
III. PLASMA DYNAMICS

Prof. S. C. Brown Prof. H. H. Woodson D. T. Kyrazis
Prof. O. K. Mawardi Dr. I. C. T. Nisbet A. T. Lewis
Prof. D. O. Akhurst D. A. East J. K. Oddson
Prof. D. C. Pridmore-Brown Z. J. J. Stekly

A. MAGNETICALLY DRIVEN SHOCK TUBE STUDIES

The steady-flow solution of shock waves, which is valid for pressure-driven shock

tubes, is not applicable to magnetically driven tubes because the conditions of constant

density and pressure behind the shock front and constant driving pressure are not met.

A treatment that approximately satisfies all the conditions, however, is G. I. Taylor's

blast-wave solution (1).

This report gives a one-dimensional solution that uses Taylor's method. It is

assumed that there is an instantaneous release of energy, E, per unit area in an infinite
plane at x = 0, t = 0. The boundary condition at x = 0 is such that the shock propagates

only in the positive x-direction. A cylindrical section perpendicular to the plane of
energy release may be taken as the shock tube with all heat conduction, viscosity, and

radiation losses neglected. The gas is assumed to be polytropic (ideal with constant

heat capacities). Strong shocks, with no ionization and with particle-isentropic flow

behind the shock, are assumed.

The flow equations behind the shock are:

Equation of motion du + 1 dp= 0 (1)dt p dx

Equation of continuity p+ - (pu)= 0 (2)

Adiabatic equationS = 0  (3)

where u is the flow velocity, p is the pressure, p is the density, S is the entropy, and
y is the ratio of specific heats.

The solutions of these equations are known as "progressive waves" (2); the velocity,
pressure, and density distributions do not change in shape, but only in scale, as the
shock wave advances. We may then write

p fl(

Po X (4)

P = = 4 ) (5 )PO
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(6)

X1/2

where n = x/X is the normalized position, with X, the shock position.

the flow equations and separating X, we have

X1/2 dX = Pof 1

dt o

x1/2 dX =1 +
dt

+ 1

Substituting in

(7)

(8)

Y fl %'
TfI - f 1

We find that there is a solution if, and only if,

X1/2 dX Adt

where A is a constant. After integrating, we find that

x = ( A) 2/3 t2/3

(10)

(11)

The functions fl(T) and P1 (-q) may

known that for strong shocks

be made nondimensional. At the shock front, it is

p _Zy M 2

p y 1

p _ +l
P y -l

u 2
Vs y+ls

where V s = dX/dt, the shock velocity; and M = Vs/a o , the shock Mach number, with a o ,

the velocity of sound ahead of the shock. Therefore, we can write

2

f (rl) =  f(r)

a
0

Equations 7, 8, and 9 can now be solved for the functions f(TI), i(,]), and 4().

result is

(12)

(13)

(14)

(15)

(16)

The

+1?~

x1/2 dX 1 (Yfl fi
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, 2f' - 4-- 2' (-Y (17)
2 (T1I-)

' (18)

f, _f y + 2(11-) (19)
2 f - (0-) 2

These equations can be solved numerically with the use of boundary conditions

(Eqs. 12-14):

f(1) 2y (20)y +1

(1) 2 (21)y+ 1

+(1) - y +1 (22)
y-1

The solution is plotted in Fig. III-I for y- = 1. 4, the value for hydrogen gas.

The constant A can now be evaluated from the condition that the total energy

behind the shock remains constant. Here, the original internal energy of the gas is

neglected in the strong-shock approximation.

Fig. III-1. Normalized pressure, velocity, and density distributions
for y = 1. 4 in an impulse-driven shock tube.
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1 2E X  VT )
E = p vT+ Tu dx=

Substituting Eqs. 4, 5, 6, 15 and 16 in Eq. 23, we obtain

E = p A2  1 f(r) 2 ) )d (24)

or E = CO po A2 , where Co is the integral that depends on y alone. CO can be evaluated

by numerical integration and is found to be 2. 04. Equation 11 then becomes

= E 1/3 t2/3 (25)

and

V = 2 E 1/3 (26)
Vs  3\pt

The behavior of the shock as a function of these variables may be determined experi-

mentally. Our treatment also gives the distributions of pressure, density, and temper-

ature behind the shock which may be taken as approximately correct for those regions

in which the assumptions are valid; that is, immediately behind the shock.

S- kI CM

Fig. III-2. Smear camera photograph of shock wave from 25-kv
discharge into hydrogen at pressure of 1 mm Hg.

The T tube described in Quarterly Progress Report No. 51, page 28, has been used

with a smear camera in an attempt to verify Eqs. 25 and 26. A typical smear photo-

graph of a 25-kv discharge in hydrogen at a pressure of 1 mm Hg is shown in Fig. III-2.

The dark markings are 1 cm apart, and the light scale is in microseconds. These curves

(23)
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are plotted with log X versus log t in Fig. III-3 so that the slope is the exponent n in

the relation X ~ t n . This is found to be n = 0. 72, which indicates that the shock is faster

than the predicted n = 0. 666. The only explanation for this is a continued driving of the
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Fig. 11-3. X plotted against t for several smear photographs.

shock for the first half-cycle of the capacitor discharge; that is, energy is not put in

impulsively.

An attempt was made to check the dependence of shock velocity on energy and density

to verify that

V5 ~s )1E/2 (27)

at a given position along the tube. The errors in measured quantities are too large,

however, to provide a check. Also, as the density is changed, the amount of energy

actually delivered to the gas is changed, and no way has been found to actually measure

it.

Equation 25 does give an estimate of the efficiency of energy transfer from the

capacitor bank to the shock wave. With r R2 E representing the total energy delivered

to the shock, and W, the stored energy in the capacitors,
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rR 2  2r R2 X3

= SR 0 (28)
W CV 2t2

The value was found to be between 0. 10 and 0.20 for most shocks.

A. T. Lewis, J. K. Oddson, H. H. Woodson
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B. CHANNELING AND COMPRESSION OF A PLASMA BEAM

Work on this problem has been concentrated on analysis of the modifying effects of

collisions on the results previously obtained for the rate of growth of the boundary layer

between the plasma beam and the magnetic field. Under the circumstances of the experi-

ment, the most important type of collision is that between the ions in the beam and the

stationary neutral particles in the vacuum tube. Collisions involving protons will always

be of negligible importance at the densities involved in these experiments, but the plasma
+

beam also contains H2 ions which have a much higher collision cross section. The anal-+
ysis indicates that collisions between H2 ions and neutral molecules will be the main

cause of growth of the boundary layer at base pressures greater than approximately

3 X 10-4 mm Hg, but will be negligible at the lowest pressures used in the experiments.

By adjusting the base pressure, it will thus be possible to isolate the effects of colli-

sions and to make an experimental test of the theory.

In addition, the integral equation for the boundary-layer thickness has been solved

for the case in which the angular spread of the particles in the plasma beam is very

small. Explicit results have been obtained for the rate of growth of the boundary layer

and the maximum compression obtainable under the experimental conditions.

I. C. T. Nisbet


