

Renormalization group invariance constrains the form of higher-order corrections. All of the higher-order
logarithmic terms are determined in terms of lower-order finite coefficients. They can be resummed by
simply setting the scale of αs to s. You can check by yourself that this will work also for the higher-order
terms, such as those proportional to a2. So the final result has the form

R = 1 + a1αs(s) + a2α
2
s(s) + a3α

3
s(s) + . . . . (A.52)

Of course a1, a2, . . . have to be determined by an explicit calculation. However, the truncation of the
series at order n has now an accuracy which is truly of order αn+1

s , contrary to before when higher-
order terms were as large as lower-order ones. The explicit calculation has been carried out up to the a3

coefficient. In particular,

a1 =
3

4

CF

π
≡ 1

π
. (A.53)
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The formal proof of the previous equation can be obtained by showing that the general form of the
equation [

µ2 ∂

∂µ2
+ β(αs)

]
R (αs,

s

µ2
) = 0 (A.54)

is given by 



R(αs(s), 1) , with
dαs

d log s
µ2

= β(αs)
. (A.55)

B Formal derivation of the evolution equations
Assuming the parton picture outlined above, we can describe the cross-section for the interaction of the
virtual photon with the proton as follows:

σ0 =

∫ 1

0
dx
∑

i

e2
i fi(x) σ̂0(γ∗qi → q′i, x) (B.1)

where the 0 subscript anticipates that this description represents a leading order approximation. In the
above equation, fi(x) represents the density of quarks of flavour i carrying a fraction x of the proton
momentum. The hatted cross-section represents the interaction between the photon and a free (massless)
quark:

σ̂0(γ∗qi → q′i) =
1

flux

∑
|M0(γ∗q → q′)|2 d3p′

(2π)32p′0
(2π)4δ4(p′ − q − p)

=
1

flux

∑
|M0|22πδ(p′2) . (B.2)

Using p′ = xP + q, where P is the proton momentum, we get

(p′)2 = 2xP · q + q2 ≡ 2xP · q −Q2 , (B.3)

σ̂0(γ∗q → q′) =
2π

flux

∑
|M0|2

1

2P · q δ(x− xbj) , (B.4)

where xbj = Q2

2P ·q is the so-called Bjorken-x variable. Finally,

σ0 =
2π

flux

∑|M0|2
Q2

∑

i

xbj fi(xbj) e
2
i ≡

2π

flux

∑|M0|2
Q2

F2(xbj) . (B.5)

The measurement of the inclusive ep cross-section as a function of Q2 and P · q [= mp(E
′ − E) in the

proton rest frame, with E ′ = energy of final-state lepton and E = energy of initial-state lepton] probes
the quark momentum distribution inside the proton.

B.1 Parton evolution
Let us now study the QCD corrections to the LO parton-model description of DIS. This study will exhibit
many important aspects of QCD (structure of collinear singularities, renormalization-group invariance)
and will take us to an important element of the DIS phenomenology, namely scaling violations. We start
from real-emission corrections to the Born level process:

(B.6)
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The first diagram is proportional to 1/(p− k)2 = 1/2(pk), which diverges when k is emitted parallel to
p:

p · k = p0k0 (1− cos θ)
cos θ→1−→ 0 . (B.7)

The second diagram is also divergent, if k is emitted parallel to p′. This second divergence turns out to
be harmless, since we are summing over all possible final states. Whether the final-state quark keeps
all of its energy, or whether it decides to share it with a gluon emitted collinearly, an inclusive final-
state measurement will not care. The collinear divergence can then be cancelled by a similar divergence
appearing in the final-state quark self-energy corrections.

The first divergence is more serious, since from the point of view of the incoming photon (which
only sees the quark, not the gluon) it does make a difference whether the momentum is all carried by the
quark or is shared between the quark and the gluon. This means that no cancellation between collinear
singularities in the real emission and virtual emission is possible. So let us go ahead, calculate explicitly
the contribution of these diagrams, and learn how to deal with their singularities.

First of all, note that while the second diagram is not singular in the region k·p→ 0, its interference
with the first one is. It is possible, however, to select a gauge for which the interference of the two
diagrams is finite in this limit. It can be shown that the right choice is

∑
εµε
∗
ν(k) = −gµν +

kµp′ν + kνp′µ

k · p′ . (B.8)

Note that in this gauge not only k · ε(k) = 0, but also p′ · ε(k) = 0. The key to getting to the end of a
QCD calculation in a finite amount of time is choosing a proper gauge (which we just did) and the proper
parametrization of the momenta involved. In our case, since we are interested in isolating the region
where k becomes parallel with p, it is useful to set

kµ = (1− z)pµ + βp′µ + (k⊥)µ , (B.9)

with k⊥ · p = k⊥ · p′ = 0. β is obtained by imposing

k2 = 0 = 2β(1 − z)p · p′ + k2
⊥ . (B.10)

Defining k2
⊥ = −k2

t , we then get

β =
k2
t

2(pp′) (1 − z) , (B.11)

kµ = (1− x)pµ +
k2
t

2(1− x)p · p′ p
′
µ + (k⊥)µ . (B.12)

(k⊥)µ is therefore the gluon momentum vector transverse to the incoming quark, in a frame where γ ∗

and q are aligned. kt is the value of this transverse momentum. We also get

k · p = β p · p′ = k2
t

2(1− z) and k · p′ = (1− z)p · p′ . (B.13)

As a result (p − k)2 = −k2
t /(1 − z). The amplitude for the only diagram carrying the initial-state

singularity is

Mg = igλaij ū(p′)Γ
p̂− k̂

(p− k)2
ε̂(k)u(p) (B.14)

(where we introduced the notation â ≡ /a ≡ aµγ
µ). We indicated by Γ the interaction vertex with the

external current q. It is important to keep Γ arbitrary, because we would like to get results which do not
depend on the details of the interaction with the external probe. It is important that the singular part of
the QCD correction, and therefore its renormalization, be process independent. Only in this way can we
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hope to achieve a true universality of the parton densities! So we will keep Γ generic, and make sure that
our algebra does not depend on its form, at least in the p · k → 0 limit. Squaring the most singular part
of the amplitude, and summing over colours and spins, we get

∑

g polariz.
and colours

|Mg|2 = g2

N×CF︷ ︸︸ ︷∑

a

tr (λaλa)× 1

t2
×
∑

ε

tr [p̂′ Γ(p̂− k̂) ε̂ p ε̂∗ (p̂− k̂) Γ+] (B.15)

with t = (p− k)2 = −k2
t /(1 − z). Let us look first at

∑

ε

ε̂ p̂ ε̂∗ =
∑

εµ ε
∗
ν γ

µp̂γν = −γµp̂γµ +
1

k · p′ (p̂
′p̂k̂ + k̂p̂p̂′) =

2

1− z (k̂ + βp̂′) (B.16)

(we used âb̂ĉ+ ĉb̂â = 2(a · b) ĉ − 2(a · c) b̂ + 2(b · c) â and some of the kinematical relations from the
previous page). Then take

(p̂− k̂) (k̂ + βp̂′) (p̂− k̂) = (p̂− k̂) k̂ (p̂− k̂) + β(p̂− k̂) p̂′ (p̂− k̂) . (B.17)

In the second term, proportional to β, we can approximate k̂ = (1 − z)p̂. This is because the other
pieces (βp̂′ + k̂⊥) multiplied by β would cancel entirely the 1

t2
singularity, and would only contribute a

non-singular term, which we are currently neglecting. So Eq. (B.17) becomes

p̂k̂p̂+ βz2p̂p̂′p̂ = 2(p · k)p̂+ βz22(p · p′)p̂ = 2(p · k) (1 + z2)p̂ (B.18)

and ∑
|Mg|2 = 2g2 CF

(1 − z)
k2
t

(
1 + z2

1− z

)
N tr[p̂′Γp̂Γ+] . (B.19)

The last factor with the trace corresponds to the Born amplitude squared. So the one-gluon emission
process factorizes in the collinear limit into the Born process times a factor which is independent of the
beam’s nature! If we add the gluon phase-space

[dk] ≡ d3k

(2π)32k0
=
dk‖
k0

dφ

2π

1

8π2

dk2
⊥

2
=

dz

(1− z)
1

16π2
dk2
⊥ , (B.20)

we get
∑
|Mg|2 [dk] =

dk2
⊥

k2
⊥
dz
(αs

2π

)
Pqq(z)

∑
|M0|2 (B.21)

where

Pqq(z) = CF
1 + z2

1− z (B.22)

is the so-called Altarelli–Parisi splitting function for the q → q transition (z is the momentum fraction
of the original quark taken away by the quark after gluon emission). We are now ready to calculate the
corrections to the parton-model cross-section:

σg =

∫
dx f(x)

1

flux

∫
dz

dk2
⊥

k2
⊥

(αs
2π

)
Pqq(z)

∑
|M0|2 2πδ(p′2) . (B.23)

Using (p′)2 = (p− k + q)2 ∼ (zp+ q)2 = (xzP + q)2 and

δ(p′2) =
1

2P · q
1

z
δ(x − xbj

z
) =

xbj
z
δ(x− xbj

z
) , (B.24)
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we finally obtain

σg =
2π

flux

(∑|M0|2
Q2

) ∑

i

e2
i xbj

αs
2π

∫
dk2
⊥

k2
⊥

∫
dz

z
Pqq(z) fi

(xbj
z

)
. (B.25)

We then find that the inclusion of the O(αs) correction is equivalent to a contribution to the parton
density:

fi(x)→ fi(x) +
αs
2π

∫
dk2
⊥

k2
⊥

∫ 1

x

dz

z
Pqq(z) fi

(x
z

)
. (B.26)

Note the presence of the integral
∫
dk2
⊥/k

2
⊥. The upper limit of integration is proportional to Q2. The

lower limit is 0. Had we included a quark mass, the propagator would have behaved like 1/(k2
⊥ +m2).

But the quark is bound inside the hadron, so we do not quite know what m should be. Let us then assume
that we cut off the integral at a k⊥ value equal to some scale µ0, and see what happens. The effective
parton density becomes

f(x,Q2) = f(x) + log

(
Q2

µ2
0

)
αs
2π

∫ 1

x

dz

z
Pqq(z) f

(x
z

)
. (B.27)

The dependence on the scale µ0, which is a non-perturbative scale, can be removed by defining f(x,Q2)
in terms of the parton density f measured at a large, perturbative scale µ2:

f(x, µ2) = f(x) + log

(
µ2

µ2
0

)
αs
2π

∫ 1

x

dz

z
Pqq(z) f

(x
z

)
. (B.28)

We can then perform a subtraction, and write

f(x,Q2) = f(x, µ2) + log

(
Q2

µ2

)
αs
2π

∫ 1

x

dz

z
Pqq(z) f

(x
z

)
. (B.29)

The scale µ plays here a similar role to the renormalization scale introduced in the Appendix A. Its choice
is arbitrary, and f(x,Q2) should not depend on it. Requiring this independence, we get the following
‘renormalization-group (RG) invariance’ condition:

df(x,Q2)

d lnµ2
= µ2 df(x, µ2)

dµ2
− αs

2π

∫ 1

x

dz

z
Pqq(z) f

(x
z

)
≡ 0 (B.30)

and then

µ2 df(x, µ2)

dµ2
=

αs
2π

∫ 1

x

dz

z
Pqq(z) f

(x
z
, µ2
)
. (B.31)

This equation is usually called the DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) equation. As
in the case of the resummation of leading logarithms in Re+e− induced by the RG invariance constraints,
the DGLAP equation—which is the result of RG invariance—resums a full tower of leading logarithms
of Q2.

Proof: Let us define t = log Q2

µ2 . We can then expand f(x, t) in powers of t:

f(x, t) = f(x, 0) + t
df

dt
(x, 0) +

t2

2!

d2f

dt2
(x, 0) + . . . . (B.32)

The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
entiating it:

f ′′(x, t) =
αs
2π

∫
dz

z
Pqq(z)

df

dt
(
x

z
, t)
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=
αs
2π

∫ 1

x

dz

z
Pqq(z)

αs
2π

∫ 1

x
z

dz′

z′
Pqq(z)f(

x

zz′
, t)

...

f (h)(x, t) =
αs
2π

∫ 1

x
. . . . . .

αs
2π

∫ 1

x/zz′...z(n−1)

dz(n)

z(n)
Pqq(z

(n))f(
x

zz′ . . .
, t) . (B.33)

The n-th term in this expansion, proportional to (αs t)
n, corresponds to the emission of n gluons (it is

just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes

dfq(x, t)

dt
=

αs
2π

∫ 1

x

dz

z

[
Pqq(z) fi(

x

z
, t) + Pqg(z)fg(

x

z
, t)
]
, with Pqg =

1

2

[
z2 + (1− z)2

]
.

(B.34)
In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
affect the evolution of the gluon density fg(x):

dfg(x, t)

dt
=

αs
2π

∫ 1

x

dz

z


Pgq(z)

∑

i=q,q̄

fi

(x
z
, t
)

+ Pgg(z)fg

(x
z
, t
)

 (B.35)

with

Pgq(z) = Pqq(1− z) = CF
1 + (1− z)2

z
and Pgg(z) = 2CA

[
1− z
z

+
z

1− z + z(1 − z)
]
.

(B.36)
Defining the moments of an arbitrary function g(x) as follows,

gn =

∫ 1

0

dx

x
xn g(x) ,

it is easy to prove that the evolution equations turn into ordinary linear differential equations:

df
(n)
i

dt
=

αs
2π

[P (n)
qq f

(n)
i + P (n)

qg f
(n)
g ] , (B.37)

df
(n)
g

dt
=

αs
2π

[P (n)
gg fg + P (n)

gq f
(n)
i ] . (B.38)

B.2 Properties of the evolution equations
We now study some general properties of these equations. It is convenient to introduce the concepts of
valence [V (x, t)] and singlet [Σ(x, t)] densities:

V (x) =
∑

i

fi(x)−
∑

ı̄

fı̄(x) , (B.39)

Σ(x) =
∑

i

fi(x) +
∑

ı̄

fı̄(x) , (B.40)

where the index ı̄ refers to the antiquark flavours. The evolution equations then become

dV (n)

dt
=

αs
2π

P (n)
qq V (n) , (B.41)
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dΣ(n)

dt
=

αs
2π

[
P (n)
qq Σ(n) + 2nf P

(n)
qg f (n)

g

]
, (B.42)

df
(n)
g

dt
=

αs
2π

[
P (n)
gq Σ(n) + P (n)

gg f (n)
g

]
. (B.43)

Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming from the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
∫ 1

0 dxV (x), counts the number of valence quarks. We there-
fore expect it to be independent of Q2:

dV (1)

dt
≡ 0 =

αs
2π

P (1)
qq V (1) = 0 . (B.44)

Since V (1) itself is different from 0, we obtain a constraint on the first moment of the splitting function:
P

(1)
qq = 0. This constraint is satisfied by including the effect of the virtual corrections, which generate

a contribution to Pqq(z) proportional to δ(1 − z). This correction is incorporated in Pqq(z) via the
redefinition:

Pqq(z)→
(

1 + z2

1− z

)

+

≡ 1 + z2

1− z − δ(1 − z)
∫ 1

0
dy

(
1 + y2

1− y

)
(B.45)

where the + sign turns Pqq(z) into a distribution. In this way,
∫ 1

0 dz Pqq(z) = 0 and the valence sum-rule
is obeyed at all Q2.

Another sum-rule that does not depend on Q2 is the momentum sum-rule, which imposes the
constraint that all of the momentum of the proton is carried by its constituents (valence plus sea plus
gluons):

∫ 1

0
dxx


∑

i,i

fi(x) + fg(x)


 ≡ Σ(2) + f (2)

g = 1 . (B.46)

Once more this relation should hold for all Q2 values, and this can be proved by using the evolution
equations that this implies:

P (2)
qq + P (2)

gq = 0 , (B.47)

P (2)
gg + 2nf P

(2)
qg = 0 . (B.48)

You can check using the definition of second moment, and the explicit expressions of the Pqq and Pgq
splitting functions, that the first condition is automatically satisfied. The second condition is satisfied by
including the virtual effects in the gluon propagator, which contribute a term proportional to δ(1− z). It
is a simple exercise to verify that the final form of the Pgg(z) splitting function, satisfying Eq. (B.48), is

Pgg → 2CA

{
x

(1− x)+
+

1− x
x

+ x(1− x)

}
+ δ(1 − x)

[
11CA − 2nf

6

]
. (B.49)

B.3 Solution of the evolution equations
The evolution equations formulated in the previous section can be solved analytically in moment space.
The boundary conditions are given by the moments of the parton densities at a given scale µ, where in
principle they can be obtained from a direct measurement. The solution at different values of the scale
Q can then be obtained by inverting numerically the expression for the moments back to x space. The
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resulting evolved densities can then be used to calculate cross-sections for an arbitrary process involving
hadrons, at an arbitrary scale Q. We shall limit ourselves here to studying some properties of the analytic
solutions, and will present and comment on some plots obtained from numerical studies available in the
literature.

As an exercise, you can show that the solution of the evolution equation for the valence density is
the following:

V (n)(Q2) = V (n)(µ2)

[
logQ2/Λ2

log µ2/Λ2

]P (n)
qq /2πb0

= V (n)(µ2)

[
αs(µ

2)

αs(Q2)

]P (n)
qq /2πb0

(B.50)

where the running of αs(µ2) has to be taken into account to get the right result. Since all moments P (n)

are negative, the evolution to larger values of Q makes the valence distribution softer and softer. This is
physically reasonable, since the only thing that the valence quarks can do is to lose energy because of
gluon emission.

The solutions for the gluon and singlet distributions fg and Σ can be obtained by diagonalizing
the 2×2 system in Eqs. (B.42) and (B.43). We study the case of the second moments, which correspond
to the momentum fractions carried by quarks and gluons separately. In the asymptotic limit Σ(2) goes to
a constant, and dΣ(2)

dt = 0. Then, using the momentum sum-rule,

P (2)
qq Σ(2) + 2nf P

(2)
qg f

(2)
g = 0 , (B.51)

Σ(2) + f (2)
g = 1 . (B.52)

The solution of this system is

Σ(2) =
1

1 + 4CF
nf

(= 15/31 for nf = 5) , (B.53)

f (2)
g =

4CF

4CF + nf
(= 16/31 for nf = 5) . (B.54)

As a result, the fraction of momentum carried by gluons is asymptotically approximately 50% of the
total proton momentum. It is interesting to note that, experimentally, this asymptotic value is actually
reached already at rather low values ofQ2. It was indeed observed already since the early days of the DIS
experiments that only approximately 50% of the proton momentum was carried by charged constituents.
This was one of the early pieces of evidence for the existence of gluons.

A complete solution for the evolved parton densities in x space can only be obtained from a
numerical analysis. This work has been done in the past by several groups (see e.g., the discussions in
Ref. [8]), and is continuously being updated by including the most up-to-date experimental results used
for the determination of the input densities at a fixed scale.

C Jet rates in e+e− collisions
We present here explicit calculations of a few interesting jet observables in e+e− collisions. For simplic-
ity, we will work with the soft-gluon approximation for the matrix elements and the phase-space. As a
result, the correction to the differential e+e− → qq̄ cross-section from one-gluon emission becomes

dσg = σ0
2αs
π

CF
dk0

k0

d cos θ

1− cos2 θ
, where σ0 is the Born amplitude . (C.1)

In this equation we used the fact that in the soft-g limit the q and q̄ are back-to-back, and

q · q̄ = 2q0q̄0 , q · k = q0k0(1− cos θ), q̄k = q̄0k0(1 + cos θ) . (C.2)
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Note the presence in dσg of soft and collinear singularities. They will have to cancel in the total cross-
section which, as we saw in the previous lecture, is finite. They do indeed cancel against the contribution
to the total cross-section coming from the virtual correction diagram, where a gluon is exchanged be-
tween the two quarks. In the total cross-section (and for other sufficiently inclusive observables) the final
states produced by the virtual diagrams and by the real emission diagrams in the soft or collinear limit
are the same, and both contribute. In order for the total cross-section to be finite, the virtual contribution
will need to take the following form:

d2σv
dk0d cos θ

= −σ0
2αs
π

CF

∫ √s/2

0

dk′0
k′0

∫ 1

−1

d cos θ′

1− cos2 θ′
× 1

2
δ(k0) [δ(1 − cos θ) + δ(1 + cos θ)]

(C.3)
plus finite corrections. In this way,

∫ √s/2

0
dk0

∫ 1

−1
d cos θ

[
d2σg

dk0d cos θ
+

d2σv
dk0d cos θ

]
= finite . (C.4)

With the form of the virtual corrections available (at least in this simplified soft-gluon-dominated ap-
proximation), we can proceed and calculate other quantities.

Jets are usually defined as clusters of particles close-by in phase-space. A typical jet definition
distributes particles in sets of invariant mass smaller than a given parameterM , requiring that one particle
only belongs to one jet, and that no other particles (or jets) can be added to a given jet without its mass
exceeding M . In the case of a three-particle final state, such as the one we are studying, we get three-jet
events if (q + k)2, (q̄ + k)2 and (q + q̄)2 are all larger than M 2. We will have two-jet events when at
least one of these quantities gets smaller than M 2. For example emission of a gluon near the direction of
the quark, with 2qk = 2q0k0(1− cos θ) < M 2, defines a two-jet event, one jet being given by the q̄, the
other by the system q + k.

One usually introduces the parameter y = M 2/s, and studies the jet multiplicity as a function of
y. Let us calculate the two- and three-jet rates at order αs. The phase-space domain for two-jet events is
given by two regions. The first one is defined by 2qk = 2q0k0(1− cos θ) < ys. This region consists of
two parts:

(I)a :

{
k0 < y

√
s

0 < cos θ < 1
⊕ (I)b :

{
k0 > y

√
s

1− y
√
s

k0
< cos θ < 1

. (C.5)

(I)a corresponds to soft gluons at all angles smaller than π/2 (i.e., in the quark emisphere), and (I)b
corresponds to hard gluons emitted at small angles from the quark.

The second region, (II), is analogous to (I), but the angles are now referred to the direction of the
antiquark. The integrals of dσ over (I) and (II) are of course the same. The O(αs) contribution to the
two-jet rate is therefore given by

σ
(αs)
2-jet

σ0
=

1

σ0

[
2

∫

(I)a

d σg + 2

∫

(I)b

d σg +

∫

virtual
d σv

]

=
4αsCF

π

[∫ y
√
s

0

dk0

k0

∫ 1

0

d cos θ

1− cos2 θ
+

∫ √s/2

y
√
s

dk0

k0

∫ 1

1−( y
√
s

k0
)

d cos θ

1− cos2 θ

−
∫ y
√
s

0

dk0

k0

∫ 1

0

d cos θ

1− cos2 θ

]

=
4αsCF

π

{
−
∫ √s/2

y
√
s

dk0

k0

∫ 1

0

d cos θ

1− cos2 θ
+

∫ √s/2

y
√
s

dk0

k0

∫ 1

1−( y
√
s

k0
)

d cos θ

1− cos2 θ

}

47

INTRODUCTION TO QCD IN HADRONIC COLLISIONS

127



=
4αsCF

π

∫ √s/2

y
√
s

dk0

k0

∫ 1−( y
√
s

k0
)

0

(
d cos θ

1− cos2 θ

)

=
2αsCF

π

∫ √s/2

y
√
s

dk0

k0

[
(−) log

k0

y
√
s

+ (finite for y → 0)

]
= −αsCF

π
log2 2y . (C.6)

Including the Born contribution, which always gives rise to two and only two jets, we finally have

σ2−jet = σ0

[
1− αsCF

π
log2 y + . . .

]
,

σ3−jet = σ0
αsCF

π
log2 y + . . . .

If y → 0, σ3−jet becomes larger than σ2−jet. If y is sufficiently small, we can even get σ2−jet < 0!
This is a sign that higher-order corrections become important. In the soft-gluon limit, assuming that the
emission of a second gluon will also factorize4 , we can repeat the calculation at higher orders and obtain

σ2−jet ' σ0

[
1− αsCF

π
log2 y +

1

2!

(
αsCF

π
log2 y

)2

+ . . .

]
= σ0 e−

αsCF
π

log2 y ,

σ3−jet ∼ σ0
αsCF

π
log2 y e−

αsCF
π

log2 y ,

...

σ(n+2)−jet ∼ σ0
1

n!

(
αsCF

π
log2 y

)n
e−

αsCF
π

log2 y . (C.7)

It is immediate to recognize in this series a Poisson distribution, leading to an average number of jets
given by

〈njet〉 ' 2 +
αsCF

π
log2 y . (C.8)

The smaller the resolution parameter y, the smaller the mass of the jets, and the larger the importance
of higher-order corrections. If we take the parameter M down to the scale of a few hundred MeV
(M ∼ ΛQCD), each particle gets identified with an independent jet. We can therefore estimate the s-
dependence of the average multiplicity of particles produced:

〈npart〉 ∼
CFαs
π

log2 s

Λ2
=

CF

π

1

b0 log s
Λ2

log2 s

Λ2
' CF

πb0
log

s

Λ2
. (C.9)

The final-state particle multiplicity grows with log(s).

In practice, things are a bit more complicated than this. Once the first gluon is emitted, additional
gluons can be emitted from it as well. Therefore the final-state multiplicity will be dominated by the
emission of gluons from gluons. The analysis becomes more complicated (see e.g., Refs. [6] and [8] for
the details), and the final result is

〈npart(s)〉 ∼ exp

√
2CA

πb
log(

s

Λ2
) (C.10)

for the particle multiplicity, and

〈njet(y)〉 = 2 + 2
CF

CA
(cosh

√
αsCA

2π
log2 1

y
− 1) ∼ CF

CA
exp

√
αsCA

2π
log2 1

y

4This is not true (see later on), but let us just accept it to see how things develop.
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for the average jet multiplicity.

Other interesting quantities that can be calculated using the simple formulas we developed so
far are the average jet mass and the thrust. To define the jet mass we just divide the final state into two
emispheres, separated by the plane orthogonal to the thrust axis. We now call jets the two sets of particles
on either side of the plane. The 〈m2〉 of the jet is then given by

〈m2
jet〉 =

1

2σ0

{∫

(I)
(q + k)2dσg +

∫

(II)
(q̄ + k)2dσg

}
. (C.11)

The virtual correction does not enter here, since the pure qq̄ final state has jet masses equal to 0. The
result of this simple computation leads to

〈m2
jet〉 =

αsCF

π
s . (C.12)

Another interesting variable often used in experimental studies is the thrust T , defined by

T = max
T̂

∑

i

|~pi · T̂ | /
∑

i

|~pi|

where T̂ is the thrust axis, defined so as to maximize T . For three-body final states, T̂ is the direction of
the highest-energy parton, and T is proportional to twice its energy:

T = 2
q̄0√
s
≡ 1− (q + k)2

s
= 1−

m2
jet

s
. (C.13)

As a result,

〈1− T 〉 =
αsCF

π
. (C.14)

At LEP, 〈1 − T 〉 ' 0.120
π × 4

3 ' 0.05. The terms neglected in the soft-gluon approximation we used
throughout can be calculated, and give some small correction to the above results. Corrections will like-
wise come from higher-order effects. State-of-the-art calculations exist which evaluate all these ‘shape
variables’ (and more!) up to O(α2

s) accuracy, including a full next-to-leading-log accurate resummation
of higher-order logarithms (such as the log 1/y terms we encountered in the discussion of jet rates, or
terms of the form logn(1−T ) which appear at higher orders in the evaluation of the thrust distributions).
These calculations allow a reliable estimate of several different observables directly proportional to αs,
and provide the theoretical input for the extraction of αs from the LEP QCD data [8].

Note that non-perturbative corrections proportional to Λ√
s
, with Λ ∼ 1 GeV, can have a significant

impact on the extraction of αs. For example, a Λ√
s

correction to 〈1− T 〉 would be a 20% effect:

Λ√
s
∼ 0.01 , 〈1− T 〉PT ' 0.05 .

Indeed one measures 〈1 − T 〉LEP = 0.068 ± 0.003 , compared with the full perturbation theory QCD
prediction of 0.055 (using αs = 0.120).
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