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RESEARCH OBJECTIVES

This group is interested in a variety of problems in statistical communication theory.
Current research is primarily concerned with: continuous nonlinear systems that are
representable by a series of generalized convolution integrals, the polynomial repre-
sentation for nonlinear systems with well-defined inputs, the characterization of random
processes by series expansions, properties of correlation functions, the connectivity
and capacity of random graphs, and the effect of uncertainties on radar detection.

1. The study of continuous nonlinear systems is directed toward the representation
and analysis of nonlinear systems that are composed of linear subsystems and continuous
nonlinear no-memory subsystems. One objective is the development of an optimum
nonlinear system.

2. The polynomial representation for nonlinear systems is being developed for
linear memory and nonlinear no-memory devices alternating in cascade, particularly
multistage amplifiers and the saturating servo. An important part of this work is the
search for inequalities which bound the behavior of complex nonlinear systems by that
of simpler ones.

3. In the study of the characterization of random processes by series expansions it
has been found that a certain set of orthonormal functions minimizes the truncation
error. This fact is of importance in practical application of these expansions. Further
investigation will be made into their application to filtering and coding.

4. Some inequalities for correlation functions are being studied. The properties
of autocorrelation functions are being investigated from the standpoint that they belong
to the class of functions whose Fourier transforms are positive.

5. It is felt that random graphs provide abstract models of communication nets in
which the links between stations are not perfect and have a nonzero probability of failure.
Present research is being directed toward determining link redundancy and desirable
link configurations that can provide a desired degree of reliable communication between
any two stations or between all stations in the net. The available mathematical tools are
limited, and effort is also being directed toward obtaining general techniques. We
appreciate the assistance of Professor E. Arthurs in this study.

6. Our ability to detect and resolve radar targets may depend strongly on our full
knowledge of the noise encountered and the radar circuit. Incomplete knowledge of radar
noise may be the result of measurement difficulties or of nonstationariness. Incomplete
knowledge of the radar circuit may be attributable to manufacturing tolerances of the
components or to the effect of temperature on the components. A study of the effects
of the uncertainties in radar problems is being carried out. This work has been sugges-
ted to a member of this group by Professor W. M. Siebert.

Y. W. Lee

A. NOISE-LEVEL ESTIMATION

A model for radar noise y(t) is shown in Fig. XIII- 1. In this model a stationary-

Gaussian-noise generator has an output x(t) which is passed through an amplifier with

gain (No) 12 to produce the radar noise y(t). Our problem is that of estimating No from
a sample of the noise y(t) which is of finite duration.

Two cases are considered. In the first, it is assumed that the power density
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Fig. XIII-1. Radar-noise model.

spectrum of x(t) is known exactly. For this case it will be shown that the value of N

can be determined exactly from a finite sample of y(t). In the second case it is assumed

that there is some uncertainty in our knowledge of the spectrum of x(t). For this case

a measure of the obtainable accuracy of the estimate of N o will be given.

This work was suggested by Professor W. M. Siebert.

1. Spectrum Known Exactly

It is assumed that the power density spectrum of x(t) in Fig. XIII- 1 is known exactly.

A sample of noise y(t) for 0 < t < To is given. It will be shown that it is possible to

estimate N o exactly from this sample.

Consider the ergodic ensemble {x(t)} each of whose members has the same known

power density spectrum. Let the ensemble average of the product of x(t) at t = tl and

x(t) at t = t be given by

E(x(t = tl)x(t = t2)} = Rl(tl, t2) (1)

Let the autocorrelation function corresponding to the known spectrum of x(t) be

given by R 0 (T), where T = t 2 - t 1 . The ergodic condition implies that

R (t 1,t 2 ) = Ro(t 2 -tl) Ro(T) (2)

Grenander (1) has shown that the expression

M T
lim y n(t) dt (3a)

n= 1 0

converges in probability to No. Now {n(t)} and {Xn are defined by the integral equa-

tion

T

Rl(tl't Z ) n(t 1) dt = n(t 2 ) 0 t 2 < To (3b)

The normalized members of the set {Kn(t)} are the characteristic functions of Rl(t , t),

and the {kn} are its characteristic values.

After we have solved Eq. 3b for the sets ( _{n(t)} and (n, we can use them, together
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with the given noise sample y(t), for computing the summation of expression 3a. The

summation is our estimate of No, and this estimate converges in probability to No

2. Spectrum Not Known Exactly

The results of the previous section are unrealistic because the assumption of exact

knowledge of the spectrum of x(t) would not be valid in practice. In the following dis-

cussion some uncertainty in the knowledge of the spectrum of x(t) is assumed. A method

is then derived for estimating No from a sample of y(t) of finite duration. The variance

of this estimate is then given.

Sx (w)

S; (W)

s (w, a)

Fig. XIII-2. Power density spectrum of x(t).

Instead of assuming exact knowledge of the spectrum of x(t), we now assume that the

spectrum of x(t) is one of an ensemble of spectra {S (w, a)} with the average value Sx(W) .

Figure XIII-2 shows Sx(w) and a typical member of the ensemble {S (w, a)}. The mem-

bers of the ensemble are generated by the following process

sx((, ~) Sx(c) [1+ai]
i < IWI < i

i = 1,2,3 ....

where {ai} are random variables with the properties

a. > -1
1

E[ai] = 0

2iaj

E[a.a] =

(5)
i=j

i j

In order to estimate No, we are given: S (0 ) , the average spectrum of x(t); {(-2 and
0 X 1
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{i)}, the sets that describe the uncertainty in the spectrum of x(t); and a sample of the

received noise y(t), 0 < t < T o , where To is the duration of the sample. Then we make

an estimate of N o , based on these quantities. We shall want our estimate to be unbiased

and to have minimum variance. These conditions will now be stated more precisely.

Let Z be the estimate of No . Z will be a function of the received sample of noise, y(t).

By definition,

E a, xZ p(a, x) Z da dx (6)

"Unbiased condition" means that

E {Z} = N0  for all N0  (7)

"Minimum variance condition" means that, subject to the unbiased constraint, the esti-

mate must satisfy

Ea, x((Z-No)} = minimum (8)

In general, the estimation process will be some nonlinear operation on the received

sample of noise, y(t), with 0 < t < To . We consider only those nonlinear processes for

which we can use the Wiener expansion (3); that is

T T T

Z =k ko 1(T 1) y(T) d +k kz(T' T2 ) Y(T 1 ) Y(T 2 ) dT 1 dT 2

0 0 0

+ k 3 (T 1 , T, 3) y(T 1 ) y(T 2 ) y(T 3 ) dTl dT 2 dT 3 + ... (9)

in which the k are to be determined.n
When we write expression 9 in terms of x(t) with

y(t) = (N ) 1/2 * x(t) (10)

and take the expected value of Z, we obtain

0
+ N

o  k
2 (T

1 , T
2

) Ex, aX{(T
l ) x(

2 )} dT
1 dr

2o 0

N3/2 0 k( 1 , T' T
3 ) Ex, {x( 1 ) x( 2 ) x(T3)} dTl dT

2 dr 3

(0 0
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Only the quadratic term (KZ) is linear in N . The unbiased estimator constraint implies

that the expected value of Z will be linear in N . Therefore only the quadratic term in

the Wiener expansion can be used. The estimation problem becomes that of finding a

quadratic kernel K 2 (TI,T 2 ) that satisfies Eqs. 7 and 8.

The quadratic kernel K 2 (T 1 , T 2 ) is assumed to be symmetric in T 1 and T Z.

kernel can be expanded in the following form:

The

00

K (T 1 , T2) =

m=0

mn

m2rT T
a cos cos

mn T

m2Tr 1  n 2T r 2
sin sin -

T T
o o

nZrT T2

T

(12)

mnl ZT 1  n ZTrr 2  n Tr
cmn os T sin + sin

mn T T T
o o o

m 2r Tr
cos T

T
o

Equations 7 and 8 are to be satisfied by a proper choice of the sets {amn, {bmn, and

{cmn}
Let us define

T
0

Am

Bm

0

m 2rr tMcos Tt y(t) dt

sin T y(t) dt
o

{Am} and {Bn are the Fourier

9, 12, and 13, we obtain

00oo 00

Z= a A AS=mn m n
m=0 n=O

y ybmn m n
m=l n=l

coefficients of the sample of y(t). Combining

(14)

A Bmn m n

o0

n=0

Then

Eqs.

(13)
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By definition,

Ex{Am} = P(xla) Am dx (15)

It is assumed that the sample duration To is large enough so that for all a the Fourier

coefficients can be considered to be uncorrelated. That is,

Ex AmA} = 0 m # n

Ex BmB} Bn = 0 m 4 n (16)

Ex{ABn} = 0 for all m and n

The determination of the sets {amn}, {bmn}, and {cmn} that satisfy Eqs. 7 and 8 is

a long but straightforward algebraic process, which will not be presented here.

the results will be given without proof:

(i) a =0mn

b =0mn

c mn

m#n

m n

all m and n

Two of

(17)

This result depends on the assumptions given in Eqs. 16.

S=
m=0

2 \a A +)mm m
n =1

Equation 14 then simplifies to

b B2
mm m (18)

(ii) The variance of the estimation procedure is

E x{(Z -N )2 }
a2,xo

No

T

The expression

1 i-1

~ 27r(1 + o- +V T (Wi - W. 1 )i= i) o i  1-1

can be defined as an effective bandwidth.

in the following example.

Consider the case in which

Wi - i-1i -i1

I-i (19)

The motivation for such a definition is found

2 2
2r(1 +. ) + T( .- . )1 1o 1 1-1
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2
o- = 0

(20)
. = 00 i = 2,3,4, ...

1

The variance of the estimate of N o as given by Eq. 19 then becomes

N
o 1

2Tr

The quantity wl/2T is the useful bandwidth in cycles per second. The variance of the

estimate of N o is seen to be inversely proportional to the time effective-bandwidth prod-

uct.

D. A. Chesler
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B. CONNECTIVITY IN RANDOM GRAPHS - TWO LIMIT THEOREMS

The two theorems presented in this report are the first results in a study of connec-

tivity in random graphs. This initial research has been devoted to limit theorems for

two reasons: to provide insight into the link-redundancy that is necessary for obtaining

a desired path or tree probability, and to allow the use of convenient but weak bounds

on the probabilities. These bounds sharpen only in the limit. Exact probabilities of

paths and trees are difficult to calculate and can not usually be reduced to workable form.

Before stating the theorems we shall define the problem. A graph is a collection of

labeled nodes and associated links. In this report, the links are directed. The following

restriction is assumed at all times: At most, one link may exist between two nodes in

a given direction. A graph is made into a random graph by examining each link in the

graph independently, destroying a link with a probability q, and retaining it with a prob-

ability, p = 1 - q (0 < p < q). In connection with the random graph, two probabilities

are of present interest. One is the probability of path-connectivity; that is, the prob-

ability that if any ordered pair of nodes is chosen, a directed path exists from one to the

other. The second is the probability of tree-connectivity; that is, the probability that

all pairs of nodes are connected in both directions.
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We introduce limit statements as follows. A sequence {n i of positive integers is

chosen in which, as i gets larger, n. increases without bound. For each member of the

sequence, a number 1i is assigned, and a scheme is given for constructing a graph with

n. nodes and f. links. The graph is then randomized, and path- and tree-probabilities
1 1

are calculated. Thus a sequence of path-probabilities and tree-probabilities is obtained.

The question arises, Is there some minimal manner in which the number of links, f i ,

can be assigned so that either or both of the probability sequences tend to one in the

limit? This question is answered in Theorems I and II.

Theorem I. For a graph with directed links, it is necessary and sufficient for the

path-probability to tend to one that the average number of links per node, i = i/ni,

tend to infinity, independent of the way in which n. tends to infinity.

Theorem II. For a graph with directed links, it is necessary and sufficient that the

average number of links per node, k i grow faster than log n i . In particular, it is neces-

sary that fi grow as logl/q(ni ) + A i , with A. tending to infinity as slowly as desired. It

is sufficient that ki grow as log n + (1 + E) log log n i , where E is any number greater

than zero, and the logarithms are all to one base (1 - p)-l.

First, consider the proofs of the necessity statements. For the path probability to

tend to one, the number of links in every cut-set must tend to infinity; if not, the proba-

bility that the graph is separated at the cut-set remains nonzero. In particular, the

number of links emanating from each node must tend to infinity, since the nodes involved

in the path are not prechosen. This completes the necessity proof of Theorem I.

The necessity proof for Theorem II is a bit more difficult. Since all nodes must be

connected for a tree, the probability of a tree, PT' is less than the probability that every

node have at least one outgoing link intact. Let Ij. be the number of links emanating

from node j, before randomization, at some stage in the sequence, i. (The subscript

i will be suppressed hereafter.) Then,

P T< (1 _q 2q -' q ) (1)

where q is the probability that a link fail. The right-hand side of Eq. 1 can be bounded

above by use of the following lemma.

Lemma I. If = 1 + 2 +.. . + n is held fixed, the right-hand side of Eq. 1 is max-

imized by setting

1 2 n (2)

Stated another way, the probability of tree-connectivity, PT' for any graph of n nodes

and f links is bounded above by Eq. 1 when f. = f/n for all j.

Therefore

PT (1 - q)n (3)
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The proof of Lemma I follows from the observation that the second derivative of

(1 - qX) with respect to x is negative and nonzero for all finite positive x.

An additional bound is now needed for the right-hand side of Eq. 3.

Lemma II. a >0 implies 1 - a - e-a

Lemma II is obvious for a > 1 and can be proved for a < 1 by drawing a graph or by

taking logarithms of both sides and expanding the logarithm on the left-hand side about

a = 0.

Thus, with Lemma II, Eq. 3 can be rewritten:

P T < (1 - q)n < exp(-nq) (4)

If PT is to tend to one, then the exponent on the right-hand side of Eq. 4 must tend to

zero. If we take the logarithm of the exponent, the condition becomes

1
log n - k log --- -oo (5)

q

which is the desired result. Equation 5 states that the average number of links per node

must grow faster than log n.

To prove the sufficiency statements of Theorems I and II, it is only necessary to

supply a structure with the proper behavior. One structure that can be used is the

hierarchical structure of order j, H.. H. is constructed as follows.

First, a complete graph of N 1 nodes is constructed. A complete graph is one in

which every node is connected to every other node with a directed link, and therefore

requires a total of N 1 (N 1 - 1) links. A favored node is chosen from the N 1 nodes, and

the complete graph is viewed as a supernode, with external connections to the favored

node. Now, N 2 of these supernodes are connected in a complete graph, and this com-

plete graph is treated as a (super) supernode. Again, a node is chosen for external

connections (from one of the N 2 originally chosen nodes), and N 3 of these supernodes

of level 2 are connected into a complete graph. This process is continued until N.

supernodes of level j - 1 are connected into a complete graph. The final structure is

H.. The choice of the number of nodes to be used at each level is dictated by the

following lemma.

Lemma III. For an n-node hierarchical graph, and for N1 >> 1, the required number

of links is minimized by setting

N = 1 N 2  i = 1,2,. . - (6)Ni+l 2 i " '

The proof of this lemma is involved, algebraically, and is not presented here.

If Lemma III is obeyed, the average number of links per node in the entire graph is

related to the number of links in the first-level structures, N 1 , by
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N2 N3 N.
I(j) = N +N + NN + ... +  (7a)

1 1 2 1 . j-1

i(j) = Z - j-1 N 1  (7b)

Furthermore, the total number of nodes in H , n(j), is related to the number of nodes in

the first-order structure, N 1, by

n(j) = N. N 1 ... N (8a)
j -1 1

n(j) = - N 1(8b)

Both Eqs. 7a and 8a are obtained by a brief consideration of the structure of H., and

Eqs. 7b and 8b result from a substitution of Eq. 6 in Eqs. 7a and 8a, respectively.

Finally, Eqs. 7b and 8b can be combined to obtain

j2
j

(? 1 2j - 1
(j) = 4 (2  1) n(j) (9)

Equation 9 is important in the proof of sufficiency in Theorems I and II. It states
th

that in the j -order hierarchy, the average number of links per node grows as a frac-

tional power of the number of nodes. It can be shown that the probability of a tree

involving paths between nodes of length equal to 2j, at most, tends to one in H. as n(j)

tends to infinity. Thus, in the hierarchical structure, bounding the maximum length of

paths requires that the average number of links per node grow as a fractional power of

the number of nodes.

However, in the hypotheses of Theorems I and II, no bound is put on maximum path

length. Thus, as the number of nodes is increased, the order of the hierarchy can be

increased also. It is necessary to determine how fast the order can be increased and

still provide that the probability of path-connectivity or of tree-connectivity tend to one.

This is done implicitly in the following proof of sufficiency for Theorem I.

Let P(n) be the minimum probability of a path taken over all pairs of nodes in the

n-node graph, H..

Lemma IV. The probability of a path between two nodes, P2, in a complete graph

is greater than the probability of a path of length 2 in the complete graph. But there are

n - 1 possible paths of length 2, all of which are statistically independent. Thus,

P2 > 1 - ( - p2n (10)

In a j th-order hierarchy, the paths of lowest probability occur for nodes that are so
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distant that they can only be joined by climbing up from

level, and up to the jth level, and then back down to the

of level, a path is required through a complete graph.

of a path over all pairs of nodes, P(n), is, by Eq. 10,

the first level to the second

first level again. At each change

Thus, the minimum probability

P (n) ;> 1 -_ (1 - p2)N1 - ( - . . L - (1 - p2) j-1 ... Li -j- (1 - p N2

(I la)

P(n) > - (1 - p2)NL - - .. (1 -- )N 2] (11b)

Multiplying out the factors in Eq. 1 1b, and dropping all but the first two terms in the

resulting sum, we obtain

1/2 2 Nk
[P(n)] 1/ 2 > 1 - (1 - p) kk

k=l

(12a)

since the part discarded is positive. Equation 12a can be rewritten with the aid of Eq. 6

as

k
2 _ -k-I

[P(n)]/2 > 1 - (1 - p)l 2

k=l

N2k-1
N, (12b)

It can be easily shown that the right-hand side of Eq. 12b can be bounded by

1/2 kN
[P(n)] 1/ 2  1 - Z (1 -

k=1

N
1

1/2 (1 - p
[P(n)| > 1 -

1 - (I - p ) 1

However, the right-hand side of Eq.

Eq. 7b,

W(j) = 2 - j1 N < 2N 1

(13a)

(13b)

13b tends to one if N I tends to infinity. Since, by

(14)

it is sufficient that f tend to infinity, however slowly. This is the desired result.

It is possible in the same manner to prove the sufficiency statement of Theorem II,

by using the hierarchical structure. However, another structure yields the result more

easily, and also provides variety.

Consider a graph with its nodes arranged in a rectangular array, with s columns
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and k rows. Each row is made into a complete subgraph by use of s(s-l) links. Succes-

sive rows are connected together by having a single directed link from a node in one row

to the node directly beneath it, and from nodes in the bottom row to the respective nodes

in the top row. Note that f = (s-l) + 1 = s. (f will be used in place of s in the following

discussion.)

One way of obtaining a tree in this structure is to have a tree existing in every row,

and have at least one link existing between successive rows. This is not the only way of

obtaining a tree; if a row does not have a tree, the different pieces in the row can still

be connected by paths extending through the remainder of the graph. However, it is

convenient to consider those cases in which there is a tree in every row, and thereby

obtain a useful lower bound to the probability of an unrestricted tree in the entire graph.

Call the probability of an unrestricted tree PT. A lower bound to the probability of a

tree in a row is obtained from Eq. 10 as follows. Equation 10 states that the probability

of a path in an n-node complete graph, P 2 , is bounded by P2 ~ 1 - ( - p 2 )n

Lemma V. The probability of a tree in an n-node complete graph, P 3, is bounded by

2
S>pn (15)3 P

2

The proof of Lemma V follows from noting that there are n2 pairs of nodes in the com-

plete graph, each of which must have a connecting path. However, the paths for all of

these pairs are not independent and, to obtain the correct probability of a tree, condi-

tional probabilities must be used. However, the conditional probability of a path con-

necting a pair of nodes, given that other paths are in existence, is certainly greater

than the probability without such information. (The knowledge effectively increases the

reliability of all links.) Hence, ignoring this knowledge results in the lower bound spec-

ified in the lemma.

Now, if f is the number of columns and k is the number of rows, k can be replaced

by n/f, where n is the total number of nodes in the graph.

If we apply Eqs. 10 and 15 for each of the n/ rows, and require the existence of at

least one of the f links between rows, the following bound on the probability of a tree,

PT' in the entire graph is obtained. Thus

PT >1 -qff 11 -(1 _ p2)j (16)

where the first factor takes into account connections between rows, and the second fac-

tor takes into account trees in each row.

The following inequality is now useful. For 0 <x < 1 and n > 1

(l-x)n > 1 - nx (17)
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and Eq. 16 becomes

S 1 - n [1 - n(1 - p2 )n J (18a)

PT = 1 - n (1 - p2 ) + nZ q_(1 + p) (18b)

It is only necessary to find conditions on f to insure_that n/ q and rti(1 - p ) go to

zero as n increases. Taking the logarithm of n/f q , we obtain the first condition.

logn -log - log -- oo (19)q

Likewise, taking the logarithm of nk(l - p , we obtain the second condition, which is

stronger than the first.

1
log n + log f - log -- oo (2 0)

1 -p

It is therefore sufficient the f grow faster than log n in order that the probability

of a tree tend to one. It can be shown that a sharper simple bound than Eq. 20 cannot

be obtained from the hierarchical structure, even by varying the number of supernodes

at various levels.

It has been shown that if a structure is intelligently chosen, the sufficiency require-

ments of Theorems I and II can be met. It is not known, at the present time, whether an

unintelligent choice - for example, a random choice - will suffice. This is being inves-

tigated.

I want to acknowledge the advice and encouragement of Prof. E. Arthurs, who antic-

ipated the existence of Theorem I and II.

I. M. Jacobs

C. MINIMIZATION OF TRUNCATION ERROR IN SERIES EXPANSIONS OF

RANDOM PROCESSES

In certain problems in the theory of random signals and noise it is convenient

to be able to represent a random process in a particular interval of time by a

countable set of random variables or coordinates (1). One possible set is the set

of Fourier coefficients obtained by expanding the process in a series with respect

to some complete orthonormal set of functions {4n(t) } . If a finite series is used to

approximate the process, a mean-square error that is a function of the set {n(t)}

is introduced. In this report we endeavor to find that set (4n(t)} which reduces this

truncation error to a minimum.

For the expansion
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00

x(t) = an n(t)

n=l

the coordinates are given by

b

a = x(t) in(t) dt

a

where [a, b] is the interval of interest. The mean and covariances are given by

b

E[an] E[x(t)] n(t) dt

a

and

E [aam] = E x(t) n(t) dt x(s) (s) ds

b b R(t, s) n(t) m(s) dt ds

a a

where E denotes expectation, and R(t, s) is the correlation function. It is convenient to

think of such a representation as a point in "signal space" with the a's as coordinates on
n

an infinite set of orthogonal axes. Distance between points can be defined in a way that

is analogous to physical space; that is

o0

dZ = (a - bn )

n=l

where d is distance, and (a 1 , a 2 ,...) and (b, b2, ...) are the coordinates of the two points.

Because of Parseval's theorem this is equivalent to the rms difference between functions.

There are two variants of the problem in which we are interested: (a) Given an integer

N, what set of orthonormal functions minimizes the truncation error of using only N coor-

dinates? (b) Given a truncation error o , what set of functions minimizes the number of

coordinates, N, that is required to attain this error? We shall prove that the answer

to the first question is the set of orthonormal eigenfunctions, {(n(t)}, of the inte-

gral equation

b

R(t, s) n(t) dt n (s) a s < b (1)

a
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with the eigenvalues so arranged that

P1 > P2 >' 3 >"" (2)

Then we shall show that the second question is equivalent to the first. This set of func-

tions is also the solution to the problem of finding that set of functions for which the

coordinates are independent (2) so that for

00oo

x(t) y a nn(t)

n=l

where

b

an  x(t) cn(t) dt

a

we have

n  n m

E [aa ] = 0 (3)

and

Pn = E x2(t) dt = R(t, t) dt (4)

n=1 a a

We shall assume that R(t, s) is positive definite, so that the solutions to Eq. 1 form

a complete orthonormal set (3). It will be safe to assume that most physical processes

satisfy this restriction; perfectly bandlimited processes are ruled out, however.

Denoting the mean-square truncation error byb
SLn(t)} = E x(t) - xN,(t)l dt

where

N

xN, (t) = a nn(t)
n=l

we shall show that

N n N(t)} >- N (5)

for any orthonormal set {n(t)} and where f{cn(t)} are the solutions to Eq. 1.

Suppose we expand the process in terms of Kcn(t)} so that
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XN, (t) =

n=l

where

a, n (t)ni n

The truncation x(t) error is (t) given b

The truncation error is then given by

b

E [x(t)La- xN, (t)] 2 dt

The integral in brackets is the random variable

b

x(t) - xNc(01 2 dt

a

x (t) dt - 2

a

b

a x(t) XN, (t) dt

a

b

+ XN2 (t) dt

a

b

- x 2 (t) dt-2

a

b N

x(t)
a n=1

a nn(t) dt +

bN

a n

N

an n(t)
m=l

am m(t) dt

If we interchange the order of summation and integration, we have

b N

= (t) dt - 2 a n
a n=1

ab

a
x(t) an(t) dt +

and from Eq. 7 and orthogonality

b

a

N

xz (t) dt - 2
n=l

N

an +

n=1

2a n

b

a

N

x2 (t) dt -

n=l

From Eq. 8

b

a

E [x 2 (t)] dt - E [a2
[a

and from Eqs. 3 and 4, we have

(6)

(7)

{Nn (t)1

N N

n=1 m=1

b

a n(t) m (t ) dt

a
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b N

- R(t, t) dt - P
a n=l1

(9)
oo N oo

n=l n=l n=N+l

Suppose, now, that we create any other complete set of orthonormal functions 1{n(t)}

from the original set by means of an orthogonal transformation 11

qn - n n= 1,2, ...

that is

oo

ij j(t); i 1, ,

j=1

with

00

y ij' kj = 6ik
j=1

i,k = l, ..... , M (10)
0o

Z 7ji jk = ik

j=1

where 6ik is the Kronecker delta. The transformation can be considered as a rotation

of axes in signal space. It can be represented by the square array

[111 112

12 1 11 22

For simplicity, we can consider an M-dimensional signal space in which M is as large

as we wish. The rlij are not independent quantities; there are the [(M+ 1) M]/2 (Eqs. 10)

that they must satisfy. Therefore there are

M 2  (M+ 1) M M(M - 1) _

independent quantities that characterize T1. Such a set of independent quantities are the

rotations, Oi, in each of the mutually perpendicular planes in M-dimensional space that

correspond to the Eulerian angles of three dimensions (4). Therefore

1 = 1 1 , . . .2' (M
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where the 0 are independent variables. For the new set of orthonormal functions, we

have

Xn, L(t) =

n=l

bn n(t)

where

b b

b = fa x(t) n(t) dt = b x(t)

a a

M b

= nm x(t) m(t) dt

m=l a

or, in matrix notation, b = Ha, where

b

b

b =

al

a

aM -

M

nm cm (t) dt

m=l

M

/ y nmam

H=HK
M I

'112

1 22M

M2

... '1 M

... . 1 2M

... MM

The covariances of the b's are

Mi=

M

"niai
j=1

MM

Y z I1ni mj E[aa] a

i=1 j=1

and from Eq. 3 we have

M

knm = lni mi i

A =H BH

for which

mj aj

(11)
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X X
12 "1M12 ... iM

.22 ... 2M

M2 ... MM

... . OP, 0

0 P?
and B =

0 0

are the covariance

Relation 9 also

matrices

holds for

b

N [n(t)]  = a R(t,
a

of the b's and a's, respectively.

the new expansion

N

t) dt - Xnn
n=l

To prove Eq. 5 it will, therefore, be sufficient to show that

N N

z nn < n
n= 1 n=l

(12)

where nn and Pn are the diagonal terms of A and B in relation 11, and H is any orthog-

onal matrix. As we have mentioned, the transformation rj can be considered as a series

of rotations in each of the (2 /I mutually perpendicular planes. We have, then,

Snn 2' '''
n=l

where

N

F(0,0 ..... 0) = Pn
n=1l

(M
\2 /

The matrix H will be of the form

H =[ 1 1 2 [6i ' [ (M l

[o.]= k . cos o.
1 1

where [0i] is the elementary rotation matrix

0

S.. . ... .

... sin 0. ... 0
1

-sin . ... cos ...1 1

0 0 0 ...

X11

X21
A=

AM1

. .. 1
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corresponding to a rotation in the plane formed by the k t h and I t h axes. The inequality

(Eq. 12) can easily be proved for a single rotation, Oi. Using only the pertinent 2 X 2 sub-

matrices we have for Eq. 11

kk

fkl

'-ki

1x22

sc s i

sin 0.
1

-sini I0 Pk

cos 0i 0
1- -

Pk os2 0 i + P sin2 0i

(p -P k ) cos O. sin 0.

0 ] cos 0.

i -sin 0.
-- 1

sin 0.
1

cos 0.1-

( -k ) cos 0. sin 0i

Pk s i n 2 i + Pj cos 2 60

There are three cases to consider here: k > N; k < N, I < N; and k < N, 2 > N.

For k > N, it is seen that the situation is unchanged and F(0, ..... .... 0) =

F( ..... 0 . .. , 0).

For k < N, 2 <N

\.. = Pi11 1
all i # k, I i = 1, 2 ..... N

kk = Pk cos2 0 + s in2 0 i

X = Pk sin2 0. + cos2 0.

and it is seen that

F(O, ..... , 0i,
1'

N

•0) = X
n= 

xnn

N

n=l
Pn = F(O, ... , 0 ... S0)

For k < N, I > N, we have

N

F(, ... i ... 0) =
n=l

N

n=l
n#k

nn
n=l
n#k

Pn + Pk c os2z 0 + P, sinz 0i

(13)

Pn + Pk - (k- PI ) sin2 0i= F(0, ... 0, ... , 0) - (Pk- P) sin2 0
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From the first two cases, we see that F 0 .. .. ) is invariant under a rotation

either completely outside or completely inside the N-dimensional subspace formed by

the first N coordinates. The first result is obvious, and the second means that any

orthonormal set of N functions formed by linear combinations of the first N solutions

of Eq. 1 is equally as good as the first N solutions themselves. From Eq. 13 we also

see that any rotation in a plane formed by two axes corresponding to equal eigenvalues

leaves F i 1 .... O(M unchanged, but this rotation also gives an eigenfunction of Eq. 1,

since any linear combination of eigenfunctions corresponding to equal eigenvalues is an

eigenfunction.

The proof of inequality 12 can be extended to the general case of (iZ) rotations but

the proof is lengthy and will not be presented here.

The second question at the beginning of this report can be shown to be equivalent to

the first, as follows. By the previous proof we have maximized

N

F(r, N) - nn (14)
n=l

for all N >, 1; that is,

F(-o, N) > F( 1 , N) (15)

for any ql1 o and for any N, with ro = I(0, 0, ... , 0). Given a particular

b

A = R(t, t) dt - o , where to is the truncation error, we want to show that for

a

F(T, N) = A, if F(, 0 No) = F(I, N 1 ) for an il 0T0, then No < N 1. Suppose that N 1 < No,

then, since F(no, N 1 )< F( 0o, No), as seen from Eq. 14, it is true that F(11,N 1 ) >

F(ro, N ). This is a contradiction, however, as seen from Eq. 15.

K. L. Jordan, Jr.
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D. FOURIER TRANSFORMS OF POSITIVE FUNCTIONS

1. Types of Positive Functions

Functions that are the Fourier transforms of positive functions are important in

engineering work. The characteristic function, which is the Fourier transform of a

probability density distribution, and the autocorrelation function, which is the Fourier

transform of a power-density distribution, are examples. By noting that, for a passive

circuit, the real part of the impedance or admittance must be positive, we may conclude

that the even part of the impulse response of a two-terminal passive network is also a

function of this class. In fact, it can be rigorously shown that these three functions are,

mathematically speaking, really all the same function. Thus, given a characteristic

function, we can always find a random process that has this function for its autocorre-

lation, and we can also find a passive network that has this same function for the even

part of its impulse response.

Let us consider a probability density distribution of the form

P(x) 1 (1)
a +x

The characteristic function is then

00

f(t) = P(x) exp(j xt) dx

-00

00

2a cos xt dx

a +x

= exp(-a t ) (2)

We can find an ensemble of random waves which has the function f(t) for its ensemble

autocorrelation by assuming the random waves to be sinusoidal with statistically inde-

pendent random phase and frequency. For our example, we choose each member, X(t), of

the ensemble as

X(t) = J cos[4 + t] (3)

where the probability density distribution of over the ensemble is

0 < 2T

p(4) = (4)
0 elsewhere

and the probability density distribution of a over the ensemble is
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P(W) 1 (5)
a +w

The ensemble autocorrelation of X(t) is then

-- X

R(T) = X(t) X(t+T)

00 00

S2cos[ + wt]cos [+Wo(t+ T)]P(k) P(w) d do

00 00

f cos(w-7) P(p) P(w) dc dw

-oo00 -00oo

o

a cos T

-00o

exp(-a T ) (6)

which is identical with the characteristic function, Eq. 2.

Since the ensemble (Eq. 3) is not ergodic, the time autocorrelation of any one mem-

ber is not equal to the ensemble autocorrelation. The time autocorrelation of any one

member is, in fact, 2 cos(WT). However, we can always find a Gaussian random proc-

ess for which the time autocorrelation is the desired f(t). Let us consider the random

process, X(t), for which the probability distribution of the M random variables, X(tk),

with k = 1, 2, 3, ... , M, is a normal distribution. Since a normal distribution in any

number of variables is completely defined by its first- and second-order moments, we

shall choose them as

E[X(tk)] = 0

(7)

E[X(tk) X(tj)] R(tj - tk)

These moments then define a probability distribution with the characteristic function

exp[- 1/2 Q(a)] with

M MM

Q(a) = E ak X(tk) = aia. R(t - tk) (8)

k= k=l j=l

We shall show in section 3 that Q(a) is necessarily non-negative and thus the moments

(Eqs. 7) do indeed define a normal distribution. Since the time instants, tk, are arbi-

trary, X(t) is an ergodic Gaussian random process (1) whose autocorrelation is



(XIII. STATISTICAL COMMUNICATION THEORY)

E[X(tk) X(tk + T)] = R(T) (9)

We should now be able to find a network for which the even part of the impulse

response is exp(-a t ). Thus, the desired impulse response is

0
h(t)

2e-at

for t <0

for t- 0

The total impedance can now be calculated.

z~co O0Z(W) = 0
00

0

h(t) exp(-jwt) dt

2 exp [-(a + jw) t] dt

a + jW

A network that has this function for its impedance is shown in Fig. XIII-3. The dual of

this network (see Fig. XIII-4) will have the function of Eqs. 11 for its admittance.

R = OHMSR

C FARAD

Fig. XIII-3.

R R - 2 OHMS

L 
=  

HENRY

Fig. XIII-4.

In general, given the Fourier transform, f(t), of any even postive function, we can

follow the procedure that has been indicated for finding a random process whose auto-

correlation function is f(t), and for realizing a two-terminal passive network for which

f(t) is the even part of the impulse response. Of course, the required network may not

always be composed entirely of lumped parameters, as in our example, but may con-

tain distributed parameters.

The correspondence between the autocorrelation function and the impulse response

implies a more general correspondence. It can be shown that it implies a one-to-one

correspondence between the M2 impulse responses (2) of an M-port passive network

and the M2 correlation functions of M stationarily correlated random processes. Thus,

if we are given an M-port network with its M2 impulse responses, hmn(t), we can always

find M stationarily correlated random processes whose correlation functions are

(10)

(11)
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hmn(t)

R mn(t) = n m (t )

mn h (t)nm

for t > 0

for t < 0

and vice versa. Thus there exists a complete correspondence between network func-

tions and correlation functions. This correspondence is illustrated with the simple

Ri C

F' 2

Fig. XIII-5.

example of a two-port network, as shown in Fig. XIII-5. The impedance impulse

responses (3) of this network are

h 1 1 (t) Ruo(t)

h 1 2 (t) = h 2 1 (t) = Ruo(t) (13)

h (t)(

h 2 2 (t) = Ruo(t) C ul(t)

Thus, we should be able to find two random processes whose correlation functions are

R 1 1 (T) =RuoT)

R 1 2 (T)= R 2 1 (T) = Ru (T)

R 2 2 (T) - RUo(T) +

(14)

Let us choose one random process, Xl(t), as white noise with a power spectral density

function, S(f) R watts/cycle.

R 1 1 (T) = Ruo(T)

We choose our second random process, X 2(t), as

X (t) = X1 (t) + '

C1/2

That is, X 2 (t) is Xl(t ) with a de value of 1/C 1/ 2 added.1
R 2 2 (T) Ru (T) + C

RZI(T) R 1 2 (T) = RUo(T)

(12)

Then

(15)

(16)

Then

(17)
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2. Properties of Positive Functions

Since all three functions are mathematically identical, a property of any one of them

is also a property of the other two. In discussing some of these properties we shall

refer to the class of functions, f(t), that are the Fourier transforms of the positive func-

tions, P(w), as functions of the class P. We shall normalize P(w) so that

f(o) = P(w) dw = 1

We shall also restrict ourselves to the case of real f(t); then, P(w) and f(t) are even

functions (4). It is seen that if fl(t) and f2 (t) are functions of the class P, then so are

a) gl(t) = f 1 (t) + fZ(t)

b) g 2 (t)= fl(t) f 2 (t)

c) g 3(t)= f (t) :" f 2 (t) =

A number of bounds on f(t)

found most useful are

0

J__ f 1 (x) fZ(t -x) dx

can also be derived. Two of the bounds (5) which we have

d) 1 > f(t) > 2f(oo) - 1

e) f(2t) > 2f (t) - 1

That If(t) < 1 is known. The Kolmogorov inequality, 1 - f(2t) 2 < 411 - f (t)12], is

implied by inequality e), but not conversely.

From these results a number of interesting properties of f(t) can be derived. Fo

example, by direct use of inequality e), it is easily seen that the functions exp(-a It

and [1+a I tn] - l are of class P only for n 2. By use of b), we also find that for n
-k

the function [1 + a t n] - k is of class P for k = 1, 2 ...

As another illustration, since, from inequality d), f(t) < 1, let us write f(t) in thE

form

f(t) = 1 - E(t), E(t) >,

Inequality e) can then be written as

4E(t) > E(2t), E(t) 0o

To illustrate an application of this result, let us write, for small t,

f(t) = 1 - k tI n

r

n)

2,

(19)

(20)

(21)

(18)

e
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Then

E(t) = kltl n  (22)

From Eq. 20, we require that

4k tln> k2n tl n  t * 0

or

4 > 2n

and then

n < 2 (23)

Thus, near the origin, f(t) may only assume a shape that is of lower order than a parab-

ola, as shown in Fig. XIII-6. The shaded region is disallowed for any f(t) of the form

[1 - klt n]. If we did assume a parabolic shape for f(t) near the origin, P(w) would be

negative for some w. Wernikoff (6) has considered bounds similar to this.

Fig. XIII-6.

However, f(t) may equal one for t i 0, but it can be shown that

f) If f(t) is equal to one over any interval, then it must be one everywhere and P()

is an impulse at the origin. Also, the second derivative of f(t) at a point where f(t) = I

may not be zero unless f(t) = 1 everywhere.

g) If f(t) is equal to one at some point other than the origin, then it must be periodic

with a period equal to the time that it takes for it to first reach one after t = 0.

This result is useful in computing autocorrelation functions. For, if the computation

yields a value of the autocorrelation equal to the initial value, R(0), we can stop com-

puting, for the rest of the curve is determined because it must be periodic.

What can be said about f(t) if it ever reaches its maximum negative value, minus

one? It can be shown that

h) f(t) may never equal minus one over any interval.

i) If f(t) is ever equal to minus one at a point, then it must be periodic. The period

for this case, however, is twice the time that it takes for f(t) to first reach minus

one.
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3. Proof of Inequality e)

Let us now derive inequality e) for other useful inequalities can be obtained from

this derivation. Since

f(t) =

-00

it is seen that

(24)

K K

AA A' f (t- tn m n
n=l m=l

00

-00

K

n=1

00

n) P

-oo00

An exp(j wtn)

K

(")
n=l

2

dc

AnA exp[jw(t n - t )] dwnm nm

K

m=l

(2 5)

Since the integrand is non-negative, we find

number, A n , (n = 1,2, . .. K) (K = 1, 2, ... ),

K

n=l

AnAm f(t - tm) > 0On m n m

that for any set of points, t n , and every

(2 6)

If we now define the matrix [fnm] in which fnm = f(tn - tm ) then a necessary and suf-

ficient condition that f(t) satisfy Eq. 26 is that the matrix [fnm] be non-negative defi-

nite. This result can be used to obtain a number of general bounds on f(t). For example,

by considering the third discriminant of the matrix [fnm ] , letting T 1 = t 1 - t 2 and T2 =

t- t 3 , and noting that f(0) = 1, we have

1

f(T 1 )

f(T1 + TZ )

f(Tj) f(T 1

+ 
T 2 )

1 f(T 2 ) O

f(T 2 ) 1

(27)

(28)

By expanding this determinant, we obtain the inequality

1 + Zf(T 1) f(T 2 ) f(T 1 + T2 ) - f(l + T 2 ) - f 2 ?r 1) - fz(T 2 ) > 0

which can be written in the form

[1 - f(T 1 + T 2 )] [1 + f(T 1 + T 2 ) - 2f(T 1 ) f(TZ)] [f(T 1 ) - f(T2) ]

Since 1 - f((T1 + 2) > 0 and [f(T 1 ) - f(T2) ] 2 0, we have

(29)

P(wo) exp(j ot) dw
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1 + f(T 1 + T2 ) - 2f(T 1 ) f(T 2 ) > 0 (30)

or

f(Tl + T 2 ) > 2f(T 1 ) f(T 2 ) - 1 (31)

By considering the special case for which T 1 = T2 , we obtain f(2t) > 2f (t) - 1, which is

inequality e).

Inequality 31 is true for T2 negative. Thus, by making use of the eveness of f(t), we

obtain the inequality

f(IT,1  - IT 2  ) >
2f(T 1) f(T 2 ) - 1 (32)

Consideration of other discriminants of the matrix [fnm ] yields other inequalities which

f(t) must satisfy.

M. Schetzen
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E. RESOLUTION OF A RANDOM PROCESS AND PROPERTIES OF THE

COMPONENTS

In his paper "Methods of Solving Noise Problems," W. R. Bennett (1) discusses

the consequences of resolving a random process [y(t)] into parts [a(t)], [p(t)] and [x(t)],

whose cross spectra with a given process [x(t)] are, respectively, a pure real function

of frequency, a pure imaginary function of frequency, and zero. This note is intended

as a heuristic justification of these consequences.
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Let [x(t)] and [y(t)] be stationary processes with power-density spectra W x() and

W (w), respectively. The cross-power density spectrum between [x(t)] and [y(t)] isY

Wxy(w) = Uxy( ) + i Vxy(w) (i= -I)

where U and V are real functions of w. (Functional dependence on w will be
xy xy

assumed unless otherwise stated.)

We wish to prove that, if there exists a process [z(t)] with the property that Wxz = 0,

then there exists at least one set of auxiliary processes [a(t)], [p(t)], and [X(t)], with

the properties

W =Wa +W+W

W =U
xa xy

WxP =iVxy

Wxk = 0

If, in addition, W and WP are as small as possible for all w (subject to the con-

straints listed above), the set is unique in the sense that Wa, Wp, and WX are unique.

The following spectrum relations, that are due to Bennett, are then valid:

U 2

(a) W xy
a W

x

V 2

yWxy 2

k W
x

iU V
xy xy

(d) W -

x

(e) Wa = W = 0

Lemma. For any two processes [x(t)]and [y(t)], as described above, Wx W y> Wxy2
Proof. Two well-known theorems concerning linear operations on stationary proc-

esses will be used.

Theorem I. If the random input to a linear, time-invariant system with system
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function Y 1 has power-density spectrum Wi , then the output will have the power-density

spectrum

Wo 1 2 . Wi

(By system functions we mean voltage or current transfer ratios, which are expressed

in terms of the (complex) Fourier transform of the impulse response of the system, and

Z indicates the complex conjugate of Z.)

Theorem II. If the cross-power density between two random processes, [a(t)] and

[b(t)], is Wab, and if [a(t)] is the input to linear, time-invariant system 1 with system

function Z 1 and [b(t)] is the input to linear, time-invariant system 2 with system func-

tion Z 2 , then the cross-power density spectrum between the output of system 1 and the

output of system 2 is

Z1 Z2 " Wab

Proof: Consider the model of Fig. XIII-7.

Fig. XIII-7.

This figure represents linear operations on the processes [x(t)] and [y(t)]. For example,

on the second line of Fig. XIII-7 [x(t)] is the random input to a linear, time-invariant

system with system function Wxy /W x , whose output is [q(t)]. By Theorem I we have

1WxyIZ  1Wxy Z

W W (1)q 2 x Wx2  x
x

Rewriting Eq. 1, we have

WxWq = W xy2 (2)

To prove our lemma it suffices to prove that W (w) > W (w) for all values of w.

Assume that there exists a radian frequency wl, with the property that

Wq(Wl) > Wy( 1 ). Using Fig. XIII-7 and Theorem II, we have
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W yx * I * W Wy -W =W (3)
qy W xy W yq q

x x

since Wy x  W and W = WV
yx xy' qy yq

Let us now consider

W =W -W -W +W
y-q y qy yq q

From Eqs. 3,

W - W = 0 for all w
q yq

W -W = W -W for all o
y qy y q

But by assumption

W (Wl) - Wq(Wl) < 0

Therefore, Wyq( ol) is negative. This is impossible because a self-power density

spectrum is always positive. Our assumption is then false, and W > W for all w.
y q

This proves our lemma.

r xy ] " Uxy

(t)() Wxa W = Uy BY THEOREM II
x_ W[

2 2
xy xy

[x (t) U [x(t)J Wea= 2 Wx = BY THEOREM I
x W

Fig. XIII-8.

Given the ensembles [x(t)] and [y(t)], let us now consider choosing the ensemble

[a(t)] so that Wxa = U xy. Such an [a(t)] may be constructed from [x(t)] by passing [x(t)]

through the linear, time-invariant filter of Fig. XIII-8. Our lemma tells us that, in

general,

IWj2
W >a W

x

For our choice of [a(t)],

U W IWxWI
W = xy xa xa

a W W W
x x x
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x,,] 1 6[,,,]

I_ WfX S StdI d
x(t) N W s 2 wxz 0

Fig. XIII-9. Fig. XIII- 10.

Thus Wa is as small as possible for all w. Formula (a) then follows from the fact that

[a(t)] is selected so that W is a minimum for all values of w under the condition that

Wxa = U . Note that W is unique, because U and W are unique. In exactly the
xa xy a xy X

same manner formula (b) follows from the like constraints on our choice of [p(t)], and

wp is also unique.

Next consider the model of Fig. XIII-9. Theorem II tells us that

U iV iU V
W xy xy W xy xy

ap W W x Wx x x

This gives us formula (d). Adding formulas (a) and (b), we obtain

U 2 + V 2

W = xy xy 1 xy 2  (4)
a W W

x x

It follows from Eq. 4 and from our lemma that

W y'W + W (5)

Thus, in general, we must add some process [X(t)] to [a(t)] + [p(t)] so that WVa + = W Y
The process [X(t)] cannot be correlated with [x(t)], for, if it were, Wx(a p + ) would

not be W xy which is required.

We originally postulated that there exists a process [z(t)] with the property that

Wxz = 0. Theorem II and Fig. XIII-10 (with S I = 1, [f(t)] = [x(t)], and S2 an arbitrary

linear system function) show that any linear operation on [z(t)] gives us a possible choice

for [X(t)], since Wx = 0.

Now let Sl = Uxy/Wx and [f(t)] = [a(t)]. Theorem II tells us that

U U
W xy S * Wx xy S 0= 0.

aX 2 xz W 2
x x

If we again change Fig. XIII-10 so that S I = iVxy/Wx and [f(t)] = [P(t)], it follows

that W = 0. This gives us formula (e). Let us now consider

W X W +W +W +W a +Pa +W +W +W +W
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Using formulas (d) and (e), we have

VWa X W= P3X \Xa : W3 0

W = -W a= W a

Therefore,

W = W + W + W (6)

Equations 5 and 6 tell us that we can satisfy the condition that = W' + + W k if we

pick W so that

X Wy - (w a + Wp) (7)

Substitution of Eq. 4 in Eq. 7 gives us formula (c)

W = W - xy

S y W
x

We cannot, of course, conclude that

[y(t)] -[a(t)] + [P(t)] + [N(t)] (8)

However, our usual calculations involving stationary processes only utilize second-

order statistics (i.e., lowest-order correlation functions and their Fourier transforms,

the power-density spectra). For such purposes, we may consider Eq. 8 to be valid.

Thus, when we are interested in second-order statistics only, we can "decompose"

a stationary random process [y(t)] with respect to another process [x(t)]. (This is anal-

ogous to picking one axis of a Cartesian three-dimensional coordinate system along a

vector x, and then decomposing a vector y into its projections on each axis.) The

relations (a) through (e) can then be used to simplify subsequent manipulations.

D. W. Tufts
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F. CANONICAL FORMS FOR NONLINEAR STATISTICAL ESTIMATORS

This report deals with a method for developing nonlinear statistical estimators in

canonical forms. The optimum predictor, filter, coder, and decision operator are

considered for processes that are random and stationary. Discrete processes are

studied first, and then Wiener's representation (1) is used for continuous processes in
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conjunction with a definition of "probability density." In a sense, the method is an

extension of that used by Bose (2).

N. Wiener has introduced a complete set of functionals that are orthogonal with

respect to a Brownian motion. No such functionals are known for arbitrary random

processes, so that it is difficult to design optimum nonlinear predictors (or other oper-

ators) for them.

However, each stationary random process has a characteristic operator that is

easily computed - the operator which when it is operating on any "input" belonging to the

process yields the probability density of this "input" as the "'output." Such an operator

is useful because an optimum predictor - in fact almost any statistical estimator - is

derivable from it.

1. Discrete Processes: Synthesis of the Probability-Density Operator

Consider a time sequence: x, x l, ... xn , as shown in Fig. XIII- 11. We express

the probability density p(xo , x I.... Xn) as a Fourier sum of orthogonal functions each

of which is multiplied by a suitable coefficient. The coefficients are simply the time

averages of the corresponding functions.

4 3 'X3 21 10 t
0

Fig. XIII- 11. A time sequence.

Suppose that p(xo , x l ... xn) is well enough behaved; for example,

(a) 0 < x. < 1 i = 1, 2, ... n.

(b) p(x , x 1 ... Xn) is continuous in x i  i = 1, 2, ... n.

(c) p(xo ,x 1 .... Xn) = 0 when any xi = 0 or 1

Let 1(X), p2 (x) ... be any complete set of functions of x that are orthonormal over

0 -x < 1. That is,

f 1 >0 if i f j

i(x) (x) dx =ij

Then the set of products corresponding to all possible permutations of functions and

variables forms a complete orthonormal set over the n-space [0, 1]n:

Si(Xo, ... Xn) = i (Xo) i (x 1 ) ... i  (Xn), i = 1, 2, .
o 1 n

Hence
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ai i(x ... x n )

i=1

and

ai = ... i(x , ... Xn) P(x ,x, ... xn) dx 0 ... dx1 ' n
x x

0 n

but for an ergodic process this expression for ai is almost always the time average of

~(Xo ... x n).

Thus, to synthesize any such operator we build any set of orthonormal (in the ordi-

nary sense) function generators with adjustable multiplying constants a i . See Fig. XIII-12.

STATIONARY
RANDOM
INPUT

DELAY
LINE

p(x , - -
n )

Fig. XIII-12. Canonical form for p(xo0 1, x 1 ... xn)

To determine a i we average over time the output of i and set a i equal to this aver-

age. (In a quasi-stationary case such an operator could adjust itself automatically to

changing statistics.)

a. Effect of Truncation

Because the base functions used here are not orthogonal in the statistical sense, a

realization of the density operator in terms of a finite number, say m, base functions

does not yield an optimum choice of coefficients.

However, bounds may be calculated for the truncation error. If, for example,

the probability distribution has a derivative that is less than M, then the density

is bounded:

p(x ... Xn) < M

whereupon

p(x o , x ... Xn)
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(Error)2 = p(x ... x) - a i i(Xo(x ... x n )
i=l1

1 1

0 0 p X o.
1 1 rm

< M ... p(x , ... xn) -

0 0 i=l

m

x - a. .(x, ... xn) dx ... dx

i=l

a. i i (x  , ... x )  dx ... dx n1 0 n o n

= MX [mean error squared in the approximation of the volume of

p(xo, .. . xn) by m Fourier terms]

Our choice of coefficients is therefore optimum for approximating the given upper

bound.

Alternatively, if

f00
1

0

P(, ... x n)2 dx o'.. dxn = N

then

1 n)

'" . 0 . p(x .... xn)

0

p(x o , ... xn) a i. i(Xo, • S. n)
i=l
i=1

2

dx ... dxo n

N1/2.. (x ... Xn )

m

i- aii(x,

i=1

4 1/2

xn dx ... dx
'' n o "" n

If p(xo, .. . xn) is smooth enough, it can be represented well by using a small number

of terms. It may be useful here to consider "bandlimited" probability densities that can

be represented without error by a finite number of terms.

2. Least-Mean-Square Prediction

We predict the future, x o , on the basis of n samples in the past, xl, ... xn.
For least-mean-square prediction the expected squared error is minimized.

Hence

(Error)

0
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(Error)2 = (x- x )

where xo is the predicted value of x 0 based on xl, ... xn Differentiating this expres-
A

sion with respect to xo, and setting the derivative equal to zero, we obtain1

-2 (x 0 - Xo) P(Xo, X 1 , ... Xn) dxo =

A f x op(xoX 1 
x .. X) dx 0

X - p(x1 .... X n)

The denominator is a probability density and is realized, as we have shown, if a

sample record of the process is available. The numerator is constructed by first syn-

thesizing p(x o , X1 , ... Xn )' as shown above, then replacing the )ir(xo, ... Xn) terms by

0  (X n dx and leaving the coefficients unchanged. The adjustment makes

use of the "future" which is available on the sample record. For adjustment, the

entire sequence is shifted back in time so that all terms are realizable. In operation,

the predictor does not depend on the future, xo, since all terms containing it have been

replaced by constants. See Figs. XIII- 13 and XIII- 14.

SAMPLE
RECORD OF ALL o ARE ADJUSTED STATIONARY

STATIONARY EQUAL TO TIME- AVERAGES RANDOM

RANDOMCESS OF RESPECTIVE Di INPUT

X r x (x,,. txn)

DELAY I xo
DEY II LINE Yx

xN x .. - X, . CD dx - al

1 02 Xn I

Fig. XIII-i3. Canonical form for Fig. XII-14. Canonical form for predictor:
predictor: adjustment, operation.
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3. Separation of Signals from Noise

Consider a signal sequence, xn ... x l , which has been contaminated by noise (such

as additive or multiplicative) into a received sequence yn... Y1. The least-mean-square
A

estimate, x l, of the present signal, x l, based on the last n received samples, y n... yl

is, similarly to the prediction case

A 0 xl p(x1 ' yl . n) dx1
x- P(Yl ... Yn)

This operator is realized in much the same way as the predictor. A sample record of

the pasts of the received signal and the corresponding presents of the transmitted signal

is fed through a bank of (i(x 1, 1 ... Yn) operators, and coefficients are adjusted to be

equal to time averages, in order to form the joint density p(x 1 , y 1 ' Yn). The factors

containing x I are then replaced by their moments, which yields the numerator. The

denominator is a density operator.

4. Coding

We have a sequence of symbols

--- x 3 , X, x

The symbol xl is occurring now, and we wish to code it into yl in such a way that

yl is statistically independent of the past up to y n. We accomplish this by making

P(Y1 IY2 ...' yn) constant, that is,

p(yl y 2, . Yn) = 1 0 1 l 1

= 0 elsewhere

Suppose we derive yl from x I by a nonlinear no-memory operation F whose
n

form depends on the past, x2, ... xn Suppose that F has an inverse and is

differentiable. Now n

Y = Fx ... x (X
2" n

Therefore p(yl y2 ... yn) is derived from p(xI x2, ... n) by the Jacobian relation:

p(x1 Ix2 ... xn) = 1 0 < yl < 1
p(yl1 Y 2 " Ynn d

P(F (x) = 0 elsewhere
dx x2 ...Xn
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whence

dF x .... x

dx = p(x l x 2 ... Xn)1

Since xl = 0 when yl = 0, upon integrating,

F (x1 )Fx 2 ... x (xn2 n" n

xl

and, since this equals yl,

ox1 p(x '
1 , x2, ... x) dx

0,

0
We realize this in the usual manner, as shown in Fig. XIII- 15.

oi DETERMINED AS IN FIG. 'I -13

01

Fig. XIII-15. Canonical form for coding.

5. Computation of Averages

In order to calculate the ensemble average of the output of an operator, F(x l , ... xn),

when the input is a stationary random process, we express both the operator and the

density in orthonormal expansion:

P(X 1' ... xn ) =
1

F(x 1 , ... x )=1
1

b. i (xl, .. . xn )

0 -< yl < 1

DELAY
LINE -

p(x' x2' ... Xn) dx'

p(x'1, x2 ... xn ) dx'1

a.i Di (x l ... Xn )
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Then

F(x 1,... x n )

1
0

1

"" 0 F(x , .... xn) p(x l , ... xn ) dx ... dx

0

= a.b.
i

that is, the scalar product of the two (since the c. are orthonormal).
1

6. Application to Decision Theory

It is required that we decide on the basis of a received signal which of two sources

is transmitting. Moreover, the decision must be made as rapidly as is consistent with

a probability less than E of making a wrong decision.

Assume that the sources generate stationary random discrete processes, as follows:

A Priori
probability

k

1 -k

Characteristic probability
density for a sequence of
n samples

Pl(X1 ... xn)

p2 (xl, . Xn)

From Bayes' Rule

kp (x 1 , .. . xn)

kpl(x 1, ... xn) + (1 -k) p 2 (x 1 , ... xn)

and

P(s 2 x  .. x n) 1 - P(s Ix, . xn)

where P(s 1 x l, .. xn), P(s 2 x 1, ... xn) are the a posteriori probabilities of s 1 and s .

If we decide in favor of the larger probability, then the smaller is the probability of error,

P(error).

Suppose that the characteristic source densities are different enough and n is large

enough so that for a decision based on n samples, almost always,

P(error) < E

Very often, however, an adequate decision can be made after receiving only m

samples with m << n. We should like, therefore, to keep track of, say, P(s 1 x 1 , . . xm)

as m increases from 1 to n, and decide only when this quantity comes within E of

either 0 or 1.

Source

s1

s2

P(s 1 I ... x n) =
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RECEIVED
SIGNAL / P l (x, xn ) z=P(sl/xl, Xn)

P2(X xn) Ik IF z . < I- - WAIT

I < z - DECIDE s i

0 < z < - DECIDE s
2

Fig. XIII- 16. Decision operator.

To build such a decision operator, we synthesize a density operator for each source

experimentally, as described above, and use them as shown in Fig. XIII- 16.

7. An Alternative Method for Estimators

In the method that has been outlined for putting estimators into canonical form the

same set of coefficients is used in every case, while the canonical form is varied. The

coefficients characterize the process.

Alternatively, the same canonical form might be used for every process, and the

coefficients varied. (This is the more usual approach.)

Thus for the optimum predictor,

Sx 0 p(x, ... Xn) dx
o p(x1, . ... xn)

Now if is well enough behaved, then we can expand it as follows:

00

S= b. m.(x 1 , ... x)Xo bi 4Di 1 n

i=1

with

1

b.

0

W0

x

0

1

i (x  ... x ) dx d dx

lX n)  P(x ,x .x ) dx dx .. dx
p(x1 . xn) 0 1 n 0 1 n

x p(x . . x )
p(x1, . n)

For an ergodic process,

experimentally if a p(x l ,

this is a weighted time average of 4Qi that can be obtained

x) operator is available. The method is outlined
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SAMPLE RECORD
OF PROCESS

DELAY
LINE

Fig. XIII- 17. Determination of coefficient b i for predictor.

PROCESS

x2

DELAY
LINE

b2 x0

Fig. XIII-18. Canonical form for an optimum predictor.

in Figs. XIII-17 and XIII-18.

8. Estimators for Continuous Signals (3)

In the discrete case the optimum predictor is a function of the past which, for any

past, gives the moment of the conditional probability of the future. It is tempting to

look for a similar "functional" in the continuous case.

Our method for putting the discrete predictor into canonical form depends essen-

tially on having

(a) A complete set of orthonormal functions in a coordinate system, (xo , X 1, .. Xn)

and

(b) A joint probability density p(xo, x 1 ... Xn) of the past, (x 1, ... Xn), and future,

xo, in this coordinate system.

In the continuous case we shall use the coordinate system for classifying pasts that

N. Wiener (1) has developed. We shall define a probability density of pasts with respect

to this coordinate system, and put statistical estimators - in particular, the optimum

predictor - into a canonical form by using a complete set of orthonormal functionals

(Wiener's "Hermite-Laguerre functionals") in this system. Although functionals are used

in place of functions, and the coordinate system is different from that used in the

100

,x 0

- x
2

Lx,

Xi ' X
n
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discrete case, the procedure is entirely parallel to that in the discrete case, and the

same diagrams are applicable.

9. Probability Density for a Continuous Process

The definition, which will be given in this section, of the probability density of a

function of time which belongs to a continuous process X amounts, roughly, to this:

Given any such function x(t), we enclose it in a sequence of decreasing "strips" each of

which is delineated by a series of marker points. See Fig. XIII- 19.

0 t o t 0 t

Fig. XIII-19. A function of time with decreasing "strips" which surround it.

The "weight" of any "strip" is the probability that a Brownian motion will lie inside

its marker points. The "probability density" of x(t) is the ratio of the probability that

a member of X will lie inside the markers of a "strip" to the "weight" of that "strip"

in the limit as the "strip" width approaches zero.

Using the notation of Wiener (1), we map each past into a point a on the unit interval

[0, 1]. Aside from excluded sets of pasts and points in a (all of measure zero), this

mapping is 1-1 and onto. The length of any subset of points a is the probability with

which the corresponding past occurs in Brownian motion.

A similar mapping, P, is made, by using the probability of occurrence in process X.

Then, if a is an excluded point, define the probability density of a as p(a) = 0.

If a is not such a point define it as

p(a) = lim
n--co n

th
in which Aa is an open interval in the a line, formed in the n stage of the subdivision

n

of pasts (as described by Wiener) to which a belongs, and APn is the corresponding

interval in p.

Only those processes are considered for which p(a) exists for all a.

10. Averages of Functionals

If F(a) is a functional of pasts, a, belonging to a Brownian motion, then its

ensemble average is

101
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F(a) = F(a) da

Similarly, for process X,

1

F(P) = F(p) dp

Formally, therefore,

F(P) =

0

F(a) " dada

Unfortunately dp/da does not, in general, exist.

F(P) =

0

However, if p(a) exists, then

F(a) p(a) da

11. The Probability-Density Operator in Canonical Form

Wiener's Hermite-Laguerre functionals, denoted by (I(a), are a complete set that
2

is orthonormal over a. Hence, provided that p(a) is L , we have

00

p(a) ~ a i  i ( a )

i=1

where - denotes that the representation is valid in the "limit-in-the-mean" sense. The

Fourier coefficient a. is given by
1

a. -

This is an ensemble average, and, for an ergodic process, it equals the time average

of 1.(a).
1

We can therefore construct p(a) exactly as p(x 1, .. xn) was constructed in the dis-

crete case, substituting i.(a) for (i(X 1 , ... X n).

12. The Joint Probability Density of Past and Future

For prediction, a joint probability atnsity of past and future is required. This is

defined (see Fig. XIII-20) as

102

p(a) 1i(a) da
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if a is an excluded point

P(A n, Az)
lira

n -.-oo Aan) Az
A- 0

elsewhere

where Aa n , AP are intervals of order n [as in the definition for p(a)] for Brownian

motion and X, respectively; Az is an interval to which z belongs; and P(APn, Az) is the

PAST

FUTURE,
T UNITS

/ AHEAD

" t

Fig. XIII-20. Past and future of a member of X.

probability that process X has a member whose past, p, is in APn, and whose future,

z, is in Az.

Only those processes are considered for which p(a, z) exists and is unique for all a.

13. Mixed Functionals

The function p(a, z) depends on a function (the past) and on a single coordinate (the

future). Such a function is referred to as a "mixed functional."

14. Canonical Forms for Mixed Functionals

A "mixed functional" F(a, z) can be expressed in a polynomial-integral form as

F(a,z) -

m, n= 1

00

-o :0 Kmn (T 1, . Tn ) dx(a, T 1 ) ... dx(a, Tn)

where x(a, t) is the function of time, t, which corresponds to a.

expansion is

F(a, z)- a..ij

i, j=l

An orthonormal

1i(a) W.( z )
J

where Pi(a) are the Hermite-Laguerre functionals; '.(z) is any complete
I 3
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p(a,) = 0

set of

00
. . . : 

0
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orthonormal functions of z; and

oo 1

a.. = f F(a, z) Ii(a) ~.(z) da dz

In particular, when F(a, z) = p(a, z) in these expressions, a canonical form is

obtained for the joint probability density of past and future; a.i is the time average of

i(a) '.(z); and the realization of p(a, z) is entirely analogous to that for p(x, . .. xn ) in
J

the discrete case.

15. Canonical Form for the Predictor

The expected, squared, prediction error is

(error)2 = [z -z (a)]2 p(a, z) dz

in which z(a) is the predicted value of the future, z, based on the past, a.

This error is minimum, just as in the discrete case, when

Szp(a, z) dz

2(a) = p(a)

The canonical form for z(a) is derived from the forms for p(a, z) and p(a) in a

manner that, again, parallels the derivation of 0from p(x , 1 .. x ) and p(x, x
in the discrete case.

16. Conclusion

The method of synthesizing statistical estimators which is presented here is useful

in that it allows any set of orthonormal functions (in the discrete case, or functionals in

the continuous case) to be used as the basis for expansion. The same set of coefficients

which characterizes the process appears in the canonical forms.

The definition of probability density for an arbitrary process emphasizes the impor-

tance of Wiener's representation as being not merely a method of analyzing nonlinear

systems subjected to Gaussian inputs, but a "coordinate system" for nonlinear problems.

G. D. Zames
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