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A. PERTURBATION FORMULA FOR FERRITE-FILLED CAVITY

Conventional perturbation formulae for cavities containing ferrites (1) usually start

with the unperturbed cavity free of ferrite. The perturbing effect of the ferrite on the

cavity modes is taken into account solely through the use of effective permeabilities

(which include the demagnetization factors). Such an approach is adequate for all sys-

tems in which the stored energy is changed only by a small amount from the value com-

puted from the empty cavity modes in the absence of the ferrite. In cases in which the

ferrite stores substantial amounts of energy, for example, in a magnetostatic resonance

of the ferrite, the conventional perturbation approach fails.

In an attempt to derive Suhl's expression (2) for the semistatic and static operation

of the parametric ferrite amplifier by perturbation theory the author developed the per-

turbation formula reported here.

Denote by E , h , and m the electric field, small-signal magnetic field and mag-

netization of the mode o of the unperturbed lossless system, enclosed by a perfect elec-

tric conductor, that resonates at the frequency 2 . These fields satisfy the equations

VX E = - j 0 L ° + m ) (1)

VX t. = j0 EE (2)

The electric and magnetic fields satisfy the boundary conditions on the conductor

nX E0 = 0; n . h = 0 (3)

where n is the normal on the conductor. The magnetization m fulfills the small-signal

ferrite equation

jo m o = - y0l(Mo X ho + mo X Ho) (4)

The dielectric constant E will be assumed to be a scalar. Consider now the same sys-

tem perturbed by an electric current distribution J and a magnetic current distribution

JM. The fields now satisfy the equations

V E = - jo(h + m) - JM (5)
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7 X = jwcE + J (6)

and the magnetization m still fulfills the relation

jm =- y(M 0X h + mX H) (7)

The boundary conditions on E and h on the perfectly conducting enclosure remain

unchanged.

We now dot-multiply Eq. 5 by ho , Eq. 6 by -Eo, the complex conjugate of Eq. 1

by h, and that of Eq. 2 by -E. Adding the resulting equations, integrating over the

volume r of the perfectly conducting enclosure, using Gauss' theorem and the boundary

conditions on E o , ho , E, and h, we obtain

0 -j(-o) (~h h + EE Eo) dTf-*-- :'

M o 0

Now, we transform the second and third terms in Eq. 8. Dot-multiplying Eq. 7 by

ho , the complex conjugate of Eq. 4 by h, and adding the two equations, we obtain

jom • h - jo m  h= -YI [m x H h +m XH •h] (9)

On the other hand, multiplying Eq. 7 by mo, the complex conjugate of Eq. 4 by m, and

adding the two equations, we obtain

j(.- [)m mo - [Mo x h m +M Xh 0m] (10)

But Mo is parallel to H and

o -
Mo H (11)oH o

0

Introducing this relation into Eq. 10 and comparing the results with Eq. 9, we find that

S_ , H -
jwm h0 - j2 m - h - j(c - 0 )m mo (12)

0

Finally, if we introduce this expression into the perturbation formula (Eq. 8) and solve

for w - Q2, we obtain

S EE E + h + om - m d
So o o oo
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If the perturbation is small and we are studying a resonance in the neighborhood of 2,
O0

we can replace E, h, and m in the denominator of Eq. 13 by Eo, ho, and mo and

obtain

w- -j J h dr+ J -E d

IH 
rh d(14)S( , -° H0 o EE E + h + m m dT

0 o o o o M oo o
0

Equation 14 shows that in the analysis of magnetostatic operation, the stored electro-

magnetic energy must be supplemented by the term

i H omo " o
f M 4 * m dT

This term can be recognized as the energy required to deflect the magnetization vector

M from alignment with M and H by the angle Im /M .

If we start with Eq. 14, we can derive Suhl's formula for the semistatic and static

operation of the parametric amplifier with little effort. In conclusion, it should be men-

tioned that a relation of the form of (Eq. 12) was first discovered by Mr. D. L. Bobroff,

of Raytheon Manufacturing Company, who used it for proofs of orthogonality.
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B. SMALL-SIGNAL ENERGY THEOREM FOR BEAMS WITH ZERO CURL OF

GENERALIZED MOMENTUM

The energy theorem of the theory of passive electromagnetic systems (1) relates the

frequency derivative of the fields to energy storage. A corresponding theorem can be

devised for the small-signal excitation in an electromagnetic system that contains an

electron beam or an electron-space-charge cloud with zero curl of the generalized

momentum. This theorem can be used, inter alia, to relate the group velocity of a

small-signal wave excitation to the power and energy in that wave.

The fundamental equations (2) of a single velocity space-charge cloud with zero curl

of the generalized momentum and a time variation ej °t are

(a) the force equation,

e- (1)
V(v u) - wu + - E (1)o m
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(b) the continuity equation,

v oV J = - jwo( - po) (2)

(c) and the two Maxwell equations,

Vx = - jwoHF (3)

Vx = jWEoE + J (4)

in which no subscripts are used to indicate small-signal ac terms, and the subscript o
is used to indicate the time-average components. The velocity I is the Eulerian veloc-

ity. J includes the ac surface current Por l n on the beam surface (where n is the
normal to the beam surface, and rl is the small-signal displacement of an electron in
the surface). In order to derive the energy theorem, we take the derivatives of

Eqs. 1, 2, 3, and 4 with respect to w. Then, we dot-multiply the resulting equations
m -* m -*-

by eJ ' e u , and -E , respectively, and add them. To this result we add the
complex conjugates of Eqs. 1, Z, 3, and 4, after having dot-multiplied them by

m 8J m u 8H aE
e 8w' e 8w' 8 , and - , respectively. We obtain

i 8E -* -* 8H m - 8 U* m .- - 8J- X H +E X +-v - J +-v u4 8a 3W e o aw e o aw

- -* m- -* m-* - m - -*
4 j oH ' H + EoE - E + -- u . J +--u J-- e Po u u(5)

This is the energy theorem. On the left-hand side, terms similar to power-flow terms
appear, except that in each term one of the small-signal factors is differentiated with
respect to w. On the right-hand side, the sum of the electromagnetic energy and the
small-signal kinetic energy (3), multiplied by j, appears.

As one application of the energy theorem (Eq. 5) we may consider a Brillouin space-

charge cloud inside a magnetron cavity under small-signal excitation (zero anode cur-

rent). The cavity opens into a uniform waveguide within which a steady state is main-

tained at the frequency w. The walls of the magnetron cavity, the waveguide, and the

cathode are all assumed to be lossless. The waveguide field at the reference plane

within the waveguide may be characterized as

E = Ve and H = Ih (6)

where e and h are the frequency-independent field patterns of the dominant waveguide

mode. The admittance Y is defined by

I = YV (7)

Now suppose that the frequency of excitation is changed by do and that I is kept

constant. Integrating Eq. 5 over the magnetron cavity up to the waveguide reference
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plane, we obtain

a-m Y-J + - p u
SIV Iv =- j L HoH H + E0 E E +- e- (u J + u J- P) dv (8)

All other terms have dropped out, since the boundary conditions have to be satisfied at

the frequencies w and w + do. Over the entire surface of integration, n • J and 8J/8aw n,

where n is the normal to the surface, are zero. Equation 8 shows that 8Y/8w is pure

imaginary. Its sign is determined by the sign of the total small-signal energy, electro-

magnetic and kinetic. Thus 8Y/aw is negative imaginary when the energy is negative.

Now we turn to another application of the energy theorem. In a uniform lossless

system containing an electron beam, consider a wave with the dependence e - jpz, with

p assumed real. We factor the common z-dependence from all field quantities, and

indicate the remaining vector functions of x and y by a circumflex mark. If we apply

the energy theorem (Eq. 5) to the fields of the wave, we have

8 8H m -

7 XH +E X +-v J
aw aw e o 8w

m- * j [ ^*
+-v u + E X H

+e o o -

/ ̂  ^ ^ A* m ^ m A m u- *(

=-j H  H + E EE +-e u J +- u J-e Po u (9)
o e e e o

If we integrate Eq. 9 over a cylinder bounded by the perfectly conducting boundary of

the system (or by a cylinder at infinity), and by two reference planes, separated by a

distance L, the first term on the left-hand side integrates out to zero. We obtain

dw P (10)
d3 w

where P is the small-signal power, electromagnetic and kinetic (2).

S^ m - *P =-Re EX H + -v )J da (11)
2 .e e o

cross section

and w is the small-signal stored energy per unit length

S* * m ^* A* m (1)
w= L H - H + E E ( J + u J)- po " da (1Z)

o o e e o

Thus 8aw/8p has formally the significance of energy velocity. Note, however, that

w can now assume negative values.

H. A. Haus
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C. KLYSTRON GAP THEORY

The small-signal longitudinal interaction of an electron stream with the electric

fields of a gap can be represented, for convenience, by a three-port network, as shown

GAP FIELD E, (z,o)

DRIFT TUBE , ELE,

d d

Fig. VIII-1. Electron-stream interaction
with electric fields of a gap
and small-signal equivalent
circuit.

- V +

+ LINEAR +
V

I  V
2THREE- PORT

in Fig. VIII-1. The theoretical development of this problem was reported in the

Quarterly Progress Report of July 15, 1958, page 49.

of the evaluation of the gap matrix elements,

V yll
12 = Y

I Y31
Lgi 31

Here we shall give the results

0 y13  VlI
YZZ Y23 I

Y3Z Y3 Vg

Consider a system consisting of a gap and a gap electric field with symmetry about

the z = 0 plane, as shown in Fig. VIII-I. The matrix elements of Eq. 1 can be

expressed in terms of the Fourier integrals or of the normalized field (1).

3 = E(O, p) ejO dO
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and

y= - je E(O, p) eJ 6 dO (3)
00

both of which are real functions. The parameters 3 and y can be evaluated if the elec-

tric field at the gap, Ez(z, a), is known, or they can be measured in an actual gap system

by a perturbation technique. The matrix elements and their designations are:

Drift coefficients (0d is the normalized distance of the gap field extension)

-jzed

Yll = Y22 = e (4)

Coupling coefficients

-j d
Y13 = Y3 = e (5)

Bunching admittance

1 G (j ) e d
21 Z Go(Zd) e d

Induced-current admittance

Y23 31 = Go(y + j 0 dp ) e-6d (7)

Electronic-loading admittance

Y 1 Go(y p + jZb)
33 oZ 0e

be = Re dE(, p)J_ O d(- ) E(, p)e-

in which G = I /V is the de beam conductance, and all other quantities are as pre-

viously defined (1).

The equivalent circuit at the gap-circuit terminals follows directly from the kinetic

power theorem and has been given previously (1). When the gap circuit is terminated in

a passive admittance Yc (Fig. VIII-Za), the gap terminals are loaded by the electronic

loading admittance (Eqs. 8), and driven by current generators that are proportional to

the excitations present in the incoming electron stream, as shown in Fig. VIII-Zb. At

the same time, the electron-beam kinetic voltage V 1 and beam current I I undergo a

transformation that can be represented by a linear two-port, as in Fig. VIII-Zc.

For convenience, let

Z = (Yc + Y 3 3 ) 1 (9)
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1
Ge =Re (Y 3 3 ) = GoY (10)

(11)

and

Pd

Making use of Eqs. 1 and 4 - 8, and of the definitions that have been given, we obtain

the following description of the electron-beam two-port network of Fig. VIII-Zc.

V A(Z)= (A
2 /C

B -j2ed V1
e (

D / 1

A = D = 1 - (G+Z)(l + j)

B = G (GeZ)
eQ

G
C = - (G e Z)(I + jW)Z]

In the important case of a resonant circuit, we have

1 1

G (+ 1)

where G = G c Ge is the total gap conductance; and X =

Fig. VIII-2.

- Vg +

Y33
= 

Ye

- aVI

-01

I ,
+ LINEAR +
VI V2TWO - PORT

(16)

2 2
s +

0 is the normalized
2as

(a) Gap circuit terminated in
a passive admittance.
(b) Equivalent circuit at the
gap terminals.
(c) Equivalent circuit at the
beam terminals.

with

(12)

(13)

(14)

(15)
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frequency parameter with wo the loaded resonant frequency, and a the loaded damping

constant. Three special cases of varying circuit loading with respect to beam loading

are:

a. Lossless circuit with G = 0
c

(1 + j)
A= 1- (17)

(X+l)

2
B 1 (18)

ef (X+1)

Ge (1 + j4)Z

C = j2 - (19)
P (X+ 1)

b. Lossy circuit with G >> Gek

GeA (1 + jp)
A - 1 G (20)

c (X+1)

B z
B G (21)

c (X+1)

P c (X+ 1)

c. Loss loading = beam loading with G = Gek

1 (1 + j4)
A = I z (23)

B = - P - (24)
eG (X+ 1)

Ge j, 1 (l + j ()
C= - 24 ) (25)

Most gaps that are of interest have (P 2/Ge) >> 1 and - 1. For such gaps, in

all of the cases that we have mentioned, C 0 is a good approximation. For case

2, in which the circuit conductance is much larger than the electronic conductance,

we may also assume that A = 1. Only for this case can we approximate the two-

port network of Fig. VIII-Zc by a series admittance that is equal to the circuit

admittance, as shown in Fig. VIII-3 (for convenience, exp (-j 2 0
d ) is omitted).
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G
c >> Gee

II Yc 12I  C 2

+zz+
V, V2 B _- 

2 
Z C

C ~O

Fig. VIII-3. Approximate equivalent circuit for
the electron beam when electronic
loading is negligible compared with
circuit loading [exp (-jZ d) phase
shift omitted].

C 0  D 0 k 0 e 
j 2

9
d

(AO Do) x (0  kO) x (0 e-dO

I 12
+ LINEAR IDEAL IDEAL +
VI I PHASE V2BILATERAL AMPLIFIER SHIFTER

Fig. VIII-4.

1. Reciprocity

From Eqs. 12 - 15, we have

AD- BC = 1 - ZGe£Z = k

Equivalent circuit for electron beam interacting with
passive circuit fields.

(26)

The linear two-port network of Fig. VIII-Zc is reciprocal if k2 exp(-j 4Od) = 1; this will

be so when 0d = 0 and k = 1. It is interesting to note that when k = 1, but 0d * C, the
two-port network of Fig. VIII-Zc can be considered as reciprocal with respect to a
reversal of the direction of flow of the electron stream. Two such cases occur when
Z = 0 (which is a drift region) and when Gef = 0. In the general case, Eq. 12 can be
rewritten (2) as

'V( 2 o
12 1 , o

B

D)

-jZ6d Vl)
k e

1II

(27)

where Ao = A/k, Bo = B/k, and so forth; and therefore we now have A D - B C = 1.
The representation that is equivalent to Fig. VIII-Zc is as shown in Fig. VIII-4. The

location of the ideal amplifier and phase shifter is arbitrary.

A. Bers
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