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A. MATHEMATICAL DESCRIPTION OF AVERAGE EVOKED RESPONSES IN TERMS

OF ACTIVITY OF NEURAL UNITS

In many electrophysiological experiments evoked responses to sensory stimuli are

recorded by means of gross electrodes. Interpretation of the mechanisms that underlie

these evoked responses has been aided by the use of a mathematical model that relates

the integrated activity that is recorded by a gross electrode to the temporal pattern of

unit activity (1).

The model is statistical and deals with statistics of the evoked response as a function

of time. Since the model treats the evoked response as a time-varying random process,

the response must be viewed as a member of an ensemble; statistical measures are

obtained from averages taken over the ensemble. Realization of the ensemble in an

experimental situation may pose some practical problems. For example, it may be

made up of the responses recorded from a set of cats to which an identical stimulus is

delivered at the same time; or, more practically, it may be formed by repeatedly

recording responses from a cat that is maintained in a steady physiological state for

all stimulus presentations - a situation that is experimentally achievable under certain

conditions. Recently, in fact, such average responses have been useful in many of our

studies of bioelectric activity.

The following assumptions permit us to state the model in its simplest form:

1. There are N neural units that contribute to the response recorded by a gross

electrode. (A neural unit is not necessarily a neuron; it may even represent the activ-

ity of groups of neurons.)

2. The units behave in all-or-none fashion. They either discharge or do not

discharge.

3. When a unit is activated for a time t = 0 it contributes a potential U(t) to the

response seen by the gross electrode. U(t) is not necessarily the action spike, but
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may have components that correspond to the "slow" potentials that may follow a neural

discharge. (It should be emphasized that U(t) is the potential at the gross electrode

that results from a unit discharge, and not the potential that would be seen by a micro-

electrode at the unit.)

4. The N units form a statistically homogeneous population.

5. The potentials that contribute at the location of the gross electrode sum linearly.

The expression for the average evoked electrode response will now be derived; higher

moments can be obtained by a similar procedure.

An average discharge rate P(t) is defined in such a way that the average number of

unit discharges between times t a and t b is given by

ab

N fb P(t) dt

a

If tt -b is larger than the average refractory period of the neural units, b P(t) dt

a
may be greater than 1. a

We are often interested in the stimulus-generated time pattern of the activity of

neural units. Since our datum is, however, the average response, we must infer from

it the average discharge rate, P(t).

Consider time to be divided into small intervals A, of uniform duration A seconds.

The interval A is assumed sufficiently small so that P(t) and U(t) will not change

appreciably during the interval. The contribution of units that fire in the k t h interval

to the response measured during the nth interval is U(nA - kA) for n > k. The number

of units firing in the k t h interval is NP(kA)A. The average response is then obtained

by summing contributions from all discharges prior to time nA, and is expressed as

n

A(nA) = X NP(kA) U(nA-kA)A

k=- oo

Allowing A to approach zero, nA = t, and kA = T, we obtain

A(t) = N P(T) U(t-T) dT

Hence the average response A(t) is the convolution of P(t) and U(t). This result is a

generalization of Campbell's theorem (2, 3, 4) employed in the description of shot-effect

noise.

The assumptions given above that lead to this simple mathematical statement are

known to be far removed from actual experimental conditions. However, the expression

does not change significantly when we deal with inhomogeneous populations whose units
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give rise to nonidentical unit potentials or when we make use of weighting functions to

account for the distance of different units from the electrode.

It should be clear that this model does nothing more than relate average responses

that are recorded by gross electrodes to the time pattern of the activity of single units.

There is a similarity between the mathematical procedure employed here and that used

by Frishkopf in studying the neural elements at the periphery of the auditory nervous

system in terms of the statistical properties of gross electrode activity (5).

M. H. Goldstein, Jr.
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B. AVERAGE RESPONSE COMPUTER (ARC-1)

In neurophysiological experiments we often want to measure the evoked electrical

response to a given stimulus. This response is frequently obscured by the spontaneous

activity of the system. One method of eliminating the effect of this activity is to repeat

the stimulus many times and average the resulting responses. An adaptation of the

autocorrelator that enables it to carry out this averaging process has been described

by Barlow (1).

An electronic instrument specifically designed to compute evoked response averages

over many stimuli, which was built at Lincoln Laboratory, uses digital transistor

circuits for processing experimental data and is fast enough to compute and display

results while the experiment is in progress. Figure XIV-1 shows the principal parts

of the system in block diagram form. The ARC is triggered into action by a signal

derived from the stimulus. After a specified initial delay period, the ARC causes the

analog-to-digital converter to sample and quantize the response waveform at a large

number of points separated by uniform time intervals. The set of 8-bit binary numbers

thus produced is added into a corresponding set of 18-bit accumulating sums held in a

ferrite-core memory. As this process is repeated for many stimuli, the average

response emerges from any background activity or noise which is not "time-locked" to
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Fig. XIV-1. Block diagram of average response computer. (ARC-1).
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Fig. XIV-2. Single responses and the average of
64 cortical responses to acoustic
clicks (35 db above the threshold of
the electrical response). Clicks
were presented at a rate of 1 every
2 seconds. Recordings were taken
with a gross electrode from the
surface of the auditory cortex of an
unanesthetized cat. Peak-to-peak
amplitude of top trace, approxi-
mately 500 1 v.
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Fig. XIV-3. Single responses and the average of 1024 responses to
click stimuli at a second repetition rate of Z00/sec. Same
physiological preparation as given in Fig. XIV-Z. Peak-
to-peak amplitude of top trace, approximately 2. 5 pv.
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Fig. XIV-4. Emergence of an average response from background
activity as the number of averaged responses is
increased. The data used here are from the same
run as those in Fig. XIV-3.
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the stimulus. The results can then be converted to equivalent voltages and displayed as a

set of points on a cathode-ray tube or xy plotter, or can be punched out as 18-bit binary

numbers on paper tape.

The initial delay, the interval between successive samples, the number of samples,

and the number of responses to be treated can be specified by means of switches over

the following ranges:

initial delay: 0 to 2. 62 sec in steps of 10 jsec

sample interval: 80 4sec to 2. 62 sec in steps of 10 sec

no. of samples: 1 to 254

no. of responses: 1 to 262,144

In a second mode of operation, the ARC compiles a frequency distribution of amplitudes

at a specified time following the stimulus and displays this distribution in histogram

form. Figures XIV-Z and XIV-3 show the results of trial computations, photographed

directly from the face of the display cathode-ray tube. Figure XIV-4 illustrates the

emergence of a well-defined average response as the number of added individual

responses increases.
W. A. Clark, Jr.

(Lincoln Laboratory)
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