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RESEARCH OBJECTIVES

The basic objective of our program is to devise techniques by which languages can
be translated by machine. There are two aspects of the program: the linguistic and the
mechanical. The two must progress side by side because the methods of each influence
the results of the other. Moreover, a balance must be maintained between short-range
programs which aim at the immediately practicable, and long-range research which may
add to the basic understanding needed for future progress.

Work is continuing on an analysis of German sentence structure from the point of
view of translation into English. In addition, work is being done on the theory of lan-
guage and on general considerations of machine capabilities and how they impinge on
the syntactic problems.

V. H. Yngve

A. ON CHARACTERIZATION OF FINITE-STATE LANGUAGES

A finite-state grammar G is determined by a set of internal states S , ... ,S and

transition symbols W , W . S is the initial state; W , the identity element. Each
S m o o0 0

state Si can be represented as a set of triples (i, j, k). Such a triple indicates that when

the grammar is in the state Si, the symbol Wj can be produced to switch the grammar

into the state Sk . Suppose the grammar G passes through a sequence of states, beginning

and ending with S and containing no other occurrence of S . It will then have produced
O o

the sentence consisting of the string of symbols in the order in which they were selected

at the successive transitions. A finite-state language is any language generated by a

finite-state grammar. This grammar can be represented in a familiar way by a state

diagram. Two finite-state grammars are said to be equivalent if they produce the same

language. Given any finite-state grammar G, it is possible to construct an equivalent

grammar G with the property that for any two states Si, Sj, there is a pair [k, 1],

with (i, k, 1) E Si and (j, k, 1) Sj. Hence each state of G* can be represented unam-

biguously as a set of pairs that indicate the transition symbol and the following state.

Each pair will be called a "grammatical rule." We consider, henceforth, only grammars

of this form.

Clearly, the loops in the state diagram are of particular relevance in characterizing

any finite-state language. Given a finite-state grammar G, define a cycle as a

sequence of states (S .. S , with m > 2, a a , and for 1 < i < m, al $ a. / 0.
1 'am;m1"
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S a 1 will be called the initial state of the cycle. A basic cycle is a cycle whose initial

state is S . The sequence of cycles (C o , .. C n) is a chain if Co is a basic cycle, each

C i contains the initial state of C.i+ (0 4 i < n), and no C. contains the initial state of

Cj_ i (1 i < j < n). It is a completed chain if no sequence (C , . . . C n , Cn+ ) is a

chain. Clearly, G has only a finite number of cycles and a finite number of chains. We

can use these chains as the basis for constructing a grammar, with a particularly

simple structure, equivalent to G.

Construct G in the following manner. Suppose that the completed chains of G are

H 1 ... H . Construct states T 1 ... T , with each T. containing [0, i] as its sole
' p ' 1

member. These "absorbing states" will be used to index and to identify occurrences of

states in different chains. Next, set an arbitrary one-one correspondence between finite

sequences of integers and integers greater than p, to be used for purely notational pur-

poses. If (bl1 ... ) bk) <->b under this correspondence, we shall use "(b l ... , bk)" and

"b" interchangeably in characterizing states and grammatical rules.
th

Now suppose that H.i = (C, ... , C ) is the i completed chain of G, and that

(a o , .. ., am) is the sequence of indices of the initial states of C o , . .. ,C m , respectively.

Suppose that C. (Sj . ,Sjn (0 j < m). For each I < k < n, construct the state

T (i, a ., jk) containing [0, i] and each grammatical rule [r, (i, a, .. , ajk+l)]

so chosen that [r, jk+1] E Sk . Having carried out this construction for each chain, iden-

tify the states labeled T (xand T (y, ... j) Let T be the initial
(x, a.. . . . a a) (y,a....a.) (x, 0)

state of G.

In G the analysis of G into chains is made explicit. We can establish that G is

equivalent to G.

Suppose that we recursively define the notation

al(a) ... . am)am+ 1 (1)

where the a.'s are strings or, again, are notations of the form

X1(X Z ... xt)xt+ 1  (2)

and so on, in the following way. Let Q1 be the set of sequences (bl, . ... bn+I), where

b 1 = a 1 , bn+1 = am+,1 and each b. (2 < i <n) is one of a 2 ,..., a m . Let QZ be the set

of sequences formed from the sequences of Q1 by expanding the bi's that are not already

strings in the same manner, and so on. Then for some r, Qr will be a set of sequences

(z 1 ... z ), in which each z. is a string. Each of these sequences represents the

string z 1 ... zs, and expression 1 represents the set of these strings.

It is clear that for any G constructed in the aforementioned manner, the language

generated by G can be represented completely in a finite manner in this notation. In
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fact, the representation can be read off directly from the state diagram. By virtue of
the equivalence that has been stated, we obtain the result that any finite-state language
can be represented by a finite number of finite notations in the form of expression 1.
Thus a finite-state language can be said to have an elementary sort of bracketing or
"phrase structure" imposed on it.

A. N. Chomsky
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