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A. MAGNETICALLY DRIVEN SHOCK TUBE STUDIES*

The steady-flow solution of shock waves, which is valid for pressure-driven shock
tubes, is not applicable to magnetically driven tubes because the conditions of constant
density and pressure behind the shock front and constant driving pressure are not met.
A treatment that approximately satisfies all the conditions, however, is G. I. Taylor's
blast-wave solution (1).

This report gives a one-dimensional solution that uses Taylor's method. It is
assumed that there is an instantaneous release of energy, E, per unit area in an infinite
plane at x = 0, t = 0, The boundary condition at x = 0 is such that the shock propagates
only in the positive x-direction. A cylindrical section perpendicular to the plane of
energy release may be taken as the shock tube with all heat conduction, viscosity, and
radiation losses neglected. The gas is assumed to be polytropic (ideal with constant
heat capacities). Strong shocks, with no ionization and with particle-isentropic flow
behind the shock, are assumed.

The flow equations behind the shock are:
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where u is the flow velocity, p is the pressure, p is the density, S is the entropy, and
Y is the ratio of specific heats.

The solutions of these equations are known as "progressive waves" (2); the velocity,
pressure, and density distributions do not change in shape, but only in scale, as the

shock wave advances. We may then write
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¢, () (6)

u =
X1/2

where M = x/X is the normalized position, with X, the shock position. Substituting in

the flow equations and separating X, we have
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We find that there is a solution if, and only if,
Xl/?- dX _ A (10)

dt

where A is a constant. After integrating, we find that

X=(%A>2/3t2/3 (11)

The functions fl(n) and ¢1(n) may be made nondimensional, At the shock front, it is

known that for strong shocks
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where Vs = dX/dt, the shock velocity; and M = Vs/ao, the shock Mach number, with ags

the velocity of sound ahead of the shock. Therefore, we can write

2

£,(n) :—2 £(n) (15)
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$,(n)= A ¢(n) (16)

Equations 7, 8, and 9 can now be solved for the functions f(n), y(n), and é(n). The

result is
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These equations can be solved numerically with the use of boundary conditions
(Eqgs. 12-14):
=2y 2
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The solution is plotted in Fig. III-1 for y = 1.4, the value for hydrogen gas.
The constant A can now be evaluated from the condition that the total energy
behind the shock remains constant. Here, the original internal energy of the gas is

neglected in the strong-shock approximation.
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Fig. III-1. Normalized pressure, velocity, and density distributions
for vy = 1.4 in an impulse-driven shock tube,
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are plotted with log X versus log t in Fig. III-3 so that the slope is the exponent n in
the relation X ~ t". This is found to be n = 0. 72, which indicates that the shock is faster

than the predicted n = 0,666, The only explanation for this is a continued driving of the

P
20 -
E 10
2
6
[
o
- T+
w
o
a
& Voltage Pressure
(KV) (mm Hg.)
| 10 0.5
s 2 12 0.5
3 13 0.5
4 25 0.5
5 26 4.0
2 6 26 0.1
ol 1 1 ] 1 L 1 | ! !
o] 0.3 0.5 0.7 | 2 3 5 7 i0 20

Time (usec)

Fig. III-3. X plotted against t for several smear photographs.

shock for the first half-cycle of the capacitor discharge; that is, energy is not put in
impulsively.

An attempt was made to check the dependence of shock velocity on energy and density
to verify that

Vs ™ (‘f‘)l/z (27)

at a given position along the tube. The errors in measured quantities are too large,
however, to provide a check. Also, as the density is changed, the amount of energy
actually delivered to the gas is changed, and no way has been found to actually measure
it.

Equation 25 does give an estimate of the efficiency £ of energy transfer from the
capacitor bank to the shock wave. With « RZ E representing the total energy delivered

to the shock, and W, the stored energy in the capacitors,
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2 .?.TrR2 X3 P
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The value was found to be between 0,10 and 0,20 for most shocks.
A. T. Lewis, J. K. Oddson, H. H. Woodson
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B. CHANNELING AND COMPRESSION OF A PLASMA BEAM

Work on this problem has been concentrated on analysis of the modifying effects of
collisions on the results previously obtained for the rate of growth of the boundary layer
between the plasma beam and the magnetic field. Under the circumstances of the experi-
ment, the most important type of collision is that between the ions in the beam and the
stationary neutral particles in the vacuum tube. Collisions involving protons will always
be of negligible importance at the densities involved in these experiments, but the plasma
beam also contains HZ ions which have a much higher collision cross section. The anal-
ysis indicates that collisions between H; ions and neutral molecules will be the main
cause oi growth of the boundary layer at base pressures greater than approximately
3X10

By adjusting the base pressure, it will thus be possible to isolate the effects of colli-

mm Hg, but will be negligible at the lowest pressures used in the experiments.

sions and to make an experimental test of the theory.

In addition, the integral equation for the boundary-layer thickness has been solved
for the case in which the angular spread of the particles in the plasma beam is very
small, Explicit results have been obtained for the rate of growth of the boundary layer
and the maximum compression obtainable under the experimental conditions.

I. C. T. Nisbet
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