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E. M. Hofstetter

RESEARCH OBJECTIVES

Many of the activities of this group continue as described in the statement of
Research Objectives which appeared here in January 1958.

One of these activities is the statistical investigation of information sources. The
main objective is to estimate the rate at which the sources generate information and to
determine how to encode their output economically in order to decrease the channel
capacity required for transmission. The group is currently continuing such an investi-
gation on pictures as information sources by recording the pictures in digital form for
analysis and processing on a digital computer.

A second current objective is the investigation of channels for information transmis-
sion. This includes study of the fundamental theoretical relationships between trans-
mission rate, error probability, delay, and equipment complexity, and the construction
of suitable coding procedures, especially for binary channels. Efforts are being made
to extend some of the results on binary channels to continuous channels, particularly
with respect to communication over a time-varying multipath medium. Channels with
several input and output terminals are also being investigated.

A current activity in the processing of information is the formulation and investiga-
tion of models of systems for the storage and retrieval of information. In particular,
emphasis is being placed on the problem of machine selection of subsets, called
"bibliographies," from a set of stored documents. A bibliography may be heuristically
defined as a set of documents pertinent to a particular topic.

In the design of coding and decoding devices, finite-state binary logical circuits play
a critical role. A binary circuit can be considered as a transducer that transforms an
input stream of binary digits into a related output stream, In the process, information
may be lost and the coded form of the stream changed drastically. Thus a finite-state
circuit is a rather general information channel. Study in this area is aimed at under-
standing how the loss of information in a finite-state circuit depends upon the logical
structure of the circuit and upon the solvability of the equations that show how the output
is related to the input.

From an alternative point of view, any finite-state circuit classifies each of the
infinitely many possible input sequences of digits into one of the finite number of states.
Studies made of minimal descriptions of finite-state circuits and of approximate models
thereof are important, in that they show how to describe efficiently the patterns of digits
in a sequence. More closely applicable to the pattern-recognition problem is a study
of logical circuits whose description is most conveniently made in more than one dimen-
sion. For example, the study of circuits whose logical elements can be arranged in a
uniform planar array like that formed by the squares on an indefinitely large chessboard
is particularly pertinent to possible schemes for filtering and logical processing of an

* This research was supported in part by Purchase Order DDL-BZZ with Lincoln
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ordinary black and white photograph.
The choice of a code for transmitting information over a channel is dependent upon

a knowledge of the channel parameters. When the channel is not stationary or is incom-
pletely specified, a possible operating procedure would be to measure the channel before
the transmission of the message. We have recently started an investigation of sequential
measurement processes for digital channels. This includes study of the fundamental
theoretical relationships between accuracy of measurement and duration of the measure-
ment process.

E. Arthurs, P. Elias, R. M. Fano, D. A. Huffman

A. INFORMATION LOSS ASSOCIATED WITH DECISION-MAKING IN ADDITIVE

GAUSSIAN CHANNELS

A recent paper (1) defines the a posteriori probability computing channel (APPCC)

which has a set of k inputs that are equal energy signals, each of duration T, confined

to bandwidth W (approximately), and mutually orthogonal. After being perturbed by

additive white Gaussian noise, a received signal is crosscorrelated with replicas of

each of the possible transmitted signals, and the a posteriori probability of each input

event is computed. These k a posteriori probabilities or the crosscorrelations from

which they are determined are the outputs of the channel. Thus the channel has k dis-

crete inputs, and an output which is an £-tuple each component of which may assume

continuous values. It is also shown that the APPCC in tandem with a decision operation

is equivalent to a discrete channel, for example, with = 2 and a maximum likelihood

decision, the binary symmetric channel (BSC) results.

We define the parameter

2 2E
a - N

where E is the signal energy, and No is the noise power per cycle. It is easy to see

that for small values of a, Shannon's capacity W log [1 + (S/N)] approaches a2/2 natural

units in time T. It has been shown (1) that for small a, the capacity per symbol is

(-1) 2
C - a

natural units.

In the special case k = 2, if the two transmitted waveforms are selected so that each

is the negative of the other and their crosscorrelation is -E, a crosscorrelator receiver

can similarly compute the a posteriori probabilities of the two possible inputs. Using

primes for this case, we obtain C2 = a2 /2 = 2C 2 . That is, the effective signal-to-noise

(power) ratio for equal and opposite signals is twice the corresponding ratio for orthog-

onal signals.

The capacity of the binary symmetric channel is CBSC = log 2 + p log p + (l-p) log (l-p),
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where p is the probability of error. If the BSC is thought of as being derived from a
binary probability computing channel in tandem with a maximum likelihood decision,

p E1 - erf -

p' 1 - erf a

For small values of a, we may obtain C and CS as a function of a by making useBSC BSC
of the series expansion for erf x and log (l+x) with only first- and second-order terms

preserved. This results in expressions that are applicable for small values of a2

CBSC = a2/2r and CS C = a2/rr

In view of our discussion, we can make the following conclusions for small values
of a 2 . (The decibel values given below refer to the signal-energy increase that is neces-
sary to obtain the same capacity.)

1. The probability computing channel for two equal and opposite signals has ultimate
efficiency. The APPCC is 10 logl0 (1/-1) db less efficient than the ultimate efficiency.

2. The maximum likelihood decision that is made at the output of a binary probability
computing channel to create the BSC destroys information equivalent to 10 log 1 0 (Tr/2) 2 db
of signal power.

3. The maximum likelihood decision that is made on the output of the APPCC for
arbitrary k to create an L -ary symmetric channel destroys information equivalent to no
more than 10 log r(-l) db. This is based on the observation that for fixed a 2 the capac-
ity of the BSC will be less than the capacity of the f-ary symmetric channel for k > 2.

4. It is conjectured that the decibel figures in conclusions 2 and 3 are upper bounds
over the entire range of a2. This is based upon the heuristic observation that a decision
with high probability of being in error (low values of a) destroys more information than
a decision with low probability of being in error (high values of a).

B. Reiffen

References
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B. CODING FOR A BINARY ERASURE CHANNEL

A thesis, part of which is discussed in Section XV-C, was completed and submitted
to the Department of Electrical Engineering, M. I. T., in partial fulfillment of the
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requirements for the degree of Doctor of Science, August 1958. Some of the results of

this study have already been reported (1, 2).

M. A. Epstein
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C. PATTERNS OF DIGITS FOR CONVOLUTION CODES

The problem of choosing the best pattern of information and check digits for a con-

volution code was investigated.

Information theory has shown that the probability of error in a memoryless channel

can be made to approach zero arbitrarily closely if the rate of transmission is below the

channel capacity and the code length becomes arbitrarily long. The major problem asso-

ciated with such codes is the large amount of effort that might be needed to use such

codes. A special class of codes called convolution codes (1, 2, 3, 4) are very interesting

because, for either the binary symmetric channel or for the binary erasure channel,

codes of this class can be coded and decoded with comparatively little effort, and the

probability of error for such codes approaches zero with increasing length in the usual

manner. A convolution code is a code with the following properties: (a) The transmitted

message is made up of information and check digits that are interleaved in some pattern.

(b) The information digits are freely chosen at the transmitter and represent the infor-

mation to be transmitted over the channel. (c) The check digits are redundant digits that

are determined in a code of length n by a parity check of some of the information digits

in the preceding n - 1 digits.

The reason that convolution codes can be decoded easily is that they can be decoded

sequentially. Thus only one digit is decoded at a given time, each digit being decoded in
th

the order of its transmission. Also, each digit is decoded in a series of steps. The n

step of the decoding procedure for a given digit tries to decode by means of the digits up

to and including the n t h check digit following the digit that is being decoded. The sequence

of steps ends whenever the digit is determined within the required probability. The aver-

age effort required by a given step increases as the step number increases. However,

the probability of reaching a given step decreases rapidly with the step number. Since

the average computational requirements are the sum over n of the product of the aver-

age effort in step n and the average probability of needing step n, the average computa-

tional requirements are much less than the peak computational requirements.
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Average computational requirements = average require- probability of reachingX ments for step n ) step n
n

(1)

The rate of a convolution code is defined to be the limit with increasing n of the

fraction of the first n digits that are information digits. There are many patterns with

the same rate. That is, if we use I to denote an information digit and C to denote a

check digit, the pattern IC IC IC . .. with alternating information and check digits, the

pattern IICC IICC ... with alternating pairs of information and check digits, and the pat-

tern IICC IC IICC IC ... , all have the rate 1/2. Similarly, the patterns IIICC IIICC ... ,

IICIC IICIC ... , ICIICICIIC, all have the rate 3/5. Different patterns with the same rate

have different properties. Thus two questions arise: How can patterns be compared?

Which pattern, if any, is preferred over the other patterns ?

It has not been possible, in general, to evaluate the probability of error or the com-

putational requirements of specific codes. However, it has been possible to find bounds

on the average probability of error and on the average computational requirements of a

code selected at random from the set of convolution codes with a given pattern. The

bound on the probability of error is independent of the pattern if the rate is fixed. On

the other hand, the bound on the average computational requirements is dependent on

the pattern even when the rate is fixed. The bound on the average computational require-

ments for step n of the sequential decoding procedure for digit m is determined by the

effective rate of transmission at this point. The effective rate of transmission for

digit m is defined as the fraction of the digits between digit m and the nth check digit

after digit m that are information digits. (See Fig. XV-1.)

As might be expected, the bound on the average computational requirements

digit
1 2 4

2 1 1
1 3 2 Fig. XV-1. Effective rate as a function of the digit

number and the step number for the
3 1 3 pattern IICICIICICIICIC...
5 .z y

3 5 4 43
8 7 7

4 3 5 3
5 9 5

decreases with decreasing effective rate. Thus, if there are two digits i and j which

are such that for each step n the effective rate for digit i is always equal to or smaller

110



(XV. PROCESSING AND TRANSMISSION OF INFORMATION)

than the effective rate for digit j, the bound on the computational requirements for

digit i is smaller than or equal to the corresponding bound for digit j. It follows that

the computational requirements for the first digit in the pattern IICIC IICIC ... are as

large or larger than the requirements for any other digit in the pattern.

The ability to compare the bounds on the computational requirements of single digits

can be used to compare patterns. One reasonable aim is to make the largest of the com-

putational bounds for the digits in a pattern as small as possible. According to this

criterion, the preferred pattern is one in which the largest computational bound is as

small as or smaller than the largest computational bound for any other pattern with the

same rate. It has been shown (4) that in terms of this criterion, when the channel is a

binary erasure channel, the following pattern is the preferred pattern of all the patterns

with a rate of transmission R. We define nm as the number of information digits before
th m

the m check digit in the pattern. Then, the preferred pattern satisfies Eq. 2 for all m.

mR mR
R n < + 1 (2)l-R m 1-R

Thus, the preferred pattern for rate 1/z is ICIC ICIC ... , and the preferred pattern

for rate 3/5 is IICIC IICIC ...

A simple interpretation can be made of the patterns that satisfy Eq. 2. These

patterns make the effective rate approach the rate of the code as closely as pos-

sible from above at every step. Moreover, such patterns interleave the information

digits and the check digits as uniformly as possible under the constraint that the

n are integers.

The following argument can be made for the plausibility of using the patterns

described by Eq. 2. Block codes, in which the information digits are grouped together

and the check digits are grouped together, require much computation. On the other hand,

convolution codes, in which the information digits and the check digits are interleaved,

require much less computation. Hence, it seems reasonable that a convolution code that

has the information digits and the check digits interleaved as uniformly as possible will

require the least computation.
M. A. Epstein
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D. A BOUND ON THE CROSSCORRELATION FUNCTIONS OF A SET OF

BINARY SEQUENCES OF FINITE LENGTH

1. Statement of the Problem

Finite-length, binary sequences of positive and negative pulses form a class of sig-

nals that might be used as modulating functions in a communication system employing

correlation detection.

Consider a set S of M binary sequences sl, s 2 ,..., sM each of which is N digits

long. Let the values of the binary states be +1 and -1. Two members s. and s. are
2 j

said to be a distance d.. apart if they differ in dii digits.

The unnormalized crosscorrelation, cij(T), between two members s i and sj for a

shift of an integral number of digits, T, is

ij (T) = (N-T) - Zdij(T) = n(T) - 2dij(T) (1)

where n(T) represents the number of overlapping digits at the particular value of T that

is considered. To simplify the notation, n(T) and d.i(T) will be written as n and d..,

respectively, but it must be understood that the functional notation is implied.

In a system in which the exact time of arrival of a message is unknown a priori, it

is necessary to calculate the correlation between the received signal and each possible

transmitted signal for all possible values of T. It is assumed that detection is performed

after the bandpass signal is heterodyned to lowpass, and that maximum-likelihood cor-

relation detection is employed. Since the phase of the correlation envelope is lost in

such a detection scheme, the decision element operates on the absolute value of the enve-

lope of the correlation function. The possible transmitted signal that has the correlation

envelope peak of largest absolute value is chosen as the actual transmitted signal. To

minimize the probability of error in detection, we would like to select an encoding alpha-

bet with the lowest possible peak absolute correlation between members that is consist-

ent with the constraints on sequence length and alphabet size.

As a guide in constructing an alphabet of such sequences, we should know how small

the crosscorrelation between members can possibly be made. In this report, two bounds

are derived which express a limit below which it is impossible to suppress all cross-

correlation functions. A comparison is made of the relative tightness of the two bounds.

2. Outline of Procedures for Deriving the Bounds. Summary of Results

Let us consider listing in matrix form the correlation coefficients for all possible

pairs of the M members and for all integral values of the shift parameter T. (We need

consider only integral values of T because the correlation functions are linear between

these points.) There are = M(M-1) unordered pairs of members, and for each pair

there are 2N - 1 values of the shift parameter that can possibly yield a nonzero
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correlation coefficient. The resulting list is an array of dimensions M(M- by 2N - 1.
2

If the autocorrelation values at zero shift are excluded, there is one number (or perhaps

there are several numbers) in the array with a maximum value, say U-1
If such a list is made for a second alphabet of the same length and number of mem-

bers, this second list will contain a maximum value, say a-, that may be different

from- 1*
If lists of this kind are made for all possible M-member alphabets of N digit

sequences, each list will have a maximum value, o-. From all of these 0's, there is

one (or there may be several) equal to a smallest value. It is this smallest value of a-

that we wish to bound.

The first bound, which we shall call the "log M bound," is based upon the idea that

as the shifting process is carried out in the calculation of the correlation coefficients,

the product sequences are shortened until there are not enough points in the remaining

space to allow each member of the alphabet to occupy a different point. In this case, at

least two members are completely correlated, and therefore there is at least one corre-

lation coefficient in the set having an absolute value at least as large as log M. (Through-

out this report the logarithm is to the base 2.) Expressed symbolically,

(T)peak > log M + E = integer 0 < E < 1 (2)

The second bound is expressed in its most general form as

cij (T)max min >m n - 4(k 1 +1) (3)

where k 1 is the largest integer that satisfies the expression

kn-l
n 2 n = N - T (4)

j=0

We shall refer to this bound as the "sphere-packing bound." This designation is prompted

by the fact that if 2M hyperspheres of equal radius are packed into the space of 2n points,

the radius of these spheres cannot exceed k 1 .
The sphere-packing bound, as expressed by Eqs. 3 and 4, is complete and general.

However, this form offers little insight into the behavior of the bound, and the solution

of a given problem with the use of these equations requires a long calculation. By

exploiting the constraint relationships between parameters, the exact behavior of the

bound can be clarified, and for alphabets of practical size, a much simpler expression

of the bound can be obtained. The first step toward clarifying the bound behavior is to

show that k 1 can never decrease (increase) when n increases (decreases). The next
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step is to show that k I can never change more than one unit at a time as n changes in

unit steps. Finally, we determine the range of k I in which this bound has a maximum

value. Because of the Diophantine nature of the equations involved, a straightforward

algebraic approach cannot be used in locating this maximum. Instead, we bracket the

range in which the maximum can occur. We shall show, first, that the maximum can

not occur for k1 > n/10, regardless of the alphabet dimensions; and, second, that the

maximum can occur for values of k I that are at least as large as n/18 for very large

alphabets.

For alphabets of less than 175, 000 members the sphere-packing bound reduces to

ij(T)max min >n-4 (5)
max mm

where n is the largest integer that satisfies the inequality

n-1
1 + n > M n < N (6)

This fact is verified by showing that the bound can have a greater value for k 1 > 0 than

for k 1 = 0 only if M exceeds 175, 000.

Finally, we shall show that for large alphabets the sphere-packing bound is tighter

than the log M bound.

3. Derivation of the log M Bound

The first bound is obtained by making use of the fact that for values of 7 that approach

the sequence length the number of points in the reduced space is less than the number of

members in the alphabet. In this case, two members must occupy the same point, and,

therefore, are completely correlated.

Let n be an integer, and let us consider two cases.

Case I: M = 2n n = log M

At N - T = n, there are just enough points to go around; either two or more mem-

bers are alike or each member has a complement. In either event, there is at least one

crosscorrelation coefficient with absolute value equal to n. Expressed mathematically,

ij (N-n) peak >n = log M

Case II: 2 n < M < 2n+1

or

log M - 1 < n < log M

At N - T = n + 1, either two or more members are alike or at least one has a

complement. Therefore,
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Iij(N - n - 1) peak > [1 + log M]i

By combining the results of Cases I and II, we obtain Eq. 2, which holds for all inte-

gral values of M.

4. Derivation of the Sphere-Packing Bound

In the calculation of the second bound, use is made of some results from coding

theory; specifically, of ideas similar to those used by Hamming (1) in his work on error-

correcting codes.

To correct all patterns of k errors in a binary code, the condition d > 2k + 1 must

be satisfied, where d is the minimum distance between any two code members. Let k
a

be the largest number of errors for which all patterns can be corrected in a particular

code of M members of length N. Then d > 2k + 1. Since k is the largest number of
a a

errors for which all patterns can be corrected, it follows that

d < 2(k a + 1) + 1

or

d < 2(k a + 1) (7)

Substituting this value of minimum distance for d.. in Eq. 1, we obtain a lower bound on

the maximum crosscorrelation coefficient of the particular alphabet that is considered.

This bound is

ij(T)) ax = n - Zd >n - 4 (ka + 1) (8)

Hamming (1) has shown that for binary codes the number of errors for which all pat-

terns can be corrected is related to the number of members in the set and the length of

each member as follows:

k
2n

j=0

The problem of correlation-envelope detection differs from error correction in the

relationship between a member and its complement. Phase is lost in correlation-envelope

detection, with the result that a member and its complement are indistinguishable. Simi-

larly, members that are a small distance from the complement of s. are as likely to be

confused with s. as members that are the same distance from s. itself. For each point

chosen as a code member from the set of all 2n points, this chosen point, its complement,
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and all other points within hyperspheres of radius k about both the chosen point and its

complement must be excluded in the selection of additional messages. Each of the two
k

hyperspheres of radius k consists of (n) points. Therefore, the requirement to be

j=0
fulfilled is expressed by Eq. 4.

Let k 1 be the largest integral value of k that satisfies this inequality. Consider the

M-member code of length N that allows ka its maximum value. This maximum value of

k a can be no greater than k 1 . Therefore,

ij(T )ax mi > n - 4(kl + 1)

where n and k I are both functions of N, T, and M as expressed by Eq. 4.

For a particular code, this bound produces a set of values - one for each value of T.

Since we are interested in obtaining as tight a bound as possible, it is the peak value of

the correlation function that is significant. We would like to know, then, for what value

of k 1 (or n) the expression n - 4(k 1 + 1) is a maximum, realizing that k I is a function

of n. The functional relationship between k1 and n, as expressed by Eq. 4, makes a

direct approach to an explicit expression for the maximum of n - 4(k 1 + 1) appear unat-

tractive. However, the relationship between k1 and n can be established in three steps:

(a) show that kl(T) > kl(T+1); (b) show that kl(T) < kl(T+l) + 1 (that is, k 1 changes in unit

steps); (c) find the range of n for which kl(T-4) > kl(T), where kl(T) is the value of k 1

for the displacement T.

Through these steps, it will be shown that n - 4(k 1 + 1) can have its maximum value

at k 1 > n/18 for n sufficiently large, but never at k 1 > n/10.

a. Proof that k1 (T) > k l(T+1)

We shall now show that for sequences of fixed length, k 1 cannot increase when the

displacement T between sequences increases. Or, expressed another way, as the num-

ber of overlapping digits decreases, k 1 can only decrease or remain constant.

Starting with Eq. 4, which is rewritten here in expanded form for convenience,

klT)

Y (n) = [(n)+ (n) + .. l <- (9)
j=0o

we can write the analogous expression

kl(T+6)k+ n- 2.n- 6-1
n-6 <2 5 = integer > 0 (10)

j=0
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In expanded form, we have

2 [(n-6)0
(n-6

\1)/

n-8 8) n-1
+ kl(T+6 ) M (11)

Comparing jth terms of Eqs. 9 and 11, we have the ratio

(;)
R=

\n

n!

(n-j)! j!

6 (n-)!
(n- 6-j) ! j!

n n-1
2(n-j) 2(n-1-j)

n-2
2(n-2-j)

From Eq. 10 and from the fact that 2

n-6+ 1
2(n-6+ 1-j)

P
= (i, it is evident that j < (n-6)/2.

i=0
Then the last factor in R is less than one; that is

n-8+1l n-6+1
< <1

2(n-65+1-j) n-6+2

Adding one to the numerator and two to the denominator of a ratio less than one reduces

its value; hence, the last term in R is the largest term. Since this largest term is less

than one, R < 1. Therefore, k1 (T) > kl(T+1).

b. Proof that k1 Changes in Unit Steps

We now wish to show that k I can never change more than one unit at a time as T (and

correspondingly, n = N - T) changes in unit steps. Examination of Eq. 3 shows that for

k I > n/4 the correlation bound is negative and has no useful significance. Our interest,

then, is confined to the range for which k1 < n/4. Again, making use of Eq. 4, we have

(n) + n + n(n-1) +

j 2 !

k

j=0

n-ln! 2n -

(n-k) ! k! M

The ratio of the jth term to the (j-1)t h term in Eq. 12 is

n!

(n-j)! j!

(n-j+ l)! (j-1)!

n+-j n

j j

For j < n
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(n)
1 >3

or

Bounding the binomial series by a geometric series yields

(n) _<(n)I

k)

k

j=0

1 1
+ 3+-+3 23

(n)

1

3 (n)
1 23()

1 3--
3

k <
4

For k + 1 < n
4,

k+l

j=0
(n):z

j=O
() + (knl)

8
3> 4 ()

j=O
(n)

Now, again, we let k 1 be the largest integral value of k that satisfies inequality 4. Then,

adding a term in the series gives

2n-1

M ( an integer)

Now, increasing the length by one unit, that is to (n+l), we obtain

kl+1

j=0

(n+l)

Adding another term to the series and making use of Eq. 14 yields

kl+2

j=O

(n+1
kj)

8> K
3

2n-

M
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We observe that by increasing the length (i. e., the parameter n) one unit, the right-

hand side of Eq. 4 is doubled; however, an addition of two terms on the left-hand side

(i. e., to k I + 2) increases the left-hand side more than 2 2/3 times. Therefore, for

k I < n/4, k can never change by more than one when n changes by one.

c. Range for Which kl(T-4) > k(T)

Examining the function n - 4(k 1 + 1) with the results of the two previous proofs in mind,

we see that when n increases without k 1 changing, the function increases one unit; how-

ever, when k1 also changes, the function decreases three units. The function n- 4(k1 + 1)

then has a behavior pattern similar to that shown in Fig. XV-2.

1_

+ n

Fig. XV-2. Typical behavior of the bound for k 1 < n/4.

In order to establish the range of k 1 in which the bounding function, n - 4(k 1 + 1), has

its maximum value, we shall show, first, that this maximum can never occur for

n/10 < kl(T) < n/4, regardless of the alphabet dimensions. Since the bound is negative

for k 1 (T) > n/4, this restricts the maximum of n-4(k 1 + 1) to the range kl(T) < n/10.

Later, we shall show that, for sufficiently large alphabet dimensions, the maximum can

occur for k1 (T) at least as large as kl(T) = n/18.

(i) Proof that kl(T-4) > kl(T) for n(T)/10 < k1 (T) < n(T)/4

Again, let k 1 be the value of the largest integer k that satisfies inequality 4.

It is obvious (see Fig. XV-2) that for the function n-4(k 1 + 1) to have a larger value for

some particular value of k 1 , say k 1 = j, than for the next smaller value of k 1 , k 1 = j - 1,

k 1 must remain constant at k 1 = j while n increases four or more units. To determine

whether or not k 1 does change value when n increases four units, we must determine

whether or not the following inequality can be satisfied. (If it can be satisfied, we desire

to know for what range of k 1 .)
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kl+1

Ij=
j=0

n+4 2 [(n+4)-1] 2 n-1

S) M - 16
j M M

We break the sum into two parts:

k 1

j=0

n+4 +4

1
Now we introduce a new parameter E with the property that 0 < E < 4 . Then, by taking

the ratio of jth terms, it can be shown that

(n4) 
1

j=O0

( 1 n-1

j (E)4 M
(1-E)

for k I <En

Likewise, it can be shown that

(n+4) 1 (n\
k 1 +1 E(1-E) 3 k 1

1 E(I-E) k

k +1

nf4 < _1 +
j=0

n-1
< M for k > En

E(1-E)3 M

1 2 Zn - 1

(-E3 M for k 1 = en
E(1-E)

The term in brackets

1 1 1
+ =

4 3 4
(1-E) E(1-E) E(1-E)

is minimum at E = 1/5, has a value of 16 at E = 0. 0925 - 1/10.8 < 1/10, and increases

monotonically in between. Then, for k 1 in the range n/10 < k 1 < n/4, we have

kl+l

j=0

(n+4 < 1 2 n- 16 2

S E(E4 M M

We conclude that Eq. 15 is satisfied for k 1 in the range n/10 < k 1 < n/4. It follows

that the bounding function n - 4(k 1 + 1) has its maximum value for k 1 < n/10.
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(ii) Proof that the maximum value of n - 4(k 1 + 1) can occur at values of

k I > n/18 for n sufficiently large

At this point, we might suspect that the envelope of the peaks of the bounding

function, n - 4(k 1 + 1), is monotonic and that it has its greatest value at k I = 0. We shall

now show that this is not the case, but that the maximum can occur for values of k I at

least as large as n/18, for large alphabet dimensions. Again we start with Eq. 4

k
n-1
- = l+n+ ... + k

j=0

and let k I be the value of the largest integer k that satisfies this inequality. This ine-

quality can be converted into an equality by adding a positive quantity A. That is,

n-1
M- 1 +n+... + k + A A >0 (17)
M k1

By modifying parameter values, it will be shown that for k 1 < n/18, it is not

possible to increase k 1 when n is increased only four units without invalidating the ine-

quality expressed by Eq. 4. These parameter changes will be carried out in two steps.

To facilitate identification, let the left-hand side of Eq. 17 and the resulting modifications

be identified as LHS. Likewise, identify the right-hand side of Eq. 17 with any resulting

modifications as RHS.

First, increase the sequence length by four units, i.e., to n + 4; then the two sides

of Eq. 17 become

n-1
LHS = 16

M

RHS= 1 + (n+4)+... + n +A + n + ... +

Now, add a term to the series, and the expressions become

n-1
LHS = 16 M (unchanged)

RHS > 1 + n + ... + n + 1)

Let p = (k + 1)/n. Then

k I P
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and

RHS >
p k1I

By letting E = kl/n and bounding the binomial series by a geometric series, we obtain

(n\j 2
n= +n+...

(n)< ( n)
i k 1

j=O

1
E

1 -
1 -

<) (n/ 'I 2

1 - 2E k I

(n 

By using this bound on the binomial coefficient, RHS can be bounded as

1 1 - 2En
RHS > - 1 + n + ... +

p i-E L k1

It follows that the inequality relationship as expressed by Eq. 4 is reversed if

1 1 E > 16. Solve 1 1 - E 16 for E. From the definitions of p and E, p = E + 1/n.
p 1-E p 1 -E
Substituting this expression for p and rearranging, we obtain

1 - 2E1 -E
1- - 16 (

16E 2 - (18

65 + 11+2+
n n 2

Only the negative sign yields a value within the range of interest.

infinity,

As n approaches

1 1/2 1 1
16 17.06 18

We conclude that for large n and k 1 < n/18 a change of more than 4 units in n may

be required to produce a change in k 1.
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n n+4=N-r

Fig. XV-3. Typical case in which the bound yields a
greater value at k I = 1 than at k I = 0.

d. Simplified Expression of Sphere-Packing Bound for Alphabets of Practical Size

We have shown that the sphere-packing bound has its greatest value for a small value

of kl; specifically, the maximum value occurs at a value k I < n/10. The calculation of a

bounding value can be greatly simplified by using the largest value of the expression for

k1 = 0; that is, by using Eqs. 5 and 6.

We shall now show that, for practical alphabet sizes, this is the greatest value of the

bound for all k 1 . The proof will be carried out by showing that (a) the bound can have a

greater value for k = j + 1 than for k 1 = j only for excessively large M when j = 0; and

(b) even larger values of M are required when j > 0.

(i) Minimum value of n [or M] for which the bound is greater at k 1 = 1 than

at k =01

In order for the bound, n - 4(k l + 1), to have a greater value at k1 = 1 than at

k1 = 0, k1 must remain fixed at k1 = 1 while n changes four (or more) units. A typical

situation of interest is shown in Fig. XV-3. Let n1 be the smallest integer satisfying

the expression

zn-l
- 1+n

M

For convenience in notation, let c[k 1 = j] represent the maximum value attained by the

function n - 4(k 1 + 1) for k 1 = j. To satisfy the condition postulated, c[kl = 1]> [k 1I = 0],

it is required that

2(n+4)-1 (n1 + 4)(n 1 + 3)

M < 1 + (n + 4) +

Combining these two inequalities and solving for n 1 yields
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(n1+4)-1 (n 1 +4)-1 (n 1 + 4)(n 1 + 3)2 2< < 1 + (nl + 4) + 2
nl-I M

1+nI1

which reduces to

2
n1 - 23n 1 - 10 > 0; n 1 > 23.4; and n 1 >~24

1

Since n 1 is a function of M, it is more informative to express the bound in terms of

(n 1-1)-1
2

M. If M > 1 + (n 1 - 1), then (n 1 - 1) is a point for which k = 1. But it was

assumed that n 1 was the smallest integer for which this was true. Therefore

(n1-1)-1

M <1 + (nl - 1) = n 1
n -2

2 2
M > 2 1 > 174, 762n 24

(ii) Proof that larger values of n are required for 4[k 1 = j + 1] > 4[k 1 = j]
when j > 0 than when j = 0.

Consider Fig. XV-4 for the general case. For some particular value of kl,
say k 1 = j < n/4, let no be the smallest integral value of n that will satisfy the inequality

n-1
M> +n + .. + (18)

The value [k 1 = j] can be greater than the value [k 1 = j - 1] only if n can be increased

four units (to n o + 4) without increasing the value of kl; that is,

I'+ .

c I i--l -- I-

n0 +4 no

Fig. XV-4. Typical behavior of the bound for the
range in which it increases with kl.
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(n +4)-i /n+4\2 <1+(n +4)+... + 0o (19)M
M0 j+1

It is not evident that this inequality can be satisfied in all cases for no as defined by

Eq. 18. Indeed, previous results show that for this inequality to be satisfied, it is

necessary that j < no/10. However, we are not interested here in the range for which

Eq. 19 cannot be satisfied, for in that case 4[k1 = j] cannot be greater than 4[k 1 = j - 1].

Before proceeding with the proof that the value of M that is required to make

[k1 = j + 1] > [k1 = j] is larger for j > 0 than for j = 0, it is well to verify the factno
that if no is the smallest integer satisfying Eq. 18, another term, j ,+ cannot be

added without rendering the inequality invalid. Start with

n -1

>~1+n +... +

M o

where no is the smallest integer satisfying this expression. Then

(n -1)-I (n-1
2M 0n+

or

o n -1
2 < 2 1 + (no - 1 +... +(n (20)

M o1

But the ratios of ith terms in the following series reveal that

1 + (n - 1) + ... +( < 1+n + n ... + for j >1

and

1 + (n 1)+... + >- + n + + "' +  for j < n
0 i 2 0 2

For j < no/4, from Eq. 13, we have

0

( ) > 3 (no) > 2 (no)

i=0

Then

1 + n + ... + + 0l > 3 1 +n + ... +
0 j j+1 1 0j
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In order for

n -12_n (no\M 1 l+n + "' + + + n0
M o j j+1

to be valid, it would be necessary that

n -1
0 > 3 + n + . + o

M 1 o j

but Eq. 20 shows that this is not true if n has the value assumed. Now, having estab-

lished the fact that

n -1
2 < 1 + n + .. + o + o (21)

M 0 j j+1 (21)

we shall proceed with the proof.

If there is some integer n for which

n-1
- >,1 +n+ ... + + (n) (22)

let n 1 be the smallest such integer. Using the fact that

() n-j < 2, for j < n

we observe that, as n decreases, the left-hand side of Eq. 22 decreases faster than the

right-hand side. We know from Eq. 21 that Eq. 22 is not satisfied for n 1 = no; therefore,

it certainly cannot be satisfied for n 1 < n . It follows that n1 > no, and that there is no

value of k 1 that gives a smaller value of no than kl = 0.

Therefore, for M < 174, 762 the function n - 4(kl + 1) has its greatest value at k 1 = 0,

and the bound reduces to Eqs. 5 and 6.

5. Proof that for Large M the Sphere-Packing Bound is Tighter than the

log M Bound

It is of interest to compare the bound obtained by the sphere-packing argument,

expressed by Eqs. 3 and 5, with the bound obtained by the point-space argument,

expressed by Eq. 2. We wish to show that for large alphabets, the sphere-packing bound

is tighter than the log M bound. It is sufficient to show that the sphere-packing bound

126



(XV. PROCESSING AND TRANSMISSION OF INFORMATION)

gives a larger value than the log M bound for one value of k 1 , namely, for k1 = 0. In

this case, the sphere-packing bound is given by Eqs. 5 and 6. Then, for k 1 = 0 we have

n-1
1- <  < l+n

M

where n is the largest integer satisfying the inequality. It follows that

Z(n+l)-1 > 1 + (n+l) =n + 2
M

or, after dividing through by 2, that

n-l
2 n -  n+ Z n S+  (23)

M 2 2

Let

n-1
S- 1 + n- 6 6 > 0 (24)

Combining Eqs. 23 and 24, we have

n
1+n-6>-+1

2
n

n-6>-

2n

We wish to show that for n large, which corresponds to large M from Eq. 6, Eq. 5

gives a larger value than Eq. 2; that is, n - 4 > log M + E, with 0 < E < 1. Taking the

logarithm of Eq. 24 yields n - 1 - log (1 + n - 6) = log M. When we substitute this quan-

tity for log M, the inequality in question becomes n - 4 > n - [1 + log (1 + n - 6) - E].
This inequality holds if

1 - E + log (1 + n - 6) > 4

or

log ( + n - 6) > 3 + E,

< 15

> 7

Since n - 6 >n, the inequality definitely holds for n > 30.
2

Q.E.D.

G. E. Mongold, Jr.
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