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A. STUDIES OF WOODWARD'S UNCERTAINTY FUNCTION

The function

00

00

u(t - T/2) u (t + T/2) exp(-jwt) dt

was introduced by Ville (1), and its significance with respect to the quality of radar

measurements was suggested by Woodward (2), and enlarged upon by Siebert (3). For

some time we have been studying the mathematical properties of this function - with the

hope of ultimately devising the necessary and sufficient conditions that a function of two

variables be representable as in Eq. 1. Such conditions might prove useful in evolving

a theory of radar synthesis. The results obtained thus far are summarized below.

Proofs are presented only when the method of proof is not obvious.

Definitions

1. We assume that u(t) is a reasonably well-behaved, complex-valued function of

the real variable, t. In particular, any integrals involving u(t) are assumed to exist.

2. We define

00

* 1
U (w) = 0

-oo

so that

00u(t)

uo

3. We shall call a complex function O(T,W) of two real variables, T and w, a

0-function if and only if there exists a function u(t) which is such that O(T, ) may be

represented as in Eq. 1.

4. We shall call a real positive function 4(T,W) of two real variables, T and w, a
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4-function if and only if there exists a function u(t) which is such that

(T, )= 0(T,0)Z = u(t - ) u t +-) exp(-jot) dt 2  (4)

Theorems

1. O(T,o) = 0 (-T,-W)

2. If O(T,W) is a 0-function, it has the additional representations

O(T, w) = U (L - (H +- exp(-j.r) dt (5)

and

0(T, W) = U(p-T) U( -- w) exp(-j pp) exp[(joT)/2] da dp (6)

1/2(2r1) -o

3. If 0(T,W) is a 0-function corresponding to u(t), then (1/a) (O[aT., (w/a)]) is a 0-

function corresponding to u(at).

4. If O(T,W) is a 0-function corresponding to u(t), then O(T,W + 2kT) is a 0-function

corresponding to exp[jkt2] u(t).

5. If O(T,W) is a 0-function corresponding to U(w), then O(T + 2aw,w) is a 0-function

corresponding to exp[jaw ] U(w).

6. If O(T,W) is a 0-function corresponding to u(t), then cos 4 0( sin 4+ T cos 4,

W cos 4 - T sin 4) is a 0-function corresponding to the time function

t tan 4 1 0 o2 tan 4 t
exp j U () exp (-ij exp do

2 (z 1/2 z cos

In other words, the property of being a 0-function is independent of a rotation in the

coordinate axes.

7. If O(T, ) is a 0-function, then along any straight line through the origin

{[O(T,w)]/[0(0, 0)]} has the properties of a characteristic function; for example,

00

0(T cos 4, -T sin 4) ejT dT > 0 (7)

for all - and w.

8. A necessary and sufficient condition that 0(T,w) be a 0-function
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is that

1
21T

-00

0(T,W - I) exp j dT

shall factor in the form f([) f (w). If this condition is satisfied, then U(w) can be iden-

tified with f(w).

Proof:

Necessity follows directly upon substituting Eq. 5 into Eq. 8. To prove suffi-

ciency, assume that Eq. 8 factors and set = - (p/Z) and C = 4 + (p/2). Then we have

00
-c

f ) f + exp(-j () dc = (T, p) exp(jT) d exp(-j)df -0 - exp(-jdT) exp ) =

= (J, p)

which is valid if f(w) is identified with U(w).

9. An equivalent necessary and sufficient

00

2Tr
00

condition that O(T,W) be a 0-function is that

(T - p, w) exp j( do
2

factor in the form

f(p)f (( )

If this condition is satisfied then u(t) may be identified with f(t).

10. If 01(T, ) and O2 (T,wo) are both 0-functions and neither is identically zero, then

O(T,O) = 0 1 (T,W) + 0 2 (T,W) is a 0-function if and only if 01 (T,w) = CO2 (T,c), where C is a

constant.

Proof:

The sufficiency of the condition is obvious. Necessity follows from Eq. 8

because we must have U()U= (w) = U () + U2 (i) U*2 () for all .I and w. It is

easily shown that this can be true only if Ul(4) is proportional to U 2 ( ±); that is, if 0 1 (T,)

is proportional to 02 (T, ).

11. If 1 (T,w) and O2 (T,w) are both 0-functions, then both

00

0'(T, w) =

:0o

0 1 (t, ) 02 (T - t, w) dt

and

(10)
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00

0"(T,) = o 0 1 (T ) 2 (T, - ) d (11)

are also 0-functions. In the case of (10)

:U(w) = U 1( ) U 2 (W)

and in the case of (11)

u"(t) = u l (t) u 2 (t)

Theorems 3, 4, 5, and 6 also apply, with obvious modifications, to -functions in

place of 0-functions. In particular, the property of being a -function is independent of

a rotation in axes. Other theorems are:

12. If r(T,w) is a -function, then (T,W) is its own two-dimensional Fourier trans-

form, i.e.,

21 J (T,w) e e d dw = i(p, p) (12)

-oo

13. If i(T,o) is a -function, then

oo

-ff r (T, ) dT dW = (0, 0) > W(T,) (13)

-o00

14. If l(T,w) and p2 (T,w) are both i-functions, then

k(T,W) = Y1 (T1,W) + J2 (T,W)

is a -function if and only if 1(T,0W) = CL 2(T, W) where C is a real constant, > -1. The

proof depends on arguments similar to those involved in Theorem 10. The significance

of this theorem is that it proves that the condition of Theorem 12 is not sufficient.

15. If y(T, ) satisfies condition 12 and a fortiori if 4J(T,W) is a i-function

-oo f (T 2 - , - ) g(T 1 , W ) g '(T;,W 2 dT 1 dT 2 d d dw >o2  0

for any function g(T, W).

16. If J 1(T,w) and LZ(T,W) satisfy condition 12 and a fortiori if l 1 (T,o) or 2(T,W)

are -functions, then
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W(T, ) = 1 (t,cw) 42 (t - T, w) dt

also satisfies condition 12 but is not necessarily a p-function.

Necessary and sufficient conditions for (r,W) to be a q-function have not yet been

discovered.
W. M. Siebert
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B. CODING THEOREM FOR FINITE-STATE CHANNELS

Proof will be given that finite-state channels obey a slightly weakened version of the

fundamental theorem for noisy channels (1). First, we define a finite-state channel (see

Fig. X-1) by the following properties:

1. At any time the channel is in one of a finite number of states;

2. The state transitions and outputs are governed by a fixed set of probabilities,

Pr (yisS xsl) , defined for each output, yi E Y; for each input, xk E X; and for each

pair of states, sj, sk E S. (Throughout the paper, superscripts denote time; subscripts

denote particular letters.)

The simplest example of a finite-state channel is a channel in which both the trans-

mitter and receiver know the channel state. We can show that the maximum information

through this type of channel can be achieved by sources in which the probabilities of the

Xo Yo I I x, y I
XoYI 2

x, yj* - Xo Yo 2

Fig. X-1. Finite-state channel ("billiard-ball"). The third number

on each transition line is Pr (y s lxks')
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q = I - p XoP

Fig. X-Z. Finite-state source. The second letter on each

transition is Pr ( r? rk1.

x0 Yo roSo x0 yo ro s,

Pq

S x0 y , rs o  2 X yO r, s 2p

2

Fig. X-3. Markov diagram combining Figs. X-1 and X-2.

input letters are dependent only upon the channel state. Since these channels can be

handled in much the same way as memoryless channels, they will not be considered here.

In the next case that we consider, the transmitter knows the channel state, but the

receiver does not. It would seem reasonable that channel capacity could be reached by

a source with probabilities that depend only upon the state. But this is not so. Heuris-

tically, the reason is that in order to reach channel capacity the transmitter should

partially base his strategy on the condition of the receiver. However, the receiver's

estimate of the state is based on all of the past outputs. Since this case is essentially

no simpler than the case in which neither the transmitter nor the receiver knows the

state, we shall consider the general case.

In the general finite-state channel, there can exist statistical constraints that extend

through all time. An example is found in a channel that changes state on each even-

numbered occurrence of the input x 1 . In cases like this, we would not expect to approach

channel capacity merely by introducing into the source statistical constraints that extend

farther and farther back into time. However, it seems entirely reasonable (although

unproven) that we can approach channel capacity by using finite-state sources with more
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and more states. A finite-state source, like a finite-state channel, is given by the set
of probabilities, Pr(xI r rk ) defined for each input, . E X; and for each pair of source

at 1 j k 1
states, rj, rk E R. (See Fig. X-2.)

From this reasoning, we are led to define the channel capacity, C, of a finite-state

channel as the lowest upper bound of the average mutual information rate, taken over

all possible finite-state sources that can be connected to the channel. This definition

allows us to prove the following theorem.

THEOREM. Given any E > 0 and 8 > 0, and given any finite-state channel with capac-

ity C, there exist codes that transmit information over the channel at rates

greater than C - E with a probability of decoding error, Pr(e), less than 5.

PROOF. We can find a finite-state source that transmits through the channel at a

rate, I > C - (E/4). With this source connected to the channel, we can consider each

quadruplet of input, output, source state, and channel state - that is, (x i , yj, rk, s) -
as a superstate of a Markov chain and designate it by wijki . (See Fig. X-3.) Clearly

the source and channel transition probabilities define the transition probabilities on the

Markov chain. This Markov chain has a finite number of states and in general (2) can

be broken up into two parts:

1. One or more closed sets of states. (A closed set is a set from which no transi-

tions are possible to states outside of the set.)

2. Possibly some transient states.

We assume that the source and channel are operating in one of the closed sets of

states in which the associated average mutual information rate through the channel is

I > C - (E/4). We can now forget all of the other states and consider only this one irre-

ducible chain. There are two possible cases: (a) The chain is ergodic; (b) the chain is

periodic. The proof will be carried through for case (a). Then we shall show that the

proof is essentially the same for case (b).

First, we shall prove that the output from the channel is ergodic. The occurrence

of any particular Y sequence is a function of the state sequences on the super-Markov

graph. Therefore, by the ergodic theorem, the ensemble probability of occurrence of

any Y sequence is equal to its relative frequency of occurrence in any infinite length

sequence except in a set of sequences of zero probability. It can be shown (3) that this

condition is sufficient to guarantee the ergodicity of the output sequence. In exactly the

same way it can be established that the input is ergodic and that the combination of input

and output is ergodic.

Because of the ergodicity of the output, it can be shown (4) that

lim 1 [-log 2 Pr(yl y2. yn) - H(Y 1y 2 ... yn)] = 0 (1)
n -co

for all sequences except a set of zero probability. Likewise,
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1 1 2 nn -- 01 2 n

lim n [-log 2 Pr(x y ... x yn) - H(X Y .. Xnn)=
n -cc

except on a set of zero probability.

Combining these three statements, we now show that for sufficiently long sequences

the mutual information in most sequences tends to the average mutual information. The

average mutual information, I, is given by

lim 1 -[H(X 1 ... Xn) + H(Y 1 .. yn) - H(X l...xnyn)]
nn -oc

The mutual information rate, In , in a particular sequence of length n is given by

n [log Pr(xy .. xnyn) - log? Pr(x1 ... xn) - log 2 Pr(y .. yn) (5)

Using Eqs. 1, 2, and 3, we see that lim In = I except for a set of sequences of zero

probability.

We conclude the proof by using a theorem proved by Shannon (5). For the particular

source that we have chosen, In is a random variable which is defined by Eq. 5 for every

sequence of X and Y of length n. Then a distribution function can be defined:

p(x) = Pr(In < x)

Shannon's theorem then states that for

tion of M input words of length n that

probability as the input to the channel,

is bounded by

Pr(e) < p( log2 M + )+ 2
- n

any integer M and any 0> 0, there exists a selec-

is such that if the M words are used with equal

then the probability of a decoding error, Pr(e),

This rather remarkable theorem is proved by considering an ensemble of codes in

which each code word is chosen with the probability assigned by the particular finite-

state source that was chosen at the beginning of the proof.

Although Shannon's theorem is proved in a paper concerned with memoryless chan-

nels, the restriction to memoryless channels is used only in assuming that successive

blocks are independent of each other. In finite-state channels, the theorem still holds

if up until time zero the finite-state source is used and then one block of code is trans-

mitted. If more than one block is transmitted, the use of the code on one block will

change the state probabilities for the beginning of the next block and hence will change

all of the I . However, we are interested only in the effect on Pr(e). The worst situa-
n

tion that can occur is a combination of the following events:
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1. All of the decoding errors occur when the channel starts in state s..

Z. Pr(si) = [Pr(s )]min, in which these are the probabilities of the states with the

finite-state source attached to the channel.

3. The code that satisfies Eq. 6 for one block will always leave the channel in state

s i. Even for these extreme conditions, we have

Pr(e I si) Pr(si) = Pr(e)

Pr(e si) = Pr'(e) = probability of error when the code
is used on successive blocks

Hence, in general, we have the result

p log? M + ) + Z-n

Pr'(e) <
[Pr(sj)]mi

n

Since [Pr(sj)]min is a function only of the channel and the selected finite-state source,
it is independent of n. For any n sufficiently large, we can find an M which is such that

log 2 M 3
C- E < n <C - (7)

in which C is the channel capacity, previously defined as the lowest upper bound of the

channel information rate using finite-state sources. Choose 0 = (E/4). Then

P( logz M +) p(C -)

Since lim In = I > C - (E/4) with probability 1, we havenn -oo

lim pC - = 0
n -oo

lim 2 -n = 0
n -oo

lim Pr'(e) = 0
n -oo

so that for n sufficiently large, the probability of decoding error is less than 5 and,

from Eq. 7, the rate is greater than C - e. This concludes the proof of case (a).

To prove case (b), let us assume that the Markov chain has a period k. We can form
an ergodic Markov chain from the periodic one by combining sequences of k states into

one state on the new graph. By considering only input and output sequences whose

lengths are multiples of k, we can prove the theorem exactly as before. Q. E.D.
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The results of this theorem were applied to the "billiard-ball channel," a particularly

simple example of finite-state channels that is described in Fig. X-1. It was formerly

thought that the capacity of this channel was 0. 5 bits, achieved by sending each input

letter twice in succession. However, we found a finite-state source that signalled

through the channel at a rate of 0. 554, and by the theorem, this is achievable with arbi-

trarily small error.

It is conceivable that nonfinite-state sources will signal at a rate greater than C

over certain finite-state channels. But note that no block code can possibly signal at a

rate greater than C, since block codes are a class of finite-state sources.

Finally, attention should be called to the technique of forming a super-Markov chain

from a finite-state source and finite-state channel. This promises to be a useful concep-

tual tool in further work on finite-state sources and channels.

R. G. Gallager
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