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Abstract

The photon splitting γ → γγ in a time-independent and inhomogeneous mag-

netized background is considered when neutral and ultra-light spin-0 particles are

coupled to two-photons. Depending on the inhomogeneity scale of the external field,

resonant photon splitting can occur. If an optical laser crosses a magnetic field of

few Tesla with typical inhomogeneity scale of the order of the meter, a potentially

observable rate of photon splittings is expected for the PVLAS range of couplings

and masses.

This paper is dedicated to Emilio Zavattini

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44169822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://export.arxiv.org/abs/hep-ph/0702197v1


Ultra-Light scalar/pseudoscalar particles have escaped, so far, direct detection. There

are, however, theoretical reasons to believe in their possible existence. For instance,

they are naturally predicted by diverse theories beyond the standard model endowed

with spontaneously broken (global) continuous symmetries. Because of the lack of any

direct detection, these particles must be very weakly coupled to standard matter fields.

A pivotal example along this direction is the (pseudo-scalar) Nambu-Goldstone boson

associated with the spontaneously broken Peccei-Quinn symmetry [1]. The mass of this

particle, customarily called axion [2], is believed to be in the meV range [3, 5].

As far as the electromagnetic interactions are concerned, the Lagrangian densities for

an ultra-light pseudo-scalar (ϕP ) or scalar (ϕS) field can be parametrized, for the purposes

of this discussion, by two different couplings, i.e. Λ and Λ̃:

LP = − 1

4Λ
FµνF̃

µν ϕP , LS = − 1

4Λ̃
FµνF

µν ϕS , (1)

where Fµν and F̃ µν are, respectively, the Maxwell field strength and its dual.

Astrophysical constraints [5] demand that the axionic coupling Λ should be of the

order of 1010 − 1011 GeV, implying, together with the smallness of the corresponding

mass, that the axion is (almost) stable in comparison with the age of the Universe. The

axion would then be a potential dark matter candidate.

Recently, the PVLAS experiment [6], has reported the first evidence of a rotation of

the polarization plane of light propagating through a magnetic field. According to the

standard treatment [7], these results would imply, if confirmed, the presence of a very light

pseudoscalar particle (axion) whose inferred mass m and coupling Λ will be, respectively,

O(meV) and O(106 GeV). The purpose of the present paper is to test this claim by

considering a complementary effect that has not received, so far, specific attention. Our

logic can be summarized, in short, by Fig. 1. Suppose that a laser beam passes through

an inhomogeneous magnetic field. Now, if the magnetic field can absorb momentum in

a continuous manner, the (off-shell) axions can be reconverted into photons. In fact,

the two-photon couplings in Eq. (1), could also induce another indirect effect which

is the photon splitting γ → γγ in an external (time-independent) magnetic field. In

a QED framework [8], the rate of photon splitting is suppressed by (B/BQED
cr )6, where

BQED
cr = m2

e/e ≃ 4.4 × 109 Tesla. Owing to the largeness of BQED
crit the resulting effect is

extremely minute for typical laboratory (i.e. O(Tesla)) magnetic fields. The question we

ought to address is therefore rather simple: how many photon splitting events are expected

in the situation described by Fig. 1? If the magnetic field would be completely static

and homogeneous the answer to this question would be only academic since, due to the

translational invariance of the full system, the process could only proceed by taking into

account photon dispersion effects [9]. Besides that, the process would also be suppressed

by two extra powers of Λ.

If, on the contrary, the (classical) magnetic field is inhomogeneous, it is plausible to

expect that the momentum of the photon beam could be partially absorbed in a contin-
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Figure 1: The Feynman diagram describing the contribution to the photon splitting amplitude

in an external magnetic field. The spin-0 particle (φ) is coupled to two-photons as in Eq. (1).

The dashed horizontal line indicates the propagator of the spin-0 particle, and the vertical dot-

dashed line stands for the external magnetic field insertion. The bubble represents the magnetic

form factor; k, q, and k1,2 denote, respectively, the initial, intermediate and final four-momenta.

uous manner. In the latter case the answer to the aforementioned question is different

since possible resonant effects must be taken into account. Indeed there are two relevant

physical scales in the problem at hand: L (i.e. the magnetic inhomogeneity scale of the ex-

ternal background field) and p (i.e. the momentum absorbed by the magnetic field at the

resonance). If L ∼ O(1/p) the photon splitting production rate is said to be resonantly

amplified. Amusingly enough the typical length scale L turns out to be of the order of the

meter for the PVLAS range of masses [6] and taking, as incident beam, an optical laser.

While inhomogeneous magnetic fields have been considered in order to produce real (i.e.

on-shell) axions by Primakoff effect [3, 10] (see also [11, 12]), their possible relevance for

photon splitting has not been taken into account so far. One of the results of the present

paper is that the PVLAS axions should also produce an observable excess of photon-

splitting events in comparison with the (minute) QED background previously mentioned.

Consider therefore the process illustrated in Fig. 1, i.e. γ(k) → γ(k1) γ(k2) , where k and

k1,2 are, respectively, the four momenta of the initial and of the final photons. Suppose

also that the photons exchange momentum with the external magnetic field (represented

by a cross in Fig.1) which is assumed to be static (i.e. time-independent) but spatially

inhomogeneous. Consequently, while the total energy of the reaction is conserved (owing

to the time-independence of the external field), the three-momentum can be absorbed by

the (inhomogeneous) external field.

Defining the four momenta of the final photons as k1 = (ω1, ~k1) and k2 = (ω2, ~k2), the

differential cross section for the scattering of a photon by a time-independent external

field is:

dσ =
1

2

∑

pol

|M(γ → γγ)|2 (2π)δ(ω − ω1 − ω2)
1

2ω

d3~k1

2ω1(2π)3

d3~k2

2ω2(2π)3
, (2)

where M(γ → γγ) is the matrix element of the process and the 1/2-factor arises since
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the photons of the final state are indistinguishable. According to Fig. 1 the scattering

amplitude for γ → γγ in a magnetic field can be written as

M(γ → γγ) =
sin θ

Λ
ω B̂(~p)

i

(k1 + k2)2 − m2 + i mΓ
Vγγ(k1, k2) , (3)

where m and Γ are, respectively, the mass and total width of the exchanged boson;

moreover θ is the angle between the direction of the external magnetic field ~B and the

incoming photon three-momentum ~k. The term B̂(~p) is the Fourier transform of the

projection of ~B(~x) along the polarization vector of the incoming photon, namely B̂(~p) =
∫ |~n · ~B(~x)| ei ~p·~xd3x, where ~p = ~k − ~k1 − ~k2 is the momentum absorbed by the external

field and ~n is the unit vector parallel to the direction of the incoming polarization. In

Eq.(3), the term

Vγγ(k1, k2) =
1

Λ

(

kµ
1 εν

1 kα
2 εβ

2

)

ǫµναβ , (4)

represents the boson-γγ vertex contribution where εµ
1(k1) and εµ

2 (k2) are the polarization

vectors of the two final photons and ǫµναβ is the total antisymmetric tensor.

Inserting Eqs.(3) and (4) into Eq.(2) the differential cross-section becomes

dσ =
ω

8Λ4

(k1 + k2)
4 sin2 θ

((k1 + k2)2 − m2)2 + Γ2m2
|B̂(~p)|2

× (2π)δ(ω − ω1 − ω2)
d3~k1

2ω1(2π)3

d3~k2

2ω2(2π)3
. (5)

As previously mentioned, for the reaction to proceed, the three-momentum ~p must be

absorbed by the external magnetic field. In fact, if the external field is fully homogeneous

not only in time but also in space, we will have that, in Fourier space, |B̂(~p)| ∝ δ(3)(~k −
~k1−~k2). This occurrence demands that Eq.(5) is proportional to (k1+k2)

2 δ(4)(k−k1−k2).

Then the total cross section vanishes after integrating over the total phase space.

Naively, if the magnetic field has a finite extension of order L and vanishes outside

of it, the translational invariance is broken and the external field could easily absorb

momentum of magnitude ∼ 1/L. To model this situation, consider, as an example, a

magnetic field configuration with Cartesian components ~B(~x) = (Bx(~x), 0, Bz(~x)), where

Bz(~x) = B exp

(

−x2

L2
− y2 + z2

R2

)

, Bx(~x) =
2z

R2

∫ x

−∞
dx Bz(~x) . (6)

It is easy to check that ~B(~x) is indeed solenoidal. By choosing the three-momentum ~k

of the incoming photon along the x̂-axis, only the ẑ component of the magnetic field will

enter Eq. (5) where |B̂(~p)| → | ∫ d3xBz(~x)|.
Let us then compute our main observable, i.e. the number of photon splitting events

taking place inside the magnetic field. This quantity, denoted in what follows by Nγγ ,
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is simply the product of the cross section σ (obtainable from Eq.(5)) times the flux of

incoming photons Φ = Nγ(t)/A , i.e. Nγγ(t) = σΦ. The quantity Nγ(t) is the number of

incoming photons per unit time crossing the magnetic field and A = πR2 is the surface

spanned by the magnetic field on the the plane orthogonal to the direction of the incoming

photon momentum (in our frame the ŷ − ẑ plane). Inserting now Eq.(6) into Eq.(5),

the differential number of photon splitting events per unit time is given by dNγγ(t) =

Nγ(t) dP(γ → γγ), where

dP(γ → γγ) =
ω

8Λ4
B2 (k1 + k2)

4

((k1 + k2)2 − m2)2 + Γ2m2
π L2 exp

(

−p2 L2

4

)

×

(2π)3δ(ω − ω2 − ω2) ∆R(
k1y + k2y

2
) ∆R(

k1z + k2z

2
) ×

d3~k1

2ω1(2π)3

d3~k2

2ω2(2π)3
, (7)

is the differential probability of γ going to γγ. In Eq. (7), the absorbed momentum is

p ≡ ω−k1x−k2x. The quantity ∆L(p) is nothing but ∆L(p) ≡ (L/
√

π) exp (−L2 p2), which

is a well known representation of the Dirac-delta function δ(p) in the limit limL→∞ ∆L(p) =

δ(p). To simplify the problem, the shape of the magnetic field can be chosen in such a

way that R → ∞ while L stays finite: in this way the total momentum will be absorbed

only along the initial beam direction x̂. In practice this means that R ≫ L, i.e. R much

larger than the characteristic inhomogeneity scale along the x̂ direction.

After using the Dirac-delta functions for the partial integrations a change of variables

allows to write the total probability as

P(γ → γγ) =
B2

256πΛ4
[I1(ω) + I2(ω)] , (8)

where the following integrals have been introduced

I1(ω) = ω
∫ ω

2

0
dω1

∫ 4ω1(ω−ω1)

0
dµ2 F (µ2)

[(µ2 − m2)2 + Γ2m2]
, (9)

I2(ω) = ω
∫ ω

ω

2

dω1

∫ 2ω(ω−ω1)

0
dµ2 F (µ2)

[(µ2 − m2)2 + Γ2m2]
, (10)

F (µ2) =
µ4

ω2 − µ2
L2 e−L2 p2/2, p = ω(1 −

√

1 − µ2/ω2 ). (11)

The relevant physical regime for the present purposes is the one where ω > m. This limit

is realized, for instance, when the incident photon beam is in the optical and the scalar

mass in the PVLAS range. If m/ω ≤ 1, the Breit-Wigner distribution can be integrated

in the thin-resonance limit (since Γ = m3/(64πΛ2) ≪ m), and, from Eq. (8) the result is

simply

P(γ → γγ) =
B2 ω2

m4 Λ2

π3/2

2
√

2
F(χ) BR(ϕP → γγ)

(

1 + O(
Γ

m
)
)

, (12)
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F(χ) =

√

2

π
χ2e−χ2/2, χ = pL, (13)

where BR(ϕP → γγ) = m3/(64 πΛ2 Γ) is the branching ratio of the pseudo-scalar decay

in γγ. Furthermore, in Eq. (13) p is the absorbed momentum at the resonance, i.e.

p = ω
(

1 −
√

1 − m2

ω2

)

. (14)

Note that F(χ), being dimensionless and normalized to 1, measures the suppression of

P (γ → γγ) when the magnetic inhomogeneity scale is larger than the resonant momentum

p. The limit ω ≫ m is naturally implemented for the case of PVLAS axions when ω is

the energy of the (optical) photon beam, and in this case p ≃ m2/(2ω). Notice that the

leading term of the integrals in Eq.(8) is proportional to 1/Γ, enhancing the suppression

induced by the 1/Λ4 coupling. In particular, when the pseudo-scalar has only the decay

channel in two-photon, BR(ϕP → γγ) = 1, Eq. (12) reproduces the probability of photon

conversion in on-shell axions [3]. Such an occurrence is a direct consequence of the Breit-

Wigner distribution in Eq.(5). It is relevant to mention that if ω < m (which is opposite

to the limit where Eq. (12) has been derived), the region of the pole in the integrand

of Eqs. (9) and (10) does not contribute to the total integral. Consequently, the total

probability is simply suppressed as B2/Λ4.

Generalizations of the result (12) to the scalar case are possible. In the scalar case the

boson-γγ vertex of Eq. (4) is different and the coupling will be dictated by Λ̃. Conse-

quently, the relevant geometric set-up will be the one where the incoming photon polar-

ization is orthogonal (and not parallel) to the orientation of the external magnetic field.

Moreover, the dependence of the branching ratio for the decay in γγ upon the mass,

couplings and width of the scalar particle has the same analytical expression as in the

pseudo-scalar case. With these caveats the numerical results are the same if Λ = Λ̃.

According to Eq. (14), the resonant effect in Eqs. (12) and (13) is achieved when

χ =
√

2 corresponding to the maximum of F(χ) as a function of χ. In the case of an

incident optical laser with ω ∼ 1 eV, and for a magnetic field of O(1 Tesla), Eq. (12)

implies that P (γ → γγ) ≃ 4 × 10−14 for mass and coupling in the PVLAS range [6], i.e.

m ∼ 10−3 eV and Λ = 106 GeV. For these figures, the characteristic magnetic length L

will be macroscopic, i.e. L ≃ 0.5 m. For a Nd:Yag laser with average power of 1 Watt

(and typical wavelength of λ ≃ µm), we will have that Nγ(t) ≃ 1018/s. Consequently,

the number of photon splittings per second will be Nγγ ≃ 4 × 104 which is potentially

observable. As it can be appreciated from Fig. 2 the PVLAS region can be excluded, at

95 % C.L. (107 sec of integration time), for magnetic inhomogeneity scales smaller than

about a meter.

Different assumptions on the magnetic field profiles lead, up to numerical factors

O(1), to the same results. This has been cross-checked with a variety of profiles where the

magnetic field vanishes at infinity. Moreover, the different shapes of the magnetic field will
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Figure 2: Exclusion regions for photon splitting (above the lines) at 95% C.L. in the (m , Λ−1)

plane, for an optical beam of frequency ω = 1 eV, and a magnetic field B = 1 T of different

length (L), namely L/m=0.5, 1, 2, and 5. The point with error bars corresponds to the PVLAS

range. The integrated time is 107 sec.

modify the form of F(χ) and will therefore change the suppression of the probability when

the magnetic inhomogeneity scale is larger than the inverse of the resonant momentum p.

It is instructive to discuss briefly the massless limit of Eq.(12). In this limit, as a

consequence of the Breit-Wigner distribution (see e.g. Eq.(8) ) the resonant pole is absent

and the photon splitting probability is discontinuous in the limit m → 0. In the massless

case, the total probability of photon splitting should then be calculated by setting m = 0

inside the integrand of Eq.(8) and the final result can be expressed as

P (γ → γγ) =
B2

256 π Λ4
I3(ξ), (15)

I3(ξ) = ξ2
∫ 1/2

0
dx

(

∫ 4x(1−x)

0
dy +

∫ 2x

0
dy

)

e−ξ2(1−
√

1−y)2/2

1 − y
, (16)

where ξ = ω L. If, as previously assumed, ω = 1 eV and L ≃ O(m), we have ξ ≫ 1, and,

in this limit, I3(ξ) ≃ ξ
√

2π. This occurrence implies then

P (γ → γγ) ≃ B2 ω L
√

2

256 π1/2 Λ4
, (17)

which is very suppressed due to the fact that the resonant effect has disappeared for m = 0.

As a useful comparison we can also report the probability of conversion of a photon into a

(massless) pseudo-scalar which turns out to be P (γ → ϕP ) = B2L2 π/(8Λ2). This result

follows from the same external magnetized background assumed in Eq. (6).

Of course, the aforementioned discontinuity is present if dispersion effects, associated

with the self-energy corrections due to the interaction with the external field, are ne-
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glected. These effects typically cause a shift of the squared mass, i.e. m2 → m2 =

(m2 +
√

m2 + 4m2
B)/2, where mB =

√

Bω/Λ. Corrections, of order O(mB), arise as well

for the photon self-energy. If the mass is in the PVLAS range (mPVLAS ∼ 10−3eV) for

Tesla magnetic fields and couplings Λ ∼ 106 GeV, mB ≃ 10−6 eV ≪ mPVLAS and disper-

sion effects are negligible for resonant photon splitting.

As already mentioned PVLAS results lack independent confirmations. In the present

paper it has been shown that, for the PVLAS range of masses and couplings, an observable

rate of photon splittings is expected when the external magnetic field can absorb three-

momentum in a continuous way. Therefore, to confirm, in an independent channel, the

PVLAS findings, resonant photon splitting represents an intriguing option.
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